
Songqing Chen
Kim-Kwang Raymond Choo
Xinwen Fu
Wenjing Lou
Aziz Mohaisen (Eds.)

Security and Privacy
in Communication
Networks
15th EAI International Conference, SecureComm 2019
Orlando, FL, USA, October 23–25, 2019
Proceedings, Part II

305

Part 2

Lecture Notes of the Institute
for Computer Sciences, Social Informatics
and Telecommunications Engineering 305

Editorial Board Members

Ozgur Akan
Middle East Technical University, Ankara, Turkey

Paolo Bellavista
University of Bologna, Bologna, Italy

Jiannong Cao
Hong Kong Polytechnic University, Hong Kong, China

Geoffrey Coulson
Lancaster University, Lancaster, UK

Falko Dressler
University of Erlangen, Erlangen, Germany

Domenico Ferrari
Università Cattolica Piacenza, Piacenza, Italy

Mario Gerla
UCLA, Los Angeles, USA

Hisashi Kobayashi
Princeton University, Princeton, USA

Sergio Palazzo
University of Catania, Catania, Italy

Sartaj Sahni
University of Florida, Gainesville, USA

Xuemin (Sherman) Shen
University of Waterloo, Waterloo, Canada

Mircea Stan
University of Virginia, Charlottesville, USA

Xiaohua Jia
City University of Hong Kong, Kowloon, Hong Kong

Albert Y. Zomaya
University of Sydney, Sydney, Australia

More information about this series at http://www.springer.com/series/8197

http://www.springer.com/series/8197

Songqing Chen • Kim-Kwang Raymond Choo •

Xinwen Fu • Wenjing Lou •

Aziz Mohaisen (Eds.)

Security and Privacy
in Communication
Networks
15th EAI International Conference, SecureComm 2019
Orlando, FL, USA, October 23–25, 2019
Proceedings, Part II

123

Editors
Songqing Chen
George Mason University
Fairfax, VA, USA

Kim-Kwang Raymond Choo
The University of Texas at San Antonio
San Antonio, TX, USA

Xinwen Fu
Boston University
Lowell, MA, USA

Wenjing Lou
Virginia Tech
Blacksburg, VA, USA

Aziz Mohaisen
University of Central Florida
Orlando, FL, USA

ISSN 1867-8211 ISSN 1867-822X (electronic)
Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering
ISBN 978-3-030-37230-9 ISBN 978-3-030-37231-6 (eBook)
https://doi.org/10.1007/978-3-030-37231-6

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-4650-7125
https://orcid.org/0000-0001-9208-5336
https://orcid.org/0000-0003-2391-7789
https://orcid.org/0000-0003-3227-2505
https://doi.org/10.1007/978-3-030-37231-6

Preface

The importance of ensuring security and privacy in communications networks is
recognized by both the research and practitioner community. This is, for example,
evidenced by the establishment of the U.S. Cyber Command as a unified combatant
command in May 2018. This is also the focus of the 15th EAI International Conference
on Security and Privacy in Communication Networks (SecureComm 2019).

This proceedings contains 56 papers, which were selected from 149 submissions
(i.e. acceptance rate of 37.6%) from universities, national laboratories, and the private
sector from across the USA as well as other countries in Europe and Asia. All the
submissions went through an extensive review process by internationally-recognized
experts in cybersecurity.

Any successful conference requires the contributions of different stakeholder groups
and individuals, who have selfishly volunteered their time and energy in disseminating
the call for papers, submitting their research findings, participating in the peer reviews
and discussions, etc. First and foremost, we would like to offer our gratitude to the
entire Organizing Committee for guiding the entire process of the conference. We are
also deeply grateful to all the Technical Program Committee members for their time
and efforts in reading, commenting, debating, and finally selecting the papers. We also
thank all the external reviewers for assisting the Technical Program Committee in their
particular areas of expertise as well as all the authors, participants, and session chairs
for their valuable contributions. Support from the Steering Committee and EAI staff
members was also crucial in ensuring the success of the conference. It has been a great
privilege to be working with such a large group of dedicated and talented individuals.

We hope that you found the discussions and interactions at SecureComm 2019
intellectually stimulating, as well as enjoyed what Orlando, FL, had to offer. Enjoy the
proceedings!

September 2019 Xinwen Fu
Kim-Kwang Raymond Choo

Aziz Mohaisen
Wenjing Lou

Organization

Steering Committee

Imrich Chlamtac University of Trento, Italy
Guofei Gu Texas A&M University, USA
Peng Liu Pennsylvania State University, USA
Sencun Zhu Pennsylvania State University, USA

Organizing Committee

General Chairs

Xinwen Fu University of Central Florida, USA
Kim-Kwang Raymond

Choo
The University of Texas at San Antonio, USA

TPC Chair and Co-chairs

Aziz Mohaisen University of Central Florida, USA
Wenjing Lou Virginia Tech, USA

Sponsorship and Exhibit Chair

Qing Yang University of North Texas, USA

Local Chairs

Clay Posey University of Central Florida, USA
Cliff C. Zou University of Central Florida, USA

Workshops Chairs

Kaiqi Xiong University of South Florida, USA
Liang Xiao Xiamen University, China

Publicity and Social Media Chairs

Yao Liu University of South Florida, USA
Zhen Ling Southeast University, China

Publications Chairs

Songqing Chen George Mason University, USA
Houbing Song Embry-Riddle Aeronautical University, USA

Web Chairs

Bryan Pearson University of Central Florida, USA
Yue Zhang University of Central Florida, USA

Panels Chairs

Simon (Xinming) Ou University of South Florida, USA
Craig A. Shue Worcester Polytechnic Institute, USA

Demos Chair

Song Han University of Connecticut, USA

Tutorials Chair

Yong Guan Iowa State University, USA

Technical Program Committee

Amro Awad University of Central Florida, USA
Kai Bu Zhejiang University, China
Yinzhi Cao Johns Hopkins University, USA
Eric Chan-Tin Loyola University Chicago, USA
Kai Chen Chinese Academy of Sciences, China
Yu Chen Binghamton University - SUNY, USA
Sherman S. M. Chow The Chinese University of Hong Kong, Hong Kong,

China
Jun Dai California State University, Sacramento, USA
Karim Elish Florida Polytechnic University, USA
Birhanu Eshete University of Michigan, USA
Debin Gao Singapore Management University, Singapore
Le Guan University of Georgia, USA
Yong Guan Iowa State University, USA
Yongzhong He Beijing Jiaotong University, China
Murtuza Jadliwala The University of Texas at San Antonio, USA
George Kesidis Pennsylvania State University, USA
Joongheon Kim Chung-Ang University, South Korea
Hyoungshick Kim Sungkyunkwan University, South Korea
Gokhan Kul Delaware State University, USA
Laurent L. Njilla Air Force Research Laboratory, USA
Yingjiu Li Singapore Management University, Singapore
Jingqiang Lin Chinese Academy of Sciences, China
Zhiqiang Lin The Ohio State University, USA
Yao Liu University of South Florida, USA
Javier Lopez UMA, Spain
Wenjing Lou Virginia Tech, USA
Rongxing Lu University of New Brunswick, Canada

viii Organization

Ashraf Matrawy Carleton University, Canada
Aziz Mohaisen University of Central Florida, USA
Vaibhav Rastogi Northwestern University, USA
Sankardas Roy Bowling Green State University, USA
Pierangela Samarati University of Milan, Italy
Mohamed Shehab UNC Charlotte, USA
Seungwon Shin KAIST, South Korea
Houbing Song Embry-Riddle Aeronautical University, USA
Jeffrey Spaulding Niagara University, USA
Martin Strohmeier University of Oxford, UK
Wenhai Sun Purdue University, USA
Qiang Tang New Jersey Institute of Technology, USA
A. Selcuk Uluagac Florida International University, USA
Eugene Vasserman Kansas State University, USA
Cong Wang City University of Hong Kong Shenzhen Research

Institute, Hong Kong, China
Huihui Wang Jacksonville University, USA
Qian Wang Wuhan University, China
An Wang Case Western Reserve University, USA
Edgar Weippl SBA Research, Austria
Susanne Wetzel Stevens Institute of Technology, USA
Dinghao Wu Pennsylvania State University, USA
Mengjun Xie The University of Tennessee at Chattanooga, USA
Fengyuan Xu Nanjing University, China
Shouhuai Xu The University of Texas at San Antonio, USA
Shucheng Yu Stevens Institute of Technology, USA
Jiawei Yuan Embry-Riddle Aeronautical University, USA
Xingliang Yuan Monash University, Australia
Fareed Zaffar LUMS University, Pakistan
Xiao Zhang Palo Alto Networks, USA
Junjie Zhang Wright State University, USA
Kuan Zhang University of Nebraska-Lincoln, USA
Wensheng Zhang Iowa State University, USA
Yuan Zhang Nanjing University, China
Hong-Sheng Zhou Virginia Commonwealth University, USA
Cliff Zou University of Central Florida, USA

Organization ix

Contents – Part II

Deep Analytics

TL;DR Hazard: A Comprehensive Study of Levelsquatting Scams 3
Kun Du, Hao Yang, Zhou Li, Haixin Duan, Shuang Hao, Baojun Liu,
Yuxiao Ye, Mingxuan Liu, Xiaodong Su, Guang Liu, Zhifeng Geng,
Zaifeng Zhang, and Jinjin Liang

Account Lockouts: Characterizing and Preventing Account
Denial-of-Service Attacks. 26

Yu Liu, Matthew R. Squires, Curtis R. Taylor, Robert J. Walls,
and Craig A. Shue

Application Transiency: Towards a Fair Trade of Personal Information
for Application Services. 47

Raquel Alvarez, Jake Levenson, Ryan Sheatsley, and Patrick McDaniel

CustomPro: Network Protocol Customization Through Cross-Host
Feature Analysis . 67

Yurong Chen, Tian Lan, and Guru Venkataramani

Systematic Theory

On the Security of TRNGs Based on Multiple Ring Oscillators 89
Xinying Wu, Yuan Ma, Jing Yang, Tianyu Chen, and Jingqiang Lin

Secrecy on a Gaussian Relay-Eavesdropper Channel with a Trusted Relay . . . 108
Keke Hu, Xiaohui Zhang, and Yongming Wang

Target Information Trading - An Economic Perspective of Security. 126
Jing Hou, Li Sun, Tao Shu, and Husheng Li

Cyber Threat Analysis Based on Characterizing Adversarial
Behavior for Energy Delivery System . 146

Sharif Ullah, Sachin Shetty, Anup Nayak, Amin Hassanzadeh,
and Kamrul Hasan

Bulletproof Defenses

The Disbanding Attack: Exploiting Human-in-the-Loop Control
in Vehicular Platooning . 163

Ali Al-Hashimi, Pratham Oza, Ryan Gerdes, and Thidapat Chantem

Generic Construction of ElGamal-Type Attribute-Based Encryption
Schemes with Revocability and Dual-Policy . 184

Shengmin Xu, Yinghui Zhang, Yingjiu Li, Ximeng Liu, and Guomin Yang

Online Cyber Deception System Using Partially Observable Monte-Carlo
Planning Framework . 205

Md Ali Reza Al Amin, Sachin Shetty, Laurent Njilla, Deepak K. Tosh,
and Charles Kamhoua

SEVGuard: Protecting User Mode Applications Using Secure
Encrypted Virtualization. 224

Ralph Palutke, Andreas Neubaum, and Johannes Götzfried

Blockchains and IoT

A Behavior-Aware Profiling of Smart Contracts . 245
Xuetao Wei, Can Lu, Fatma Rana Ozcan, Ting Chen, Boyang Wang,
Di Wu, and Qiang Tang

A Performance-Optimization Method for Reusable Fuzzy Extractor Based
on Block Error Distribution of Iris Trait. 259

Feng Zhu, Peisong Shen, and Chi Chen

Detecting Root-Level Endpoint Sensor Compromises
with Correlated Activity. 273

Yunsen Lei and Craig A. Shue

Footprints: Ensuring Trusted Service Function Chaining in the World
of SDN and NFV . 287

Montida Pattaranantakul, Qipeng Song, Yanmei Tian, Licheng Wang,
Zonghua Zhang, and Ahmed Meddahi

Security and Analytics

Hecate: Automated Customization of Program and Communication
Features to Reduce Attack Surfaces . 305

Hongfa Xue, Yurong Chen, Guru Venkataramani, and Tian Lan

Phish-Hook: Detecting Phishing Certificates Using Certificate
Transparency Logs . 320

Edona Fasllija, Hasan Ferit Enişer, and Bernd Prünster

IIFA: Modular Inter-app Intent Information Flow Analysis
of Android Applications. 335

Abhishek Tiwari, Sascha Groß, and Christian Hammer

xii Contents – Part II

Power Analysis and Protection on SPECK and Its Application in IoT 350
Jing Ge, An Wang, Liehuang Zhu, Xin Liu, Ning Shang,
and Guoshuang Zhang

Machine Learning, Privately

Adversarial False Data Injection Attack Against Nonlinear AC State
Estimation with ANN in Smart Grid . 365

Tian Liu and Tao Shu

On Effectiveness of Adversarial Examples and Defenses
for Malware Classification . 380

Robert Podschwadt and Hassan Takabi

PrivC—A Framework for Efficient Secure Two-Party Computation 394
Kai He, Liu Yang, Jue Hong, Jinghua Jiang, Jieming Wu, Xu Dong,
and Zhuxun Liang

CoRide: A Privacy-Preserving Collaborative-Ride Hailing Service Using
Blockchain-Assisted Vehicular Fog Computing. 408

Meng Li, Liehuang Zhu, and Xiaodong Lin

Better Clouds

Non-Interactive MPC with Trusted Hardware Secure Against Residual
Function Attacks . 425

Ryan Karl, Timothy Burchfield, Jonathan Takeshita, and Taeho Jung

A Study of the Multiple Sign-in Feature in Web Applications 440
Marwan Albahar, Xing Gao, Gaby Dagher, Daiping Liu,
Fengwei Zhang, and Jidong Xiao

Authenticated LSM Trees with Minimal Trust . 454
Yuzhe Tang, Kai Li, and Ju Chen

Modern Family: A Revocable Hybrid Encryption Scheme Based
on Attribute-Based Encryption, Symmetric Searchable Encryption
and SGX . 472

Alexandros Bakas and Antonis Michalas

ATCS Workshop

A Nature-Inspired Framework for Optimal Mining of Attribute-Based
Access Control Policies . 489

Masoud Narouei and Hassan Takabi

Author Index . 507

Contents – Part II xiii

Contents – Part I

Blockchains

Trustless Framework for Iterative Double Auction Based on Blockchain 3
Truc D. T. Nguyen and My T. Thai

Towards a Multi-chain Future of Proof-of-Space . 23
Shuyang Tang, Jilai Zheng, Yao Deng, Ziyu Wang, Zhiqiang Liu,
Dawu Gu, Zhen Liu, and Yu Long

Secure Consistency Verification for Untrusted Cloud Storage
by Public Blockchains . 39

Kai Li, Yuzhe Tang, Beom Heyn (Ben) Kim, and Jianliang Xu

An Enhanced Verifiable Inter-domain Routing Protocol Based
on Blockchain . 63

Yaping Liu, Shuo Zhang, Haojin Zhu, Peng-Jun Wan, Lixin Gao,
and Yaoxue Zhang

Internet of Things

Edge-Assisted CNN Inference over Encrypted Data for Internet of Things . . . 85
Yifan Tian, Jiawei Yuan, Shucheng Yu, Yantian Hou,
and Houbing Song

POKs Based Secure and Energy-Efficient Access Control for Implantable
Medical Devices . 105

Chenglong Fu, Xiaojiang Du, Longfei Wu, Qiang Zeng, Amr Mohamed,
and Mohsen Guizani

USB-Watch: A Dynamic Hardware-Assisted USB Threat
Detection Framework. 126

Kyle Denney, Enes Erdin, Leonardo Babun, Michael Vai,
and Selcuk Uluagac

Automated IoT Device Fingerprinting Through Encrypted
Stream Classification . 147

Jianhua Sun, Kun Sun, and Chris Shenefiel

Catching Malware

DeepCG: Classifying Metamorphic Malware Through Deep Learning
of Call Graphs . 171

Shuang Zhao, Xiaobo Ma, Wei Zou, and Bo Bai

ChaffyScript: Vulnerability-Agnostic Defense of JavaScript Exploits
via Memory Perturbation . 191

Xunchao Hu, Brian Testa, and Heng Yin

Obfusifier: Obfuscation-Resistant Android Malware Detection System 214
Zhiqiang Li, Jun Sun, Qiben Yan, Witawas Srisa-an, and Yutaka Tsutano

Closing the Gap with APTs Through Semantic Clusters
and Automated Cybergames . 235

Steven Gianvecchio, Christopher Burkhalter, Hongying Lan,
Andrew Sillers, and Ken Smith

Machine Learning

Stochastic ADMM Based Distributed Machine Learning
with Differential Privacy . 257

Jiahao Ding, Sai Mounika Errapotu, Haijun Zhang, Yanmin Gong,
Miao Pan, and Zhu Han

Topology-Aware Hashing for Effective Control Flow Graph
Similarity Analysis . 278

Yuping Li, Jiyong Jang, and Xinming Ou

Trojan Attack on Deep Generative Models in Autonomous Driving. 299
Shaohua Ding, Yulong Tian, Fengyuan Xu, Qun Li, and Sheng Zhong

FuncNet: A Euclidean Embedding Approach for Lightweight
Cross-platform Binary Recognition . 319

Mengxia Luo, Can Yang, Xiaorui Gong, and Lei Yu

Everything Traffic Security

Towards Forward Secure Internet Traffic . 341
Eman Salem Alashwali, Pawel Szalachowski, and Andrew Martin

Traffic-Based Automatic Detection of Browser Fingerprinting. 365
Rui Zhao, Edward Chow, and Chunchun Li

Measuring Tor Relay Popularity . 386
Tao Chen, Weiqi Cui, and Eric Chan-Tin

xvi Contents – Part I

SoK: ATT&CK Techniques and Trends in Windows Malware 406
Kris Oosthoek and Christian Doerr

Communicating Covertly

Covert Channels in SDN: Leaking Out Information from Controllers
to End Hosts . 429

Jiahao Cao, Kun Sun, Qi Li, Mingwei Xu, Zijie Yang, Kyung Joon Kwak,
and Jason Li

Victim-Aware Adaptive Covert Channels . 450
Riccardo Bortolameotti, Thijs van Ede, Andrea Continella,
Maarten Everts, Willem Jonker, Pieter Hartel, and Andreas Peter

Random Allocation Seed-DSSS Broadcast Communication Against
Jamming Attacks. 472

Ahmad Alagil and Yao Liu

A Loss-Tolerant Mechanism of Message Segmentation and Reconstruction
in Multi-path Communication of Anti-tracking Network. 490

Changbo Tian, YongZheng Zhang, Tao Yin, Yupeng Tuo, and Ruihai Ge

Let’s Talk Privacy

Ticket Transparency: Accountable Single Sign-On with Privacy-Preserving
Public Logs . 511

Dawei Chu, Jingqiang Lin, Fengjun Li, Xiaokun Zhang,
Qiongxiao Wang, and Guangqi Liu

Decentralized Privacy-Preserving Reputation Management
for Mobile Crowdsensing . 532

Lichuan Ma, Qingqi Pei, Youyang Qu, Kefeng Fan, and Xin Lai

Location Privacy Issues in the OpenSky Network
Crowdsourcing Platform . 549

Savio Sciancalepore, Saeif Alhazbi, and Roberto Di Pietro

Privacy-Preserving Genomic Data Publishing via Differentially-Private
Suffix Tree. 569

Tanya Khatri, Gaby G. Dagher, and Yantian Hou

Author Index . 585

Contents – Part I xvii

Deep Analytics

TL;DR Hazard: A Comprehensive Study
of Levelsquatting Scams

Kun Du1, Hao Yang1, Zhou Li2, Haixin Duan3(B), Shuang Hao4, Baojun Liu1,
Yuxiao Ye1,4, Mingxuan Liu1, Xiaodong Su4, Guang Liu4, Zhifeng Geng4,

Zaifeng Zhang5, and Jinjin Liang5

1 Tsinghua University, Beijing, China
{dk15,yang-h16,lbj15,liumx18}@mails.tsinghua.edu.cn

2 University of California, Irvine, USA
zhou.li@uci.edu

3 Tsinghua University, Beijing National Research Center
for Information Science and Technology, Beijing, China

duanhx@tsinghua.edu.cn
4 University of Texas at Dallas, Richardson, USA

shao@utdallas.edu, yeyuxiao@outlook.com,
suxiaodong.sxd@gmail.com, lg2001607@163.com, zhifeng.geng@qq.com

5 Network security Research Lab at Qihoo 360, Beijing, China
zhangzaifeng@360.cn, liangjinjin@360.cn

Abstract. In this paper, we present a large-scale analysis about an
emerging new type of domain-name fraud, which we call levelsquatting.
Unlike existing frauds that impersonate well-known brand names (like
google.com) by using similar second-level domain names, adversaries
here embed brand name in the subdomain section, deceiving users espe-
cially mobile users who do not pay attention to the entire domain names.

First, we develop a detection system, LDS, based on passive DNS
data and webpage content. Using LDS, we successfully detect 817,681
levelsquatting domains. Second, we perform detailed characterization on
levelsquatting scams. Existing blacklists are less effective against level-
squatting domains, with only around 4% of domains reported by Virus-
Total and PhishTank respectively. In particular, we find a number of
levelsquatting domains impersonate well-known search engines. So far,
Baidu security team has acknowledged our findings and removed these
domains from its search result. Finally, we analyze how levelsquatting
domain names are displayed in different browsers. We find 2 mobile
browsers (Firefox and UC) and 1 desktop browser (Internet Explorer)
that can confuse users when showing levelsquatting domain names in
the address bar.

In summary, our study sheds light to the emerging levelsquatting fraud
and we believe new approaches are needed to mitigate this type of fraud.

Keywords: LDS · DNS · Levelsquatting

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019
Published by Springer Nature Switzerland AG 2019. All Rights Reserved
S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 3–25, 2019.
https://doi.org/10.1007/978-3-030-37231-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_1

4 K. Du et al.

1 Introduction

Fast-paced reading is favored in the Internet age. Lengthy articles are less likely
to be read and often receive comments like TL;DR (short for Too long; didn’t
read) [1]. While impatience to long text may leave valuable information over-
looked, negligence to a long domain name can lead to much worse consequences.

As a real-world example, Fig. 1 shows a phishing website with a long
domain name, mails.tsinghua.edu.cn.locale.rebornplasticsurgery.com, displayed
in IE browser’s address bar with default settings. The domain name is so lengthy
that only the subdomain mails.tsinghua.edu.cn can be displayed, which is identical
to the authentic login domain name of Tsinghua university. A user can be deceived
to put her login credential when visiting this website.

Fig. 1. An example of Levelsquatting domain displayed in IE.

We term this type of fraud as levelsquatting. Adversaries here create domains
by using its subdomain section to impersonate a brand domain. Levelsquatting
scams bring cybercriminals several benefits: (1) This type of attack is more
deceptive (compared to traditional domain squatting), since the displayed part
of the domain name can have quite legitimate looking in both desktop and
mobile browsers; (2) Adversaries can create subdomains to impersonate arbitrary
brand domains. If they use e2LDs(effective second level domain names) for the
same purpose, they have to find ones not registered yet. and (3) Adversaries
can leverage mechanisms of name servers that controlled by themselves, like

http://www.mails.tsinghua.edu.cn.locale.rebornplasticsurgery.com
http://www.mails.tsinghua.edu.cn

TL;DR Hazard: A Comprehensive Study of Levelsquatting Scams 5

wildcard DNS, to manage a large pool of levelsquatting concurrently. In this
work, we perform the first large-scale analysis to understand this type of fraud.

Finding levelsquatting Domains. To discover levelsquatting domains, we
have developed a system named called LDS (Levelsquatting Detection System),
which monitors large volume of passive DNS data and identifies levelsquatting.
LDS first searches for the levelsquatting candidates by matching a list of pop-
ular domain names. Then for each candidate, it collects WHOIS information,
page content, visual appearance, and performs a three-stage detection procedure.
After sampling and manually verification, we confirm LDS can work effectively.
As described in Sect. 3, LDS achieves the precision of 96.9% on a sample of our
dataset.

Discoveries. The amount of levelsquatting domains discovered by LDS is
817,681, which enable us to conduct a comprehensive study of levelsquatting
scams. We highlight our findings below.

(1) We find a new type of attack that impersonates search engines. For example,
the domain www.baidu.com.baidu-service.com has identical appearance as
Baidu and it can even returns meaningful search results when being queried.
The goal of adversaries here is to insert illegal ads, e.g., gamble promotions,
in the returned results. In total, we find 13,331 fake search-engine websites.
We report them to Baidu security team, and all of them have been confirmed
malicious.

(2) While a levelsquatting domain can be created by adding a subdomain record
into the DNS zone file, we find wildcard DNS record is used more often
for management ease: 517,839 (63.33%) levelsquatting FQDNs (fully quali-
fied domain names referring to absolute domain names) or 41,389 (64.55%)
e2LDs have wildcard DNS records.

(3) The effectiveness of blacklists regarding levelsquatting is very limited. We
check the identified levelsquatting domains on PhishTank1 and VirusTotal2.
Only around 4% of the them have been captured by VirusTotal and Phish-
Tank respectively.

(4) We conjecture that the rise of levelsquatting attack is attributed to the
problematic design of modern browsers. In fact, we investigate and show
that some mobile browsers (e.g., Firefox and UC) and desktop browsers
(e.g., Internet Explorer 9 on Windows 7) fail to display levelsquatting FQDNs
correctly, making users vulnerable to this fraud. As a result, we suggest these
browser manufacturers to adjust their UI and highlight the e2LD section.

In summary, our work makes the following contributions.

(1) We perform the first large-scale study of levelsquatting fraud using a detec-
tion system LDS we developed.

1 https://www.phishtank.com/.
2 https://www.virustotal.com/.

www.baidu.com.baidu-service.com
https://www.phishtank.com/
https://www.virustotal.com/

6 K. Du et al.

(2) We make an in-depth measurement study of the identified levelsquatting
domains.

(3) We check levelsquatting on PC and mobile browsers and find several visual
issues that can confuse users. We suggest browser manufactures to fix those
issues and highlight the e2LD section more clearly.

2 Background

In this section, we first give a brief overview of existing methods for subdomain
creation. Then we define levelsquatting and describe the scope of this study.
Finally, we survey existing attacks against brand names that have been exten-
sively studied and compare them with levelsquatting.

Subdomain Creation. In this work, we consider a domain name as FQDN,
its right part offered by registrar (e.g., GoDaddy3) as e2LD and its left part as
subdomain. To learn whether a domain is managed by a registrar, we check if it is
one level under an effective top-level domain (eTLD) (e.g., .com and .co.uk)4,
an approach commonly used by existing works [4].

There are three types of DNS records that can create subdomain, A, AAAA and
CNAME records. The first two associate a subdomain with an IP v4/v6 address,
e.g., <b.example.com A 93.184.216.34>. CNAME specifies the alias of
another canonical domain, e.g., <www.example.com CNAME example.com>.
Additionally, the owner can specify a wildcard record, by filling the subdomain
part with a character *, which will capture DNS requests to any subdomain not
specified in the zone file.

Levelsquatting. A registrar usually enforces no extra restriction on subdomain
creation, if the whole domain name complies with the IETF standard [5]. Such
loose policy unfortunately allows attackers to create a subdomain impersonat-
ing a well-known brand without any hurdle. We name such fraud domains as
levelsquatting domains. More concretely, it contains a well-known brand (e.g.,
google.com) in its subdomain section, while the e2LD section does not belong
to the brand owner.

Whether a domain is created for levelsquatting depends on its similarity to
a known brand in both its subdomain and e2LD sections. For the subdomain
section, we assume attackers: (1) use the exact brand name without any typo
(e.g., go0gle.com.example.com is excluded); (2) keep the entire e2LD section
of the targeted brand within the subdomain section (e.g., google.example.com
is excluded); (3) target a brand’s FQDN as well in addition to its e2LD
(e.g., accounts.google.com.example.com is included). We choose these criteria
to reduce the computation overhead (e.g., finding all brand typos is computa-
tionally expensive) while achieve good coverage.

Comparison to Domain-Squatting. Previous studies have revealed many
tricks adopted by adversaries to impersonate a brand. Domain-squatting is
3 https://www.godaddy.com/.
4 We use the public suffix list provided by https://publicsuffix.org/ to match eTLD.

http://go0gle.com.example.com
http://google.example.com
http://accounts.google.com.example.com
https://www.godaddy.com/
https://publicsuffix.org/

TL;DR Hazard: A Comprehensive Study of Levelsquatting Scams 7

Fig. 2. Processing flow of LDS. The number in the figure refers to the number of records
remained after each filtering step.

arguably the most popular approach. In this approach, adversaries buy an e2LD
that looks similar to a brand domain and fool users who cannot distinguish
the difference. This can be done through typo-squatting [6], bit-squatting [7],
homophone-squatting [8], homograph-squatting [9] and etc. A recent work by
Kintis et al. covers combo-squatting, in which case attackers combine brand
name with one or more phrases (e.g., youtube-live.com) and register the
e2LD [10]. Despite the high similarity, these approaches will fail if the user is
careful enough when reviewing the domain name.

However, a recent attack called punycode scam takes one step further to erase
the visual difference. Punycode is a way to represent a Unicode letter using ASCII
character set. But many Unicode letters look almost the same as ASCII letters
(e.g., Cyrillic “a” and Latin “a”). They can be abused to construct scam domains
looking exactly the same as brand domains [11,12].

All approaches listed above require attackers to buy e2LDs similar to the
targeted brand. The monetary cost is still non-negligible and the choices are
usually limited. In comparison, creating levelsquatting domain needs virtually
zero cost and the choices are unlimited. Moreover, when the domain is displayed
in a defective browser, discerning the difference is much more difficult.

3 Finding levelsquatting Domains

While levelsquatting domains are spotted in wild occasionally [2], there is no
systematic study measuring the scale and characterizing the purpose. A large
volume of samples is essential to yield meaningful insights into this phenomenon,
but so far the coverage from public sources is still limited (see Sect. 5.2 for more
details). To overcome the issue of data scarcity, we build an system named LDS
(Levelsquatting Detection System) to automatically discover scam levelsquatting
domains. At high level, LDS selects candidate domains from passive DNS data
and identifies scam ones based on the combination of registration-, structural-
and visual-analysis. Below we first give an overview of LDS and then dive into
the details of each component.

http://youtube-live.com

8 K. Du et al.

3.1 System Overview

The top challenge we need to address here is how to discover a large amount
of levelsquatting domains efficiently. Although some registrars (e.g., VeriSign)
have published zone files they managed, subdomains are not included. Whether
a subdomain exists can be learned through issuing DNS query, but enumerating
all subdomains is impossible. Our solution, on the other hand, is to examine the
domain resolutions logged by passive DNS collectors. We scan two passive DNS
datasets offered by Farsight5 and Qihoo 3606 in this research.

Brand Selection. Although any brand may be subjected to levelsquatting
attack, impersonating well-known brands accords with the best interest of attack-
ers. In this study, we select e2LD from Alexa top 10K list7 (named DomAlexa)
for detection. This dataset yields a decent coverage of web categories (46 cat-
egories labeled by Alexa8 are included). Next, we construct a list of wildcard
strings (e.g., *.google.com.*) and submit them to passive DNS service. In
the end, we obtain a corpus of 586,197,541 DNS logs. We filter logs matching A,
AAAA and CNAME in record type and extract domain names. We collect 4,735,289
domains as candidates (named DomAll).

Design and Data Collection. Through an initial exploration on a small sub-
set within DomAll, we gain three insights about levelsquatting domains. First,
many of them have been leveraged to deliver phishing content with similar visual
appearances to the targeted brand domains [13]. Second, attackers prefer to use
off-the-shelf website template to reduce development cost [14,15], introducing
irregular similarity among pages of levelsquatting domains. Third, registration
information of levelsquatting e2LD and brand e2LD are usually irrelevant. Moti-
vated by these insights, we build a crawler infrastructure to query WHOIS infor-
mation from registrars, download homepage and capture screenshots for each
domain in DomAll.

We obtain 2,473,809 valid pages from DomAll and we label this set as
DomSus. We notice that almost half of DomAll become expired during our
research. This is because adversaries here prefer to e2LD with short lifetime
to reduce their cost, illustrated by previous work [15]. Every domain in DomSus

is examined by a detection component based on registration-, structural-, and
visual-features and the alarmed domain is considered as levelsquatting (the set is
named DomLD). Figure 2 illustrates the processing flow and the implementation
details are elaborated in the following chapter.

3.2 Implementation of Checkers

We develop three checkers to exam each domain in DomSus. All these three check-
ers are sequential. At the high level, a domain is labeled suspicious if registration
5 https://www.dnsdb.info/.
6 https://www.passivedns.cn/.
7 http://s3.amazonaws.com/alexa-static/top-1m.csv.zip.
8 https://www.alexa.com/topsites/category.

https://www.dnsdb.info/
https://www.passivedns.cn/
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://www.alexa.com/topsites/category

TL;DR Hazard: A Comprehensive Study of Levelsquatting Scams 9

information mismatches correspondent brand domain in DomAlexa. Structural
and visual representation check similarity between DomSus or DomAlexa. We
consider a domain as levelsquatting if two checkers alarm. The details of each
checker is elaborated below.

Registration Checker. We query public WHOIS servers to obtain registra-
tion information for e2LDs in DomSus and DomAlexa. Though a levelsquatting
domain can pretend by manipulating the subdomain section, faking registra-
tion information is not always feasible. In fact, not all the WHOIS fields can
be controlled by attackers, e.g., register email and registration date. Although
adversaries can utilize “Domain Privacy Protection” service to hide their tracks,
they cannot rely on brand domain use the same service.

From WHOIS servers, we obtain 58,372 and 10,000 valid records for e2LDs
in DomSus and DomAlexa

9. For every WHOIS record associated with DomSus,
we extract email address, telephone number, creation date, expiration date, and
match them with DomAlexa. The domains having zero overlap will be further
inspected by the structural- and visual- checker.

Structural Checker. As the second step, we inspect the homepage under each
domain. On one hand, malicious pages tend to share the same structure due to
the use of web templates. On the other hand, when a malicious page is designed
for phishing, its structure should resemble to the brand domain. As a result,
we compare each page structural similarity in DomSus and DomAlexa by using
“Page Compare library”10.

Visual Checker. In this step, we aim to determine whether the levelsquat-
ting domain runs a phishing page mimicking one in DomAlexa. We look into
the visual similarity between them. As the first step, our crawler launches a
browser instance and visit homepages in DomAlexa and DomSus by using sele-
nium library11. We take a screen shot for each domain. Then we check structural
similarity between each image in DomSus and DomAlexa by using skimage12.

By using both structural and visual checkers, we can filter out non-malicious
levelsquatting domains. Similar to our approach, DeltaPhish [19], also exploits
the structural and visual similarity to detect phishing pages. Though DeltaPhish
extracted more features, it relies on a pre-labeled training dataset and the compu-
tation is more time-consuming. Our approach is training-free and more efficient.

4 Evaluation

The Precision of LDS. LDS detects 817,681 levelsquatting FQDNs (DomLD)
and we want to learn how accurate the result is. In the beginning, we use “query”

9 We are not able to obtain WHOIS records for all e2LDs within DomSus because
they have become expired when we queried.

10 https://github.com/TeamHG-Memex/page-compare.
11 https://www.seleniumhq.org/.
12 https://scikit-image.org/.

https://github.com/TeamHG-Memex/page-compare
https://www.seleniumhq.org/
https://scikit-image.org/

10 K. Du et al.

mode of VirusTotal API13 to get URL report for every detected levelsquatting
FQDN and use the number of alarms to determine whether it is scam. But it
turns out that most of the domains are not even been submitted to VirusTotal
(more details in Sect. 5.2). Therefore, we have to resort to manual verification.
However, manually confirming all of them within a reasonable time is impossible.
As an alternative, we sample FQDNs randomly and validate them for 10 rounds.
We calculate precision rate for each round and consider the average value as the
true precision rate.

In each round, we first sample 1,000 results and check whether the FQDN is
used for phishing, e.g., stealing login credentials. For the remaining ones, our val-
idation rules focus on the strategies adopted by attackers. In particular, we first
compare two pages crawled by common browser user-agent and spider user-agent
strings, determining if cloaking performed, which is widely used for Blackhat
SEO. Then we follow the method proposed by Wang et al. [17] to find cloaking
pages: if there is no similarity in visual effect or page structures between two
pages, the domain is labeled as cloaking. Next, we go through the page content
and check if it is used to promote illegal business like porn, gamble or fake shops.
We also examine e2LD’s WHOIS information and consider it a true positive
when the domain is recently registered by a non-authoritative party. After 10
rounds calculation, we get the system precision rate is 96.9%.

Analysis of False Positives. We conservatively treat the false positives rate
3.1%. But a close look suggests none of them is absolutely innocent. Among these
310 domains, 178 of them show regional news, but none of their sources are well
known and the same content/page structure are found, which indicate they might
serve spun content for spam purposes [18]. The other 132 domains all display a
message showing that the domain is expired. However, when we revisited them
one month later, 118 of them showed more than 2 ads about lottery and porn.
We speculate these domains might be purchased later by attackers or just use
expired pages occasionally to avoid detection.

5 Measurement

In this section, we present our analysis about levelsquatting domains. We first
describe the dataset we use. Then, we evaluate how effective the current defense
stands against levelsquatting and how popular levelsquatting is used for scam
activities. Next we examine the statistics of the lexical features, including the
popularity of different prefixes in subdomains. Finally, we take a deep look into
the infrastructure behind levelsquatting domains.

5.1 Datasets

To enrich the diversity of the levelsquatting domains, in addition to the 799,893
domains captured by LDS, we also acquire data from PhishTank and VirusTotal.
The summary is listed in Table 1.
13 The “query” mode retrieves the prior scanning result of a URL that has been sub-

mitted to VirusTotal by another user.

TL;DR Hazard: A Comprehensive Study of Levelsquatting Scams 11

PhishTank (DSPT). Levelsquatting is supposed to be used a lot for phishing
attacks. As a result, we download all URLs submitted to PhishTank between May
2016 to July 2017, with 1,025,336 records in total, and search for levelsquatting
FQDNs. We use the same check algorithm described in Sect. 3 and get 14,387
levelsquatting FQDNs in the end.

VirusTotal (DSV T). Another data source is VirusTotal, a well-known public
service offering URL and file scanning. We download the feed from February to
April, 2017, accounting for 160,399,466 URLs in total. After filtering, we obtain
3,528 levelsquatting FQDNs (all of them are alarmed by at least two blacklists).

Combining the three datasets, we obtain 817,681 unique levelsquatting
FQDNs (we name the entire set DSAll), mapped to 64,124 e2LDs. The over-
lap of the three datasets is small: only 127 FQDNs or 40 e2LDs from DSLDS

are also contained in DSPT and DSV T .

Table 1. Summary of datasets.

Notation Source Period # FQDNs # e2LDs

DSLDS LDS 03.2017-04.2017 799,893 58,988
DSPT PhishTank 05.2016-07.2017 14,387 3,887
DSV T VirusTotal 02.2017-04.2017 3,528 1,289
DSOverlapped – – 127 40
Sum (DSAll) – – 817,681 64,124

5.2 Impact of Levelsquatting

Blacklist is a common first-line defense against malicious URLs, but according to
our study, its coverage on levelsquatting domains is quite limited. Our conclusion
comes from a coverage test on VirusTotal: we queried all 817,681 FQDNs from
DSLDS using VirusTotal API under “query” mode, and found only 39,249 are
alarmed, accounting for 4.80% of DSLDS . It turns out that most of the domains
(618,374, 75.63%) are not even submitted to VirusTotal.

Although levelsquatting has been observed in the wild as an attack vector
for phishing, whether it has become a popular option for the phishing purpose
is unclear yet. The answers seems negative: 332,007 distinct FQDNs (cover-
ing 1,025,336 URLs) are obtained from PhishTank but DSPT only has 14,387
(4.33% of 332,007) FQDNs. As another supporting evidence, most of the domains
recorded by PhishTank are short, each of which in average consists of only 2.83
levels.

Prefix. Attackers are free to add prefixes in front of a brand, in order to imper-
sonate a specific brand domain. To learn their preference, we have extracted all
prefixes and counted the number of appearance among DSAll. Top 15 prefixes
with their occupied percentage are shown in Fig. 3. Among them, www. is chosen

12 K. Du et al.

Fig. 3. Top 15 prefix keywords.

most frequently (79,338 or 9.70% of DSAll). The top 15 prefixes show up 31.09%
of all levelsquatting domains. Prefix known to be associated with mobile services,
like m., 3g. and weixin. (representing WeChat, the top mobile chat app in
China), are ranked highly, suggesting that attackers actively exploit the display
vulnerabilities in mobile devices (discussed in Sect. 7).

5.3 Infrastructure

Levelsquatting domains serve as the gateway to attackers’ infrastructure. For
better understanding, we first look into the IP addresses and registrants behind,
then we analyze domains with wildcard DNS record, distribution in new gTLD
and HTTPS certificates they deployed.

IP Addresses. We performed DNS queries on all levelsquatting FQDNs in
DSAll to obtain their IP addresses by using pydig14. In total, 710,347 (86.87%)
requests returned valid results and 54,118 IPs were obtained. We show the top
10 IP addresses that levelsquatting domains prefer in Table 2. From this table
we can see that the top 10 servers host more than 38% of total levelsquatting
domains.

Registrants. We are interested in who actually control the levelsquatting
domains. Hence we select WHOIS records of domains in DSAll and obtain 58,372
valid records in total. By grouping the domains with registrant email addresses,
we find that 23.41% of them are under 10 email addresses. We list these regis-
trants in Table 3. We search email addresses for relevant information, find that
14 https://github.com/shuque/pydig.

https://github.com/shuque/pydig

TL;DR Hazard: A Comprehensive Study of Levelsquatting Scams 13

Table 2. Top 10 IP addresses of malicious levelsquatting domains.

No. IP ASN Location Count of
levelsquatting FQDNs

Percentage

1 69.172.201.153 AS19324 US 76,387 9.34%
2 185.53.179.8 AS61969 Europe 48,932 5.98%
3 199.59.242.150 AS395082 US 35,327 4.32%
4 202.181.24.196 AS55933 Australia 34,395 4.21%
5 205.178.189.131 AS19871 US 31,238 3.82%
6 52.33.196.199 AS16509 US 23,994 2.93%
7 72.52.4.122 AS32787 US 21532 2.63%
8 93.46.8.89 AS12874 Italy 17,328 2.12%
9 72.52.4.119 AS32787 US 13,551 1.66%
10 118.193.172.49 AS58879 HK 10,689 1.31%
Total – – – 313,373 38.32%

Table 3. Top 10 registrant emails.

No. Email Count of
Levelsquatting e2LDs

Percentage

1 yu****@yinsibaohu.aliyun.com 3,328 5.19%
2 yuming****@163.com 2,985 4.66%
3 4645468b********@privacy.everdns.com 1,633 2.55%
4 zz****@sina.com 1,397 2.18%
5 28***@qq.com 1,255 1.96%
6 c138e837********@privacy.everdns.com 1,231 1.92%
7 xiaosh********@163.com 989 1.54%
8 ljj********@gmail.com 751 1.17%
9 whoisa****@west263.com 730 1.14%
10 zr**@qq.com 712 1.11%
Total – 15,011 23.41%

many of them belong to professional domain brokers who own massive amount
of domains. Similar observations were also described in previous works looking
into the underground economy [3] and blackhat SEO [15].

Registration Dates. Next, we examine the registration dates of the levelsquat-
ting e2LDs. Figure 4 illustrates the ECDF of registration dates, which shows
that more than 59.27% of domains were registered after 2016. Previous studies
suggest recent registration date is an indicator of domains owned by attack-
ers [21,22], and our result suggests that hijacking reputable e2LD and adding
subdomains under its zone file are not popular, since reputable e2LDs tend to

14 K. Du et al.

Fig. 4. ECDF of registration dates.

Table 4. Top 10 new gTLDs in levelsquatting e2LDs.

No. New gTLD Count Percentage of new
gTLD domains

Percentage
of all e2LDs

1 .top 3,868 20.92% 6.03%
2 .win 3,034 16.41% 4.73%
3 .pw 2,672 14.45% 4.17%
4 .info 2,254 12.19% 3.52%
5 .bid 1,862 10.07% 2.90%
6 .loan 1,213 6.56% 1.89%
7 .party 1,021 5.52% 1.59%
8 .racing 893 4.83% 1.39%
9 .faith 586 3.17% 0.91%
10 .date 313 1.69% 0.49%
Total – 17,716 95.83% 27.63%

have a long registration lifetime (e.g., google.com has been registered for more
than 20 years). Instead, creating e2LD or compromising newly registered e2LD
is more popular.

Wildcard DNS. While LDS has detected 817,681 unique levelsquatting FQDNs,
they are mapped to only 64,124 e2LDs. We suspect there may be many
wildcard DNS records among them. To verify this assessment, we probe all
64,124 e2LDs using the same method proposed by Du et al. [15]. In essence,
for an e2LD like example.com, we first try to resolve the IP address of
*.example.com. The e2LD is considered to support wildcard DNS if there
is a valid response. Otherwise, we issue two queries with random subdomain
names, like aaa.example.com and bbb.example.com. If the two responses

TL;DR Hazard: A Comprehensive Study of Levelsquatting Scams 15

are matched, the e2LD is considered to support wildcard DNS as well. In the end,
we discovered 41,389 e2LDs (64.55% of 64,124) contain wildcard DNS records,
suggesting this configuration is widely used by adversaries.

Abuse of New gTLD Domains. Previous studies [15] discovered that there is
an increasing tendency of registering malicious domains under new gTLDs, like
.top. We want to learn whether new gTLD is also favored by levelsquatting
attackers. As such, we use the new gTLD list published by ICANN [23] to filter
the e2LDs in DSAll. It turns out a prominent ratio of e2LDs (17,716, 27.63% of
64,124) are under new gTLDs, which aligns with the discovery of previous works.
We think the the major reason is that most new gTLDs are cheap and lack of
maintenance. We show the top 10 new gTLDs abused in Table 4.

SSL Certificates. Deploying SSL certificates and supporting HTTPs connec-
tion is a growing trend for site administrators. To make malicious sites, espe-
cially phishing sites more convincing to visitors, SSL certificates are also used by
attackers [24]. For levelsquatting domains, the motivation is the same but our
measurement result shows that they have not seriously considered this option.
We ran port scan with ZMap15 over all DSAll and find that only 587 of them
provide certificates. By comparison, a study [25] showed that already 70% of
Alexa Top One Million sites provide SSL certificates. We download all these 587
certifications and extracted the issuers. Only six issuers are found. All of them
can provide free SSL certification with 30-day period or even longer. We believe
this is the main reason that these issuers are selected (Table 5).

Table 5. SSL Certification issuers and domain count.

No. Certification Issuer Charge Count Percentage

1 RapidSSL SHA256 CA - G3 30 days free 276 47.02%
2 Let’s Encrypt Authority X3 Free 207 35.26%
3 WoSign CA Free SSL Certificate G2 Free 40 6.81%
4 GlobalSign Organization Validation

CA - G2
30 days free 26 4.43%

5 Cybertrust Japan Public CA G3 30 days free 23 3.92%
6 Amazon 12 month free 15 2.56%
Total – – 587 100%

6 Characterization

In this section, we take a closer look into the business behind levelsquatting
domains and their targeted brands, to get a better understanding of how they
serve attackers’ operations.

15 https://github.com/zmap/zmap.

https://github.com/zmap/zmap

16 K. Du et al.

6.1 Types of Malicious Activities

LDS is able to classify levelsquatting domains into two categories: phishing and
non-phishing. In order to learn more finer-grained categorical information, e.g.,
the business operated behind the domain, we extract more features from the
associated pages and run another classification procedure. Specifically, we ran-
domly sampled 10,000 pages from DSAll first and manually labeled them into
5 categories, including porn, lottery, phishing, blackhat SEO, malware-delivery
to prepare the training dataset. Then, the texts from title and href tags of each
page are extracted and we use a deep-learning algorithm, CNN (Convolutional
Neural Network) to build the classification model [26]. We choose CNN because
it has been applied to similar tasks like sentence and text classification, and
achieved many successes [27,28]. After the training step, we use CNN model to
classify all DSAll pages. The result on levelsquatting FQDNs are shown in Fig. 5.
It turns out most of the levelsquatting domains were used for porn (42.59%) and
lottery (34.42%).

Since the purposes of phishing sites are not always identical, we run the same
CNN-based approach to obtain sub-categories under the phishing category. The
statistics of the associated FQDNs are shown in Fig. 6. It turns out the majority
(94.89%) of FQDNs attempts to impersonate well-known sites of web portals,
finance, advertisements and search-engine. Below we elaborate each category.

Fake Web Portals. The sites here are developed to help attackers gain high
search rankings illicitly (i.e., blackhat SEO). Attackers crawl content from rep-
utable web portals and update everyday. Because the ranking algorithm favors
sites with high dynamics and meaningful content, attackers’ sites will gain rela-
tively high score. In the mean time, blackhat SEO keywords and malicious URLs
are embedded into the copied content. As a result, querying blackhat SEO key-
words in search engines will lead to malicious URLs with higher possibilities [15].

Fake Financial Sites. This is a classic type of phishing sites. Their goal is to
steal users’ credentials by impersonating the login pages of other sites, especially
bank websites. These sites make themselves look almost the same as bank sites,
stock buying and selling sites, to allure users to submit their bank card number
and password.

Fake Advertisements. These sites promote products by exaggerating their
effects. For instance, fake weight-losing products are frequently seen. Their
common strategy is to crawl the content from reputable shopping sites like
www.amazon.com and replace some of the contents with fake advertisements.

Fake Search Engine. This is a new type of blackhat SEO that never reported
before and we will show more details in Sect. 6.3. They pretend to be a valid
search-engine site. A search query will be forwarded to the authentic site and
the returned results would be mixed with illegal ads. As it is fully functional,
users would prone to trust the returned results and click the illegal ads.

TL;DR Hazard: A Comprehensive Study of Levelsquatting Scams 17

Fig. 5. Levelsquatting FQDN categories. Fig. 6. Phishing FQDN sub-categories.

6.2 Visiting Strategies

A user could make a mistake when typing a domain name and visit a typo-
squatting site accidentally, but it’s not possible to type a levelsquatting domain
name by mistake. So we wonder how these levelsquatting domains visited by
users and who are their referrers.

Although it is straightforward to trace forward from a levelsquatting domain
to its destination by following redirection and hyperlink, tracing backward is very
challenging. A levelsquatting domain can also be embedded in webpage and many
other media like email. Unfortunately, without data shared by service providers
like email servers, finding the origin is impossible. We focus on websites that link
to levelsquatting domains as we can leverage search engine, whose indexed pages
are open to public, to find website origin. To this end, we queried all FQDNs in
DSAll using Baidu and downloaded the first 3 result pages for each. We choose
Baidu because Baidu allows us to run automated query without being blocked.
In the end, we find only 80,159 queries returning at least one result, suggesting
most of them are referred by other channels rather than websites.

The next step is to find pages in the search result that point to levelsquat-
ting FQDNs. Instead of directly crawling, we choose to analyze its short descrip-
tion and look for FQDN in DSAll. To notice, short description of search result
has been used for detecting promotional-infection in [20]. In the end, we found
298,370 search results satisfying this criteria. Interestingly, more than 27% of the
results point to forums zhidao.baidu.com and zhihu.com (Chinese versions
of Quora). We report these content to Baidu Security Team and all are removed
now.

Here we give a real-world example showing how a visitor reaches a levelsquat-
ting domain from the website referral, and illustrate it in Fig. 7. The attacker
first posts a thread on zhidao.baidu.com which advertises a link pointing
to pan.baidu.com. vrd579.com, a levelsquatting domain impersonating
pan.baidu.com, Baidu’s cloud-drive service. The thread tops the search result
when a user queries “nude picture of Arena of Valor characters” (translated from
Chinese). When user follows the search result and the link in the post by mobile,
she will land on the levelsquatting site while only “pan.baidu.com” will be shown
in her browser address bar, which will induce her to input her password or down-
load malicious apps.

18 K. Du et al.

Fig. 7. An example showing how a visitor reaches a levelsquatting domain.

One may wonder if such search poisoning attack is only effective against
Baidu. To examine this argument, we evaluated Google by sampling 10,000
domains in DSAll and querying them through our proxy pool. It turns out more
than 85% levelsquatting domains were also indexed by Google.

6.3 An Example of Fake Search Engine

As pointed out in Sect. 6.1, during the course of our study, we have discov-
ered a new type of phishing attack impersonating search engines. The fake
search-engine site copies content from authentic site, but when a user searches a
term, illegal ads are inserted ahead of the original search results. Figure 8 shows
the returned page of www.baidu.com.baidu-service.com (impersonating
Baidu search) when querying “abc.” The first item is an advertisement pointing
to a lottery site 8f.com, which is not allowed in Baidu’s search result because
it’s not permitted by the Chinese government. We count the number of level-
squatting domains under this category and find the top three are also the three
leading search engines in China: Baidu, 360 search and Sogou. The fake sites
count is 4,583, 3,950 and 2,318 seperately.

7 Browser UI Vulnerabilities

When the length of a domain name exceeds the visible area of browser’s address
bar, a part of the domain name will not be displayed. A user could mis-recognize
the domain in this case. Browser vendors should carefully design the address bar
to either leave enough space for domain name or notify users when part of the

TL;DR Hazard: A Comprehensive Study of Levelsquatting Scams 19

Fig. 8. Fake Baidu search result.

domain, especially the e2LD section, is hidden. Unfortunately, not all browsers
follow these design principles.

We first examine how a lengthy domain is displayed on mobile
browsers. Five representative mobile browsers are tested through visit-
ing mails.tsinghua.edu.cn.locale.rebornplasticsurgery.com in an Android phone.
Figure 9 shows the corresponding address bars. UC browser16 is the most vulner-
able as the domain name is entirely hidden in address bar. Similarly, Firefox only
shows a few extra letters. Chrome and Safari perform better as more letters are
displayed. We recommend Firefox and UC Browser to redesign the address bar
for allowing better visibility. A work published recently [29] also pointed out that
many mobile browsers fail to display levelsquatting domain name in a secured
manner, which resonates with our findings. The desktop browsers are expected
to be immune from this vulnerability, given that their UI has much larger visible
area. We test 8 popular desktop browser and find only IE 9 partially displays as
shown in Fig. 10.

8 Discussion

Limitations. The criteria we enforce on the brand selection rule out poten-
tial levelsquatting domains that include typos (e.g., go0gle.com.example.com)
or overlap with only part of brand e2LDs (e.g., google.example.com). The major
reason is that finding true positives under these cases requires a lot more web
crawling and queries against passive DNS. Besides, we argue that these domains
are less likely to be created by attackers who have absolute freedom to fill the
subdomain section with anything they like.

16 http://www.ucweb.com/.

http://mails.tsinghua.edu.cn.locale.rebornplasticsurgery.com
http://www.go0gle.com.example.com
http://google.example.com
http://www.ucweb.com/

20 K. Du et al.

Fig. 9. Address bar of mobile browsers.

Fig. 10. Address bar of desktop browsers.

Knowing the design of LDS, attackers could adjust their strategies to avoid
detection. For instance, they could target less popular brand domains (i.e.,
beyond Alexa top 10K) or change the page content to reduce the structure and
visual similarity. These issues could be addressed when running other detection
systems at the same time.

The majority of domain names inspected by LDS come from the passive
DNS managed Qihoo 360. For this data, as far as we know, most of the logs
are retrieved by DNS resolvers located in China. Thus, our measurement results
could have certain bias towards one region, mainly about business categories and
targeted brands (e.g., Baidu has the most impersonators as shown in our result).

Suggestions to Browser Manufactures. We recommend browser companies
to leave more space in the address bar. For example, a scroll bar could be

TL;DR Hazard: A Comprehensive Study of Levelsquatting Scams 21

activated when the domain overflows the display region to allow user to see
the full name. Another way is to highlight the e2LD part in the address bar.

Suggestions to Users. A domain name should be reviewed more carefully when
it is lengthy or covers the entire region of the address bar. The entire domain
name should be inspected, not only the beginning section. If the e2LD section
is suspicious or never seen before, the domain should be avoided.

Suggestions to Registrars. We suggest registrars to adjust their policy to
limit the length and depth of a subdomain, given that normal domains rarely
have so many characters or levels. Alternatively, registrars can enforce a rule to
forbid a domain owner to create a subdomain with multiple levels at one shot.

Responsible Disclosure. We have reported 4,583 fake search-engine sites
impersonating Baidu search and 38,275 pages embedding baidu.com in the
subdomain section to Baidu security team. All of them have been confirmed
malicious. In addition, the posts under zhidao.baidu.com backlinked by the
malicious pages are all removed.

Regarding the browser UI vulnerabilities, we have contacted several browser
vendors including Baidu browser17 and 360 security browser18 which have the
similar issue as UC browser. Their security teams have acknowledged our findings
and have fixed in the current browsers.

9 Related Work

Domain-squatting. Various domain-squatting attacks have been discovered
and studied before, including typo-squatting [6], bit-squatting [7], homophone-
squatting [8], homograph-squatting [9], combosquatting [10] and etc. Attackers
under these scenarios all need to buy an e2LD and create domains similar to the
brand domain. They can be thwarted when the owner actively registers adjacent
domains or by detection mechanisms based on domain-name similarity [6,30–
32]. However, such methods fail to defend from levelsquatting attack since the
subdomain can be arbitrarily created by attackers under any e2LD not controlled
by brand owners.

Domain Abuse. Understanding how attackers register and use domains is essen-
tial for detecting malicious domains. Previous works have extensively studied
attackers’ strategies and patterns in domain registration [34–36]. Their studies
show attackers’ preferences of registrars with loose regulations. In [29], authors
focused UI vulnerabilities in mobile browsers and gave a systematic measurement
on security vulnerabilities in them.

Our work leverages passive DNS data, registration data and visual similar-
ity to discover levelsquatting domains. Passive DNS data has been extensively
leveraged for detecting botnet and spam domains [37–40]. Recently, the data
from domain registrars has shown potential in detecting domain abuse at the
17 https://liulanqi.baidu.com/.
18 http://se.360.cn/.

https://liulanqi.baidu.com/
http://se.360.cn/

22 K. Du et al.

early stage [21,41]. We leverage similarity-based approach to detect phishing
levelsquatting domains, which aligns with previous works in this area [13,42,43].

We compared our work with [44], which studied how adversaries use subdo-
mains created under the compromised e2LDs for malign purposes. In our work,
we focus on the attack that utilizes subdomains created to impersonate reputable
domains. Attackers only need to buy a cheap domain name and create reputable
prefix purposefully, and they do not need to compromise legitimate domains.

Underground Economy. Our study shows that levelsquatting is extensively
used by the underground economy to deceive web users. This “dark” community
has been investigated by many researchers in order to gain better understanding
about its operational model and build effective defense. On this topic, Levchenko
et al. [16] revealed the infrastructure and strategies used for email spam. Nek-
tarios et al. [45] studied how illicit drug trade was facilitated through search-
redirection attack. Many of the underground transactions happen at anonymous
marketplace. Its scale and operational model were studied by Nicolas et al. [46],
and Barratt et al. [47].

10 Conclusion

In this work, we present a study about the phenomenon of levelsquatting, which
exploits visual vulnerabilities of browsers to defraud web users. In order to obtain
sufficient amount of data, we have developed a system named LDS, which exam-
ines a large volume of passive DNS data and applies three different checkers to
detect levelsquatting domains. In the end we have identified 817,681 malicious
FQDNs with an accuracy of 96.9%.

Based on the data produced by LDS and obtained from VirusTotal and Phish-
Tank, we carried out a comprehensive study to understand the impact of this
threat and the strategies used by attackers. Our study has already revealed sev-
eral unique insights, like prefixes favored by attackers. We also discovered a new
type of phishing attack against search-engine. Furthermore, we analyze how lev-
elsquatting domain name is displayed in mobile and desktop browsers and find
3 browsers (2 mobile and 1 desktop) display domain names in a misleading way.
We have reported our findings to Baidu security team and 360 security, receiving
very positive feedback.

Our study shows that attackers are constantly exploiting the weakness of
domain ecosystem and inventing new attack vectors. In the future, we will con-
tinue the research regarding domain abuse with a focus on its impact and the
new trend.

Acknowledgments. We thank anonymous reviewers for their insightful comments.
This work is supported in part by the National Natural Science Foundation of China
(U1836213, U1636204) and the BNRist Network and Software Security Research Pro-
gram (Grant No. BNR2019TD01004).

TL;DR Hazard: A Comprehensive Study of Levelsquatting Scams 23

References

1. What Is TLDR? (2017). https://www.lifewire.com/what-is-tldr-2483633
2. How scammers use sub-domains (2016). http://easykey.uk/computer-safety/how-

scammers-use-sub-domains
3. Yang, H., et al.: How to learn klingon without a dictionary: detection and mea-

surement of black keywords used by the underground economy. In: 2017 IEEE
Symposium on Security and Privacy (SP). IEEE (2017)

4. Marchal, S., François, J., State, R., Engel, T.: Proactive discovery of phishing
related domain names. In: Balzarotti, D., Stolfo, S.J., Cova, M. (eds.) RAID 2012.
LNCS, vol. 7462, pp. 190–209. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33338-5_10

5. DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION (1987).
https://tools.ietf.org/html/rfc1035

6. Wang, Y.-M., et al.: Strider typo-patrol: discovery and analysis of systematic typo-
squatting. In: SRUTI, vol. 6, No. 31-36 p. 2 (2006)

7. Nikiforakis, N., et al.: Bitsquatting: exploiting bit-flips for fun, or profit?. In: Pro-
ceedings of The 22nd International Conference on World Wide Web. ACM (2013)

8. Wiener, S.: Grass-mud horses to victory: the phonological constraints of subver-
sive puns. In: Proceedings of the 23rd North American Conference on Chinese
Linguistics, vol. 1 (2011)

9. Holgers, T., Watson, D.E., Gribble, S.D.: Cutting through the confusion: a mea-
surement study of homograph attacks. In: USENIX Annual Technical Conference,
General Track (2006)

10. Kintis, P., et al.: Hiding in plain sight: a longitudinal study of combosquatting
abuse. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM (2017)

11. Phishing with ‘punycode’ - when foreign letters spell English words (2017).
https://nakedsecurity.sophos.com/2017/04/19/phishing-with-punycode-when-
foreign-letters-spell-english-words/

12. Liu, B., et al.: A reexamination of internationalized domain names: the good, the
bad and the ugly. In: 48th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks (2018)

13. Maurer, M.-E., Herzner, D.: Using visual website similarity for phishing detection
and reporting. In: CHI 2012 Extended Abstracts on Human Factors in Computing
Systems. ACM (2012)

14. Levchenko, K., Pitsillidis, A., Chachra, N., et al.: Click trajectories: end-to-end
analysis of the spam value chain. In: 2011 IEEE Symposium on Security and Pri-
vacy, pp. 431–446. IEEE (2011)

15. Du, K., et al.: The ever-changing labyrinth: a large-scale analysis of wildcard DNS
powered Blackhat SEO. In: 25th USENIX Security Symposium (USENIX Security
16) (2016)

16. Levchenko, K., et al.: Click trajectories: end-to-end analysis of the spam value
chain. In: 2011 IEEE Symposium on Security and Privacy. IEEE (2011)

17. Wang, D.Y., Savage, S., Voelker, G.M.: Cloak and dagger: dynamics of web search
cloaking. In: Proceedings of the 18th ACM Conference on Computer and Commu-
nications Security. ACM (2011)

18. Zhang, Q., Wang, D.Y., Voelker, G.M.: DSpin: detecting automatically spun con-
tent on the web. In: NDSS (2014)

https://www.lifewire.com/what-is-tldr-2483633
http://easykey.uk/computer-safety/how-scammers-use-sub-domains
http://easykey.uk/computer-safety/how-scammers-use-sub-domains
https://doi.org/10.1007/978-3-642-33338-5_10
https://doi.org/10.1007/978-3-642-33338-5_10
https://tools.ietf.org/html/rfc1035
https://nakedsecurity.sophos.com/2017/04/19/phishing-with-punycode-when-foreign-letters-spell-english-words/
https://nakedsecurity.sophos.com/2017/04/19/phishing-with-punycode-when-foreign-letters-spell-english-words/

24 K. Du et al.

19. Foley, S.N., Gollmann, D., Snekkenes, E. (eds.): DeltaPhish: detecting phishing
webpages in compromised websites. ESORICS 2017. LNCS, vol. 10492, pp. 370–
388. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66402-6_22

20. Liao, X., et al.: Seeking nonsense, looking for trouble: efficient promotional-
infection detection through semantic inconsistency search. In: 2016 IEEE Sym-
posium on Security and Privacy (SP). IEEE (2016)

21. Hao, S., et al.: PREDATOR: proactive recognition and elimination of domain abuse
at time-of-registration. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM (2016)

22. Li, Z., et al.: Knowing your enemy: understanding and detecting malicious web
advertising. In: Proceedings of the 2012 ACM Conference on Computer and Com-
munications Security. ACM (2012)

23. new gTLD Statistics by Top-Level Domains (2016). https://ntldstats.com/tld
24. Nagunwa, T.: Behind identity theft and fraud in cyberspace: the current landscape

of phishing vectors. Int. J. Cyber-Secur. Digital Forensics (IJCSDF) 3(1), 72–83
(2014)

25. TLS Certificates from the Top Million Sites (2016). https://adamcaudill.com/2016/
09/23/tls-certificates-top-million-sites/

26. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882 (2014)

27. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network
for modelling sentences. arXiv preprint arXiv:1404.2188 (2014)

28. Liu, P., Qiu, X., Huang, X.: Recurrent neural network for text classification with
multi-task learning. arXiv preprint arXiv:1605.05101 (2016)

29. Luo, M., et al.: Hindsight: understanding the evolution of UI vulnerabilities in
mobile browsers. In: Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security. ACM (2017)

30. Chen, G., et al.: Combating typo-squatting for safer browsing. In: 2009 Interna-
tional Conference on Advanced Information Networking and Applications Work-
shops. IEEE (2009)

31. Banerjee, A., Rahman, M.S., Faloutsos, M.: SUT: quantifying and mitigating url
typosquatting. Comput. Netw. 55(13), 3001–3014 (2011)

32. Linari, A. et al.: Typo-Squatting: The Curse”of Popularity (2009)
33. Agten, P., et al.: Seven months’ worth of mistakes: a longitudinal study of

typosquatting abuse. In: NDSS (2015)
34. Shuang, H., Feamster, N., Pandrangi, R.: Monitoring the initial DNS behavior of

malicious domains. In: Proceedings of the 2011 ACM SIGCOMM Conference on
Internet Measurement Conference. ACM (2011)

35. Coull, S.E., et al.: Understanding domain registration abuses. Comput. secur.
31(7), 806–815 (2012)

36. Anderson, D.S., et al.: Spamscatter: characterizing internet scam hosting infras-
tructure. Diss. University of California, San Diego (2007)

37. Antonakakis, M., et al.: Building a dynamic reputation system for DNS. In:
USENIX security symposium (2010)

38. Antonakakis, M., et al.: From throw-away traffic to bots: detecting the rise of DGA-
based malware. In: Presented as part of the 21st USENIX Security Symposium
(USENIX Security 12) (2012)

39. Bilge, L., et al.: EXPOSURE: finding malicious domains using passive DNS anal-
ysis. In: NDSS (2011)

40. Antonakakis, M., et al.: Detecting Malware Domains at the Upper DNS Hierarchy.
In: USENIX Security Symposium, vol. 11 (2011)

https://doi.org/10.1007/978-3-319-66402-6_22
https://ntldstats.com/tld
https://adamcaudill.com/2016/09/23/tls-certificates-top-million-sites/
https://adamcaudill.com/2016/09/23/tls-certificates-top-million-sites/
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1404.2188
http://arxiv.org/abs/1605.05101

TL;DR Hazard: A Comprehensive Study of Levelsquatting Scams 25

41. Lever, C., et al.: Domain-Z: 28 registrations later measuring the exploitation of
residual trust in domains. In: 2016 IEEE Symposium on Security and Privacy
(SP). IEEE (2016)

42. Garera, S., et al.: A framework for detection and measurement of phishing attacks.
In: Proceedings of the 2007 ACM Workshop on Recurring Malcode. ACM (2007)

43. Medvet, E., Kirda, E., Kruegel, C.: Visual-similarity-based phishing detection. In:
Proceedings of the 4th International Conference on Security and Privacy in Com-
munication Netowrks. ACM (2008)

44. Liu, D., et al.: Don’t let one rotten apple spoil the whole barrel: towards auto-
mated detection of shadowed domains. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM (2017)

45. Leontiadis, N., Moore, T., Christin, N.: Measuring and analyzing search-redirection
attacks in the illicit online prescription drug trade. In: USENIX Security Sympo-
sium, vol. 11 (2011)

46. Christin, N.: Traveling the silk road: a measurement analysis of a large anonymous
online marketplace. In: Proceedings of the 22nd International Conference on World
Wide Web. ACM (2013)

47. Barratt, M.J., Ferris, J.A., Winstock, A.R.: Use of Silk Road, the online drug
marketplace, in the United Kingdom. Australia and the United States. Addiction
109(5), 774–783 (2014)

Account Lockouts: Characterizing
and Preventing Account Denial-of-Service

Attacks

Yu Liu1, Matthew R. Squires1, Curtis R. Taylor1,2, Robert J. Walls1,
and Craig A. Shue1(B)

1 Worcester Polytechnic Institute, Worcester, MA 10609, USA
{ylu25,mrsquires,crtaylor,rjwalls,cshue}@wpi.edu

2 Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA

Abstract. To stymie password guessing attacks, many systems lock an
account after a given number of failed authentication attempts, pre-
venting access even if proper credentials are later provided. Combined
with the proliferation of single sign-on providers, adversaries can use
relatively few resources to launch large-scale application-level denial-of-
service attacks against targeted user accounts by deliberately providing
incorrect credentials across multiple authentication attempts.

In this paper, we measure the extent to which this vulnerability exists
in production systems. We focus on Microsoft services, which are used
in many organizations, to identify exposed authentication points. We
measure 2,066 organizations and found between 58% and 77% of orga-
nizations expose authentication portals that are vulnerable to account
lockout attacks. Such attacks can be completely successful with only
13 KBytes/s of attack traffic. We then propose and evaluate a set of
lockout bypass mechanisms for legitimate users. Our performance and
security evaluation shows these solutions are effective while introducing
little overhead to the network and systems.

Keywords: Account lockout · Denial-of-Service (DoS) attack · Single
Sign-On · Middleboxes · Measurement

1 Introduction

In an attempt to gain unauthorized access to a system, attackers may try to guess
the credentials associated with a legitimate user’s account. These attackers may
vary in sophistication, from brute-forcing passwords on default usernames to
using a list of known usernames at an organization and lists of most commonly
used passwords. Prior analysis of password data sets has shown that end-users
often select weak passwords that are vulnerable to such attacks [37]. Further,
many organizations consider usability and memorability to be key goals in user-
name generation. As a result, usernames are often generated that match email
addresses and use parts of a user’s real name [38].
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 26–46, 2019.

https://doi.org/10.1007/978-3-030-37231-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_2

Account Lockouts: Characterizing and Preventing 27

Given this threat, many systems implement an account lockout mechanism
in which all authentication attempts are denied after a certain number of failed
attempts in a predetermined time window. NIST, which sets standards for US
government systems, recommends an attempt threshold of 100 attempts or less
with a lockout period of between 30 s and 60 min [2]. The SANS institute rec-
ommends a threshold of five attempts with a 30 min lockout period [30]. To be
PCI compliant, which is required for organizations handling consumer payment
information, accounts must be locked out for 30 min after six failed attempts [26].

This account lockout mechanism can be used by attackers to create a denial-
of-service (DoS) attack that prevents legitimate users from gaining access to their
accounts [22]. Such an attack is easy to launch: an attacker can issue authenti-
cation attempts at a rate that would keep an account perpetually locked. With
the aforementioned thresholds, such an attack would consume minimal attacker
bandwidth and computational resources. Even if simple IP address blocking is
used for repeated failed attempts, an attacker could use a network of compro-
mised machines to distribute the attempts.

With the deployment of single-sign-on (SSO) services, account lockouts can
transform from a simple nuisance to a crippling attack. Recent work has explored
web-based SSO systems and the relationships between identity providers that
authenticate users and other websites, called relying parties, that use those iden-
tity providers to authenticate their own users [10]. In one example, a single iden-
tity provider was used by 42, 232 relying parties. Further, recent reports [28]
estimate that Active Directory—Microsoft’s prominent SSO identity provider—
is used in more than 90% of companies in the Fortune 1000. With an account
lockout attack on a single identity provider, a targeted user could be denied
access to thousands of other services.

In this paper, we ask two key research questions: To what extent are orga-
nizations vulnerable to account lockout attacks? What countermeasures can be
effectively deployed to address these attacks in a way that supports even legacy
systems and devices? Given its widespread deployment and integral nature at
organizations, we focus our investigation on Microsoft’s Active Directory service.
In doing so, we make the following contributions:

1. Vulnerability Measurements: We examine 2,066 organizations, including
Fortune 1000 companies and universities, to determine the extent to which
attackers can systematically identify vulnerable authentication portals and
lock accounts. We find that roughly 58% of the universities and roughly 77%
of the companies examined expose a vulnerable authentication portal. Lock-
outs targeting these portals can potentially deny users access to thousands of
applications [23].

2. A Suite of Proposed Countermeasures: Rather than relying on changes
to Active Directory, we propose countermeasures that can be deployed imme-
diately on legacy architectures. The suite of options, based on the concept of
distinct authentication pools, includes mechanisms that work across devices
with end-user involvement to completely transparent options, such as those
using web browsers or modified home routers.

28 Y. Liu et al.

3. Evaluation of the Countermeasures: We evaluate the security effective-
ness and performance of the proposed countermeasures. We find that each has
clear availability advantages while introducing minimal performance costs.
Notably, we find that existing authentication mechanisms—such as multi-
factor authentication—are insufficient to stop account lockout attacks because
the root problem lies with the lockout policy, not the mechanism.

2 Background and Related Work

The combination of a username and password is a ubiquitous method of user
authentication. Attackers try to obtain such sensitive information to infiltrate
computer systems. The sophistication of theses attempts vary. The most basic
attack, a brute force attack, exhaustively enumerates all possible character com-
binations until a valid sequence allows access. The success rate of brute force
attacks is dependent upon the underlying strength of user passwords [39].

Other approaches are more sophisticated and use information about end-user
behavior to increase success rates [12]. Dictionary attacks, for example, form the
password guesses by using a large database of popular passwords or words in
a targeted language’s dictionary. Prior research has found that many end-users
select passwords that could easily be discovered by a dictionary attack [37].
Further, discovered passwords from a compromised service may be used to guess
passwords for the same user at other sites due to password reuse [14].

To combat password guessing attacks, standard bodies recommend account
lockout thresholds [2,26,30]. After a specified number of failed login attempts,
the account lockout approach denies access to a given account even if valid cre-
dentials are provided [8]. This simple mechanism makes brute force password
guessing infeasible and limits the rate at which attackers can make attempts
using dictionaries. Unfortunately, account lockouts provide a natural avenue for
denial-of-service attacks: an adversary can simply make numerous failed authen-
tication attempts for a given username, causing the account to lock, and thereby
preventing the legitimate account user from authenticating, as shown in Fig. 1.

Other techniques attempt to limit malicious authentication attempts without
using a lockout. A common approach is a form of automated Turing test before
each login attempt that will purportedly distinguish a human from an automated
adversary. A prominent approach is the CAPTCHA [27], which requires a user to
decode an image or audio signal in a way that is challenging for computers to do.
Such approaches may help deter dictionary attacks, but they do impose usability
costs upon users [3]. Unfortunately, with innovations in machine learning, some
previously-effective CAPTCHAs may be defeated automatically [36]. Further,
hardware or legacy systems may be unable to support CAPTCHAs.

Aura et al. [4] propose the use of client-side puzzles to defend against denial-
of-service (DoS) attacks by slowing the attack rate. Each time the client makes
a request to the server, it is asked to solve a cryptographic puzzle provided by
the server. These puzzles must require significant client effort to solve and are
unpredictable. The verification of the result should be inexpensive. Dean et al. [6]

Account Lockouts: Characterizing and Preventing 29

Attacker email proxy
 Exchange

Server - email

AD Server
Legitimate

Users

1. Attacker initiates 100
login attempts with
incorrect passwords

2. Forward malicious
login requests

3. Forward malicious
login requests

4. Failed login
requests hit
threshold. Lock
this account5. Legitimate user

sends login request

6. Forward normal
login requests

Other
Applications

7. Account locked
out. Reply failure.

8. Forward response
of failed login

9. Login failed.

Fig. 1. In an account lockout attack, the attacker selects a username and tries to
authenticate with invalid passwords. Each failed attempt causes the server to increment
the failed attempt counter for that specific account. When the legitimate user attempts
to authenticate, the account may already be locked.

incorporate cryptographic puzzles into the TLS protocol to protect servers from
DoS attacks. Koh et al. [15] evaluated a high performance puzzle algorithm.

Unfortunately, puzzle-based defenses may not be compatible with some exist-
ing systems and applications. For example, the use of a CAPTCHA may not be
feasible when logging into a legacy video conferencing system. Some prior ver-
sions of mail software, such as Outlook 2010, not support tools like CAPTCHAs
when authenticating. Similar limitations may occur for Skype for Business and
applications without a browser-based interface.

2.1 Other Application-Layer Availability Attacks

Most denial-of-service (DoS) availability attacks target a bottleneck resource and
overwhelm it to prevent legitimate user access. Network-based flooding attacks,
for example, attempt to saturate the bottleneck bandwidth between the Internet
and a targeted victim. Application-layer DoS attacks exploit a bottleneck in the
host software to deny access. Moore et al. [24] describe an application-layer
threat between an HTTP sever and a backend database resource. The account
lockout attack is a variant of an application-level availability attack [22].

Source IP address filtering tries to mitigate a DoS attack by blocking the
machines originating the attack. Unfortunately, modern attackers have botnets
with millions of machines. By strategically cycling the attack machines, IP black-
listing techniques can be rendered useless since an attacker would have a large
supply of previously-unseen machines that could trigger a lockout.

2.2 Active Directory (AD)

Active Directory (AD) is a service from Microsoft for managing user accounts
and system resources belonging to an organization. It groups users, worksta-
tions, servers, and policies and organizes them into hierarchies that facilitate

30 Y. Liu et al.

 Active
Directory AD FS Proxy User/Devices

Azure AD

Other Applications:
email Online, Office 365,
Skype for Business, etc

Sync

Application
Server

Application
Proxy

1. Login request
12. Submit Token

2. Require Token
13. Grant access

3. Request Token
5. User/pass resposne6. Forward response

4. Issue user/pass
challenge
11. Forward Token

7. Forward response

8. Verify and issue
Token if passed.
d. Verify and send
result

9. Forward Token 10. Forward Token

a. Direct Login requestb. Forward requestc. Forward request

e. Receive result and
grant access

f. Forward grant g. Forward grant

Fig. 2. This diagram depicts the components and interactions between an on-site AD
domain controller, an Azure AD domain controller, and the ADFS connector.

management. This service allows user management to be logically centralized by
an organization in a set of domain controllers. Application servers may authen-
ticate users via these domain controllers rather than managing accounts and
passwords locally, as shown in Fig. 2. For example, Microsoft’s email server,
Exchange, uses an AD server for authentication.

Organizations may host their AD domain controllers on-site, host them in
the cloud through Microsoft’s Azure AD service, or use a hybrid of both options.
The Azure AD service is essential for Microsoft-hosted online services like Office
365 and Skype for Business Online. Those Azure-based services communicate
directly with the Azure AD domain controllers rather than using the on-premise
servers. In hybrid deployments, on-site AD domain controllers may configure a
unidirectional synchronization channel with the Azure AD servers. For the pur-
poses of account lockouts, an account locked by an on-site domain controller will
result in a lock in all domain controllers and, depending upon the configured set-
tings, may propagate to Azure domain controllers. In contrast, an account locked
by an Azure domain controller will not propagate to on-site domain controllers.

Microsoft also provides an Active Directory Federation Services (ADFS)
interface for applications to interact with Active Directory when they cannot
use the integrated Windows authentication service. ADFS has its own account
lockout mechanism, but that lockout only affects ADFS services.

For an attacker to maximize the impact of an account lockout, the best option
would be to target a service that authenticates to an on-site domain controller,
if such a domain controller exists, in addition to targeting an Azure AD domain
controller. An account lockout in ADFS or in an Azure AD domain controller
may result in a lockout that affects only a subset of the organization’s services.

Account Lockouts: Characterizing and Preventing 31

However, in some attack scenarios, a subset may be acceptable to an attacker if
it includes a critical service the attacker wishes to make unavailable.

2.3 Middleboxes for Security

Middleboxes, such as firewalls, intrusion detection systems, and proxies, have
regularly been used for security purposes in the enterprise. Recent techniques
have leveraged the cloud for enterprise security [31].

Other work has extended middlebox techniques to residential networks,
including for whole-home proxies [35], validating TLS connections [34], and veri-
fying IoT device communication [16]. As demonstrated by Taylor et al. [33], these
residential middleboxes are feasible in countries like the United States since most
residential users are within 50 ms of a public cloud data center, causing middle-
boxes to only incur minor latency costs.

Our work shows how middleboxes can address account lockouts on an enter-
prise network in a backwards-compatible manner. We further show that middle-
boxes at the home (e.g. via a modified home router) can further enable robust
account lockout protections.

3 System Overview

Active Directory is inherently flexible and scalable, which can lead to deploy-
ments that vary greatly in terms of complexity and redundancy. In the simplest
case, an Active Directory setup involves a primary domain controller, one or
more dependent application servers, and a set of client machines that wish to
use the application server. Organizations may deploy other infrastructure, such
as secondary domain controllers, proxy servers, and middleboxes, to support
legacy systems or to achieve resiliency or security goals. Such infrastructure has
little impact on the account lockout threat and we omit it for simplicity.

3.1 Assumptions and Threat Model

In the context of this work, the goal of the adversary is to deny a legitimate
user access to services and resources through an account lockout attack. These
adversaries may perform reconnaissance on an organization ahead of an attack
to obtain email addresses, usernames, or to locate public-facing authentication
portals. With the availability of botnets, an adversary may have significant com-
putational and network resources. These resources afford the attacker significant
flexibility in devising her attack strategy. For example, the attacker may send
a high-volume of authentication requests from geographically-diverse machines
and rapidly switch between IP addresses to avoid IP-based blacklisting.

This work does not consider attempts to compromise the Active Direc-
tory server, its dependent servers, or other hardware such as the organization’s
switches and routers. If these servers fall under the control of the adversary, it
would be impossible for an organization to guarantee the accuracy of a user’s

32 Y. Liu et al.

identity or the availability of authentication services. Similarly, we assume an
adversary lacks valid user credentials.

The defender’s goal is to provide legitimate users with the ability to authen-
ticate even under an ongoing lockout attack. For our proposed countermeasures,
we assume that the organization’s IT staff can insert one or more middleboxes
into an organization’s infrastructure, but they cannot modify the Active Direc-
tory server or the services that authenticate against Active Directory.

4 Characterizing the Account Lockout Problem

In this section, we explore the following research questions:

1. Can attackers feasibly exploit public authentication portals to launch account
lockouts? With the help of a cooperating organization, we use only public data
to effect an account lockout on a test account in a production environment
using Microsoft’s Active Directory service. Since that organization follows
industry best practices and standards, this experiment is likely representative
of many other organizations.

2. Can attackers automatically discover organizations’ authentication portals
for lockout attacks? Using an Internet measurement study, we show that
authentication portals can be easily discovered by attackers.

4.1 Case Study: Identifying the Attack Surface in Production

We contacted a multinational organization with over 5,000 employees that uses
Active Directory extensively and gained their approval to assess the impact of
account lockouts across their environment. This organization used Active Direc-
tory for authentication for the vast majority of their IT services. From this case
study, we created an Internet measurement strategy to characterize the risks at
other organizations to determine the broader applicability of our findings.

Our partnering organization made an Active Directory administrator avail-
able to provide feedback on our tests, but the organization required anonymity
as part of their participation. The organization created a test account for our
use which was modeled after a standard employee account at the organization.
The organization set a secure password on the account and ensured it was not
shared with the authors performing the authentication attempts.

In our testing, we independently gathered information that was available
publicly without use of organizational insider knowledge. In our experiments,
we found that the organization used mail.[organization domain] to forward
to a themed Outlook Web App (OWA) portal, which is a Microsoft-provided
interface for web-based email. Since the portal used IP addresses that were not
associated with Microsoft, we determine that the OWA portal was not Azure-
hosted and thus was not using an Azure AD server for authentication.

With many Office 365 services, Microsoft provides a centralized authentica-
tion portal that leverages the user’s email address to determine the appropriate
Azure AD server to use to process the authentication. That authentication page

Account Lockouts: Characterizing and Preventing 33

compares the host portion of the email address to its list of registered organi-
zation domains. Accordingly, we went to the Office 365 authentication page [21]
and entered a randomly constructed username, followed by the ‘@’ character, and
then the organization’s domain name. The website redirected to the organiza-
tion’s account authentication page, where we were prompted to enter a password.
This interface appeared to be Azure-hosted, indicating that login attempts would
be directed to an Azure AD server. Account lockouts generated on this service
would likely only affect services authenticating against the Azure AD server
while not affecting user access via the OWA page we previously discovered.

We then examined Skype for Business (SFB, formerly known as Microsoft
Lync). Based on Microsoft’s documentation, the lyncdiscover.[organization
domain] host name is typically used for this service. We performed a CNAME query
on that host and the response indicated that the organization was not using an
Azure-hosted SFB service. We then performed a DNS A record query, which
returned a valid IP address that is not associated with Microsoft’s Azure data
centers, which suggests that the organization uses an on-site SFB service.

4.2 Case Study: Testing Account Lockouts in Production

After identifying the attack surfaces of the measured organization, we began test-
ing account lockouts. Microsoft’s documentation for Windows Server 2012 [17]
and 2016 [18] recommends an account lockout of 10 attempts with a lockout
period of 15 min. For Azure’s AD service, Microsoft’s documentation indicates
a threshold of 10 attempts with a 1 min lockout period. The most generous
lockout policy was suggested by NIST with up to 100 attempts and a lockout
period as short as 30 s. Based on these thresholds, we created an attack that
would try authenticating as our test account with randomly-generated passwords
around 200 times per minute. This attack is relatively low bandwidth at only
13 KBytes/s, which poses little burden on the attacker or on the organization’s
infrastructure. However, under the most conservative guidance, the attack would
keep the targeted account perpetually locked.

We first targeted our attack at the organization’s OWA portal. Our orga-
nization contact confirmed that the attack caused the account to be locked at
the organization, preventing the account from logging into the organization’s
resources for the duration of the attack. We discontinued the attack and the
organization contact removed the account lockout.

We next performed an attack targeted at SFB. Using the fake account, we
use a tool provided by an open source project on Github named lyncsmash [25].
It provides an option to discover the SFB servers and an option to launch an
account lockout attack. We manually went to the URL found in the tool, entered
the username supplied by the organization, and entered an inaccurate password
10 times. Our organization contact then confirmed that the account was locked.
We note that the lyncsmash tool can automate these attempts.

In these tests, we used the same source IP address for each query. While a
simple IP rate limit or blacklist would stop our attack, an actual attacker could
easily perform the attempts using a botnet to ensure no IP address queried

34 Y. Liu et al.

more than once. This would easily keep the account locked without an obvious
defense. The measured organization’s contact confirmed that the organization
lacks a mechanism to combat such account lockouts.

4.3 Characterizing the Risk with Internet Measurements

While our partner organization was vulnerable to an account lockout attack, we
now focus on determining the extent to which other organizations are likewise
vulnerable. We begin by making non-invasive measurements of the public-facing
infrastructure of a set of organizations. While we focus on Active Directory in
this work, most organizations avoid directly exposing their AD servers to the
public for security reasons. However, in many cases, these organizations expose
their application servers to boost productivity. To allow employees to access
their email outside the office, these organizations may expose Exchange email
servers or website interfaces, such as the popular Outlook Web App (OWA) that
Microsoft provides. Unified messaging services, like Microsoft Skype for Business
(SFB), allow employees, customers, and partners to instant message, call, and
join video conferences remotely. In some cases, the devices joining these calls
may be mobile phones or dedicated video conferencing hardware.

Given the popularity of email and unified messaging, our measurement study
focuses on determining the extent to which authentication portals for Microsoft-
specific email and messaging servers are exposed publicly since we know such
servers must use an AD server for authentication. We perform our measurements
by using a list of domains associated with the Fortune 1000 companies [11]
and with 1,066 universities [32]. We focus on these organizations because their
domains can be easily obtained. Further, these larger organizations likely have
need for centralized authentication services like Active Directory.

Using our list of domains, we perform a DNS MX record lookup on the provided
domain to determine the identity of the organization’s public SMTP server.
The host names of the SMTP servers provide some insight into the underlying
infrastructure. For example, host names ending with .protection.outlook.com
are indicative of an organization using Microsoft’s cloud-hosted email service.
Since these organizations necessarily use Active Directory in Microsoft’s Azure
cloud, these servers can be used to initiate an account lockout for all Azure-
hosted solutions at the organization. Other MX records may indicate that the mail
server is located on-site at the organization or is hosted by another provider.

Our second measurement uses information related to email auto-
discovery [19]. We issue CNAME queries for the host autodiscover associated with
the organization’s domain (e.g., autodiscover.example.com). In some cases,
the CNAME result was autodiscover.outlook.com, indicating the mail services
use Microsoft’s Azure-hosted Exchange server. In the case when another host
name was returned, the mail server was not Azure-hosted. We then issued a
web request on port 80 or 443 to the host name returned in the CNAME record.
In some cases, the server required valid credentials to proceed. In some cases,
the credentials would be validated by an Active Directory server, enabling the
account lockout attack. However, in other cases, the authentication credentials

Account Lockouts: Characterizing and Preventing 35

Table 1. Our measurement study results show the majority of each group uses
Microsoft services and has at least one exposed authentication portal, enabling account
lockout attacks. The final column shows unique organizations vulnerable, even if an
organization has multiple exposed attack surfaces.

Organizations Exchange email Skype for business Extent vulnerable

On-site Azure-hosted On-site Azure-hosted

Fortune 1000 190 339 360 345 765 (76.5%)

Universities 126 416 124 395 616 (57.8%)

could be independent of a user account (e.g., a username and password shared
across the organization for relatively weak protection).

The discovered mail server’s default web page could reveal information about
the infrastructure. In some cases, the servers presented a default or themed
version of Microsoft’s Outlook Web Application (OWA) page, which is commonly
associated with an on-premises Exchange server. When web servers return 403
forbidden, it means there could be a portal which requires authentication. We
simply append “/owa” or “/autodiscover” and we found half of them redirect to
an OWA login page. In other cases, the web server returned pages containing the
string “Microsoft Corporation” indicating this server runs Microsoft’s software.
These authentication portals provide an avenue for the account lockout attack.

Some domains did not use an auto-discovery service or did not provide
an obvious account authentication page. For these domains, we issued an A
record DNS query for the mail host name associated with the domain (e.g.,
mail.example.com), which follows the examples provided in Microsoft’s docu-
mentation for configuring mail servers. We found that nearly half of organizations
provide such a server for their employees to authenticate, though few of them
used a default interface such as OWA or Microsoft’s Azure-hosted email portal.

We next focused our measurements on the Skype for Business (SFB) service.
Microsoft’s SFB client automatically searches for an organization’s servers using
a mechanism similar to email auto-discovery. For all the Fortune 1000 and univer-
sity domains, we perform a CNAME DNS query on the lyncdiscover host associ-
ated with the organization (e.g., lyncdiscover.example.com), which can reveal
which organizations use SFB services. We also query for dialin.example.com
and meet.example.com, which are other commonly used SFB host names. When
organizations use Microsoft’s Azure hosted systems, the CNAME query returns an
answer associated with the webdir.online.lync.com host name. For all the
non-Azure responses, we performed a A record DNS query to obtain the IP
address of the on-site SFB service.

In Table 1, we show the result of the measurements. Roughly 77% of com-
panies and 58% of universities had servers that would be affected by some form
of account lockout attack. For organizations that use Azure-hosted services, an
account lockout attack targeted at these servers would affect other services that
consult the Azure Active Directory server, but they would not affect services that

36 Y. Liu et al.

communicate with an on-site Active Directory server because the uni-directional
Azure AD server connection with an on-site AD server does provide the capa-
bility to share this information. However, attacks against services that commu-
nicate to a non-Azure AD server would affect all services, since non-Azure AD
servers propagate an account lockout organization-wide, including to the Azure
AD server. Accordingly, attackers looking for the biggest impact may target
non-Azure AD servers when possible.

5 Discussion of Potential Countermeasures

Our measurements demonstrate that account lockout attacks can be crippling
for an organization and that many large organizations are vulnerable to these
attacks. However, there are a variety of mechanisms that may be effective at
mitigating such attacks. Each method has strengths and limitations in terms of
ease of deployment, legacy compatibility, visibility and impact on end-users. We
discuss potential methods and implemented two of them, one which modifies a
residential router and another that leverages user provided secret information,
to show to what extent we can prevent account lockout attacks.

Countermeasure: Private Usernames. An account lockout attack requires knowl-
edge of the target username. In practice, gaining this knowledge is often trivial.
For example, Alice’s username might be alice and her email address may be
alice@example.com. Intuitively, if the username becomes harder to guess then
lockout attacks become commensurately harder for the attacker to execute. Pri-
vate usernames offer tangible benefits. The approach is backwards-compatible
with all existing infrastructure, it avoids lockout attempts on the username, and
incurs no additional computational overheads or infrastructure. However, the
approach may sacrifice end-user convenience for this computational efficiency.
In particular, end-users will now need to manage multiple identifiers and know
when to enter their private username and when to use their public email address.
Further, organizations may need to reconsider how access control systems and
resource sharing will work when a username is intended to be kept private from
an employee’s coworkers. Finally, transitioning to a private username schema
may be prohibitively disruptive for organizations that have a large number of
users and legacy systems.

Countermeasure: Multi-factor Authentication. Another countermeasure is to ask
the user to provide additional secret information as part of a multi-factor authen-
tication (MFA) scheme, such as biometrics, hardware tokens, or one-time pass
codes that are transmitted via a smartphone application. MFA-based approaches
are effective at distinguishing legitimate users from attackers, assuming the
attacker has not compromised all the factors. Further, they are widely deployed
so users are already familiar with the process and the usability cost is relatively
low compared to the security benefits. Unfortunately, multi-factor schemes alone
cannot solve the problem of account lockouts. Intuitively, this problem is not

Account Lockouts: Characterizing and Preventing 37

necessarily a limitation of multi-factor authentication but of the lockout policies
themselves. In other words, most lockout polices only account for the number of
failed attempts and not the kind of information used in the attempt. Consider
Active Directory’s multi-factor authentication interface; this workflow allows a
username and password to be used in conjunction with a second factor verifica-
tion via smartphone application or text message. Failed authentication attempts
still lead to an account lockout as the second factor is only used if the provided
username and password are valid. In short, the second factor does not influence
the server’s decision to lockout an account.

Countermeasure: Observed Characteristics. The above approaches rely on the
user to provide private information as proof. An orthogonal approach is for the
authenticating server to use historical information related to the user’s behavior
or observable connection characteristics. For example, Eriksson et al. [9] studied
geographic detection based on IP addresses. The primary limitation of such
approaches is they must be tuned carefully to balance between false negatives
(allowing an attacker to authenticate) and false positives (preventing a legitimate
user from authenticating).

5.1 Distinct Authentication Pools

The goal of this work is to incorporate and augment existing authentication
approaches. Our proposed countermeasures are based on the following obser-
vations. First, existing authentication mechanisms fail to stop account lockout
attacks because the problem lies with the lockout policy not the mechanism.
Second, account lockout policies should base lockout decisions on the totality
of information rather than a simple boolean log of attempts. Third, the pro-
liferation of legacy systems means that organizations are more likely to adopt
defenses (at least in the short term) that do not require changes to the end-user
software or existing authentication servers.

We codify these observations into a proposed authentication scheme based
on distinct authentication pools. This scheme is designed to leverage histori-
cal activity, network proximity, and secondary credentials to maintain separate
authentication risk pools with their own lockout thresholds and failed authentica-
tion attempt counts, as shown in Fig. 3. Each pool maintains a separate counter
and threshold which can be configured to meet different security requirements.
To make authentication pools immediately applicable to existing systems, we
use security middleboxes to implement the key functionality without requiring
changes to the services or Active Directory servers. Importantly, this scheme
allows a user to authenticate even if there is an on-going lockout attack.

We also propose and implement two novel, and orthogonal, authentication
mechanisms to serve as the basis for two of the authentication pools. The first is
a token-based mechanism that transparently authenticates requests originating
from a user’s residential network. The second proposed mechanism leverages a
user-supplied credential that effectively turns a public username into a private
username. We discuss the design of both mechanisms below.

38 Y. Liu et al.

Unprotected
channel

Security
proxy

Login attempts
via

0 / 5

0 / 5

0 / 5

No Additional Token

Protected
residential

network

Channel
protected by

secret

Router adds token

Username + token

Intra
network

 0 / 100

No Additional Token

Active Directory
Services

Fig. 3. With a security middlebox or proxy, an organization can create separate authen-
tication thresholds and authentication attempt counts based on factors that may indi-
cate the user’s legitimacy. This diagram depicts four authentication pools based on
the presence of tokens, manual authenticators, and on-site presence. The proxy can
send commands to help account management in Active Directory, such as unlocking
an account, restoring the original account lock state, and checking the account status.
(Color figure online)

5.2 Protecting Requests from Residential Networks

Many existing web-based authentication systems leverage HTTP cookies to
determine if a user is currently logged in or has logged in successfully in the past.
The pool proxy server could validate cookie values and place users with valid
cookies in a pool that is separate from users that do not present such cookies.
Unfortunately, such an approach is limited to web-based authentication. Instead,
we propose leveraging an approach from the TCP Fast Open (TFO) standard [5].
In essence, an authentication server orders the client or a middlebox to store a
cookie, allowing that client or middlebox to prove it previously logged in suc-
cessfully when trying to authenticate again in the future. Like the original TFO
standard, the cookie we introduce would not be an authoritative authenticator
and it would not be resistant to a man-in-the-middle attack. However, it does
provide sufficient evidence to put a client in a separate authentication risk pool.

The authentication pool proxies can be implemented using the TLS “peek
and splice” technique [29], in which the proxy is on the route to the protected
application servers and has the private TLS keys associated with each server.
This allows the proxy to decrypt the traffic, extract the username, and validate
tokens and cookie values. If a token is present, the proxy server can then issue
commands to the Active Directory server to determine whether the account is
locked out, and if so, temporarily lift the lock. It can then re-encrypt the request
with the tokens extracted and send it to the application server to process the
authentication attempt. Once the authentication result is sent back to the proxy,
it can re-lock the account, if it was previously locked.

Account Lockouts: Characterizing and Preventing 39

 Exchange
Server - email

AD Server

Legitimate
Users Router

1. Login request

NetFilter
Agent

2. Intercept packets
and append cookie
as TCP option

3. Put
packets back

Security
Proxy

4. Verify the token. If
it is valid, unlock the
account
5. Remove token, send
packets out

7. Verify username
and password. Reply
True if passed.

6. Foward

8. Grant access.
Reply to user.

11. Update token,
forward reply11. Log in successfully

9. After the session,
restore account lock
state in AD Server
10. Issue new token
to router

Fig. 4. With a residential middlebox, tokens can be automatically supplied and stored
by examining packets to and from application servers.

In our implementation, to check if an account is locked and obtain the number
of failed authentication attempts, the proxy speaks the LDAP protocol with the
AD server. Using the python-ldap library [7], the security proxy checks the
account status via the ldap.search() function on the badPwdCount attribute
with administrator privileges. To unlock the account, the proxy server uses the
ldap.modify s() function and sets value of lockoutTime to 0. Finally, to restore
the failed authentication attempts, the proxy server can use an invalid password
to send the same number of prior authentication attempts.

For cookies using TCP options, the process can proceed in a fashion similar
to TCP Fast Open (see Fig. 4). Organizations can provide some employees with
a modified router that will act as a middlebox that manages TCP cookies for
the user. When the user accesses the organization’s servers, the router checks to
see if it has a cookie for the destination. If so, it adds the cookie as a TCP option
with the request. The security proxy can then extract the cookie and perform
the appropriate account unlocking operations before sending the request to the
application server. Upon receiving a positive authentication response from the
application server, the security proxy can generate a cookie value and insert it
as a TCP option. The user’s router will then extract the cookie, store it locally,
and then forward the response to the user.

5.3 Supporting Private Usernames

A token can also be user-supplied. The secret code can be shared via email, on
an employee’s badge, or in new employee orientation materials. When a user
supplies the username for authentication, they can insert a delimiter followed by
a non-public value that the proxy device can detect (e.g., username+code). The
non-public value can be arbitrary set by the proxy administrator and changed
if it was ever learned by an adversary and used in an account lockout attack.

40 Y. Liu et al.

Each account should have unique secret token used for login. Since the value
is only used to circumvent a lockout attack, the value could be one the user
could readily access or remember, such as the user’s associated employee ID or
badge number. When processing authentication attempts, the proxy can search
for the delimiter in a username, extract the non-public value, and verify it. The
proxy can then forward the authentication request with the delimiter and code
stripped from the username field for authentication by the AD server.

The user-supplied token approach has the value of being easily implemented
and supported in legacy systems with the help of a proxy. When a user’s account
is not being attacked, they need not provide the token since the default authen-
tication pool will be unlocked. After their account is locked due to an attack,
the user only needs to type a short addition to their username to gain access.
While this approach does require user training, during support calls to IT staff,
the helpdesk staff can quickly remind users of the override. Finally, when setting
up automated clients, such as email programs or smartphone applications, the
user can choose to enter the token to ensure continued access during attacks
without incurring any inconvenience. The user-supplied token avoids the com-
plications of legacy usernames and access control that are associated with the
private username approach while attaining similar benefits.

6 Evaluation of the Authentication Pools System

For our evaluation, we consider both the security effectiveness and the per-
formance of using authentication pools. We focus on the two authentication
mechanisms proposed in the preceding section: (1) authenticating requests from
residential networks and (2) providing support for private usernames with tokens.

6.1 Implementation and Experimental Setup

For our baseline experiments, we configured a Windows Server 2016 Standard
server to run the Active Directory service on a virtual machine with two cores
and 8 GB of RAM. We configured an Exchange 2010 server on another Win-
dows Server 2016 Standard VM with two cores and 8 GB of RAM. The Exchange
server used the Active Directory server VM for authentication and the POP3 ser-
vice for checking emails. To test the proposed countermeasures, we implemented
two different middleboxes: the authentication pool proxy and the residential
router. Our client is another Ubuntu 16.04 server VM that runs a POP3 Python
script client that attempts to use our Exchange email server. While the deployed
enterprise configurations will differ from our experimental setup, we believe this
setup is sufficient for evaluating the security and performance characteristics.

The pool proxy implementation supports both the TLS “peek and splice”
and the private username authentication mechanisms described in the preceding
section. We use an Ubuntu virtual machine with 2 cores and 4096 MB of RAM
and the tcpproxy library [13], which allows the interception and modification
of packets. The tcpproxy library provides the functionality to wrap normal

Account Lockouts: Characterizing and Preventing 41

socket communication into TLS protected communication when a private key is
imported. The pool proxy uses a copy of the Exchange server’s private key. The
decrypted payload contains the account information. However, when tcpproxy
uses SSL-wrapped sockets, it only provides the decrypted packet payload without
network or transport layer headers. Using the libnetfilter queue library and
the iptables tool, the pool proxy intercepts the packets and extracts any TCP
options from the packet headers before forwarding, to tcpproxy to see any token
TCP options. If they are present, as shown by the green line in Fig. 3, the proxy
switches the request to a separate authentication pool.

To support private usernames, the pool proxy also checks each username for
a + character and extracts the subsequent code. If the code is valid, the system
recognizes the connection as associated with the blue line in Fig. 3. When the
verification of a security token succeeds, the security proxy issues commands
to the AD domain controller to unlock the account if additional attempts are
permitted for that pool group. After the credential verification completes at the
domain controller, the security proxy sends commands to restore the account
lock status. When the TCP option is used, the security proxy generates a new
token and appends it to the reply packet as a TCP option. The router can thus
extract the new token and store it for future use.

For the residential router, we use an Ubuntu 16.04 server VM configured with
single core and 2048 MB of RAM. We then created a C program that uses the
Linux libnetfilter queue library and iptables to intercept traffic to and from
the residential network. The program is designed in a fashion to allow it to be
ported to commodity router hardware. The program uses the packet’s destination
address to determine if it is a known organizational application server. If so,
supplies any associated token as a TCP option. The program also looks at the
packet’s source address to determine if it is an application server, and if so, the
program looks for TCP options containing a token. If one is found, the router
stores it for future out-bound packets and removes the option before sending the
packet towards its destination. In Fig. 4, we provide a diagram of this process.

6.2 Security Effectiveness

Using a methodology similar to our measurements in Sect. 4.2, we create a tool
that emulates an attacker trying to trigger an account lockout. We use a Python
script with the poplib library [1] to create a POP3 client. That script initi-
ates 100 authentication attempts in rapid succession. Even with the relatively
permissive NIST guidance, that volume triggered a lockout.

We unlocked the account and reset the failed attempt counter to zero. We
then replicated this process using web requests to the Outlook Web Application
(OWA) interface on the Exchange server manually. The outcome was the same:
the legitimate user was unable to authenticate to either OWA or POP3 because
the account was locked in AD.

We note that the account lockout through the OWA portal may be
affected by credential caching in Microsoft’s Internet Information Services (IIS).
A parameter, UserTokenTTL, defines how long the IIS server should cache

42 Y. Liu et al.

Table 2. Our security evaluation determined the effectiveness of the TCP option and
embedded code countermeasures. Across 20 trials, both approaches correctly allow
legitimate requests and deny malicious attempts.

Router TCP option Username + secret

Token valid Token invalid Token valid Token invalid

Allows access 20 0 20 0

Denies access 0 20 0 20

authentication tokens. The default cache flush delay is 15 min [20]. With that
default, an attacker has 15 min to make unlimited password guess attempts.
During that attack, the failed authentication attempts counter increases. After
it hits the threshold, access via services like POP3 is denied because the account
is locked, but the cached credential still allows a user to authenticate via the
OWA portal. In effect, this delays the account lockout attack from affecting the
OWA portal, but still allows an account lock to propagate throughout the rest
of the organization. After the cache period ends, the account will also be locked
on the OWA portal. Accordingly, this caching does not ultimately affect the
attack’s success.

For the residential router mechanism, we primed the router by performing a
legitimate authentication attempt. We then cleared the account lock status and
authentication attempt counts. We then ran the attacker script without present-
ing a token value. However, when the legitimate user attempted to login, the
router supplied the previously obtained token and the security proxy correctly
unlocked the account temporarily to process the request before re-locking it.
We found that the legitimate user was able to authenticate without impediment
despite the ongoing attack.

We repeated the TCP option process with an adversary that tried to forge
TCP tokens, by supplying random values. As expected with the low likelihood of
guessing a 10-byte token value, we found that adversary never generated a cor-
rect token. The security proxy accordingly ignored these tokens and the attacker
remained locked out. However, when the legitimate user attempted to authenti-
cate, the proxy recognized the token and properly allowed the attempt. Finally,
we repeated these experiments using the user-supplied tokens. The legitimate
user provided a username of the format username+token when attempting to
authenticate. In our first experiment, the attacker did not provide tokens and in
our second, the attacker attempted to guess tokens randomly. As with the TCP-
option experiments, we found the attacker was unable to unlock the account
while the legitimate user had unimpeded access to authenticate. In Table 2, we
show the numerical results of our experiments. In each experiment, we conducted
20 separate trials and the results were consistent.

6.3 Performance Evaluation

To determine the performance impact of the approach, we use end-to-end tim-
ings. We measured the amount of time required to complete an authentication

Account Lockouts: Characterizing and Preventing 43

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

P
er

ce
nt

ag
e

of
 T

ria
ls

End-to-End Round Trip Time (seconds)

No protection
TCP token

User secret

Fig. 5. We evaluate and compare end to end delay among three cases: red line shows
without any middlebox or proxy, green line shows inserting tokens via TCP option and
blue line shows username + secret token (Color figure online)

request using the time.time() function, provided by Python, in the legitimate
client’s script. We measured the timing without our countermeasures imple-
mented and with them in place. This allows us to determine the sum of all
overheads present in the system. We show the results in Fig. 5.

When comparing our the two authentication mechanisms, we found that the
TCP option countermeasure added around 180 ms of latency while the user-
supplied token added 80 ms of latency, compared to the same system without
a countermeasure present. These overheads are so small they are unlikely to
be perceived by an end-user. We believe the user secret scenario is faster in
our implementation because it does not need to examine TCP options, extract
tokens or append TCP tokens.

Based on these results, we find our countermeasures provide effective security
benefits without introducing noticeable latency.

7 Conclusion

In this work, we explored the extent to which organizations are vulnerable to
account lockouts and the impact that the lockouts could have. Looking only
at the deployments of Microsoft Active Directory, we found that the majority
of top companies and universities had an exposed authentication portal that
would enable an attacker to launch an account lockout. Through our experi-
ments with a partnering organization, we demonstrated the feasibility of such
an attack in a production environment. We then introduced a suite of counter-
measures and compared the benefits. We found that both user-supplied tokens
and middlebox-added tokens would be effective and would add no perceptible
delays or performance overheads.

44 Y. Liu et al.

Acknowledgements. The authors would like to thank the anonymous organization
for allowing us to test our account lockout approach on their infrastructure and for
providing feedback on the effectiveness of the account lockout approach when targeting
different authentication portals.

This material is based upon work supported by the National Science Foundation
under Grant No. 1651540.

References

1. POP3 protocol client (2018). https://docs.python.org/3/library/poplib.html
2. 800-63B, N.S.P.: Digital identity guidelines, authentication and lifecycle manage-

ment (2018). https://pages.nist.gov/800-63-3/sp800-63b.html#throttle
3. Alsaleh, M., Mannan, M., van Oorschot, P.C.: Revisiting defenses against large-

scale online password guessing attacks. IEEE Trans. Dependable Sec. Comput.
9(1), 128–141 (2012)

4. Aura, T., Nikander, P., Leiwo, J.: DOS-resistant authentication with client puzzles.
In: Christianson, B., Malcolm, J.A., Crispo, B., Roe, M. (eds.) Security Protocols
2000. LNCS, vol. 2133, pp. 170–177. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44810-1 22

5. Cheng, Y., Chu, J., Radhakrishnan, S., Jain, A.: TCP Fast Open (2014). https://
tools.ietf.org/html/rfc7413

6. Dean, D., Stubblefield, A.: Using client puzzles to protect TLS. In: USENIX Secu-
rity Symposium, vol. 42 (2001)

7. Dufresne, J.: Python-ldap on github (2017). https://github.com/python-ldap/
python-ldap/blob/python-ldap-3.2.0/Doc/index.rst

8. Durinovic-Johri, S., Wirth, P.E.: Access control system with lockout. US Patent
5,699,514 (1997)

9. Eriksson, B., Barford, P., Sommers, J., Nowak, R.: A learning-based approach
for IP geolocation. In: Krishnamurthy, A., Plattner, B. (eds.) PAM 2010. LNCS,
vol. 6032, pp. 171–180. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-12334-4 18

10. Ghasemisharif, M., Ramesh, A., Checkoway, S., Kanich, C., Polakis, J.: O single
sign-off, where art thou? An empirical analysis of single sign-on account hijacking
and session management on the web. In: USENIX Security Symposium, pp. 1475–
1492 (2018)

11. Harvard University: Registrars of fortune 1000 companies - raw data. https://
cyber.harvard.edu/archived content/people/edelman/fortune-registrars/fortune-
list.html

12. Herley, C., Florêncio, D.: Protecting financial institutions from brute-force attacks.
In: Jajodia, S., Samarati, P., Cimato, S. (eds.) SEC 2008. ITIFIP, vol. 278, pp.
681–685. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-09699-5 45

13. ickerwx: tcpproxy on github (2018). https://github.com/ickerwx/tcpproxy
14. Ives, B., Walsh, K.R., Schneider, H.: The domino effect of password reuse. Com-

mun. ACM 47(4), 75–78 (2004)
15. Koh, J.Y., Ming, J.T.C., Niyato, D.: Rate limiting client puzzle schemes for denial-

of-service mitigation. In: 2013 IEEE Wireless Communications and Networking
Conference (WCNC), pp. 1848–1853. IEEE (2013)

16. Liu, Y., Taylor, C.R., Shue, C.A.: Authenticating endpoints and vetting connec-
tions in residential networks. In: International Conference on Computing, Network-
ing and Communications (ICNC), pp. 136–140 (2019)

https://docs.python.org/3/library/poplib.html
https://pages.nist.gov/800-63-3/sp800-63b.html#throttle
https://doi.org/10.1007/3-540-44810-1_22
https://doi.org/10.1007/3-540-44810-1_22
https://tools.ietf.org/html/rfc7413
https://tools.ietf.org/html/rfc7413
https://github.com/python-ldap/python-ldap/blob/python-ldap-3.2.0/Doc/index.rst
https://github.com/python-ldap/python-ldap/blob/python-ldap-3.2.0/Doc/index.rst
https://doi.org/10.1007/978-3-642-12334-4_18
https://doi.org/10.1007/978-3-642-12334-4_18
https://cyber.harvard.edu/archived_content/people/edelman/fortune-registrars/fortune-list.html
https://cyber.harvard.edu/archived_content/people/edelman/fortune-registrars/fortune-list.html
https://cyber.harvard.edu/archived_content/people/edelman/fortune-registrars/fortune-list.html
https://doi.org/10.1007/978-0-387-09699-5_45
https://github.com/ickerwx/tcpproxy

Account Lockouts: Characterizing and Preventing 45

17. Margosis, A.: Security baselines for Windows 8.1, Windows server 2012 R2 and
Internet Explorer 11 (2014). https://blogs.technet.microsoft.com/secguide/2014/
08/13/security-baselines-for-windows-8-1-windows-server-2012-r2-and-internet-
explorer-11-final/

18. Margosis, A.: Security baseline for Windows 10 (2018). https://blogs.technet.
microsoft.com/secguide/2016/10/17/security-baseline-for-windows-10-v1607-
anniversary-edition-and-windows-server-2016/

19. Microsoft: Autodiscover for exchange (2015). https://docs.microsoft.com/en-us/
exchange/client-developer/exchange-web-services/autodiscover-for-exchange

20. Microsoft Support: Changing the default interval for user tokens in IIS
(2018). https://support.microsoft.com/en-us/help/152526/changing-the-default-
interval-for-user-tokens-in-iis

21. Microsoft Support: Office365 login page (2019). https://login.microsoftonline.com/
22. MITRE Corporation: CWE-645: overly restrictive account lockout mechanism

(2019). https://cwe.mitre.org/data/definitions/645.html
23. Monica, A.D., Baldwin, M., Cai, S., Casey, C.: Thousands of apps, one identity

(2016). https://docs.microsoft.com/en-us/enterprise-mobility-security/solutions/
thousands-apps-one-identity

24. Moore, D., Shannon, C., Brown, D.J., Voelker, G.M., Savage, S.: Inferring internet
denial-of-service activity. ACM Trans. Comput. Syst. 24(2), 115–139 (2006)

25. nyxgeek: Lyncsmash. https://github.com/nyxgeek/lyncsmash
26. PCIPolicyPortal: PCI compliance password requirements: best practices to know

(2015). http://pcipolicyportal.com/blog/pci-compliance-password-requirements-
best-practices-know/

27. Pope, C., Kaur, K.: Is it human or computer? Defending e-commerce with captchas.
IT Prof. 7(2), 43–49 (2005)

28. Pylon Technology News: Active directory in today’s regulatory environment (2014).
https://pylontechnology.com/active-directory-todays-regulatory-environment/

29. Rousskov, A.: Feature: SslBump peek and Splice (2019). https://wiki.squid-cache.
org/Features/SslPeekAndSplice

30. SANS Institute: Top 10 mistakes on windows internal networks (2003). https://
www.sans.org/reading-room/whitepapers/windows/top-10-mistakes-windows-
internal-networks-1016

31. Sherry, J., Hasan, S., Scott, C., Krishnamurthy, A., Ratnasamy, S., Sekar, V.:
Making middleboxes someone else’s problem: network processing as a cloud service.
ACM SIGCOMM Comput. Commun. Rev. 42(4), 13–24 (2012)

32. Standford University: Alphabetic list of us universities and domains (1996). http://
doors.stanford.edu/∼sr/universities.html

33. Taylor, C.R., Guo, T., Shue, C.A., Najd, M.E.: On the feasibility of cloud-based
SDN controllers for residential networks. In: IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), pp. 1–6 (2017)

34. Taylor, C.R., Shue, C.A.: Validating security protocols with cloud-based middle-
boxes. In: IEEE Conference on Communications and Network Security, pp. 261–269
(2016)

35. Taylor, C.R., Shue, C.A., Najd, M.E.: Whole home proxies: bringing enterprise-
grade security to residential networks. In: IEEE International Conference on Com-
munications (ICC), pp. 1–6 (2016)

36. Wang, Y., Huang, Y., Zheng, W., Zhou, Z., Liu, D., Lu, M.: Combining convolu-
tional neural network and self-adaptive algorithm to defeat synthetic multi-digit
text-based CAPTCHA. In: IEEE International Conference on Industrial Technol-
ogy (ICIT), pp. 980–985. IEEE (2017)

https://blogs.technet.microsoft.com/secguide/2014/08/13/security-baselines-for-windows-8-1-windows-server-2012-r2-and-internet-explorer-11-final/
https://blogs.technet.microsoft.com/secguide/2014/08/13/security-baselines-for-windows-8-1-windows-server-2012-r2-and-internet-explorer-11-final/
https://blogs.technet.microsoft.com/secguide/2014/08/13/security-baselines-for-windows-8-1-windows-server-2012-r2-and-internet-explorer-11-final/
https://blogs.technet.microsoft.com/secguide/2016/10/17/security-baseline-for-windows-10-v1607-anniversary-edition-and-windows-server-2016/
https://blogs.technet.microsoft.com/secguide/2016/10/17/security-baseline-for-windows-10-v1607-anniversary-edition-and-windows-server-2016/
https://blogs.technet.microsoft.com/secguide/2016/10/17/security-baseline-for-windows-10-v1607-anniversary-edition-and-windows-server-2016/
https://docs.microsoft.com/en-us/exchange/client-developer/exchange-web-services/autodiscover-for-exchange
https://docs.microsoft.com/en-us/exchange/client-developer/exchange-web-services/autodiscover-for-exchange
https://support.microsoft.com/en-us/help/152526/changing-the-default-interval-for-user-tokens-in-iis
https://support.microsoft.com/en-us/help/152526/changing-the-default-interval-for-user-tokens-in-iis
https://login.microsoftonline.com/
https://cwe.mitre.org/data/definitions/645.html
https://docs.microsoft.com/en-us/enterprise-mobility-security/solutions/thousands-apps-one-identity
https://docs.microsoft.com/en-us/enterprise-mobility-security/solutions/thousands-apps-one-identity
https://github.com/nyxgeek/lyncsmash
http://pcipolicyportal.com/blog/pci-compliance-password-requirements-best-practices-know/
http://pcipolicyportal.com/blog/pci-compliance-password-requirements-best-practices-know/
https://pylontechnology.com/active-directory-todays-regulatory-environment/
https://wiki.squid-cache.org/Features/SslPeekAndSplice
https://wiki.squid-cache.org/Features/SslPeekAndSplice
https://www.sans.org/reading-room/whitepapers/windows/top-10-mistakes-windows-internal-networks-1016
https://www.sans.org/reading-room/whitepapers/windows/top-10-mistakes-windows-internal-networks-1016
https://www.sans.org/reading-room/whitepapers/windows/top-10-mistakes-windows-internal-networks-1016
http://doors.stanford.edu/~sr/universities.html
http://doors.stanford.edu/~sr/universities.html

46 Y. Liu et al.

37. Weir, M., Aggarwal, S., Collins, M., Stern, H.: Testing metrics for password cre-
ation policies by attacking large sets of revealed passwords. In: ACM Conference
on Computer and Communications Security (CCS), pp. 162–175. ACM (2010)

38. Witty, R.J., Allan, A.: Best practices in user ID formation (2003). https://www.
bus.umich.edu/kresgepublic/journals/gartner/research/117900/117943/117943.
html

39. Yan, J., Blackwell, A., Anderson, R., Grant, A.: Password memorability and secu-
rity: empirical results. IEEE Secur. Priv. 2(5), 25–31 (2004)

https://www.bus.umich.edu/kresgepublic/journals/gartner/research/117900/117943/117943.html
https://www.bus.umich.edu/kresgepublic/journals/gartner/research/117900/117943/117943.html
https://www.bus.umich.edu/kresgepublic/journals/gartner/research/117900/117943/117943.html

Application Transiency: Towards a Fair
Trade of Personal Information

for Application Services

Raquel Alvarez(B), Jake Levenson, Ryan Sheatsley, and Patrick McDaniel

Pennsylvania State University, State College, PA 16802, USA
{rva5120,jml6407,rms5643}@psu.edu, mcdaniel@cse.psu.edu,

http://siis.cse.psu.edu/

Abstract. Smartphone users are offered a plethora of applications pro-
viding services, such as games and entertainment. In 2018, 94% of appli-
cations on Google Play were advertised as “free”. However, many of
these applications obtain undefined amounts of personal information
from unaware users. In this paper, we introduce transiency : a privacy-
enhancing feature that prevents applications from running unless explic-
itly opened by the user. Transient applications can only collect sensitive
user information while they are being used, and remain disabled oth-
erwise. We show that a transient app would not be able to detect a
sensitive user activity, such as a daily commute to work, unless it was
used during the activity. We define characteristics of transient applica-
tions and find that, of the top 100 free apps on Google Play, 88 could be
made transient. By allowing the user to decide when to allow an app to
collect their data, we move towards a fair trade of personal information
for application services.

Keywords: Mobile privacy · Android

1 Introduction

In 2018, over 2.6 million apps were available on the Google Play market, of which
94% were advertised as “free” [42]. Users can request a ride from apps like Uber
or Lyft, share pictures on Facebook, or send money to a friend through Venmo.
While these applications are advertised as free, they present a hidden cost: pri-
vacy. The effects of smartphones on user privacy have been widely studied since
their commercialization in 2007 [5,7,8,12,28–30,32–37]. Recently, the private
preferences and habits of millions of Facebook users were misused for political
purposes [39]. Many studies also show that users do care about their privacy
[14,15,20]. A study by Oates et al. found that users have mental models of what
privacy means to them [23]. However, platforms can fail to provide them with
intuitive options to control application behaviors [14,16,22]. Many users think of

Supported by NSF.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 47–66, 2019.

https://doi.org/10.1007/978-3-030-37231-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_3

48 R. Alvarez et al.

Fig. 1. Application transiency gives users control over when an application has access
to sensitive information. A more fair trade is achieved since the user gets to decide
whether their personal information is worth the privacy cost for the application service.
We propose a new model in which the intuition of applications no longer running after
being closed is realized.

closing physical barriers, such as doors and curtains, as an analogy to enabling
privacy. By allowing all applications to constantly run in the background even
after they are closed, smartphone application models don’t adhere to common
user privacy expectations.

Android controls user privacy through permissions that protect sensitive
device resources. While permissions prevent applications from accessing arbi-
trary resources, studies have shown that permission models do not match user
expectations on when and why sensitive data is being accessed [4,25]. Here, the
authors showed that the context in which a resource is accessed matters, and
that users prefer to deny access to resources that do not contribute to the func-
tionality of the app. This led to recent work on helping users make educated
decisions when granting permissions [10,11,13,24]. Recently, with Android 9.0,
apps are no longer allowed background access to the camera and microphone.
However, other sensitive resources (e.g., text messages) are still available to
applications at any time, given that they were granted the permission once.
Some studies have addressed this by sandboxing applications [8,9]. For exam-
ple, Narain et al. fed crafted fake location data to protect the real location of
users. In this paper, we show that smartphones can be designed to provide a fair
trade of personal information in exchange for application services. We introduce
transiency : a privacy-enhancing feature that prevents applications from running
unless explicitly opened by the user. Transiency ensures that applications can
only collect sensitive information when expected, as shown in Fig. 1. Therefore,
users can now decide if application services are worth revealing their personal
information for. We make the following contributions:

– We define transiency and efficiently integrate it into Android. This enforces
a fair trade of personal information for application services.

– We define criteria for transient applications, and find that 88 of the top 100
free apps on Google Play (total of 105 ranked apps) should be treated as
transient.

Application Transiency: Towards a Fair Trade of Personal Information 49

– We provide a case study to show the impact of treating applications as tran-
sient in terms of data collection. We find that we can prevent apps from
detecting activity patterns by treating them as transient.

2 Background

In this section, we define technical details of Android relevant to the implemen-
tation of transiency.

2.1 Android OS Overview

The Android operating system is built on top of the Linux kernel, which is
used to interact with the hardware functionality of smartphone devices, such as
cameras and microphones. The main executable programs on Android devices
are applications, which are developed in Java and built using the Application
Framework. For more information about the architecture details of applications,
refer to [1,44,46–48]. Below we describe in more detail some of the relevant
architecture components to enforce application transiency.

Application Execution Flow. Applications exist in the system as Android
Packages (APKs). APKs contain the necessary information to be executed by
the Android Runtime (ART) [46]. In order for an application to be executed
correctly, Android expects APKs to be available and readable by the system.

Background Processes. Android applications are designed to off-load large
tasks that may potentially block the user interface (UI) to be run in the back-
ground. Logging the current location of the user to a server is an example of a
task that would be executed in the background. In 2018, Votipka et al. performed
an extensive user study in which they gained insights about what users think
of background processes [14]. The results showed that users tend to understand
the need for background processes while they interact with the UI. However,
users were less comfortable with background processes not tied to foreground
activities.

Permissions. Android uses permissions to protect applications from accessing
device resources. Permissions are divided into two categories: normal and dan-
gerous. Normal permissions are granted by default, but dangerous permissions
must be granted by the user. Dangerous permissions protect access to sensitive
resources, such as camera, microphone, text messages, call logs, calendar, etc.

Opening and Closing Applications. In order to open an application, Android
defines a specific type of application that displays the available options to the
user: launcher. The launcher app can be opened by pressing the “Home” button
on the mobile device. Once open, a user can close an application by removing
it from the “Recents Screen”, as suggested by Google Support [51] (see Fig. 2).
However, it is worth noting that closing an application does not prevent the appli-
cation from running in the background and exercising the previously authorized
access to sensitive resources.

50 R. Alvarez et al.

Fig. 2. Users can open apps by pressing the “Home” button and invoking the launcher
app. To close applications, the user can swipe it off the screen. While closing an applica-
tion is the terminology used by Google, the behavior is not equivalent to the application
no longer running. Android allows applications to separate their user interfaces into
tasks, which the user can terminate. However, while tasks can be terminated by the
user, the application is still allowed to run on the background.

2.2 Sensitive Resource Access Control

Android protects access to valuable sensitive resources using access control poli-
cies [2,3]. The goal of these policies is to prevent applications from compro-
mising user privacy. These policies ensure that applications only access sensitive
resources allowed by the user. On the context of access control, applications (sub-
jects) may or may not be authorized to access (action) sensitive system resources
(objects). Android handles authentication and authorization as follows:

Authentication. At installation time, applications are given User IDs (UIDs)
and are treated as users of the system. UIDs give applications an identity, which
is used by Android to identify the application’s set of authorized access.

Authorization. Android provides an interface for applications to prompt the
user for access to sensitive resources. As mentioned previously, dangerous per-
missions must be granted by the user for an application to be able to access
a resource such as GPS data. Android keeps track of the authorized access to
sensitive resources for each application. Once the user grants permission, the
application is free to exercise this right both when running in the foreground
and background. However, as of Android 9.0, applications cannot access the
microphone and camera resources while running in the background [54].

While permissions serve as a policy that allows users to explicitly grant access
to sensitive resources, research has shown that this model places an unrealistic
expectation on users [4,25]. Applications don’t always provide clear privacy poli-
cies justifying the requested access [28], which presents an information asymme-
try problem. By granting access to a sensitive resource, the user is not necessarily

Application Transiency: Towards a Fair Trade of Personal Information 51

giving their consent since they were not fully disclosed the information neces-
sary to make that decision. This inequality inspired the solution presented in
this work.

3 Application Transiency Design Goals

In order to implement transiency, we define security, privacy, and usability
requirements.

– Security Goals. We trust that the OS faithfully implements and enforces
application transiency. We consider any other party that may tamper with
the transient state of an application to be a threat.

– Privacy Goals. We enforce that applications are not capable of running
unless they were explicitly opened by the user. This guarantees that applica-
tions cannot access personal information unless they are being used.

– Usability Goals. Enforcing transiency should be intuitive and seamless to
the user. This guarantees user privacy when expected, without affecting user
experience.

4 Application Transiency Implementation

We expand the sensitive resource access control policy of permissions to provide
an intuitive interface where users can control their privacy. We propose a new
authorization protocol, in which users grant/revoke applications the right to
execute by opening/closing them. We address the goals described in the previous
section in our implementation of application transiency. Figure 3 provides an
implementation overview.

4.1 Enforcing Transiency

To enforce transiency, the user must be the only one who can execute an applica-
tion. Otherwise, a closed application may attempt to execute code that accesses
sensitive user data. We solve this problem by leveraging access control used by
the OS to protect files on Android. Specifically, we revoke read access to APKs
if they are not explicitly open (shown in Fig. 3, step 13). Once revoked, if the
ART unit attempts to read the APK for any other reason aside from user intent,
it will fail. Conversely, when a user opens an application, our implementation
will restore the read permission before the ART attempts to read the APK file,
as shown in Fig. 3, steps 1–6.

Transiency is implemented at the OS level, as a system library only accessible
to applications/processes with a system UID (which is 0). Transiency can be
realized in the form of a “private-mode” system launcher. The system launcher,
when running on private-mode, uses the “swipping off the Recents screen” event
as the cue to stop the application from running. A user could select “private-
mode” from the Settings app (which is where most users expect to find interfaces

52 R. Alvarez et al.

Fig. 3. An overview of the implementation of application transiency. Steps in blue, 1–9,
correspond to the event of a user turning privacy off by opening the application. Steps
in burgundy, 10–13, correspond to the event of a user turning privacy on by closing the
application. I corresponds to the intent sent by the launcher to start an application,
W corresponds to the Worker object specified by the application to perform a task
in the background, and BP corresponds to a background process being scheduled by
the Work Manager API for the requesting application [53]. In this diagram, we depict
an application that, when opened by a user, requests a background process to perform
some task and then loads the activity to interact with the user. Once the user is finished
interacting with the application, they can close it by swiping it off the screen. Opening
the application causes the Transiency Manager to restore the READ permission of
the APK file to the system. Closing the application causes the Transiency Manager to
revoke the READ permission to prevent execution. (Color figure online)

to change/enable/disable features, as pointed out by Lei et al.). In addition,
malicious 3rd party applications cannot leverage the library functionality to
perform attacks such as DoS (since each app is given a UID depending on the
key used to sign the application, so only apps signed with manufacturer/system
keys are given the UID 0).

This solution is efficient because revoking and restoring the read permission
from the APK file causes a negligible overhead. In addition, enforcing transiency
does not require a re-design of the system architecture to support it.

Application Transiency: Towards a Fair Trade of Personal Information 53

4.2 Making Transiency Intuitive

To meet the usability requirements defined in the previous section, we designed
our implementation of transiency to meet user expectations of privacy. As
pointed out by Oates et al. in 2018, for most users, regardless of demograph-
ics and technical experience, barriers are seen as the most common conceptual
metaphor of privacy. Many related privacy with closing doors, locks, or curtains.
This study served as an inspiration on our design to find a mapping from the
mental models of what privacy means to users, to features in Android that can
make this a reality.

Closing Doors. One of the common occurrences for most users was turning on
privacy by closing a door or a curtain. Inspired by this, we equate closing an
application to enabling privacy. Closing an application on Android refers to the
action of selecting the “Recents” UI and swiping the application off of the screen
[51,52]. However, closing an application does not mean it is no longer running.
Applications have the option to schedule background processes that will cause
them to run again, unknown to the user. Therefore, the current application
model does not meet the potential user expectations of privacy. For this reason,
we chose the event of closing an application as the defining moment of turning on
privacy. By closing the application, the user is guaranteed that the application
will not run. This prevents applications from reading sensitive information when
the user is not aware.

Opening Doors. Analogous to closing doors, we use opening doors to dis-
able privacy. Android devices have a launcher application that is invoked when
the “Home” button is pressed. This launcher application displays all installed
and launchable applications on the system. A user can then touch one of the
application icons to open it. Once an application is open, it can access sensitive
information.

By enforcing transiency through opening and closing applications, we give
the user an intuitive interface to better manage their privacy. This guides users
towards a fair trade of sensitive information for application services.

4.3 Applying Transiency to Popular Applications

In this section, we analyze the behavior of popular applications when they are
treated as transient and non-transient on the current Android architecture. We
generalize these behaviors and define three main application functionalities that
would require non-transiency.

Instagram is an application that displays user-generated content and allows
users to communicate through comments and private messages. When treated as
transient, Instagram no longer sends real-time notifications to the user. However,
transiency does not prevent Instagram from displaying user-generated content.
We therefore recommend that Instagram be treated as transient.

54 R. Alvarez et al.

Subway Surfers is a game in which users can connect with other friends to form
a network. When treated as transient, Subway Surfers no longer sends real-time
notifications, but the user can still play the game as expected. Since transiency
does not prevent the user from playing the game, we recommend that Subway
Surfers be treated as transient.

Spotify offers users a music streaming platform. Treating Spotify as transient
does not affect core functionality of the app. Therefore, we can recommend
treating Spotify as transient.

Uber is a ride-sharing service app connecting riders with drivers. Treating Uber
as transient does not affect the functionality of the app, since users can keep the
application open for the duration of the ride. Therefore, we recommend treating
Uber as transient.

While the user actively engages with the applications above, there exist other
types of applications that passively interact with the user. We describe examples
of those below:

Facebook Messenger is an app that enables users to communicate via phone
calls, video calls and messages. When treated as transient, Facebook Messenger
only notifies users in real-time when the app is open. However, keeping Face-
book Messenger open at all times is not ideal for performance. Therefore, we
recommend treating this application as non-transient.

Gmail provides an interface to read and send emails to other users. Gmail
also loses the ability to notify the user in real-time when treated as transient.
Therefore, we recommend treating Gmail as non-transient. Likewise, instant
messaging applications have the same non-transiency requirements.

Step Counter gives a count of the approximate number of steps taken by the
user. The app cannot use the sensors on the phone to constantly measure the
amount of steps taken by the user in real-time unless the application is open.
Therefore, we recommend treating the app as non-transient.

Clean Master offers users tools to clean files, a notification with a button to
remove all other notifications, and other features such as taking a picture with
the front-camera when the login passcode to unlock the screen is entered wrong.
When treated as transient, this application cannot perform some of its core
functionality, like taking pictures of the user that entered the wrong passcode,
if the app is closed. We therefore recommend treating Clean Master as non-
transient.

After analyzing these applications, we can generalize their behaviors to
broadly describe non-transiency classification guidelines.

Recommended Classification Guidelines. Based on our analysis of the
behavior of popular applications when they are treated as transient, we define
three main functionalities to generalize when applications should not be treated
as transient:

Application Transiency: Towards a Fair Trade of Personal Information 55

A. The application provides real-time communication such as calling,
messaging or receiving time-sensitive information. This functionality
enables real-time communication and exchange of information, such as Gmail.
A user expects text messages to arrive at a reasonable time after the sender sent
them, which requires the application to have real-time access to the network to
retrieve messages intended for the user.

B. The application requires real-time access to sensors to collect infor-
mation and report it to the user. This includes applications with function-
ality that depends on real-time information collected by device sensors, such as
the Step Counter app. An application that reports the number of steps taken by
the user depends on real-time information measured by device sensors. The user
expects to see an accurate number of steps when they open the app, therefore
the application cannot be transient.

C. The application depends on real-time system state or other applica-
tions to provide its functionality. Some applications may need to be aware
of system events to function. For example, the Clean Master app.

While it is possible to analyze applications manually to determine their clas-
sification, it can be a time consuming task given that Google Play had a total
of 2.6 million available applications in December 2018 [42]. We therefore explore
methods to automate the process in the next section.

Automating Classification. To simplify the task of classifying apps, we
explored using Google Play categories to recommend what applications should
be transient and non-transient. To do this, we looked for categories on Google
Play that would match the description of each of our A-C categories based on
functionality. Below are our categories mapped to Google Play categories:

A - Communication: Applications in the Communication category depend on
real-time delivery of content to the user. Some of these applications include What-
sApp and Facebook Messenger. Therefore, we mapped Communication to A.

B - Health & Fitness: Some applications in the Health & Fitness category
depend on reading sensors that measure physical activities of a user, which makes
this a non-transient category. An examples of these apps is Step Counter.

C - Tools: Applications in this category depend on real-time sensor and system
information to report to the user. Analyzing current popular applications in the
Tools category, we found that most applications were related to changing system
settings, such as WiFi.

We selected three categories where each covered one of the three cases in
which transiency would affect the primary functionality of an application. We
evaluate the accuracy of this automated classification method by comparing it
to the manual classification of the top 100 free apps on Google Play, which is
described in Sect. 5.2.

56 R. Alvarez et al.

4.4 Android Implementation: Transiency Launcher

To test our design, we develop a system launcher that implements application
transiency.1 We design the launcher to test the performance and usability of
treating applications as transient on the current Android architecture. Figure 4
shows an overview of the architecture of this launcher.

UI. Our transiency launcher has a simple main activity that displays the list
of installed and launchable applications on the system. Each entry on the list
corresponds to an application, and the user can select an entry from the list to
open the application selected. The launcher is invoked when the user presses the
“Home” button.

Backend. Our launcher has a database that keeps track of the installed appli-
cations and their transient/non-transient classification. For testing purposes, we
manually saved a list of names of applications treated as non-transient, which
was decided following the criteria described in Sect. 4.3. When the user wants to
open an application treated as transient, the launcher executes chmod through
a shell to change the permissions of the application’s APK to be readable by
the system. The launcher then sends an intent to start the main activity of
the selected application. If the user chooses to open a non-transient application,

Fig. 4. Overview of the architecture of the transiency launcher. This launcher uses
chmod to revoke/restore read permissions of the APK file to control when applications
can collect user information. The Transiency Manager API can be used by our launcher
to enable/disable the applications.

1 Source code: https://github.com/rva5120/TransientLauncher.

https://github.com/rva5120/TransientLauncher

Application Transiency: Towards a Fair Trade of Personal Information 57

the launcher sends the intent directly, as the APK permissions are not modi-
fied for non-transient applications. When the user long presses an entry to close
an application, the launcher will execute chmod through a shell to change the
permissions of the application’s APK to no longer be readable by the system.

5 Evaluation

In this section, we will evaluate the classification and characterization of appli-
cations currently available on the market.

5.1 Characterization of Market Applications

We now evaluate the concept of application transiency by applying it to the top
100 free apps on Google Play. We analyzed these applications manually, and
classified them according to the criteria defined in Sect. 4.3.

Classification Statistics. After manual classification, the top 100 free apps on
Google Play (total of 105 apps) consisted of 88 transient and 17 non-transient,
see Fig. 5.

Fig. 5. Manual classification of transient/non-transient applications of the top 100 free
apps on Google Play (total of 105 ranked apps), as of February 11th of 2019.

Characterization of Transient Applications. We find that over 50% of tran-
sient applications belong to the Games Google Play category, as shown in Fig. 6
(left). Our criteria led to all games being classified as transient. All games request
the INTERNET permission, over 17% request the ACCESS FINE LOCATION
permission, and over 12% request the RECORD AUDIO permission, see Fig. 7
(left). As we will see in Sect. 6, applications that request the INTERNET per-
mission can also approximate the location of the device, therefore, most games
can approximate location as well. By treating gaming applications as transient,
we prevent them from recording audio in the background (if the device is run-
ning Android 8.0 and below) and collecting location data constantly when the
user is not expecting it.

58 R. Alvarez et al.

Transient applications in other categories also requested CAMERA and READ
or WRITE EXTERNAL STORAGE permissions, which allows applications to
take pictures in the background (for devices running Android 8.0 and below) and
accessing pictures and other files. It is also worth noting that applications like Net-
flix and Facebook request the Activity Recognition permission. When these apps
are not treated as transient, they can collect information about the user’s physi-
cal activity. In addition, Facebook also requests the ACCESS FINE LOCATION
permission, which would allow the app to map certain routines such as commonly
walked paths or commonly driven roads. However, if we treat apps like Facebook
as transient, we can prevent the association of physical activity data with its corre-
sponding user profile. Linking this kind of sensitive data together can pose physical
dangers to users, as shown by [27].

Characterization of Non-transient Applications. During our analysis, we
found that only 17 apps needed to be treated as non-transient. Out of the total
17, 5 belong to the Communication category (as shown in Fig. 6 (right)). This was
not surprising, since applications in the Communication category are expected
to need real-time access to network resources to allow users to communicate in
real-time.

Non-transient applications also requested the INTERNET permission, and
over 88% of them request READ and WRITE EXTERNAL STORAGE (see
Fig. 7 (right)). We find that most applications also request ACCESS FINE
LOCATION and CAMERA. While these are expected based on the functional-
ity provided by the applications, we also find that both Antivirus Free 2019 and

Fig. 6. Manual classification of applications grouped by Google Play category. Left:
number of transient applications in each category, with Games being the category with
the most transient apps with 47 (53.4% of all transient apps). Right: number of non-
transient applications in each category, with Communications being the category with
most non-transient apps with 5 (29.4% of all non-transient apps).

Application Transiency: Towards a Fair Trade of Personal Information 59

Super Cleaner requested access to the Activity Recognition API. This seems
unusual, as a user may not expect for an antivirus application to need their
physical activity to perform its functionality.

5.2 Classification Through Google Play Categories

Classifying apps using Google Play categories yields an accuracy of 88.57%,
where 93 out of 105 apps were classified correctly compared to our manual clas-
sification. Our automatic classification method is less accurate when classifying
applications that were manually labeled as non-transient. As expected, some
applications place themselves under other categories. For example, TextNow,
which enables communication among users, is categorized as Social. This may
be caused by the fact that very popular applications like Facebook are in the
Social category, so TextNow may be seen by more users and be more likely to get
downloaded if it is in the Social category. However, since we label Social to be a
transient category, communication apps that choose to be in the Social category
will get misclassified and lose their non-transient privileges. Other communi-
cation apps, like Tinder, are also misclassified. Tinder is placed in the Dating
category, which is expected since it enables communication between users with
the purpose of dating.

Other examples of misclassified non-transient apps include IN Launcher, Bit-
moji, Super Speed Cleaner and Antivirus Free 2019. Based on functionality, we
would consider these apps to be Tools, which would grant them the privilege of

Fig. 7. Number of applications that request dangerous permissions, the INTERNET
permission, and the Activity Recognition API permission of the top 100 free apps on
Google Play. On the left, we see that all transient applications request the INTERNET
permission, and over 25% of them request GPS location information. On the right, we
see that all non-transient applications are likely to request INTERNET and location
permissions as well.

60 R. Alvarez et al.

being non-transient. However, they categorize themselves as Entertainment (for
IN Launcher and Bitmoji) and Productivity (for Speed Cleaner and Antivirus
Free 2019).

5.3 Implementation Performance

There is no visual delay when opening an application through a regular launcher
vs our transiency launcher, which incurres an overhead of 0.02 ms. This per-
formance overhead, which is added by the extra instructions executed to
revoke/restore read permissions of the APK file, is negligible.

Fig. 8. Overview of the architecture of the Metis app. This app provides a user inter-
face in which users can read weekly tutorials to learn about computer security. How-
ever, in the background, Metis is performing some data collection to learn more about
your daily patterns, such as where you work, and when and how you get there. Metis
only needs the INTERNET and ACTIVITY RECOGNITION permissions, which are
granted by default, to achieve its data collection goals. This makes Metis a good can-
didate to show that transiency is necessary to prevent apps from collecting data when
users are not expecting it.

Application Transiency: Towards a Fair Trade of Personal Information 61

6 Case Study: Measuring Impact of Transiency on Data
Collection

To show the kind of impact that treating applications as transient would have
on sensitive data collection, we develop the Metis app. Figure 8 shows the overall
architecture of Metis.2

6.1 Metis, the Knowledge Sharing App

Metis is an application that gives users a weekly article about computer security
topics. The Metis UI is a simple webview object that displays the contents of
a webpage hosted on a Github repository. The app displays a blog-style article
with content to read. While looking like an innocent educational app in the
foreground, Metis performs sensitive data collection in the background. The data
collection strategy is inspired by the recent work of Chatterjee et al., in which
they studied market applications that contribute to intimate partner violence.
We focus on finding device resources that would reveal sensitive information
without the user knowing or expecting it. We find that the INTERNET and the
ACTIVITY RECOGNITION permissions are good candidates for our purpose.

INTERNET. Metis, since it must request a webpage from Github to display
its contents, needs to request the INTERNET permission. We find that we could
approximate the user’s location by connecting to a geo-locating website, such as
Ipdata.co [40]. In addition to an approximate location, Ipdata.co reveals other
potentially sensitive information: whether the user is on WiFi/cellular network,
and the organization providing the IP. The figure below shows the information
given by querying the API of Ipdata.co:

ACTIVITY RECOGNITION. We use the approximate location information
and combine it with the information available from the Activity Recognition API
[49]. By requesting the normal ACTIVITY RECOGNITION permission, we are
able to setup Metis to receive physical activity changes of the user. For example,
if the user starts walking or driving, Metis will receive a broadcast. This allows
us to recognize patterns of driving to and from work, for example.

2 Source code: https://github.com/rva5120/Metis v2.

https://github.com/rva5120/Metis_v2

62 R. Alvarez et al.

6.2 Data Collection: Transient vs. Non-transient

We compare the amount of data collected by Metis when it is treated as transient
vs. non-transient.

Experiment. We run Metis on a rooted device with the transiency launcher
described in Sect. 4.4 installed. We install two versions of Metis: Metis-T (treated
as a transient application), and Metis-NT (treated as a non-transient applica-
tion). We run this experiment for 1 day. Starting around 9 AM, we opened both
applications. A few seconds later, we close both applications. Then, around 10:20
AM, we open both applications and leave them open. Below are the results cap-
tured until 12:30 PM by both apps.

Fig. 9. Results of running Metis-NT. Fig. 10. Results of running Metis-T.

Metis-NT Results. The non-transient version of Metis is able to capture that
we possibly commuted to work in the morning around 9:20 AM, which took
around 10 min (see Fig. 9). It was detected that we walked for another 20 min,
although during the experiment we walked for about 8 min. However, Metis-
NT may not have received the “transition to STILL broadcast” until 9:50, so
it records that we walked for longer than we actually did. Metis-NT also ran a
background process around 12:24 PM where it recorded the geo-location received
by Ipdata.co. In this case, Metis-NT detected that we were on a Pennsylvania
State University network in University Park, PA which was the correct City,
Region and University during our experiment.

Metis-T Results. Metis-T, on the other hand, is unable to detect the drive to
work in the morning (see Fig. 10). It was only able to detect the walking activity
around 12 because we left the app open after 10:20 AM.

Transiency has an impact over when Metis is able to collect sensitive infor-
mation. By preventing Metis from running after being closed, we are able to
preserve the privacy of an event that was not intended for Metis to detect. Also,
transiency can have a major impact on protecting users by treating applications
found by [27] as transient.

7 Discussion

By implementing transiency, we learn that most applications do not need the
privilege of running constantly to provide their applications services. To pre-
vent their execution while closed, we also explore the idea of installing and

http://Ipdata.co

Application Transiency: Towards a Fair Trade of Personal Information 63

uninstalling applications. Installing an application every time the user opens it
safely meets the privacy requirements, since the application is not able to exe-
cute code. However, it added too much overhead to the overall user experience.
Also, uninstalling apps required users to interact with the application as if it
was the first time they opened it. For example, a user would have to login every
time they opened the app, which may cause an inconvenience. Therefore, we
discarded this idea.

One of the main limitations of transiency for the current Android implemen-
tation is the inability to support notifications. In the future, it would be worth
exploring what modifications can be made to the notifications API to be able to
support transient notifications. Transient notifications would give applications
the ability to ask the user for permission to run for a clearly specified purpose,
implemented by a fine-grained API that does not allow the application to violate
users’ expectation of privacy.

We also observed that some applications already display a transient behav-
ior. For example, Spotify will only play music while the application is open.
If the user closes the application, music will stop playing. PrivateRide [6] is
another example of an application that was re-designed to respect user privacy.
These apps show that it is possible to design applications that provide useful
functionalities without abusing privacy.

Lastly, we find that another benefit of transiency was addressing that users
forget or find it inconvenient to delete unused applications [38]. If applications
are treated as transient by default, users can rest assured that installing an
application is not equivalent to giving it the privilege of running unconstrained.

8 Future Work

The classification of applications as either transient and non-transient provided
was intended as a coarse approximation of the applications that could be treated
as transient. In so doing, shed light in the likely impact of transiency on a real
system. However, the system used by Google to categorize applications based on
functionality is an imperfect medium to perform this analysis. As future work,
we plan on incorporating the methods and findings of studies like AWare [7] and
Turtle Guard [10] (which extensibly studied usability and contextual cues) to
provide a more fine-grained classification methodology.

9 Conclusion

Throughout this paper, we explored the idea of enforcing transiency, which dis-
ables apps that were not explicitly opened by the user. Currently, Android appli-
cations can collect sensitive information even if they are not being used. Privacy
is still an ongoing problem, which starts with the lack of control users have over
the amount of information applications can collect. Transiency solves this issue
intuitively, moving towards a fair trade of personal information in exchange for
application services.

64 R. Alvarez et al.

Acknowledgements. Thank you to Kim, Cookie, Bon Bon, and all the SIIS labers
for the much needed support on my first paper journey. This material is based upon
work supported by the National Science Foundation under Grant No. NS-1564105. Any
opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science
Foundation.

References

1. Elenkov, N.: Android Security Internals. No Starch Press, San Francisco (2015)
2. Stamp, M.: Information Security Principles and Practice. Wiley, Hoboken (2011)
3. Jaeger, T.: Operating System Security. Morgan & Claypool Publishers, San Rafael

(2008)
4. Nissenbaum, H.: Privacy as Contextual Integrity. Washington Law Review (2004)
5. Enck, W., et al.: TaintDroid: an information-flow tracking system for realt ime

privacy monitoring on smartphones. In: OSDI (2010)
6. Pham, A., et al.: PrivateRide: a privacy-enhanced ride-hailing service. In: Proceed-

ings of the 17th Privacy Enhancing Technologies Symposium (2018)
7. Petracca, G., et al.: AWare: preventing abuse of privacy-sensitive sensors via opera-

tion bindings. In: Proceedings of the 26th USENIX Security Symposium. USENIX
Security (2017)

8. Narain, S., Noubir, G.: Mitigating location privacy attacks on mobile devices using
dynamic app sandboxing. In: Procededings of the 19th Privacy Enhancing Tech-
nologies Symposium (PETS) (2019)

9. Zhou, Y., Zhang, X., Jiang, X., Freeh, V.W.: Taming information-stealing smart-
phone applications (on Android). In: McCune, J.M., Balacheff, B., Perrig, A.,
Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) Trust 2011. LNCS, vol. 6740, pp. 93–107.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21599-5 7

10. Tsai, L., et al.: Turtle guard: helping Android users apply contextual privacy pref-
erences. In: Proceedings of the 26th USENIX Security Symposium (2017)

11. Liu, B., et al.: Follow my recommendations: a personalized privacy assistant for
mobile app permissions (2016)

12. Hornyack, P., Han, S., Jung, J., Schechter, S., Wetheral, D.: These aren’t the droids
you’re looking for: retrofitting Android to protect data from imperious applications.
In: CCS (2011)

13. Wijesekera, P., et al.: The feasibility of dynamically granted permissions: aligning
mobile privacy with user preferences. In: NDSS (2017)

14. Votipka, D., Rabin, S.M., Micinski, K., Gilray, T., Mazurek, M.M., Foster, J.S.:
User comfort with Android background resource accesses in different contexts. In:
Proceedings of the 14th Symposium on Usable Privacy and Security (2018)

15. Egelman, S., Felt, A.P., Wagner, D.: Choice architecture and smartphone privacy:
there’s a price for that. In: Böhme, R. (ed.) The Economics of Information Security
and Privacy, pp. 211–236. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39498-0 10

16. Felt, A.P., Egelman, S., Wagner, D.: I’ve got 99 problems, but vibration ain’t one:
a survey of smartphone users’ concerns. In: 2nd Annual ACM CCS Workshop on
Security and Privacy in Smartphones and Mobile Devices (2012)

17. Felt, A.P., Ha, E., Egelman, S., Haney, A., Chin, E., Wagner, D.: Android per-
missions: user attention, comprehension, and behavior. In: Proceedings of the 8th
Symposium on Usable Privacy and Security (SOUPS) (2012)

https://doi.org/10.1007/978-3-642-21599-5_7
https://doi.org/10.1007/978-3-642-39498-0_10
https://doi.org/10.1007/978-3-642-39498-0_10

Application Transiency: Towards a Fair Trade of Personal Information 65

18. Bonné, B., Peddinti, S.T., Bilogrevic, I., Taft, N.: Exploring decision making with
Android’s runtime permission dialogs using in-context surveys. In: Proceedings of
the 13th Symposium on Usable Privacy and Security (SOUPS) (2017)

19. Pu, Y., Grossklags, J.: Valuating friends’ privacy: does anonymity of sharing per-
sonal data matter? In: Proceedings of the 13th Symposium on Usable Privacy and
Security (SOUPS) (2017)

20. Tsai, J., Egelman, S., Cranor, L., Acquisti, A.: The effect of online privacy infor-
mation on purchasing behavior: an experimental study. In: 6th Workshop on the
Economics of Information Security (2007)

21. Samat, S., Acquisti, A.: Format vs. content: the impact of risk and presentation
on disclosure decisions. In: Proceedings of the 13th Symposium on Usable Privacy
and Security (SOUPS) (2017)

22. Rao, A., Schaub, F., Sadeh, N., Acquisti, A., Kang, R.: Expecting the unexpected:
understanding mismatched privacy expectations online. In: Proceedings of the 12th
Symposium on Usable Privacy and Security (SOUPS) (2016)

23. Oates, M., et al.: Turtles, locks, and bathrooms: understanding mental models
of privacy through illustration. In: Proceedings of the 18th Privacy Enhancing
Technologies Symposium (PETS) (2018)

24. Ismail, Q., Ahmed, T., Caine, K., Kapadia, A., Reiter, M.: To permit or not to per-
mit, that is the usability question: crowdsourcing mobile apps’ privacy permission
settings. In: Proceedings of the 18th Privacy Enhancing Technologies Symposium
(PETS) (2017)

25. Wijesekera, P., Baokar, A., Hosseini, A., Egelman, S., Wagner, D., Beznosov, K.:
Android permissions remystified: a field study on contextual integrity. In: Proceed-
ings of the 24th USENIX Security Symposium (2015)

26. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions dymisti-
fied. In: CCS (2011)

27. Chatterjee, R., et al.: The spyware used in intimate partner violence. In: IEEE
Symposium on Security and Privacy (2018)

28. Bowers, J., Reaves, B., Sherman, I.N., Traynor, P., Butler, K.: Regulators, mount
up! analysis of privacy policies for mobile money services. In: Proceedings of the
13th Symposium on Usable Privacy and Security (SOUPS) (2017)

29. Das, A., Borisov, N., Chou, E.: Every move you make: exploring practical issues
in smartphone motion sensor fingerprinting and countermeasures. In: Proceedings
of the 18th Privacy Enhancing Technologies Symposium (PETS) (2018)

30. Reyes, I., et al.: Won’t somebody think of the children? examining COPPA com-
pliance at scale. In: Proceedings of the 18th Privacy Enhancing Technologies Sym-
posium (2018)

31. Venkatadri, G., Lucherini, E., Sapiezynski, P., Mislove, A.: Investigating sources of
PII used in Facebook’s targeted advertising. In: Proceedings of the 19th Privacy
Enhancing Technologies Symposium (2019)

32. Foppe, L., Martin, J., Mayberry, T., Rye, E.C., Brown, L.: Exploiting TLS client
authentication for widespread user tracking (2018)

33. Bashir, M.A., Wilson, C.: Diffusion of user tracking data in the online advertising
ecosystem. In: Proceedings of the 18th Privacy Enhancing Technologies Symposium
(2018)

34. Lifshits, P., et al.: Power to peep-all: inference attacks by malicious batteries on
mobile devices. In: Proceedings of the 18th Privacy Enhancing Technologies Sym-
posium (2018)

66 R. Alvarez et al.

35. Eskandari, M., Ahmad, M., Oliveira, A.S., Crispo, B.: Analyzing remote server
locations for personal data transfers in mobile apps. In: Proceedings of the 17th
Privacy Enhancing Technologies Symposium (2017)

36. Brookman, J., Rouge, P., Alva, A., Yeung, C.: Cross-device tracking: measure-
ment and disclosures. In: Proceedings of the 17th Privacy Enhancing Technologies
Symposium (2017)

37. Zhou, X., et al.: Identity, location. inferring your secrets from Android public
resources. In: CCS, Disease and More (2013)

38. Park, H., Eun, J., Lee, J.: Why do smartphone users hesitate to delete unused
apps? In: MobileHCI (2018)

39. Senate: Testimony of Mark Zuckerberg. https://www.judiciary.senate.gov/imo/
media/doc/04-10-18%20Zuckerberg%20Testimony.pdf. Accessed Feb 2019

40. https://ipdata.co/ . Accessed Feb 2019
41. Statista: Distribution of free and paid Android apps (2019). https://www.statista.

com/statistics/266211/distribution-of-free-and-paid-android-apps/
42. Statista: Number of Available Applications in the Google Play Store (2019).

https://www.statista.com/statistics/266210/number-of-available-applications-in-
the-google-play-store/

43. Statista: Number of Paying Spotify Subscribers. https://www.statista.com/
statistics/244995/number-of-paying-spotify-subscribers/

44. Google (2019). https://developer.android.com/
45. Google (2019). https://developer.android.com/guide/components/fundamentals
46. Google (2019). https://source.android.com/
47. Google: Codelabs (2019). https://codelabs.developers.google.com/
48. Google: Android Open Source Code (2019). https://source.android.com/
49. Google: Activity Recognition API (2019). https://developers.google.com/location-

context/activity-recognition/
50. IPData.co (2019). https://ipdata.co/
51. Google: Google Answers. https://support.google.com/android/answer/9079646?

hl=en. Accessed Feb 2019
52. Google: The Recents UI (2019). https://developer.android.com/guide/

components/activities/recents
53. Google: Work Manager API (2019). https://developer.android.com/reference/

androidx/work/WorkManager
54. Google: Android 9.0 Behavior Changes (2019). https://developer.android.com/

about/versions/pie/android-9.0-changes-all

https://www.judiciary.senate.gov/imo/media/doc/04-10-18%20Zuckerberg%20Testimony.pdf
https://www.judiciary.senate.gov/imo/media/doc/04-10-18%20Zuckerberg%20Testimony.pdf
https://ipdata.co/
https://www.statista.com/statistics/266211/distribution-of-free-and-paid-android-apps/
https://www.statista.com/statistics/266211/distribution-of-free-and-paid-android-apps/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/244995/number-of-paying-spotify-subscribers/
https://www.statista.com/statistics/244995/number-of-paying-spotify-subscribers/
https://developer.android.com/
https://developer.android.com/guide/components/fundamentals
https://source.android.com/
https://codelabs.developers.google.com/
https://source.android.com/
https://developers.google.com/location-context/activity-recognition/
https://developers.google.com/location-context/activity-recognition/
https://ipdata.co/
https://support.google.com/android/answer/9079646?hl=en
https://support.google.com/android/answer/9079646?hl=en
https://developer.android.com/guide/components/activities/recents
https://developer.android.com/guide/components/activities/recents
https://developer.android.com/reference/androidx/work/WorkManager
https://developer.android.com/reference/androidx/work/WorkManager
https://developer.android.com/about/versions/pie/android-9.0-changes-all
https://developer.android.com/about/versions/pie/android-9.0-changes-all

CustomPro: Network Protocol
Customization Through Cross-Host

Feature Analysis

Yurong Chen(B), Tian Lan, and Guru Venkataramani

George Washington University, Washington, USA
{gabrielchen,tlan,guruv}@gwu.edu

Abstract. The implementations of network protocols are often
“bloated” due to various users’ needs and complex environment for
deployment. The continual expansion of program features contribute
to not only growing complexity but also increased the attack surface,
making the maintenance of network protocol security very challenging.
Existing works try to mitigate program bloat by source-code level static
analysis (such as tainting and slicing) or dynamic techniques such as
binary reuse. While source code is not always available for the former
technique, the latter suffers from limited code coverage because of the
incomplete input space. In this paper, we propose CustomPro, a new
approach for automated customization of network protocols. We adopt
whole system emulation, dynamic tainting and symbolic execution to
identify desired code from the original program binaries, then leverage
binary rewriting techniques to create a customized program binary that
only contains the desired functionalities. We implement a prototype of
CustomPro and evaluate its feasibility using OpenSSL (a widely used
SSL implementation) and Mosquitto (an IoT messaging protocol imple-
mentation). The results show that CustomPro is able to create functional
program binaries with only desired features and significantly reduce the
potential attack surface by targeting and eliminating unwanted protocol
features.

Keywords: Program customization · Binary rewriting · Cross-host
tainting

1 Introduction

Recently, network protocols have frequently become targets of cyber attacks.
Even protocols that are carefully designed to enhance the security of communi-
cations (such as OpenSSL) can be exploited and leveraged, posing severe threats
(such as information leakage and DoS attacks) to online users [2,11]. Network
protocols are vulnerable due to a number of reasons: (a) The users’ requirements
of network hosts are typically various. In order to satisfy such requirements,

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 67–85, 2019.

https://doi.org/10.1007/978-3-030-37231-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_4

68 Y. Chen et al.

network protocol designs contain complex logic/checking and more-than-enough
features. Furthermore, the changing environment also leads to continuous expan-
sion of the existing program code base, known as the feature creep problem [20].
(b) Even standardized protocols may have a variety of different implementations
and specifications, in accordance with heterogeneous system/user requirements
(especially in IoT systems). Such inconsistency weighs on the feature creep issue
and makes the management of protocol implementations much more difficult
and the network connections prone to attacks. Feature creep has caused real-
world problems. The protocol Simple Network Management Protocol (SNMP)
contains the trap communication feature and the OpenSSL contains heartbeat.
Both features have low utilization and could be removed without affecting the
major functionalities. Unfortunately, they are included in the program and cause
serious security threats such as denial of service attack and leakage of sensitive
information.

Debloaing, a technique that removes undesired part from the code base to
generate a customized program, has been proposed to mitigate the issue of fea-
ture creep. Some debloating techniques work only with source code, by perform-
ing static analysis such as tainting and slicing [19,20] to identify and eliminate
unnecessary code. However, source code is not always available to users. Static
analysis such as identifying function bodies in the program binaries could be
extremely difficult and inaccurate [1]. On the other hand, other works that
can produce customized program directly from the original program binaries,
through dynamic binary reusing techniques. The downside of dynamic binary
reuse is that it can only “mimic” a limited portion of the desired functionalities
in the original program, because of the incomplete input feeding [3,23,35,46,47].

In this paper, we propose a new approach, CustomPro, for automated cus-
tomization of network protocols, which is to discovering and rewriting network
protocol functionalities/features from program binaries based on users’ needs.
CustomPro is able to trim the original program to a customized version that only
contain desired components, thus greatly reducing the attack surface and chances
of future exploitation. We define a program feature as a collection of basic blocks,
which uniquely represent an independent, well-contained capability of the pro-
gram. CustomPro consists in feature identification and rewriting modules. The
key steps of feature identification in CustomPro are as follows. (1) We utilize
whole system emulation to monitor and dump the needed information about
protocol program execution, such as executed instructions, processor states and
memory layout. (2) Packet tainting is used to mark the packets as taint source
to identify different features. The intuition here is that different functionalities
in the protocols are typically associated with and triggered by packets. Further-
more, since packets are transmitted across multiple hosts, we also propagate the
taint across hosts to track the information flow and program executions [31,45].
(3) Since dynamic tainting depends on the given inputs, it may not be able to
achieve high code coverage, thus can only identify limited portion of protocol
features. To this end, we combine tainting and symbolic execution to compensate
for the incompleteness of dynamic analysis. Symbolic execution will help dis-
cover more code relevant to the target features, while the tainting module can

CustomPro: Network Protocol Customization 69

Fig. 1. Feature identification by combining tainting and symbolic execution

give hints to the symbolic execution engine to only explore “valuable” branches
and avoid path explosion.

The feature rewriting module takes the output of feature identification mod-
ule to perform binary rewriting, then produces a customized program binary.
The undesired basic blocks are replaced with NOP instructions and Custom-
Pro also takes care of the calling instructions to redirect such function calls,
forcing the program to exit once the undesired features are executed. We apply
CustomPro to popular protocol implementations such as OpenSSL and MQTT
to remove the insecure features such as heartbeat (in OpenSSL) and will (in
MQTT).

This work makes the following major contributions:

– We propose an automated framework CustomPro, that can customize net-
work protocol implementations with only program binaries. Given the user’s
need, CustomPro produces a customized version of the original program to
eliminate unnecessary code while keeping the desired features functional.

– We propose a feature identification mechanism that utilizes dynamic cross-
host tainting and guided symbolic execution. The tainting information helps
to identify relevant code and provide guidance to symbolic execution to avoid
redundant path exploration.

– We evaluate CustomPro using popular protocol implementations such as
OpenSSL and Mosquitto. The experimental results show that CustomPro is
able to effectively customize software binaries, producing light-weight pro-
gram binaries that eliminate potential vulnerabilities.

2 Motivation

The attacks against network systems through the vulnerabilties in protocols
have never ceased and are often followed by severe consequences. Heartbleed [11]

70 Y. Chen et al.

exposes private information such as server private keys to the Internet through
a simple Heartbeat feature in OpenSSL. Nearly half a million certificates were
exposed and over 199,500 sites are still vulnerable as of the time Jan. 2017,
which is over three years after the bug was reported [21]. KRACK [36], or key
reinstallation attack, a replay attack that leverages the vulnerable design in
WAP2 protocol, can be exploited to gradually obtain the full keychain used
for encrypting the traffic under a WIFI environment. The handshake messages
are replayed by MITM (Man In The Middle) such that the end node will be
deceived to reinstall the key that is already in use. The same key value will be
used repeatedly for encryption, resulting in repeated occurrences of the same
message.

Finally, the 2017 data breach on credit reporting agency Equifax had 146.6
million people expose their names and dates of birth, and 145.5 of those expose
their Social Security Numbers and/or driver’s license numbers, across US, UK
and Canada [13]. The attack was believed to exploit the CVE-2017-5638, which
is a flaw in the Apache Strut framework. This vulnerability was discovered and
reported more than two months before the data breach happened.

The key takeaways from these attacks are as follows:

– Network Protocols are a critical link in the chain of network security.
– Patching solutions can’t keep up. Patches can come late while the exploits

have already led to large-scale disaster. Even after a patch is released, there is
no guarantee that all vulnerable entities in the network will apply the patch
soon enough, leaving some of them vulnerable for a longer time.

– Hardening the security of network protocols is very different from that of
single-host and offline software systems, since protocols often contain a sig-
nificant amount of features and operate in a fully distributed environment.
Any effective solution must harden all of the entities collectively along with
their corresponding binary code modules.

Software customization, an approach to extract desired parts and/or remove
undesired ones from a target program, has been applied to reduce the attack
surface and improve program security [19,20]. In this paper, we leverage cus-
tomization to (1) remove wanted program features to reduce attack surface (or
the risk of being attacked), e.g., protect the program from zero-day exploits; and
(2) prevent the network from being exploited via known vulnerabilities before
patches becomes available. However, previous customization techniques often
remove unused functions from program source code, which is not always avail-
able especially for COTS and legacy programs. To this end, CustomPro develops
protocol customization that only requires only program binary for customiza-
tion. Moreover, in practice it is often hard (if possible at all) to identify all
functions/code related to target protocol features from only several seed func-
tions [20]. Network protocols such as SSL handshake often implement complex
state machines where different states are convoluted together and even spread
across different hosts, linked by only network packets. In CustomPro, we utilize
a cross-host, dynamic tainting technique to track exchanged packets and trace
program executions, in order to discover the code segments related to target

CustomPro: Network Protocol Customization 71

protocol features. CustomPro rewrites the static binary based on the user needs.
It further applies symbolic execution to identify any additional code belonging
to the target features that were not captured during dynamic analysis.

We utilize the example shown in Fig. 1 to illustrate our key idea. The feature
identification starts from a tainted packet or tainted fields in a packet. The taint
will propagate through basic blocks of the binary code. In this example, there are
two features Fa and Fb, starting from node 2 and 6 respectively. Suppose that a
user wants to keep feature Fa and remove Fb. The basic blocks represented by
shaded nodes (1,2,3,4) are tainted in the current execution path, i.e., 1 → 2 →
3 → 4, discovering code blocks (1,2,3,4).

However, another execution path 1 → 2 → 5 also belonging to Fa has not
been identified due to limited coverage of dynamic analysis. Hence, we perform
symbolic execution starting from the node 2 to explore the possibility of any
other execution paths of Fa, which eventually leads to discovery node 5.

Assumptions and Scope: We assume that the packet format of a target pro-
tocol is known beforehand and the feature-related fields can be identified. In
practice, packet formats can always be identified either through protocol specifi-
cations or using reverse engineering techniques described in prior work [4,8,9,25].
We also assume that some (limited number of) test inputs are provided to trig-
ger the target features and serve as starting point for our analysis. These inputs
can be easily obtained from system tracing, packet sniffing, and/or fuzzing. The
scope of this work is to customize a given implementation of network protocols
with only access to program binaries.

3 System Overview

Fig. 2. CustomPro system diagram

We formally define protocol features and problem statement as follows:
Feature: A program feature is defined as a set of basic blocks – denoted by
Fi = {f1

i , f
2
i , ..., f

n
i } ⊆ F – which uniquely represent an independent, well-

contained operation, utility, or capability of the program. A feature at the binary

72 Y. Chen et al.

level may not always correspond to a software module at the source level. We
use T = {Fi, ∀i} to denote the set of all available features in the program.

Problem Statement: The goal of CustomPro is that, for a given program
binary and test cases invoking different program features, and user’s customiza-
tion requirement (i.e., a set of desire features T̂ ⊆ T), it will produce a modified
binary that contains the minimum set of basic blocks/functions to satisfy the
user’s customization requirement and to support all desired features in T̂ .

The design of CustomPro is depicted in Fig. 2. The requirement for customiza-
tion is provided by users (which features to keep and which to remove). The feature
identification module will take such requirement as well as the program binary to
identify relevant code, after which the feature rewriting part modifies the original
program binary based in the result of feature identification.

The feature identification module is explained in Sect. 4. Through program
tracing, cross-host tainting and guided symbolic execution(GSE), CustomPro is
able to find the program instructions that are necessary to perform the desired
features. The discovered instructions can come from two sources: 1. Execution
tracing and tainting form the basis of feature identification, in which executed
program instructions are logged and those related to target features are tainted.
2. With the information above, GSE performs a light-weight search for additional
code blocks that are also related to the target feature but not executed in the test
runs. The feature identification module then combines and passes the collectively
identified instructions (that are related to the target features) to the feature
rewriting module.

Section 5 explains the details of feature rewriting module. The original pro-
gram binary is modified according to the user’s requirement. In order to verify
the soundness of the customized program, program fuzzing is performed after
rewriting. Fuzzing can check if the undesired features are indeed removed and
also verify that the remaining features are functional. Once unexpected behaviors
happen, i.e., the undesired features are not thoroughly removed or the desired
features fail to work properly, CustomPro will check the feature identification
part to fix the error and perform rewrite again. The feature identification/rewrit-
ing and fuzzing form a closed loop until no error is thrown.

4 Feature Identification

As a feature-oriented customization framework, CustomPro discovers basic
blocks that are related to target features in program binary. Previous work for
feature customization [20] requires users to provide seed functions in order to
start the feature identification. A seed function is uniquely associated with a
certain feature, and is used to bootstrap the program analysis such as taint-
ing and slicing, in order to identify code that is related to the target feature.
However, it is difficult for users to gain knowledge about the seed functions
especially when the program source code is not available. CustomPro instead
associate protocol features with network packets, and let users to choose the

CustomPro: Network Protocol Customization 73

target network services/functionalities to start the feature identification. In par-
ticular, CustomPro’s feature identification module performs program execution
tracing, cross-host tainting and symbolic execution to discover the relationships
between features and their corresponding code.

4.1 Execution Tracing

CustomPro starts with test inputs that trigger the target features, during which
all code related to the target features are captured and identified dynamically.
To this end, we employ dynamic program analysis to discover the code and other
runtime information related to the target features. We run the program inside a
whole system emulator-TEMU [44], where the instructions get executed will be
logged and tainted instructions are labeled. The taint propagation mechanism
will identify all code related to certain packets/fields. In fact, during the program
execution, other runtime information such as operand values and CPU register
values are also inspected and logged. These values are used later for a symbolic
execution as described in Sect. 4.3.

Network protocols typically involve executions on multiple network entities
with different roles, such as servers and clients. We execute all relevant entities
on the guest OS inside TEMU, and implement a cross-host tainting mechanism
to propagate taints between multiple entities. As will be described in Sect. 4.2,
we piggyback taint information onto existing network packet, which requires the
modification of both sender and receiver entities.

4.2 Cross-Host Packet Tainting

Not all of the logged instructions are related to the target features. One intuitive
approach to identify relevant instructions is tainting. However, whole-packet-
level tainting may fail to achieve the granularity needed to extract the code of
the target feature. For example, in ClientHello message of SSL protocol, there
could be undesired extensions such as HeartBeats along with other necessary
fields. If the customization requirement is to remove heartbeat feature, packet-
level tainting cannot distinguish HeartBeats from other features embeded in the
same packet.

Fig. 3. Field symbolization in tainted fields

74 Y. Chen et al.

In CustomPro, we apply muti-tag, field-level tainting to label instructions
according to the features they belong to. In particular, we classify tainted instruc-
tions into two sets: (1) K: code related to desired features and will be kept in
the customized binary and (2) R: code related to undesired features and will
be removed after customization. Note that untainted code will not be removed
from the original binary since they are related to program initialization or state
transitions. In addition, the instructions in K and R will be utilized during par-
tial symbolic execution to identify any missing code blacks. The details will be
explained in Sect. 4.3.

The tainting engine in TEMU maintains the taint tags in shadow memory.
In our case, the shadow memory will track the taint status of every byte in NIC
buffer. When the taint source and tag are specified at the packet (i.e., which
fields are tainted and which tag each field gets), the corresponding memory
location is tainted. The taint then will be propagated along with data flow such
as read, DMA (Direct Memory Access), table lookups and arithmetic operations.
By default, TEMU will taint the whole packet if it satifies the user-defined filters
such as TCP packet and UDP packet. For a finer-grained tainting, we instrument
the tainting engine in TEMU to enable field tainting on packets. The target fields
are identified through their offsets in the packets.

In order to track the data flow across different hosts, CustomPro also imple-
ment a cross-host tainting mechanism [45] to transmit taint information in the
network. This is essential for protocols that contain state machines on both server
and client sides. Take SSL handshake process as an example, when the server is
listening to incoming connections, it stays at a state ready to read ClientHello.
After the ClientHello message is received and processed, the server will go into
another state such as replying ServerHello, renegotiation or error state depend-
ing on the result of processing ClientHello. Suppose a ServerHello is sent to the
server side, the client will change its state to reading the ServerHello. Such iter-
ations extend the scope of data flow from one individual host to multiple hosts
across the network, while the status of one execution depends on the executions
on all other hosts in the protocol. To enable cross-host tainting, we piggyback
taint information onto each packet flight. The taint information contains an off-
set table that indicates which bytes in the current packet are tainted and which
labels are used to taint them, allowing the taints to be extracted and processed
at the recipient.

4.3 Guided Symbolic Execution

By utilizing tainting, CustomPro now can map each instruction to its feature,
on all participating entities of the protocol. To customize the binary, a straight-
forward approach would then keep the desired instructions (related to desired
features) and remove the rest. However, there is still one limitation to this
approach: The given test inputs can only trigger specific execution paths in
the binary code, which may not provide a full coverage of the target feature
execution.

CustomPro: Network Protocol Customization 75

To this end, after tracing and tainting, we take the execution traces and
tainting information as the input to perform guided symbolic execution (GSE),
in order to discover any additional code blocks that are related to the target
features/fields. Symbolic execution is usually resource-consuming in terms of
memory and CPU circles. To trim the searching space of symbolic execution, we
(i) leverage the tainting results as well as the runtime information from execution
tracing, to limit the number of locations that require symbolic execution and
(ii) infer conditions from execution logs to further concretize certain variables as
well as to limit the value ranges of certain symbolized fields. In particular, our
solution is summarized as follows. (a) We leverage GSE to symbolize only the
variables (i.e., registers and memory locations) that are tainted during execution
and belong to the set K as mentioned in 4.2, because the operands of tainted
instructions in set K contain or point to variables that are related to the desired
packet fields. (b) During monitored execution, we take snapshots of the system
states, e.g., when tainting starts (such as when the first tainted byte in the NIC
is accessed by the program). This will dump the value of registers and process
memory layout. The value of variables that we are not interested in will be passed
into GSE to concretize as variables as possible. (c) Available packet format
information may further limited the range of certain variables, in which case we
can apply such conditions to reduce the search space of those symbolic variables.
In particular, as shown in Fig. 3 (assume that this is a tainted packet), we only
symbolize part of the header fields and skip the payload. The fields marked by
dark gray will be symbolized while the unshaded fields will keep their concrete
values. The hatched area are concrete fields that can help limit the range of
symbolized fields. For example, the packet length fields can help set boundaries
for the total length of other symbolized fields. Given other specifications of the
protocol (such as the min/max/enum value of certain fields), we can further trim
the searching space of GSE to accelerate the code exploration.

While dynamic tracing can precisely locate the basic blocks that get exe-
cuted, it is easy to see that through one iteration of tracing and tainting, we can
only identify the code blocks that process specific network packets and belong to
only one execution path of the target feature. There are potentially other exe-
cution paths and branches that are also related to the same type of operation
but not taken in particular runs. On the other hand, symbolic execution can
be employed to explore more paths/branches, providing better code coverage .
However, without properly trimming the searching space, it is often faced with a
path explosion problem and could easily incur prohibitive overhead in practice.
This can be illustrated by reusing the example in Fig. 1. At node 1, the format of
packet is checked and either feature Fa or Fb will be invoked. Without symbolic
execution, only one single path (1 → 2 → 3 → 4) is considered as the code
related to Fa. After customization, the new binary containing only the identified
execution path will not be able to process any packet inputs that will lead to
node 5. And if symbolic execution is applied without the tainting information,
it will start exploration from node 1 and try to symbolically execute all possible
paths from there. Significant CPU and memory resources can be required to

76 Y. Chen et al.

explore redundant paths such as 1 → 6 → 7 → 4. Hence, we combine tainting
and symbolic execution in CustomPro, by leveraging the tainted variables (such
as registers and memory locations) from instruction tracing to guide symbolic
execution. We will fix the value in the packet that indicates the feature Fa and
symbolize other relevant fields, to explore the code only belonging to feature Fa.

If the input to feature identification contains multiple types of packets that
cannot be executed during one execution, CustomPro will process the packet
individually, then merge the basic blocks discovered from each iteration. Finally,
CustomPro combines the addresses obtained from execution tracing, tainting
and GSE to identify a set of instructions that should be kept during binary
rewriting. All the basic blocks from 1 to 5 in Fig. 1 can be discovered by feature
identification module, and will be kept in the customized program binary.

5 Feature Rewriting

Feature rewriting consists of three main steps: instruction identification, binary
rewriting and verification, as explained in this section.

5.1 Instruction Identification

The static binary rewriting needs the information of instruction addresses in
order to identify the target basic blocks. CustomPro locates the static instruc-
tions based on their offsets from the entry point. The offsets are pre-calculated
from the runtime instruction traces, by subtract the runtime entry point address
from the actual runtime addresses of target instructions.

To increase the coverage of the identified code, CustomPro cumulatively per-
form code discovering for different inputs, then get the union of all the tar-
get code. The intuition here is that limited execution traces may not reach all
branches related to the target features. Let F̂ be a set of target program fea-
tures for rewriting. If the constituent basic blocks of each feature Fi ∈ F̂ can be
successfully identified, we can simply create a superset of their constituent basic
blocks, i.e., F̂ = ∪Fi. Binary rewriting techniques are developed next to create
a customized program by retaining only the features in F̂ .

5.2 Binary Rewriting

CustomPro implements a static binary rewriting module using DynInst. In par-
ticular, it utilizes the PatchAPI in DynInst to modify program binaries in basic
block level based on the CFG analysis. Binary rewriting in CustomPro contains
two parts:

– In order to prevent the basic blocks being called, CustomPro change the
calling instructions to redirect the call, such that once the call site is reached,
the program will exit.

CustomPro: Network Protocol Customization 77

Fig. 4. An illustrative example of implementing feature rewriting on OpenSSL.

– To prevent the unwanted basic blocks from being executed through mali-
cious operations such as Return-Oriented Programming (ROP), Custom-
Pro replaces the such basic blocks with “NOP” (except for the shared code
and data segments).

The solution is illustrated in Fig. 4. The original control flow is from basic block
B1 to B2 via a “call” instruction as arrow 1 indicates. If B2 is the target to be
removed, CustomPro will change the call site in B1 and redirect it to B3(an exit
point) as Arrow 2 indicates. In addition to the instrumentation of control flow,
CustomPro will also replace B2 with “NOP”s to prevent invoking the removed
features (and feature-related blocks) at runtime, e.g., through ROP [30].

5.3 Verification

After the customized binary is generated, CustomPro contains a fuzzing engine
to verify the correctness and soundness of customization. The fuzzing engine will
generate inputs by categories, i.e., inputs that trigger desired or undesired fea-
tures. In particular, the set D denotes benign inputs that invoke the desired fea-
tures in customized program, and E denotes the vulnerable inputs that involve
at least one of the eliminated features. If a benign input causes a crash, we
will perform feature identification using this input and find out the necessary
instructions to be added to the customized binary. On the other hand, if the
vulnerable input fail to cause a program exit, we’ll further examine the execu-
tion trace and add control flow redirection at proper locations. The verification
process and above-mentioned feature identification/modification are performed
iteratively to improve the correctness of program customization.

6 Implementation

We implement a prototype of CustomPro and describe the some core components
here.

78 Y. Chen et al.

The cross-host tainting module is implemented in the system emulator. (1)
By default, the whole-system emulator TEMU only supports single-host whole
packet tainting. CustomPro enhances the tainting module to enable finer-grained
tainting, i.e., field tainting, such that CustomPro can trace the code that is only
related to specific packet fields. In particular, we modify the plugin of TEMU,
“tracecap” to taint packet by the offsets of target field. (2) Also, we instrument
syscalls such as open(), read(), write(), connect(), recv()andsend(), so that the
taint information can be passed among multiple hosts.

Later, the binary analysis tool Angr [32] is used to perform symbolic execu-
tion with the help of the taint information. The start location of symbolic exe-
cution is where the filed/packet get first tainted, and the termination point of
symbolic execution is set to be the end of “main()” function. The tainting infor-
mation helps Angr avoids irrelevant execution paths, but focus on the variables
that are tainted. We utilize “ins addr” member in “history.actions” to dump the
instructions explored by Angr, then combine them with the instructions that are
identified by tainting.

DynInst is used to perform static binary rewriting. The PatchAPI removed
functions/basic blocks by replacing them with NOPs, and remove them from
CFG list. We also replace the function calling instructions with program exit.

7 Evaluation

In this section, we evaluate the effect of feature customization on two real-
world protocol implementations: OpenSSL and Mosquitto. We choose four fea-
tures from OpenSSL, namely, heartbeat, client certificate request, renegotia-
tion, encrypt-then-MAC(ETM). Since the handshake of SSL protocol is a state
machine-based process, and each feature involves the implementation on both
client and server, we customize both sides of OpenSSL to eliminate each one of
the four target features at one time. Mosquitto implements the MQTT protocol
(an IoT messaging protocol) which involves three different entities in a message
iteration: broker, publisher and subscriber. After the subscriber sign up for a cer-
tain topic, the publisher sends message related to that topic to the subscriber.
The broker serves as a middle man and receives all message updates from the
publisher then decides which subscribers the messages should be sent to, with
respect to the message topics. We choose three features from mosquitto broker
and publisher to build different customized versions of the protocol.

Experiment Setup: Our experiments are conducted on a 2.80 GHz Intel
Xeon(R) CPU E5-2680 20-core server with 16 GB of main memory. The oper-
ating system is Ubuntu 14.04 LTS. To evaluate the feature customization on
OpenSSL and Mosquitto, we first run the default program to get the number
of runtime and static instructions with all target features included. The run-
time instructions include all instructions that get executed, excluding dynamic
library functions such as glibc code. We further filter out the library code based
on the runtime addresses of instructions and mapping information from the
/proc/PID/maps. It is obvious that runtime instructions contain duplicated

CustomPro: Network Protocol Customization 79

instructions, as the same basic block in the program binary can be executed
multiple times. Hence, we also collect the number of (unique) instructions in the
static program binary that are executed during runtime.

7.1 Customizing OpenSSL

OpenSSL is an open-source software that implements SSL/TLS protocols. We
use OpenSSL version 1.0.1 for evaluation (the latest version still containing the
Heartbleed bug). We first collect the number of runtime and static instructions
from the default program by running the default s server and s client. Our
experiments show that server executes 130212 runtime instructions and 111595
static instructions, while the client side executes 124151 runtime instructions
and 111123 static instructions. We remove one of the four target features one-
at-a-time to analyze how many instructions are involved in each feature.

HeartBeat: It is one of the well-known bugs in OpenSSL is CVE-2014-0160,
namely, Heartbleed, which could be exploited by adversaries to steal sensitive
data from the SSL server. Heartbleed is rooted in the feature HeartBeat in SSL,
an extension designed to make sure that each end of the communication is still
alive by sending a number of data and expecting the same message being echoed
back. However, the receiver of the heartbeat request, rather than checking the
actual size of the HeartBeat payload, simply allocates a memory buffer with the
size declared in the length field of the received packet. If a HeartBeat request
message is shorter than the claimed value, then extra content will be sent back
(up to 64 KB) and revealed, containing sensitive memory content from the server.
The HeartBeat feature can be automatically removed using CustomPro to pro-
duce customized program binaries that cannot generate or process HeartBeat
packets, while other features are still intact. In practice, this provides system
administrators with a swift, automatically-generated fix through program cus-
tomization, without the need or time-overhead to perform full system analyze
and patch construction. Our experiments show that 658 static instructions are
removed from server and 636 instructions are removed from client.

ETM: Similar to heartbeat, the feature encrypt-then-mac (ETM) is also
an extension in the process of handshake. After encrypting the plaintext, a
MAC(message authentication code) of the ciphertext is calculated and appended
to the end of ciphertext. The ETM helps to verify the integrity of the cipher-
text. A bug related to ETM has been reported in CVE-2017-3733, where the
program will crash if the ETM is defined in the process of renegotiation while it
is not in the original handshake (or vice-versa). CustomPro can eliminate such
vulnerability by removing the ETM feature from both client (793 instructions
removed) and server sides (643 instructions removed) in an automated fashion.

Renegotiation: An interesting case in our study of customizing OpenSSL is
about the feature renegotiation. Renegotiation is a feature that enables the con-
nection to change some parameters without establishing a new SSL session so
as to save resources. The vulnerabilities about renegotiation reported in CVE
database (such as CVE-2009-3555 and CVE-2015-0291) cause the MIIT attack

80 Y. Chen et al.

Table 1. Number of instructions remaining in OpenSSL by removing different features

Removed feature # Inst remaining in server # Inst remaining in client

Dynamic Static Dynamic Static

HeartBeat 128953 110937 111123 110487

ClientCertificate 121167 103214 107341 95025

Encrypt-then-MAC 128651 110952 122541 110330

Renegotiation 128953 110937 111123 105487

and DoS. However, as CustomPro taint and discover target instructions through
the packets/fields, we cannot distinguish the feature renegotiation since the rene-
gotiation request will basically result in another handshake (initialized by a hello
request). As shown in Table 1, the customized version of either client or server
is the same as the original one.

7.2 Customizing MQTT

Message Queuing Telemetry Transport (MQTT) is a protocol using a certain
topic to subscribe and publish message which is always used in internet of things
(IOT). There are three entities in MQTT communications, e.g., broker, publisher
and subscriber. The subscriber signs up for a topic via broker, in order to receive
messages published by publisher (and through the broker). The MQTT packets
contain three fields that include fix header, variable length header, and payload.
The fix header consists of control header and packet length. The variable length
header is used when some extra program features are enabled. In this paper, we
perform feature customization on Mosquitto ver 1.5.

Table 2. Number of instructions in Mosquitto after removing unwanted features

Inst Removed features

Publisher: insecure Publisher: publishing file Broker: loading config

Dynamic 1213 1172 8229

Static 1117 1069 7192

We run the default Mosquitto broker, subscriber and publisher with all three
target features. The numbers of runtime instructions in broker, subscriber and
publisher are 8937, 1117 and 1235, respectively. The numbers of static instruc-
tions in broker, subscriber and publisher are 7717, 1022 and 1132, respectively.
Table 2 shows number of instructions after removing target features.

Among those removed features, some are particularly security concerning.
The option “insecure” let subscriber and publisher skip the verification of the
server hostname, which means a malicious third party could gain the access to
the MQTT communication. The feature “publish file” is a feature that allows the

CustomPro: Network Protocol Customization 81

publisher to send files (instead of message updates to subscribers), potentially
offering a mechanism for malicious code injection.

8 Discussion

In this section, we discuss some limitations of our CustomPro framework, which
will be considered as possible directions for future work.

Limitation of Tainting: During the feature identification, CustomPro utilizes
the dynamic cross-host tainting to track the information flow among hosts. How-
ever, the tainting currently only work in a “forward” manner, i.e., the relevant
code can only be tainted after the packet is identified and tainted. The taint
information flow forward along with the program execution. However, the code
that is related to generating the packets cannot be tainted in this way. Addi-
tional “backward” tainting module needs to be implemented to address this
issue. However, this is only needed when the first packet is generated, because
the following packets will all contain the initial taint information (which are
provided by our across-host taint propagation), as they are always triggered by
some incoming packets from other protocol entities. Hence, one possible future
work is to leverage static backward tainting to identify code that generates the
first packet, and improve protocol customization.

Limitation of Rewriting: Currently, CustomPro does not work on obfuscat-
ed/encrypted binaries since it relies on the correct static instruction address/off-
set. Also, instead of replacing instructions with NOPs and program crash, as a
future work, we plan to silent undesired feature invocations and let the program
continue execution, such that the (execution of) desired features will not be
interrupted by unexpected invocations to undesired features.

9 Related Work

Vulnerability Discovery and Program Customization: Program bloating
introduces more code as well as more bugs. Extensive works have focused on
bug hunting in programs as such dynamic tainting [10,37] program customiza-
tion [6,7,19,20,22,40], symbolic execution [28,34,42], fuzzing [26], learning-
based approaches [24,38,41,42], hardware-assisted profiling and analysis [5,43]
and malware/botnet analysis [12,14–18]. In this paper we leverage the tainting
information to guide the symbolic execution. Pure symbolic execution has the
problem of path explosion and different techniques have been studied to improve
the efficiency of symbolic execution. StraightTaint [28] combines “incomplete”
taint propagation and symbolic execution to improve the runtime tainting perfor-
mance (by lightweight logging) while still keep necessary information for offline
analysis. Driller [34] combines symbolic execution and fuzzing to quickly bypass
the magic number checking. The intuition is that symbolic execution can effi-
ciently figure out the conditions of entering different compartment of the code,
while fuzzing can help inside each program compartment such that symbolic
execution will not get stuck.

82 Y. Chen et al.

De-bloating: Specifically, in order to mitigate the problem of program feature
creep, de-bloating techniques have been proposed [6,19,20,29,39]. Yufei Jiang
et al. utilize program slicing and data analysis to identify the code that is related
to the target feature at source code lelve [20]. In particular, they discover and
delete code that has dependencies with its return value, parameter and call
site. Similarly, Jred [19] aims to remove unused methods in JAVA program and
libraries by analyzing the program call graph. It operates at IR level, i.e., the
JAVA bytecode is lifted into Soot IR. After trimming, IR is transformed into Java
bytecode to produce a light-weight program. CustomPro customizes program
binaries in a more automated way by identifying relevant packets.

Binary Reuse: Binary reusing refers to the line of works that aims to extract
useful components/functions from the program binaries through static and/or
dynamic analysis [35,46,47]. CPR [23] tries to reconstruct the program binaries
from dynamic instruction traces and memory dump, while Juan Caballero et al.
identify self-contained code fragment from binary with the help of both static
disassembling and dynamic execution monitoring. A chain of binary tools have
been widely used to analyze binary code for different purposes, such as binary
CFG analysis, vulnerability detection and binary rewriting. Specifically, binary
rewriting tools such as DynInst [33] and Pin [27] are able to perform binary
modification either statically or dynamically. In this paper, we employ DynInst
to perform basic-block modification of program features. In feature identifica-
tion module, we use TEMU [44] to emulate a system where the web servers
are launched then monitored. TEMU also contains a tainting plugin (“trace-
cap”) that can taint the instructions from network packets. Angr [32] is used
to perform symbolic execution together with the tainting information obtained
through tracecap.

10 Conclusion

We design and evaluate a binary customization framework, CustomPro, for cus-
tomizing network protocols. CustomPro aims to generate customized program
binaries with just-enough features and can satisfy a broad array of customization
requirements. Feature identification and feature rewriting are two major mod-
ules of CustomPro, for discovering the target features using program tracing
and tainting-based symbolic execution, and for modifying the program features
through binary instrumentation to obtain a customized program. Our exper-
iment results demonstrate that CustomPro is able to effectively achieve the
customization objectives in terms of obtaining an instrumented binary with the
necessary functionalities and reducing the corresponding attack surface.

Acknowledgment. We thank the reviewers for their valuable opinions. This work
was supported by the US Office of Naval Research (ONR) under Award N00014-17-1-
2786 and N00014-15-1-2210. Any opinions, findings, conclusions, or recommendations
expressed in this article are those of the authors, and do not necessarily reflect those
of ONR.

CustomPro: Network Protocol Customization 83

References

1. Bao, T., Burket J., Woo M., Turner R., Brumley, D.: Byteweight: learning to
recognize functions in binary code. USENIX, Byteweight (2014)

2. Basin, D., Cremers, C., Miyazaki, K., Radomirovic, S., Watanabe, D.: Improving
the security of cryptographic protocol standards. IEEE Secur. Priv. 13(3), 24–31
(2015)

3. Caballero, J., Johnson, N.M., McCamant, S., Song, D.: Binary code extraction and
interface identification for security applications. Technical report, CL University
Berkeley Department of Electrical Engineering and Computer Science (2009)

4. Caballero, J., Poosankam, P., Kreibich, C., Song, D.: Dispatcher: enabling active
botnet infiltration using automatic protocol reverse-engineering. In: Proceedings of
the 16th ACM Conference on Computer and Communications Security, pp. 621–
634. ACM (2009)

5. Chen, J., Venkataramani, G., Huang, H.H.: Repram: re-cycling pram faulty blocks
for extended lifetime. In IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN 2012), pp. 1–12. IEEE (2012)

6. Chen, Y., Lan, T., Venkataramani, G.: Damgate: dynamic adaptive multi-feature
gating in program binaries. In: Proceedings of the 2017 Workshop on Forming an
Ecosystem Around Software Transformation, pp. 23–29. ACM (2017)

7. Chen, Y., Sun, S., Lan, T., Venkataramani, G.: Toss: tailoring online server systems
through binary feature customization. In: Proceedings of the 2018 Workshop on
Forming an Ecosystem Around Software Transformation, pp. 1–7. ACM (2018)

8. Comparetti, P.M., Wondracek, G., Kruegel, C., Kirda, E.: Prospex: protocol spec-
ification extraction. In: 2009 30th IEEE Symposium on Security and Privacy, pp.
110–125. IEEE (2009)

9. Cui, W., Kannan, J., Wang, H.J.: Discoverer: automatic protocol reverse engineer-
ing from network traces. In: USENIX Security Symposium, pp. 1–14 (2007)

10. Doudalis, I., Clause, J., Venkataramani, G., Prvulovic, M., Orso, A.: Effective and
efficient memory protection using dynamic tainting. IEEE Trans. Comput. 61(1),
87–100 (2012)

11. Durumeric, Z., et al.: The matter of heartbleed. In: Proceedings of the 2014 Con-
ference on Internet Measurement Conference, pp. 475–488. ACM (2014)

12. Feng, B., Li, Q., Ji, Y., Guo, D., Meng, X.: Stopping the cyberattack in the early
stage: assessing the security risks of social network users. Secur. Commun. Netw.
2019, 14 (2019)

13. Gressin, S.: The equifax data breach: what to do (2017)
14. He, Y., Li, Q., Cao, J., Ji, Y., Guo, D.: Understanding socialbot behavior on end

hosts. Int. J. Distrib. Sensor Netw. 13(2), 1550147717694170 (2017)
15. Ji, Y., He, Y., Jiang, X., Li, Q.: Towards social botnet behavior detecting in the

end host. In: 2014 20th IEEE International Conference on Parallel and Distributed
Systems (ICPADS), pp. 320–327. IEEE (2014)

16. Ji, Y., He, Y., Li, Q., Guo, D.: Botcatch: a behavior and signature correlated bot
detection approach. In: 2013 IEEE 10th International Conference on High Perfor-
mance Computing and Communications & 2013 IEEE International Conference on
Embedded and Ubiquitous Computing (HPCC EUC), pp. 1634–1639. IEEE (2013)

17. Ji, Y., He, Y., Zhu, D., Li, Q., Guo, D.: A mulitiprocess mechanism of evading
behavior-based bot detection approaches. In: Huang, X., Zhou, J. (eds.) ISPEC
2014. LNCS, vol. 8434, pp. 75–89. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06320-1 7

https://doi.org/10.1007/978-3-319-06320-1_7
https://doi.org/10.1007/978-3-319-06320-1_7

84 Y. Chen et al.

18. Ji, Y., Li, Q., He, Y., Guo, D.: Botcatch: leveraging signature and behavior for bot
detection. Secur. Commun. Netw. 8(6), 952–969 (2015)

19. Jiang, Y., Wu, D., Liu, P.: Jred: program customization and bloatware mitiga-
tion based on static analysis. In: Computer Software and Applications Conference
(COMPSAC), 2016 IEEE 40th Annual, vol. 1, pp. 12–21. IEEE (2016)

20. Jiang, Y., Zhang, C., Wu, D., Liu, P.: Feature-based software customization: pre-
liminary analysis, formalization, and methods. In: 2016 IEEE 17th International
Symposium on High Assurance Systems Engineering (HASE), pp. 122–131. IEEE
(2016)

21. Khandelwal, S.: Over 199, 500 websites are still vulnerable to heartbleed openssl
bug (2017)

22. Kroes, T., et al.: Binrec: attack surface reduction through dynamic binary recovery.
In: Proceedings of the 2018 Workshop on Forming an Ecosystem Around Software
Transformation, pp. 8–13. ACM (2018)

23. Kwon, Y., Wang, W., Zheng, Y., Zhang, X., Xu, D.: Cpr: cross platform binary
code reuse via platform independent trace program. In: Proceedings of the 26th
ACM SIGSOFT International Symposium on Software Testing and Analysis, pp.
158–169. ACM (2017)

24. Li, Y., Yao, F., Lan, T., Venkataramani, G.: Sarre: semantics-aware rule recom-
mendation and enforcement for event paths on android. IEEE Trans. Inf. Forensics
Secur. 11(12), 2748–2762 (2016)

25. Lim, J., Reps, T., Liblit, B.: Extracting output formats from executables. In: 2006
13th Working Conference on Reverse Engineering, pp. 167–178. IEEE (2006)

26. Liu, X., Li, X., Prajapati, R., Wu, D.: Deepfuzz: automatic generation of syntax
valid c programs for fuzz testing. In: Proceedings of the AAAI Conference on
Artificial Intelligence (2019)

27. Luk, C.-K.: et al.: Pin: building customized program analysis tools with dynamic
instrumentation. In ACM SIGPLAN notices, vol. 40, pp. 190–200. ACM (2005)

28. Ming, J., Wu, D., Wang, J., Xiao, G., Peng, L.: Straighttaint: decoupled offline
symbolic taint analysis. In: 2016 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 308–319. IEEE (2016)

29. Mitchell, N., Sevitsky, G.: The causes of bloat, the limits of health. In: ACM
SIGPLAN Notices, vol. 42, pp. 245–260. ACM (2007)

30. Prandini, M., Ramilli, M.: Return-oriented programming. IEEE Secur. Priv. 10(6),
84–87 (2012)

31. Ramachandran, A., Mundada, Y., Tariq, M.B., Feamster, N.: Securing enterprise
networks using traffic tainting. Georgia Inst. Technol., Atlanta, GA, USA, Tech-
niocal Report GTCS-09-15 (2009)

32. Shoshitaishvili, Y., et al.: Sok: (state of) the art of war: offensive techniques in
binary analysis. In: 2016 IEEE Symposium on Security and Privacy (SP), pp.
138–157. IEEE (2016)

33. Open Source. Dyninst: an application program interface (api) for runtime code
generation. http://www.dyninst.org (2016)

34. Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J., Shoshi-
taishvili, Y., Kruegel, C., Vigna, G.: Driller: Augmenting fuzzing through selective
symbolic execution. NDSS 16, 1–16 (2016)

35. van der Veen, V., et al.: A tough call: mitigating advanced code-reuse attacks at
the binary level. In: 2016 IEEE Symposium on Security and Privacy (SP), pp.
934–953. IEEE (2016)

http://www.dyninst.org

CustomPro: Network Protocol Customization 85

36. Vanhoef, M., Piessens, F.: Key reinstallation attacks: forcing nonce reuse in wpa2.
In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 1313–1328. ACM (2017)

37. Venkataramani, G., Doudalis, I., Solihin, Y., Prvulovic, M.: Memtracker: an accel-
erator for memory debugging and monitoring. ACM Trans. Archit. Code Opti-
mization (TACO) 6(2), 5 (2009)

38. Wang, S., Wang, P., Wu, D.: Semantics-aware machine learning for function recog-
nition in binary code. In: 2017 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), pp. 388–398. IEEE (2017)

39. Xu, G., Mitchell, N., Arnold, M., Rountev, A., Sevitsky, G.: Software bloat analysis:
finding, removing, and preventing performance problems in modern large-scale
object-oriented applications. In: Proceedings of the FSE/SDP Workshop on Future
of Software Engineering Research, pp. 421–426. ACM (2010)

40. Xue, H., Chen, Y., Venkataramani, G., Lan, T., Jin, G., Li, J.: Morph: enhancing
system security through interactive customization of application and communica-
tion protocol features. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pp. 2315–2317. ACM (2018)

41. Xue, H., Chen, Y., Yao, F., Li, Y., Lan, T., Venkataramani, G.: SIMBER: elimi-
nating redundant memory bound checks via statistical inference. In: De Capitani
di Vimercati, S., Martinelli, F. (eds.) SEC 2017. IAICT, vol. 502, pp. 413–426.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58469-0 28

42. Yao, F., Li, Y., Chen, Y., Xue, H., Lan, T., Venkataramani, G.: Statsym: vulner-
able path discovery through statistics-guided symbolic execution. In: 2017 47th
Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), pp. 109–120. IEEE (2017)

43. Yao, F., Venkataramani, G., Doroslovački, M.: Covert timing channels exploiting
non-uniform memory access based architectures. In: Proceedings of the on Great
Lakes Symposium on VLSI 2017, pp. 155–160. ACM (2017)

44. Yin, H., Song, D.: Temu: The bitblaze dynamic analysis component (2008)
45. Zavou, A., Portokalidis, G., Keromytis, A.: Taint-exchange: a generic system for

cross-process and cross-host taint tracking. Adv. Inf. Comput. Secur. 7038, 113–
128 (2011)

46. Zeng, J., Fu, Y., Miller, K.A., Lin, Z., Zhang, X., Xu, D.: Obfuscation resilient
binary code reuse through trace-oriented programming. In: Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communications Security, pp. 487–498.
ACM (2013)

47. Zhang, P., Li, J., Skaletsky, A., Etzion, O.: Apparatus, system, and method of
dynamic binary translation with translation reuse, November 24 2009. US Patent
7,624,384

https://doi.org/10.1007/978-3-319-58469-0_28

Systematic Theory

On the Security of TRNGs Based
on Multiple Ring Oscillators

Xinying Wu1,2,3, Yuan Ma1,2,3, Jing Yang1,2,3, Tianyu Chen1,2(B),
and Jingqiang Lin1,2,3

1 Data Assurance and Communications Security Research Center,
Chinese Academy of Sciences, Beijing, China

2 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

3 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

{wuxinying,mayuan,yangjing,chentianyu,linjingqiang}@iie.ac.cn

Abstract. True random number generator (TRNG) is essential for the
implementation of cryptographic applications, such as digital signature
algorithms and security protocols. The quality of generated sequences
would directly influence the security of the cryptographic application.
Furthermore, in order to enhance the generation rate of random num-
bers, a TRNG based on multiple ring oscillators (ROs), i.e., MRO-TRNG
for short, has been proposed by Sunar et al. There exist potential risks
threatening the security of the MRO-TRNG, like pseudo-randomness and
phase interlock. For MRO-TRNG, experimental observation and statis-
tical test results have been well investigated. However, these methods
cannot distinguish the pseudo-randomness. The concept of entropy is
used to quantify the amount of randomness. As far as we know, there
is no entropy estimation method for MRO-TRNGs. In this regard, this
paper provides an entropy estimation method to analyze the security
of MRO-TRNG based on the method for oscillator-based TRNG, and
calculates a lower bound of entropy. The theoretical results are verified
through Matlab simulations and FPGA experiments. The conclusions
can further guide the setting of design parameters (i.e., number of ROs,
sampling frequency, etc.) to generate outputs with sufficient entropy.

Keywords: True random number generator · Multiple ring
oscillators · Entropy estimation · Pseudo-randomness

1 Introduction

Random number generator (RNG) is a fundamental security module for many
cryptographic systems. Its output, which is called random number, is often used
in cryptographic algorithms, security protocols, etc. Generally, RNGs can be
divided into two classes: true RNGs (TRNGs) and pseudo RNGs (PRNGs). In
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 89–107, 2019.

https://doi.org/10.1007/978-3-030-37231-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_5

90 X. Wu et al.

practice, a TRNG usually generates a short bit string (seed) as the input of
a PRNG, and the PRNG untilizes the seed to generate a long sequence by its
stretch function. It is therefore crucial to guarantee the security of TRNGs.

Oscillator-based TRNG is one of the most commonly used structures in gen-
erating random number, whose entropy source is jitter caused by circuit noise.
However, due to the small scale of the jitter within a signal period, conventional
sampling methods cannot efficiently collect sufficient amount of jitter accumula-
tion in a short time. In order to enhance the generation rate of random number,
Sunar et al. [13] proposed a generation structure with multiple ROs (multiple-
ROs) which increased the probability of sampling jitter events. In this paper,
this type of TRNG is referred to as MRO-TRNG.

Since MRO-TRNG was proposed, there have been controversies over its struc-
ture, though the generation rate of random numbers can be quite high (dozens
of Mbps or higher). The points are centered on two defects of the structure, the
pseudo-randomness and phase interlock phenomenon. Pseudo-randomness is, in
some situations, sequences generated by MRO-TRNG to exhibit statistical ran-
domness, even if there is no jitter in the design [3]. Phase interlock is a circuit
phenomenon between two or more ROs. They have nearly the same frequency
with their phase difference fixed (i.e., locked). The phase interlock degrades the
quality of the TRNG output [17]. The above indicated defects have been con-
firmed by simulation and hardware experiments. Bochard [3] discovered that
in the absence of jitter, more than 18 ROs with slightly different frequencies
can produce pseudo-random sequences, which are able to pass statistical tests
(NIST SP 800-22 [12] and FIPS 140-2 [11]). Yoo et al. [17] found that in the
hardware implementation, the oscillating signal of MRO-TRNG might have the
phase interlock phenomenon through the variation of the location of ROs. This
phenomenon can result in the randomness of the output sequence significantly
lower than expected. Bochard [3] observed phase interlock phenomenon when
the frequencies of ROs are close enough.

Therefore, the security evaluation of MRO-TRNG is a valuable issue. Statis-
tical test is a common method to assess the quality of the RNGs. The commonly
used statistical test suites include NIST SP 800-22 [12], NIST SP 800-90B [14],
FIPS 140-2 [11], DIEHARD [10] and TestU01 [7]. Statistical tests are black-box
tests. It assumes RNG is a black-box and evaluates the statistical properties of
the output sequences. However, applying only the black-box statistical tests can-
not assess the true randomness in the output of MRO-TRNG, and experimental
observation is not sufficient enough to analyze the security of the structure. As
the measurement of undeterministic behavior, entropy can be used to effectively
quantify the true randomness of a TRNG. The standards ISO 18031 [4] and the
AIS 31 [5] recommend guiding the design and testing of RNG by using entropy
estimation. The entropy estimation is based on a stochastic model that is estab-
lished for a specific TRNG structure. Compared with the statistical tests, the
entropy estimation is a white-box test which can avoid the influence of pseudo-
randomness.

On the security analysis of the MRO-TRNG, we propose an entropy estima-
tion method for calculating the entropy of the output produced by MRO-TRNG,

On the Security of TRNGs Based on Multiple Ring Oscillators 91

which provides a lower bound of (shannon) entropy. The proposed entropy esti-
mation has been verified through simulation. On the basis of this theoretical
method, we also implement a theoretically secure MRO-TRNG structure in
FPGA platform, and the entropy of output is sufficient.

In summary, we make the following contributions.

– We propose an entropy estimation method for MRO-TRNG structure to ana-
lyze the security of MRO-TRNG for the first time. The entropy estimation
method calculates a lower bound of entropy and minimum entropy. Even if
there exists pseudo-randomness, the generated sequence can be guaranteed
with sufficient true randomness according to our entropy estimation method.

– We verify the security of entropy estimation model through Matlab simu-
lation. Besides, we simulate jitter-free MRO-TRNG to analyse the pseudo-
randomness.

– In FPGA hardware platform, we implement a MRO-TRNG design. At a high
sampling frequency (nearly 10 MHz), the output sequence can always pass the
NIST SP 800-22 statistical test. However, according to the entropy estimation
method, only when the sampling frequency is no higher than 5 MHz, the
entropy of the output can be guaranteed no lower than 0.997.

This paper is organized as the follows. In Sect. 2, it is introduced the MRO-
TRNG structure. In Sect. 3, we describe the stochastic models for oscillator-
based TRNG. Also, the stochastic model for MRO-TRNG is proposed, which
can be employed to calculate the lower bound of entropy and minimum entropy.
In Sect. 4, we simulate the MRO-TRNG and compare the theoretical entropy
with the statistical entropy. In Sect. 5, we implement the structure in FPGA. In
Sect. 6, we conclude the paper.

2 Related Work

The traditional oscillator based sampling structure (i.e., oscillator-ed TRNG) is
designed based on a single RO. In this paper, this type of TRNG is called SRO-
TRNG for short. In SRO-TRNG, the sampling signal is generated by a slow
clock, while the sampled signal is generated by a fast oscillator. If the sampling
point is in the high level position of the oscillating signal, the output bit is
‘1’. If in the low level position, the output bit is ‘0’. The randomness of the
SRO-TRNG comes from the jitter caused by the circuit noise. The jitter of the
oscillating signal makes the position of the sampling point undetermined, thus
generating a random sequence. However, as the scale of the jitter generated by
the circuit noise is relatively small, the sufficient-entropy output cannot achieve
a high generation rate.

The probability of sampling the jitter can be increased by increasing the
number of the ROs. Inspired by the observation, Sunar et al. [13] presented a
TRNG design which consisted of a large number of ROs. The Fig. 1(a) shows the
MRO-TRNG proposed by Sunar, in which a series of equal length (i.e., stage)
ROs connect to an exclusive-OR (XOR) tree. The output signal of the XOR tree

92 X. Wu et al.

is sampled by a D flip-flop. In order to eliminate the bias of the random signal and
reduce the required number of ROs, the output signal of the D flip-flop is then
post-processed by a resilient function. According to experimental observation,
this implementation generates a random bit stream at 2.5 Mbps with a sampling
frequency of 40 MHz, using 114 ROs (13 inverters), and a resilient function. The
output sequence can pass the DIEHARD and NIST SP 800-22 statistical tests.

Wold et al. [16] analyzed and presented an enhancement of MRO-TRNG. The
enhancement structure adds an extra D flip-flop between each RO and the XOR
tree. This enhancement structure can significantly improve the performance of
MRO-TRNG, reducing the 114 ROs in the original design to 25 ROs. The output
sequence can pass the NIST SP 800-22 statistical test without post-processing,
and the sampling rate is up to 100 Mbps. The MRO-TRNG structure enhanced
by Wold et al. is shown in Fig. 1(b). Bochard et al. [3] compared the perfor-
mance of the two MRO-TRNGs. The simulation experiment found no difference
between the two structures. While, the experimental results on FPGAs were
quite different: the performance of the enhanced MRO-TRNG was much better.

MRO-TRNG can significantly improve the throughput rate. However, since
MRO-TRNG was proposed, there have been some controversies about the struc-
ture. Through the simulation and hardware experiments, two main problems are
found in MRO-TRNGs: pseudo-randomness and phase interlock.

Pseudo-randomness. Bochard et al. [3] simulated the jitter-free MRO-TRNG,
and the frequencies of ROs varied from 197.5 MHz to 202 MHz, in 250 KHz steps.
When the number of ROs is more than 18, the generated sequence can pass the
FIPS 140-2 and NIST SP 800-22 statistical tests. But it is obvious that the
structure contains no randomness. In response, Wold et al. [16] did the restart
experiment to prove there were true randomness in MRO-TRNG. They repeated
restarts of MRO-TRNG from the same reset state and observed the generated
sequence by capturing the random output using oscilloscope. The experiment
results showed that traces of captured sequence deviated from each other. The
restart experiment demonstrates that there are true-randomness in the struc-
ture, but it cannot confirm whether the entropy caused by true randomness is
sufficient.

Phase Interlock. Phase interlock may encounter in the hardware implemen-
tation of MRO-TRNG. Phase interlock is a circuit phenomenon between two
or more ROs. They have nearly the same frequency with their phase differ-
ence fixed (i.e., locked). The phase interlock degrades the performance of the
TRNG. Varchola [15] observed the phase interlock occurred when two ROs were
in circular layout, that is the ROs shared routing. Markettos et al. [9] proposed
the frequency injection attack on MRO-TRNG. The frequencies of the attacked
ROs can be interlocked, which made the randomness of the output significantly
decrease. Yoo et al. [17] studied the impact of the ROs’ location, and found that
phase interlock existed when two ROs were placed close and when one RO was
in the diagonal of the other RO. Then, they proposed to make the propagation

On the Security of TRNGs Based on Multiple Ring Oscillators 93

Fig. 1. The structures of MRO-TRNG

delays of oscillator output signals to the inputs of the XOR tree different. The
method can eliminate the effect of phase interlock, as it reduced the number of
unfilled urns.

3 Proposed Entropy Estimation Method

3.1 Notation and Definitions

Table 1 is the Parameters List. In MRO-TRNG, each RO is first sampled by
the D flip-flop and then the outputs are connected by the XOR tree. Each
part can be seen as an independent SRO-TRNG sampling process. For MRO-
TRNG structure, we give an entropy estimation method to calculate the lower
bound of entropy and analyze the security. For MRO-TRNG design, the entropy
estimation method can be a guidance to ensure security of the structure from a
theoretical perspective. In order to give a theoretical entropy, we provide several
propositions and formulas for probability and entropy of MRO-TRNG.

3.2 Entropy Estimation for SRO-TRNG

Baudet et al. [2] used an approach based on phase evolution to model the jitter
of the SRO-TRNG. From phase evolution of oscillating signal, they established
a stochastic model for SRO-TRNG. The phase ϕ of SRO-TRNG is considered as
one-dimensional Brownian motion. We assume that the phase evolution follows
the Wiener stochastic process (ϕ(t))t∈R with drift μ > 0 and volatility σ2 > 0.
In other words, conditioned on the values of t0, the phase of t0 + Δt follows a
Gaussian distribution with mean ϕ(0) + μ × Δt and variance σ2 × Δt.

94 X. Wu et al.

Table 1. Parameters List

Aspect Parameter Description

The parameters in the
aspect of time evolution

mx The mean of the half-period
of oscillating signal

s2x The variance of the
half-period oscillating signal

σt Time jitter, σt = sx/mx

The parameters in the
aspect of phase evolution

ϕ The phase

μ The mean of the phase,
μ = 1/2mx

σ2 The variance of the phase,
σ2 = s2x/4m3

x

Other parameters p1,x(t) The conditioned probability
of sampling ‘1’ at time t

Q Quality factor, Q = σ2Δt

Q The quality factors’ sum of
all ROs, Q =

∑n
i=1 Qi

Hlo Lower bound of entropy

HLp Precise lower bound of
entropy

HLa Approximate lower bound of
entropy

H∞ Minimum entropy

σ2
f The variance of frequency

For the sampling process, the value of the sampling bit s(t) of SRO-TRNG is
expressed as follows. That is to say, when the sampling point is in the high level
position of the oscillating signal, the output bit is ‘1’. In the low level position,
the output bit is ‘0’.

s(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, ϕ(t) mod 1 ∈ (0.5, 1)

0, ϕ(t) mod 1 ∈ (0, 0.5)

0.5, ϕ(t) mod 1 ∈ {0, 0.5}
For SRO-TRNG, the probability of sampling ‘1’ at time t ≥ 0 conditioned

on the phase at time 0 follows [2]

p1,x(t) =
1
2

− 2
π

+∞∑

N=0

sin(2π(μt + x)(2N + 1))
2N + 1

e−2π2σ2t(2N+1)2 .

Min-entropy or lower bound of entropy is the most conservative measurement
of entropy, and is useful in determining entropy of a TRNG in the worst case.

On the Security of TRNGs Based on Multiple Ring Oscillators 95

In the aspect of entropy calculating complexity, min-entropy or a lower bound has
considerable advantages for dependent stochastic process, as only the probability
in the worst case is involved. The methods for calculating a lower bound of
entropy of oscillator-based TRNG are presented in [2,6].

The calculation expression of the lower bound [6], which is denoted as Hlo,
was presented as

H(Bi|Bi−1, . . . , B1) ≥ Hlo = H(Bi|Wi−1) ≈
∫ s

0

H(R(s−u) mod 2)PW (du),

where Bi is the ith sampling bit and R(s−u) represents the number of crossing
edges in the duration of (s−u). The idea is inspired by the fact that the waiting
time Wi tells more information about Bi+1 than all the previous bits. Following
the similar idea, [2] also provides an analytical expression for Hlo:

Hlo = 1 − 4
π2 ln(2)

e−4π2Q + O(e−6π2Q).

3.3 Probability Calculation for MRO-TRNG

We make the assumption that ROs in MRO-TRNG are independent. The math-
ematic model and simulation performance of Sunar’s structure are the same as
those of Wold’s structure. Therefore, when modeling the stochastic behavior, we
do not distinguish these two structures.

The sampling bit si(t) of SRO-TRNG is connected to the XOR tree to gen-
erate the output bit of MRO-TRNG. Therefore, the value of the output bit g(t)
can be expressed as follows, where n is the number of ROs.

g(t) =

⎧
⎨

⎩

1, for s1(t), ..., sn(t) the number of ‘1’ is odd

0, for s1(t), ..., sn(t) the number of ‘1’ is even

Conditioned on the phase at time 0, we give the probability of single-bit.

Proposition 1. For MRO-TRNG, the phase at time 0 of n ROs are
x1, x2, ..., xn respectively, the probability of sampling ‘1’ at time t ≥ 0 condi-
tioned on the phase at time 0 follows

P [(s(t) = 1)|ϕ(0) = (x1, x2, ..., xn)]

=
1
2

− 22n−1

πn

n∏

i=1

+∞∑

N=0

sin(2π(μit + xi)(2N + 1))
2N + 1

e−2π2σi
2t(2N+1)2 .

Proof. We use the mathematical induction to prove the proposition. The ROs
are independent, and the oscillating signal generated by each RO connect to an
XOR tree. So when n = 2, we have

96 X. Wu et al.

p1,(x1,x2)(t) = p1,x1(t) × p0,x2(t) + p0,x1(t) × p1,x2(t)

=
1
2
− 8

π2

+∞∑

N=0

sin(2π(μ1t + x1)(2N + 1))
2N + 1

e−2π2σ1
2t(2N+1)2

+∞∑

N=0

sin(2π(μ2t + x2)(2N + 1))
2N + 1

e−2π2σ2
2t(2N+1)2 .

Assuming that the proposition holds for parameter n − 1, for parameter n,

p1,(x1,x2,...,xn)(t) = p1,(x1,x2,...,xn−1)(t) × p0,xn(t) + p0,(x1,x2,...,xn−1)(t) × p1,xn(t)

=
1

2
− 22n−1

πn

n∏

i=1

+∞∑

N=0

sin(2π(μit + xi)(2N + 1))

2N + 1
e−2π2σi

2t(2N+1)2 .

3.4 Lower Bound of Minimum Entropy for MRO-TRNG

Proposition 2. For MRO-TRNG, the phase at time 0 of n ROs are
x1, x2, ..., xn respectively, the maximum probability of single-bit at time t ≥ 0
is

f(x1, x2, ..., xn) = Pmax[(s(t) = 1)|ϕ(0) = (x1, x2, ..., xn)]

= max{p1,(x1,x2,...,xn)(t), p0,(x1,x2,...,xn)(t)}

=
1

2
+

22n−1

πn
|(

n∏

i=1

+∞∑

N=0

sin(2π(μit + xi)(2N + 1))

2N + 1
e−2π2σi

2t(2N+1)2)|.

Based on the maximum probability of single-bit obtained in Proposition 2, we
calculate the conditional minimum entropy. As we show in the Appendix, the
minimum entropy of the sequence is greater than or equal to the conditional
minimum entropy. Then we can get the lower bound of the minimum entropy.

Proposition 3. Let H∞(s(t)|ϕ(0)) =
∫ 1

0
...

∫ 1

0
H∞(s(t)|ϕ(0) = (x1, x2, ..., xn))

dx1...dxn denote the average conditional minimum entropy of s(t) with respect to
ϕ(0), it is well known the definition of minimum entropy is H∞ = −log2(Pmax)
[14] Pmax is the maximum probability of single-bit, then by definition,

H∞(s(Δt)|ϕ(0) = (x1, x2, ..., xn)) = −log2Pmax[(s(t) = 1)|ϕ(0) = (x1, x2, ..., xn)].

We can get the lower bound of minimum entropy for MRO-TRNG

H∞(s(Δt)) ≥ H∞(s(Δt)|ϕ(0))

=
∫ 1

0

...

∫ 1

0

(1 − 1
ln2

ε +
1

2ln2
ε2 − − 1

3ln2
ε3 +)dx1dx2...dxn,

where

ε =
22n

πn
|(

n∏

i=1

+∞∑

N=0

sin(2π(μit + xi)(2N + 1))
2N + 1

e−2π2σi
2t(2N+1)2)|.

On the Security of TRNGs Based on Multiple Ring Oscillators 97

3.5 Lower Bound of Entropy for MRO-TRNG

Based on the probability of single-bit obtained in Proposition 1, we give a con-
ditional entropy and calculate a lower bound of entropy.

Proposition 4. Let H(s(Δt)|ϕ(0)) =
∫ 1

0
...

∫ 1

0
H(s(Δt)|ϕ(0) = (x1, x2, ..., xn))

dx1...dxn denote the average conditional entropy of s(Δt) with respect to ϕ(0).
We can get a lower bound of entropy for MRO-TRNG based on the entropy of
s(Δt) conditioned on ϕ(0),

H > H((s(Δt) = 1)|ϕ(0)) = 1 − 23n−1

π2n ln 2
e−4π2Q − 25n−23n−1

ln 2π4n
e−8π2Q + O(e−12π2Q),

(1)
where Q =

∑n
i=1 Qi denotes the quality factors’ sum of all ROs.

Proof. According to the definition, the conditional entropy is

H((s(Δt) = 1)|ϕ(0) = x1, x2, ..., xn) = −plog2(p) − (1 − p)log2(1 − p),

where p = P [(s(Δt) = 1)|ϕ(0) = x1, x2, ..., xn].
Let

ε = 2P [s(Δt) = 1|ϕ(0) = (x1, x2,)] − 1,

then, we have

H((s(Δt) = 1)|ϕ(0) = x1, x2, ..., xn) = 1 − 1 + ε

2
log2(1 + ε) − 1 − ε

2
log2(1 − ε)

= 1 − ε2

2 ln(2)
− ε4

12 ln(2)
− ε6

30 ln(2)
− ...

For arbitrarily μit,
∫ 1

0

sin2(2π(μit + xi)dxi =
1
2

∫ 1

0

sin4(2π(μit + xi)dxi =
3
8

So, the first item of H(s(Δt)|ϕ(0)) is
∫ 1

0

...

∫ 1

0

ε2

2 ln(2)
dx1...dxn

=
24n−1

π2n ln 2

∫ 1

0

...

∫ 1

0

n∏

i=1

+∞∑

N=0

sin(2π(μit + xi)(2N + 1))
2N + 1

e−2π2(2N+1)2Qidx1...dxn

=
24n−1

π2n ln 2

n∏

i=1

∫ 1

0

...

∫ 1

0

(sin2(2π(μit + xi))e−4π2Qi + O(e−18π2Qi))dx1...dxn

=
24n−1

π2n ln 2
(
1
2
)ne−4π2Q + O(e−18π2Qi)

=
23n−1

π2n ln 2
e−4π2Q + O(e−18π2Qi).

98 X. Wu et al.

Second item of H is
∫ 1

0

...

∫ 1

0

ε4

12 ln(2)
dx1...dxn

=
28n−2

3 ln 2π4n

∫ 1

0

...

∫ 1

0

n∏

i=1

sin4(2π(μit + xi)(2N + 1))
2N + 1

e−8π2(2N+1)2Qidx1...dxn

=
28n−2

3 ln 2π4n

∫ 1

0

...

∫ 1

0

(sin4(2π(μit + xi))e−8π2Qi + O(e−36π2Qi))dx1...dxn

=
28n−2

3 ln 2π4n
(
3
8
)ne−8π2Q + O(e−36π2Qi)

=
25n−23n−1

ln 2π4n
e−8π2Q + O(e−36π2Qi).

The entropy of the sequence is greater than or equal to the conditional
entropy [2]. A lower bound of entropy can be stated based on the entropy of
s(Δt) conditioned on ϕ (0).

H > H((s(Δt) = 1)|ϕ(0)) = 1 − 23n−1

π2n ln 2
e−4π2Q − 25n−23n−1

π4n ln 2
e−8π2Q + O(e−12π2Q).

3.6 Approximate Lower Bound of Entropy

We state the approximate lower bound of entropy as

HLa = 1 − 23n−1

π2n ln 2
e−4π2Q − 25n−23n−1

π4n ln 2
e−8π2Q. (2)

We give the comparison of approximate lower bound of entropy HLa and
precise lower bound of entropy HLp, when number of ROs n varies from 25 to
50. The sum of quality factors Q varies from 0.02 to 0.1. The quality factor of
every SRO-TRNG is the same. HLp is calculated based on Eq. (1) in Sect. 3.5,
and HLa is calculated by Eq. (2). Figure 2 shows the comparison.

In Fig. 2, with Q increasing, the difference value decreases to zero. For 25-
ROs and 30-ROs, when Q ≥ 0.03. the deviation is lower than 10−4. That is,
when n ≤ 30 and Q ≥ 0.03, in calculation, the HLa can replace the HLp.

When n ≥ 30 and Q > 0.035, the deviation is lower than 10−3, the HLa can
be a replacement of the HLp in practice.

So when the number of ROs is less than 60, and Q is less than 0.035, HLa

can be used to replace the HLp in order to simplify the calculation.

3.7 Security Design Parameters

Based on the lower bound of entropy calculated in Proposition 4, we can get
the security design parameters (e.g., sampling frequency or quality factor) for
MRO-TRNG.

On the Security of TRNGs Based on Multiple Ring Oscillators 99

Fig. 2. The difference values between approximate entropy and precise entropy

Corollary 1. This is a corollary of Proposition 4. The expression of quality fac-
tor Q based on the number of ROs n and entropy H as follows

Q =
−1
4π2

ln(
π4n ln 2

25n−13n−1
(− 23n−1

π2n ln 2
+

√

(
23n−1

π2n ln 2
)
2

− 4
25n−23n−1

π4n ln 2
(H − 1))).

The proof is omitted.
When the frequencies of ROs are around 200 MHz and standard deviation of

time jitter is 1% of the half-period, we set H > 0.9971, and get the security sam-
pling frequency fs and quality factor Q. Table 2 shows some security sampling
parameters (quality factor and sampling frequency). Figure 3 shows the result
with different RO numbers.

Table 2. Security sampling parameters

Number of ROs Security quality factor Security sampling frequency

10 0.0866 1.1543

20 0.0513 3.9023

30 0.0423 7.0921

40 0.0395 10.1249

50 0.0375 13.3207

1 AIS 31 [5] gives the rule that entropy per bit greater than 0.997 can be seen as
sufficient-entropy.

100 X. Wu et al.

Fig. 3. Security sampling parameters

4 Simulation Verification

In this section, we carry out several Matlab simulations of MRO-TRNG to ver-
ify the entropy estimation method. In Propositions 3 and 4, we calculate a lower
bound of entropy and minimum entropy. In practice, when the sampled fre-
quency is the integral multiples of sampling frequency (that is the fractional
part of Δt/mx is zero), the output quality of TRNG is worst [1,2,8]. We simu-
late the worst case situation and compare the simulation results with the theo-
retical entropy. Moreover, we simulate a jitter-free situation to discuss pseudo-
randomness in MRO-TRNG.

We simulate random sequences generation with the varied parameters (i.e.,
number of ROs, sampling frequency). We use the entropy estimators included in
NIST SP 800-90B which is published on January 2018 [14], to estimate the min-
entropy of the generated sequence. The estimation process is mainly divided into
three steps as follows. The first step is to determine the track for estimation, and
there are two different tracks to estimate the entropy, an IID track and a non-
IID track. The second step is to estimate entropy by IID track or non-IID track.
The final step is to apply restart tests and give the entropy estimate. Besides,
for the random sequences generated by Matlab simulations, we calculate the
approximate entropy. The approximate entropy is calculated by the approximate
entropy randomness test in the NIST SP 800-22 statistical test suite [12].

The output of each sample simulation is 1Mb data, and for every parameter,
experiment is repeated ten times. For the ten output sequences, we use SP
800-90B to get the sequences’ minimum entropy respectively and calculate the
average of the ten obtained minimum entropy as the final simulation minimum
entropy. Besides, we use approximate entropy randomness test in the NIST SP
800-22 statistical test suite to get the approximate entropy.

4.1 Verification of the Worst Case

In Sect. 3, we give a entropy estimation method. In this section, we simulate the
case when the sampled frequency is the integral multiples of sampling frequency,

On the Security of TRNGs Based on Multiple Ring Oscillators 101

which is the worst case. The minimum entropy of generated sequences is com-
pared with the theoretical lower bound of minimum entropy. The approximate
entropy is compared with the theoretical lower bound of entropy.

The theoretical entropy estimation method is based on phase jitter, which
is true randomness. However, besides jitter, same factors may make the gener-
ated sequences look like randomness which is pseudo-randomness. We set the
frequencies of the ROs in MRO-TRNG the same. For the impact of different
frequencies, we research in Sect. 4.2.

Parameter Setting. The frequencies of the ROs are set as 200 MHz, the size
of the time jitter is 1%, so σ2 = s2

x

4m3
x

= 0.01. The number of ROs is from 5 to
30, and the sampling frequencies fs are in the interval [2 MHz, 20 MHz]. The
simulation sequences generated by MRO-TRNG are calculated using SP 800-90B
mentioned above to get the simulation minimum entropy and using approximate
entropy randomness test to get approximate entropy.

0 5 10 150.2

0.4

0.6

0.8

1

Sampling Frequency (MHz)

E
n

tr
o

p
y

Theoretical Entropy of case n=10
Theoretical Entropy of case n=15
Theoretical Entropy of case n=20

(a) Comparison of 5-ROs,10-ROs,15-
ROs and 20-ROs

0 5 10 150.5

0.6

0.7

0.8

0.9

1

Sampling Frequency (MHz)

E
n

tr
o

p
y

Theoretical Entropy of case n=20
Theoretical Entropy of case n=25
Theoretical Entropy of case n=30
Simulation Entropy of case n=20
Simulation Entropy of case n=25
Simulation Entropy of case n=30

(b) Comparison of 20-ROs,25-ROs and
30-ROs

Fig. 4. Comparison of the theoretical minimum entropy and the simulation minimum
entropy with the sampling frequency and the number of ROs varied, line denotes the
theoretical lower bound of minimum entropy and point denotes simulation minimum
entropy.

Results and Analysis. Figures 4 and 5 show the comparison of theoretical and
simulation entropy. Figure 5 is the entropy, while Fig. 4 is the minimum entropy.

The formula obtained by Proposition 3 is used to calculate the theoretical
lower bound of minimum entropy. We compare the theoretical lower bound of
minimum entropy with the simulation minimum entropy obtained by SP 800-
90B. When the number of ROs varies from 5 to 30, the trend of the entropy is
similar. In Fig. 4, we show the comparison of theoretical entropy and simulation
minimum entropy. Line denotes the theoretical lower bound of minimum entropy
and point denotes simulation minimum entropy.

102 X. Wu et al.

In Fig. 4(a), when the minimum entropy is less than 0.4, there is a distance
between simulation minimum entropy and theoretical minimum entropy. When
minimum entropy is less than 0.4, the result of SP 800-90B may not accurate.
Except these points, the simulation minimum entropy and the theoretical min-
imum entropy are basically correspondence. The comparison verifies the model
obtained in Proposition 3 and the probability in Proposition 1. We give the def-
inition of the frequency ratio as the ratio of the sampled frequency and the
sampling frequency, that is f/fs. We can see from Fig. 4 that the greater the
frequency ratio, the greater the minimum entropy, when the number of ROs is
constant. With the same sampling frequency, the greater the number of ROs,
the greater the minimum entropy.

In Fig. 5, we show the comparison of theoretical entropy and simulation
approximate entropy. Line denotes the theoretical lower bound of entropy and
point denotes simulation approximate entropy. They have the same trend and
the theoretical value is lower than simulation entropy. This is because the theo-
retical value is a lower bound of entropy.

0 5 10 15 20

0.7

0.8

0.9

1

Sampling Frequency (MHz)

E
n

tr
o

p
y

Theoretical Entropyn of case n=10
Theoretical Entropy of case n=15
Theoretical Entropy of case n=20

(a) Comparison of 5-ROs,10-ROs,15-
ROs and 20-ROs

0 5 10 15 200.9

0.92

0.94

0.96

0.98

1

Sampling Frequency (MHz)

E
n

tr
o

p
y

Theoretical Entropy of case n=20
Theoretical Entropy of case n=25
Theoretical Entropy of case n=30
Simulation Entropy of case n=20
Simulation Entropy of case n=25
Simulation Entropy of case n=30

(b) Comparison of 20-ROs,25-ROs and
30-ROs

Fig. 5. Comparison of the theoretical entropy and the simulation entropy with the
sampling frequency and the number of ROs varied, line denotes the theoretical lower
bound of entropy and point denotes simulation approximate entropy.

4.2 MRO-TRNG with Jitter-Free

In Proposition 4, we calculate a theoretical lower bound of entropy using the
size of the jitter. However, some other factors may cause the generated sequence
to look like randomness. This part, we simulate MRO-TRNG to research the
impact generated by different frequencies. We carried out the experiment without
involving the jitter when the frequencies of MRO-TRNG are slightly different.

ParameterSetting. The frequencies ofMRO-TRNGare setted to follow aGaus-
sian distribution, with drift μ = 200 MHz and volatility σ2

f = 10.The sampling

On the Security of TRNGs Based on Multiple Ring Oscillators 103

Table 3. The simulation minimum entropy of MRO-TRNG with jitter-free

Sampling frequency fs n = 20, H∞ n = 25, H∞ n = 30, H∞

2 MHz 0.994846 0.994577 0.995309

6 MHz 0.994291 0.995198 0.995249

10 MHz 0.994815 0.99415 0.994905

14 MHz 0.994704 0.99487 0.995194

18 MHz 0.99483 0.994737 0.994716

frequencies fs are setted from 2 MHz to 20 MHz. The number of ROs is varied
from 5 to 30. The generated sequences are estimated by SP 800-90B.

Results and Analysis. For the generated sequences, we calculate the simula-
tion minimum entropy using the method mentioned above. For 20-ROs, 25-ROs
and 30-ROs, the results are shown in Table 3. As the Table 3 shows, though the
size of the jitter is zero, the simulation minimum entropy which is supposed to be
zero reach up to 0.99. Compared with the simulation minimum entropy obtained
in Sect. 4.1, the simulation minimum entropy in Table 3 is much greater than the
corresponding value in Sect. 4.1.

For the number of ROs from 5 to 14, Fig. 6 shows the result. In Fig. 6(a),
when the number of ROs is constant, the minimum entropy has little change with
the variation of sampling frequency. With the number of ROs increasing, the
minimum entropy increases. The pseudo-randomness is brought by the different
frequencies. Figure 6(b) shows when the number of ROs is 14, the simulation
minimum entropy of MRO-TRNG can reach up to 0.99. When the number of
ROs is more than 19, the output sequences can pass FIPS 140-2 and NIST SP
800-22 statistical tests.

0 5 10 15 200.4

0.6

0.8

1

Sampling Frequency (MHz)

M
in

im
um

 E
nt

ro
py

 5 ROs
 6 ROs
 7 ROs
 8 ROs
 9 ROs
 14 ROs

(a) The simulation minimum entropy of 5-ROs to
14-ROs

4 6 8 10 12 140.4

0.6

0.8

1

Number of rings (n)

M
in

im
u

m
 E

n
tr

o
p

y 0.9941257 / bit

(b) The change trend of minimum
entropy with the number of ROs
varied

Fig. 6. The simulation minimum entropy of MRO-TRNG without jitter

104 X. Wu et al.

5 Hardware Verification on FPGA

In this part, we propose advices on MRO-TRNG design and implement MRO-
TRNG on Xilinx Spartan-6 FPGA to verify the entropy estimation model. In
order to guarantee the true-randomness of the generated sequences, we propose
advices from the aspect of entropy. In Sect. 3.5, Proposition 4 gives the formula of
a lower bound of entropy. The combination of theoretical formula and sufficient-
entropy condition can be a guidance of MRO-TRNG design. We implement the
MRO-TRNG design and verify the stochastic model. Besides, in the design, we
take measures to avoid phase interlock phenomenon.

5.1 Phase Interlock

As mentioned above, the phase interlock can cause a sharply decrease in entropy
and affect the performance of TRNG. Interlock phenomenon shall be considered
in the design. We can avoid interlock from two aspects, RO layout and frequency.
Some scholars have studied the reasons from the aspect of RO layout. The phase
interlock occurs, when sharing routing brings mutual interference (e.g., circular
layout [15]). When two ROs place close and when one RO is in the diagonal of
the other RO [17], phase interlock may occur.

In hardware implementation, we avoid the above RO layout. Besides, we
make the inverters placement different to disperse the frequencies.

We tap out the signal from each RO to I/O-pins on the FPGA. We mea-
sure the signal with oscilloscope to observe the waveforms of two ROs to judge
whether there is phase interlock. We observe each two of all the ROs. The wave-
forms are approximately the same tendency. The Fig. 7 shows one situation. In
Fig. 7, the oscilloscope only captures the waveform of one RO. Thus the fre-
quency of the other RO is different from the captured RO. The two ROs are
uninterlocked. We observe the waveforms of each two ROs, and we find there
are no interlocked ROs in our design.

5.2 Verification

Based on the entropy estimation method, we implement a MRO-TRNG in the
FPGA platform. We implement the MRO-TRNG structure of Wold’s (shown in
Fig. 1(b)). The number of ROs is 30 and each RO is connected by 5 inverters.

We use Aglilent logic analyzer to collect the generated sequences, and the gen-
erated sequences are tested by statistical tests. We use SP 800-90B to estimate
the minimum entropy. When the sampling frequency is 10 MHz, the minimum
entropy is 0.995073. When the sampling frequency is lower than 10 MHz, the
generated sequence can pass NIST SP 800-22.

We observe the standard deviation of half-period is 21.6 ps. Then we can
calculate the time jitter σt = 3.8‰. Thus, based on the formula obtained in
Proposition 4, we can get the security parameter for design. The security sam-
pling frequency is 5.1429 MHz, that is when we set the sampling frequency as
5 MHz, the generated sequences are sufficient-entropy.

On the Security of TRNGs Based on Multiple Ring Oscillators 105

Fig. 7. Oscilloscope screenshot of two ROs waveforms, the two ROs are not interlocked.

In experimental observation, when the sampling frequency is lower than
10 MHz, the generated sequence can always pass NIST SP 800-22. However,
in theory, when the sampling frequency is lower than 5 MHz, we can prove the
generated sequence is sufficient-entropy. In MRO-TRNG design, we advice using
the parameters based on theory model rather than the parameters based on sta-
tistical tests.

6 Conclusion

In this paper, we study the security of MRO-TRNG from the perspective of
entropy and establish stochastic model. We give an entropy estimation method,
which calculates a lower bound of entropy. We verify the correctness of the the-
ory by performing experiments on the worst case. We simulate jitter-free MRO-
TRNG to analyze the pseudo-randomness. MRO-TRNG without jitter can pass
statistical tests, when the number of ROs is more than 19. The entropy estima-
tion results can be used as the guidance for MRO-TRNG design to ensure the
entropy is sufficient even if there exists pseudo-randomness. In FPGA hardware
platform, we implement a MRO-TRNG design. At a high sampling frequency
(nearly 10 MHz), the output sequence can always pass the NIST SP 800-22 sta-
tistical test. However, according to the entropy estimation method, only when
the sampling frequency is no higher than 5 MHz, the entropy of the output can
be guaranteed no lower than 0.997.

Acknowledgments. This work was partially supported by National Natural Sci-
ence Foundation of China (No. 61602476, No. 61772518, No. 61872357 and No.
61802396), Cryptography Development Foundation of China (No. MMJJ20170205,
MMJJ20180113), and Special Foundation for Industrial Transformation and Upgrading
(Departmental Budget, No. 0714-EMTC-02-00577).

106 X. Wu et al.

A Appendix

In this section, we give the mathematical proof of Proposition 3.
Let

ε = 2Pmax[s(t) = 1|ϕ(0) = (x1, x2,)] − 1,

then we can get

H∞(s(Δt)|ϕ(0) = (x1, x2,)) = −log2Pmax[s(t) = 1|ϕ(0) = (x1, x2,)]

= −log2(
ε + 1

2
) = 1 − 1

ln2
ε +

1
2ln2

ε2 − − 1
3ln2

ε3 +

We give the relationship between the maximum probability value of the joint
distribution and the product of the maximum probability values of the marginal
and conditional.

P (AB) = P (A|B) × P (B) ,

Pmax (AB) = max {P ((AB)1) , P ((AB)2) , . . .} ≥ P ((AB)i) ,

P ((AB)i) = P ((A|B)i) × P (Bi) ,

Pmax (A|B) = max {P ((A|B)1) , P ((A|B)2) , . . .} ≥ P ((A|B)i) ,

Pmax (B) = max {P (B1) , P (B2) , . . .} ≥ P (Bi) ,

Pmax (AB) = P ((A|B)i) × P (Bi) ≤ Pmax (B) × Pmax (A|B) .

Hence,

Pmax(s(Δt), ϕ(0) = (x1, x2,)) ≤ Pmax(s(Δt)|ϕ(0) = (x1, x2,))
× Pmax(ϕ(0) = (x1, x2,)).

H∞ = −log2(Pmax), then we can get

H∞(s(Δt), ϕ(0) = (x1, x2,)) ≥ H∞(s(Δt)|ϕ(0) = (x1, x2,))
+ H∞(ϕ(0) = (x1, x2,)),

where

H∞(ϕ(0) = (x1, x2,)) = −log2(Pmax(ϕ(0) = (x1, x2,))) ≥ 0.

Thus, we have

H∞(s(Δt), ϕ(0) = (x1, x2,)) ≥ H∞(s(Δt)|ϕ(0) = (x1, x2,)),
H∞(s(Δt)) ≥ H∞(s(Δt)|ϕ(0)).

References

1. Amaki, T., Hashimoto, M., Mitsuyama, Y., Onoye, T.: A worst-case-aware design
methodology for noise-tolerant oscillator-based true random number generator
with stochastic behavior modeling. IEEE Trans. Inf. Forensics Secur. 8(8), 1331–
1342 (2013)

On the Security of TRNGs Based on Multiple Ring Oscillators 107

2. Baudet, M., Lubicz, D., Micolod, J., Tassiaux, A.: On the security of oscillator-
based random number generators. J. Cryptol. 24(2), 398–425 (2011)

3. Bochard, N., Bernard, F., Fischer, V., Valtchanov, B.: True-randomness and
pseudo-randomness in ring oscillator-based true random number generators. Int.
J. Reconfig. Comput. 2010, 879281:1–879281:13 (2010)

4. ISO/IEC JTC 1/SC 27, Berlin, Germany: Information Technology - Security Tech-
niques - Random Bit Generation (2011)

5. Killmann, W., Schindler, W.: AIS 31: Functionality Classes and Evaluation
Methodology for True (Physical) Random Number Generators. Version 3.1. T-
Systems GEI GmbH and Bundesamt für Sicherheit in der Informationstechnik
(BSI), Bonn, Germany (2001)

6. Killmann, W., Schindler, W.: A design for a physical RNG with robust entropy
estimators. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp.
146–163. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-
3 10

7. L’Ecuyer, P., Simard, R.: TestU01: AC library for empirical testing of random
number generators. ACM Trans. Math. Softw. (TOMS) 33(4), 22 (2007)

8. Ma, Y., Lin, J., Chen, T., Xu, C., Liu, Z., Jing, J.: Entropy evaluation for oscillator-
based true random number generators. In: Batina, L., Robshaw, M. (eds.) CHES
2014. LNCS, vol. 8731, pp. 544–561. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44709-3 30

9. Markettos, A.T., Moore, S.W.: The frequency injection attack on ring-oscillator-
based true random number generators. In: Clavier, C., Gaj, K. (eds.) CHES 2009.
LNCS, vol. 5747, pp. 317–331. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04138-9 23

10. Marsaglia, G.: Diehard battery of tests of randomness (1995). http://www.stat.
fsu.edu/pub/diehard

11. PUB, NIST FIPS: 140-2: Security Requirements for Cryptographic Modules. Wash-
ington, DC, USA (2001)

12. Rukhin, A., Soto, J., Nechvatal, J., et al.: A Statistical Suite for Random and
Pseudorandom Number Generators for Cryptographic Applications, April 2010.
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf

13. Sunar, B., Martin, W.J., Stinson, D.R.: A provably secure true random number
generator with built-in tolerance to active attacks. IEEE Trans. Comput. 56(1),
109–119 (2007)

14. Turan, M.S., Barker, E., Kelsey, J., McKay, K., Baish, M., Boyle, M.: NIST special
publication 800-90B: Recommendation for the entropy sources used for random bit
generation, January 2018. http://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-90B.pdf

15. Varchola, M.: FPGA based true random number generators for embedded crypto-
graphic applications (2008)

16. Wold, K., Tan, C.H.: Analysis and enhancement of random number generator
in FPGA based on oscillator rings. Int. J. Reconfig. Comput. 2009, 501672:1–
501672:8 (2009)

17. Yoo, S., Karakoyunlu, D., Birand, B., Sunar, B.: Improving the robustness of ring
oscillator TRNGs. TRETS 3(2), 9:1–9:30 (2010)

https://doi.org/10.1007/978-3-540-85053-3_10
https://doi.org/10.1007/978-3-540-85053-3_10
https://doi.org/10.1007/978-3-662-44709-3_30
https://doi.org/10.1007/978-3-662-44709-3_30
https://doi.org/10.1007/978-3-642-04138-9_23
https://doi.org/10.1007/978-3-642-04138-9_23
http://www.stat.fsu.edu/pub/diehard
http://www.stat.fsu.edu/pub/diehard
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf

Secrecy on a Gaussian
Relay-Eavesdropper Channel

with a Trusted Relay

Keke Hu1,2(B), Xiaohui Zhang1,2, and Yongming Wang1,2

1 Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, China

{hukeke,zhangxiaohui,wangyongming}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing 100049, China

Abstract. Security is a crucial aspect in nowadays wireless communi-
cation systems. The open nature of wireless makes the communications
more vulnerable to eavesdropping, which leads to that the physical layer
security (information theoretic secrecy) is becoming attractive due to its
relying on the characteristics of the transmission medium. In this paper,
we study the secrecy on a gaussian relay-eavesdropper channel with a
trusted relay, which is assumed to be able to decode and encode wiretap
codes. We discuss several cooperative strategies to guarantee the infor-
mation secrecy in some cases and bound the corresponding secrecy rate.
Also, we derive a cut-set-like upper bound on the secrecy capacity for
our scenario. The relative proofs are also presented in this paper.

Keywords: Physical layer security · Information theoretic secrecy ·
Shannon’s cipher system · Cooperation · Relay

1 Introduction

Due to the ease of accessibility, nowadays wireless communication is inher-
ent vulnerable to eavesdropping. Accordingly, relevant security approaches are
proposed to guarantee the information secrecy during the wireless transmis-
sion. Recently, physical layer security, known as information theoretic secrecy, is
becoming attractive due to its independence of any computational assumptions
on eavesdroppers. Information theoretic secrecy is first introduced by Shannon
in his seminal work [14], where he demonstrates that the perfect secrecy can
be achieved via ciphering if the entropy of the key shared between the sender
and the receiver is greater than or equal to the entropy of the desired message.
In [15], Wyner introduces a degraded wiretap channel and proves that informa-
tion secrecy can be guaranteed via using wiretap codes instead of secret keys.

This work was supported by the Research of Key Technologies of Global Multimedia
Constellation System under Grant No. 17DZ1100700.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 108–125, 2019.

https://doi.org/10.1007/978-3-030-37231-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_6

Secrecy on a Gaussian Relay-Eavesdropper Channel with a Trusted Relay 109

In [11], it extends the studies on wiretap channel to a gaussian scenario. In [6],
the authors combine the Shannon’s and the Wyner’s results and present the
secrecy capacity via using the technique combining the wiretap coding and the
Shannon’s ciphering schemes.

Recent studies extend the information theoretic secrecy from point-to-point
systems to relay or cooperative communications. In the previous studies on relay
transmission [2,7], it has been proved that the cooperative strategies between
the source and the relay can indeed increase the transmission rate. Therefore, the
researchers tend to investigate the impact on the information secrecy brought
by the relay. In [13] it considers the relay as both an eavesdropper and a helper,
and in [5] it illustrates that even an untrusted relay can also be beneficial. In [4],
the relay works as a cooperative jammer and can in fact be beneficial to increase
the secrecy rate in a gaussian relay channel with an eavesdropper in some cases.
Further studies propose several practical cooperative schemes to enhance the
secrecy via the assistance of the relay [4,8,17]. In [9,10,16], it studies a four-
terminal relay-eavesdropper channel, where the relay is trusted, and presents
relative bounds on secrecy rate.

In this paper, a four-terminal gaussian relay-eavesdropper channel is studied.
Differentiating from the earlier relevant works [9,10,16], we assume that the
trusted relay is able to decode and encode wiretap codes. Motivated by the cut-
set bounds on the secrecy capacity for wiretap networks of type II discussed
in [1], we derive a cut-set-like upper bound for the gaussian relay-eavesdropper
channel in our scenario. Since the capacity of a general relay channel is unknown,
we discuss the secrecy in the following schemes:

1. Direct transmission: the relay is not actively used in the communication, and
it broadcasts a structured jamming message which has little influence on the
main channel.

2. Multi-hop transmission: the relay decodes the wiretap codewords sent from
the source and then encodes it into another independent wiretap codewords
before forwarding. Here, the destination gains nothing directly from the
source.

3. Decode-forward: the source divides the desired confidential message into two
different messages and then sends them to the relay and the destination
respectively, where the message of the destination is used as a secret key
for the relay. The relay decodes its own confidential message via the tech-
nique combining the wiretap coding and the Shannon’s ciphering schemes
[12], and then encodes it into another wiretap codewords before forwarding.
The destination first decodes the transmitted codewords from the relay while
considering the source as part of the noise, and then decodes the transmit-
ted codewords from the source after the message from the relay has been
subtracted out.

In our assumption, the relay can encode wiretap codes, which means the relay
is able to introduce its local randomness into the forwarding transmission. Then
if viewing the randomness introduced by the source and the relay as common
messages sent to both the destination and the eavesdropper (like in [3]), we can

110 K. Hu et al.

see that our work cannot be simply viewed as a study on a relay channel with an
eavesdropper but a special four-terminal wiretap network, where two different
common messages are sent to both the destination and the eavesdropper besides
the confidential message sent from the source to the destination. Therefore, our
work is definitely different from the aforementioned works.

Throughout this paper, we define the notations as follow: Xn denotes vec-
tor (X(1), . . . ,X(n)); boldface capital letter X denotes matrix; I denotes iden-
tity matrix; {•}T denotes transpose; [x]+ denotes max{0, x}; diag(a1, . . . , an)
denotes a diagonal matrix; N (0, P) denotes normal distribution with 0 mean
and P variance; U [1 : N] denotes uniform distribution among [1 : N].

The rest of the paper is organized as follow: in Sect. 2 we introduce the
system model; in Sect. 3 we discuss the achievable secrecy rate for the three
aforementioned schemes; in Sect. 4 we discuss the cut-set upper bound on the
secrecy capacity; and the conclusion is given in Sect. 5.

2 Preliminaries

In this paper, a four-terminal discrete memoryless relay-eavesdropper channel is
considered, consisting of a source, a relay, a destination and an eavesdropper. The
discrete channel has two input alphabets X and Xr and three output alphabets
Y, Yr and Z.

Fig. 1. The gaussian relay-eavesdropper channel.

Consider a gaussian relay-eavesdropper channel depicted in Fig. 1, which is
a point-to-point gaussian wiretap channel with an extra node having relay func-
tion. The channel outputs corresponding to the inputs X and Xr are

Yr = h0X + Nr (1)
Y = h1X + h2Xr + N (2)
Z = g1X + g2Xr + Nz, (3)

Secrecy on a Gaussian Relay-Eavesdropper Channel with a Trusted Relay 111

where h0, h1, h2, g1, g2 ≥ 0 are the channel gains, and Nr, N,Nz are indepen-
dent noise components with i.i.d ∼ N (0, 1). It is assumed that average power
constraint P on each of X and Xr. The relay can both send Xr and receive Yr

at the same time.
The message W is the desired confidential message that uniformly distributed

among the message set Ws = [1 : 2nRs] and mR ∈ WR is a realization of the local
randomness at the source encoder. The encoder at the source maps a message
w ∈ Ws and a realization of the local randomness mR to a codeword Xn,
f : Ws × WR → X n. Given the observation sequence Y n

r and a realization of
local randomness mR0 ∈ WR0, the relay encoder maps the signals Y i−1

r and
mR0 to the channel input Xr(i) at time i, fr(i) : Y i−1

r × mR0 → Xr(i). The
decoder at the destination finds a unique ŵ ∈ Ws according to its observation
Y n, g : Yn → Ws.

The average error probability is given by

Pe =
1

|Ws|
∑

w∈Ws

Pr{ŵ �= w}. (4)

The secrecy rate Rs is said to be achievable, if there exists a sequence of
codes (2nRs , n) and ε, η where limn→∞ ε, η = 0 such that, for n is large enough,
the following holds

Pe ≤ ε

1
n

H(W |Zn) ≥ Rs − η.

Note that if Zn is negligible, the channel can be viewed as a special four-terminal
wiretap network where W is the confidential message sent from the source to
the destination, mR is a common message broadcast by the source and mR0 is
another common message broadcast by the relay. In such scenario, the maximum
Rs equals to the maximum rate of the classical relay channel without security
constraints.

3 Lower Bounds on the Secrecy Capacity of the Gaussian
Relay-Eavesdropper Channel

3.1 Direct-Transmission Lower Bound

It has been proved that the secrecy can be improved via using cooperative jam-
ming scheme [4,8,17]. However, if h2 ≥ g2, the cooperative jamming may not
achieve its goal. In this part, we propose another scheme, where the source
sends message directly using optical point-to-point secure coding scheme while
the relay transmitting structured jamming information which reduces the eaves-
dropper rate while has little influence on the destination. Then we obtain the
relative lower bound on the secrecy capacity of the gaussian relay-eavesdropper
channel (GREC) which describes the secrecy improvement as below:

112 K. Hu et al.

Theorem 1. The lower bound on the secrecy capacity of GREC with direct-
transmission scheme is given by

CS ≥ min

⎧
⎪⎪⎨

⎪⎪⎩

[
C

(
h2
1P

) − C

(
g21P

1 + g22P

)]+
,

[
C

(
h2
1P + h2

2P
) − C

(
g21P + g22P

)]+

⎫
⎪⎪⎬

⎪⎪⎭
. (5)

Proof. Before designing the coding scheme for direct-transmission scheme in
GREC, it should be declared first that the relay works as a special jammer and
cannot relay any confidential message in this scheme.

Coding scheme:

Codebook generation C: Let Ms = 2n(Rs−ε), MR = 2n(RR−ε) and MR0 =
2n(RR0−ε) be integers. We generate Ms i.i.d. gaussian codewords Xn

s (ws) with
average power λsP −ε for ws ∈ Ws = [1 : 2nRs], MR i.i.d. gaussian codewords
Xn

R(mR) with average power λRP − ε for mR ∈ WR = [1 : 2nRR] and MR0

i.i.d. gaussian codewords Xn
R0(mR0) with average power P − ε for mR0 ∈

WR = [1 : 2nRR0]. Here, an arbitrary number ε is introduced for the power
constraints, and λs + λR = 1. The codebook is revealed to all parties.

Encoding: It is supposed that ws is the message to be sent. The source first
randomly and uniformly selects a message mR from WR. After picking
the corresponding codewords, the source constructs the codeword Xn =
Xn

s (ws) + Xn
R(mR) and then transmits it.

Relay encoding: The relay randomly and uniformly selects mR0 from WR0 and
then picks corresponding codeword Xn

R0(mR0) as the transmitted codeword
Xn

r .
Decoding: The destination utilize the sequential decoding (onion-peeling):

firstly, it finds unique m̂R0 while viewing the source codewords as part of
the noise; secondly, it subtracts m̂R0 from its observation and then finds
unique m̂R; finally, it subtracts m̂R0 and m̂R from its observation and then
finds unique ŵs. Then the decoder output ŵs.

We define the average error probability of this scheme

P̃e � Pr{(ŵs, m̂R, m̂R0) �= (ws,mR,mR0)} (6)

It can be observed that P̃e ≥ Pe. According to coding theorem, it can be proved
that limn→∞ P̃e = 0 if

Rs + RR ≤ C(h2
1P) (7)

RR0 ≤ C

(
h2
2P

1 + h2
1P

)
. (8)

Then we discuss the equivocation on the desired message ws of the eaves-
dropper, H(ws|Zn).

Secrecy on a Gaussian Relay-Eavesdropper Channel with a Trusted Relay 113

1. If the eavesdropper views Xn
r as side information, it can be acquired that

H(ws|Zn) = H(ws) − I(ws;Zn)
(a)
= H(ws) − I(ws;Zn) + I(ws;Zn|Xn,Xn

r)
= H(ws) − I(Xn,Xn

r ;Zn) + I(Xn,Xn
r ;Zn|ws),

where (a) is established because I(ws;Zn|Xn,Xn
r) = 0. Then we can see that

the eavesdropper gains nothing on ws if I(Xn,Xn
r ;Zn) − I(Xn,Xn

r ;Zn|ws)
is small enough. First, the sum-rate of the eavesdropper is given by

I(Xn,Xn
r ;Zn) ≤ nC(g21P + g22P). (9)

Then, we have I(Xn,Xn
r ;Zn|ws) = H(Xn,Xn

r |ws) − H(Xn,Xn
r |ws, Z

n),
where for the first term

H(Xn,Xn
r |ws) = H(Xn

s ,Xn
R,Xn

R0|ws) = H(Xn
R,Xn

R0)
= n(RR + RR0), (10)

and the second term

H(Xn,Xn
r |ws, Z

n) ≤ nη′ (11)

according to the Fano’s inequality where η′ → 0 if n → ∞.
It can be seen that if RR + RR0 = C(g21P + g22P), the information leakage
rate is given

1
n

I(ws;Zn) =
1
n

(H(ws) − H(ws|Zn)) ≤ η′. (12)

and there exists a wiretap coding scheme forcing eavesdropper only decode
Xn

R0 and Xn
R with high probability and gain no information on ws. Recalling

the constraints (7) and (8), we then bound the secrecy rate

Rs ≤ [
C

(
h2
1P + h2

2P
) − C

(
g21P + g22P

)]+
. (13)

2. However, if the eavesdropper views Xn
r as part of noise, then the equivocation

of the eavesdropper can be written as

H(ws|Zn) = H(ws) − I(Xn;Zn) + I(Xn;Zn|ws).

Similarly, we have

I(Xn;Zn) ≤ nC

(
g21P

1 + g22P

)
,

and

I(Xn;Zn|ws) ≥ nRR − nη′. (14)

114 K. Hu et al.

Then if R0 = C
(

g2
1P

1+g2
2P

)
, the information leakage rate 1

nI(ws;Zn) tends to
0 for n is sufficiently large. Recalling the constraint (7), the secrecy rate is
bounded as

Rs ≤
[
C

(
h2
1P

) − C

(
g21P

1 + g22P

)]+

. (15)

Combining (13) and (15), we can prove the achievability of (5) as n → ∞.

In this scheme the relay broadcasts structured jamming information which
has little influence on the destination. It can be seen that if RR0 ≥ C(g22P), it
is impossible for eavesdropper to decode mR0, which leads to (15). However, it
should be noticed that the secrecy rate of the proposed scheme is lower than
C(h2

1P)−C(g21P) when h2 ≤ g2, which is opposite to the results of the coopera-
tive jamming. Therefore, our scheme is applied for the situation when the channel
from the relay to the destination is better than that to the eavesdropper, which
can be a complement for the cooperative jamming scheme.

3.2 Multi-hop Lower Bound

The other extreme transmission scheme is to deliver the desired messages
through the relay via using decode-and-forward scheme while ignoring the path
between source and destination. In this scenario, we propose that the relay is
able to decode and encode wiretap codes, which leading to the following theorem:

Theorem 2. If the relay is able to encode and decode wiretap codes, the lower
bound on the secrecy capacity of GREC with multi-hop scheme is given by

CS ≥ min

⎧
⎪⎪⎨

⎪⎪⎩

[
C

(
h2
0P

) − C
(
g21P

)]+
,

[
C

(
h2
2P

1 + h2
1P

)
− C

(
g22P

1 + g21P

)]+

⎫
⎪⎪⎬

⎪⎪⎭
, (16)

and the bound is tight if h1 is negligible.

Proof. We use the b transmission blocks to prove the achievability of the lower
bound, while each block contains n transmissions, as depicted in Fig. 2. A
sequence of b − 1 confidential messages wj , j ∈ [1 : b − 1], each being i.i.d.
∼ U [1 : 2nRs], is transmitted through the b blocks with wb = 1. It can be seen
that the average rate of confidential message is Rs(b − 1)/b, which implies that
Rs can be achieved over the b blocks if b → ∞.

Coding scheme:

Codebook generation Cj: Let Ms = 2n(Rs−ε), MR = 2n(RR−ε) and MR0 =
2n(RR0−ε) be integers. In j-th block, we independently generate Ms gaus-
sian codewords Xn

s (wj) for wj ∈ Ws = [1 : 2nRs], MR gaussian codewords
Xn

R(mR) for mR ∈ WR = [1 : 2nRR], Ms gaussian codewords Xn
rs(w̃j−1) for

Secrecy on a Gaussian Relay-Eavesdropper Channel with a Trusted Relay 115

w1 w2 w3 ··· ··· wb−1− 11

n

· · ·Block 2Block 1 Block 3 Block b − 1 Block b

Fig. 2. Multiple transmission blocks used in the multi-hop scheme.

w̃j−1 ∈ Ws and MR0 gaussian codewords Xn
r0(mR0) for mR0 ∈ WR0 = [1 :

2nRR0]. It is assumed that the components of each codewords, Xs(i), XR(i),
Xrs(i), XR0(i), have a multivariate normal distribution with zero mean and

covariance matrix
[
Λ1 Σ
ΣT Λ2

]
∈ R

4×4, where (1) Λ1 = diag
(
λs, λR

)
P − εI, (2)

Λ1 = diag
(
λrs, λR0

)
P−εI, (3) Σ = (ρab) ∈ R

2×2, (4) λs+λR = λrs+λR0 = 1
and

∑
a

∑
b ρab = ρ.

Encoding: It is supposed that wj is the new message to be sent from the
source to the relay in j-th block. The source first randomly and uniformly
selects a message mR from set WR. After picking the corresponding code-
words from codebook Cj , the source constructs the codewords Xn(wj) =
Xn

s (wj) + Xn
R(mR) and then transmits it.

Relay encoding: At the end of j-th block, the relay finds w̃j from its observation
Y n

r given w̃j−1. After randomly and uniformly picking mR0 up from set WR0,
the relay transmits Xn

r (w̃j) = Xn
rs(w̃j) + Xn

R0(mR0) from the codebook Cj+1

in j + 1-th block. By convention, we assume w̃0 = 1.
Decoding: The destination cannot decode the transmission from the source and

views it as part of the noise. Then it finds the unique message ŵj−1 via joint
typical decoding.

The average error probability for Cj is defined as

P̃e(Cj) � Pr
{
(w̃j , ŵj−1) �= (wj , w̃j−1)

}
. (17)

Since Pe of j-th block is Pr
{
ŵj−1 �= wj−1

}
, we can observe that P̃e(Cj) ≥ Pe.

According to the coding theorem, it can be proved that limn→∞ P̃e(Cj) = 0 if

Rs + RR ≤ C
(
(1 − ρ2)h2

0P
)

(18)

Rs + RR0 ≤ C

(
(ρh1 + h2)2P

1 + (1 − ρ2)h2
1P

)
(19)

where ρ = E(XXr)√
E(X2)E(X2

r)
.

In our assumption, each codebook Cj is generated independently for each
block, therefore secrecy analysis of an arbitrary block is sufficient. The informa-
tion leakage rate associated with Cj in j-th block is given by

RL(Cj) � 1
n

I(wj , w̃j−1;Zn).

116 K. Hu et al.

Since the confidential messages are sent chronologically, we should ensure that
the j-th block leakage has little impact on the secrecy of j+1-th block. Therefore,
we consider I(wj , w̃j−1;Zn) = I(w̃j−1;Zn) + I(wj ;Zn|w̃j−1) and then analyze
the two terms in the following:

1. The equivocation on w̃j−1 is given by

H(w̃j−1|Zn) = H(w̃j−1) − I(w̃j−1;Zn)
= H(w̃j−1) − I(w̃j−1;Zn) + I(w̃j−1;Zn|Xn

r)
= H(w̃j−1) − I(Xn

r ;Zn) + I(Xn
r ;Zn|w̃j−1)

≥ H(w̃j−1) − nC

(
(ρg1 + g2)2P

1 + (1 − ρ2)g21P

)
+ nRR0 − nη′.

Accordingly, we find that 1
nI(w̃j−1;Zn) ≤ η′ if the following condition is

satisfied

RR0 = C

(
(ρg1 + g2)2P

1 + (1 − ρ2)g21P

)
. (20)

Substituting (20) into (19), it can be derived

Rs ≤ C

(
h2
2P

1 + h2
1P

)
− C

(
(ρg1 + g2)2P

1 + (1 − ρ2)g21P

)
. (21)

2. Given w̃j−1, the equivocation of eavesdropper on wj is written as

H(wj |Zn, w̃j−1) = H(wj |w̃j−1) − I(wj ;Zn|w̃j−1)
(a)

≥ H(wj |w̃j−1) − I(wj ;Zn|Xn
r)

(b)
= H(wj) − I(Xn;Zn|Xn

r) + I(Xn;Zn|wj ,X
n
r)

≥ H(wj) − nC
(
(1 − ρ2)g21P

)
+ nRR − nη′,

where (a) is established since the fact that I(wj ;Zn|w̃j−1) ≤ H(wj |w̃j−1)
= H(wj |w̃j−1mR0) = H(wj |Xn

rs,X
n
R0) ≤ I(wj ;Zn|Xn

rs,X
n
R0) + nυn where

limn→∞ υn = 0; (b) follows because wj and w̃j−1 are independent. Thus, we
observe that 1

nI(wj ;Zn|wj−1) ≤ η′ if the following condition is satisfied

RR = C
(
(1 − ρ2)g21P

)
. (22)

Substituting (22) into (18), we then obtain

Rs ≤ C
(
(1 − ρ2)h2

0P
) − C

(
(1 − ρ2)g21P

)
. (23)

Here, we find that limn→∞ RL(Cj) = 0 if the conditions in (20) and (22) is
satisfied. Therefore, the achievable secrecy rate should be the small one of (21)
and (23). Then the maximum achievable secrecy rate can be derived if ρ = 0,
which means there is no coherently cooperation during the transmission, and
(16) is achieved.

The proof of tightness is given in Sect. 4.

Secrecy on a Gaussian Relay-Eavesdropper Channel with a Trusted Relay 117

3.3 Decode-Forward Lower Bound

In the multi-hop scheme, the destination views the source sequences as part of the
noise and ignores the information it contains. Therefore, in the design of coding
scheme, the source only consider secure transmission to the relay and the model
is equivalent to a two-hop communication. However, if the destination tries to
decode both the messages sent from the source and the relay simultaneously, it
leads the following with proper coding scheme.

Theorem 3. If the relay is able to encode and decode wiretap codes, the lower
bound on the secrecy capacity of GREC with decode-and-forward scheme is given
by

CS ≥ max
ρ,α∈[0,1]
ᾱ=1−α

min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
C

(
(α + ᾱρ2)h2

1P + h2
2P + 2ρh1h2P

1 + ᾱ(1 − ρ2)h2
1P

)

− C

(
(α + ᾱρ2)g21P + g22P + 2ρg1g2P

1 + ᾱ(1 − ρ2)g21P

)]+
,

[
C

(
ᾱ(1 − ρ2)h2

0P
)

+ 2C

(
α(1 − ρ2)h2

1P

1 + ᾱ(1 − ρ2)h2
1P

)

− C
(
ᾱ(1 − ρ2)g21P

) − 2C

(
α(1 − ρ2)g21P

1 + ᾱ(1 − ρ2)g21P

)]+
,

[
C

(
ᾱ(1 − ρ2)h2

0P
)

+ C

(
α(1 − ρ2)h2

1P

1 + ᾱ(1 − ρ2)h2
1P

)]+

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(24)

Proof. Again, we consider using b blocks to transmit a sequence of b − 1 con-
fidential messages wb−1, where wj ∼ i.i.d. U [1 : Ms]. In this proof, we use the
binning scheme, where the source and the relay cooperatively send the bin index
lj of wj in j + 1-th block to help the destination recover the wj . As depicted
in Fig. 3, the confidential message set [1 : Ms] is partitioned into Ml equal
bins B(l) = [(l − 1)Mu + 1 : lMu], l ∈ Wl = [1 : Ml], where Ms = 2n(Rs−ε),
Ml = 2n(Rl−ε) and Mu = 2n(Ru−ε) are integers and Ms = MlMu. We introduce
uj ∈ Wu = [1 : Mu] to denote the position of wj in the bin B(lj). The indexes lj
and uj can be viewed as two independently and uniformly distributed variables.
In j-th block, the source broadcasts uj−1 and lj to the destination and the relay

B(1) B(2) B(Ml)
· · ·◦ ◦ ◦ ◦ •◦ ◦ ◦ ◦· · · ◦ ◦ ◦ ◦· · ·· · ·

Xn
s (wj)Mu

Ms

Fig. 3. Binning scheme: each wj can be represented by uj and lj . The gray is the uj

in each bin and the black is wj .

118 K. Hu et al.

respectively; simultaneously, the relay sends l̃j−1 to the destination, where l̃j−1

is the estimate result relay derived in j − 1-th block.
Coding scheme:

Message sets. We divide the sets Wu and Wl into three independent parts
Wui = [1 : 2nRui] and Wli = [1 : 2nRli] respectively, for i = 1, 2, 3. In this
division, we force Ru1 = Rl1 and then use the sets Wu1 and Wl1 to construct
W⊗1 = [1 : 2nR⊗1] by Xoring their corresponding elements. Similar, we force
Ru2 = Rl2 and then construct W⊗2 = [1 : 2nR⊗2]. Therefore, we have

Ru1 = Rl1 = R⊗1 and Ru2 = Rl2 = R⊗2,

R⊗1 + R⊗2 ≤ Ru. (25)

Codebook generation. Cj In j-th block, we randomly and independently
generate Mu gaussian codewords Xn

u (uj−1) for uj−1 ∈ Wu, M⊗1 gaus-
sian codewords Xn

⊗1(mj,⊗1) for mj,⊗1 ∈ W⊗1, Mr1 gaussian codewords
Xn

r1(mr1) for mr1 ∈ Wr1 = [1 : 2nRr1], Ml3 gaussian codewords Xn
l3(lj,3)

for lj,3 ∈ Wl3, M⊗2 gaussian codewords Xn
⊗2(mj,⊗2) for mj,⊗2 ∈ W⊗2, Mr2

gaussian codewords Xn
r2(mr2) for mr2 ∈ Wr2 = [1 : 2nRr2], Ml gaussian code-

words Xn
rl(l̃j−1) for l̃j−1 ∈ Wl, and Mr0 gaussian codewords Xn

r0(mr0) for
mr0 ∈ Wr0 = [1 : 2nRr0], respectively. Let the components of each codeword,
Xu(i), Xl3(i), Xr1(i), Xr2(i), X⊗1(i), X⊗2(i), Xrl(i), Xr0(i), have a multivari-

ate normal distribution with zero mean and covariance matrix
[
Λ1 Σ
ΣT Λ2

]
∈

R
8×8, where (1) Λ1 = diag

(
αλu, αλ⊗1, αλr1, ᾱλl3, ᾱλ⊗2, ᾱλr2

)
P − εI, (2)

Λ2 = diag
(
λrl, λr0

)
P −εI, (3) Σ = (ρab) ∈ R

6×2, (4) α+ᾱ = λu+λ⊗1+λr1 =
λl3 + λ⊗2 + λr2 = λrl + λr0 = 1 and (5)

∑
a

∑
b ρab = ρ.

Encoding. In j-th block, the source is able to calculate the triple (lj,3, mj,⊗1,
mj,⊗2) according to its randomly given message pair (uj−1, lj). Then it uni-
formly chooses a random message pair (mr1,mr2) from the sets Wr1 and
Wr2. After picking the corresponding codewords, the source constructs the
codewords

Un(uj−1) = Xn
u (uj−1) + Xn

⊗1(mj,⊗1) + Xn
r1(mr1),

V n(lj,3) = Xn
l3(lj,3) + Xn

⊗2(mj,⊗2) + Xn
r2(mr2),

and then simply transmits

Xn(uj−1, lj) =Un(uj−1) + V n(lj,3).

Note that u0 = lb = 1 by convention.
Relay encoding. At the end of j-th block, the relay first finds the unique mes-

sages ũj−1, m̃j,⊗1, m̃r1, l̃j,3, m̃j,⊗2 and m̃r2 via jointly typical decoding. Then
it derives the pair (l̃j,1, l̃j,2) by Xoring (ũj−1,1, ũj−1,2) and (m̃j,⊗1, m̃j,⊗2),
respectively. At last the relay derives l̃j from Y n

r , where l̃j is the concate-
nation of l̃j1, l̃j2 and l̃j3. In j + 1-th block, the relay will randomly and
uniformly choose mr0 from Wr0 and then transmit the codeword Xn

r (l̃j) =
Xn

rl(l̃j) + Xn
r0(mr0) from codebook Cj+1. Note that l̃0 = 1 by convention.

Secrecy on a Gaussian Relay-Eavesdropper Channel with a Trusted Relay 119

Decoding. The decoding at the destination is considered as two-stage process:
(1) the destination first decodes the information sent by the relay while con-
sidering that sent by the source as part of the noise; (2) then the destination
decodes the information sent by the source after that sent by relay has been
subtracted out. At the end of j-th block, the decoder outputs ŵj−1, where
ŵj−1 is the concatenation of ûj−1 and l̂j−1.

Xn(ub−1, 1)b 1,Xn(1, l1) Xn(u1, l2)u ··· ··· Xn(ub−2, lb−1)(− −)

Xn
r (l̃b−1)(˜−1)Xn

r (1)Xn
r (1) Xn

r (l̃1)Xn
r (l̃1) ··· ··· Xn

r (l̃b−2)(l̃b−2)

Source

Relay

Block 1 Block 2 Block b − 1 Block b· · ·

Fig. 4. The encoding scheme used in Theorem3.

The encoding scheme is depicted in Fig. 4. In this coding scheme, it should
be noted that (1) ρ = E{XXr}√

E{X2}E{X2
r} ;(2) the rates of lj and l̃j−1 both are Rl.

We define the average error probability for Cj

P̃e(Cj) � Pr{(ûj−1, l̃j , l̂j−1) �= (uj−1, lj , l̃j−1)}. (26)

Then it can be seen that P̃e(Cj) is larger than Pe in j-th block. According to the
coding theorem, it can be proved that P̃e(Cj) is negligible for a sufficiently large
n if

Ru + R⊗1 + Rr1 ≤ C

(
α(1 − ρ2)h2

1P

1 + ᾱ(1 − ρ2)h2
1P

)
(27)

Rl3 + R⊗2 + Rr2 ≤ C
(
ᾱ(1 − ρ2)h2

0P
)

(28)

Rl + Rr0 ≤ C

(
(ρh1 + h2)2P

1 + (1 − ρ2)h2
1P

)
(29)

Ru + R⊗1 + Rr1 + Rl + Rr0 ≤ C
(
h2
1P + h2

2P + 2ρh1h2P
)
, (30)

where α ∈ [0, 1] and ᾱ = 1 − α.
Since in our assumption the channel is memoryless and each codebook Cj is

independent of each other, we only need to analyze the secrecy in one block. In
j-th block, the information leakage rate associated with Cj is defined as

RL(Cj) � 1
n

I(uj−1, lj , l̃j−1;Zn)

=
1
n

I(l̃j−1;Zn)
︸ ︷︷ ︸

RL1(Cj)

+
1
n

I(uj−1, lj ;Zn|l̃j−1)
︸ ︷︷ ︸

RL2(Cj)

In the following, we discuss RL1(Cj) and RL2(Cj) respectively.

120 K. Hu et al.

1. The equivocation on l̃j−1 at eavesdropper in j-th block is given by

H(l̃j−1|Zn) = H(l̃j−1) − I(l̃j−1;Zn)

= H(l̃j−1) − I(l̃j−1;Zn) + I(l̃j−1;Zn|Xn
r)

= H(l̃j−1) − I(Xn
r ;Zn) + I(Xn

r ;Zn|l̃j−1)

≥ H(l̃j−1) − nC

(
(ρg1 + g2)2P

1 + (1 − ρ2)g21P

)
+ nRr0 − nη′.

It can be seen that RL1(Cj) ≤ η′ if the following condition is satisfied

Rr0 = C

(
(ρg1 + g2)2P

1 + (1 − ρ2)g21P

)
. (31)

Substituting (31) into (29), we then can derive the rate of the confidential
message l̃j−1 as

Rl ≤ C

(
(ρh1 + h2)2P

1 + (1 − ρ2)h2
1P

)
− C

(
(ρg1 + g2)2P

1 + (1 − ρ2)g21P

)
. (32)

2. It is obvious that

I(uj−1, lj ;Zn|l̃j−1) ≤ I(uj−1;Zn|l̃j−1) + I(lj ;Zn|l̃j−1). (33)

Then we analyze the first term of (33). Given l̃j−1, the equivocation on uj−1

is given by

H(uj−1|Zn l̃j−1) = H(uj−1|l̃j−1) − I(uj−1;Z
n|l̃j−1)

(a)

≥ H(uj−1) − I(uj−1;Z
n|l̃j−1X

n
r) + I(uj−1;Z

n|l̃j−1X
n
r Un)

(b)
= H(uj−1) − I(uj−1;Z

n|Xn
r) + I(uj−1;Z

n|Xn
r Un)

= H(uj−1) − I(Un;Zn|Xn
r) + I(Un;Zn|Xn

r uj−1)

≥ H(uj−1) − nC

(
α(1 − ρ2)g2

1P

1 + ᾱ(1 − ρ2)g2
1P

)
+ n(R⊗1 + Rr1) − nη′

1,

where (a) follows since uj−1 and l̃j−1 are independent, I(uj−1;Zn|l̃j−1X
n
r Un)

= 0 and I(uj−1;Zn|l̃j−1) ≤ I(uj−1;Zn|l̃j−1X
n
r); (b) follows because l̃j−1 is

mapped into Xn
r . Accordingly, we find 1

nI(uj−1;Zn|l̃j−1) ≤ η′
1 if

R⊗1 + Rr1 = C

(
α(1 − ρ2)g21P

1 + ᾱ(1 − ρ2)g21P

)
. (34)

Substituting (34) into (27), it can be derived

Ru ≤ C

(
α(1 − ρ2)h2

1P

1 + ᾱ(1 − ρ2)h2
1P

)
− C

(
α(1 − ρ2)g21P

1 + ᾱ(1 − ρ2)g21P

)
. (35)

Secrecy on a Gaussian Relay-Eavesdropper Channel with a Trusted Relay 121

Due to the structure of Wl, lj can be viewed as a combination of three inde-
pendent variables lj,1, lj,2 and lj,3. Therefore, the second term of (33) can be
rewritten as

I(lj ;Zn|l̃j−1) = I(lj,3;Zn|l̃j−1) + I(lj,2;Zn|l̃j−1lj,3)

+ I(lj,1;Zn|l̃j−1lj,3lj,2).
(36)

Based on the Shannon’s cipher system, the second term of (36) can be elim-
inated as follow:

I(lj,2;Zn|l̃j−1lj,3) = H(lj,2|l̃j−1lj,3) − H(lj,2|Zn l̃j−1lj,3)
(a)
= H(lj,2) − H(lj,2|Zn l̃j−1lj,3)
(b)

≤ H(lj,2) − H(lj,2|l̃j−1lj,3mj,⊗1mj,⊗2mr1mr2mr0)
(c)
= H(lj,2) − H(lj,2|mj,⊗2)

d= 0,

where (a) follows since lj,2, lj,3 and l̃j−1 are independent of each other;
(b) follows since the eavesdropper cannot extract uj−1 from Zn if the
condition in (33) is satisfied; (c) follows since mj,⊗2 is the only message
related to lj,2; (d) follows since the entropy of the secret key equals to the
entropy of the transmitted message in Shannon’s cipher system [14]. Similarly,
I(lj,1;Zn|l̃j−1lj,3lj,2) = 0. Then, it can be seen

I(lj ;Zn|l̃j−1) = I(lj,3;Zn|l̃j−1).

Given l̃j−1, the equivocation on lj,3 is given by

H(lj,3|Zn l̃j−1) ≥ H(lj,3) − I(lj,3;Zn|Xn
r)

= H(lj,3) − I(lj,3;Zn|Xn
r) + I(lj,3;Zn|Xn

r V n)
= H(lj,3) − I(V n;Zn|Xn

r) + I(V n;Zn|Xn
r lj,3)

≥ H(lj,3) − nC((1 − ρ2)ᾱg21P) + n(R⊗2 + Rr2) − nη′
2.

Similarly, we find that 1
nI(lj ;Zn|l̃j−1) = 1

nI(lj,3;Zn|l̃j−1) ≤ η′
2 if the following

condition is satisfied

R⊗2 + Rr2 = C
(
ᾱ(1 − ρ2)g21P

)
. (37)

Substituting (37) into (28), we derive

Rl3 ≤ C
(
ᾱ(1 − ρ2)h2

0P
) − C

(
ᾱ(1 − ρ2)g21P

)
. (38)

Note that the rate of the confidential message lj is the summation of Rl1, Rl2

and Rl3. Recalling (25), we can bound the rate of lj as

Rl = Rl1 + Rl2 + Rl3 ≤ Rl3 + Ru

≤ C
(
ᾱ(1 − ρ2)h2

0P
)

+ C

(
α(1 − ρ2)h2

1P

1 + ᾱ(1 − ρ2)h2
1P

)
− C

(
(1 − ρ2)g21P

)
. (39)

122 K. Hu et al.

Meanwhile, we should consider (34) and (37) while bounding Rl since Rl1 +
Rl2 = R⊗1 + R⊗2, and then derive

Rl = R⊗1 + R⊗2 + Rl3

≤ C
(
ᾱ(1 − ρ2)h2

0P
)

+ C

(
α(1 − ρ2)g21P

1 + ᾱ(1 − ρ2)g21P

)
. (40)

Noting that Rs is the summation of Ru and Rl, we bound the confidential
message rate Rs as following: (1) the first term of (24) is derived by combining
the results of (35) and (32); (2) the second term of (24) is acquired by combing
the results of (35) and (39); (3) the third term of (24) is obtained by combing
the results of (35) and (40). If we take the limit as n → ∞ such that RL(Cj) → 0,
we prove the achievability of (24).

In our study, it should be noted that the proposed scheme is based under the
assumption that h0 ≥ h1 and it is obvious that the result converges to (5) in
Theorem 1 if h0 ≤ h1. For h0 ≥ h1, it can be seen that the proposed scheme
provides better performance than the direct-transmission scheme, e.g., taking
α = 1. Also, we can see that if α = 0 the result converge to (16) in Theorem 2
which indicates that the multi-hop scheme is a special part of the proposed
decode-forwarding scheme.

4 The Cut-Set Bound on the Secrecy Capacity

The following upper bound is motivated by the cut-set bounds on the secrecy
capacity for wiretap networks of type II discussed in [1]:

Theorem 4. If the relay is assumed to decode and encode wiretap code, the
secrecy capacity of GREC is upper bounded as

CS ≤ max
ρ∈[0,1]

min

⎧⎪⎨
⎪⎩

[
C

(
(1 − ρ2)(h2

0P + h2
1P)

) − C
(
(1 − ρ2)g2

1P
)]+

,

[
C

(
h2
1P + h2

2P + 2ρh1h2P
) − C

(
g2
1P + g2

2P + 2ρg1g2P
)]+

⎫⎪⎬
⎪⎭ .

(41)

Proof. According to Fano’s inequality, the equivocation on W of the eavesdrop-
per is given by

H(W |Zn) = H(W |Zn) − H(W |Y n, Zn) + H(W |Y n, Zn) (42)
≤ I(W ;Y n|Zn) + nε′, (43)

Secrecy on a Gaussian Relay-Eavesdropper Channel with a Trusted Relay 123

where limn→∞ ε′ = 0. Defining Y i = (Y1, . . . , Yi) as i-length sequence, we con-
sider to establish the second term of (41)

I(W ;Y n|Zn) =
n∑

i=1

I(W ;Yi|Y i−1Zn) (44)

=
n∑

i=1

[
H(Yi|Y i−1Zn) − H(Yi|WY i−1Zn)

]
(45)

(a)

≤
n∑

i=1

[
H(Yi|Y i−1Zn) − H(Yi|WY i−1ZnXiXr,i)

]
(46)

(b)

≤
n∑

i=1

[
H(Yi|Y i−1Zi) − H(Yi|WY i−1ZiXiXr,i)

]
(47)

=
n∑

i=1

I(XiXr,iW ;Yi|ZiY
i−1), (48)

where (a) follows because H(Yi|WY i−1ZnXiXr,i) ≤ H(Yi|WY i−1Zn); (b) fol-
lows because H(Yi|Y i−1Zi) ≥ H(Yi|Y i−1Zn) and H(Yi|WY i−1ZiXiXr,i) =
H(Yi|WY i−1ZnXiXr,i) due to the memoryless assumption. We now introduce
a random variable Q which is i.i.d ∼ U [1 : n]. Then rewrite the (48) as

I(W ;Y n|Zn) ≤
n∑

i=1

I(XiXr,iW ;Yi|ZiY
i−1) = nI(XQXr,QW ;YQ|ZQY Q−1Q).

(49)

Then we define X � XQ, Xr � Xr,Q, Y � YQ, Z � ZQ and U � QY Q−1. In
our case we assume that min(h0, h1) ≥ g1 and h2 ≥ g2, we can form the Markov
chain U → (X,Xr) → Y → Z. Combining the equations (43), (48) and (49), we
derive

Rs ≤ 1
n

H(W |Zn) + η ≤ 1
n

I(W ;Y n|Zn) + ε′ + η

= I(XXr;Y |ZU) + ε′ + η ≤ I(XXr;Y |Z) + ε′ + η

≤ I(XXr;Y) − I(XXr;Z) + ε′ + η

≤
[
C

(
h2
1P + h2

2P + 2ρh1h2P
) − C

(
g21P + g22P + 2ρg1g2P

)]+
+ ε′ + η.

(50)
Next we establish the first term of (41) in a similar way

Rs ≤ 1
n

I(W ;Y n|Zn) + ε′ + η ≤ 1
n

I(W ;Y nY n
r |Zn) + ε′ + η

≤ 1
n

n∑

i=1

I(Xi;YiYr,i|ZiY
i+1Y i+1

r Xr,i) + ε′ + η

= I(XQ;YQYr,Q|ZQY Q+1Y Q+1
r Xr,QQ) + ε′ + η

(51)

124 K. Hu et al.

Defining X � XQ, Xr � Xr,Q, Y � YQ, Z � ZQ and U � QY Q−1Y Q−1
r , we

have

Rs ≤ I(X;Y Yr|ZXrU) + ε′ + η ≤ I(X;Y Yr|Xr) − I(X;Z|Xr) + ε′ + η

=
[
C

(
(1 − ρ2)(h2

0P + h2
1P)

) − C
(
(1 − ρ2)g21P

)]+
+ ε′ + η

(52)

Taking n → ∞ completes the proof of the upper bound in (41).

Then we can see that if the h1 is negligible, the cut-set-like upper bound is

CS ≤ min
{
C

(
h2
0P

) − C
(
g21P

)
, C

(
h2
2P

) − C
(
g22P

)}
,

which indicates that the bound in Theorem2 is tight when h1 → 0.

5 Conclusion

In this paper, we discuss the secrecy on a gaussian relay-eavesdropper channel,
where the relay is assumed to be able to decode and encode wiretap codes. Differ-
entiating from the previous work, the relay here is able to introduce randomness
to protect its forwarding message to the destination. We discuss several secure
cooperative strategies for three special cases. First, we study the structured jam-
ming scheme which can be considered as an alternative for the cooperative jam-
ming schemes when h2 ≥ g2; then, we study the multi-hop transmission scheme
and indicate that the secrecy rate can be increased if the relay is able to decode
and encode wiretap codes; finally, we propose a secure technique that combining
the wiretap coding and the Shannon’s ciphering schemes for decode-forwarding
strategy, where the secret message directly transmitted to the destination is uti-
lized as a secret key for the relay. At last, we present a cut-set-like upper bound
on secrecy capacity for the gaussian wiretap channel with a trusted relay. Our
work gives another way to view the relay-eavesdropper channel, if the relay works
as not only a helper but also a special source that broadcasts random codes to
confuse the eavesdropper. Our next work is to figure out a proper compressed-
forward scheme for a relay channel with an eavesdropper.

References

1. Cheng, F., Yeung, R.W.: Performance bounds on a wiretap network with arbitrary
wiretap sets. IEEE Trans. Inf. Theory 60(6), 3345–3358 (2014)

2. Cover, T., Gamal, A.E.: Capacity theorems for the relay channel. IEEE Trans. Inf.
Theory 25(5), 572–584 (1979)

3. Csiszár, I., Korner, J.: Broadcast channels with confidential messages. IEEE Trans.
Inf. Theory 24(3), 339–348 (1978)

4. Dong, L., Han, Z., Petropulu, A.P., Poor, H.V.: Improving wireless physical-layer
security via cooperating relays. IEEE Trans. Signal Process. 58(3), 1875–1888
(2010)

Secrecy on a Gaussian Relay-Eavesdropper Channel with a Trusted Relay 125

5. He, X., Yener, A.: Cooperation with an untrusted relay: a secrecy perspective.
IEEE Trans. Inf. Theory 56(8), 3807–3827 (2010)

6. Kang, W., Liu, N.: Wiretap channel with shared key. In: 2010 IEEE Information
Theory Workshop, pp. 1–5, August 2010

7. Kramer, G., Gastpar, M., Gupta, P.: Cooperative strategies and capacity theorems
for relay networks. IEEE Trans. Inf. Theory 51(9), 3037–3063 (2005)

8. Krikidis, I., Thompson, J.S., McLaughlin, S.: Relay selection for secure cooperative
networks with jamming. IEEE Trans. Wireless Commun. 8(10), 5003–5011 (2009)

9. Lai, L., El Gamal, H.: Cooperative secrecy: the relay-eavesdropper channel. In:
2007 IEEE International Symposium on Information Theory, pp. 931–935, June
2007

10. Lai, L., El Gamal, H.: The relay-eavesdropper channel: cooperation for secrecy.
IEEE Trans. Inf. Theory 54(9), 4005–4019 (2008)

11. Leung-Yan-Cheong, S., Hellman, M.: The Gaussian wire-tap channel. IEEE Trans.
Inf. Theory 24(4), 451–456 (1978)

12. Mansour, A.S., Schaefer, R.F., Boche, H.: On the individual secrecy capacity
regions of the general, degraded, and Gaussian multi-receiver wiretap broadcast
channel. IEEE Trans. Inf. Forensics Secur. 11(9), 2107–2122 (2016)

13. Oohama, Y.: Capacity theorems for relay channels with confidential messages. In:
2007 IEEE International Symposium on Information Theory, pp. 926–930, June
2007

14. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4),
656–715 (1949)

15. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)
16. Yuksel, M., Erkip, E.: The relay channel with a wire-tapper. In: 2007 41st Annual

Conference on Information Sciences and Systems, pp. 13–18, March 2007
17. Zhang, J., Gursoy, M.C.: Collaborative relay beamforming for secrecy. In: 2010

IEEE International Conference on Communications, pp. 1–5, May 2010

Target Information Trading - An
Economic Perspective of Security

Jing Hou1, Li Sun1, Tao Shu1(B), and Husheng Li2

1 Department of Computer Science and Software Engineering,
Auburn University, Auburn, AL 36849, USA

{jzh0141,lzs0070,tshu}@auburn.edu
2 Department of Electrical Engineering and Computer Science,

The University of Tennessee Knoxville, Knoxville, TN 37996, USA
hli31@utk.edu

Abstract. Ample evidence has confirmed the importance of informa-
tion in security. While much research on security game has assumed the
attackers’ limited observation capabilities to obtain target information,
few work considers the possibility that the information can be acquired
from a data broker, not to mention exploring the profit-seeking behaviors
of such an information service in the shrouded underground society. This
paper studies the role of information in security problem when the target
information is sold by a data broker to multiple competitive attackers.
We formulate a novel multi-stage game model to characterize both the
cooperative and competitive interactions of the data broker and attack-
ers. Specifically, the attacker competition with correlated purchasing and
attacking decisions is modeled as a two-stage stochastic model; and the
bargaining process between the data broker and the attackers is analyzed
in a Stackelberg game. Both the attackers’ competitive equilibrium solu-
tions and data broker’s optimal pricing strategy are obtained. Our results
show that with information trading, the target suffers from larger risks
even when the information price is too high to benefit the attackers;
and the information accuracy is more valuable when the target value is
higher. Furthermore, the competition may weaken the information value
to the attackers but benefit the data broker. The study contributes to
the literature by characterizing the co-opetitive behaviors of the attack-
ers with labor specialization, providing quantitative measures of infor-
mation value from an economic perspective, and thus promoting a better
understanding of the profit-seeking underground community.

Keywords: Security · Information market · Game theory · Economics

1 Introduction

Target information is undoubtedly a crucial factor of security problems in var-
ious applications for protecting critical infrastructure like transportation and
computer networks. Attackers conduct surveillance to gain awareness of targets’
vulnerabilities and security operations, based on which to make a selection of

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 126–145, 2019.

https://doi.org/10.1007/978-3-030-37231-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_7

Target Information Trading - An Economic Perspective of Security 127

where to attack and how much effort to take in attacking [1,2]. In reality, most
often attackers have limited observation capabilities such that they may only
have few or partial information about the target’s vulnerability [3]. However, in
some situations the attackers do not necessarily need to observe by themselves
to gain the information. The widespread use of and thus an immerse demand for
potential target information in hacker communities has spawned a data brokers
industry [4]. The data brokers in crime society are specialized in collecting target
information (e.g., software vulnerabilities, snippets of code, credit card numbers
and compromised accounts) and sell them in black markets in exchange for finan-
cial gain [5]. For example, users of the underground forums regularly engage in
the buying, selling and trading of illegally obtained information to support crim-
inal activities [6]. As a report [7] published by TrendMicro states: “Underground
hackers are monetizing every piece of data they can steal or buy and are con-
tinually adding services so other scammers can successfully carry out online and
in-person fraud.” The Shadow Brokers, which trades in compromised network
data and exploits, is a representative of such a data broker as a hacker group. In
June 2017, the computer virus NotPetya was able to spread by leveraging a vul-
nerability leaked by the Shadow Brokers [8]. More recently, Facebook, accused
of privacy violations that could provide “material support” for terrorism poten-
tially, was reported to face multibillion-dollar FTC fine [9]. Indeed, data brokers,
as a boon to the cybercrime economy [10], have become an indispensable member
of the illegally evolved supply chain called “cybercrime-as-a-service” [11].

While we do not have a clear picture of the information trading behaviors in
the underground society, security researchers are taking more interest in explor-
ing hacker communities. Initial studies of security experts have reached a consen-
sus that one major motivation of hackers is profit-related (others include fame
and skill improvement etc.) [12]. Our aim in this paper is to study the profit-
driven attacking behaviors in a hacker community, with a particular emphasis
on the role of target information provided by a data broker in security using eco-
nomic analysis. More precisely, we would like to understand the value of traded
target information—both for the sellers of this information and for the attack-
ers that buy it. Through an economic analysis of the attacking behaviors with
information trading, we would be able to provide a simple glimpse of complex
society structure, and to better understand the phenomenon of hacking. These
knowledge provide at least tentative insights for arriving at effective solutions
to security problems with information leakage.

We consider one or multiple attackers that have limited observation capa-
bilities of the potential target. They can approach a data broker that holds the
vulnerability of the target. The target vulnerability determines how much effort
the attackers need to take in order to launch a successful attack. Without the
information, the attacker may choose not to act, fail or exert more effort than
needed. The attackers could benefit from purchasing the information by launch-
ing a more targeted attack with less effort. Here we care about the value of the
information for the attackers and how the data broker should price the informa-
tion if they can obtain it, but how the data broker could obtain the information is
beyond our focus. Besides, we talk about the scenario of multiple attackers when

128 J. Hou et al.

the target value can be shared among them if they all deliver successful attacks.
The assumption of competition among attackers through dividing up the value
of a single asset is appropriate when they share the benefits of private goods
as illegal resource access (like spectrum or other network resource utilization)
and monopoly privileges (like stealing electronically stored information about
consumers’ personal data for market exploration). Similar assumptions can be
found in [13], which adopts a rent-seeking model of security games where the
asset value is divided among the attackers and the defender. We are interested
in whether there is a positive or negative network externality in the information
market due to the competition among the attackers, that is, would the existence
of more potential buyers increases the value of the data broker’s information or
decreases it.

With the observation of the hierarchical and competitive structure in attacker
behaviors, we present and study a multi-stage model of information market. In
Stage I, the data broker determines the information price to the attackers. In
Stage II, the attackers decide whether to buy or not. In Stage III, after obtaining
the target information, the attackers decide whether to attack the target or
not. The composed game provides an integrated view of security problem with
competitive attackers and target information trading. The research questions we
aim to answer include: (a) How would the attacker change its attacking decision
once it has bought some detailed information of the target’s vulnerability from
the data broker? (b) How does the competition between the attackers affect
their information purchasing decision and attacking decisions? (c) Is it beneficial
for the data broker to set a low price such that all attackers would buy the
information? Or should the data broker enhance the price when there is more
potential buyers rather than one? (d) How are the decisions affected when the
data has lower quality (only partial information is available for trading)?

The problems are challenging due to the following two reasons. First, there is
lack of a systematic or quantitative framework to evaluate the information in a
competitive crime community. Although it is intuitive that the more information,
the better for the attackers, questions are still unexplored as what is the highest
price that the attacker can accept? Does an attacker always benefit from buying
the information if other attackers also buy it? Or is the information more valuable
if other attackers do not buy? To the best of our knowledge, this is the first paper
that tries to provide a unified framework of information market in security. We
will provide insights regarding the impacts of target information trading on
various parties: the increased attacking probability of the target, the expected
utility increase for the attackers and the profit through selling the information
for the data broker.

Second, the hierarchy attacker behaviors are interdependent across multiple
stages. On one hand, the attacking decisions, including whether or not to attack,
and with how much effort, are affected by the attackers’ knowledge of the tar-
get. On the other hand, whether or not to buy the information is determined by
how much utility gain can be expected from attacking. The competition among
multiple attackers makes these decisions even more complex. This is different

Target Information Trading - An Economic Perspective of Security 129

from most competition analysis when the product can be sold to only one buyer
and the game ends after the purchasing is done. Therefore, the structure of
the game varies across the stages. We will model the game among the attack-
ers as Bayesian games, to capture their limited observability, and model their
purchasing-attacking decision process as a stochastic game. Besides, from the
data broker’s perspective, the purchasing probability of the buyers is not only
determined by the competition game equilibrium among the attackers, but also
affected by the target value and the price. We will use a Stackelberg game to
model the pricing and purchasing decisions of the players.

Our main contributions can be summarized as follows.

– While most traditional security game model assume that target informa-
tion is obtained through attackers’ self-observation and learning, we consider
an information market in hacker communities and propose a game-theoretic
framework, which captures the multi-stage correlated behaviors of attackers.
This information market model better fits the practice of a profit-seeking
hacker communities with labor specialization. Our results show that in this
information channel, information accuracy is more valuable for a more attrac-
tive target.

– Much previous work focus on interactions between a defender and single or
multiple independent attackers, without consideration of the competitions
among the attackers or the role of other players that assist in attacking. We
incorporate the strategic interactions between multiple competitive attackers
as in a Bayesian and stochastic game, and between the attackers and the
data broker as in a Stackelberg game. Our analysis indicates that the value of
information for the attackers could be weakened by their competition. Besides,
with the assistance of a data broker, even if the information does not benefit
the attackers under high price, the target may suffer from larger attacking
risk. And the risk will be increased in a certain range confined by both the
price and the target value.

– We provide the equilibrium solutions and characterize the conditions for the
existence and uniqueness of the equilibrium under different target values. We
show that if the target is not attractive enough, there may be multiple pure-
strategy equilibria in the attackers’ competition game. And whether there will
be a strictly dominant pure-strategy is determined by the target value, the
target vulnerability and the information price. Furthermore, in the Stackelberg
game equilibria, it is not wise for the data broker to set a price low enough to
attract all the buyers if the target is attractive enough to the attackers.

The remainder of this paper is organized as follows. Section 2 reviews the
related literature. Section 3 introduces the model setups. In Sects. 4 and 5, we
study the single attack model and the competition model, respectively. In Sect. 6,
we provide an extension model with low information accuracy, and this paper is
concluded in Sect. 7.

130 J. Hou et al.

2 Related Work

Much of the research in security game has assumed that the attacker has per-
fect observation of the defense policy over potential targets and therefore been
able to explore the value of commitment for the defender in a Stackelberg game
framework [14]. Realizing that this assumption rarely hold in real-world domains,
existing studies are turning their interests into the scenario of incomplete, inac-
curate or uncertain information. Some work has proposed the version of the
security game with bounded memory [15] or imperfect observations [16]. Oth-
ers have assumed that the target information gained by the attackers can be
learned more accurately by conducting a period of surveillance [17,18]. A more
recent study which has pointed out the possibility that the defender is allowed to
strategically disclose the number of resources to the attacker, further shows the
importance of target information [19]. However, none of the above studies con-
sider the possibility of intermediary information acquisition from a market. The
value and the impacts of such a information service have hardly been addressed.
Although there is already study evaluating the value of customer information
for the retailers’ pricing strategies in consumer market [4]. Their results cannot
be applied to the security problem because the target in security problem may
be not exclusive to the attackers as the merchandise is to consumers.

Our paper focuses on the information market in the context of hacker com-
munity. Hacker community is both devastating and prevalent because it facili-
ties cooperation and allows for specialization among attackers, leading to more
advanced and more economically efficient attacks. We can discern a growing
interest among researchers in the enigmatic hacker community. Some studies
have focused on the organization of the community, like identifying the key actors
[5], discovering the types of collaborative attack patterns [20] or evaluating its
sustainability [9]. Others provide a window into the society by microscopically
analyzing the behaviors of the attackers, mostly addressing their cooperation in
the form of coalition. Current studies assume that the attackers are heteroge-
neous in their non-task-specific efficiency, resource allocation or skill sets, and
thus coalition is formed for more attacks or to gain higher total utility [21–23].
But the format of collusion with labor specialization, especially the information
service, which is universal in hacker community, has not been fully explored.
More specifically, the questions are not studied yet about how the attackers
would benefit from information assistance, and what is the bargaining process
that decides their reward allocations. The answers to these questions are crucial
to investigate why and how information service is provided in hacker commu-
nity, as well as when such cooperation is formed among profit-driven attack-
ers. Besides, the competition among attackers for the limited resource pool is
another factor that impacts the attacking decisions and rewards, while it is usu-
ally ignored in the existing research, except in [13]. In an attempt to fill the gap
in the current literature on the incentives of complex behaviors in hacker society,
this research take into consideration both the cooperation among attackers spe-
cialized in different tasks and competition among similar attackers. Specifically,
we analyze the interactions between a data broker and two competing attackers

Target Information Trading - An Economic Perspective of Security 131

through a multi-stage game approach. The value of information is derived and
the impacts of such information service are evaluated.

3 System Model and Problem Formulation

Consider two attackers trying to attack one potential target. The attackers
have limited ability to obtain the vulnerabilities (or the protection level of the
defender) about the target. But they can purchase the information from a data
supplier, who has full or partial knowledge about the target’s vulnerabilities.
The data supplier needs to set a price for the information. And given the price,
the attackers determine whether or not to make a purchase. Afterwards (when
the information has been revealed to the attackers if purchase is made), they
will decide whether to attack the target. All the players in our model are profit-
motivated.

If a attacker successfully attacks the target, it receives utility v > 0, otherwise
it receives zero utility. The value of v (also called the target value), reflecting
the target attractiveness to the attackers, is a common knowledge to all the
players. We restrict our model to the target resource that consumption by one
agent would reduce consumption by others. That is, when multiple attackers
successfully attack the target, they equally split the target value. In a two-
attacker case, either would get a utility of 1

2v. This assumption relies on the fact
that the target pool in reality is finite and attackers compete for a common asset
pool.

We define the success of a attacker as follows: if the attacker’s effort e in
attacking is not smaller than the target’s protection level by its defender (or
owner), we say the attacker succeeds in the attack. The problem is, the attacker
itself is not aware of the exact value of the target protection level, which deter-
mines the minimum level of effort for attackers to successfully attack the target.
In the following analysis, we will slight abuse the terms of target protection level
or vulnerability and the minimum attacking effort needed, and use one symbol
to denote it: θ. A smaller value of θ indicates a lower surveillance and thus less
effort to launch a successful attack. Let us suppose the attackers only know the
distribution of θ, which is normalized to be uniformly distributed on [0, 1], with
the largest value 1 implying the defender capacity. If an attacker tries to attack
the target with an effort less than the actual value of θ, then it will fail.

Measured in both the success probability of an attack and the expected gain,
the attacker’s total utility function with an attacking effort e is written as

f = 1e≥θ(e) ∗ v − C(e). (1)

Here C(e) is the attacking cost which increases with the effort e. We will assume
C(e) = e for simplicity. Although this assumption represents a simple linear
function between the effort and the cost, it is reasonable and would not affect
the major insights obtained from our analysis.

The data supplier is a broker who collects and sells data about the target
vulnerability or the target owner’s protection level. This information tells how

132 J. Hou et al.

much effort needed to launch a successful attack for the attackers, i.e. the actual
value of θ. An attacker who buys the information could launch a targeted attack
with exactly the minimum level of efforts needed. In Sect. 6, we all also study the
situation when the data broker only has partial information about the target,
which means that the information could only tell a more accurate range of θ
than the attacker has. We are interested in how the data broker chooses to sell
the data and what is the information value for all the players, and ignore the
details of how the broker acquires the data.

We provide a framework for analyzing how the attacker’s optimal information
purchasing and attacking decisions could be made in the face of the competition
and uncertainty about the target vulnerabilities. To better analyzing the impacts
of competition, we assume the attackers are homogeneous. The attacker’s objec-
tive is to maximize the expected benefit from an attack (taking into account
the attacker’s target valuation, the success probability of an attack and the cost
involved in purchasing and attacking); the data broker sets the information price
to maximize the expected profit (taking into account the purchasing probability
of the attackers).

The model’s timing proceeds as follows:
Step1. The data broker determines and broadcasts the information price p.
Step2. The attackers decide whether to buy the information or not. After

the payments are made, the data broker delivers the target information to the
buyer(s).

Step3. With the information available, the attackers decide how much effort
will be taken in attacking (zero effort means not to attack).

Step4. After the attack, the corresponding utilities are gained by the
attackers.

4 Single Attacker Model

As a benchmark, we consider the case where a monopolist attacker (he) will
fully exploit this situation and extract all surplus from successfully attacking the
target. He needs to make a decision of whether to buy the target information
from a data broker (she), by comparing the two expected utilities as follows.

4.1 Not Buy Information

If the attacker does not buy information from the data broker, his expected
utility function with effort level e is

f0(e) =
∫ e

0

vdθ − e = ve − e. (2)

So the optimal solution is e = 1 with f0 = v − 1 if v > 1 and e = 0 with f0 = 0
if v ≤ 1 (the 1st number in subscript of f denotes the number of attackers that
buy the information).

Target Information Trading - An Economic Perspective of Security 133

4.2 Buy Information

If the attacker decides to buy the information θ from the data broker at price p
and to attack the target, he would attack with exactly the effort θ.

Case 1: v > 1. The attacker would always attack since θ ≤ v, and his expected
utility function is

f1,v≥1 =
∫ 1

0

(v − θ)dθ − p = v − 1
2

− p. (3)

Compared with (2), if v − 1
2 − p > v − 1, or p < 1

2 , then the attacker would buy
the information, else he prefers not to buy the information.

Case 2: v ≤ 1. Only when θ < v would he attacks. Then his expected utility
function is

f1,v<1 =
∫ v

0

(v − θ)dθ − p =
1
2
v2 − p. (4)

Similarly, compared with (2), if 1
2v2−p > 0, or p < 1

2v2, then the attacker would
buy the information, else he prefers not to buy the information.

Figure 1 plots the regions of the attacker’s optimal decisions with different
values of information price and target value. The attacker buys the target infor-
mation only in regions I and III. On the other hand, in region II, the attacker
would attack with the greatest effort e = 1; while in region IV, the attacker would
neither buy nor attack. Specifically, the value of information for the attacker lies
in region I where it helps to deduce the effort taken, or region III where attack
is profitable when θ < v. In other words, the value of the information for the
attacker is an expected utility gain of v − 0.5 − p − (v − 1) = 1

2 − p if v > 1 and
p ≤ 1

2 or 1
2v2 − p if v ≤ 1 and p ≤ 1

2v2.
Besides, what the defender (or target owner) cares about is whether or not

the attacker would choose to attack the target and with how much effort (i.e.
successful or not). When no information is available to the attacker, he would not
attack the target as long as v ≤ 1. But when a data broker sells the information
with a price low enough, the target would be successfully attacked even if v ≤ 1.
Therefore, the target is affected by the information trading only in region III.

4.3 Optimal Pricing Decisions of the Data Broker

We assume that when the attackers are indifferent between to buy and not
to buy, they always choose to buy in favor of less uncertainty. If v ≤ 1, the
information price cannot be set to be larger than p = 1

2v2, otherwise no profit
can be gained by the data broker. That is, the information should be sold at
p∗ = 1

2v2 if v ≤ 1. Similarly, p∗ = 1
2 if v > 1. The corresponding expected profit

for the data broker in single-attacker case is 1
2v2 when v ≤ 1 and 1

2 when v > 1.
Therefore, we could say the information value for the data broker increases with
the target value until the target becomes attractive enough to the attacker that
he would attack anyway even without the information.

134 J. Hou et al.

Fig. 1. The optimal decisions of single attacker

5 Competition Model

In this section we consider the scenario when there are two attackers (A and B)
that could buy the same data for a target from the data broker (the sequence of
the games is indicated in Fig. 2). The attackers make decisions independently.
Following the work of [4], we restrict our attention to the case when the data set
is sold only in one time block at Step 2 and this trade information is common
knowledge (i.e., the data broker is willing to publicize its total sales quantity).
Using backward induction in Stackelberg game, we first derive the attackers’
optimal attacking decisions and their expected utilities assuming they have or
have not bought the information, and then analyze their optimal purchasing
decisions. Finally, we obtain the optimal pricing decisions for the data broker.
Since the exact target information is not available to the attacker(s) before
purchase, we can use a Bayesian game framework to model the scenario (with θ
uniformly distributed on [0,1]). Besides, as the attacking game depends on the
purchasing decisions made by both attackers in the previous game, the whole
decision process of the attackers is modeled as a stochastic game.

5.1 Games of Attacking

In the game of attacking, the outcome depends on the informational structure—
that is, on which attackers acquire information.

Both Do Not Buy Information. We first consider the situation when both
attackers decide not to buy the information from the data broker. Whether or not
the attackers would attack is determined by the value of the target. Therefore,
we analyze the results of the attacking games with different values of v.

Target Information Trading - An Economic Perspective of Security 135

Fig. 2. Hierarchical game structure

Case 1: v > 2. If both attackers decide to attack, with effort eA and eB respec-
tively, we suppose eA ≤ eB without loss of generality. Then attacker A’s expected
utility is fA(eA) = 1

2v
∫ eA

0
dθ − cA = (12v − 1)eA, and attacker B’s expected

utility is fB(eB) = 1
2v

∫ eA

0
dθ + v

∫ eB

eA
dθ − eB . To maximize fA(eA), we have

eA = eB = 1. If only one attacker attacks, his optimal decision is e = 1 with
f = v−1; and the other attacker has zero utility. The attackers’ payoffs for game
of attacking when both of them have no information about the target are listed
in Table 1 (with attacker A’s strategies listed in rows and attacker B’s strategies
listed in columns). The only strictly dominant pure-strategy equilibrium can be
analyzed as (attack, attack) with utility f0,v>2 = 1

2v − 1 for both attackers.

Table 1. Payoff table for game of attacking when both attackers have no information

Attack Not attack

Attack 1
2
v − 1, 1

2
v − 1 v − 1, 0

Not attack 0, v − 1 0, 0

Case 2: 1 < v ≤ 2. There are two pure-strategy Nash equilibria: (attack, not
attack) and (not attack, attack). In such situations we will focus on the mixed-
strategy Nash equilibrium solution. We suppose attacker A chooses to attack
with probability qattack

A and attacker B attacks with probability qattack
B . Then

fB(attack) = qattack
A (12v − 1) + (1 − qattack

A)(v − 1) = fB(not attack) = 0, and
similar equation holds for attacker A. Therefore, in mixed-strategy Nash equi-
librium, qattack

A = qattack
B = 2v−1

v , and the expected utility for both attackers is
f0,1<v≤2 = (2v−1

v)(2v−1
v)(12v − 1) + 2v−1

v (1 − 2v−1
v)(v − 1) = 0.

Case 3: v ≤ 1. Similar to the analysis above, the only strictly dominant pure
strategy is (not attack, not attack) with utility f0,v≤1 = 0 for both attackers.

Both Buy Information. When both attackers buy information from the data
broker, they will make the attacking decision after they obtain the information.
Therefore, the attacking game is influenced by two factors: the target value and
the minimum effort needs for a successful attack.

136 J. Hou et al.

Table 2. Payoff table for game of attacking when both attackers buy the information

Attack Not attack

Attack 1
2
v − θ − p, 1

2
v − θ − p v − θ − p, −p

Not attack −p, v − θ − p −p, −p

Case 1: v > 2. The attackers would always benefit from attacking even if they
split the value v since 1

2v > θ. Therefore, it is easy to derive that the only strictly
dominant pure strategy is (attack, attack), and their expected utility is

f2,v>2 =
∫ 1

0

(
1
2
v − θ)dθ − p =

1
2
v − 1

2
− p. (5)

Case 2: 1 < v ≤ 2. If both attackers decide to attack after they get the infor-
mation θ, they both get a utility of 1

2v − θ − p. If only one attackers attack,
then he would get a utility of v − θ − p, while the other one gets −p. Their
payoffs for this game are listed in Table 2. Therefore, when 1

2v − θ > 0, the only
pure-strategy Nash equilibrium is (attack, attack). And when 1

2v − θ ≤ 0, in
mixed-strategy Nash equilibrium, each attacker would attack with probability
qattack
A = qattack

B = 2(1 − θ
v), and the expected utility for both attackers is −p.

Therefore, the expected utility of each attacker is

f2,1<v≤2 =
∫ 1

2 v

0

(
1
2
v − θ)dθ +

∫ 1

1
2v

0dθ − p =
1
8
v2 − p. (6)

Case 3: v ≤ 1. If θ ≥ v, both attackers would not attack. And if θ < v,
the attacker gets a utility of 1

2v − θ − p when both of them attack; when only
one attacker chooses to attack, he would get a utility of v − θ − p. Therefore,
the only pure-strategy Nash equilibrium is (attack, attack) for the situation of
1
2v−θ > 0; and in mixed-strategy Nash equilibrium for 1

2v−θ ≤ 0, each attacker
would attack with probability qattack

A = qattack
B = 2(1 − θ

v) and expected utility
of −p. To sum up, the expected utility of each attacker is also f2,v≤1 = 1

8v2 − p.

Only One Attacker Buys Information. Without loss of generality, we con-
sider the case when only attacker A buys the information. Then for attacker A,
he would make the decision of attacking after he obtains the value of θ from the
data broker, while attacker B has to make the attacking decision based on the
distribution of θ. The payoffs for this game are listed in Table 3.

Table 3. Payoff table for game of attacking when only attacker A buys the information

Attack Not attack

Attack 1
2
v − θ − p, 1

2
v − 1 v − p − θ, 0

Not attack −p, v − 1 −p, 0

Target Information Trading - An Economic Perspective of Security 137

Case 1: v > 2. If both attackers decide to attack, then attacker B’s utility
function is fB(eB) =

∫ eB

0
1
2vdθ − eB = (12v − 1)eB , with eB = 1 when v > 2.

Attacker A’s utility is therefore 1
2v − θ − p. If only attacker A attacks, then

fA = v − p − θ, and fB = 0. Else if only attacker B attacks, then fA = −p,
and fB = v − 1. Therefore, the only pure-strategy Nash equilibrium is (attack,
attack) with f1,v>2,A =

∫ 1

0
(12v − θ)dθ − p = 1

2v − p − 1
2 and f1,v>2,B = 1

2v − 1.

Case 2: 1 < v ≤ 2. In this case, attacker B knows that if 1
2v − θ ≥ 0, attacker

A will certainly attack; that is, the probability of attacker A attacking is not
smaller than the probability of 1

2v − θ ≥ 0: qattack
A ≥ ∫ 1

2v

0
dθ = 1

2v. If we assume
attacker B should attack with probability qattack

B , then its expected utility is
qattack
A ∗qattack

B ∗(12v−1)+qattack
B ∗(1−qattack

A)∗(v−1) = qattack
B ∗(v−1− 1

2vqattack
A).

Since qattack
A ≥ 1

2v, we have v−1− 1
2vqattack

A ≤ 0. Therefore, to maximize attacker
B’s expected utility, qattack

B = 0. And because attacker B would always choose
not to attack, attacker A would attack when 1 < v ≤ 2. To sum up, the expected
utilities are: f1,1<v≤2,A =

∫ 1

0
(v − p − θ)dθ = v − p − 1

2 , and f1,1<v≤2,B = 0.

Case 3: v ≤ 1. Attacker B would not choose to attack even when attacker A
does not attack. In this case, attacker A chooses to attack only when θ > v.
Therefore, f1,v≤1,A =

∫ v

0
(v − p − θ)dθ +

∫ 1

v
(−p)dθ = 1

2v2 − p, and f1,v≤1,B = 0.

5.2 Games of Purchasing

Based on the equilibrium of the attacking games, the two attackers know their
expected utilities when they choose to buy or not to buy the information. This
situation forms a game of purchasing between two buyers. According to the
results above under different values of v, we will analyze the game in three
cases, with three payoff tables below.

Table 4. Payoff table for game of purchasing when v ≤ 1

Buy Not buy

Buy 1
8
v2 − p, 1

8
v2 − p 1

2
v2 − p, 0

Not buy 0, 1
2
v2 − p 0, 0

Case 1: v ≤ 1. According to the payoffs in Table 4, if p < 1
8v2, the only pure-

strategy Nash equilibrium is (buy, buy). And if 1
8v2 ≤ p < 1

2v2, there will
be two pure-strategy Nash equilibria: (buy, not buy) or (not buy, buy). In the
mixed strategy equilibrium, assume attacker A chooses to buy the information
with probability qbuy

A and attacker B attacks with probability qbuy
B . We have

fB(buy) = qbuy
A (18v2 − 1) + (1 − qbuy

A)(12v2 − 1) = fB(not buy) = 0, and similar
equation holds for attacker A. Therefore, in mixed-strategy Nash equilibrium,
qbuy
A = qbuy

B =
1
2v2−p

3
8v2 , and the expected utility for both attackers is 0. If p ≥ 1

2v2,
the only pure-strategy Nash equilibrium is (not buy, not buy).

138 J. Hou et al.

Table 5. Payoff table for game of purchasing when 1 < v ≤ 2

Buy Not buy

Buy 1
8
v2 − p, 1

8
v2 − p v − 1

2
− p, 0

Not buy 0, v − 1
2

− p 0, 0

Case 2: 1 < v ≤ 2. According to the payoffs in Table 5, if p < 1
8v2, the only

pure-strategy Nash equilibrium is (buy, buy). If 1
8v2 ≤ p < v − 1

2 , there will be
two pure-strategy Nash equilibria (buy, not buy) or (not buy, buy). In the mixed
strategy equilibrium, either attacker would choose to buy with a probability of
qbuy
A = qbuy

B = v− 1
2−p

v− 1
2− 1

8 v2 and expected zero utility. And if p ≥ v − 1
2 , the only

pure-strategy Nash equilibrium is (not buy, not buy).

Table 6. Payoff table for game of purchasing when v > 2

Buy Not buy

Buy 1
2
v − 1

2
− p, 1

2
v − 1

2
− p 1

2
v − 1

2
− p, 1

2
v − 1

Not buy 1
2
v − 1, 1

2
v − 1

2
− p 1

2
v − 1, 1

2
v − 1

Case 3: v > 2. According to the payoffs in Table 6, if p ≥ 1
2 , we have 1

2v− 1
2 −p <

1
2v − 1, and in this case, the only pure-strategy Nash equilibrium is (not buy,
not buy). If p < 1

2 , we have 1
2v − 1

2 − p ≥ 1
2v − 1, and the only pure-strategy

Nash equilibrium is (buy, buy).
Figure 3 shows the equilibrium purchasing decisions under different values of

price p and target value v.

Fig. 3. The optimal purchasing deci-
sions of two attackers

Fig. 4. Regions where attacking prob-
ability of the target is increased

By integrating the results in the game of purchasing with those in the game
of attacking, We can now analyze the impacts of information trading for the

Target Information Trading - An Economic Perspective of Security 139

target. We already know that if no information is available, when v > 2, both
attackers attack; when 1 < v ≤ 2, each attacker attacks with a probability 2v−1

v ;
and when v ≤ 1, no one attacks. While if information is leaked and can be
bought by the attackers at price p from a data broker, Fig. 4 summarizes the
seven regions in parameter space with the shaded areas are where more possible
attacks are resulted from the information trading. The light grey region is where
there is 100% possibility that the attacking probability will be increased. And
the dark grey region is where the increase in attacking probability is determined
by the attackers’ purchasing behaviors.

The detailed impacts of the information leakage and trading on the attack-
ers’ attacking probability can be shown in Table 7. In regions I, IV and VII, the
attackers make the same attacking decisions as in the situation of no information
trading, because the price is so high that the attackers will not buy the infor-
mation from the data broker. In regions II, III, V and VI however, the attacking
probabilities are clearly increased.

Table 7. Attacking probability of the attackers w/o information trading

Region No information With information trading

I 1 1

II 2(1 − 1
v
) 1 if θ ≤ 1

2
v; 2(1 − θ

v
) if θ > 1

2
v

III 2(1 − 1
v
) 2(1 − θ

v
) if both buy info.; 1 if only one buys

info.; 2(1 − 1
v
) if both do not buy info.

IV 2(1 − 1
v
) 2(1 − 1

v
)

V 0 1 if θ ≤ 1
2
v; 2(1 − θ

v
) if θ > 1

2
v

VI 0 2(1 − θ
v
) if both buy info.; 1 when v > θ if only

one buys info.; 0 if both do not buy info.

VII 0 0

One can also obtain the value of information for the attackers. If no informa-
tion is available, when v > 2, both attackers obtain an expected utility of 1

2v−1;
otherwise, both attackers get zero expected utility. If the target information can
be bought, we could represent the value of information for the attackers as the
amount of increase in the attacker’s expected utility. If v > 2 and p ≤ 1

2 , there
is a expected utility increase of 1

2 − p; if v ≤ 2 and p ≤ 1
8v2, the attackers are

expected to have a utility gain of 1
8v2−p. The results indicate that, in the mixed

equilibrium of the competition game between the attackers, they are expected to
benefit from the information only when the price is less than 1

8v2 for v ≤ 2 or 1
2

for v > 2. However, even if the information does not benefit the attackers as the
price increases, the target is expected to be attacked more likely with informa-
tion leakage (in regions III and VI of Fig. 4). Besides, if we compare the results
above with those when no competitor exists for the attacker in Sect. 4, we could
conclude that the value of information for the attackers is indeed weakened by
their competition if the target value if not large enough (v ≤ 2).

140 J. Hou et al.

5.3 Optimal Pricing Decisions of the Data Broker

Now we further analyze the data broker’s selling strategy to maximize her profit.
She could set either a low price such that both attackers buy or a high price that
attackers buy with certain probability.

Case 1: v > 2. The data broker would not set a price larger than 1
2 , otherwise

both attackers would not be willing to make a purchase. In this case, the data
broker’s expected profit is π∗

v>2 = 2 ∗ 1
2 = 1 with optimal price p∗ = 1

2 .

Case 2: 1 < v ≤ 2. If the data broker sets a price not larger than 1
8v2,

both attackers would buy the information, which brings a profit of at most
π1<v≤2,p≤ 1

8v2 = 1
4v2 for the data broker with p1 = 1

8v2. If the data broker
sets a price that satisfies 1

8v2 < p ≤ v − 1
2 , the two attackers would make a

purchase at the probability of q1 = v− 1
2−p

v− 1
2− 1

8v2 . In this case, an expected profit

of π1<v≤2, 18v2<p≤v− 1
2
(p) = q21 ∗ 2 ∗ p + 2 ∗ q1 ∗ (1 − q1) ∗ p = 2p

v− 1
2−p

v− 1
2− 1

8 v2

will be gained. Because
∂2π1<v≤2, 18 v2<p≤v− 1

2
(p)

∂p2 < 0, the optimal price p2 sat-

isfies
∂π1<v≤2, 18 v2<p≤v− 1

2
(p)

∂p = 0, i.e., p2 = 2v−1
4 . Now we can easily prove

that π1<v≤2,p≤ 1
8 v2 = 1

4v2 < π1<v≤2, 18 v2<p≤v− 1
2

= (v− 1
2)

2

2v−1− 1
4 v2 for 1 < v ≤ 2.

Therefore, when 1 < v ≤ 2, the data broker’s maximum expected profit is
π∗
1<v≤2 = (v− 1

2)
2

2v−1− 1
4 v2 with optimal price p∗ = 2v−1

4 .

Case 3: v ≤ 1. Similarly, for both attackers buying the information, the data
broker would set a price equal to 1

8v2, which brings a profit of πv≤1,p≤ 1
8 v2 = 1

4v2.
If the data broker sets a price that satisfies 1

8v2 < p ≤ 1
2v2, the two attackers

would make a purchase at the probability of q2 =
1
2v2−p

3
8v2 . In this case, an expected

profit of πv≤1, 18 v2<p≤ 1
2 v2(p) = q22 ∗ 2 ∗ p + 2 ∗ q2 ∗ (1 − q2) ∗ p = 2p

1
2v2−p

3
8v2 will be

gained, which is maximized at p = 1
4v2, and we have πv≤1, 18 v2<p≤ 1

2 v2 = 1
3v2. In

this case, since πv≤1, 18 v2<p≤ 1
2 v2 > πv≤1,p≤ 1

8 v2 , it is optimal for the data broker
to set a price of p∗ = 1

4v2, and π∗
v≤1 = 1

3v2.
Proposition 1 summarizes this section’s main results. And Fig. 5 shows the

optimal pricing strategy and corresponding expected profit of the data broker.
It indicates that, the information value for the broker increases with the target
value when the target value is not large enough (v ≤ 2), but as the target is
becoming attractive enough for the attackers (v > 2), the information value
decreases to a certain value and remains unchanged.

Proposition 1. The data broker’s optimal price of the target information is
determined by the target value for the attackers. When the target is not attractive
enough, it is not wise to set a price low enough to attract two buyers. Specifically,

(a) if v ≤ 1, information is sold to the attackers at a price of p∗ = 1
4v2, resulting

each attacker making the purchase with a probability of 2/3;

Target Information Trading - An Economic Perspective of Security 141

(b) if 1 < v ≤ 2, information is sold at p∗ = 2v−1
4 , with a purchase probability

of v− 1
2

2v−1− 1
4 v2 from each attacker;

(c) else if v > 2, information is sold to both attackers at p∗ = 1
2 .

Proof. See the text.

If we compare the data broker’s expected profit in the single-attacker scenario
with that in the multi-attacker scenario, we could find that, the impacts of
competition among attackers on the information value for the data broker is
determined by the target value: if the target value is small (v ≤ 1.24), the data
broker benefits from more potential buyers; while if the target value is large
(v > 1.24), the information value is larger when there is only one attacker.

Fig. 5. The optimal pricing strategy
and expected profit of the data broker

Fig. 6. The optimal purchasing deci-
sions of two attackers under partial
information

6 Extension-Partial Information Model

We consider now the possibility that the data supplier can only obtain partial
information about the target, i.e., whether θ belongs to [0, 0.5] or [0.5, 1], but
he cannot provide the exact value of θ. We analyze how this new informational
structure affect attackers’ purchasing and attacking decision games and model
the price of information with low data quality.

6.1 Games of Attacking

We also start with the competition game of attacking given different purchasing
decisions.

Both Do Not Buy Information. When nobody buys the information, the
equilibrium results are the same as in Sect. 5.1.

142 J. Hou et al.

Both Buy Information. When both attackers buy the information, two cases
are considered:

Case 1: θ ∈ [0, 0.5]. Both attackers know that θ is uniformly distributed within
[0, 0.5]. If both of them attack, each obtains an expected utility of f =

∫ 0.5

0
1
2v ∗

2dθ−0.5−p = 1
2 (v−1)−p; else if only one attacks, then he obtains an expected

utility of f =
∫ 0.5

0
v ∗ 2dθ − 0.5 − p = v − 1

2 − p. Therefore, if v > 1, both of
them would attack; if 1

2 < v ≤ 1, each attacker would attack with probability
qattack
A = qattack

B = 2v−1
v , and the expected utility for both attackers is −p;

otherwise, both would not attack.

Case 2: θ ∈ [0.5, 1]. If both of them attack, each obtains an expected utility
of f =

∫ 1

0.5
1
2v ∗ 2dθ − 1 − p = 1

2v − 1 − p; else if only one attacks, then he
obtains an expected utility of f =

∫ 1

0.5
v ∗ 2dθ − 1 − p = v − 1 − p. Therefore, if

v > 2, both of them would attack; if 1 < v ≤ 2, each attacker would attack with
probability qattack

A = qattack
B = 2v−1

v , and the expected utility for both attackers
is −p; otherwise, both would not attack.

Considering the two cases θ ∈ [0, 0.5] and θ ∈ [0.5, 1] with equal probabilities
for the attackers before they buy and obtain the information, the expected utility
for the attacker when both of them buy information would be: f2,v>2 = 1

2 (12 (v −
1) − p) + 1

2 (12v − 1 − p) = 1
2v − 3

4 − p, f2,1<v≤2 = 1
4 (v − 1) − p, and f2,v≤1 = −p.

Only One Attacker Buys Information. For attacker B who does not buy
the information, if both attackers attack, he is expecting a utility of 1

2v −1; if he
attacks but attacker A does not attack, his expected utility is v−1. Therefore: if
v > 2, both attackers would attack, with f1,v>2,A = 1

2 (12v− 1
2−p)+ 1

2 (12v−1−p) =
1
2v − 3

4 − p and f1,v>2,B = 1
2v − 1. If 1 < v ≤ 2, the optimal decision is (attack,

not attack), with f1,1.5<v≤2,A = 1
2 (v − 1

2 − p) + 1
2 (v − 1 − p) = v − 3

4 − p
and f1,1.5<v≤2,B = 0. And if v ≤ 1, attacker B would certainly not attack.
In this case, if attacker A gets that θ ∈ [0, 0.5], he would only attack when
v > 1

2 ; and if A gets that θ ∈ [0.5, 1], he would not attack. Therefore, we have
f1, 12<v≤1,A = 1

4v − 1
4 − p, f1,v≤ 1

2 ,A = 0 and f1,v≤1,B = 0.

6.2 Games of Purchasing

From the equilibrium analysis above, we know that if v < 1
2 , both attackers would

not attack, and therefore have no incentive to buy information. Figure 6 plots
the attackers’ optimal purchasing decisions of partial information in different
ranges of v and p. Due to the page limitation, the analysis process is omitted.

The impact of partial information trading for the target is less than that of
full information trading: the attacking probability increases only in the following
two situations: (1) 1 < v ≤ 2, p ≤ 1

4v − 1
4 and θ < 0.5: both attackers would

attack the target; and (2) 1 < v ≤ 2 and 1
4v − 1

4 < p ≤ v − 3
4 : both attackers

would attack if they buy the information and find that θ < 0.5, or the only one
attacker who buys the information would certainly attack. But in these situations
without the information, they would attack with probability 2v−1

v .

Target Information Trading - An Economic Perspective of Security 143

As for the value of partial information to the attackers, we know that if no
information is available, when v > 2, both attackers obtain an expected utility of
1
2v−1; when v ≤ 2, both attackers get zero expected utility. If partial information
can be traded, when v > 2 and p < 1

4 , there is a expected utility increase of
1
4 − p; when 1 < v ≤ 2 and p ≤ 1

4v − 1
4 , the attackers are expected to have a

utility gain of 1
4v − 1

4 − p; and when 1 < v ≤ 2 and 1
4v − 1

4 < p ≤ v − 3
4 , the

expected utility gain is v − 3
4 − p.

6.3 Optimal Pricing Decisions of the Data Broker

Due to lower data quality, we are expecting a lower price compared to the sce-
nario when full information is traded. Specifically, the following proposition sum-
marizes our main results:

Proposition 2. Under partial information, if v ≤ 1, the information is of no
value to both the attackers and the data broker; if 1 < v ≤ 2, information is sold
at p∗ = 1

2v − 3
8 , with a purchase probability of 2v− 3

2
3v−2 for each attacker; else if

v > 2, information is sold to both attackers at p∗ = 1
4 .

Proof. The proof is similar to that of Proposition 1, and thus omitted here.

One can now compare the results under partial information with those under
full information. The price for partial information is 1

8 lower when 1 < v ≤ 2 and
1
4 lower when v > 2. That is, information accuracy is more valuable for the data
broker or the attackers for a more attractive target. Moreover, by comparing
Figs. 3 and 6, we can derive that, for a target with lower value (v < 1), if
the defender takes some effort to ensure that only partial information could be
leaked, the attacking probability may decrease to zero.

7 Conclusion

We have studied a security problem with target information trading from an
economic perspective. The interaction between a data broker and two attackers is
formulated as a Stackelberg game where the data broker acts as the leader setting
the price with the consideration of possible responses from the attackers. And
the competition between two attackers is modeled as a type of stochastic game.
We have evaluated the value of the information from the perspectives of different
players respectively, which is related to: the acceptable price and the expected
utility increase for the attackers, the changes in the attacking probabilities for
the target, as well as the data broker’s optimal selling strategy. We discover
several interesting insights of the information market in the hacker community.
For example, if the target is not so attractive, the information value for the
attackers will be weakened by their competition, but the data broker would
benefit from their competition; and the data broker prefers high profit margin
over volume sales. Besides, information accuracy is more valuable of a more
attractive target. Our results also provide some insights to the defense strategy:

144 J. Hou et al.

to protect the information from leakage would avoid attacks if the target value is
low enough, but when the target is highly attractive, more effort should be taken
into the protection of the target itself than the protection of the information.
Several directions for future research can stem from our paper. First, it will be
worthwhile to investigate a specific type of attack. Second, the situation where
the data broker does not reveal her total sales quantity is a problem that the
attackers may encounter. Finally, the consideration of multiple attackers with
different target evaluations would be an important future research direction.

Acknowledgments. The work of T. Shu is supported in part by NSF under grants
CNS-1837034, CNS-1745254, CNS-1659965, and CNS-1460897. The work of H. Li is
supported in part by NSF under grant CNS-1525226. Any opinions, findings, conclu-
sions, or recommendations expressed in this paper are those of the author(s) and do
not necessarily reflect the views of NSF.

References

1. An, B., Brown, M., Vorobeychik, Y., Tambe, M.: Security games with surveillance
cost and optimal timing of attack execution. In: 12th International Conference
on Autonomous Agent and Multi-agent System, St. Paul, MN, USA, pp. 223–230
(2013)

2. Southers, E.G., Tambe, M.: LAX-terror target: the history, the reason, the counter-
measure. In: Security and Game Theory: Algorithms, Deployed Systems, Lessons
Learned, pp. 27–50. Cambridge University Press (2011)

3. Pita, J., Jain, M., Tambe, M., Ordóñez, F., Kraus, S.: Robust solutions to Stack-
elberg games: addressing bounded rationality and limited observations in human
cognition. Artif. Intell. 174(15), 1142–1171 (2010)

4. Montes, R., Sand-Zantman, W., Valletti, T.: The value of personal information in
online markets with endogenous privacy. Manag. Sci. 65(3), 1–21 (2018)

5. Benjamin, V., Chen, H.: Securing cyberspace: identifying key actors in hacker com-
munities. In: IEEE International Conference on Intelligence and Security Informat-
ics, pp. 24–29. IEEE, Arlington (2012)

6. Motoyama, M., McCoy, D., Levchenko, K., Savage, S., Voelker, G.M.: An analysis
of underground forums. In: ACM SIGCOMM Conference on Internet Measurement
Conference, pp. 71–80. ACM, Berlin (2011)

7. Hacking communities in the Deep Web. https://resources.infosecinstitute.com/
hacking-communities-in-the-deep-web/#gref. Accessed 5 Apr 2019

8. The hacks that left us exposed in 2017. https://money.cnn.com/2017/12/18/
technology/biggest-cyberattacks-of-the-year/index.html. Accessed 5 Apr 2019

9. Facebook could reportedly face multibillion-dollar FTC fine over privacy vio-
lations. https://www.theverge.com/2019/2/14/18225440/facebook-multibillion-
dollar-ftc-fine-privacy-violations. Accessed 5 Apr 2019

10. USA Information Resources Management Association: Cyber Crime: Concepts,
Methodologies, Tools and Applications. IGI Global, Hershey (2011)

11. Zhu, Q., Rass, S.: On multi-phase and multi-stage game-theoretic modeling of
advanced persistent threats. IEEE Access 6, 13958–13971 (2018)

12. Leeson, P., Coyne, C.J.: The economics of computer hacking. J. Law. Econ. Policy
1(2), 511–532 (2006)

https://resources.infosecinstitute.com/hacking-communities-in-the-deep-web/#gref
https://resources.infosecinstitute.com/hacking-communities-in-the-deep-web/#gref
https://money.cnn.com/2017/12/18/technology/biggest-cyberattacks-of-the-year/index.html
https://money.cnn.com/2017/12/18/technology/biggest-cyberattacks-of-the-year/index.html
https://www.theverge.com/2019/2/14/18225440/facebook-multibillion-dollar-ftc-fine-privacy-violations
https://www.theverge.com/2019/2/14/18225440/facebook-multibillion-dollar-ftc-fine-privacy-violations

Target Information Trading - An Economic Perspective of Security 145

13. Hausken, K., Bier, V.M.: Defending against multiple different attackers. Eur. J.
Oper. Res. 211(2), 370–384 (2011)

14. Yin, Z., Korzhyk, D., Kiekintveld, C., Conitzer, V., Tambe, M.: Stackelberg
vs. Nash in security games: interchangeability, equivalence, and uniqueness. In:
9th International Conference on Autonomous Agents and Multi-agent Systems,
Toronto, Canada, pp. 1139–1146 (2010)

15. Fang, F., Stone, P., Tambe, M.: When security games go green: designing defender
strategies to prevent poaching and illegal fishing. In: 24th International Joint Con-
ference on Artificial Intelligence, pp. 2589–2595. AAAI Press, Buenos Aires (2015)

16. Damme, E., Hurkens, S.: Games with imperfectly observable commitment. Games
Econ. Behav. 21(1–2), 282–308 (1997)

17. An, B., et al.: Security games with limited surveillance. In: 26th AAAI Conference
on Artificial Intelligence, pp. 1241–1248. AAAI Press, Toronto (2012)

18. Zhuang, J., Bier, V.M., Alagoz, O.: Modeling secrecy and deception in a multiple-
period attacker-defender signaling game. Eur. J. Oper. Res. 203(2), 409–418 (2010)

19. Guo, Q., An, B., Bošanský, B., Kiekintveld, C.: Comparing strategic secrecy and
Stackelberg commitment in security games. In: 26th International Joint Conference
on Artificial Intelligence, Melbourne, Australia, pp. 3691–3699 (2017)

20. Du, H., Yang, S.J.: Discovering collaborative cyber attack patterns using social
network analysis. In: Salerno, J., Yang, S.J., Nau, D., Chai, S.-K. (eds.) SBP 2011.
LNCS, vol. 6589, pp. 129–136. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19656-0 20

21. Guo, Q., An, B., Vorobeychik, Y., Tran-Thanh, L., Gan, J., Miao, C.: Coalitional
security games. In: International Conference on Autonomous Agents and Multi-
agent Systems, Singapore, Singapore, pp. 159–167 (2016)

22. Gholami, S., Wilder, B., Brown, M., Thomas, D., Sintov, N., Tambe, M.: Divide
to defend: collusive security games. In: Zhu, Q., Alpcan, T., Panaousis, E., Tambe,
M., Casey, W. (eds.) GameSec 2016. LNCS, vol. 9996, pp. 272–293. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47413-7 16

23. Roy, A., Mohapatra, P., Kamhoua, C.: Game theoretic characterization of collu-
sive behavior among attackers. In: IEEE International Conference on Computer
Communications (INFOCOM), pp. 2078–2086. IEEE, Honolulu (2018)

https://doi.org/10.1007/978-3-642-19656-0_20
https://doi.org/10.1007/978-3-642-19656-0_20
https://doi.org/10.1007/978-3-319-47413-7_16

Cyber Threat Analysis Based
on Characterizing Adversarial

Behavior for Energy Delivery System

Sharif Ullah1(B), Sachin Shetty1,2, Anup Nayak3, Amin Hassanzadeh3,
and Kamrul Hasan1

1 Old Dominion University, Norfolk, VA, USA
{mulla001,sshetty,khasa001}@odu.edu

2 Virginia Modeling, Analysis and Simulation Center, Suffolk, VA, USA
3 Accenture Cyber Lab, Cyber Fusion Center, Arlington, VA, USA

{anup.nayak,amin.hassanzadeh}@accenture.com

Abstract. Recently, Energy Delivery Systems (EDS) has been the tar-
get of several sophisticated attacks with potentials for catastrophic dam-
ages. These attacks are diverse in techniques, attack progression, and
impacts. System administrators require comprehensive analytics to assess
their defense against these diverse adversarial strategies. To address this
challenge, this paper proposes a methodology to assess cyber threats
proactively by characterizing adversary behavior. First, we describe the
different level of threat indicators and their effectiveness to understand
the adversary activity. Next, we integrate static network information
with dynamic attack strategy by mapping attack graphs into attacker’s
techniques and tactics. This contextual integration provides insights into
attacker’s stealthy behavior. Following the enumeration of complexity
and effort for attack progression, we devise a metric to quantify the
likelihood of an adversary taking an attack path for compromising an
asset in EDS. We empirically evaluated our approach within an ICS
test-bed. The results show the significance of our approach for charac-
terizing adversarial behavior and gaining valuable insights on cyber risk
management.

Keywords: Energy Delivery System · Attack graph · Proactive threat
analysis · Adversary behavior · Attack technique and tactic

1 Introduction

Today’s computer networks are mostly segregated and usually deployed with
diverse cyber defense mechanisms which makes it challenging for the attacker to
gain direct access to the target. This pattern is commonly seen in Industrial Con-
trol System (ICS) where a layered architecture ensures that the targets are not in
close proximity to the perimeter [13]. Despite the presence of a layered architec-
ture, the spate of attacks is increasing rapidly spanning from large enterprises to

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 146–160, 2019.

https://doi.org/10.1007/978-3-030-37231-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_8

Threat Analysis EDS 147

the critical infrastructure (CI) network. Due to the potential severe damage and
cost experienced by a victim nation, CI has been targeted intentionally and has
suffered from significant losses during successful exploitation. Multiple attacks
have occurred in Energy Delivery System (EDS) in the past couple of years such
as Stuxnet attack in nuclear systems [11], Shamoon attack in Oil and Gas sys-
tems [8] and most recently Triton [9], the first attack on safety instrumented
system.

Similar to the aforementioned cyber incidents, most of the attacks on CI
occur in multiple stages. Detecting a single intrusion doesn’t necessarily indi-
cate the end of the attack as the attack could have progressed far deeper into
the network. Hence, individual attack footprint seems insignificant in an isolated
manner since it is usually part of a more complex multi-step attack. It takes a
sequence of steps to form an attack path towards a target in the network [19].
Researchers have investigated several attack path analysis methods for identify-
ing attacker’s required effort, e.g., number of paths to a target and the cost and
time required to compromise each path, to diligently estimate the level of risk
in EDS. Authors in [20] evaluate the reliability of EDS by using Bayesian net-
work for modeling the potential attack steps in the network. Katherine et al. [10]
have proposed a framework to assess cyber-induced disruption to power grids
by formulating attack trees created based on cyber-physical dependency model.
Authors in [15] compare three Attack Graph (AG) based security metrics such
as shortest path, number of paths, etc. and propose a new metric for efficient
attack surface evaluation.

The aforementioned path centric metrics and threat analysis methods do
not consider attack complexity in an interconnected cyber infrastructure with
a variety of attack paths which makes it impractical for real attack scenarios.
More specifically, most of the analysis methods only consider the topological
connection between stepping stones to measure the difficulty of reaching to a
target. In addition, they only assume some predefined attacker’s skill set to esti-
mate the path complexity. In reality, attacker’s capabilities and knowledge evolve
throughout attack paths to the target. Thus, it is of paramount importance to
perform additional inspections in order to identify adversary’s new opportuni-
ties obtained through an attack path. In this paper, we propose a cyber threat
analysis framework based on characterizing adversarial behavior in a multi-stage
cyber attack process. First, we investigate how a threat proceeds within the net-
work by constructing adversarial Attack Graph (AG) and identifying all possible
attack stages. Then we discuss how each stage can be associated with network
attributes. Using a holistic view of threat’s exposure provided by attack graphs,
our model incorporates attacker’s techniques and tactics into the stepping stones
found in the AG.

We propose to add more context to each attack stage using real-world knowl-
edge base of adversary tactics and techniques, when characterizing the adver-
sary’s progression in the attack path. Our attack path analysis model identifies
the level of difficulty in taking a path by considering the complexity of path,
attacker’s skill set, etc. The path hardness is measured in terms of attacker’s
capability and challenges. The insight into the level of difficulty of an attack

148 S. Ullah et al.

Fig. 1. Pyramid of plain model [7]

path in the network helps security administrators to pinpoint critical paths and
prioritize path hardening actions.

Our contributions in this paper is threefold:

– We characterize adversarial behavior in cyber attack campaigns by integrat-
ing attacker’s techniques and tactics into attack graphs and consequently
uncovering attack strategy for each potential campaign in the network.

– We propose a novel set of path analysis metrics i.e. path hardness by taking
into account attacker’s evolving skills along the attack paths.

– We perform a comprehensive evaluation of the proposed framework in a real
ICS testbed.

The details of the aforementioned details will be discussed in details in the
following sections.

2 Overview of Threat Indicators

In order to investigate the attacker’s behavior, security administrators typically
track low-level threat artifacts such as hash values, IP address and domain
names. These are often termed technical threat intelligence shown in the first
three levels of the Pyramid of plain model [7]. Although it is relatively easy to
integrate these artifacts within a defense system, a low-level indicator of compro-
mise (IoC) is not much fruitful for defending against sophisticated adversaries.
These indicators are susceptible to change over time as attackers use botnets,
random domain names or dynamically change hash values with low costs. In con-
trary, attacker’s action follows some particular sequence which is being reused
with little modification. Attributes related to actions is shown in the upper three
layers of the pyramid often termed as behavioral attack signatures of threats.
These indicators are very hard to change for a particular group of attackers such
as script kiddies, hacktivists, cybercriminals, or state-sponsored attackers. Thus,
defense systems that take into account the top three threat artifacts, will present
tougher obstacle to the adversary.

Threat Analysis EDS 149

Fig. 2. Proposed cyber threat assessment framework

Network/host artifacts can be described from the perspective of the defense
mechanism. For reactive defense, it represents the adversary traces in the network
and host. For proactive defense, the artifacts represent the conditions that allow
the attacker to propagate. Tools refer the software or utilities attackers use to
accomplish their objectives. Naive attackers rely on public exploits or open source
tools where skilled and stealthy attackers use obfuscation as well as utilities that
are part of the operating system.

Attackers can take different strategies and paths to achieve their objectives.
TTPs can capture this kind of latent behavior of the attacker. It describes
attacker’s approach at different levels of granularity within a cyber attack cam-
paign. Tactic refers to how an adversary can operate part of the cyber attack cam-
paign: what step to take next? A particular tactic might have different ramifica-
tions depending on the adversary type. Technique provides detailed description
within the context of tactic: how to take the next step? In other words, the tech-
niques are meant to facilitate the execution of different tactics. While technique
consists of actions without specific direction, the procedure provides more low-
level details correspond to a technique. It includes all the necessary steps to com-
plete an action. A well-tailored procedure increases the success rate of a technique.

3 Framework

The behavioral attributes discussed in the previous section do not contain the
level of information to understand attacker’s behavior comprehensively. For an
attacker, learning a new technique or adapting to a new method is much difficult
than learning tools as well as learning tools is harder than learning network/host
artifacts. We intend to identify these features and integrate them in a model for
efficient threat analysis. Our proposed framework addresses the tasks illustrated
in Fig. 1. We will explain each component of this framework in the following
subsections.

3.1 Attack Graph and Action State Model

We use MulVal [18] to generate AG consisting of different node types to show
how a set of network and system configurations result in unauthorized actions to

150 S. Ullah et al.

Fig. 3. A sample attack graph represented in Neo4j graph format

specific targets. Figure 3 shows a small portion of an AG generated by MulVal
and converted to Neo4j graph database structure. Nodes in an AG are of three
different types as also depicted in Fig. 3. The circular nodes denote system or
network configurations, are the conditions that provide possibilities for actions by
the adversary. The hexagonal nodes in the network represent the reasoning rules
which usually represents the attack methodology leveraged by an adversary to
achieve a particular goal. The impact nodes indicate the sub-goal for a certain
action attacker could take which is shown as rectangular nodes in the figure.
There are two types of edges in an attack graph: (1) configuration-to-rule edges
that represent logical AND meaning all configuration conditions has to be true
to cause the impact, and (2) rule-to-impact edges that represent logical OR
meaning that the impact happens if at least one rule satisfies holds.

AG allows us to inspect all possible sequences of exploits an attacker can
take to infiltrate a network and reach its goals. We use monotonicity assumption
[17] to translate it to a condition dependency graph which is very beneficial
for analyzing large AGs by removing cycles. states that attacker’s capability
doesn’t decrease by launching attacks and attacker doesn’t need to go back to the
privileges already gained. This phenomenon allows us to decompose the AG into
a state graph where each state is called action state. The primary objective of this
transitioned model is to represent the progression of the attacker in the network
over distinct actions. An action state (asi) is comprised of pre-condition(s), rule
and associated exploit or impact. In Fig. 3 two states have been designated for
a better understanding of the model. Each action starts with enabling some
pre-conditions for that action state. An enabled pre-condition gives the attacker

Threat Analysis EDS 151

an opportunity to cause the impact; e.g., execute an exploit. More formally,
P (e|∃cpr = F, (e, cpr) ∈ asi) = 0: that is an exploit can’t be executed until all
it’s pre-conditions are satisfied. Post-conditions OR conditions direct from rule
to impact. This action state model can efficiently track the attacker’s movement
throughout the network. From now on we use state and action state alternately
in the rest of the paper.

3.2 Mapping to Technique-Tactics

We need to map each attack state to a certain technique in order to unfold
the current phase of attack strategy deployed by the attacker. MITRE pro-
poses a model called Adversarial Tactics, Techniques, and Common Knowledge
(ATT&CK) [4] characterizing malicious behaviors for each step in a cyber attack
campaign. Tactics provide the high-level objective why an attacker follows a par-
ticular behavior in a system and techniques provide more fine-grained informa-
tion showing how an attack is performed. Our goal is to map each attack state to
the distinct high-level category defined in the ATT&CK model. By incorporating
this, each attack path eventually exposes a sequence of tactics and techniques.
Our evaluation finds that this sequence could form a Techniques, Tactic, and
Procedures (TTPs) of the cyber Kill Chain [12,14].

ATT&CK model categorizes adversarial techniques into different tactics
where each technique might fall in multiple tactics. We define a tactic l as
tcl = {ta1,tat} enclosing a set of techniques belonging to it. We intend to
map each action state with distinct Technique-Tactic (TT) pair. In our action
state model, each rule represents a threat action associated with some primitives
which are ascribed as configuration nodes in our state graph. The configuration
nodes are shared by multiple states in our model. Similarly, different network and
system features are shared by multiple techniques. We use this phenomenon for
our mapping methodology. For technique mapping, we use rule and configura-
tion information which could map one state to several techniques. On the other
hand, the tactic describes the sub-goal of a threat action which is analogous to
the impact node in our state graph. Thus, using domain expert’s knowledge, we
map each state to a TT pair. From a real attack history, it is evident that each
technique often requires a pre-requisite technique to accomplish its goal [5]. For
instance, in APT33 the technique T1078 (Valid accounts) cannot be performed
without User Execution (T1204) before. Likewise, in APT1, technique T10005
(Data from Local System) and T1114 (Email Collection) are two pre-conditions
for exfiltration of compressed data (T1002). We can use this finding to improve
our mapping accuracy. This will be discussed in details in our evaluation section.

4 Path Complexity and Effort Estimation

The complexity of an attack path is essential to understanding an attacker’s
behavior during attack progression. National Vulnerability Database (NVD)
databases only provide insights into the exploitability of vulnerabilities. But

152 S. Ullah et al.

Table 1. Vulnerable component risk

Exploitability level Likelihood level

Unproven Proof-of-concept Exploit in the wild

Easy 3 4 7

Medium 2 3 5

Hard 1 2 4

determining the presence of exploitable vulnerabilities is not sufficient for com-
puting complexity of an attack path. Moreover, attacker’s evolving skill should
be considered for accurate path complexity calculation. Our framework illus-
trated in Fig. 2 incorporates contextual information in order to characterize the
level of difficulty in taking an attack path.

4.1 Vulnerable Component Risk

Existing work focuses only on the vulnerability exploitability score to estimate
the effort required to attack a host. Although there exist several vulnerabilities in
a cyber infrastructure, in reality, only a fraction of them are exploited widely e.g.,
only 15% of known vulnerabilities are exploited in the wild [16]. Exploitability of
vulnerabilities are typically computed using the Common Vulnerability Scoring
System (CVSS) [3] scores that range from 0 to 10. We categorize these scores
into easy (0–3), medium (4–7) and hard (8–10).

While default scoring of vulnerability only describe it’s technical aspect, we
also focus on attempted vulnerabilities through real attack scenarios in the field.
This will lead us to derive a unique vulnerability score for our network. In order
to do that we distinguish the state of an exploit into three categories:

Unproven: It refers to the unavailability of exploit code for exploiting the
vulnerability. The vulnerability is identified but no potential full-fledged or gen-
eral purpose exploit has been revealed. Vulnerabilities that fall in this category
have a very low probability to get exploited.

Proof of Concept: The development of proof-of-concept exploit happens to
be part of penetration testing and vulnerability disclosure process. Most relevant
and updated information of this category can be acquired from exploit database
[1]. This is a Common Vulnerabilities and Exposures (CVE) [3] compliant archive
for public exploit with associating vulnerable software.

Exploited in the Wild: It refers to the vulnerabilities extensively prac-
ticed in real attacks. Marked by different reasons some vulnerabilities attract
much attention and quickly get exploited. The information of this group is doc-
umented in different security reports and databases like Symantec’s AttackSig-
nature dataset [6].

Table 1 shows the risk of a vulnerable component by combining these two
factors. Each entry has been assigned with some numbers considering the relative

Threat Analysis EDS 153

risk of the component. We can see in Table 1 that the upper right index i.e. Easy-
Exploited in the wild pair has a higher risk for the vulnerability fallen on that
class. We note that the index score can be easily modified based on security
personnel’s preference.

4.2 Technique Priority Score

Along with vulnerability, we like to prioritize techniques employed by the
attacker in the kill chain. Two factors have been considered to determine the pri-
ority of each technique independently: adaptability and exploitation. The adapt-
ability of a technique depends on the environment and conditions that allow it
to be exercised in addition to different goals the technique can attain. A tech-
nique usable for multiple OS allows attackers to carry their attacks on various
service and applications. Thus, platform-independent technique presents addi-
tional risks. Adversaries action also require a particular privilege for successful
exploitation. A normal user privilege can be easily achievable than a superuser,
but the later could cause catastrophic damage. We have added both aspects
by analyzing permission requirement of a technique. Technique’s effectiveness is
also defined as the number of distinct goals it obtains. Expertise on a particu-
lar technique resulting in more tactics gives the attacker more opportunities to
proceed in the kill chain. Therefore, the adaptability score (ASc) of a technique
t is:

ASc(tat) = plt ×
p∑

i=1

prti × τt (1)

Where plt and τt are the fraction of OS platforms and achievable tactics
respectively. In addition, prti denotes the permission level i for technique t. This
score is proportional to the privilege acquired by the permission. For instance,
the SYSTEM permission has the highest rank in this context and User has the
lowest one.

Technique’s priority also depends on how it has been manifested in the real
world. MITRE ATT&CK database maps each technique with their associated
softwares which has been leveraged by threat actor/groups for their adversarial
activities. Software is broken down into three categories such as tool, utility
and malware mostly referring to open source-commercial code, operating system
utilities, custom or open source software for malicious purposes, etc. Groups use
techniques in part of their attack campaign or intrusion activity over time. Hence,
we measure how extensively a technique has been exploited by its exploitation
score.

ExSc(tat) = sft × grt (2)

Where sft and grt are the fraction of software and groups respectively, that
utilized technique t in real-world attacks. Next, we combine these two parameters
discussed above to find the priority score of a technique. This technique priority
score depicts how beneficial a technique is for attackers and how likely they would

154 S. Ullah et al.

use it regardless of network structure. Each technique’s score TSc is calculated
independently using Eqs. 1 and 2:

TSc(tat) = βASc(tat) + (1 − β)ExSc(tat) (3)

The tuning parameter β is specified by security administrator. This parame-
ter refers to the relative importance of whether a technique gives more benefits
to the attacker or easy to learn from real attack.

4.3 Correlation Coefficient Calculation

The attacker needs to follow a chain of actions to reach to a target in the net-
work. It resembles a compromising chain of states in our proposed model. Each
state is integrated with different database such as ATT&CK [4], NVD [3] and
Common Weakness Enumeration (CWE) [2]. This knowledge base gives us the
corresponding factors that influence attacker to take a particular action. Multi-
ple techniques from different or the same tactics might have overlapped factors
which help attackers in their future actions. We track these attackers evolving
skills from state to state by constructing a state correlation matrix in order to
quantify how each state is correlated to others. The correlation matrix between
state x and y is formulated as follows: CCx,y = AMCCx,y + ENCCx,y; where
AMCC and ENCC are the attack method correlation and environmental cor-
relation, respectively. We determine AMCC by examining whether an attack
follows the same technique or emerged from the same weakness. ENCC refers
to the environmental and system features relevant to the attacks performed in
the network. These features include platform, application or service, configura-
tion, etc.

4.4 Hardness of a Path

We define the state hardness Hasi
as a function of two parameters, intrinsic

state hardness Hasi
(intr) and correlated hardness Hasi

(corr). The intrinsic state
hardness refers to the difficulty of state irrespective to the attack path it belongs
to. The later one is computed by correlating with the former states the attacker
traversed in a particular path. The hardness of path k from host j to j′ is
formulated as:

HPk
j,j′ =

∑

i∈AS
P k

j,j′

Hasi
(intr) ∗ Hasi

(corr) (4)

The correlation between state i and q is denoted with correlation coefficient
(CCiq). For similar states, we introduce a decay factor (λ) representing the effort
reduction in similar actions; the larger the λ is, the easier the same action will
be at the next time. Thus, Eq. 4 yields as:

HPk
j,j′ =

∑

i∈AS
P k

j,j′

(α−1
i + TSc(tat)−1)e

− ∑i
q=AS

P k
j,j′

(0)
CCiq

λ

(5)

Threat Analysis EDS 155

Fig. 4. ICS test-bed

Here, (α−1
i + TSc(tat)−1) is the criticality of the state where TSc(tat) is

the technique priority score assuming state i is mapped with technique t and
αi is the vulnerable component risk for this state. The priority score reflects
the defenders’ priority alternatively means less hard for the attacker. In our
transformed state graph each path from a source to target can be represented
with a set of states. Thus we denote ASPk

j,j′ = {as1, as2,asn} as the set
comprised of n action states for the path from j to j′.

5 Implementation and Results

We utilize Accenture ICS test-bed (Fig. 4) to evaluate our proposed framework.
The test-bed has been designed based on the ISA-62443 architecture comprises
of three zones, i.e., IT, OT and DMZ that simulate a power utility network.
In the IT and OT zones, multiple workstations, servers and security devices are
embedded. On the other hand in the OT zone, I/O panels are controlled by PLC
and RTUs where these are subsequently interacting with SCADA server and
monitored by human-machine interface (HMI) for active operation. We inten-
tionally injected vulnerabilities in IT hosts, HMI and SCADA server. Vulnerable
firmware is used in end devices like PLC and RTUs resembling real attack prone
ICS network. Our analysis starts with scanning the whole network in different
stages. Active and passive scanning tools like Nessus, Grassmarlin, ClarOty has
been used in IT and OT zones respectively. This information is used to generate
logical AG, further translated to state graph employing our methodology. For
our analysis, we extracted attack paths terminating at multiple targets. Each
path is comprised of a set of states from source points to different target hosts.

156 S. Ullah et al.

Then the states are being mapped to TT category. A sample state extracted
from our attack path is shown below.

execCode(’192.168.15.124’,someUser):-
vulExists(’192.168.15.124’,’CVE-2015-2808’,
safari,remoteExploit,privEscalation)
networkServiceInfo(’192.168.15.124’,safari,tcp,
’1433’,someUser)
netAccess(’192.168.15.124’,tcp,’1433’)

rule_desc(’remote exploit of a server program’)

By taking into account the sample state’s configurations and the rule, our
methodology primarily maps this state into two techniques: exploitation for
client execution (T1203) and exploitation of remote services (T1210). These
techniques are associated with two different tactics such as execution and lateral
movement respectively. Our domain knowledge considers execution as the most
appropriate tactic for this sample.

Moreover, we can acquire more confidence by introducing another character-
istic phenomenon in our model. The cyber kill chain (CKC) describes different
phases in the adversary life cycle in an attack campaign. In our model, we can
treat each attack path as a part of the superset of a CKC. Thus it follows a
particular pattern for attack progression. We introduce this property for tactic
identification as the pre-state and post-state analysis. Referring to our example,
one of the pre-conditions netaccess(‘192.168.15.124’..) can be represented as a
prior state as shown below:

netAccess(’192.168.15.124’,tcp,’1433’):-
attackerLocated(internet)
hacl(internet,’192.168.15.124’,tcp,’1433’)

rule_desc(’direct network access’)

Our initial analysis mapped this state to initial access tactic. Furthermore,
the following state marked as netaccess(‘192.168.15.123’..) that takes our sample
state (i.e. execCode(’192.168.15.124’...) as a pre-condition represented as follow:

netAccess(’192.168.15.123’,tcp,’1433’):-
execCode(’192.168.15.124’,someUser)
hacl(’192.168.15.124’,’192.168.15.123’,tcp,’1433’)

rule_desc(’multi-hop access’)

The state shown above is mapped to the lateral movement tactic. Thus the
sequence formed as: initial access → execution → lateral movement, is a perfect
example of a kill chain phase. Consequently, it affirms our analysis and empha-
sizes the effectiveness of our method for TT mapping. After mapping to TT we
assign a score for each selected technique by using Eqs. 1, 2 and 3. Then we mea-
sure the vulnerable component score from 1 prior to discovering its appropriate
category. This is an optional parameter, means each and every state doesn’t have
to hold a vulnerability. In contrary, TT is an inevitable feature of a state. Thus,
TT embedded AG gives the defense planners more advantage to deploy their
defensive techniques.

As we mentioned before, we generate attack paths for multiple heteroge-
neous targets e.g., HMI from OT, file server (FileS) and web server (WebS) from

Threat Analysis EDS 157

Fig. 5. Deviation of path hardness by effort correlation

DMZ and mail server (MailS) and workstation (WS) from IT zone. The decay
factor can be calculated from post-compromise real attack analysis. It can be
estimated by matching our correlation method to the time-to-compromise of a
state. The parameter could be improved gradually by feedback method. For our
convenience, we set the value 2 for decay factor means around 40% effort reduced
if both states correlate perfectly.

After plugging all information into Eq. 5 we calculate the path hardness of all
attack paths for each target host. Figure 5 depicts the effect of effort correlation
in hardness measurement. The X-axis represents different target host we selected
for our analysis and Y-axis represents average path hardness considering all
attack paths direct to each host. For each host, the hardness value is computed
with and without correlation. Assuming the attacker goal is the target host,
each case shows the lower effort needed to traverse the path by taking account
correlation than without it. Indeed, this correlation reflects attack’s knowledge
propagation in an attack path. It can be observed from the figure that the scale
of deviation is not same for all hosts. For instance, around 25% effort reduced for
attack paths towards HMI regarding correlation while it is 15% for WS. Because
HMI is located in OT zone, very low level in the network contrary to WS which
resides in the IT zone, very close to the perimeter. Hence, attack paths in the
direction to HMI have more state to pass allowing attackers to learn more and
help them to decide in the following route.

Our method we can also be used to determine the diversity of an attack path.
A path having low hardness difference between correlation and non-correlation
case has high diversity. Prior to an attack, the administrator can harden the
most impactful path by assessing the consequence (C) of path along with it’s
diversity (D). Attack paths having high consequence and low diversity should
be treated with high priority for this defense mechanism. This establishes a
hierarchy among paths; the most critical paths of the network are those with
the highest C

D value.
Our path metric can also capture the total security posture of the network.

Figure 6 shows the distribution of attack path within different hardness level

158 S. Ullah et al.

Fig. 6. Distribution of attack paths within different hardness level

for our selected target hosts. From the figure, it is determined that the concen-
tration of distribution varies from host to host in the network. In our analysis,
HMI has large path distribution between hardness range 13–21 which is rela-
tively higher than other hosts. Although it is not the only decision factor but
the host’s architectural level is one of the reasons behind this scenario. EDS
follows the defense-in-depth architecture where the control center is isolated
with several security controls make the majority of the route very tough for the
attacker. In addition, hosts remained in the same zone doesn’t need to follow
the same hardness level. For instance, WebS and FileS both reside in the DMZ
zone exhibits a noticeable difference in path hardness distribution. Previously
discussed path diversity can be utilized to interpret this situation. Depending on
the configuration of a certain network, the paths towards both hosts might have
variable path length along with the different scale of correlation in each path.

The aforementioned path characteristics need to be examined thoroughly for
proper defense deployment. The security administrator can assign a threshold
as a particular path hardness level for critical assets in the network. As the
attack graph is dynamically changing over time by zero-day vulnerabilities being
discovered, regular security policy variation and countermeasure enforcement,
the defender must investigate the hardness of critical node in order to keep the
risk of the network in an acceptable level.

6 Conclusion and Future Work

In this paper, we presented a proactive cyber threat assessment framework for
EDS. We identified the behavioral signature of an action state by incorporating
the techniques and tactics within an attack graph. We developed a scoring met-
ric to quantify the likelihood of a state to be compromised. The system security
planner can use the path metric to apply the remediation policies on the most
critical attack paths. It will also provide insights into balancing cyber risk and
operation resilience. Additionally, the evaluation results have provided insights
into mapping the tactics taken in an attack path to adversarial/threat character-
istics. Some adversary groups would never change the tactic while others would

Threat Analysis EDS 159

adapt given the situation. For future work, we like to conduct in-depth profiling
of attacker behavior for diverse real-world threat actors.

Acknowledgment. This material is based upon work supported by the Department
of Energy under award number DE-OE0000780 and Department of Homeland Security
Grant 2015-ST-061-CIRC01. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or any agency
thereof.

References

1. Public exploit database. http://www.exploit-db.com
2. Common weakness enumeration, January 2017. http://cwe.mitre.org
3. National vulnerability database, January 2017. https://nvd.nist.gov
4. Mitre adversarial tactics, techniues, and common knowledge, August 2018. https://

attack.mitre.org/techniques/enterprise
5. Al-Shaer, R., Ahmed, M., Al-Shaer, E.: Statistical learning of APT TTP chains

from mitre ATT&CK
6. Allodi, L., Massacci, F.: Comparing vulnerability severity and exploits using case-

control studies. ACM Trans. Inf. Syst. Secur. 17(1), 1–20 (2014). https://doi.org/
10.1145/2630069

7. Bianco, D.: The pyramid of plain (2014). http://detect-respond.blogspot.com/
2013/03/the-pyramid-of-pain.htmldossier.pdf

8. Bronk, C., Tikk-Ringas, E.: The cyber attack on saudi aramco. Survival 55(2),
81–96 (2013)

9. Carcano, A.: Understanding triton, the first sis cyber attack, August 2018.
http://www.nozominetworks.com/blog/black-hat-understanding-triton-the-first-
sis-cyber-attack

10. Davis, K.R., et al.: A cyber-physical modeling and assessment framework for power
grid infrastructures. IEEE Trans. Smart Grid 6(5), 2464–2475 (2015)

11. Falliere, N., Murchu, L.O., Chien, E.: W32.stuxnet dossier version 1.3, Novem-
ber 2010. http://www.symantec.com/content/en/us/enterprise/media/security
response/whitepapers/w32 stuxnet dossier.pdf

12. Hassanzadeh, A., Burkett, R.: SAMIIT: spiral attack model in iiot mapping secu-
rity alerts to attack life cycle phases. ics & scada cyber security research. In: 5th
International Symposium for ICS & SCADA Cyber Security Research 2018, vol.
5, pp. 11–20. Hamburg, Germany (2018)

13. Hassanzadeh, A., Modi, S., Mulchandani, S.: Towards effective security control
assignment in the industrial Internet of Things. In: 2015 IEEE 2nd World Forum
on Internet of Things (WF-IoT), pp. 795–800. IEEE (2015)

14. Hutchins, E.M., Cloppert, M.J., Amin, R.M.: Intelligence-driven computer network
defense informed by analysis of adversary campaigns and intrusion kill chains.
Lead. Issues Inf. Warfare Secur. Res. 1(1), 80 (2011)

15. Idika, N., Bhargava, B.: Extending attack graph-based security metrics and aggre-
gating their application. IEEE Trans. Dependable Secure Comput. 9(1), 75–85
(2012)

16. Nayak, K., Marino, D., Efstathopoulos, P., Dumitraş, T.: Some vulnerabilities are
different than others. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) RAID 2014.
LNCS, vol. 8688, pp. 426–446. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11379-1 21

http://www.exploit-db.com
http://cwe.mitre.org
https://nvd.nist.gov
https://attack.mitre.org/techniques/enterprise
https://attack.mitre.org/techniques/enterprise
https://doi.org/10.1145/2630069
https://doi.org/10.1145/2630069
http://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.htmldossier.pdf
http://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.htmldossier.pdf
http://www.nozominetworks.com/blog/black-hat-understanding-triton-the-first-sis-cyber-attack
http://www.nozominetworks.com/blog/black-hat-understanding-triton-the-first-sis-cyber-attack
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
https://doi.org/10.1007/978-3-319-11379-1_21
https://doi.org/10.1007/978-3-319-11379-1_21

160 S. Ullah et al.

17. Ou, X., Boyer, W.F., McQueen, M.A.: A scalable approach to attack graph gener-
ation. In: The 13th ACM conference on Computer and Communications Security
(CCS), Alexandria, Virginia, USA, October-November 2006

18. Ou, X., Govindavajhala, S., Appel, A.W.: Mulval: a logic-based network secu-
rity analyzer. In: The 14th Conference on USENIX Security Symposium (SSYM),
Baltimore, MD, USA, July-August 2005

19. Ullah, S., Shetty, S., Hassanzadeh, A.: Towards modeling attacker’s opportunity
for improving cyber resilience in energy delivery systems. In: 2018 Resilience Week
(RWS). IEEE, August 2018

20. Zhang, Y., Lingfeng, W., Xiang, Y., Ten, C.: Power system reliability evaluation
with scada cybersecurity considerations. IEEE Trans. Smart Grid 6, 1707–1721
(2015)

Bulletproof Defenses

The Disbanding Attack: Exploiting
Human-in-the-Loop Control in Vehicular

Platooning

Ali Al-Hashimi1(B), Pratham Oza2, Ryan Gerdes2, and Thidapat Chantem2

1 Utah State University, Logan, UT 84321, USA
ali.2014@aggiemail.usu.edu

2 Virginia Tech, Arlington, VA 22203, USA
{prathamo,rgerdes,tchantem}@vt.edu

Abstract. Due to advances in automated vehicle technology and inter-
vehicle communication, vehicular platoons have attracted a growing inter-
est by academia and industry alike, as they can produce safe driving, regu-
larize traffic flow, and increase throughput. Research has demonstrated,
however, that when platoons are placed in an adversarial environment,
they are vulnerable to a variety of attacks that could negatively impact
traffic flow and produce collisions and/or injuries. In this work, we consider
an attack that seeks to exploit human-in-the-loop control of compromised
vehicles that are part of a platoon. Specifically, we demonstrate that should
a human operator need to suddenly take control of a platooned vehicle, sig-
nificant upstream effects, which threaten the safety of passengers in other
vehicles, may be induced. To counter this so-called disbanding attack, we
present an optimal centralized mitigation approach. Due to scalability,
security, and privacy concerns, such an approach may not be practical in
reality. Hence, we also propose a decentralized mitigation algorithm that
reduces excessive speed changes and coordinates inter-platoon behaviors
to minimize the attack impacts. Our algorithm is compared to the afore-
mentioned optimal approach and is shown to produce nearly equivalent
results while requiring fewer resources. Experimental results on a hardware
testbed show that our countermeasure permits graceful speed reductions
and can provide safety, i.e., no collisions.

Keywords: Vehicular platoons · Attacks on vehicular platoons ·
Mitigation of attacks

1 Introduction

Vehicular platooning is an automation technology wherein a number of vehicles
are grouped together to follow each other closely and safely. This technology has
been shown to provide a safe and comfortable experience that will ultimately
allow passengers to focus on tasks other than driving [11]. It also enables vehicles

This grant was supported in part by NSF under grant number CPS-1658225.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 163–183, 2019.

https://doi.org/10.1007/978-3-030-37231-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_9

164 A. Al-Hashimi et al.

to safely navigate at a closer distance, compared to human-driven vehicles, which
improves traffic throughput and reduces congestion [29], and can help to improve
fuel consumption [21]. Vehicle platooning is an example of a cyber-physical sys-
tem (CPS) since it requires an integration of computation, communication, and
monitoring capabilities to control a physical process. Adaptive Cruise Control
(ACC) and Cooperative Adaptive Cruise Control (CACC) are the most well-
known control strategies used to form and maintain platoons. ACC operation
consists of using locally available information to generate appropriate accelera-
tion commands to maintain a preset inter-vehicle separation and speed (longitu-
dinal control). CACC, on the other hand, is an extension of ACC that employs
vehicle-to-vehicle (V2V) communication, so that vehicles may exchange state
information, and is able to achieve smaller inter-vehicle separations [27].

The Society of Automotive Engineers (SAE) and the National Highway Traf-
fic Safety Administration (NHTSA) have defined levels of vehicular automation.
Based on their criteria, vehicle manufacturers have been able to produce vehicles
with level 2, e.g., BMW, and Ford, or level 3, e.g., Tesla, capabilities [32]. In level
2, automated vehicles can generate both longitudinal (accelerating/decelerating)
and lateral (steering) control commands. This level also requires humans to mon-
itor the road and readiness to assume control if needed. Level 3 provides more
automated functionalities in terms of generating control commands and moni-
toring the driving environment, though it also requires human driver readiness
to assume control [7]. Platooning without human oversight, a level 4 technology,
is not yet a reality due to the lack of robustness in V2V communications, the
cost and number of sensors required to monitor the environment, and unresolved
questions regarding unexpected maneuvers on the part of other vehicles on the
road [2]. Therefore, current platooning automation technology falls into the cat-
egory of level 2 or level 3, and human attention is still required in the platooned
vehicles in case they need to take control of the vehicles.

Transition of control is defined as the process of switching control, of an
automated vehicle, to a human driver when the automated system cannot handle
certain situations; e.g., a vehicle emerging from a side road abruptly and merging
onto a highway without notice, oncoming traffic turning left to enter a side
road and crossing an automated vehicle’s path, a car parking on the road and
partially blocking the roadway [23,32], or a technical failure in one or more
components of the vehicle’s automation system [36]. Such failures could stem
from the deliberate manipulation of the automated system components such
as sensors, actuators, or inter-vehicle communication [4]. A number of previous
studies analyzed human driver behaviors post transition of control and their
results have shown that some drivers apply maximum deceleration to handle
certain situations, e.g., avoid colliding with preceding vehicles [17,22]. These
studies also determined the time required to ensure a safe transition [15,23].

A platooning CPS (typically) employs a distributed controller that uses infor-
mation from both local sensors and those obtained through inter-vehicle commu-
nications or connections to external networks [24]. As a result, a platooning CPS
has a large attack surface by which an attacker could induce disruptive and/or

The Disbanding Attack 165

fatal behaviors [12–14,16,31]. Attacks mounted against a platooning CPS can
lead to the disruption of the steady-state operation (i.e., desired inter-vehicle
separation and relative speed) and produce harmful effects, such as collisions
or uncomfortable acceleration/deceleration, which could lead to, for example,
chronic traffic jams. Also, attacks on platooned vehicles could induce a transi-
tion of control which, in turn, will disband (dissolve) the platoon since the latter
is no longer automated nor complies with platooning control laws. While the
security of platooning CPS has been studied from many perspectives, so far the
exploitation of the human element has been left unexplored.

In the current work we examine, from an adversarial perspective, the after-
effects of automated vehicles transitioning their control to humans. Particularly,
we are interested in analyzing the upstream effects of all vehicles in a platoon
transitioning control to human operators (a process we refer to as the platoon
disbanding) due to a system failure resulting from an attack. Although disband-
ing may seem a sensible fail-safe solution to prevent attackers from achieving
their objective of influencing automated vehicles, we will show that transition
of control can be leveraged to undermine the operation of surrounding vehicles,
cause collisions, and/or induce massive congestion. The main contributions are:

– We study the effect of a “disbanding attack” that involves transition of control
of multiple vehicles in a platoon. We show the harmful impacts such an attack
can induce, especially how it can cause upstream (non-attacked) platoons to
experience slowdowns and collisions.

– We define the disbanding attack by formulating it as an optimization problem
where the objective is to maximize the deviation in vehicles’ speeds, as a proxy
for slowdowns and increased chances of colliding, by selecting platoon(s) to
be disbanded and time(s) of disbanding.

– To mitigate the aftermath of such an attack, we formulate an optimal solu-
tion using a Model Predictive Control (MPC) technique. However, since the
optimal approach is not scalable in practice, as it is centralized and infor-
mation and communication intensive, we also propose a heuristic algorithm
to be used locally by vehicles of intact (non-attacked) platoons. Our findings
indicate that our algorithm produces nearly equivalent results in terms of
reducing speed changes and avoiding accidents.

– We also demonstrate the validity of the above attack and the suggested heuris-
tic countermeasure using experiments on a hardware testbed consisting of a
motion capture system and small mobile robots acting as vehicles.

1.1 A Motivating Example

Let us consider a scenario where multiple vehicular platoons are traveling in the
same direction on a highway. Although they may not be heading to the same
destination, platoons drive and follow one another in order to reap platooning
benefits of optimizing traffic flow and reducing congestions. While the platoons
are operating at a steady-state, a malicious party utilizes one of the existing
external attack techniques [19,31] in order to cause accidents. For example,

166 A. Al-Hashimi et al.

Fig. 1. (a) Position profiles of the platoons shown in the legend. The lead platoon
started disbanding at t = 2 s. (b) Inter-vehicle separation profiles of the platoons
shown in the legend. The lead platoon started disbanding at t = 2 s. (c) Speed profiles
of the platoons shown in the legend. The lead platoon started disbanding at t = 2 s.
(d) Position profile of the rear vehicle in the platoons formation, whose size is shown
in the legend. (e) Speed profiles of the rear vehicles belonging to a twenty-platoon
formation when multiple platoons start disbanding at different time instances. (Color
figure online)

the attacker could install units on the roadside that are able to jam the sen-
sors of multiple vehicles or modify the sensor measurements so that the targeted
vehicles start behaving irregularly [25]. At this point, either the automation
system will suffer a failure and, as a result, informs the driver, by sounding
an auditory alarm for example [22], or the attack is detected by a mechanism,
already designed for such purpose, or by a passenger, who observes an erratic

The Disbanding Attack 167

behavior in the vehicle’s motion. In any case, the driver must assume control
of the vehicle and apply the brakes [36]. As a result, the attacked platoon is
effectively disbanded as the vehicles no longer comply with platooning laws and
the mounted attack fails to achieve its goals. However, intact upstream platoons,
which were not the goal of the mounted external attack, will also exhibit unex-
pected behavior as a result of disbanding such as slowing down and coming to a
complete stop, which creates discomfort for passengers, or even colliding.

Figure 1a shows the position profiles of a selected platoon, out of 20, whose
indices are shown in the legend. Each platoon has ten vehicles. The lead (20th)
platoon (red), which constitutes 5% of the total number of vehicles, transitions
its control after being attacked at t = 2 s. We can see how the lead platoon begins
disbanding when the inter-vehicle separations, shown in Fig. 1b, are no longer
5 m (the desired separation) and the platoon manages to avoid accidents. Also,
Fig. 1c indicates that the vehicles of the disbanded platoon initially slow down
and then begin to speed up. In response to the lead platoon being disbanded,
we can see in Fig. 1c that the following (still automated) 19th intact platoon
(blue) also begins to slow down. In addition, Fig. 1b shows that the inter-vehicle
separation of the 19th platoon is also affected as it decreases when slowing down
happens, but not below 0 m, starts increasing to above 10 m when speeding up
happens, and eventually reaches to 5 m after almost one minute.

The same effect that was induced in the 19th platoon will propagate through
the rest of the following platoons. For example, the 15th platoon (yellow) started
decelerating until all vehicles completely stopped, as shown in Fig. 1c, for almost
30 s and then the platoon’s lead vehicle started accelerating, reaching maximum
speed of 36 m/s, in order to decrease the gap with respect to the preceding 16th

platoon (not shown in plots) and eventually slowed down, as it is approach-
ing the preceding platoon, after almost two minutes (These action of acceler-
ating/decelerating result from the adopted automation control laws responding
to the behavior of the preceding platoon). We can also see the same behav-
ior in Fig. 1b where the inter-vehicle separation of the 15th platoon decreased,
increased, and then settled at 5 m. The same pattern also shows on the 10th

(green) and last (cyan) platoons but longer times were needed to regain the
inter-vehicle separations and speeds. For this specific case of disbanding attack,
10 min were needed such that all of the affected platoons were able to re-establish
(recover) the desired separations and speeds. Furthermore, Fig. 1d shows the
absolute position of the last vehicle in the traffic stream, for different number of
platoons, when the lead platoon was disbanded. We can see that as the num-
ber of platoons increases, the vehicle stops for a longer time and then resumes
moving. Furthermore, the string of 20, 50, and 80 platoons, needed 10, 25, and
43 min, respectively, to recover. In summary, we can see in these plots that dis-
banding one platoon could make the following platoons respond irregularly such
that they stop-and-go which in turn creates discomfort for passengers, traffic
jams, inefficient use of the road, and fuel waste.

Alternatively, being aware of such effects, the attacker can target more
than one platoon systematically and produce worse impacts such as multiple

168 A. Al-Hashimi et al.

stop-and-go behaviors. For example, the attacker can induce disbanding by tar-
geting every other platoon, out of twenty, at regular intervals, with 30 s incre-
ments (Fig. 1e). For the speed profiles shown in Fig. 1e, 65%, 45%, and 37.5%
of the intact platoons were forced to stop-and-go once, twice, and three times,
respectively. Also, 55% of the vehicles, in the intact platoons, suffered collisions.

1.2 Related Work

The objective of vehicular platooning is to combine multiple vehicles and design
the proper controllers to maintain a desired separation and speed [6]. A large
amount of work can be found in literature addressing how to achieve that objec-
tive. Also, different spacing policies are proposed to implement control laws that
regulate the relative spacing either in front of vehicle (unidirectional control) or
on both front and rear of vehicle (bidirectional control) [27]. This is achieved
using either only locally sensed information or with the addition of (V2V) com-
munication [34]. Communication schemes are proposed in [3] to transmit mes-
sages between adjacent vehicles. Also, it is possible to exchange vehicles’ infor-
mation by establishing vehicle-to-infrastructure (V2I) communication with road
units designed for that purpose [10]. In this work, we adopt a proportional-
derivative controller from [34] to form our platoons with the presence of a
forward-looking V2V communication in order to implement our suggested attack
mitigation (Sect. 4).

Vehicular platoons security has been the focus of extensive research in lit-
erature. For example, [13] presents a number of insider attacks that target the
vehicles’ CACC controllers and suggests detection schemes for those attacks.
Another insider attack work is [12] where the attacker’s controlled vehicle is able
to modify its controller’s gains such that generated commands induce instability
in the entire platoon. [16] shows that it is possible for a malicious vehicle in
the platoon to increase the energy consumption unnecessarily in the neighbor-
ing vehicles by misbehaving. In [14], it is shown that multiple attacker vehicles
can operate within the platoon and coordinate their behavior in order to pro-
duce instability that could lead to accidents. Alternately, other work investigate
external attacks where local range and range-rate sensors are targeted, to mis-
inform the vehicle of the surrounding vehicles’ information to negatively impact
road efficiency and passengers’ comfort and safety [19,31]. Similar to the security
related works above, we also present a possible vulnerability in vehicular platoons
and analyze its impacts on platoon safety. However, ours is the first work that
considers the effect the presence of human control in the platoon can produce.
Specifically, we try to answer: “what happens if control of multiple vehicles tran-
sition to human because to disruption of their automated systems?” or “what
happens if a passenger decides to assume command of a vehicle after observing
irregular behavior, owing to an already mounted attack, in its motion?”. Natu-
rally, once a human driver starts controlling the vehicle, brakes will be applied
in an attempt to slow down the vehicle [36]. While such an action is helpful in
avoiding accidents, it will also generate instability in the following non-attacked
platoons that could lead to collisions.

The Disbanding Attack 169

V1,1 V1,2 · · · V1,n V2,1 V2,2 · · · V2,n · · · VN,1 VN,2 · · · VN,n

1st Platoon 2nd Platoon Nth Platoon

intra-platoon separation inter-platoon separation

direction of travel

Fig. 2. A stream of n-vehicle N platoons. Green arrows represent the flow of transmit-
ted information. (Color figure online)

1.3 Organization

Section 2 explains the vehicular platooning control laws and describes the
threat model. Section 3 discusses different optimal attack scenarios and analyze
their impacts. Section 4 presents effective attack countermeasures. Experimental
results are presented in Sect. 5. Conclusions are given in Sect. 6.

2 System Model

The modeling of platoon dynamics and control as well as the attack mechanism
are discussed in this section.

2.1 Vehicle and Platoon Models

We consider N homogeneous platoons, where every vehicle uses the same control
law, with n vehicles in each (lead vehicle is indexed as n while the last vehicle
is indexed as 1) as shown in Fig. 2. Each vehicle is equipped with front and
rear range and range-rate sensors, to measure corresponding relative distances
and speeds of surrounding vehicles, and implements an upper-level controller,
responsible for determining the commanded (desired) acceleration, and a lower-
level controller, which uses the desired acceleration to determine throttle and
brake commands. The lower-level controller is expected to achieve the desired
acceleration with some delay due to its finite bandwidth [24,27]. We will focus
on the upper-level controller since the attacker can easily affect it (e.g., through
attacks on sensors). The following model is used to simulate the dynamics of
each jth vehicle in the ith platoon

⎡
⎣

ẋi,j(t)
v̇i,j(t)
ȧi,j(t)

⎤
⎦ =

⎡
⎣

0 1 0
0 0 1
0 0 −1

τ

⎤
⎦

⎡
⎣

xi,j(t)
vi,j(t)
ai,j(t)

⎤
⎦ +

⎡
⎣

0
0
1
τ

⎤
⎦ui,j(t), (1)

where x, v a, and u refer to the vehicle’s absolute position, velocity, acceleration,
and commanded acceleration, respectively, and τ is a time constant used to
model the actuator’s delay.

In this work, vehicles in a platoon use a bidirectional control technique [34]
with two major benefits. First, it is able to guarantee platoon string stability to
maintain desirable traffic flow [27,34]. Second, it does require vehicle-to-vehicle

170 A. Al-Hashimi et al.

(V2V) transmitted information to generate periodic control commands. We do,
however, assume intermittent wireless communication is possible between vehi-
cles for attack detection and to transmit data for the mitigation process (Sect. 4).
These require a data rate far lower than that required to maintain V2V-enabled
platoons. For the last vehicle in the ith platoon, we have

ui,1(t) = kp

(
xi,2(t) − xi,1(t) − xd

)
+ kd

(
vi,2(t) − vi,1(t)

)
, (2)

where kp and kd are the controller’s proportional and derivative gains, respec-
tively, and xd is a constant denoting inter-vehicle desired separation. For the
other vehicles in the ith platoon, except the leader, we have

ui,j(t) = kp

{(
xi,j+1(t) − xi,j(t) − xd

) − (
xi,j(t) − xi,j−1(t) − xd

)}

+ kd

{(
vi,j+1(t) − vi,j(t)

) − (
vi,j(t) − vi,j−1(t)

)}
,

(3)

A different control structure is adopted for the platoons’ lead vehicles since we
expect that the platoon may encounter other platoons as they travel on the road.
Lead vehicles attempt to maintain a desired separation and speed, with respect
to a preceding vehicle, by using a control law given by [27]

ui,n(t) = kp

(
xi+1,1(t) − xi,n(t) − h.vi,n(t)

)
+ kd

(
vi+1,1(t) − vi,n(t)

)
, (4)

where h is a time headway constant. Also, each lead vehicle is equipped with a
transitional controller which is engaged in cases it encounters a slowly moving
vehicle or a slowly driving platoon on the road. Interested readers are referred
to [27] for more details on transitional controllers.

We are interested in studying the effect of control transition. Therefore, we
will adopt the Intelligent Driver Model (IDM) [20], which can be used to approx-
imate human driving behavior, to simulate the dynamics of control transitioned
vehicle(s). The commanded acceleration of the disbanded platoon vehicles is
calculated using

ui,j(t) = umax

{
1 − (

vi,j(t)/vd

)4 − (
s∗(t)/(xi,j+1(t) − xi,j(t))

)2}
,

s∗(t) = r0 + vi,j(t)
{

h + (vi,j(t) − vi,j+1(t)/(2
√

uminumax)
}
,

(5)

where vd is the desired velocity, umin, umax are minimum and maximum accel-
eration, respectively, and r0 is the minimum inter-vehicle separation (a vehicle
cannot move if the separation is smaller than r0).

Finally, we assume that all vehicles are equipped with a collision-avoidance
technique where umin will be applied when the following condition is true [3,27]

xi,j+1(t) − xi,j(t) ≤ r0 +
(
v2

i,j(t) − v2
i,j+1(t)

)
/2umin. (6)

2.2 Threat Model

The aim of the disbanding attack in a multi-platoon scenario is to induce col-
lisions in some platoons, by targeting one or more vehicle(s) in a different pla-
toon, and disrupting traffic flow. This type of attack relies on compromising

The Disbanding Attack 171

some aspect of a vehicle’s automation system so as to force the vehicle to aban-
don automated operation, i.e., transition of control, and hence cause the platoon
to which it belongs to disband. The action of disbanding, in turn, will impact
upstream platoons. As stated earlier, the level of automation provided by the cur-
rently available automation technology is still not highly autonomous. Therefore,
it is still expected that human drivers will need to take control of the automated
vehicles during certain situations.

One possible attack vector that could be leveraged to compromise a vehicle’s
automation, and force a transition of control, is to target the vehicle’s front
and/or rear facing sensors that are relied upon to perceive the relative distance
and speed of neighboring vehicles. Existing work has demonstrated that LIDAR,
RADAR, camera, and ultra-sonic sensors, which are the most often used sensors
in automated vehicles for these purposes, can be jammed or spoofed. In addition,
such attacks can be targeted, easy to carryout, accomplished at a distance, and
mounted against multiple vehicles at once [9,25,33,35].

To demonstrate the impacts of the disbanding attack in our study, we assume
that the attacker has the capability to target the sensors of either one or mul-
tiple automated vehicles belonging to one or more platoons. Also, we assume
that the mounted attack succeeds in degrading the sensing functionality of the
automation system(s) employing the targeted sensor(s). We consider two pos-
sible scenarios resulting from the attack. In the case where a sensor of a single
vehicle in a platoon is targeted and its automation compromised, the vehicle
will utilize V2V communications and alert the other vehicles in that platoon so
that they begin to transition their control1. In the case of targeting the sen-
sor(s) of all vehicles in a platoon, the automation systems of those vehicles will
suffer the disruption of the sensors operation, become unable to handle the cur-
rent situation, and also begin the process of transition of control. In either case,
the automated vehicles are forced to transition their control in an attempt to
mitigate the attack and avoid accidents, effectively disbanding the platoon.

Although the process of disbanding a platoon can help with avoiding acci-
dents, the resulting action of braking will cause upstream effects on intact (non-
attacked) platoons. Those effects pose a threat to the safety of these platoons,
as they cause sudden and excessive velocity changes that could lead to collisions.
Disbanding attacks are extremely effective since attack-resilient platooning con-
trollers tend to ignore human intervention in the design process.

3 Human-in-the-Loop Attacks

In this section, the disbanding attack is formulated as an optimization problem
in order to find optimal attacks. Then, the simulation setup to carry out such
an attack is explained.

1 Disbanding (dissolving) a platoon when one vehicle reverts to manual control has
been recommended in actual platooning systems [30].

172 A. Al-Hashimi et al.

3.1 Finding Optimal Disbanding Attack

Given the attacker’s capabilities and platoon dynamics as described in Sect. 2,
the goal of the attacker is to find which platoon(s) and at what time(s) vehicles’
sensors should be attacked to induce disbanding, such that the velocity deviation
of all intact vehicles is maximized, which is a fair indication of throughput and
probability of collisions. To assess the impacts of disbanding attacks on platoons,
we use the following metrics

– Average velocity error (deviation) describes the non-attacked platoons’ slow-
ing down as a result of disbanding another platoon(s). For the jth vehicle in
the ith platoon, the average velocity error is defined as

Ev =
1

|Ts|
|Ts|∑
k=1

|vi,j(tk) − vd|
vd

· 100, (7)

where Ts is the attack window (in seconds), and vd is desired speed. Since we
are considering platoons, Eq. (7) is modified as follows

Ev =
1

N · n · |Ts|
N∑

i=1

n∑
j=1

|Ts|∑
k=1

|vi,j(tk) − vd|
vd

· 100, (8)

by which Ev is calculated for all vehicles (N · n) throughout Ts.
– Collisions: although each vehicle is assumed to be equipped with a collision-

avoidance algorithm, crashes between some of the intact vehicles can still
occur. Therefore, we will indicate whether the considered attack scenario
involves collisions or not.

Table 1. Parameters used in the simulations.

Parameter Value Description

N [2:10] Number of platoons

n 10 Number of vehicles per platoon

kp 1 Controller’s proportional gain

kd 5 Controller’s derivative gain

xd {5, 4} m Desired inter-vehicle separation

vd 31m/s Nominal velocity

h 1.5 s Time headway

τ {0.1, 0.3, 0.5} s Time-lag constant

vmax 36m/s Maximum velocity

vmin 0m/s Minimum velocity

umax 1m/s2 Maximum acceleration

umin −5 m/s2 Minimum acceleration

r0 1m Minimum inter-vehicle separation

Ts 180 s Simulation time

The Disbanding Attack 173

Fig. 3. (a) Speed profiles of platoons’ rear vehicles (N = 10) when the lead platoon
started disbanding at t = 2 s. (b) Speed profiles of platoons’ rear vehicles (N = 10)
when the 9th and 10th platoons started disbanding at t = 2 s and 100 s, respectively.
(c) Average velocity error for optimal single-platoon disbanding cases. (d) Number of
collided vehicles for optimal single-platoon disbanding cases.

Let pd be a vector of indices of platoons to be disbanded, and td a vector of
times of disbanding. The attacker will solve the following optimization problem

maximize
pd ,td

Ev = f(pd , td)

subject to 1 ≤ pd ≤ N

1 ≤ td ≤ Ts

pd(i1) �= pd(i2) for i1, i2 = 1, . . . , no. of targeted platoons

(9)

Equation (9) should be interpreted as follows: given a number of targeted
platoon(s), the attacker seeks the best values for pd and td such that the highest
value for the cost function, Ev, will result. The constraints of the problem ensure
that values of pd and td are within bounds and the same platoon cannot be
disbanded twice (in case of multi-platoon disbanding). We used the Genetic
Algorithm (GA) Toolbox in MATLAB to solve Eq. (9).

3.2 Simulation Setup

For the theoretical results presented in this work, we used MATLAB to simulate
a string of platoons, using the control algorithms and dynamics from Sect. 2.1.
Table 1 indicates the setup used in all subsequent simulations. Following previous

174 A. Al-Hashimi et al.

work, the value of τ was selected to be either 0.1 s [18] or 0.5 s [27]. To generalize
the problem, we also simulated values in-between.

To produce realistic simulations, all vehicles’ velocities are constrained to
be below or equal to a maximum value and all vehicles move only forward (no
negative velocities). Also, the acceleration is bounded within minimum and max-
imum values. Since vehicles’ responses to initial separations and velocities may
result in some overshoot before reaching the steady-state, all simulations were
started at the steady-state so that transient response will not interfere with the
attack impacts.

3.3 Results

Two different cases of the disbanding attack are shown in Fig. 3a and in Fig. 3b
(for the disbanding the lead platoon and two foremost platoons, respectively,
out of 10). Results are shown in terms of the absolute speed of the last/rear
vehicles of intact platoons (legends are removed to reduce visual clutter). We
see that disbanding results in not only slowdowns, and hence deviation form a
desired speed of 31 m/s, but even complete stops. This behavior is captured by
calculating Ev using (8), which is equal to 29.57% for Fig. 3a and 43.69% for
Fig. 3b. For Figs. 3c and d, the total number of platoons (N) is varied between
two and ten (shown on the x-axis), an actuator delay, τ , varied between 0.1–0.5 s,
with an increment of 0.1 s, and a time headway (h) equal to 1.5 s.

For each value of N , the solution of (9) indicated that the optimal attack
occurred by disbanding the lead platoon at one second (beginning of attack win-
dow). Figure 3c shows the optimal (maximum) average velocity error (Ev) for
disbanding the lead platoon and for different values of τ . We can see clearly that
more severe attack impacts are induced as the total number of platoons increases.
Although all vehicle are equipped with an appropriate collision-avoidance algo-
rithm, simulation results indicate that disbanding attacks can also cause acci-
dents between some of the vehicles in the intact platoons, which were not the
target of the attack. Figure 3d shows the number of colliding vehicles for each
one of the optimal disbanding attack cases displayed in Fig. 3c. We can see that
collisions occur when actuator delay is greater than 0.1 s, regardless of N , and
that the total number of accidents increases as the total number of platoons
increases as well.

4 Attack Mitigation

We propose two approaches, each of which proactively adjusts the commanded
acceleration profiles of intact platoons’ vehicles, in an attempt to mitigate attack
impacts by lessening the velocity deviations and reducing the number of colli-
sions, if possible. By using the proposed approaches, the automation of intact
platoons is maintained and no transition of control will be initiated.

The Disbanding Attack 175

4.1 Optimal Mitigation

The mitigation of the disbanding attack is formulated as an optimization prob-
lem. Model-Predictive Control (MPC) is used to find an on-line solution using
receding horizon [28]. The MPC based formulation is an optimal control tech-
nique that has been used successfully in several different applications [5]. It is
based on minimizing a cost function (e.g., velocity deviation) in order to achieve
a certain goal (e.g., mitigating disbanding attack impacts), while considering
performance and physical constraints (e.g., collision-avoidance and speed and
acceleration bounds). As such, this optimal approach will be used to compare
and evaluate the performance of the heuristic approach suggested in Sect. 4.2, as
this approach requires more computational power and connected infrastructure
to perform the calculations required to carryout the mitigation.

Our objective is to compute a control sequence that will command each
vehicle behind the disbanded platoon to reduce the deviation in velocity and
avoid accidents. More specifically, the controller of an intact vehicle will use
current measurements of velocity and acceleration in order to solve

min
U

2M1U + UT M2U (10)

s.t. M3U ≤ M4, (11)

where U is the resulting control sequence and M1, M2, M3, and M4 are matri-
ces formulated to consider acceleration and physical speed limits, and collision
avoidance. The complete formulation is omitted due to space limit.

While this approach would yield an optimal solution for every time instance,
it requires global knowledge of the platoon dynamics. Namely, to perform the
calculations needed to produce U (control input to command intact vehicles),
speed and acceleration measurements of all related vehicles should be available to
a centralized controller; i.e., V2I and I2V capabilities are needed to receive cur-
rent measurements, perform the required calculations, and transmit the resulting
acceleration commands back to the corresponding vehicles. It has been shown
that such communication structure is feasible [10], but not likely to be deployed
in the near term and presents a single-point of failure. For that reason, in the
next section we suggest an efficient, decentralized heuristic mitigation approach
which requires a less sophisticated communication model and produces nearly
equivalent results to the optimal approach.

4.2 Efficient Heuristic Mitigation

The goal of this approach is to modify the commanded acceleration of a vehicle by
comparing the distance it will cover with the distance that will be covered by the
preceding vehicle during a predefined time horizon (ts). Initially, the acceleration
commands of both vehicles are calculated according to the platooning control
structures given in Sect. 2.1.

176 A. Al-Hashimi et al.

Algorithm 1: Heuristic mitigation
Input: vm(ts(1)), um(ts(1)), for m ∈ {current, preceding} // velocity and

commanded acceleration values of current and preceding vehicles.
Output: unew

current, // new commanded acceleration value for current vehicle.
unew
current ← ucurrent(ts(1)) ;

compute dm for the interval of ts using input data;
if dpreceding < dcurrent then

unew
current ← dpreceding−vpreceding

(
ts(end)−ts(1)

)

0.5
(
t2s(end)−t1s(1)

) ;

if current vehicle and preceding one will collide during ts then
search for unew

current within
[
amin, upreceding

)
;

Let us consider a vehicle in an intact platoon Vcurrent and a preceding vehicle
Vpreceding, where subscripts current and preceding refer to two adjacent vehicles
belonging either to the same platoon or to two different adjacent platoons. Each
vehicle’s dynamics are described by

ẋm(t) = vm(t),
v̇m(t) = um(t),

(12)

where m ∈ {current, preceding}, t ∈ [ts(1) : Δts : ts(end)], ts(1) and ts(end)
are the first and last time samples of the time horizon ts, and Δts is the time
increment. Under the assumption that um is constant for the duration of ts and
using the forward difference approximation [8], the absolute position and velocity
can be calculated as follows

xm

(
ts(k + 1)

)
= xm

(
ts(k)

)
+ Δtsvm

(
ts(k)

)
,

vm

(
ts(k + 1)

)
= vm

(
ts(k)

)
+ Δtsum,

(13)

where k = 1, . . . , |ts|.
Once the vector xm(.) is obtained, the distance traveled by vehicle Vm during

ts can be calculated as dm = xm

(
ts(end)

) − xm

(
ts(1)

)
. Based on the calculated

distance traveled by the current vehicle dcurrent and that by the preceding one
dpreceding, we proceed as follows

– If dpreceding < dcurrent, then Vcurrent is covering more distance and it may
collide with a preceding vehicle and therefore it has to slow down by modifying
its commanded acceleration ucurrent. To produce the same traveled distance
for Vcurrent, ucurrent is selected equal to unew which is calculated as

unew =
dpreceding − vcurrent

(
ts(end) − ts(1)

)

0.5
(
t2s(end) − t2s(1)

) , (14)

Using the new acceleration command, another important consideration is
to ensure that the predicted position vectors of Vcurrent and Vpreceding,
calculated using (13), will not overlap (collide) during the interval of ts.

The Disbanding Attack 177

If that is the case, then the acceleration needs to be selected from the interval[
amin : Δa : unew

)
where Δa is a suitable acceleration increment. Namely,

ucurrent is set equal to the first value smaller than unew within that interval.
If the new value produces no collisions then it is applied. Otherwise, the next
value is selected and so on.

– If dpreceding ≥ dcurrent, then the commanded acceleration ucurrent, calculated
according to the platooning control laws from Sect. 2.1, is maintained.

The steps of this approach are shown in Algorithm 1. Once the disbanding attack
is detected for a single platoon, as explained in Sect. 2.2, the last vehicle of the
disbanded platoon will inform the following lead intact vehicle, using the estab-
lished inter-vehicle communication. The latter vehicle will calculate its acceler-
ation command and modify it, if needed, using this mitigation approach. Fur-
thermore, it will also inform the following vehicle to implement similar steps.

Practically, to implement the suggested approach requires that the following
information should be available: commanded acceleration of the current vehicle
(measured locally) and the preceding one (transmitted via the already estab-
lished communication), and the velocity of the current vehicle (measured locally)
and that of the preceding one (estimated form the measurements of velocity and
relative velocity). The process described above will be repeated at the next time
instant using the newly obtained measurements. Vcurrent will reuse the adopted
platooning control law once the inter-vehicle distance, with respect to Vpreceding,
begins to increase.

Finally, it should be noted that our approach requires a far less sophisticated
communication model to connect any two neighboring vehicles, performs a decen-
tralized mitigation, and produces nearly equivalent results to the MPC-based
mitigation. Hence, it is not only cheaper to implement the heuristic approach
compared to the MPC-based one, the former is also more resilient.

4.3 Results and Discussion

Table 2 displays the average velocity error, Ev, collected under different scenarios
for the optimal single platoon disbanding attack. Baseline, mit.1, and mit.2 refer
to platoons using the control structure from Sect. 2.1, the heuristic mitigation,
and MPC based mitigation, respectively. For all the cases given, the total number
of platoons is equal to ten and the inter-vehicle separation, xd, and actuator
delay, τ , are varied, in order to examine various likely scenarios.

We can see (Table 2) that the baseline control does not perform well against
the disbanding attack, since all cases involve accidents (except for xd = 5 m and
τ = 0.1 s) and an increase in Ev. On the other hand, it is clear that our approach
improves the values of Ev for all attack cases.

In addition, collisions are avoided in most attack cases except when τ equals
to 0.5 s. Also, the heuristic approach reduces the number of colliding vehicles.
For example, the attack case with xd = 4 m resulted in accidents involving 58%
and 29% of the total number of vehicles, which is 100, for the baseline and mit.1,
respectively. Furthermore, for the attack case with xd = 5 m and τ = 0.1 s, 80%

178 A. Al-Hashimi et al.

Table 2. Results for optimal one-platoon
disbanding attack

xd [m] τ [s] Ev [%] Crash

Baseline mit.1 mit.2 Baseline mit.1 mit.2

5 0.1 29.570 24.283 23.025 No No No

0.3 41.268 25.556 25.182 Yes No No

0.5 52.235 28.482 28.709 Yes Yes Yes

4 0.1 27.995 25.063 22.798 Yes No No

0.3 40.115 26.864 24.823 Yes No No

0.5 52.706 29.079 29.742 Yes Yes Yes

Table 3. Results for optimal two-platoon
disbanding attack

xd [m] τ [s] Ev [%] Crash

Baseline mit.1 mit.2 Baseline mit.1 mit.2

5 0.1 38.347 27.056 26.221 Yes No No

0.3 39.839 28.548 29.129 Yes No Yes

0.5 45.004 35.724 38.690 Yes Yes Yes

4 0.1 37.069 30.731 29.811 Yes No No

0.3 40.233 33.183 34.868 Yes Yes No

0.5 45.823 38.349 38.914 Yes Yes Yes

of the intact vehicles experienced stop-and-go behavior at least once because
of the use of a collision-avoidance algorithm applying maximum deceleration.
However, in our approach, and for all attack cases, all intact vehicles slowed
down gradually and did not have to come to a complete stop.

Using mit.2 also helps with improving the values of Ev and avoiding collisions.
By comparison, we can see that the values of Ev for both mit.1 and mit.2 are
comparable. In fact, it is clear that our approach improves the results, in terms
of lowering Ev and no collisions, in some attack cases. Overall, these numbers
demonstrate that our heuristic approach produces nearly equivalent results to
the optimal MPC approach.

Table 3 shows data for Ev collisions for different cases involving two platoons
disbanding, where the total number of platoons is equal to ten. The optimal
attack is found to occur by targeting the 10th (lead) and 9th platoons in the for-
mation at times equal to 2 s and 100 s, respectively, within Ts. We can see that
the baseline control produces collisions for all attacks cases. However, with either
mit.1 or mit.2, the reduction in velocity is minimized and crashes are avoided
completely in some cases. Also, the results for both mitigation approaches are
nearly equivalent. Furthermore, by comparison with Table 2, and even with mit-
igation, the two-platoon disbanding attack results in more crashes, which indi-
cates that it is a more severe attack compared to disbanding a single platoon.

Fig. 4. Experimental environment with small robots and motion capture system

The Disbanding Attack 179

5 Experimental Validation

Our proposed mitigation algorithm was evaluated on a testbed and compared
with the baseline algorithm (i.e., a platoon control law with collision avoidance).

5.1 Hardware Setup

Our experimental setup consisted of small robots that represent vehicles in a
stream of platoons and a motion capture system for tracking (Fig. 4). We imple-
mented the attack and the mitigation algorithm on three 3-vehicle platoons,
denoted as per the convention shown in Fig. 2. The 3rd (leading) platoon was
disbanded and the response of other two platoons was captured.

To each robot is affixed multiple IR markers for tracking by the Optitrack
motion capture system. 24 IR cameras, and the Motive software, enable us to
capture robot positions. Position data is streamed to a command computer where
an interface application utilizing the Robot Operating System (ROS) [26] frame-
work makes the gathered position data for each robot available to our controller
application. This application processes the position data and sends appropri-
ate control commands to each robot. The controller application implemented on
ROS works in the following manner:

– The raw position data is processed using an Extended Kalman Filter to reduce
camera sensor noise and estimate the measured position and velocity.

– The Pure Pursuit Controller uses the estimated positions and circular path
coordinates from the experimental environment to calculate the angular veloc-
ity command for each vehicle.

– The estimated data of all vehicles is used to calculate the relative distance and
velocity. This is then fed to the upper-level controller (Sect. 2.1) and provides
desired acceleration values for the robots.

– The mitigation and baseline algorithm then modify the acceleration values
from the upper-level controller in case a disbanding attack is detected.

– As the vehicles only act upon instantaneous velocity commands, these accel-
eration values along with current measured velocities are used to calculate the
desired velocities for each vehicle. The desired linear velocities for the vehi-
cles are effected using a PI controller which acts as the lower-level controller
(Sect. 2.1).

Each robot consists of a 32-bit ARM-based mbedNXP LPC1768 microcon-
troller on the Pololu m3pi platform to which Digi Xbee receivers are interfaced.
An Xbee transmitter is also connected to the command computer. These Xbee
modules allow us to establish a wireless communication channel over which the
angular and linear velocity commands, calculated for each robot using the con-
troller application, are broadcast. The robots receive the broadcast messages and
calculate the left and right wheel speeds from the received angular and linear
velocities as per the differential drive model.

180 A. Al-Hashimi et al.

5.2 Experimental Results

Figure 5 shows individual velocity profiles for the vehicles under consideration
(three platoons with three robots in each). Figure 5a indicates the affect on veloc-
ities due to disbanding for the baseline control algorithm, given in Sect. 2.1, where
we can see vehicles in the last platoon slow down suddenly (one of them stops) in
response to the disbanding of the lead platoon. Figures 5b and c give the velocity
profiles when the intact robots use the traveled distance mitigation approach,
wherein it can be seen that the speed of vehicles in second and third platoon
slow down gradually and then begin to accelerate. This mitigation approach was
tested with ts = 0.5 s and 1 s, respectively. The point labeled as A in Figs. 5a,
b, and c indicate that the platoons are in a steady state. Point B marks the
time when the attack on the lead platoon is emulated, causing all of its vehicles
to disband and suddenly decelerate. Deceleration patterns of the vehicles after
point B for the baseline controller clearly indicates a sudden drop in velocities
for the following platoons, causing some vehicles to come to a complete stop as
indicated by point C.

While there are no collisions with the baseline control, sudden decelera-
tion/acceleration is observed. Such abrupt changes in velocities are not observed
when our proposed heuristic mitigation is in place (Figs. 5b and c, where point
C shows that none of the vehicles need to come to a halt). With the mitigation

0 5 10 15 20 25 30 35

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sp
ee

d
[m

/s
]

Vehicle 3-1
Vehicle 3-2
Vehicle 3-3
Vehicle 1-3
Vehicle 1-2

Vehicle 1-1
Vehicle 2-3
Vehicle 2-2
Vehicle 2-1

A B

C

(a) Baseline

0 5 10 15 20 25 30 35 40

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sp
ee

d
[m

/s
]

Vehicle 3-1
Vehicle 3-2
Vehicle 3-3
Vehicle 1-3
Vehicle 1-2

Vehicle 1-1
Vehicle 2-3
Vehicle 2-2
Vehicle 2-1

A B

C

(b) Mitigation: ts = 0.5s

0 5 10 15 20 25 30 35

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sp
ee

d
[m

/s
]

Vehicle 3-1
Vehicle 3-2
Vehicle 3-3
Vehicle 1-3
Vehicle 1-2

Vehicle 1-1
Vehicle 2-3
Vehicle 2-2
Vehicle 2-1

A B

C

(c) Mitigation: ts = 1.0s

Fig. 5. Vehicles’ velocities upon disbanding of platoon 3 for baseline control structure
and proposed heuristic mitigation algorithm with ts = 0.5 s and 1 s.

The Disbanding Attack 181

approach, vehicles gradually decelerate and accelerate to recover and maintain
desired spacing and velocities, without collisions. Furthermore, the calculated
Ev for the three experiments were 30.02%, 21.82% and 19.73% for Figs. 5a, b
and c, respectively. These numbers indicate that with increasing ts, the change
in velocity is smoother and more gradual, yet collisions do not occur. However,
with ts = 1 s, the vehicles come to closer proximity, compared the results with ts
= 0.5 s. For reference, we have also uploaded short videos of our experiments [1].

6 Conclusion

We presented and studied an attack which targets vehicular platoons and can
cause severe deviations in speed, including stop-and-go traffic, and collisions.
The attack exploits human-in-the-loop control, whereby a vehicle switches from
automated control to human driving at the onset of an attack against the sensing
system of a vehicle, causing the platoon to dissolve (or disband). Calculations
of key attack factors, such as identifying the platoon to disband and time to
disband them, in optimal disbanding scenarios were carried out. Additionally,
we proposed mitigation algorithms that reduce sudden velocity changes and
also decrease the number of accidents, hence ensuring resilient performance for
platoons. Simulations and experimental results corroborate theory, which indi-
cate decreased velocity deviations and thus improved traffic flow. Finally, the
proposed heuristic approach was implemented on a hardware testbed, with a
motion capture system and mobile robots representing platoons, and it showed
an improved performance, compared to using a baseline control algorithm.

References

1. Mitigation and baseline algorithm experiments. http://m.youtube.com/channel/
UCI-UGJKT7C5E 8bs391LCpA

2. Truck platooning vision 2025 (2016). www.eutruckplatooning.com
3. Amoozadeh, M., Deng, H., Chuah, C.N., Zhang, H.M., Ghosal, D.: Platoon man-

agement with cooperative adaptive cruise control enabled by VANET. Veh. Com-
mun. 2(2), 110–123 (2015)

4. Axelsson, J.: Safety in vehicle platooning: a systematic literature review. IEEE
Trans. Intell. Transp. Syst. 18(5), 1033–1045 (2017)

5. Bemporad, A., Morari, M.: Robust model predictive control: a survey. In: Garulli,
A., Tesi, A. (eds.) Robustness in identification and control. LNCIS, vol. 245, pp.
207–226. Springer, London (1999). https://doi.org/10.1007/BFb0109870

6. Bergenhem, C., Shladover, S., Coelingh, E., Englund, C., Tsugawa, S.: Overview
of platooning systems. In: Proceedings of the 19th ITS World Congress, Austria,
22–26 October 2012

7. Blanco, M., et al.: Human factors evaluation of level 2 and level 3 automated
driving concepts, August 2015

8. Borrelli, F.: Constrained Optimal Control of Linear and Hybrid Systems. LNCIS,
vol. 290. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36225-8

9. Chauhan, R., Gerdes, R.M., Heaslip, K.: Attack against an FMCW radar. In:
Proceedings of Embedded Security in Cars Conference (2014)

http://m.youtube.com/channel/UCI-UGJKT7C5E_8bs391LCpA
http://m.youtube.com/channel/UCI-UGJKT7C5E_8bs391LCpA
www.eutruckplatooning.com
https://doi.org/10.1007/BFb0109870
https://doi.org/10.1007/3-540-36225-8

182 A. Al-Hashimi et al.

10. Chou, C., Li, C., Chien, W., Lan, K.: A feasibility study on vehicle-to-infrastructure
communication: WiFi vs. WiMAX. In: 2009 Tenth International Conference on
Mobile Data Management: Systems, Services and Middleware, pp. 397–398 (2009)

11. Coelingh, E., Solyom, S.: All aboard the robotic road train. IEEE Spectr. 49, 34–49
(2012)

12. Dadras, S., Gerdes, R.M., Sharma, R.: Vehicular platooning in an adversarial envi-
ronment. In: Proceedings of the 10th ACM Symposium on Information, Computer
and Communications Security, ASIA CCS 2015, pp. 167–178. ACM, New York
(2015)

13. DeBruhl, B., Weerakkody, S., Sinopoli, B., Tague, P.: Is your commute driving you
crazy?: A study of misbehavior in vehicular platoons. In: WISEC (2015)

14. Dunn, D.D., Mitchell, S.A., Sajjad, I., Gerdes, R.M., Sharma, R., Li, M.: Regular:
attacker-induced traffic flow instability in a stream of semi-automated vehicles. In:
2017 47th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp. 499–510 (2017)

15. Eriksson, A., Stanton, N.A.: Takeover time in highly automated vehicles: noncrit-
ical transitions to and from manual control. Hum. Factors 59(4), 689–705 (2017)

16. Gerdes, R.M., Winstead, C., Heaslip, K.: CPS: an efficiency-motivated attack
against autonomous vehicular transportation. In: Proceedings of the 29th Annual
Computer Security Applications Conference, pp. 99–108. ACM (2013)

17. Gold, C., Damböck, D., Lorenz, L., Bengler, K.: “Take over!” How long does it
take to get the driver back into the loop? Proc. Hum. Factors Ergon. Soc. Annu.
Meet. 57(1), 1938–1942 (2013)

18. Ploeg, J., Scheepers, B., Van Nunen, E., Van de Wouw, N., Nijmeijer, H.: Design
and experimental evaluation of cooperative adaptive cruise control. In: Interna-
tional IEEE Conference on Intelligent Transportation Systems, pp. 260–265 (2011)

19. Jagielski, M., Jones, N., Lin, C.W., Nita-Rotaru, C., Shiraishi, S.: Threat detection
for collaborative adaptive cruise control in connected cars. In: Proceedings of the
11th ACM Conference on Security & Privacy in Wireless and Mobile Networks,
WiSec 2018, pp. 184–189. ACM, New York (2018)

20. Kesting, A., Treiber, M., Helbing, D.: Enhanced intelligent driver model to access
the impact of driving strategies on traffic capacity. Philos. Trans. R. Soc. Lond. A
Math. Phys. Eng. Sci. 368(1928), 4585–4605 (2010)

21. Liang, K.Y., Mårtensson, J., Johansson, K.H.: Fuel-saving potentials of platooning
evaluated through sparse heavy-duty vehicle position data. In: 2014 IEEE Intelli-
gent Vehicles Symposium Proceedings, pp. 1061–1068 (2014)

22. Merat, N., Jamson, A.: How do drivers behave in a highly automated car?, pp.
514–521, October 2017. https://doi.org/10.17077/drivingassessment.1365

23. Merat, N., Jamson, A.H., Lai, F.C., Daly, M., Carsten, O.M.: Transition to manual:
driver behaviour when resuming control from a highly automated vehicle. Transp.
Res. Part F Traffic Psychol. Behav. 27, 274–282 (2014)

24. Oncu, S., Ploeg, J., van de Wouw, N., Nijmeijer, H.: Cooperative adaptive cruise
control: network-aware analysis of string stability. IEEE Trans. Intell. Transp. Syst.
15(4), 1527–1537 (2014)

25. Petit, J., Stottelaar, B., Feiri, M., Kargl, F.: Remote attacks on automated vehicles
sensors: experiments on camera and LiDar. Black Hat Europe 11 (2015)

26. Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Work-
shop on Open Source Software, Kobe, Japan, vol. 3, p. 5 (2009)

27. Rajamani, R.: Vehicle Dynamics and Control. Mechanical Engineering Series.
Springer, New York (2012). https://doi.org/10.1007/978-1-4614-1433-9

https://doi.org/10.17077/drivingassessment.1365
https://doi.org/10.1007/978-1-4614-1433-9

The Disbanding Attack 183

28. Rawlings, J.B.: Tutorial overview of model predictive control. IEEE Control Syst.
Mag. 20(3), 38–52 (2000)

29. Ren, W., Green, D.: Continuous platooning: a new evolutionary operating concept
for automated highway systems. In: Proceedings of American Control Conference
(ACC), vol. 1, pp. 21–25 (1994)

30. Robinson, T., Chan, E., Coelingh, E.: Operating platoons on public motorways:
an introduction to the SARTRE Platooning Programme. In: 17th World Congress
on Intelligent Transport Systems, vol. 1, p. 12 (2010)

31. van der Heijden, R., Lukaseder, T., Kargl, F.: Analyzing attacks on cooperative
adaptive cruise control (CACC). In: 2017 IEEE Vehicular Networking Conference
(VNC), pp. 45–52 (2017)

32. Vlakveld, W., Verkeersveiligheid, S.W.O., Rijkswaterstaat Water, Verkeer en
Leefomgeving: Transition of control in highly automated vehicles: a literature
review. SWOV Institute for Road Safety Research (2015)

33. Yan, C., Xu, W., Liu, J.: Can you trust autonomous vehicles: contactless attacks
against sensors of self-driving vehicle. DEF CON 24 (2016)

34. Yanakiev, D., Kanellakopoulos, I.: A simplified framework for string stability anal-
ysis in AHS. In: Proceedings of the 13th IFAC World Congress, pp. 177–182 (1996)

35. Yeh, E., Choi, J., Prelcic, N., Bhat, C., Heath Jr., R.: Security in automotive radar
and vehicular networks. Microw. J. 60, 148–164 (2017)

36. Zheng, R., Nakano, K., Yamabe, S., Aki, M., Nakamura, H., Suda, Y.: Study on
emergency-avoidance braking for the automatic platooning of trucks. IEEE Trans.
Intell. Transp. Syst. 15(4), 1748–1757 (2014)

Generic Construction of ElGamal-Type
Attribute-Based Encryption Schemes
with Revocability and Dual-Policy

Shengmin Xu1, Yinghui Zhang1,2(B), Yingjiu Li2, Ximeng Liu3,4,
and Guomin Yang5

1 National Engineering Laboratory for Wireless Security,
Xi’an University of Posts and Telecommunications, Xi’an 710121, China

yhzhaang@163.com
2 School of Information Systems, Singapore Management University,

Singapore, Singapore
3 College of Mathematics and Computer Science, Fuzhou University, Fuzhou, China

4 Key Lab of Information Security of Network Systems, Fuzhou University,
Fuzhou, Fujian, China

5 School of Computing and Information Technology, University of Wollongong,
Wollongong, Australia

Abstract. Cloud is a computing paradigm for allowing data owners
to outsource their data to enjoy on-demand services and mitigate the
burden of local data storage. However, secure sharing of data via cloud
remains an essential issue since the cloud service provider is untrusted.
Fortunately, asymmetric-key encryption, such as identity-based encryp-
tion (IBE) and attribute-based encryption (ABE), provides a promising
tool to offer data confidentiality and has been widely applied in cloud-
based applications. In this paper, we summarize the common proper-
ties of most of IBE and ABE and introduce a cryptographic primitive
called ElGamal type cryptosystem. This primitive can be used to derive a
variety of ABE schemes. To illustrate the feasibility, we present generic
constructions of revocable attribute-based encryption and dual-policy
attribute-based encryption with formal definitions and security proofs.
By applying our proposed generic constructions, we also present instan-
tiations of these schemes. Furthermore, we demonstrate the high perfor-
mance of the proposed schemes via experiments.

Keywords: ElGamal-type cryptosystem · Attribute-based encryption

1 Introduction

Public-key encryption is the fundamental primitive of public-key cryptography,
which removes the key-agreement process in traditional symmetric-key encryp-
tion to facilitate data sharing via the certificate list. However, conventional
public-key infrastructure is vulnerable to certificate management. To address
this issue, identity-based encryption (IBE) [10] was proposed to provide a new

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 184–204, 2019.

https://doi.org/10.1007/978-3-030-37231-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_10

Generic Construction of ElGamal-Type Attribute-Based Encryption Schemes 185

paradigm by utilizing the user identity rather than searching the certificate of
the receiver. Unfortunately, IBE only provides coarse-level data sharing. To over-
come this drawback, attribute-based encryption (ABE) [26] was introduced.
There are mainly two types of standard ABE systems: key-policy ABE (KP-
ABE) and ciphertext-based ABE (CP-ABE) and they are useful in different
applications. KP-ABE provides the content-based access control by specifying
the receiver’s policy over ciphertext’s attributes for managing the accessing of
sensitive information. CP-ABE offers the role-based access control by specifying
the ciphertext’s policy over the receiver’s policy for controlling the data receiver.

IBE. Boneh and Franklin [10] proposed the first practical IBE by transform-
ing ElGamal encryption [12] in finite fields to bilinear groups. To improve the
performance, Boneh and Boyen [8,9] proposed the selectively secure IBE with-
out random oracles and Waters [28] introduced an adaptively secure IBE in
the standard model. Gentry [13] proposed an adaptive security IBE with the
constant-size parameter based on the interactive assumption. Abdalla et al. [1]
then proposed IBE with wildcard operation. Lewko and Waters [18] design the
first adaptive security IBE with the standard assumption by applying dual sys-
tem encryption [29], which also used to design the adaptive security ABE [17].

KP-ABE. In KP-ABE, the key generation center (KGC) generates the users’
secret keys based on corresponding access trees, and ciphertexts are encrypted
over a set of attributes. The encryptor has no control over who has access to
the data except by choosing descriptive attributes for the data. The initial work
was introduced by Sahai and Waters [26]. To enrich the expression, Goyal et al.
[14] provided KP-ABE with monotonic span programs and Ostrovsky et al. [22]
proposed KP-ABE supporting non-monotonic access structures. Attrapadung et
al. [3] then proposed KP-ABE with constant-size ciphertexts.

CP-ABE. In CP-ABE, access trees are used to encrypt data and users’ secret
keys associate a set of attributes. The encryptor has to manage the access tree to
specify the users’ access right. The seminal work was introduced by Bethencourt
et al. [6] with two-level random masking methodology. Waters [30] introduced
the first selectively secure CP-ABE under the non-standard assumption, and
Rouselakis and Waters [24] provided CP-ABE with the large universe.

Generic ABE Constructions. Generic constructions of ABE have been well
studied before. Sahai et al. [25] proposed the generic ABE with piecewise key
generation to derive RABE. Chow [11] provided generic ABE with the properties
of key partition and ciphertext partition to build RABE with the multi-authority
setting. Not surprisingly, self-updatable ABE [16] also applied a similar strategy.
The core technique of them are based on the secret-splitting trick, and we also
apply this concept to build generic schemes.
Many cloud-based data sharing applications are built based on IBE and ABE

since they facilitate data sharing securely. However, consider usability and func-
tionality, directly applying these scheme in cloud-based applications is insuf-
ficient. To address this problem, many cryptosystems with practical proper-
ties have been proposed, such as public-key cryptosystems with revocation

186 S. Xu et al.

(e.g., revocable IBE and ABE, RIBE/RABE for short) and dual-policy ABE
(DP-ABE) with content-based and role-based access control simultaneously.

RIBE/RABE. RIBE/RABE (as shown in Fig. 1) is an extension of IBE/ABE
by providing an efficient revocation mechanism. The issues of revocation have
been pointed out in the corresponding seminal works [10,23] and they suggested
extending each attribute with an expiration date, e.g., private keys periodically
update by representing an attribute as att‖t, where att is the real attribute and
t is the current date. However, such an approach incurs the heavy workload and
unscalable because a secure channel between KGC and each user needs to be
established each time. Boldyreva et al. [7] solved this issue by introducing indirect
revocation, which divides the (short-term) decryption key into the long-term
secret key and the public key-updating material. With this method, KGC only
publishes public key-updating material in each revocation epoch. By applying
tree-based structure [21], the size of the key-updating material is logarithmic in
the number of system users. However, this work suffers decryption key exposure
attacks. The frequently used decryption key could be compromised due to a
variety of reasons, such as side-channel and key-leakage attacks. The long-term
secret key will be compromised if the short-term decryption key is leaked. Seo
and Emura [27] provided a strong model with perfect forward secrecy in the
identity-based setting and proposed a secure RIBE under this model.

DP-ABE. To make the most advantages of both KP-ABE and CP-ABE, DP-
ABE (as shown in Fig. 2) [2,4] was introduced. It is a conjunctively combined
between two types of ABE. Ciphertexts are specified access trees and a set of
attributes simultaneously, and the secret keys are also required to specified a
set of attributes and access trees. We further category DP-ABE into two types:
sequential DP-ABE and parallel DP-ABE. In sequential DP-ABE, receivers will
be able to decrypt if who pass both restrictions. Interestingly, the sequential DP-
ABE is similar to RABE with indirect revocation. In RABE, two restrictions are
long-term secret key and public key-updating material, where long-term secret
keys are related to the key-policy or the ciphertext-policy depending on the
access policy of RABE, and the public key-updating as the restriction based on
the revocation mechanism. In parallel DP-ABE (sometimes called one-policy DP-
ABE), receivers only need to satisfy one of two limitations to review messages.
It is worth to notice that Attrapadung and Yamada [4] provided the generic
construction based on ABE and pairing encodings, our generic constructions are
based on the different building block ElGamal type cryptosystem, which also
can be used to build RABE schemes.

1.1 Contribution

In this paper, we revisit ElGamal-like schemes [12] in both identity-based [1,5,8–
10,18,28] and attribute-based [3,6,14,17,20,22,24,26,30] settings and introduce
a new primitive called ElGamal type cryptosystem with formal definition and
security model by summarizing their common properties. By applying this prim-
itive, we can easily derive a variety of cryptosystems. To illustrate the feasibility

Generic Construction of ElGamal-Type Attribute-Based Encryption Schemes 187

Fig. 1. System model of RABE/RIBE Fig. 2. System model of DP-ABE

of our proposed ElGamal type cryptosystem, we present the generic construc-
tions of RABE with decryption exposure resistance and DP-ABE with parallel
and sequential settings.

We first investigate RIBE/RABE and present the generic construction of
RABE with decryption key exposure resistance. We should note that our ElGa-
mal type cryptosystem allows the key re-randomization without the master
secret key. This re-randomizable property is to remove the relationships among
the long-term secret key, the public key-updating material, and the short-term
decryption key. Hence, the long-term secret key is secure even both the key-
updating material and the decryption key are compromised.

We then investigate DP-ABE schemes and present the concrete schemes of
DP-ABE with parallel and sequential settings in the prime-order group. These
schemes are the provable security under the proposed models. We then give
detailed comparisons and experiment results to demonstrate the usability and
high performance of our proposed schemes.

1.2 Outline

In Sect. 2, we introduce some preliminaries including the proposed ElGamal type
cryptosystem and its semi-generic construction. In Sect. 3, we present defini-
tions of DP-ABE and RABE. In Sect. 4, we give generic constructions of RABE
and DP-ABE and the corresponding formal proofs. The instantiations of these
schemes are presented in Sect. 5. In Sect. 6, we provide the analysis of function-
ality and efficiency. We summarize this paper in Sect. 6.

2 Preliminaries

2.1 Notations

Let N denote the set of all natural numbers, and for n ∈ N, we define [n] :=
1, ..., n. Let �u := (u1, u2, ..., u�) denote a vector of dimension � in Zp. To simplic-
ity, X ∈ X denotes the attributes of key and Y ∈ Y represents the attributes
of ciphertexts. Depending on the policy in the underlying ABE scheme, X and

188 S. Xu et al.

Y denote either an attribute set S or an access policy A, and X and Y repre-
sent either the attribute universe Ω or the policies P. Let R : (X,Y) → {0, 1}
denote the result of sufficient condition by inputting key attributes X ∈ X and
ciphertext attributes Y ∈ Y, and outputting a bit 0 or 1.

2.2 Bilinear Map

Let G and GT be two cyclic multiplicative groups of prime order p and g be a
generator of G. The map e : G × G → GT is said to be an admissible bilinear
pairing if the following properties hold true.

– Bilinearity : for all u, v ∈ G and a, b ∈ Zp, e(ua, vb) = e(u, v)ab.
– Non-degeneration: e(g, g) �= 1.
– Computability : it is efficient to compute e(u, v) for any u, v ∈ G.

2.3 Access Structure and Monotone Span Program

Definition 1 (Access Structure [14]). Let {P1, ..., Pn} be a set of parties.
A collection A ⊆ 2{P1,...,Pn} is monotone if ∀B,C : if B ∈ A and B ⊆ C,
then C ⊆ A. A monotone access structure is a monotone collection A of non-
empty subsets of {P1, ..., Pn}, i.e., A ⊆ 2{P1,...,Pn} \{∅}. The sets in A are called
authorized sets, and the sets not in A are called unauthorized sets.

Definition 2 (Monotone Span Program (MSP) [14]). Let K be a field and
{x1, ..., xn} be a set of variables. A MSP over K is labeled matrix M̃(M, ρ) where
M is a matrix over K, and ρ is a labeling of the rows of M by literals from
{x1, ..., xn} (every row is labeled by one literal). A MSP accepts or rejects an
input by the following criterion. For every input set S if literals, define the
submatrix MS of M consisting of those rows whose labels are in S, i.e., rows
labeled by some i such that i ∈ S. The MSP M̃ accepts S if and only if �1 ∈
span(MS), i.e., some linear combination of the rows of MS given the all-one
vector �1. The MSP M̃ computes a boolean function fM if it accepts exactly those
input S where fM(S) = 1. The size of M̃ is the number of rows in M.

2.4 Definition of ElGamal Type Cryptosystem

Definition 3 (ElGamal Type Cryptosystem). ElGamal type cryptosystem
ET C with the key attribute universe X that supports the ciphertext attribute
universe Y and the message space M consists of the following five algorithms:

– ET C.Init(λ) → pp: The probabilistic initialization algorithm takes the secu-
rity parameter λ ∈ N as input, and outputs the public parameter pp, such
as the description of the bilinear group from the bilinear group generator
(g, p,G,GT) ← G(λ).

– ET C.Setup(pp) → (pk,msk): The probabilistic setup algorithm takes the
parameter pp as input, and outputs the public key pk and the master secret
key msk. It is required that the master secret key and the public key are in
the form of

msk = (α, ...), pk = (e(g, g)α, ...),

where α ∈ Zp.

Generic Construction of ElGamal-Type Attribute-Based Encryption Schemes 189

– ET C.KeyGen(msk,X) → skX : The probabilistic key generation algorithm
takes the master secret key msk and the attributes of the secret key X ∈ X
as input, and outputs the secret key skX . It is required that the secret key is
in the form of skX = (sk1, sk2, sk3) as:

sk1 = gh(α) · f(pk,X)r, sk2 = gr,

where r ∈ Zp, h(x) ∈ Zp and f(x, y) ∈ G. Note that sk3 is for recording some
extra information related attributes of the secret key.

– ET C.Enc(pk, Y,m) → cY : The probabilistic encryption algorithm takes the
public key pk, the attributes of the ciphertext Y ∈ Y and the message m ∈ M
as input, and outputs the ciphertext cY . It is required that the ciphertext is in
the form of cY = (c0, c1, c2) as:

c0 = m · e(g, g)αs, c1 = gs,

where s ∈ Zp and c2 is some extra information related to attributes of the
ciphertext.

– ET C.Dec(pk, skX , cY) → m: The deterministic decryption algorithm takes the
public key pk, the secret key skX and the ciphertext cY as input, and outputs
the message m ∈ M. The decryption process is required to be two steps.
The first step is to run the sub-decryption algorithm D to get the message
hiding component e(g, g)αs ← D(skX , c1, c2). The second step is to extract the
plaintext by eliminating the message hiding component as m = c0/e(g, g)αs.

The consistency condition requires for all λ ∈ N, all pp output by the initializa-
tion algorithm, pk and msk output by setup algorithm, m ∈ M and R(X,Y) = 1,
we then have

ET C.Dec(pk, skX , ET C.Enc(pk, Y,m)) = m.

Next, we describe the security model called selectively indistinguishable against
chosen plaintext attack (sIND-CPA) for ElGamal type cryptosystem.

Definition 4 (sIND-CPA in ElGamal type cryptosystem). An ElGamal
type cryptosystem consists of five algorithms above. For an adversary A, we
define the following experiment:

ExpsIND-CPA
A,ET C (λ)

Y ∗ ← A(λ);
pp ← ET C.Init(λ);
(pk,msk) ← ET C.Setup(pp);
(m0,m1) ← AOKeyGen(pp, pk);
b ← {0, 1};
c∗ ← Enc(pk, Y ∗,mb);
b′ ← AOKeyGen(·)(c∗);
If b = b′ return 1 else return 0.

190 S. Xu et al.

OKeyGen(·) represents the key generation oracle which allows A to query on
attributes of keys X ∈ X except R(X,Y ∗) = 1 to return the secret key skX

by running ET C.KeyGen(msk,X).
An ElGamal type cryptosystem is said to be sIND-CPA secure if for any proba-
bilistic polynomial time adversary A, the following advantage is negligible:

AdvsIND-CPA
A,ET C (λ) =

∣
∣ Pr[ExpsIND-CPA

A,ET C (λ) = 1] − 1/2
∣
∣

2.5 Candidates of ElGamal Type Cryptosystem

The IBE [1,5,8–10,18,28] and ABE [3,6,14,20,22,24,26,30] schemes are the
instantiations of ElGamal type cryptosystems. We demonstrate three candidates
of them to illustrate the feasibility of our proposed ElGamal type cryptosystem.

IBE. Let r, s denote random numbers over Zp, I be the identity space and
� = log2 I be the length of message space. Waters’ IBE [28] is given below.

pk =
(

e(g, g)α, u0, u1, ..., u�

)

, msk := (α) ,

skid =
(

gα
(

u0

∏

i∈V ui

)r
, gr

)

,

cid =
(

m · e(g, g)αs, gs,
(

u0

∏

i∈V ui

)s
)

,

where V ∈ [�] be the set of all i for which id[i] = 1.

KP-ABE. Let Δi,J =
∏

j∈J,j �=i

(
x−j
i−j

)

denote the Lagrange coefficient for x, i ∈
Zp and J ⊂ Z, n denote the maximum size of attributes used in encryption, M is
a matrix over Zp with d rows and l columns, ρ is a mapping function that maps
any number in the domain [d] to the attribute universe Ω, S = (A1, A2, ..., Ak)
is the attribute set and

(

{ri}i∈[d], s
)

represent random numbers in Zp. Goyal
et al’s KP-ABE [14] is described as follows.

pk =
(

e(g, g)α, {ti}i∈[n+1]

)

, msk = (α),

skA =
(

{gMi�uiT (i)ri , gri}i∈[d]

)

,

cS =
(

m · e(g, g)αs, gs, {T (i)s}ρ(i)∈S
)

,

where the vector �u is a random l dimensional vector over Zp s.t. �1 · �u = α and
T (x) = gxn ∏n+1

i=1 t
Δi,[n+1](x)

i be a function to map any index x ∈ Zp to the
element in G.

CP-ABE. Let {φi}i∈[n] ∈ Zp denote a set of random numbers, Rouselakis and
Waters’ CP-ABE [24] is given below.

pk =
(

e(g, g)α, u, h, w, v
)

, msk = (α),

skS =
(

gαwr, gr, {gri , (uAih)riv−r}ρ(i)∈S
)

,

cA =
(

m · e(g, g)αs, gs, {wMi�uivφi , (uρ(i)h)φi , gφi}i∈[d]

)

,

Generic Construction of ElGamal-Type Attribute-Based Encryption Schemes 191

where �u is a l dimensional vector in the domain Zp s.t. �u = (s, u2, ..., ul) ∈ Z
l
p

and r, {ri}ρ(i)∈S , {φi}i∈[d] are random numbers over Zp. Note that referring to
Definition 3, we set h(α) = α and f(pk,X)r = wr for above CP-ABE setting.

2.6 Tree-Based Revocation Mechanism

Naor et al. [21] introduced a tree-based revocation architecture to reduce the cost
of generating and transmitting key updates from linear to logarithmic. Let st
be the state representing the tree-based data structure, rl denote the revocation
list recording identities of revoked users and the timestamp of revocation and t
be the timestamp representing the current revocation epoch. By running subset-
cover algorithm KUNode(st, rl, t), the KGC can derive get the key updates for
all non-revoked users with the logarithmic size. When a user wants to join the
system, who will be assigned a random identifier id ∈ I and an undefined leaf
node in st will be labeled this identifier id. The revocation method only requires
the user id to store the keys in Path(id), where Path(id) denotes nodes from the
root to the leaf node id. The details of algorithm KUNode(st, rl, t) are given in
Algorithm 1.

Algorithm 1: Node Selection Algorithm
Input: BT, rl, t
Output: Y

1 X,Y ← ∅;
2 for (vi, ti) ∈ rl do

if ti ≤ t then
X← X∪Path(vi)

3 for x ∈ X do
if xl �∈ X then

Y ← Y ∪ xl

if xr �∈ X then
Y ← Y ∪ xr

4 if Y = ∅ then
Y ←root

5 return Y.

3 Definition of Revocable ABE and Dual-Policy ABE

In this section, we introduce definitions of RABE and DP-ABE. Specifically,
we first introduce the syntax and security model of RABE. Next, we introduce
syntaxes of DP-ABE for both parallel and sequential settings and their cor-
responding security models. We should note that ElGamal type cryptosystem

192 S. Xu et al.

supports IBE which could be used to manage the timestamp in RABE to effi-
cient revocation rather than ABE to manage the timestamp [25] causing high
computation and communication costs. Note that our proposed scheme is easy
to apply outsourced ABE [15] since the elegant construction of ElGamal-like
encryption to reduce the cost of ciphertext decryption.

3.1 Revocable ABE

Definition 5 (RABE). An RABE RABE with key attributes X, X̄t ∈ X ×
X̄t that support ciphertext Y, Ȳt ∈ Y × Ȳt

1, the bounded system lifetime T , an
identifier space I, the number of system users N and the message space M
consists of nine algorithms given below.

– RABE .Setup(λ) → (pk,msk, rl, st): The probabilistic setup algorithm takes
parameter λ ∈ N as input, and outputs a public key pk, a master secret key
msk, a revocation list rl and a state st.

– RABE .KeyGen(msk, st,X, id) → (skid, st): The probabilistic key generation
algorithm takes the master secret key msk, the state st, the key attributes
X ∈ X and an identifier id ∈ I as input, and outputs the secret key skid and
the state st.

– RABE .KeyUpdate(msk, st, X̄t, rl) → kut: The probabilistic key update algo-
rithm takes the master secret key msk, the state st, the key attributes X̄t ∈ X̄
associated the timestamp t, the time t and the revocation list rl as input, and
outputs the key-updating material kut.

– RABE .DKGen(pk, skid, kut) → dkid,t: The probabilistic decryption key gener-
ation algorithm takes the public key pk, the secret key skid and key-updating
material kut as input, and outputs the decryption key dkid,t.

– RABE .Enc(pk, Y, Ȳt,m) → cY,Ȳt
: The probabilistic encryption algorithm takes

the public key pk, the ciphertext attribute Y ∈ Y, the ciphertext attribute
Ȳt ∈ Ȳ associated with the timestamp t ∈ T and a message m ∈ M as input,
and outputs a ciphertext c.

– RABE .Dec(pk, dkid,t, cY,Ȳ) → m: The deterministic decryption algorithm
takes the public key pk, the decryption key dkid,t and a ciphertext cY,Ȳ as
input, and outputs a message m ∈ M.

– RABE .Rev(rl, id, t) → rl: The deterministic revocation algorithm takes the
revocation list rl, an identifier id ∈ I and the timestamp t ∈ T as input, and
outputs the revocation list rl.

1 X̄t and Ȳt is based on the timestamp t (e.g., the bit representation of the timestamp
or the policies derived from its bit representation) which is used to manage user
revocation.

Generic Construction of ElGamal-Type Attribute-Based Encryption Schemes 193

3.2 Security Model of RABE

Definition 6 (sIND-CPA in RABE). An RABE consist of seven algorithms in
above. For an adversary A, we define the following experiment:

ExpsIND-CPA
A,RABE (λ)

(Y ∗, Ȳt∗) ← A(λ);
(pk,msk, rl, st) ← RABE .Setup(pp);
(m0,m1) ← AO(pp, pk);
b ← {0, 1};
c∗ ← Enc(pk, Y ∗, Ȳt∗ ,mb);
b′ ← AO(c∗);
If b = b′ return 1 else return 0.

O is a set of oracles, {OKeyGen(·, ·),OKeyUpdate(·, ·),ORev(·, ·), ODKGen(·, ·)} and the
details are given below:

– OKeyGen(·, ·) is the key generation oracle that allows A to query key attribute
X ∈ X and an identifier id ∈ I, and it runs RABE .KeyGen(msk, st,X, id)
to return the secret key skid.

– OKeyUpdate(·, ·) is the key update oracle that allows A to query key attributes
X̄t associated with the time t ∈ T , and it runs RABE .KeyUpdate(msk, st, X̄t,
rl) to return the key update kut.

– ORev(·, ·) is the revocation oracle that allows A to query an identifier id ∈ I
and the time t ∈ T , and it runs RABE .Rev(rl, id, t) to update the revocation
list rl.

– ODKGen(·, ·, ·) is the decryption key generation oracle that allows A to query
key attributes (X, X̄) ∈ X ×X̄ , the timestamp t ∈ T and an identifier id ∈ I,
and it runs RABE .DKGen(pk, skid, kut) to return the decryption key dkid,t if
the secret key skid and the key update kut are available. Otherwise, it first
runs the key generation oracle and key update oracle to obtain the secret key
skid and the key update kut.

A is allowed to issue above oracles with the following restrictions:

1. OKeyUpdate(·, ·) and ORev(·, ·) can be queried at the time t which is greater than
or equal to that of all previous queries.

2. ORev(·, ·) cannot be queried at the time t if OKeyUpdate(·) was queried at the
time t.

3. If OKeyGen(·, ·) was queried on an identifier id ∈ I with key attributes X ∈ X
s.t. R(X,Y ∗) = 1, then ORev(·, ·) must be queried on this identifier id at the
time t ≤ t∗.

4. ODKGen(·, ·) cannot be queried on any identifier id ∈ I with the key attributes
X ∈ X s.t. R(X,Y ∗) = 1 at the challenge time t∗ or any identifier id ∈ I
has been revoked.

194 S. Xu et al.

An RABE scheme is said to be sIND-CPA secure if for any probabilistic polyno-
mial time adversary A, the following advantage is negligible:

AdvsIND-CPA
A,RABE (λ) =

∣
∣ Pr[ExpsIND-CPA

A,RABE (λ) = 1] − 1/2
∣
∣.

3.3 Definition of DP-ABE

Definition 7 (DP-ABE). Dual-Policy Attribute-Based Encryption DP with
key attributes (X, X̄) ∈ X × X̄ that support ciphertext attributes (Y, Ȳ) ∈ Y × Ȳ
and the message space M consists of following four algorithms:

– DP.Setup(λ) → (pk,msk): The probabilistic setup algorithm takes as input
the security parameter λ ∈ N, and outputs the public key pk and the master
secret key msk.

– DP.KeyGen(msk,X, X̄) → skX,X̄ : The key generation algorithm takes as
input the master secret key msk, the key attributes (X, X̄) ∈ X × X̄ , and
outputs the secret key skX,X̄ .

– DP.Enc(pk, Y, Ȳ ,m) → cY,Ȳ : The encryption algorithm takes as input the
public key pk, the ciphertext attributes (Y, Ȳ) ∈ Y × Ȳ and the message m ∈
M, and outputs the ciphertext cY,Ȳ .

– DP.Dec(skX,X̄ , cY,Ȳ) → m: The decryption algorithm takes as input the secret
key skX,X̄ and the ciphertext cY,Ȳ , and outputs the message m ∈ M.

Definition 8 (Correctness of Parallel DP-ABE). Let PDP denote a paral-
lel DP-ABE scheme. The consistency condition requires for all λ ∈ N, the public
key pk and the master secret key msk output by setup algorithm, m ∈ M and
(

R(X,Y) ∨ R̄(X̄, Ȳ)
)

= 1, we then have

PDP.Dec
(

skX,X̄ ,PDP.Enc(pk, Y, Ȳ ,m)
)

= m.

Definition 9 (Correctness of Sequential DP-ABE). Let SDP denote a
sequential DP-ABE scheme. The consistency condition requires for all λ ∈ N,
the public key pk and the master secret key msk output by setup algorithm,
m ∈ M, and R(X,Y) = R̄(X̄, Ȳ) = 1, we then have

SDP.Dec
(

skX,X̄ ,SDP.Enc(pk, Y, Ȳ ,m)
)

= m.

3.4 Security Model of DP-ABE

Definition 10 (sIND-CPA in Parallel DP-ABE). A parallel DP-ABE PDP
consists of four algorithms in above. For an adversary A, we define the following
experiment:

Generic Construction of ElGamal-Type Attribute-Based Encryption Schemes 195

ExpsIND-CPA
A,PDP (λ)

(Y ∗, Ȳ ∗) ← A(λ);
(pk,msk) ← PDP.Setup(λ);
(m0,m1) ← AOKeyGen(pk);
b ← {0, 1};
c∗ ← PDP.Enc(pk, Y ∗, Ȳ ∗,mb);
b′ ← AOKeyGen(c∗);
If b = b′ return 1 else return 0.

OKeyGen(·, ·) is the key generation oracle that allows A to query on any key
attributes X, X̄ ∈ X × X̄ s.t. R(X,Y ∗) = R̄(X̄, Ȳ ∗) = 0, and returns the secret
key skX,X̄ by running PDP.KeyGen(msk,X, X̄).
A parallel DP-ABE is said to be sIND-CPA secure if for any probabilistic poly-
nomial time adversary A, the following advantage is negligible:

AdvsIND-CPA
A,PDP (λ) =

∣
∣ Pr[ExpsIND-CPA

A,PDP (λ) = 1] − 1/2
∣
∣.

Definition 11 (sIND-CPA in Sequential DP-ABE). A sequential DP-ABE
SDP consists of four algorithms in above. For an adversary A, we define the
following experiment:

ExpsIND-CPA
A,SDP (λ)

(Y ∗, Ȳ ∗) ← A(λ);
(pk,msk) ← SDP.Setup(λ);
(m0,m1) ← AOKeyGen(pk);
b ← {0, 1};
c∗ ← SDP.Enc(pk, Y ∗, Ȳ ∗,mb);
b′ ← AOKeyGen(c∗);
If b = b′ return 1 else return 0.

OKeyGen(·, ·) is the key generation oracle that allows A to query on any key
attributes X, X̄ ∈ X × X̄ except R(X,Y ∗) = R̄(X̄, Ȳ ∗) = 1, and returns the
secret key skX,X̄ by running SDP.KeyGen(msk,X, X̄).
A sequential DP-ABE is said to be sIND-CPA secure if for any probabilistic poly-
nomial time adversary A, the following advantage is negligible:

AdvsIND-CPA
A,SDP (λ) =

∣
∣ Pr[ExpsIND-CPA

A,SDP (λ) = 1] − 1/2
∣
∣.

4 Proposed Schemes

4.1 Generic Construction of Revocable ABE

Let ET C and ET Ct are ElGamal type cryptosystems. The generic construction
of RABE RABE are described as follows.

196 S. Xu et al.

– RABE .Setup(λ): The setup algorithm initializes an empty revocation list rl ←
∅ and a state based on the binary tree BT with N leaf nodes, where N is the
number of system users. The algorithm follows SDP.Setup(λ) to generate the
public key pk and the master secret key msk.

– RABE .KeyGen(msk, st,X, id): The key generation algorithm chooses an
unassigned leaf node from the binary tree BT and stores id in this node.
For each node θ ∈ Path(id):

• Fetch αθ from the node θ. If αθ is not available, it randomly chooses
αθ ∈ Zp, and updates the state st ← st ∪ (θ, αθ).

• Run ET C.KeyGen(αθ,X) → skθ.
The key generation algorithm returns the secret key skid = {skθ}θ∈Path(id)

and the updated state st.
– RABE .KeyUpdate(msk, st, X̄t, rl) → kut: Pases X̄t is the key attributes based

on the timestamp t ∈ T . For each node θ ∈ KUNodes(st, rl, t):
• Fetch αθ (αθ always predefined in the key generation algorithm).
• Run ET Ct.KeyGen(α − αθ, X̄t) → skt,θ, where α is the master secret key.

The key update algorithm returns kut = {skt,θ}θ∈KUNodes(st,rl,t).
– RABE .DKGen(pk, skid, kut) → dkid,t: Let I and J denote sets Path(id) and

KUNodes(st, rl, t), respectively. For θ ∈ I∩J, the algorithm chooses a serial of
random values to re-randomize the keys (skθ, skt,θ) and returns the decryp-
tion key dkid = (skθ, skt,θ).

– RABE .Enc(pk, Y, Ȳt,m) → cY,Ȳt
: Same as SDP.Enc(pk, Y, Ȳ ,m).

– RABE .Dec(pk, dkid,t, cY,Ȳt
) → m: Same as SDP.Dec(dkid,t, cY,Ȳt

).
– RABE .Rev(rl, id, t) → rl: The revocation algorithm returns the revocation

list rl as rl ← rl ∪ (id, t).

Theorem 1. If the underlying ElGamal type cryptosystems ET S1 and ET S2

are secure, the proposed generic construction is secure2.

4.2 Generic Construction of Parallel DP-ABE

Let ET Ckp and ET Ccp are ElGamal type cryptosystems based on KP-ABE and
CP-ABE, respectively. The generic construction of parallel DP-ABE PDP are
described as follows.

– PDP.Setup(λ): The setup algorithm runs
{

ET Ckp.Init(λ) → ppkp, or

ET Ccp.Init(λ) → ppcp.

to obtain the description of bilinear group as the public parameter pp, where
ppkp = ppcp = G(λ) by the definition of ElGamal type cryptosystem. The
algorithm also runs

{

ET Ckp.Setup(pp) → (pkkp,mskkp), and

ET Ccp.Setup(pp) → (pkcp,mskcp).

2 Please contact the authors for the formal security proofs of Theorem 1 to 3.

Generic Construction of ElGamal-Type Attribute-Based Encryption Schemes 197

to obtain the master secret key α, where mskkp = mskcp = α by the definition
of ElGamal type cryptosystem. The setup algorithm outputs

pk = (pp, pkkp, pkcp), msk = (α).

– PDP.KeyGen(msk,X, X̄): Parse X is the access structure in KP-ABE and
X̄ is attribute set in CP-ABE. The key generation algorithm runs

{

ET Ckp.KeyGen(α,X) → skX , and

ET Ccp.KeyGen(α, X̄) → skX̄ .

The key generation algorithm outputs the secret key skX,X̄ = (skX , skX̄).
– PDP.Enc(pk, Y, Ȳ ,m): Parse Y is the attribute set in KP-ABE and Ȳ is the

access structure in CP-ABE. The encryption algorithm runs
{

ET Ckp.Enc(pkkp, Y,m) → cY , and

ET Ccp.Enc(pkcp, Ȳ ,m) → cȲ .

By the definition of ElGamal type cryptosystem, we have

cY = (c(0)Y , c
(1)
Y , c

(2)
Y) and cȲ = (c(0)

Ȳ
, c

(1)

Ȳ
, c

(2)

Ȳ
),

where c
(0)
Y = c

(0)

Ȳ
= m · e(g, g)αs and c

(1)
Y = c

(1)

Ȳ
= gs. The encryption algo-

rithm outputs the ciphertext cY,Ȳ = (m · e(g, g)αs, gs, c
(2)
Y , c

(2)

Ȳ
).

– PDP.Dec(skX,X̄ , cY,Ȳ): The decryption algorithm runs
{

ET Ckp.Dec(pkkp, skX , cY) → m if R(X,Y) = 1,
ET Ccp.Dec(pkcp, skX̄ , cȲ) → m if R̄(X̄, Ȳ) = 1.

The decryption algorithm returns the message m.

Theorem 2. If the underlying ElGamal type cryptosystems ET Ckp and ET Ccp

are secure, the proposed generic construction of parallel DP-ABE is secure.

4.3 Generic Construction of Sequential DP-ABE

Let ET Ckp and ET Ccp are ElGamal type cryptosystems based on KP-ABE and
CP-ABE, respectively. The generic construction of parallel DP-ABE SDP are
described as follows.

– SDP.Setup(λ): Same as PDP.Setup(λ).
– SDP.KeyGen(msk,X, X̄): Parse X is the access structure in KP-ABE and

X̄ is attribute set in CP-ABE. The key generation algorithm randomly picks
α′ ∈ Zp and runs

{

ET Ckp.KeyGen(α′,X) → skX , and

ET Ccp.KeyGen(α − α′, X̄) → skX̄ .

The key generation algorithm outputs the secret key skX,X̄ = (skX , skX̄).

198 S. Xu et al.

– SDP.Enc(pk, Y, Ȳ ,m): Same as PDP.Enc(pk, Y, Ȳ ,m).
– SDP.Dec(skX,X̄ , cY,Ȳ): The decryption algorithm runs the sub-decryption

algorithms
{

Dkp(skX , gs, c
(2)
Y) → e(g, g)α′s,

Dcp(skX̄ , gs, c
(2)

Ȳ
) → e(g, g)(α−α′)s.

The decryption algorithm outputs the message m = m · e(g, g)αs/e(g, g)αs.

Theorem 3. If the underlying ElGamal type cryptosystems ET Ckp and ET Ccp

are secure, the proposed generic construction of parallel DP-ABE is secure.

5 Instantiations Based on ElGamal Type Cryptosystem

5.1 Instantiations of RABE

By applying the generic construction in Sect. 4.1, we can build the concrete
instantiation of key-policy RABE and ciphertext RABE, and even revocable
DP-ABE by dividing the master secret key into three pieces for (X, X̄, t), where
(X, X̄) are key attributes in DP-ABE and t is for managing user revocation.
There are many concrete RABE schemes based on ElGamal type schemes. For
example, the RABE with decryption key exposure resistance [31] are based on
[14], and [24], the KP-ABE with efficient revocation mechanism and decryption
key exposure resistance [32] are based on [14] and [28], and the CP-ABE with
efficient revocation mechanism and decryption key exposure resistance [33] are
based on [24] and [28]. We omit the detailed construction here since our paper
focus on argue that any ElGamal type scheme as in Definition 3 can be used to
build secure RABE schemes and dual-policy ABE, respectively.

5.2 An Instantiation of Parallel DP-ABE

By applying the generic construction in Sect. 4.2, we give an instantiation of
parallel DP-ABE based on [14] and [24] as follows.

– PDP.Setup(λ): Run G(λ) to obtain (p, g,G,GT). Pick u, h, w, v, {ti}i∈[n+1] ∈
G and α ∈ Zp. Output

pk = (p, g,G,GT , e(g, g)α, u, h, w, v, {ti}i∈[n+1]), msk = (α).

– PDP.KeyGen(msk,X, X̄): Parse X = (Mkp, ρkp) and X̄ = (A(1)
cp , ..., A

(kcp)
cp).

Compute skX = ({gMkp,i�uiT (i)ri , gri}i∈[dkp]), where Mkp has dkp rows and lkp

columns, and �1·�u = α. Compute skX̄ = (gαwr, gr, {grj , (uA(j)
cp h)rjv−r}j∈[kcp]),

where r, {rj}j∈[kcp] ∈ Zp. Output skX,X̄ = (skX , skX̄).

– PDP.Enc(pk, Y, Ȳ ,m): Parse Y = (A(1)
kp , A

(2)
kp , ..., A

(kkp)
kp) and Ȳ = (Mcp, ρcp).

Pick �u = (s, �u2, ..., �ul) ∈ Z
l
p and compute

c
(3)
Y = ({T (i)s}i∈[kkp]), c

(3)

Ȳ
= ({wMcp,j�ujvφj , (uρ(i)h)φi , gφj}j∈[dcp]),

Generic Construction of ElGamal-Type Attribute-Based Encryption Schemes 199

where Mcp has dcp rows and lcp columns, {φj}j∈[dcp] ∈ Zp. Output

cY,Ȳ = (m · e(g, g)αs, gs, c
(3)
Y , c

(3)

Ȳ
).

– PDP.Dec(skX,X̄ , cY,Ȳ): If R(X,Y) = 1, there exist I : {i : ρkp(i) ∈ Skp} and
take �u s.t.

∑

i∈I Mkp,i�ui = �1. Compute

∏

i∈I

(

e(gMkp,i�uiT (i)ri , gs)
e(T (i)s, gri)

�ui
)

= e(g, g)αs.

If R̄(X̄, Ȳ) = 1, there exist J = {j : ρcp(j) ∈ Scp} and take �u s.t.
∑

j∈J Mcp,j�uj = �1. Also, compute

∏

j∈J

e(gs, gαwr)
(

e(wMcp,j�ujvφj , gr)e((uρ(i)h)φi , grj)e(gφj , (uA
(j)
cp h)rjv−r)

)�uj
= e(g, g)αs.

Output m = m · e(g, g)αs/e(g, g)αs.

5.3 An Instantiation of Sequential DP-ABE

By applying the generic construction in Sect. 4.3, we give an instantiation of
sequential DP-ABE based on [14] and [24] as follows.

– SDP.Setup(λ): Same as PDP.Setup(λ).
– SDP.KeyGen(msk,X, X̄): Parse X = (Mkp, ρkp) and X̄ = (A(1)

cp , ..., A
(kcp)
cp).

Compute skX = ({gMkp,i�uiT (i)ri , gri}i∈[dkp]), where Mkp has dkp rows and
lkp columns, α′, {ri}i∈[dkp] ∈ Zp and �1 · �u = α′. Also, compute skX̄ =

(gα−α′
wr, gr, {grj , (uA(j)

cp h)rjv−r}j∈[kcp]), where r, {rj}j∈[kcp] ∈ Zp. Output
skX,X̄ = (skX , skX̄).

– SDP.Enc(pk, Y, Ȳ ,m): Same as PDP.Enc(pk, Y, Ȳ ,m).
– SDP.Dec(skX,X̄ , cY,Ȳ): If R(X,Y) = 1, there exist I : {i : ρkp(i) ∈ Skp} and

take �u s.t.
∑

i∈I Mkp,i�ui = �1. Compute

∏

i∈I

(

e(gMkp,i�uiT (i)ri , gs)
e(T (i)s, gri)

�ui
)

= e(g, g)α′s.

If R(X̄, Ȳ) = 1, there exist J = {j : ρcp(j) ∈ Scp} and take �u s.t.
∑

j∈J Mcp,j�uj = �1. Also, compute

∏

j∈J

e(gs, gα−α′
wr)

(
e(wMcp,j�ujvφj , gr)e((uρ(i)h)φi , grj)e(gφj , (uA

(j)
cp h)rjv−r)

)�uj
= e(g, g)(α−α′)s.

Output m = m · e(g, g)αs/(e(g, g)α′s · e(g, g)(α−α′)s).

200 S. Xu et al.

6 Efficiency Analysis

To our knowledge, only few literature investigate DP-ABE [2,4]. Compared with
our proposed scheme, as shown in Table 1, our schemes have better performances
than AI09 [2] and less efficient then AY15 [4]. However, to achieve adaptive
security, AY15 is in the composite-order group which is less efficient3 since it
will incur heavy workload to process data, even transmission bandwidth. Our
proposed scheme applies prime-order group and has the same complexity to the
existing DP-ABE schemes except for the space complexity of system parameter.
In our scheme, the component of KP-ABE is based on [14] and the part of CP-
ABE is based [24], where [14] has the linear space complexity on the public
parameter and [24] has the constant-size public parameter. Hence, our scheme
only has better space complexity on the system parameter than AI09. Although
AY15 has the constant-size public parameter, the composite-order group will
lead to a heavy workload.

Table 1. Theoretical analysis of DP-ABE scheme

Space complexity Computational complexity

Parameter Secret key Ciphertext Encryption Decryption

AI09 [2] O(m + n) O(X + X̄) O(Y + Ȳ) O(Y + Ȳ) O(X + X̄)

AY15 [4] O(1) O(X + X̄) O(Y + Ȳ) O(Y + Ȳ) O(X + X̄)

SDP-ABE O(m) O(X + X̄) O(Y + Ȳ) O(Y + Ȳ) O(X + X̄)

PDP-ABE O(m) O(X + X̄) O(Y + Ȳ) O(Y + Ȳ) O(X + X̄)

m denotes the maximum size of attribute set allowed to be assigned to a key;
n is the maximum size of attribute set to be associated with a ciphertext;
X and X̄ represent the size of attributes and policies assigned to a key;
Y and Ȳ represent the size of policies and attributes assigned to a ciphertext.

For experimental analysis, we focus on evaluating AI09 and our schemes
since the AY15 based on the inefficient composite-order group. Our experimental
simulation was performed on a PC running 64-bit Windows 10 with 3.60 GHz
Intel(R) Core(TM) i7-4790 CPU and 24 GB memory. We have implemented AI09
and our schemes in Java using JPBE library [19] with Type A elliptic curve and
symmetric pairing setting from “a properties” provided by JPBE library. Hence,
our scheme, p is a 160-bit prime number, and elements in G and GT have 512-bit
and 1024-bit, respectively. The experimental results are presented in Fig. 3.

Figure 3a presents the experimental performances of the system initialization
by increasing the maximum number of attribute set allowed to be assigned to a
key and a ciphertext. Our proposed schemes are much more efficient than AI09,
which only take half of the computational time in AI09. Figure 3b performs the
3 Composite-order group has a much bigger size than the prime-order group. Specif-

ically, the composite-order group needs 1024 bits if the prime-order group requires
160 bits (discrete log vs. factoring).

Generic Construction of ElGamal-Type Attribute-Based Encryption Schemes 201

Fig. 3. Experimental performance

ms key generation, the tendency is continually increasing based on the improve-
ment of the maximum number of attribute set and policies allowed to be assigned
to keys, and our proposed schemes have the lower growth rate. Figure 3c demon-
strates the performances of encryption, the tendency of encryption is similar
to the experimental result in the key generation. Figure 3d presents the results
of decryption. Our PDP-ABE has a better performance than others since it
only requires one of key-policy and ciphertext-policy to process the decryption
algorithm, which takes half of the computational cost in SDP-ABE.

Overall, the results are similar to what we expected performances in Table 1.
Therefore, our scheme has better performance than the existing DP-ABE based
on the prime-order group.

7 Conclusion

We resisted IBE and ABE schemes and presented a new cryptographic primitive
called ElGamal type cryptosystem. ElGamal type cryptosystem is a useful prim-
itive for designing a variety of ABE schemes. In this paper, we present generic
constructions of RABE with decryption key exposure resistance and DP-ABE

202 S. Xu et al.

with parallel and sequential settings and the corresponding security proofs. We
also provide instantiations of these schemes and the experimental data of DP-
ABE to demonstrate high performances of our proposed schemes.

Acknowledgment. This research is supported by the National Natural Science Foun-
dation of China under Grant Nos. U1804263 and 61702105, the Key Research and
Development Program of Shaanxi under Grant 2019KW-053, and the New Star Team
of Xi’an University of Posts and Telecommunications under Grant 2016-02.

References

1. Abdalla, M., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G., Smart, N.P.:
Identity-based encryption gone wild. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 300–311. Springer, Heidelberg
(2006). https://doi.org/10.1007/11787006 26

2. Attrapadung, N., Imai, H.: Dual-policy attribute based encryption. In: Abdalla,
M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol.
5536, pp. 168–185. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-01957-9 11

3. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19379-8 6

4. Attrapadung, N., Yamada, S.: Duality in ABE: converting attribute based encryp-
tion for dual predicate and dual policy via computational encodings. In: Nyberg, K.
(ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 87–105. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-16715-2 5

5. Baek, J., Zheng, Y.: Identity-based threshold decryption. In: Bao, F., Deng, R.,
Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 262–276. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24632-9 19

6. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE S&P, pp. 321–334 (2007)

7. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient revo-
cation. In: CCS, pp. 417–426 (2008)

8. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 14

9. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 27

10. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 13

11. Chow, S.S.M.: A framework of multi-authority attribute-based encryption with
outsourcing and revocation. In: SACMAT, pp. 215–226 (2016)

12. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 2

https://doi.org/10.1007/11787006_26
https://doi.org/10.1007/978-3-642-01957-9_11
https://doi.org/10.1007/978-3-642-01957-9_11
https://doi.org/10.1007/978-3-642-19379-8_6
https://doi.org/10.1007/978-3-319-16715-2_5
https://doi.org/10.1007/978-3-319-16715-2_5
https://doi.org/10.1007/978-3-540-24632-9_19
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-28628-8_27
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-39568-7_2

Generic Construction of ElGamal-Type Attribute-Based Encryption Schemes 203

13. Gentry, C.: Practical identity-based encryption without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679 27

14. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: CCS, pp. 89–98 (2006)

15. Green, M., Hohenberger, S., Waters, B.: Outsourcing the decryption of ABE cipher-
texts. In: USENIX (2011)

16. Lee, K., Choi, S.G., Lee, D.H., Park, J.H., Yung, M.: Self-updatable encryption:
time constrained access control with hidden attributes and better efficiency. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 235–254.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7 13

17. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 4

18. Lewko, A., Waters, B.: New techniques for dual system encryption and fully
secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 455–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2 27

19. Lynn, B.: PBC library manual (2006)
20. Malluhi, Q.M., Shikfa, A., Trinh, V.C.: A ciphertext-policy attribute-based encryp-

tion scheme with optimized ciphertext size and fast decryption. In: AsiaCCS, pp.
230–240 (2017)

21. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 3

22. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: CCS pp. 195–203 (2007)

23. Pirretti, M., Traynor, P., McDaniel, P., Waters, B.: Secure attribute-based systems.
In: CCS, pp. 99–112 (2006)

24. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for
large universe attribute-based encryption. In: CCS, pp. 463–474 (2013)

25. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext del-
egation for attribute-based encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 13

26. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

27. Seo, J.H., Emura, K.: Revocable identity-based encryption revisited: security model
and construction. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol.
7778, pp. 216–234. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36362-7 14

28. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 7

29. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

https://doi.org/10.1007/11761679_27
https://doi.org/10.1007/978-3-642-42033-7_13
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/978-3-642-11799-2_27
https://doi.org/10.1007/3-540-44647-8_3
https://doi.org/10.1007/978-3-642-32009-5_13
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-642-36362-7_14
https://doi.org/10.1007/978-3-642-36362-7_14
https://doi.org/10.1007/11426639_7
https://doi.org/10.1007/978-3-642-03356-8_36

204 S. Xu et al.

30. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 4

31. Shengmin, X., Yang, G., Yi, M.: Revocable attribute-based encryption with decryp-
tion key exposure resistance and ciphertext delegation. Inf. Sci. 479, 116–134
(2019)

32. Shengmin, X., Yang, G., Yi, M., Deng, R.H.: Secure fine-grained access control and
data sharing for dynamic groups in the cloud. IEEE Trans. Inf. Forensics Secur.
13(8), 2101–2113 (2018)

33. Shengmin, X., Yang, G., Yi, M., Liu, X.: A secure IoT cloud storage system with
fine-grained access control and decryption key exposure resistance. Futur. Gener.
Comput. Syst. 97, 284–294 (2019)

https://doi.org/10.1007/978-3-642-19379-8_4

Online Cyber Deception System Using
Partially Observable Monte-Carlo

Planning Framework

Md Ali Reza Al Amin1(B), Sachin Shetty1, Laurent Njilla2, Deepak K. Tosh3,
and Charles Kamhoua4

1 Old Dominion University, Norfolk, VA 23517, USA
{malam002,sshetty}@odu.edu

2 Air Force Research Lab, Rome, NY, USA
laurent.njilla@us.af.mil

3 University of Texas at El Paso, El Paso, TX, USA
dktosh@utep.edu

4 Army Research Lab, Adelphi, MD, USA
charles.a.kamhoua.civ@mail.mil

Abstract. Cyber deception is an approach where the network admin-
istrators can deploy a network of decoy assets with the aim to expend
adversaries’ resources and time and gather information about the adver-
saries’ strategies, tactics, capabilities, and intent. The key challenge in
this cyber deception approach is the design and placement of network
decoys to ensure maximal information uncertainty for the attackers.
State-of-the-art approaches to address this design and placement prob-
lem assume a static environment and apriori strategies taken by the
attacker. In this paper, we propose the design and placement of net-
work decoys considering scenarios where defender’s action influence an
attacker to change its strategies and tactics dynamically while maintain-
ing the trade-off between availability and security. The defender main-
tains a belief consisting of security state and the resultant actions are
modeled as Partially Observable Markov Decision Process (POMDP).
Our simulation results illustrate the defender’s increasing ability to influ-
ence the attacker’s attack path to comprise of fake nodes and networks.

Keywords: Cyber deception · Security · POMDP · Exploit
dependency graph · POMCP

1 Introduction

The static nature of any organization’s IT system leading to adversaries perform
reconnaissance activity and identify potential threats. The aim of the recon-
naissance phase is collecting as much as critical information about the network
including network topology, open ports and services running and unpatched
vulnerabilities. Having that critical information maximizes the intruder’s prob-
ability to penetrate a system and gaining a foothold successfully. Patching a

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 205–223, 2019.

https://doi.org/10.1007/978-3-030-37231-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_11

206 M. A. R. A. Amin et al.

vulnerability at the right time will reduce the possibility of being attacked where
vulnerability patching depends upon its discovery and developing a patch for
that specific weakness. Unfortunately, sometimes this period (a.k.a vulnerability
exposure window) often lasts long, approximately 5 to 6 months. This extended
period puts the cyber network at higher risk. To address this, one needs an
active form of a defense system to thwart cyber attacks while considering attack
information and providing with appropriate defense actions. But there is some
issue with the development of such a system as an attacker considers a series
of exploit to deep dive into the network. A few targeted cyber attacks consist
of only a single vulnerability. It is always beneficial for the defender to know
how the intruder can infiltrate the network and capture the attacker’s progres-
sion throughout the network. With the help of cyber deception technologies (by
introducing fake networks) we can alter the view of a system with a mix of
real and fake information and make the network more resilient when unpatched
vulnerabilities are present in the cyber network.

Cyber-deception has drawn attention from security researchers and practition-
ers as an approach for designing secure cyber infrastructure. It can provide two
advantages: (a) Reduce likelihood of adversarial success and cost of cyber defense,
(b) Provide insights into attacker’s strategies, tactics, capabilities and intent. Typ-
ically, an attacker have apriori knowledge of the infrastructure they are targeting.
In a cyber-deception approach, the defender can exploit this apriori knowledge to
mislead the adversary in expending their resources and time by deploying network
of decoy targets which thereby leads to attack paths that do not reach to a success-
ful goal. The success of a cyber-deception strategy hinges on adversaries taking on
more fake attackpaths thanactual attackpaths thatwould increase the adversaries
resources in distinguishing between real and fake assets.

Researchers have proposed cyber deception approaches that introduce fake
networks by varying system characteristics [16], manipulating attacker’s probes
[2,18] and introducing virtual network interface controllers and route mutation
[6]. These approaches are focused on introducing fake nodes from an attacker’s
point of view and assume a static environment and attacker and defender strate-
gies. In [14], authors present a scalable defense system to limit the attacker’s pro-
gression while minimizing the negative impact on the availability. Again their
approach is built on a static environment leads to increase defender’s effort and
time to brawl with adversary. They also claim about network availability to the
legitimate users while defender’s taking defense actions but there is an impact
whenever defender blocks any vulnerability. Sometimes to block any vulnera-
bility defender needs to take aggressive decision which has greater impact on
network availability. We overcome the above stated issue by placing network of
decoys and show that up to 76% of the time attacker start with the fake initial
nodes and carry out a series of exploits to achieve the fake goal state.

In this paper, we propose an approach to design and place network decoys
while capturing attacker’s progression. The attacker’s progression is captured
using exploit dependency graph [3,14] where nodes in the graph represent possi-
ble security conditions and directed hyperedge represent exploits. The defender
modifies the design and placement based on the history of security alerts and

Cyber Deception 207

prior deployments of network decoys. The defender’s decision to deploy net-
work decoys balances the trade-off between security cost and availability cost.
This decision is made by solving a modified version of Partially Observable
Monte-Carlo Planning (POMCP) algorithm [17] which provides the optimal
action corresponding to current belief vector comprising of security state and
prior actions. The key contributions of this paper are summarized below:

1. Embedding state space on the exploit dependency graph allows us to accu-
rately quantify the attacker progression and provides critical information for
selecting appropriate deceptive actions to mitigate the attacker progression
and influence the attacker to take the path towards the fake network and
keep him in the fake network.

2. Online deception algorithm that allows the defender to select actions based on
the attacker behavior and achieved scalability, although for some instances
the number of security states can be very large for our model. The online
deception algorithm that allows one not to construct the entire state space
instead of samples regions of state-space.

3. In comparison to existing network deception systems, we show that up to
76% of the time attacker start with the fake initial nodes and carry out the
series of exploits to achieve the fake goal state. Whenever an attacker is in
the fake network, legitimate users can take the service seamlessly from the
real network.

The remainder of the paper is organized as follows. Section 2 discusses
related work. Section 3 discusses the deception model. In Sect. 4, we present
the defender’s optimal action. Finally, Sect. 5 reports the simulation results, and
we conclude in Sect. 6.

Fig. 1. Security model

208 M. A. R. A. Amin et al.

2 Security Model

The proposed security model provides a way how a defender can deceive an
attacker with the fake network to prevent the real network infiltration. Through-
out the paper Fig. 1 will serve as the reference to describe the cyber deception
approach. In this section, we demonstrate the characterization of attacker’s pro-
gression using exploit dependency graph and our model framework.

2.1 Exploit Dependency Graph

Exploit dependency graph have been used to model multi-stage attack scenar-
ios that an attacker can launch to compromise services or applications. The
exploit dependency graph characterizes exploits in terms of a set of precondi-
tions and postconditions. For a given network, exploit dependency graph can
be generated using TVA (Topological Vulnerability Analysis) [9]. In an exploit
dependency graph, nodes represent the security pre/post conditions and edges
represent exploits.

2.2 Deploy Fake Nodes

We deploy fake nodes/networks along with the real nodes/networks whenever a
reconnaissance alert is received from IDS. Attacker can certainly differentiate real
nodes from fake nodes by analyzing round trip times or measured bandwidth on
the link. We follow delay and bandwidth handler methods to ensure consistency
of the network measurements collected during reconnaissance mission [1].

2.3 POMDP Model

State Space– An exploit dependency graph [14], a directed acyclic hypergraph
(H), consists of nodes and hyperedges where nodes represent a set of security
conditions (c) and hyperedges render a set of exploits (e). The security condi-
tion of the hypergraph have two options either true or false where true means
attacker have certain capability and opposite. The node which defender wants
to protect termed as goal node denoted by Ng

r ⊆ N , Ng
f ⊆ N where Ng

r and Ng
f

are real network goal node and fake network goal node respectively. Defender’s
goal is to protect the goal nodes (real nodes) and drive the attacker towards the
fake nodes. Each hyperedge has two conditions in terms of exploits (ei) termed
as pre (N−

i) and post (N+
i). It is assumed that attacker can exploit ei if all pre-

conditions j ∈ N−
i are enabled [14]. There will be entry points for the attacker

to penetrate the network without having the prior capabilities termed as initial
exploits. An attacker can increase the capability set by exploiting more vulner-
abilities. Whenever an exploit’s attempt is successful all the postconditions of
the exploit become successful.

A security state, s ⊆ N , is called a feasible security state if for every condition
cj ∈ s, there exists at least one exploit ei = (N−

i , N+
i) ∈ E such that cj ∈ N+

i

and N−
i , N+

i ⊆ s [14] and set S = {s1,. . . ,sn} represents the state space for
this model.

Cyber Deception 209

Action– Defender’s action influence an attacker to choose a network path.
So, we assume that the defender can change its network configuration on the
fly based on attacker’s action to prevent vertical movement. A simple mean
of network configuration can be blocking a port from further communication,
which will inhibit the attacker to progress. Another way to prevent attacker’s
progression is to apply countermeasure of any discovered exploit.

The space of defender’s available action set is represented by U = {u0,
u1,. . . ,un}. Here, u0 represents defender’s null action which eventually means
defender will not block any exploit. The remaining actions from the set U , signi-
fies the network changes which will induce a set of blocked exploits. Each action
associated with the set of blocked exploit influence the attacker to seek the avail-
able paths. Again, defender can not block any individual vulnerability rather it
must select a defense action which will induces a set of blocked exploits.

Threat Model– We construct the model based on a single attacker who is
attempting to penetrate the network. An attacker can only increase its capabil-
ity by exploiting more vulnerabilities, on the other hand, it also increases the
chance of being detected. Defender’s goal is to prevent the exploitation of a vul-
nerability on the real network by allowing the exploitation on the fake network.
The set of available exploits for real and fake network at a given state s can be
defined as [14]:

E(st = s) = {eri = (N−
i , N+

i) ∈ |N−
i ⊂ s,N+

i �⊆ s} (1)

E(st = s) = {efi = (N−
i , N+

i) ∈ |N−
i ⊂ s,N+

i �⊆ s} (2)

There are two important requirements that must be satisfied for an exploit
ei = (N−

i , N+
i) to be available: (1) N−

i ⊂ s, i.e. all of the exploit’s preconditions
must be satisfied: (2) N+

i �⊆ s, i.e. the exploit’s postconditions must not all be
satisfied [14].

The attack probability which defines attacker will attempt each real network
exploits while security state st and defense action ut for a given exploit erk ∈ E
is given by,

Perk
(st, ut) =

⎧
⎨

⎩

P erk
when erk ∈ E(st)\B(ut)

P erk
when erk ∈ E(st) ∩ B(ut)

0 when erk /∈ E(st)

⎫
⎬

⎭
(3)

similarly for fake network,

Pefk
(st, ut) =

⎧
⎨

⎩

P efk
when efk ∈ E(st)\B(ut)

P efk
when efk ∈ E(st) ∩ B(ut)

0 when efk /∈ E(st)

⎫
⎬

⎭
(4)

In above equations, P erk
& P efk

represents the probability of attack when there
is no action and P erk

& P efk
defines the attack probability when defender’s

action block exploits.

210 M. A. R. A. Amin et al.

To block any vulnerability defender will choose the action, u ∈ U , from the set
of accessible defense actions represented by U for any given iteration. Attacker
always tries to create a set of available initial exploits from reconnaissance state
to penetrate the network. There will be a conditional probability of success
for each the exploit attacker attempted So, for given exploits, erk & efk, the
probability of success is given by,

αerk
(st, ut) =

{
αerk

when erk /∈ B(ut)
0 when erk ∈ B(ut)

}

(5)

similarly for the fake network,

αefk
(st, ut) =

{
αefk

when efk /∈ B(ut)
αefk

when efk ∈ B(ut)

}

(6)

As soon as, the exploit attempts are successful it enables all the postconditions
which eventually form the updated security state as shown in Fig. 2.

Fig. 2. Sample evolution (real network) of the security state for a given state-action
pair αerk (st, ut). (a) Consider the security state st = {c1, c2, c3, c4, c5} and defense
action ut = u where B(u) = {e5, e6} (here blocked exploits are shown with red shaped
hyperedge). So that, the available set of exploits using Eq. (1) is E(st) = {e5, e6, e7, e8}
and (b) attacker attempt each exploit, which does not lie within set of blocked exploit,
with a probability of attack and succeed with a probability defined by Eqs. (5, 6). In
this example, only exploit e7 is succeed and the updated security state is st ∈ {c7}. In
above figure, doubled circle shaded shape represents the security state. (Color figure
online)

Defender’s lack of information regarding the current security state and
attacker true strategy which can be learned from noisy security alerts. In the
next section, we describe how defender uses those information to construct the
belief by getting security alerts from Intrusion Detection System (IDS). These
security alerts are mixed of false positive and false negative alerts. For defender,
it is important to differentiate those mixed alerts for better defense actions.

Cyber Deception 211

Defender’s Observation– Defender’s efficiency in terms of choosing actions
to limit the attacker progression can be improved by correlating the alert with
exploit activity. On the other hand, defender’s efficiency can be degraded in the
presence of a high rate of false alarm. To get rid of false alarm and precisely
quantify attacker progression from the dependency graph we used state-based
approach. From the security state, defender can create an available set of exploits
to the attacker using Eq. (1) where defender can update the belief state with
new security information by weighing the likelihood of individual security state.
If we consider an example, for the belief matrices b, b

′
εΔS, some security state,

stεS and assumed attacker type let one single exploit is available E(st) = {e}
and assumed that if the attacker attempt to exploit e it will create a unique
security alert z where no other alert will match with alert z. So, if the defender
posses belief b and see the alert z, then the belief update allows for the possibility
of generated alert is coming from exploit e. Otherwise, if the defender’s belief
reflects b

′
and get the alert z it will immediately discard the alert as a false

alarm.
Let Z = {z1, z2, . . . , zn} and Z

′
= {z

′
1, z

′
2, . . . , z

′
n} represent the finite set of

security alerts, real and fake network respectively, generated by the IDS which is
eventually the observation set for the defender. Each of the alert from real nodes
set and fake nodes set can be generated by the IDS, given by the set Z(eri) =
{zAi(1), zAi(2), . . . , zAi(ai)} ∈ P (Z) and Z(efi) = {zDi(1), zDi(2), . . . , zDi(di)} ∈
P

′
(Z) where P (Z) and P

′
(Z

′
) are the power set of Z and Z

′
. Using this security

alerts defender constructs a belief, bt ∈ ΔS, where ΔS is the space of probability
distribution over security state. The belief state specifies the probability of being
in each state given the history of action and observation experienced so far,
starting from an initial belief b0 and belief update procedure is given in the next
section.

Defender’s Belief Update– For any defense action ut = u and observation
yt+1 = yk, the belief update is defined as bt+1 = [Tj(bt, yk, u)]sj∈S where (j),th
is the update function, Tj(bt, yk, u) = P (St+1 = sj | Ut = u, Yt+1 = yk, Bt = bt)
is given by [14],

bj
t+1 = Tj(bt, yk, u) =

pu
j (bt)ru

jk(bt)
ρ(bt, yk, u)

(7)

The above terms are defined below,

pu
j (bt) = P (St+1 = sj | Ut, Bt) =

∑

si∈S

bi
t pu

ij (8)

ru
jk(bt) = P (Yt+1 | St+1 = st, Ut, Bt) =

∑

si∈S

bi
t ru

ijk (9)

ρ(bt, yk, u) = P (Yt+1 | Ut, Bt) =
∑

sj∈S

ru
jk(bt) pu

j (bt) (10)

212 M. A. R. A. Amin et al.

where pu
ij is the transition probability from state si to sj under defense action

u, and ru
jk(bt) = P (Yt+1 | St+1 = st, Ut = u,Bt = bt) is the probability that

IDS will generate observation vector yk when transitioning from state si to state
sj under a defense action u. Equation (8) defines the trajectory of beliefs based
on security alerts termed as observations and series of actions. Under a defense
action u, transition probability si to sj is controlled by a set of exploit events.
For the available set of exploits from Eq. (1), each event in the set of exploit is
in binary form (successful and unsuccessful).

The belief update procedure is a controlled Markov Chain where control
is defender’s action [14]. The majority of POMDP planning methods operate
under Bayes theorem [15]. For a large scale cyber network, a single Bayes update
procedure could be computationally infeasible. To plan efficiently for large-scale
POMDP, we adopted the model described in [17] for the approximation of the
belief state.

3 Defender’s Actions

As soon as the attacker progress through the network defender will take action
to limit the attacker’s progression. Selection of action step can be improved
if defender have some domain knowledge beforehand. To aid with the domain
knowledge, we introduce the utility function. Before taking any defensive action
it is also necessary to measure the impact on availability and security cost.

3.1 Utility Function

Attacker build an array of node utility function based on the base score metrics
for exploiting vulnerabilities [13]. For every exploit, the attacker uses the metrics
to justify the attack success probability which is illustrated in Eq. (13) and
serves as the attacker’s initial knowledge about the network and vulnerability.
Defender also create the same utility array. From [13], we borrow the impact (I),
and exploitability (V) metrics to define the defender’s utility.

I = 10.41 ∗ (1 − (1 − CI) ∗ (1 − II) ∗ (1 − AI)) (11)

Vi = 20 ∗ AC ∗ AI ∗ AV (12)

The above terms are defined as CI = ConfImpact, II = IntegImpact, AI =
AvailImpact, I = Impact, Vi = Exploitability, AC = AccessComplexity, AI =
Authentication and AV = Accessvector. The utility array function is defined
below

Ua(r,f) = I ∗ Vi (13)

Example 1: Consider a scenario where there are five nodes and attacker sends
scan queries to the neighbors of node 1. Defender needs to respond the scan
queries deceptively by mixing of true/false information at random. Here, 2, 3

Cyber Deception 213

are real nodes and 4, 5 are fake nodes having following vulnerabilities vul(n2),
vul(n3), vul(n4) and vul(n5). Defender wants to drive the attacker towards node
4 and 5. We are assuming that using above utility array equation defender come
up with following values Ua(n2) = 15, Ua(n3) = 5, Ua(n4) = 30, and Ua(n5) =
50. A true rational attacker will go after node 5.

3.2 Cost Function

In cyber-deception, there is a possibility where you can leverage the availability
cost over the security cost. There are two benefits of using vyber-deception when
the attacker is in the fake network: (1) defender can collect as much as intelligence
information on the adversary which helps to derive the attacker’s capability,
intentions, and targets etc., (2) defender can maximize the network availability
to the trusted user during a cyber attack. An availability cost ca for each action
defender could take to drive the adversary towards the fake network. For some
defense actions there will be no impact on the availability, and sometimes there
will be a greater impact. To formalize this notion, we represent the availability
cost ca : U → R for each defense action taken by the defender similarly for the
security cost cs : S × U → R to depict the cost while the system is in various
security state under defense action u. Here, we are considering the availability of
a node regarding end-to-end packet delay (considering IT system). If the delay
exceeds the limit, the node will still available but legitimate users could not able
take services. For instance, the delay in practice can be the time it takes a user
to begin to interacting with the page, or the time it takes to completely load the
whole content of the page, which defines the availability factor.

End-to-End Packet Delay. Packet starts journey from a host (source), passes
through a series of routers and ends it journey in another host (destination) [12].
Lets assume that, dE and N represents total delay and number devices between
a source and destination. The end-to-end delay defined in [8] as

dE = N(dproc + dtrans + dprop + dqueue) + dproco (14)

The above equation’s terms are defined as following dproc = processing delay,
dtrans = transmission delay, dprop = propagation delay, dqueue = queuing delay
and dproco = processing overhead because of authentication, integrity and con-
fidentiality. For an uncongested enterprise network, dqueue 	 0 and the distance
between source and destination node is very small so that dprop 	 0. The pro-
cessing delay, dproc, is often negligible; however, it strongly influences a router’s
maximum throughput, which is the maximum rate at which a router can forward
packets [12]. So that, Eq. (14) can be reduced to

dE = N × dtrans (15)

where dtrans = L/R, L = packet size and R = transmission rate.

214 M. A. R. A. Amin et al.

For every defense action defender will measure the total end-to-end packet
delay. So, the availability cost in terms of delay is defined as following cu = dE .
We assign more cost to the goal conditions (attacker’s target node) as defender’s
goal is to keep away the attacker from achieving the goal. The total cost in terms
of a security state and defense action is given below

c(st, ut) = (1 − f)cs(st, ut) + f ∗ dE(ut) (16)

Here, f (weighted factor) determines which cost focused more where f = 0 repre-
sents defender is concerned only with security cost, f = 1 means defender is only
concerned with availability cost. The proposed online deception algorithm, based
on an existing online solver [17], computes the optimal action from deception
standpoint to deceive the attacker with fake network while balancing availability
and security cost.

Algorithm 1. Defender’s Belief Update Algorithm
Initialize: nk, Bt+1 = Ua(r,f), numAdded = 0

1: procedure BeliefUpdate(Bt, ur, yr)
2: while numAdded < nk do
3: (s) ∼ Bt

4: (s
′
y, −) ∼ G(s, ur)

5: if yZ(s) = y
Z(s)
r then [If alerts Z(s) match]

6: Bt+1 ← Bt+1 ∪ {s
′}

7: numAdded ← numAdded + 1

4 Online Deception Algorithm

Although embedding state space on the dependency graph allows us to accu-
rately quantify the level of progression of the attacker but still computing the
optimal deceptive action is a challenge where high diemsionality [19] of decep-
tion actions are present while interacting with the attacker. Offline POMDP
solver is a way to compute the optimal action for each belief state before run-
time. Although such solvers have improved their efficiency, capturing the opti-
mal action can be intractable for large networks. To resolve this issue, Silver
and Veness [17] developed an online algorithm termed as Partially Observable
Monte-Carlo Planning (POMCP) to handle large-scale network while comput-
ing optimal action. Online methods interleave the computation and execution
(runtime) phases of a policy [14], yielding a much more scalable approach than
offline methods.

POMCP algorithm is based on and makes use of POMDP [11]. There are
two types of nodes in POMCP: belief nodes and action nodes where belief nodes
represent a belief state and action nodes are the children nodes of belief nodes
that can be reached by doing an action. In this work, action selection procedure

Cyber Deception 215

Fig. 3. An illustration of POMCP in an environment with 2 actions, 2 observations, 50
states, and no intermediate rewards. The agent constructs a search tree from multiple
simulations, and evaluates each history by its mean return (left). The agent uses the
search tree to select a real action a, and observes a real observation o (middle) [17].

is as same as POMCP algorithm described in [17] and belief update procedure is
modified based on [14] where it solves the large observation space problem. Mod-
ified belief update procedure is given in Algorithm 1, where Bt is a state-action
pair named particles. The action selection step involves Monte-Carlo simulation
from the current belief state to assess the quality of various deception action. An
agent begins the simulation by calling a generative model provides a sample suc-
cessor state, observation and cost given a state and action, (s

′
, y, c) ∼ G(s, u).

Calling generative model and successive sampling from the current belief cre-
ates histories of search tree Fig. 3 Monte-Carlo Tree Search (MCTS) uses
Monte-Carlo simulation for assessing search tree nodes [5]. In the search tree
nodes represent histories and branches from the node in forwarding direction
represents the possible future histories because of having partial observability of
the fundamental process. A simpler version of MCTS uses greedy tree policy in
the very beginning of the simulation, where it selects the action with the highest
value. To improve the greedy action selection, UCT algorithm [10] is used. In
the search tree, each action selection is done using UCB1 [4] and state is being
viewed as multi-armed bandit rule to balance the exploration and exploitation.
In the UCT algorithm, there is an option to use the domain knowledge [10] to
initialize the new nodes. We use the utility array function Uar as our initial
domain knowledge which is improved during more simulation runs. The opti-
mum action for the defender while interacting with the attacker turns into a
POMDP. Casting optimum action is defined as below,

V π(b0) =
∞∑

t=0

γtc(bt, ut)

=
∞∑

t=0

γtE
[
c(st, ut)| b0, π

]
(17)

216 M. A. R. A. Amin et al.

where 0 < γ < 1 is the discount factor and c(bt, ut) represents the cost for
each belief state bt when an action ut is selected from the space of action
where c(bt, ut) =

∑
si∈S bi

tc(st, ut). For each belief state, defense action gener-
ates according to the policy function and belief update must follow the procedure
defined in Eq. (7). The optimal policy π∗ is obtained by optimizing the long-term
cost.

π∗ = arg min
π

V π(b0) (18)

The optimal policy defined in Eq. (18) specifies the optimal action for each belief
state bt ∈ ΔS where the expected minimum expected cost calculated over the
infinite time horizon. The defender will chose the action where the cost makes
trade-off between availability and security cost.

In POMCP, a belief state updates when a sample observation matches with
real-world observation, but for large observation space, it barely matches with
real-world observation. In the modified belief update procedure presented in
Algorithm 1, check a statement whether each incoming alert zi ∈ Z match with
over a security state, Z(s) = Z(e). The alerts are generated whenever an attacker
attempts an exploit. Alerts not in Z(s) cannot be generated by exploit activity
for that security state. We refer those alerts are false alarms for the defender.

To evaluate the scalability of our approach, we experimented our online
deception algorithm on a graph consisting 160 conditions (nodes), 150 exploits
(hyperedges), 60 defense actions, 35 security alerts resulting more than 109

observation vectors. The resulting security states from this example exceed 100
million.

5 Experimental Results and Discussion

To evaluate the scalability of our approach, we experimented our online decep-
tion algorithm on a graph consisting 160 conditions (nodes), 150 exploits (hyper-
edges), 60 defense actions, 35 security alerts resulting more than 109 observation
vectors. The resulting security states from this example exceed 100 million. In
this simulation, we assume that attacker is a true rational type where his aggres-
sion, knowledge, and stealthiness are moderate, high and high respectively. Using
the state-based alert correlation we creates a probability table for alert detection
with assumed attacker type where column represents exploit activity and rows
are triggered alert. The probability of detection table is not presented here due
to high volume of dataset.

Under null defender’s action, the probability of attacking real nodes and fake
nodes are same. For this simulation, we assume that the exploit dependency
graph is already generated using TVA (Topological Vulnerability Analysis) [14].
We use the [7] software package to use the POMCP solver in our simulation
and use python and MatLAB to implement our model. Attacker’s progression
depends on the defender’s action and we assume that defender moves first with
null action and wait for the attacker to proceed. In this simulation, we use the
sample exploit dependency graph presented in Fig. 4 to evaluate our approach

Cyber Deception 217

(a) Real Network (b) Fake Network

Fig. 4. A sample Exploit Dependency graph with real network (left) and fake network
(right). The above dependency graph for real network H = (N, E) consists of ncr = 10
security conditins and ner = 11 exploits (in the form of hyperedges). Triple-encirled
nodes are represent as goal conditions Ng

r = {c10} and Ng
f = {c12, c13}.

and present our simulation results. Attack probabilities for each of the exploit
under assumed true rational attacker type,

(P erk
, P erk

= (0.8, 0.3) for erk ∈ E0

(P efk
, P efk

= (0.8, 0.3) for efk ∈ E0

(P erk
, P erk

= (0.7, 0.3) for erk ∈ {e4, e5, e6, e8, e9}
(P efk

, P efk
= (0.9, 0.7) for efk ∈ {e5, e7}

(P erk
, P erk

= (0.6, 0.4) for erk ∈ {e7, e10, e11}
(P efk

, P efk
= (0.9, 0.8) for efk ∈ {e7, e8}

similarly, probability of success are,

αerk
=

{
0.7 when erk ∈ E0

0.5 when erk ∈ E\E0

}

αefk
=

{
0.85 when efk ∈ E0

0.7 when efk ∈ E\E0

}

As we defined earlier, the space of actions is the power set of each defense
action. In this simulation, we consider three actions for real network which induce
a set of block exploits defined as, B(u1) = {e1, e2, e3}, B(u2) = {e4, e5, e6, e7, e8},

218 M. A. R. A. Amin et al.

B(u3) = {e9, e10, e11}. Similarly for fake network two actions, B(u1) = {e5, e7},
B(u2) = {e7, e8} where the cost of each action is 0.30. The weight cost in Eq. (16)
is 0.5 and the discount factor γ = 0.95. In total (real & fake) there are ns =
356 security states and nz = 12 security alerts leading to 212 = 4096 distinct
observation vectors. To approximate the belief, all simulations use particles nk

= 1500. The sample evolution of computed deception policy when NSim = 5000
is given in Fig. 5, 6. The computed deception policy is intuitive.

Fig. 5. Sample evolution of deception policy when attacker is in real network. Security
state is represented by shaded node and blocked exploits are represented by red shaped
hyperedge. (Color figure online)

It is assumed that the security state starts from the empty state defined
as, s0 = φ. The defender uses utility array function to construct the initial
belief which is defined in Eq. (13). We run the simulation for 5000 times. The
defender initially (from t = 1 to t = 4) does not take any action to save the
availability cost. As the attacker progress and enable more conditions, defender’s
belief gradually updates based on the received security alerts. Then defender
begins to deploy actions (t = 5) to block exploits. As we know from monotonicity
assumption, once a security condition is enabled it remains enabled all the time.

Cyber Deception 219

Fig. 6. Sample evolution of deception policy when attacker is in fake network. Security
state is represented by shaded node and blocked exploits are represented by red shaped
hyperedge. (Color figure online)

Whenever defender’s belief reflects that attacker is close to goal conditions, it
will block the exploits to prevent the attacker from reaching the goal. As we can
see from Fig. 5 at time step t = 8, defender blocks exploits {e8, e9, e10} which
prevents attacker to move forward. From this point, the attacker will try to
progress from another point as he received the response from the defender in the
reconnaissance stage with a mix of true and false information. Then he moves
toward the fake network, Fig. 6, based on his available set of exploits dictated
by Eq. (1). At this stage defender let the attacker move forward. From time step
t = 9 to 13, defender action is null. As it (fake) is same as the real network from
the attacker perspective, the defender will take action only when attacker have
an alternative way to reach the next security state (see time steps t = 14–20 in
Fig. 6). This way attacker will have more confidence that he is in the right track
and ultimately he gains nothing. On the other hand, the defender can save more
availability cost and learn the attacker which will increase defender’s certainty
about attacker.

In Table 1, we present our performance evaluation data while attacker start
to exploit real initial nodes vulnerability and ended up with real to real network
end state and real to fake end state. The numerical numbers in the 2nd column
represent how many times out of 25 sample runs attacker start with real network

220 M. A. R. A. Amin et al.

Table 1. Performance evaluation table for real to real and real to fake

Simulation runs Attacker starts
with real node

Attacker ends
on real node

Attacker ends
on fake node

500 15 13 2

1000 13 10 3

1500 11 7 4

2000 10 6 4

3000 8 3 5

4000 7 1 6

5000 6 0 6

initial nodes and 3rd column represents how many times attacker ended up
with real network end state without transition to the fake network and 4th
column represents how many times attacker make transition from real network
to fake network and end up with fake goal state. In Table 2, we presents the
same statistics for the fake network.

From Table 2, we can see that up to 76% of the time attacker start with the
fake initial nodes and carry out the series of exploit to achieve the fake goal
state. When the NSim = 500, out of 25 sample runs 15 times attacker start with
the real network (Table 1) and 13 times ended up with real network goal state
because of poor quality of possible future histories estimation. When the number
of simulation increases and more possible future histories are taken into account,
the action estimation quality increased as well as policy function (e.g. Nsim =
5000, 19 times out of 25 times attacker start and ended up with fake goal state).

Table 2. Performance evaluation table for fake to fake and fake to real

Simulation runs Attacker starts
with fake node

Attacker ends
on fake node

Attacker ends
on real node

500 10 10 0

1000 12 12 0

1500 14 14 0

2000 15 15 0

3000 17 17 0

4000 18 18 0

5000 19 19 0

In Fig. 7, we plot the discounted cost against each time step for 25 sample
runs while attacker in real network state. When Nsim = 500, 15 times attacker
starts with the real network where out of 15 times attacker reached the real goal

Cyber Deception 221

state (node) 13 times. Trajectories which ended up with red circle represents
the path where attacker reached the goal. Initially, for low simulation counts
e.g., Nsim = 500 defender does not have much information about attacker’s
strategy, capability. Because of this, defender aggressively blocks exploit from
the very beginning (t = 0) which eventually produces low quality of estimation
and ended up with less availability. For poor estimation, attacker also reaches
into the goal node several times as shown in Fig. 7 upper left corner. As soon
as, simulation count increases more possible future histories are included which
results high quality of estimation (which set of exploits to be blocked). As it is
evident from Fig. 7 bottom right corner, though attacker starts with real network
for 5000 trials but could not reach any goal state.

0 20 40 60 80

t

0

2

4

6

8

10

d
is

co
u

n
te

d
 c

o
st

N_Sim=500

0 20 40 60 80

t

0

2

4

6

8

10

d
is

co
u

n
te

d
 c

o
st

N_Sim=2000

0 20 40 60 80

t

0

2

4

6

8

10

d
is

co
u

n
te

d
 c

o
st

N_Sim=4000

0 20 40 60 80

t

0

2

4

6

8

10

d
is

co
u

n
te

d
 c

o
st

N_Sim=5000

Fig. 7. Discounted cost

6 Conclusion

In this paper, we develop a technique to alter the view of the system with a mix
of real and fake information and a cyber deception approach where defender’s
action influence an attacker to take different attack path while maintaining avail-
ability cost and security cost. To do so, we use an exploit dependency graph which
describes attacker progression throughout the network. For every cyber defense
system, there is a goal to maintain the availability to the trusted user while
security is at a satisfactory level. Scalability is achieved via online deception

222 M. A. R. A. Amin et al.

algorithm where it samples from large-scale cyber domain instead of creating
the entire state space. Using our approach, a defender not only saves availability
cost but also learns the attacker movement in the fake networks. This knowl-
edge will help the defender to make better security planning for the future. One
future research direction could be modeling the attacker type so that defender
can precisely identify the attacker type based on an attacker knowledge, stealth-
iness and aggression level. Having the capability of identifying an attacker type
will improve the efficiency of a defender to choose the deception algorithm. For
example, if the attacker’s (knowledge, stealthiness, aggression level) is (low, low
and low), and the defender is deploying a deception algorithm for (high, high,
moderate) attacker, then the defender is wasting the available resources which is
not an efficient way to deal with the attacker. In a resource constraint environ-
ment it is very critical to know the attacker type before deploying any deception
algorithm.

Acknowledgment. This work is supported by the Office of the Assistant Secretary of
Defense for Research and Engineering (OASD (R & E)) agreement FA8750-15-2-0120.

References

1. Achleitner, S., La Porta, T.F., McDaniel, P., Sugrim, S., Krishnamurthy, S.V.,
Chadha, R.: Deceiving network reconnaissance using sdn-based virtual topologies.
IEEE Trans. Network Serv. Manag. 14(4), 1098–1112 (2017)

2. Albanese, M., Battista, E., Jajodia, S., Casola, V.: Manipulating the attacker’s
view of a system’s attack surface. In: 2014 IEEE Conference on Communications
and Network Security (CNS), pp. 472–480. IEEE (2014)

3. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulner-
ability analysis. In: Proceedings of the 9th ACM Conference on Computer and
Communications Security, pp. 217–224. ACM (2002)

4. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

5. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search.
In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS,
vol. 4630, pp. 72–83. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-75538-8 7

6. Duan, Q., Al-Shaer, E., Jafarian, H.: Efficient random route mutation considering
flow and network constraints. In: 2013 IEEE Conference on Communications and
Network Security (CNS), pp. 260–268. IEEE (2013)

7. Emami, P., Hamlet, A.J., Crane, C.: Pomdpy: an extensible framework for imple-
menting pomdps in python (2015)

8. Hasan, K., Shetty, S., Hassanzadeh, A., Salem, M.B., Chen, J.: Modeling cost of
countermeasures in software defined networking-enabled energy delivery systems.
In: 2018 IEEE Conference on Communications and Network Security (CNS), pp.
1–9. IEEE (2018)

9. Jajodia, S., Noel, S.: Topological vulnerability analysis. In: Jajodia, S., Liu, P.,
Swarup, V., Wang, C. (eds.) Cyber Situational Awareness. ADIS, pp. 139–154.
Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-0140-8 7

https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.1007/978-1-4419-0140-8_7

Cyber Deception 223

10. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842 29

11. Kurniawati, H., Hsu, D., Lee, W.S.: Sarsop: efficient point-based pomdp planning
by approximating optimally reachable belief spaces. In: Robotics: Science and sys-
tems, Zurich, Switzerland, vol. 2008 (2008)

12. Kurose, J., Ross, W.K.: computer Networking: A Top Down Approach. Addison
Wesley, Boston (2007)

13. Mell, P., Scarfone, K., Romanosky, S.: A complete guide to the common vulnerabil-
ity scoring system version 2.0. In: Published by FIRST-Forum of Incident Response
and Security Teams, vol. 1, p. 23 (2007)

14. Miehling, E., Rasouli, M., Teneketzis, D.: A pomdp approach to the dynamic
defense of large-scale cyber networks. IEEE Trans. Inf. Forensics Secur. 13(10),
2490–2505 (2018)

15. Ross, S., Pineau, J., Paquet, S., Chaib-Draa, B.: Online planning algorithms for
pomdps. J. Artif. Intell. Res. 32, 663–704 (2008)

16. Schlenker, A., et al.: Deceiving cyber adversaries: a game theoretic approach. In:
Proceedings of the 17th International Conference on Autonomous Agents and Mul-
tiAgent Systems, pp. 892–900. International Foundation for Autonomous Agents
and Multiagent Systems (2018)

17. Silver, D., Veness, J.: Monte-carlo planning in large pomdps. In: Advances in Neural
Information Processing systems, pp. 2164–2172 (2010)

18. Trassare, S.T., Beverly, R., Alderson, D.: A technique for network topology decep-
tion. In: Military Communications Conference, MILCOM 2013–2013 IEEE, pp.
1795–1800. IEEE (2013)

19. Ullah, S., Shetty, S., Hassanzadeh, A.: Towards modeling attacker’s opportunity
for improving cyber resilience in energy delivery systems. In: 2018 Resilience Week
(RWS), pp. 100–107, August 2018. https://doi.org/10.1109/RWEEK.2018.8473511

https://doi.org/10.1007/11871842_29
https://doi.org/10.1109/RWEEK.2018.8473511

SEVGuard: Protecting User Mode
Applications Using Secure Encrypted

Virtualization

Ralph Palutke(B), Andreas Neubaum, and Johannes Götzfried

Department of Computer Science, Friedrich-Alexander Universität
Erlangen-Nürnberg (FAU), Erlangen, Germany

{ralph.palutke,andreas.neubaum,johannes.goetzfried}@fau.de

Abstract. We present SEVGuard, a minimal virtual execution environ-
ment that protects the confidentiality of applications based on AMD’s
Secure Encrypted Virtualization (SEV). Although SEV was primarily
designed for the protection of VMs, we found a way to overcome this
limitation and exclusively protect user mode applications. Therefore, we
migrate the application into a hardware-accelerated VM and encrypt
both its memory and register state. To avoid the overhead of a typical
hypervisor, we built our solution on top of the plain Linux Kernel Vir-
tual Machine (KVM) API. With the help of an advanced trapping mecha-
nism, we fully support system and library calls from within the encrypted
guest. Furthermore, we allow unmodified code to be transparently vir-
tualized and encrypted by appropriate memory mappings. The memory
needed for our minimal VM can be directly allocated within SEVGuard’s
address space. We evaluated our execution environment regarding cor-
rectness and performance, confirming that SEVGuard can be practically
used to protect existing legacy applications.

Keywords: AMD SEV · Virtual machine encryption · Confidentiality

1 Introduction

Traditional software protection solutions typically rely on obfuscation to increase
the time an attacker needs to reverse engineer the functionality of a software
product. Obfuscation, however, only raises the bar for attackers but can eventu-
ally be broken. To overcome the limitations of obfuscation, and to provide ver-
ifiable security under certain assumptions, emerging technologies such as Intel
Software Guard Extensions (SGX) [5] and AMD SEV [11] provide Trusted Exe-
cution Environments (TEEs) on commodity hardware [14].

Although with the Trusted Platform Module (TPM) a hardware trust anchor
has been available for quite some time, the TPM could never really be practically
used for software protection. The reason is that the TPM design only provides a
Static Root of Trust (SRoT), enabling the verification of a PC’s boot process but
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 224–242, 2019.

https://doi.org/10.1007/978-3-030-37231-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_12

SEVGuard 225

not of its processes or VM instances. SGX and SEV for the first time provide
support for dynamically placing software inside so-called enclaves, relying on a
Dynamic Root of Trust (DRoT).

Intel and AMD proposed different approaches for their DRoTs in the recent
past that cannot be used interchangeably. While SGX focuses on a per-process
RoT, aiming at Digital Rights Management (DRM), SEV focuses on the pro-
tection of entire VMs, aiming at cloud computing. Although there are projects
which provide a unified solution across different TEEs [12,13], none of them pro-
vides DRM on top of real SEV hardware. Protecting selected code with SEV is a
challenging task as user mode applications need to be transparently virtualized
and encrypted.

1.1 Contribution

Our solution was motivated by the question of how to protect existing user mode
applications using SEV which is not primarily designed for software protection
but for cloud computing. With SEVGuard, we provide an execution environment
built on top of AMD SEV that is able to protect existing user mode applications.

In detail, our contributions are:

– while up to now only Intel CPUs through SGX could be used to protect
applications from higher privileged attackers, we design a minimal virtual
execution environment on top of AMD SEV which also enables AMD CPUs
to protect user mode applications.

– to avoid the performance and resource overhead of a typical hypervisor or
even an entire guest OS, we rely on the plain KVM API of the Linux kernel.
Consequently, we also reduce the Trusted Computing Base (TCB) to the
minimally required amount of code and data.

– we fully support system calls as well as calls to untrusted shared libraries
with the help of an advanced trapping mechanism.

– we set up guest page tables with appropriate mappings to allow unmodified
applications to be transparently virtualized. Memory for our minimal VM
can be directly allocated within the address space of the SEVGuard process.

– we evaluate our execution environment regarding correctness and perfor-
mance, confirming that SEVGuard can be used to protect existing legacy
code bases.

1.2 Related Work

Prior to the release of SEV, there already existed theoretical approaches for full
memory encryption [7] as well as practical software-based implementations for
swap space [19], and the encryption of user mode processes based on the Linux
kernel [9,17]. Beyond that, HyperCrypt provides a hypervisor-based memory
encryption of a target system’s memory [8].

TEEs have been mentioned in publications about cloud computing [22] and
in the context of software protection multiple times. Haven [3] was designed to

226 R. Palutke et al.

securely run unmodified legacy applications, while VC3 [20] offers distributed
Map-Reduce computations that keep the data being processed hidden from cloud
providers. Scone [2] introduced entirely isolated Linux systems by augmenting
Docker containers and Graphene-SGX [21] provided a library operating sys-
tem for unmodified applications. Opaque [23] offers confidentiality for database
queries by placing parts of a database within a TEE. However, all those solutions
build on Intel SGX and do not consider AMD’s SEV.

There are solutions which protect software on top of abstracted TEEs [12,13]
and can in theory support SGX as well as SEV. Current concrete implementa-
tions, however, either rely on simulation or do not implement the SEV back
end at all. There is a lot of research regarding SEV’s security [6,10,16]. Despite
the discovered vulnerabilities, we rely on the security assumptions of SEV and
provide an execution environment for the protection of existing user mode appli-
cations.

1.3 Outline

The remainder of this paper is structured as follows. First, we give background
information which are necessary for the understanding of our approach (Sect. 2).
We then present the design (Sect. 3) and implementation (Sect. 4) of SEVGuard
and evaluate it regarding correctness and performance (Sect. 5). Finally, we sum-
marize our work and point out future research directions (Sect. 6).

2 Background

We now present necessary background information for the design and implemen-
tation of SEVGuard. Readers that are familiar with AMD’s SEV (Sect. 2.1) or
KVM’s ioctl API (Sect. 2.2) may safely skip this section.

2.1 Secure Encrypted Virtualization

SEV provides a mechanism to transparently encrypt the memory of a hardware-
based VM. It relies on a cryptographic co-processor, the Platform Security Pro-
cessor (PSP), which is responsible for executing the SEV firmware code. With
the help of a hierarchic system of cryptographic keys, a secure channel is estab-
lished, which is used to transfer further information between the guest owner and
the trusted firmware. During the guest’s launch, the SEV firmware attests the
integrity of the initial VM state by measuring a hash over owner-specified data.
The hash is then transferred to the guest owner, who can verify the integrity
of the guest. That way, an attacker cannot tamper the guest image prior to its
launch. Furthermore, the channel provides the guest owner with the possibility
to inject further secret data into the VM without the host being able to interfere.
To this end, the SEV firmware decrypts the data, making it accessible to the
guest.

SEVGuard 227

The memory encryption itself relies on a processor feature called Secure
Memory Encryption (SME). SME has been designed to protect a system’s mem-
ory from a wide variety of physical attacks with the help of an AES hardware
engine inside the memory controller. Software can enable the protection on a
page granularity by setting the C-bit in the corresponding Page Table Entrys
(PTEs). Upon a software access, the respective memory pages are transparently
decrypted by the hardware. For PTEs that have not set the C-bit, the engine
does not take any action, so that the general access time for unencrypted mem-
ory remains unchanged. The encryption key, generated during each boot process,
is managed and isolated solely by the SME firmware. Hence, an attacker trying
to physically acquire the protected memory would only read the encrypted data,
as the key never leaves the memory controller.

SEV enhances SME’s security concept by providing additional protection
against software-based attacks that target a hardware-accelerated VM. This
allows a guest to be securely isolated even against untrusted hosts or hyper-
visors. For each VM, the trusted hardware generates a different AES key which
can neither be tampered by the host nor any other VM. Like with SME, the mem-
ory protection is enabled by setting the C-bit in the guest’s private page tables.
Independently of the C-bit’s state, SEV requires code pages and page tables to
be permanently encrypted. This is because any instruction fetch is transparently
decrypted. That way, no code can be injected nor manipulated without knowing
the VM-specific encryption key. Similarly, the guest page tables must remain
encrypted as an attacker could otherwise subvert the memory encryption by
disabling selected C-bits. Moreover, Direct Memory Access (DMA) to protected
guest memory is strictly forbidden, as it would inherently undermine SEV’s
page table-based protection concept. To launch an SEV-protected VM, software
can utilize the SEV firmware via dedicated instructions. Typically, hypervisors
provide an ioctl-based interface to allow user mode applications (e.g. QEMU)
to execute and manage SEV guests. Due to several attacks against SEV, AMD
introduced an extension called Secure Encrypted Virtualization - Encrypted State
(SEV-ES). In contrast to plain SEV, its successor also encrypts a guest’s CPU
register state as well as parts of its Virtual Machine Control Block (VMCB)
(the central control structure to manage a VM) during a context switch to the
hypervisor. That way, an attacker has no chance to read or modify guest content.
Further details can be found in AMD’s processor manuals [1].

228 R. Palutke et al.

2.2 The KVM API

KVM, the build-in hypervisor of modern Linux systems, offers a convenient way
of hardware-accelerated virtualization. For AMD CPUs, KVM heavily relies on
the usage of its processor extension AMD-V, which provides guest execution
at a nearly native performance. Centered around the ioctl mechanism, KVM
provides an extensive API for creating, managing and controlling hardware-
based VMs without depending on any existing VM implementation. The API
serves as an abstraction layer over the architecture-specific virtualization features
of a particular processor architecture. User mode tools like QEMU and kvmtool
are typically built on top of KVM’s API to manage their guests.

The KVM API can be subdivided into three different classes. Initially, a
user mode process requests a handle to the KVM subsystem by opening KVM’s
device file. The handle is subsequently used to issue System IOCTLs to query
and modify the whole subsystem. This includes the setup of new VMs that serve
guests as execution environments. The creation of a new VM in turn results in a
VM-specific descriptor which can then be used to issue VM IOCTLs. They are
further used to configure attributes that affect a particular VM, e.g. its mem-
ory layout. Additionally, they can be used to create and assign virtual CPUs
(vCPUs) to a respective VM which, yet again, are specified by a resulting vCPU
descriptor. These descriptors are used when issuing vCPU IOCTLs which con-
trol the operation of a specific vCPU and thus the execution of the actual guest
code. Due to the hardware acceleration, the guest directly runs on the proces-
sor and is only interrupted after the occurrence of certain (configured) events.
In this case, a VMEXIT is generated and the KVM hypervisor withdraws the
processor from the respective VM. Afterwards, control is transferred to a pre-
defined handler routine which is part of the respective host process. To obtain
the necessary information about the exit event, KVM provides a vCPU-specific
central control structure that is shared between both the host process and the
hypervisor. The host then has the chance to query the exit reason and handle
the event before resuming the guest’s operation. Meanwhile, KVM provides sup-
port for SEV-protected VMs via the ioctl interface. KVM forwards these ioctl
commands to the SEV firmware through both the DRAM command buffer and
the respective MMIO registers. To isolate address spaces of both the host and its
VMs, the processor provides Nested Page Tables (NPT), a second-level address
translation that converts a guest’s physical memory into real physical memory.
Like with conventional paging, NPT allow a fine-grained configuration of mem-
ory access rights that are under control of the hypervisor respectively the host.
Any violation results in a trap to the hypervisor which in turn is able to handle
the fault.

SEVGuard 229

ioctl

KVM

Host Kernelspace

Instruct

SEV Driver

SEVGuard

Host Userspace
In

je
ct

 a
pp

lic
at

io
n

SEV Firmware

SEV VM

V
M

E
X

IT

Guest
Application

Secure Channel
Guest Owner

v
m
r
e
s
u
m
e

User Machine

Owner Machine

Fig. 1. SEVGuard architecture. The red path shows a context switch from the guest
to the host due to the generation of a VMEXIT. The blue path outlines the process
of SEVGuard resuming its guest after handling the respective exit event. During the
VM’s setup, the guest owner has the chance to inject further secrets over a secure
communication channel. (Color figure online)

3 Design of SEVGuard

In this section, we present the design of SEVGuard. We first provide an architec-
tural overview and describe the mechanism behind migrating an user-specified
application into an SEV-protected VM (Sect. 3.1). We then present the initial
memory layout of the lightweight VM (Sect. 3.2). Finally, we illustrate the con-
cept of our host call interface (Sect. 3.3).

3.1 Architectural Overview

The architecture of SEVGuard is based on a lightweight, SEV-protected exe-
cution environment that relies on KVM’s ioctl API (Fig. 1). We set up a user
machine which enables an SEV protected VM to run on top of KVM. To mini-
mize the TCB, we solely rely on KVM’s ioctl API in order to set up the virtual
execution environment. Subsequently, the SEVGuard process is able to instruct
the hypervisor to manage and control the VM. Furthermore, the API can be
used to communicate with the SEV driver to make use of the SEV hardware.
In addition, we connect an owner machine that is used to deploy an encrypted
version of the confidential guest application through an SEV-secured channel.

After copying the confidential application into the minimal VM, SEVGuard
subsequently encrypts the guest’s initial memory with the help of SEV. Further-
more, several gate functions allow the guest to securely request host functional-
ity, e.g., libraries and system calls. Thus, neither untrusted host libraries nor a

230 R. Palutke et al.

kernel need to be mapped or copied into the VM, preventing an attacker from
injecting malicious code. The host call interface also provides the guest with the
possibility to exchange information despite both its memory and CPU registers
are encrypted. In contrast, the host is prevented from invoking arbitrary guest
functionality due to the guest’s instruction pointer encryption. Although the
gates and their related data structures are not part of the actual application
(and thus not confidential), they still must be protected from being tampered
by an attacker. Otherwise, an attacker could maliciously subvert the gate func-
tions and turn off SEV’s protection from within the guest. Hence, the guest
owner has the chance to verify the initial guest image by attesting its integrity
during SEV’s provisioning process before launching the VM. Hereinafter, the
encrypted application can be securely injected into the VM by consulting the
SEV firmware. Finally, the host process launches the VM and starts to execute
the application as a guest. Although our current design does not guarantee the
integrity of the SEVGuard process or other parts of the host, this does not breach
the confidentiality of the guest.

With the occurrence of a VMEXIT (red path in Fig. 1), KVM withdraws the
executing processor from the guest and passes control to the SEVGuard process.
After handling the corresponding event, SEVGuard instructs KVM to resume
the guest (blue path in Fig. 1).

In summary, SEVGuard fulfills the following design goals:

1. An encrypted application is moved into an SEV-protected VM.
2. The execution environment of the guest is kept as lightweight as possible.
3. The framework provides a mechanism that allows the guest to remotely

request untrusted host functionality, e.g., shared libraries or system calls.
4. Direct calls from the untrusted host into the guest are prevented.
5. The integrity of the guest’s initial memory layout is verified before its launch.

3.2 Virtual Machine Layout

SEV was originally designed to protect an entire VM including an OS kernel as
well as its user mode applications. This requires the emulation of both virtual
hardware devices and firmware functionality, as well as the setup of a fairly com-
plex initial guest state. For the purpose of isolating a single user mode applica-
tion, this would imply a high overhead. Hence, we propose a minimal VM design
that only provides the most essential features to enable the trusted execution of
confidential applications. Therefore, SEVGuard relies on the use of KVM’s ioctl
API (Sect. 2.2) which offers the possibility to execute even small code pieces in
a sandboxed environment.

After acquiring access to the KVM subsystem, SEVGuard is able to instruct
the hypervisor to create a new virtual execution environment. To adapt the VM
for our specific use case, SEVGuard specifies a particular memory layout and
initial state. To assign some physical memory, the host process allocates several
pages and instructs KVM to map them into the VM. The guest memory is ini-
tialized with code and data that is required by SEVGuard’s host call interface

SEVGuard 231

(Sect. 3.3). Since the mechanism does not contain any confidential secrets, its
respective parts can simply be copied into the guest’s memory. Nevertheless, the
integrity of the entire initial guest memory must be protected prior to enabling
SEV’s encryption. During the course of the attestation process, this is achieved
by generating a hash value and sending it over a secure channel to the guest
owner. Therefore, an attacker cannot tamper with the guest code prior to the
VM’s launch. After verifying the hash measurement, the guest owner deploys the
application over the same communication channel, encrypted with its transport
key. That way, all confidential secrets are forwarded to the trusted co-processor
which decrypts the packet, encrypts its content with the VM’s key and securely
injects it into the VM. Without the host being able to intervene, the PSP trans-
parently decrypts the secret data every time the guest accesses the underlying
memory. To make the guest memory accessible to the user mode code, we set
up a four-level paging hierarchy that translates guest virtual addresses into their
physical counterparts. Besides memory, we assign multiple vCPUs to the guest
VM. The remaining host memory is mapped as non-present, in order to prevent
the guest from accidentally accessing untrusted code. To have the possibility
to handle certain exit events, we map each vCPU’s control structure kvm run
into the address space of the host process. The structure enables SEVGuard
to retrieve information about the cause of a VMEXIT. Thus, certain events,
e.g. the invocation of host functionality, can be handled by the SEVGuard pro-
cess. Furthermore, the VM’s control registers are configured to enter the guest
in long mode with paging enabled. Although x64 processors make little use of
segmentation nowadays, it is still necessary to set up a Global Descriptor Table
(GDT) and appropriately initialize the segment registers on each processor. To
make it possible to invoke system calls from within the guest, both an Interrupt
Descriptor Table (IDT) as well as certain Model Specific Registers (MSRs) need
to be initialized appropriately (Sects. 3.3 and 4.2). Finally, each vCPU requires
its own stack to enable a proper execution of the guest code.

To enable SEV’s protection features, the host must properly configure its
respective MSRs. Despite our development machine only supporting plain SEV,
we implemented SEVGuard as it would already be SEV-ES ready. Its addi-
tional security features provide even more protection against secret data leaks
(Sect. 2.1). To inform the processor which memory pages need to be decrypted
during a guest access, we enable the C-bit in each corresponding PTE. Before
launching the guest, our framework instructs the SEV firmware to encrypt most
of the guest memory. An exception are some data structures required by the
gate functions, as these need to be shared between the host and the guest
(Sect. 4.3). Nevertheless, encrypting both the guest’s page tables and its code
pages were mandatory for its successful execution, as these pages are always
decrypted upon access (Sect. 2.1). This is to prevent an attacker from subverting
the guest encryption by disabling certain C-bits.

232 R. Palutke et al.

3.3 Host Call Interface

With the VM’s initial state set up, SEVGuard can finally instruct KVM to launch
the VM via the vmrun instruction. The guest then executes the confidential
application until it reaches certain (predefined) events that trigger a VMEXIT.
Consequently, KVM passes control to a specified exit handler that is mapped
into the SEVGuard process. After retrieving information about the cause of the
exit, the host process is able to handle the event and resume the guest. We imple-
mented a method that allows the guest to invoke non-confidential functionality,
e.g., system or host library calls. During the invocation of this untrusted func-
tionality, the guest forces a context switch to the host, which executes the desired
code and returns the result back to its caller. Due to the guest’s memory and
register encryption, the host cannot directly access information like a function’s
target address or its arguments. For the same reason, the host cannot simply
write back the result of a function to the respective return register. To exchange
information between the host and the guest, we designed a protocol that trans-
fers data through controlled gates using shared memory. These gates serve as a
secure way to enter or exit the guest. In the following, we provide further details
on either calling untrusted functionality provided by shared libraries (blue path
in Fig. 2) or requesting system calls (red path in Fig. 2). On terminating the
application, a final VMEXIT is triggered and SEVGuard tears down the VM.

Library Calls. To provide the guest with the possibility to invoke functions
of dynamically linked libraries, the framework redirects corresponding calls to a
special Guest Libcall Gate (GLG). This requires either support from the com-
piler or rewriting the source/binary of the application. In addition, the guest
copies information like a library function’s target address and its arguments to a
dedicated Shared Libcall Area (SLA) which is shared with the host. Special care
needs to be taken regarding pointer arguments to guest virtual memory, because
these need to be accessible from the host. Therefore, the GLG allocates further
unencrypted memory where it copies the referenced data into. As both the host
and the guest share the same process space, the host library can simply access
the newly allocated memory. After propagating the SLA with the required data,
the gate triggers a VMEXIT. The hypervisor subsequently transfers control to
a Host Libcall Gate (HLG) which is mapped into the SEVGuard process. The
HLG further on extracts the guest data from the SLA and natively executes the
desired functionality. As the SLA was not encrypted during the initial setup of
the VM, it can be directly accessed by the host process. Afterwards, it writes
back the result to the same entry of the SLA and instructs KVM to resume the
guest. The GLG then copies the result from the SLA to the particular return
register and reverts to its caller continuing its initial execution flow.

Alternatively, an application can benefit from a performance increase by
statically linking its libraries. As these libraries would also be migrated in the
protected VM, calling its functions would not require any context switches to
the host anymore. To prevent the guest from being subverted, its owner must
strictly ensure the integrity of these libraries, however.

SEVGuard 233

Fig. 2. SEVGuard’s host call interface which enables the guest to request untrusted
host functionality. The red path visualizes the system call mechanism from inside the
guest, while the blue path illustrates the redirection of shared library calls. (Color
figure online)

System Calls. Since we assume the entire host to be untrusted, we cannot
allow the execution of its kernel inside the guest VM. Furthermore, copying a
trusted kernel into the address space of every protected guest application would
consume a high amount of memory. Like with library calls, the guest must exe-
cute system calls through the host. In contrast to the invocation of a library
function, a system call does not require to be rewritten to a wrapper similar to
the GLG. The register encryption which takes place with SEV-ES prevents the
host from accessing guest registers that contain the actual system call number
or its arguments. Therefore, we set up one custom handler for each system call
mechanism provided by modern AMD64 processors (Sect. 4.2). Similar to the
GLG, these Guest Syscall Gates (GSGs) forward a system call’s arguments to
another shared memory region called the Shared Syscall Area (SSA). To prevent
the guest from leaking any additional register content, the gates parse the respec-
tive system call tables and only pass the relevant registers to the host. The GSG
then forces a VMEXIT to transfer control to a Host Syscall Gate (HSG). After
the context switch, the HSG reads the system call number and the arguments
from the SSA, and sets up the appropriate host registers prior to executing the

234 R. Palutke et al.

actual system call. This traps to the host kernel’s system call handler which
invokes the system call specific handler function. After returning from kernel
space, the HSG writes the result to the corresponding field of the SSA. It then
resumes the guest which continues its execution inside the respective GSG, right
after the instruction that triggered the VMEXIT. There, the system call’s result
is copied from the SSA to the respective return register.

4 Implementation

In this section, we describe the implementation of SEVGuard and discuss selected
problems that were particularly challenging to solve.

4.1 Control Flow Redirections

Each time the guest causes a VMEXIT, the processor forces a context switch
to the KVM hypervisor, which in turn transfers control to a host-side handler.
To limit the performance overhead, we configured KVM to intercept only such
events that are necessary to achieve our design goals (Sect. 3.1). Most exit events
require a particular handling, before the guest has the chance to retry the fault-
ing operation. Therefore, the processor cannot advance the guest instruction
pointer. Nevertheless, SEVGuard must not retry every kind of exit event. In
particular, VMEXITs that emerged due to the guest requesting host functional-
ity, must be resumed at the instruction following the trap. Otherwise, the guest
would be stuck in an infinite loop. As the guest instruction pointer is encrypted
in case of SEV-ES, it cannot manually be modified from outside the VM, how-
ever. Therefore, we choose to intercept the hlt instruction which automatically
advances the instruction pointer, allowing the guest to be resumed accordingly.
To enable the guest to call untrusted host functionality, it executes the hlt
instruction within its gate functions after setting up the appropriate argument
registers. This transfers control to the host-side gates, which handle the event
and then resume the guest with the vmresume instruction.

4.2 System Call Trapping

Modern 64-bit AMD architectures, provide two distinctive ways to invoke a sys-
tem call. While the first relies on the newer syscall/sysret fast call mechanism,
the legacy way of issuing software interrupt 0x80 is still available for compat-
ibility reasons. Although directly executing a system call is barely used, some
programs might still rely on this possibility, as the system call interface on Linux
is built for compatibility. Most applications, however, use the respective system
call wrappers provided by shared libraries such as the Libc. Nowadays, 64-bit
applications typically use the fast call mechanism to avoid the additional costs of
a software interrupt. To support both the legacy and the modern way of directly
issuing a system call, we had to set up the appropriate system call handlers.

SEVGuard 235

Confidential Code
<guest code>

syscall
<guest code>
int 0x80

<guest code>

Fast Guest Syscall Gate
<code>
sysret

MSR_LSTARGuest

Legacy Guest Syscall Gate
<code>
iret

IDTR

0x80

IDT

Fig. 3. Guest system call trapping mechanism. The red path shows the modern way
to issue a fast system call with the help of syscall/sysret and the LSTAR MSR. The
blue path illustrates the legacy way of issuing software interrupt 0x80 which relies on
a properly configured IDT. (Color figure online)

For legacy system calls, we set up a guest-private IDT and assign the address
of a custom legacy system call handler to interrupt vector 0x80 (red path in
Fig. 3). This handler is denoted as the legacy GSG. In contrast, to enable the
guest to support fast system calls, a different setup is required. To save the
additional overhead of parsing the IDT, issuing a system call via syscall relies
on the use of dedicated MSRs (blue path in Fig. 3). Hence, we assign the address
of the fast GSG to the LSTAR MSR, which specifies the location of the respective
system call handler (Sect. 3.3). Moreover, the STAR MSR is initialized to declare
the appropriate code and stack segment selectors of both the invoked GSG and
its caller.

As both mechanisms define their own ABIs for argument passing, the guest
needs to parse the appropriate system call table in order to determine which
registers to forward to the host. This prevents the guest from leaking any addi-
tional register state. After the context switch, the respective HSG sets up the
necessary register state and issues the system call with the same mechanism
previously used by the guest.

4.3 Reserved Guest Area

To securely transfer information between the SEVGuard process and its pro-
tected guest, we designed a precise communication protocol that is based on
shared memory (Sect. 3.3). During the launch of the VM, the host prepares a
fixed size Reserved Guest Area (RGA) within guest memory (see Fig. 4). The
area contains non-confidential guest code, e.g., the gate functions, as well as
data structures that are used to communicate with the host.

236 R. Palutke et al.

...

Shared Libcall Area

Libcall Area Table

Stack of vCPU 0

Stack of vCPU N

Guest Address Table

vCPU Count

Guest Gates

Page Tables

0x0

0x100000

0x101000

0x109000

0x131000

0x139000

va
ria

bl
e

si
ze

Encrypted

Encrypted

Encrypted

Encrypted

Decrypted

Encrypted

Shared Syscall Areas Decrypted

Syscall Area Tables

Fig. 4. Layout of the RGA. The grey areas between the guest stacks represent guard
pages that serve as a stack overflow protection. The green areas are memory which
is shared between the host and its guest. Apart from the shared memory ranges, all
remaining guest memory is encrypted with SEV-ES. (Color figure online)

The RGA reserves its first 100 pages for the guest stacks, which are bidirec-
tionally isolated by non-presently mapped guard-pages that mitigate overflows.
The actual number and size of these stacks depend on the user’s configuration
and are dynamically adapted to the number of active vCPUs.

Following the stack area, is the so called Guest Address Table (GAT) that
is used to reference important code and data like the guest’s gate functions.
Similar to the Global Offset Table (GOT) of an ELF binary, the table serves as
a redirection layer to keep certain symbols position independent.

Depending on the guest requesting either a library or system call, neces-
sary data are located in the SLA or the SSA. That way, information like the
host function’s target address (respectively system call number), a pointer to its
arguments (which must also be placed in shared memory), the argument count
as well as its return value, is made accessible to the host. As SEVGuard provides
its guest with the possibility to issue both fast and legacy system calls (Sect. 4.2),
the RGA offers one separate SSA for each mechanism. For each vCPU, both the
SLA and the SSAs supply only one entry, because a vCPU is fully suspended
upon a VMEXIT. This ensures multiple vCPUs do not interfere with each other.
To access the correct entry, the guest must first determine the ID of the cur-
rently running vCPU. Since the guest cannot consult the host to find out about

SEVGuard 237

the ID, we introduced further data structures within the RGA. These are called
the Libcall Area Table (LAT) respectively the Syscall Area Tables (SATs). Each
entry of these tables represents an index into one of the shared areas and pro-
vides the address range of a particular guest stack. The actual code and data of
the guest gates are placed in the RGA’s Guest Gates section. The guest’s page
tables directly follow the RGA. Since they have a variable size which depends
on the number of maximum supported page tables, they cannot be included into
the RGA.

To facilitate the host to access the relevant data during a host call, the shared
areas must stay unencrypted. The remaining RGA is encrypted with the VM’s
AES key during its setup. To locate the appropriate shared area entry, a guest
gate compares the stack pointer register of the current vCPU with the stack
ranges provided by the respective area table entries. As each stack is exclusively
assigned to a specific vCPU, a match determines its ID and thus the index
into the respective shared area. On the host-side, a gate determines the relevant
shared area entry by simply querying KVM for the ID of the vCPU that caused
the trap. Like before, the ID serves the host as an index into one of the shared
areas. Having access to the entry, the host checks the presence of a host call by
verifying its target address or system call number. In case of a valid value, the
host assumes an HLT event induced by the guest, and thus a host call. Otherwise,
the hlt instruction was legitimately executed by the application. After returning
from the host, the guest clears the whole entry to mark the call as resolved.

5 Evaluation

In this section, SEVGuard is evaluated regarding correctness and performance.
To this end, we protect small example applications using SEVGuard. Our exper-
iments were performed on a standard server machine with an AMD EPYC CPU
(AMD EPYC 7301) and 128 GB of RAM. As a host operating system, we used
an unmodified installation of Ubuntu 18.04.1 LTS 64-bit with an SEV-patched
Linux kernel (version 4.16.0-sev).

5.1 Correctness

To show SEVGuard’s ability to correctly protect the confidentiality of an appli-
cation, we deployed pseudo-confidential test data to the guest’s physical memory.
More precisely, we launched guest code that generates successive strings with a
length of 100 bytes on its heap. We then acquired the system’s physical memory
with the Linux Memory Extractor (LiME) (version 4.13.0-32-generic). As LiME
currently does not support the acquisition of selected address ranges, we were
forced to dump the entire physical memory of the host. By loading LiME’s kernel
module with the format specifier padded, a memory dump, which pads all non-
System RAM ranges, is created. This has the advantage, that all RAM ranges
match their exact location in the physical memory. For verification purposes,
the guest provides the base addresses of the strings to the host. Based on these

238 R. Palutke et al.

addresses, we calculate the corresponding offsets within the memory dump and
analyze their respective values.

Our results revealed that none of the target strings appeared within any of
our memory dumps. To ensure the presence of the test data, we subsequently
decrypted the relevant parts of the dumps via SEV’s debug mode. Eventually, we
verified that the test data were indeed correctly located in the memory images.
We therefore conclude, that our implementation correctly encrypts guest physical
memory using SEV’s protection features.

5.2 Performance

Due to the hardware-accelerated virtualization, guest code almost executes with
native performance. However, we expect SEVGuard to introduce a small per-
formance overhead that should mainly originate from its redirection mechanism
as well as the additional time to bootstrap a VM. To evaluate the exact over-
head, we compared the performance of different applications regarding both their
native and virtualized execution. In this context, we evaluated the overhead fac-
tor of SEVGuard in comparison to the application’s native performance. For a
preferably realistic measurement, we evaluated both computationally and I/O
intensive programs. All test applications were executed with a nice value of −20
which constitutes the highest possible process priority on Linux systems. Each
application was executed single-threaded, pinned to a single CPU core during the
entire measurement. For maximum precision, we used the high resolution clock
introduced with the chrono namespace of the C++ standard. Although we kept
the system mostly idle during the measurements, we chose a clock that delivers
the wall time, as this method provides the most realistic results. As the TCB
and the memory consumption of a full-featured guest operating system would
violate our design goals, we forego to include this scenario into our performance
evaluation. However, we expect the boot phase of a full guest to be more time
consuming. On the contrary, the execution of the confidential application itself
should finish faster due to the lack of context switches between the guest and
the host during system and library calls.

Compared to the launch time of a natively executed application, SEVGuard
requires the setup of a minimal virtualized execution environment. Our experi-
ments revealed that the startup of an application running on top of SEVGuard,
only requires 6.1 s. This includes the guest’s initial memory encryption and attes-
tation measurements using debugging keys. Especially for long living processes,
e.g. server applications, this additional startup overhead appears neglectable.

Besides the guest’s general startup time, we measured the round trip time of
a set of context switches from the guest to the host and back to the guest. For
this, we considered a host gate that instantly resumes the guest. We found out,
that the round trip time equals 0.24 ms which amounts to at most 4,176 host
calls per second.

To measure the performance of a CPU intensive application, we wrote a small
program that adds the first 10 billion numbers within a loop. For the evaluation
of an I/O intensive task, we developed a benchmark application that prints out

SEVGuard 239

Table 1. Performance evaluation for both CPU and I/O intensive tasks that were
executed natively and on top of SEVGuard.

Task Measurement Native SEVGuard Overhead factor

CPU intensive Total run time 30.6 s 34.9 s 0.14

Plain run time 29.7 s 30.3 s 0.02

Add operations 336/µs 330/µs 0.02

I/O intensive Total run time 27.5 s 285.8 s 9.39

Plain run time 23.0 s 279.4 s 11.15

Library calls 434,782/s 3,584/s 120.31

the numbers instead of adding them up. This time, however, we limited the
range to the first million numbers due to the long run time of the benchmark.
Observing the CPU load, we could verify that the processes claim their core 100%
during execution. We evaluated the applications’ performance regarding both
total execution time and the plain duration of their run times (from executing
vmrun to the last VMEXIT). Furthermore, we measured the number of add
operations respectively library calls in a given time frame. Table 1 lists the results
of our measurements averaged over ten runs.

With native execution, the CPU intensive task performs up to 336 additions
per microsecond. Running the application on top of SEVGuard, 330 additions
per microsecond could be achieved. This leads to a reduction of add operations
of about 2% which basically results from library calls that originate from the
use of the timer or the final output to the console. Excluding the overhead of
a particular launch, the application natively runs for 29.7 s. Using SEVGuard’s
protection, the process runs 30.3 s. Consequently, this results in an overhead
of only 2% compared to the native performance. Taking the launch of both the
native and the virtualized environments into account, the native environment has
a total run time of 30.6 s, while the usage of SEVGuard requires 34.9 s, resulting
in an overhead of 14%. The results confirm our initial expectations, namely
that the main overhead occurs from SEVGuard’s redirection mechanism. The
arithmetic task does not require a lot of host calls.

The evaluation of the I/O benchmark revealed a native run time (excluding
its launch) of 23.0 s. However, the execution on top of SEVGuard required 279.4 s.
This means an overhead factor of 11.15. In terms of the number of required
function calls per second, the native environment facilitates the execution of
434,782 calls, while SEVGuard only achieved 3,584 calls (call reduction of factor
120.31). As expected, this number is only marginally lower than the upper
bound of 4,176 transitions per second. Finally, the total run time requires 27.5 s
under native execution and 285.8 s using SEVGuard. Therefore, the results of
the I/O evaluation reveal an overhead factor of 9.39. This comes from the guest’s
heavy use of the printf function together with the fact that each of these calls
requires a context switch to the host and back to the guest. Note that this
test case provides a worst case scenario, since typical applications request host
functionality way less frequently.

240 R. Palutke et al.

6 Conclusion and Future Work

To conclude, we give an outlook over future research directions (Sect. 6.1) and
summarize our work (Sect. 6.2).

6.1 Future Work

We restricted our research to virtualize single-threaded applications. While SEV-
Guard theoretically supports multi-threaded executables, the guest does cur-
rently not provide any sort of synchronization mechanism. Furthermore, our
implementation does not support applications that make use of object-oriented
features like polymorphism based on the concept of virtual address tables. This
is because polymorphism would require the guest to dynamically resolve the
actual target address. Similarly, an application cannot use library callbacks as
these need the host to directly invoke guest functionality, which is strictly for-
bidden by our current design. Also, the use of dynamically loaded libraries via
dlopen(3) is not supported at the moment.

The current SEVGuard implementation restricts its use to the protection of
entire applications. However, typically not all parts of an application are con-
sidered confidential. Thus, isolating individual parts might sometimes be pre-
ferred and would further diminish the TCB. Similar to Intel SGX, the guest
owner would have to specify the confidential parts and make sure that solely
those parts are shifted into the VM. As SEV-ES encrypts the guest instruction
pointer, a protected VM can either be launched or resumed. Thus, the guest
can only be entered at the same address it previously exited. To support library
callbacks or enable the host to call functions within the encrypted VM, the
guest must implement a secure dispatching mechanism. Using shared memory,
the host could provide the guest with the requested target address and prompt
the dispatcher to call the corresponding function. The implementation of such a
dispatcher is part of future work.

In addition to the current standalone solution, SEVGuard could be combined
with platform independent TEE frameworks like Google Asylo [18] or Microsoft
Open Enclave [15]. Those frameworks currently support Intel’s SGX and aim to
support ARM TrustZone in the near future. Thus, SEVGuard could be imple-
mented as an SEV back end for both Asylo and Open Enclave.

To get a better understanding of the usability and effectiveness of our pro-
totype, further evaluations regarding performance and security need to be con-
ducted. In this respect, a direct comparison between both SEVGuard and similar
projects that build upon Intel SGX seems of particular interest. While our cur-
rent performance evaluation gives a first insight about best and worst case sce-
narios, considering everyday applications would provide a more realistic picture.
Eventually, the resilience of SEVGuard’s host call interface should be verified
against malicious hosts which falsify responses to the guest (e.g. Iago attacks [4]).

SEVGuard 241

6.2 Conclusion

In this paper, we presented SEVGuard, a novel approach to protect the confiden-
tiality of selected user mode applications. Based on AMD’s hardware virtualiza-
tion extensions, we leverage KVM’s ioctl API to manage and control lightweight
VMs that serve the confidential applications as virtual execution environments.
The implementation relies on the encryption features of AMD SEV to shield
the guest from higher privileged software layers and guarantee code and data
confidentiality. To provide the guest with the possibility to invoke both library
and system calls, we introduce a host call interface that redirects the execution
flow to the host. To give a better understanding of the internals of our pro-
totype, we provided insight into the most important implementation specifics.
We demonstrated that SEVGuard can be practically deployed to correctly pro-
tect an application’s confidentiality, while keeping its performance overhead and
resource consumption reasonably low. Finally, we listed several improvements to
enhance the functionality of SEVGuard.

Acknowledgments. We would like to thank Felix Freiling for his helpful comments
and productive suggestions. This work was supported by the German Research Foun-
dation (DFG) as part of the Transregional Collaborative Research Centre “Invasive
Computing” (SFB/TR 89).

References

1. AMD: Amd64 architecture programmer’s manual volume 2: system programming.
AMD Developer Zone (2018). https://support.amd.com/TechDocs/24593.pdf

2. Arnautov, S., et al.: SCONE: secure Linux containers with Intel SGX. In: 12th
USENIX Symposium on Operating Systems Design and Implementation, OSDI
(2016)

3. Baumann, A., Peinado, M., Hunt, G.C.: Shielding applications from an untrusted
cloud with haven. In: 11th USENIX Symposium on Operating Systems Design and
Implementation, OSDI (2014)

4. Checkoway, S., Shacham, H.: Iago attacks: why the system call API is a bad
untrusted RPC interface. In: ASPLOS, vol. 13, pp. 253–264 (2013)

5. Costan, V., Devadas, S.: Intel SGX explained. IACR Cryptology ePrint Archive
(2016). http://eprint.iacr.org/2016/086

6. Du, Z., et al.: Secure encrypted virtualization is unsecure. CoRR (2017). http://
arxiv.org/abs/1712.05090

7. Duc, G., Keryell, R.: CryptoPage: an efficient secure architecture with memory
encryption, integrity and information leakage protection. In: 22nd Annual Com-
puter Security Applications Conference (ACSAC 2006), 11–15 December 2006,
Miami Beach, Florida, USA, pp. 483–492 (2006)

8. Götzfried, J., Dörr, N., Palutke, R., Müller, T.: Hypercrypt: hypervisor-based
encryption of kernel and user space. In: 11th International Conference on Availabil-
ity, Reliability and Security, ARES 2016, Salzburg, Austria, 31 August–2 Septem-
ber 2016, pp. 79–87. IEEE Computer Society (2016)

https://support.amd.com/TechDocs/24593.pdf
http://eprint.iacr.org/2016/086
http://arxiv.org/abs/1712.05090
http://arxiv.org/abs/1712.05090

242 R. Palutke et al.

9. Götzfried, J., Müller, T., Drescher, G., Nürnberger, S., Backes, M.: RamCrypt:
kernel-based address space encryption for user-mode processes. In: Proceedings of
the 11th ACM on Asia Conference on Computer and Communications Security,
ASIACCS 2016, pp. 919–924. ACM, New York (2016)

10. Hetzelt, F., Buhren, R.: Security analysis of encrypted virtual machines. In: Pro-
ceedings of the 13th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, VEE 2017, Xi’an, China, 8–9 April 2017, pp. 129–142.
ACM (2017). https://doi.org/10.1145/3050748.3050763

11. Kaplan, D., Powell, J., Woller, T.: AMD memory encryption. Technical report,
AMD, April 2016. http://developer.amd.com/wordpress/media/2013/12/AMD
Memory Encryption Whitepaper v7-Public.pdf

12. Lazard, T., Götzfried, J., Müller, T., Santinelli, G., Lefebvre, V.: TEEshift: pro-
tecting code confidentiality by selectively shifting functions into tees. In: Proceed-
ings of the 3rd Workshop on System Software for Trusted Execution, SysTEX
2018, pp. 14–19. ACM (2018). https://doi.org/10.1145/3268935.3268938. http://
doi.acm.org/10.1145/3268935.3268938

13. Lefebvre, V., Santinelli, G., Müller, T., Götzfried, J.: Universal trusted execu-
tion environments for securing SDN/NFV operations. In: Doerr, S., Fischer, M.,
Schrittwieser, S., Herrmann, D. (eds.) Proceedings of the 13th International Con-
ference on Availability, Reliability and Security, ARES 2018, Hamburg, Germany,
27–30 August 2018, pp. 44:1–44:9. ACM (2018). https://doi.org/10.1145/3230833.
3233256

14. Maene, P., Götzfried, J., de Clercq, R., Müller, T., Freiling, F., Verbauwhede,
I.: Hardware-based trusted computing architectures for isolation and attestation.
IEEE Trans. Comput. 67, 361–374 (2017)

15. Microsoft: Open enclave SDK (2019). https://openenclave.io/sdk
16. Morbitzer, M., Huber, M., Horsch, J., Wessel, S.: SEVered: subverting AMD’s

virtual machine encryption. In: Stavrou, A., Rieck, K. (eds.) Proceedings of the
11th European Workshop on Systems Security, EuroSec@EuroSys 2018, Porto,
Portugal, 23 April 2018, pp. 1:1–1:6. ACM (2018). https://doi.org/10.1145/
3193111.3193112

17. Peterson, P.: Cryptkeeper: improving security with encrypted RAM. In: 2010 IEEE
International Conference on Technologies for Homeland Security (HST), pp. 120–
126, November 2010

18. Porter, N.: Asylo: an open-source framework for confidential comput-
ing (2018). https://cloudplatform.googleblog.com/2018/05/Introducing-Asylo-an-
open-source-framework-for-confidential-computing.html

19. Provos, N.: Encrypting virtual memory. In: 9th USENIX Security Symposium,
Denver, Colorado, USA, 14–17 August 2000

20. Schuster, F., et al.: VC3: trustworthy data analytics in the cloud using SGX. In:
IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, pp. 38–54.
IEEE Computer Society (2015). https://doi.org/10.1109/SP.2015.10

21. Tsai, C., Porter, D.E., Vij, M.: Graphene-SGX: a practical library OS for unmod-
ified applications on SGX. In: USENIX Annual Technical Conference (2017)

22. Übler, D., Götzfried, J., Müller, T.: Secure remote computation using Intel
SGX. In: Sicherheit, Schutz und Zuverlässigkeit (SICHERHEIT 2018), Bonn.
Gesellschaft für Informatik (GI) (2017)

23. Zheng, W., Dave, A., Beekman, J.G., Popa, R.A., Gonzalez, J.E., Stoica, I.:
Opaque: an oblivious and encrypted distributed analytics platform. In: 14th
USENIX Symposium on Networked Systems Design and Implementation, NSDI
(2017)

https://doi.org/10.1145/3050748.3050763
http://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://doi.org/10.1145/3268935.3268938
http://doi.acm.org/10.1145/3268935.3268938
http://doi.acm.org/10.1145/3268935.3268938
https://doi.org/10.1145/3230833.3233256
https://doi.org/10.1145/3230833.3233256
https://openenclave.io/sdk
https://doi.org/10.1145/3193111.3193112
https://doi.org/10.1145/3193111.3193112
https://cloudplatform.googleblog.com/2018/05/Introducing-Asylo-an-open-source-framework-for-confidential-computing.html
https://cloudplatform.googleblog.com/2018/05/Introducing-Asylo-an-open-source-framework-for-confidential-computing.html
https://doi.org/10.1109/SP.2015.10

Blockchains and IoT

A Behavior-Aware Profiling of Smart
Contracts

Xuetao Wei1(B), Can Lu1, Fatma Rana Ozcan1, Ting Chen2, Boyang Wang1,
Di Wu3, and Qiang Tang4

1 University of Cincinnati, Cincinnati, USA
weix2@ucmail.uc.edu

2 University of Electronic Science and Technology of China, Qingdao, China
3 Hunan Univeristy, Changsha, China

4 New Jersey Institute of Technology, Newark, USA

Abstract. The inception of blockchain techniques has been revolution-
izing various domains, e.g., Internet of Things, supply chain and health-
care. Ethereum smart contracts emerge as the promising blockchain
application, which could enable distrustful parties to participate in the
automatic and trustful transactions. Given the increasing importance
of Ethereum smart contracts, understanding them becomes imperative.
However, prior work only studied smart contracts with general high-level
patterns, and one critical question has not been answered yet: how do
smart contracts behave individually? In this paper, we present a behavior-
aware profiling of individual smart contract from a multi-party perspec-
tive, which improves the visibility of the smart contract ecosystem. We
conduct a detailed study of the behavior of individual smart contract
on two real-world datasets, and our profiling reveals interesting and sur-
prising observations. For example, a few contract completion chains have
more than 50 contracts and all of them belong to the Finance cate-
gory. We also discuss the implications that lead to recommendations to
improve the security and performance of the smart contract ecosystem.
Overall, our work effectively complements previous work towards gener-
ating a comprehensive understanding of smart contracts.

Keywords: Smart contracts · Profiling · Behavior

1 Introduction

The blockchain is a disruptive technology that attracts significant attention
from both academia and industry. It could serve as the infrastructure of var-
ious domains, including Internet of Things, supply chain, and healthcare [16].
Such popularity can attribute to its decentralized and immutable nature.

In the seminal paper [13], Nakamoto advocated the Bitcoin network, which
truthfully transfers the cryptocurrency among distrustful participants. The con-
sensus among distrustful participants is reached through the Proof of Work pro-
tocol [13]. Since then, the advances of blockchain technologies ignite the passion
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 245–258, 2019.

https://doi.org/10.1007/978-3-030-37231-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_13&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_13

246 X. Wei et al.

Fig. 1. A smart contract includes three parties: senders, recipients and the blockchain
infrastructure

for creating various types of cryptocurrencies [12]. However, the potential of
blockchain technologies is far beyond cryptocurrencies. In order to extend its
broader impact and enable new applications, smart contracts were invented to
implement contractual activities into computer programming codes running on
top of the blockchain [15]. The execution of smart contracts totally depends on
the programmable codes, which cannot be altered once they are deployed onto
the blockchain. Participants of smart contracts from multiple parties strictly fol-
low contractual rules regardless of whether they trust each other. The invention
of smart contracts enables people to take advantage of the blockchain infras-
tructure to facilitate societal activities, which unleash many benefits without
the centralized settings.

Given the increasing importance of smart contracts, it is imperative to under-
stand them first before we can assess, reason and manage them. Several efforts
have focused on analyzing the blockchain and smart contracts in general, e.g.,
reporting general high-level trends and patterns [1,2,8]. Others have studied
security issues [9,10,19]. However, none of them focused on the behavior of
individual smart contract, which hinders our deeper understanding of smart
contracts in practice. The question we address here is: how do smart contracts
behave individually?

In this paper, we present a behavior-aware profiling of smart contracts. Our
work profiles the behavior of individual smart contract from a multi-party per-
spective, which includes senders, recipients and the blockchain infrastructure, as
shown in Fig. 1. The goal is to develop a profile that is intuitive and useful so
that users and developers can assess, manage and reason about smart contracts.
We envision that our work effectively complements previous work towards gen-
erating a comprehensive understanding of smart contracts. Our contribution can
be summarized as follows:

– We present a behavior-aware profiling of individual smart contract from a
multi-party perspective, which is simple, yet effective to improve the visibility
of the smart contract ecosystem.

A Behavior-Aware Profiling of Smart Contracts 247

– We characterize the behavior of individual smart contract based on two real-
world datasets, and present interesting and surprising observations, some of
which are listed below:

• 96% of smart contracts have less than 10 senders, but some have more
than 50 senders. Similarly, 98% of smart contracts have less than 10 recip-
ients, but there also exist some contracts that have even more than 50
recipients.

• 74% of smart contracts have never made an internal transaction since the
time they were deployed.

• The Wallet contracts probably are the most active contracts.
• 75% of contract invocation chains consist of three smart contracts. The

longest contract invocation chain has five smart contracts, which is a
member of the Game category.

• 96% smart contracts invoke only one contract during the time of their
complete execution. A few contract completion chains have more than 50
contracts and all of them belong to the group of Finance contracts.

• Gas need of a clear majority of Library contracts (95%) is very low.
Library contracts do not require much gas because they generally serve
for basic and specific purposes such as math and string transformations.

– We demonstrate that our profiling could reveal the complexity of the behavior
of smart contracts. We also discuss the implications and propose several rec-
ommendations to better improve the security and performance of the smart
contract ecosystem, including (a) documenting best practices of developing
smart contracts, (b) developing certified Library contracts that can be trust-
ingly used by others, and (c) building an official and trustworthy store to
manage smart contracts.

2 Datasets

In this paper, we focus on smart contracts on the Ethereum. We collect two
datasets, Dataset1 and Dataset2. Due to the Etherscan [6] only has the partial
information of smart contracts, we instrument the Ethereum platform to obtain
large-scale smart contracts with the complete information, which is referred to
Dataset1. Dataset2 from [2] has 656 smart contracts that are classified into five
categories. As shown in [2], manual inspection was used to categorize smart
contracts, which is not suitable for Dataset1 that is large-scale. Thus, Dataset1
has no category information.

Dataset1: We log all the trades on the Ethereum as DATA1. Since smart con-
tracts can only be created by create trades, we extract all create trades in DATA1
to generate the list of all smart contracts as LIST1, which includes ∼600K smart
contracts. By calling “eth.getCode()” method, we use this API to get runtime
bytecodes by contract addresses. We obtain all runtime bytecodes for all con-
tracts, and then through deduplicating smart contract addresses that have the
same bytecode, we get all unique contract address list named as LIST2, which
includes ∼160K smart contracts. Finally, we iterate over DATA1 to find the
transactions related to these unique smart contracts, which is named as DATA2.

248 X. Wei et al.

Dataset2: We obtain the data of smart contracts with categories from [2] and
extract their corresponding transactions from DATA2 above. There are five cat-
egories in this data. Finance contracts are used to manage, gather, or distribute
money. Notary contracts are used to exploit the immutability of the blockchain
to store some data persistently, which could certify their ownership and prove-
nance. Game contracts include contracts that implement games of chance, games
of skill as well as the mix of chance and skill. Wallet contracts handle keys,
send transactions, manage money, deploy and watch contracts. Library con-
tracts implement general-purpose operations to be used by other contracts.

Fig. 2. The distribution
of who the senders are

Fig. 3. CDF vs. #senders
per smart contract

Fig. 4. The distribution
of who the recipients are

3 Profiling Without the Consideration of Categories

In this section, we will present the profiling results based on the following ques-
tions and discuss their implications. The results are based on the Dataset1.

Who are senders of smart contracts?: Senders are not only EOAs (Exter-
nally Owned Accounts), but also smart contracts. A smart contract carries its
own mission when it is created. It can be used by other users rather than its
creator, which serves to the public by its service. In Fig. 2, we could observe
that a great portion of senders of smart contract transactions are EOAs. This is
reasonable if we consider that smart contracts are supposed to be used by the
participating EOAs. However, we could also observe that some of the senders of
smart contract transactions are smart contracts as well. This observation implies
that smart contracts can be involved as collaborative components of the whole
transaction path rooted from one smart contract. This flexibility can better
support other smart contracts’ functions in their tasks. It can be regarded as
similar to the modular function concept used in the object-oriented program-
ming language, so that it could help smart contract developers to facilitate the
deployment process and improve the resource utilization of smart contracts on
the blockchain platform. To examine the distribution of the number of senders
for each smart contract, we apply cumulative distribution function (CDF) to the
senders (Fig. 3). Regarding Fig. 3, we could observe that around 96% of smart
contracts have less than 10 senders. This implies most of the smart contracts

A Behavior-Aware Profiling of Smart Contracts 249

on Ethereum might be not popular at all. On the other hand, remaining smart
contracts can be considered as being actively used, even some of them have more
than 50 senders, which points to the potential popularity of a smart contract.

Fig. 5. The distribution of
smart contracts that have
at least one internal trans-
action and have no internal
transactions

Fig. 6. CDF vs. # recipi-
ents per smart contract

Fig. 7. The distribution of
the zombie contracts and
non-zombie contracts

Who are recipients of smart contracts?: Though most of the recipients
of smart contract transactions are EOAs, around 18% of recipients are smart
contracts, which is much enough to be non-negligible. Figure 4 illustrates that
the majority of the recipients of transactions are externally owned accounts.
It indicates that EOA users are still much more active than smart contracts on
Ethereum blockchain. Once such a smart contract is executed, it finishes all tasks
on its own and makes the necessary transactions with particular EOAs. On the
other hand, when a smart contract transaction is sent to another smart contract,
it means that the caller contract cannot finish a task by only itself, and it can
use other smart contracts to complete the task in a more efficient way. As shown
in Fig. 4, a non-negligible amount of recipients (18%) are smart contracts that
are used to complete other contracts’ tasks. Additionally, we can consider the
number of recipients that each individual smart contract has to profile recipients.
Figure 6 shows the cumulative distribution of the number of recipients each smart
contract has. 98% of smart contracts have less than 10 recipients, which shows
the smart contracts usually have their own special transaction receivers. On
the other hand, there also exist some contracts that have even more than 50
recipients. Such contracts are usually used for transferring particular assets to
many recipients, e.g., Finance.

Did all smart contracts make internal transactions?: As mentioned ear-
lier, there are two types of transactions in Ethereum. One is an external trans-
action, which should be sent from an externally owned account. External trans-
actions are stored in the blockchain and open to the public. The other type of
transactions, namely internal transactions, are produced by the execution of a
smart contract. Internal transactions cannot occur by themselves, they should be
triggered by an external transaction. Also, they are not written to the blockchain.

250 X. Wei et al.

From the mechanism of Ethereum, the outermost layer of a complete transac-
tion must be an external transaction. If the destination address is a contract and
the transaction will be generated downward, then the subsequent transactions
should be internal transactions. Different smart contracts can include different
kinds of operations, so their internal transactions can be completely different.

Figure 10 shows the cumulative distribution of the number of internal trans-
actions each smart contract has. We could observe that more than 90% of smart
contracts have less than 20 internal transactions. So that again, it points out
the majority of Ethereum smart contracts are not such actively used. From the
same graph, we could also find that a great number of smart contracts (74%)
have never made an internal transaction since the time they were deployed as
shown in Fig. 5. There are two reasons for this. One is that there is no function
that triggers an internal transaction in the contract’s source code. The other
one is the smart contract has never been executed which should be triggered
by an external transaction. Although there are many kinds of smart contracts
available in Ethereum platform, their activeness percentage is quite low so that
a considerable proportion of smart contracts (44%) have never interacted with
other accounts even once. Such never-used contracts are named as zombie con-
tracts as shown in Fig. 7.

Fig. 8. The contract invocation chain Fig. 9. The contract completion chain

Fig. 10. CDF vs. # of
internal transactions per
smart contract has

Fig. 11. CDF vs. contract
completion chain lengths of
all smart contracts

Fig. 12. CDF vs. contract
invocation chain lengths of
all smart contracts

A Behavior-Aware Profiling of Smart Contracts 251

How does a smart contract invoke another smart contract?: Typically,
one contract could complete one task by itself. However, as we observe, some
smart contracts will leverage other smart contracts to complete a task. We refer
this feature as the chain of smart contracts and explain the chains in two dif-
ferent ways. First, each time a contract invokes another contract, there will be
a connection established between them. Once invocation series reach to a final
contract, they will make a chain. We named such chains as contract invocation
chain, as shown in Fig. 8. Additionally, Fig. 12 illustrates the cumulative distri-
bution of lengths of such chains. Currently, the longest contract invocation chain
has 5 smart contracts. Most of (around 75%) contract invocation chains include
three contracts. Moreover, 22% of them consist of two smart contracts, which
can be arguably denoted as “chains”, and only 2% of contract invocation chains
have four or five smart contracts.

The second type of contract chains is constructed as the result of the caller
contract execution. When such a contract is executed, it may invoke one or
more other contracts until it stops the execution. We define a group of contracts
invoked by one contract throughout one execution as contract completion chain,
as shown in Fig. 9. In Fig. 11, we observe that nearly 96% smart contracts invoke
only one contract during the time of their complete execution. Furthermore, 3% of
them invokes two other contracts until their execution stops. Finally, only around
1% of contracts involve more than two contract invocations in their source code.

How do smart contracts use the gas?: As illustrated in the cumulative
distribution of gas usage of all contract transactions in Ethereum (Fig. 13), gas
usage can be quite changeable. This implies that the complexity of smart contract
operations and their gas usage depend on the smart contract’s goals and a wide
variety of contract operations exist among Ethereum’s smart contracts. Even so,
we could say that most of smart contract transactions (60%) have used less than
10,000 units of gas to achieve the contract’s task. Since a transaction of simple
ETH transfer from one address to another uses 21,000 units of gas, we could see
that 10,000 units of gas are not high and most of the smart contract transactions
probably achieve simpler tasks than the ETH transfer.

4 Profiling with the Consideration of Categories

In this section, we will present the profiling results based on Dataset2 that has
the categories.

Which categories of smart contracts act as senders more?: Senders of
smart contracts correspond to the sender field in a transaction that has also a
smart contract as the recipient. Figure 14 shows that the cumulative distribution
of the number of times when a contract has the role of the sender in its contract-
to-contract transactions for each category of smart contracts. Notably, sending
transactions is the most popular among the Wallet contracts as 60% of them
are in sender role of its transactions for at least one time. This is because Wallet
contracts are mainly used for sending assets. Library contracts as the senders

252 X. Wei et al.

Fig. 13. CDF of contracts
vs. gas usage of all smart
contract txns

Fig. 14. CDF of contracts
vs. #txns in which con-
tracts as senders in each
category

Fig. 15. CDF of contracts
vs. #txns in which con-
tracts as recipients in each
category

can also be counted as relatively popular since 40% of them has made at least one
transaction. Moreover, around 18% of Library contracts invoke other contracts
more than 20 times. Distribution patterns of other categories are quite similar to
each other and sending transactions to other smart contracts is not as popular
as in Wallet or Library contracts.

Among all recipients of contract transactions, including both EOAs and
smart contracts, recipient distribution of the transactions which are sent by
the five categories of contracts are quite changeable (Fig. 16). For the trans-
actions that have been carried out by Finance, Game, and Library contracts,
EOAs are mostly in the recipient role. Especially, the number of smart contracts
as the recipients of Library and Finance categories are near to 0 as observed
in Fig. 15. It is a fact that the Library contracts do not invoke other smart
contracts since their main job is to be used as a help in achieving other smart
contracts’ tasks. Thus, the Library contracts are always in the recipient role in
contract-to-contract transactions. Also, since the Finance contracts are mostly
used for managing and distributing money to EOAs, they usually do not need
to invoke other smart contracts to finish their tasks. Another interesting fact is
that unlike the other categories, smart contracts have received far more trans-
actions from the Wallet contracts than EOAs have received. This is because
EOAs actively use Wallet contracts and send their transactions to the Wallet

Fig. 16. The distribution of each cate-
gory’s recipients

Fig. 17. The distribution of each cate-
gory’s senders

A Behavior-Aware Profiling of Smart Contracts 253

contracts so that these contracts can send transactions to other smart contracts
or deploy and watch other smart contracts on behalf of EOAs.

Fig. 18. CDF vs. contract invocation
chain lengths in each category

Fig. 19. CDF vs. contract completion
chain lengths in each category

Which categories of smart contracts act as recipients more?: Figure 15
illustrates the category-based distribution of how many times each contract being
the recipient of a transaction. Note that, these transactions are limited with
only the ones between smart contracts. For example, around 70% of Wallet
contracts are in the recipient role in less than 15 transactions. Surprisingly,
a great portion of Library contracts (more than 95%) have not received any
transactions, that means, they are not invoked by other smart contracts even
once. This is quite lower than the expectations since the main purpose of Library
contracts is being used by other contracts. This implies that the power and
usefulness of Library contracts have not been much discovered yet. Among all
categories, Wallet contracts are more uniformly distributed than the others
based on the number of times being a transaction’s recipient. Around 30% of
Wallet contracts received transactions from other contracts more than 20 times.
This indicates that Wallet contracts probably are the most active contracts on
Ethereum blockchain. They are frequently invoked by EOAs as well as other
smart contracts. It is also worth mentioning Notary and Game contracts have a
considerable amount of received transactions and we can say that it shows their
potential popularity in the future.

In order to observe the big picture of transaction senders, we additionally
processed the transactions that include not only smart contracts but also exter-
nally owned accounts (Fig. 17). For each category of transactions, while the smart
contract which belongs to the category in question is in the recipient role, the
sender can be any smart contract or EOA. For each category, the number of
sender EOAs is higher than that of smart contracts. This can be caused by
two factors. First, the group of EOA accounts in Ethereum is still quite bigger
than the smart contracts. Second, smart contracts do not invoke other smart
contracts as much as EOAs invoke. However, this is not completely true for the
Wallet contracts since they are already controlling their users’ transactions by
themselves.

254 X. Wei et al.

How does a smart contact invoke another smart contract in differ-
ent categories?: In order to gather the length of the chain of smart contracts,
two types of chains are observed, namely contract invocation chains and con-
tract completion chains for each category of smart contracts. Contract invoca-
tion chains are built from the invocation connections between smart contracts
until the invocation series stop at a final contract. Based on our category-based
contract invocation chain analysis, overall, the longest invocation chain has five
smart contracts and it is a member of the Game category. Figure 18 illustrates
the cumulative distribution of each category’s contract invocation chain lengths.
Note that, a contract chain can consist of at least two contracts. It indicates that
the Finance contracts and the Library contracts are mostly involved in such
contract invocation chains that have at least three contracts (81% of Finance
and 82% of Library categories), and also, the Notary contracts have almost
equal numbers of chains for 3-contract (30%) and 4-contract (24%) invocation
chain groups. Multi-contract invocation chains do not seem much popular in
the remaining categories since they mostly have 2-contract invocation chains. It
might be concluded from these results that especially in Finance and Library
categories, using someone’s contract probably provides convenience for smart
contract developers to do their jobs in a more efficient way. This indicates in
these categories, a great number of contracts are open to the development.

Contract completion chains are constructed as the result of one contract
invoking other contracts until it stops running. Figure 19 shows the cumula-
tive distribution of contract completion chain lengths of each smart contract
category. There are only a few completion chains have more than 50 contracts
and all of them belong to the group of Finance contracts. Therefore, they are
ignored for the sake of the graph’s clearness since one of them consists of 359
contracts. However, it is also worth to mention that one contract in Finance cat-
egory has been interestingly successful to use other contracts in its source code.
For each category, category-based contract completion chains mostly consist of
between 2 and 20 contracts. Especially for the Wallet category, completion chain
lengths can quite vary. Moreover, for the Game category, the percentage of longer
chains are higher than the others. It is obvious that the contract developers of
these categories are relatively aware of the usefulness of invoking other contracts
instead of writing a contract from zero by themselves, which could probably pro-
vide them efficiency and help saving considerable time during the development
process.

How do different categories of smart contracts use the gas?: Figure 20
displays the cumulative distribution of gas needs for contract completion of each
contract category. As seen on the figure, gas need of a clear majority of Library
contracts (95%) is very low. Library contracts do not require much gas because
they generally serve for basic and specific purposes such as math and string trans-
formations, so they are mostly formed as short contracts. Among the other four
categories, gas requirement of Notary contracts is relatively stable in compari-
son with others since nearly 70% of Notary contracts require between 150,000
and 200,000 unit of gas to finish their tasks. This could imply that the Notary

A Behavior-Aware Profiling of Smart Contracts 255

contracts usually achieve the similar amount and type of tasks so that they
need a similar amount of gas units. On the other side, gas requirement distribu-
tion of Finance and Game contracts show a diversified behavior, which indicates
that there could be many different functions of smart contracts belong to these
categories.

Fig. 20. CDF vs. the transaction gas in
each category

Fig. 21. CDF vs. the contract value in
each category

Are all the transactions money-based?: Smart contracts can send money to
other accounts or receive money from other accounts on Ethereum blockchain.
It does not happen as usual as between EOAs because smart contract usage is
not still as popular as transferring money between EOAs. Figure 21 shows the
cumulative distribution of transaction values occurred only between the smart
contracts. Most of the contracts make 0-valued transactions since these transac-
tions are not usually money-based. They could be produced only by executing
the functions in the contract that do not require any money transfer. Interest-
ingly, while only around 5% of the other four categories have more than 0 value,
this percentage increases to 10% in case of the Game contracts. This could be
explained as the Game accounts are transferring more money since some types of
Game contracts such as lotteries are purely based on the money transfer and it
is normal to frequently transfer money from such contracts to other contracts.

5 Implications and Discussion

Smart contracts go beyond the cryptocurrency. We could observe that EOAs still
dominate the role of senders to invoke smart contracts, but the number of smart
contracts as senders is increasing, which indicates that smart contracts are
extending their roles participating in the smart contract ecosystem,
not just limited as callees. Furthermore, most smart contracts have less than
10 senders and 10 recipients, which may indicate the scale and popularity of
each smart contract is still far from the expectation.

Though the increasing number of smart contracts have been deployed, there
are a non-trivial amount of smart contracts that never made any internal trans-
action and interacted with others. This may attribute to the immature nature

256 X. Wei et al.

of the smart contract ecosystem. First, the poor practice of developing smart
contracts is prevalent in the smart contract community. Second, there is no
clear regulation from the blockchain platform. Thus, documentation of best
practices of developing smart contracts and rules of deploying them is
strongly needed for this uprising community. For example, the blockchain
platform should urge developers to self-destruct these “zombie contracts”.

We also observe that smart contracts invoke many contracts, which forms
either the invocation chain or the completion chain. However, it is better to be
cautious about the practice of invoking many other contracts, especially
for the Finance related contracts. This is because the security risk increases
when the invocation chain or the completion chain of a smart contract grows. For
example, the input data of a smart contract could be polluted [19]. Such pollution
from any contract along the chain could significantly impact the correctness of
the smart contract. Furthermore, the buggy contracts make this situation even
worse.

From the performance perspective, it is also necessary to revisit the
development of such smart contracts by minimizing the number of
invoked smart contracts. For example, we observe that a few completion
chains have more than 50 contracts in the Finance contracts. Due to the
blockchain scalability and the increasing length of the blockchain, it is taking
more time to finish one transaction. The increasing complexity of contract depen-
dency makes this situation even worse, which is not good for the time-sensitive
smart contracts, e.g., Finance and Game contracts.

Considering all smart contract chain observations together, we could say that
the high potential of both smart contract chains has not been discovered enough
by the contract developers yet. However, smart contract development is still
quite new for the developers and it is improving day by day. When the power of
chains is realized, it will make all contract developers’ jobs easier and probably
enable us to see more powerful, secure, and efficient contract solutions in the
future.

This also raises the importance of developing certified Library contracts
that can be trustingly used by other smart contracts to improve both
security and performance concerns. This finally reaches to the proposition of
building an official and trustworthy store for smart contracts, like
Google Play Store for Android Apps. First, developing such a store could let
developers place their smart contracts without directly deploying them into the
blockchain and easily revise the smart contracts by fixing the bugs or vulnera-
bilities. Second, the store could certify each smart contract and filter the risky
smart contracts before reaching to users. Third, the store could facilitate the
ecosystem of smart contracts by involving more developers and users to sell and
buy smart contracts.

Overall, the smart contract ecosystem is still immature, which needs
more efforts on understanding and improving it.

A Behavior-Aware Profiling of Smart Contracts 257

6 Related Work

None of previous work characterized the behavior of individual smart contract.

Smart Contracts Characterization and Performance: Current character-
ization of smart contracts focused on design patterns, the programming code,
and execution traces. Bartoletti et al. [2] studied generally the design patterns
of smart contracts and how they were implemented on different blockchains.
Chen et al. [1] discovered the money flow patterns in Ethereum contracts via
the graph analysis [17]. Dickerson et al. [5] enabled smart contracts to be exe-
cuted in parallel in order to improve their efficiency. Nikolic et al. [14] presented
a characterization on the trace vulnerabilities from one million smart contracts,
and a practical tool to test trace properties. Ontologies were presented in order
to reduce the conceptual ambiguity of smart contracts for the public [4]. Kiffer
et al. [8] studied the contract equality and similarity and found most contracts
are direct- or near-copies of other contracts. Our work complements the previous
work towards generating a comprehensive understanding of smart contracts.

Smart Contracts Security and Privacy: Luu et al. [10] investigated the
security of smart contracts and discovered the vulnerabilities that can be used
to manipulate the smart contracts to gain profit. A formal verification frame-
work was proposed to analyze and verify both the runtime safety and functional
correctness of smart contracts [3]. When smart contracts interact with the exter-
nal data sources, the trust of data feeds becomes the critical issue to ensure the
operation of smart contracts correctly. Town Crier [19] was proposed to pro-
vide an authenticated data feed for smart contracts, which is a high-trust bridge
between data websites and the blockchain. Juels et al. [7] demonstrated that
smart contracts could be abused for criminal purposes, which highlights the
urgency of promoting effective policies to realize the great beneficial promise of
smart contracts. A finite state machine-based approach was proposed to design
secure smart contracts and a set of design patterns were also introduced to
enhance security and functionality [11]. Due to the public blockchain exposing
the transaction history, Hawk [9] was proposed to preserve the privacy of smart
contracts. It enables people to write the private smart contract without the bur-
den to implement the cryptography. Velner et al. [18] demonstrated that using
the smart contract can withhold the blocks, which would undermine the entire
pooled mining model.

7 Conclusion

In this paper, we have presented a behavior-aware profiling of individual smart
contract from a multi-party perspective, which improves the visibility of the
smart contract ecosystem. We have conducted a detailed study of the behavior
of individual smart contract on two real-world datasets, and revealed interesting
and surprising results. The implications of such study and the proposed recom-
mendations could better help us improve the security and performance of the
smart contract ecosystem.

258 X. Wei et al.

Acknowledgement. This research was, in part, supported by the funds from the
Ohio Cyber Range and Hyperconnect Lab Inc. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of our sponsors.

References

1. Chen, T., et al.: Understanding ethereum via graph analysis. In: IEEE INFOCOM
(2018)

2. Bartoletti, M., Pompianu, L.: An empirical analysis of smart contracts: platforms,
applications, and design patterns. In: Brenner, M., et al. (eds.) FC 2017. LNCS,
vol. 10323, pp. 494–509. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70278-0 31

3. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: ACM
PLAS (2016)

4. de Kruijff, J., Weigand, H.: Ontologies for commitment-based smart contracts. In:
Panetto, H., et al. (eds.) OTM 2017. LNCS, vol. 10574, pp. 383–398. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69459-7 26

5. Dickerson, T., Gazzillo, P., Herlihy, M., Koskinen, E.: Adding concurrency to smart
contracts. In: Proceedings of ACM PODC (2017)

6. Etherscan, June 2019. https://etherscan.io/
7. Juels, A., Kosba, A., Shi, E.: The ring of gyges: investigating the future of criminal

smart contracts. In: ACM CCS (2016)
8. Kiffer, L., Levin, D., Mislove, A.: Analyzing ethereum’s contract topology. In: ACM

IMC (2018)
9. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain

model of cryptography and privacy-preserving smart contracts. In: IEEE S&P
(2016)

10. Luu, L., Chu, D.-H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: ACM CCS (2016)

11. Mavridou, A., Laszka, A.: Designing secure ethereum smart contracts: a finite state
machine based approach. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol.
10957, pp. 523–540. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-
662-58387-6 28

12. Mukhopadhyay, U., Skjellum, A., Hambolu, O., Oakley, J., Yu, L., Brooks, R.: A
brief survey of cryptocurrency systems. In: IEEE PST (2016)

13. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
14. Nikolic, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A.: Finding the greedy, prodi-

gal, and suicidal contracts at scale. In: ACSAC (2018)
15. O’Shields, R.: Smart contracts: legal agreements for the blockchain. NC Banking

Inst. 21, 177 (2017)
16. Pilkington, M.: 11 blockchain technology: principles and applications. In: Research

Handbook on Digital Transformations, p. 225 (2016)
17. Sergey, I., Hobor, A.: A concurrent perspective on smart contracts. In: Brenner,

M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 478–493. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70278-0 30

18. Velner, Y., Teutsch, J., Luu, L.: Smart contracts make bitcoin mining pools vul-
nerable. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 298–316.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 19

19. Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town crier: an authenti-
cated data feed for smart contracts. In: ACM CCS (2016)

https://doi.org/10.1007/978-3-319-70278-0_31
https://doi.org/10.1007/978-3-319-70278-0_31
https://doi.org/10.1007/978-3-319-69459-7_26
https://etherscan.io/
https://doi.org/10.1007/978-3-662-58387-6_28
https://doi.org/10.1007/978-3-662-58387-6_28
https://doi.org/10.1007/978-3-319-70278-0_30
https://doi.org/10.1007/978-3-319-70278-0_19

A Performance-Optimization Method
for Reusable Fuzzy Extractor Based

on Block Error Distribution of Iris Trait

Feng Zhu1,2, Peisong Shen1(B), and Chi Chen1,2

1 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Science, Beijing, China

{zhufeng,shenpeisong,chenchi}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. Fuzzy extractors convert repeated noise readings of a source
into same uniformly distributed key. To eliminate noise, non-secret helper
data is extracted from the initial enrolment in the registration phase
and acts as the “error correct” tool in the verification phase. However,
error correct code based fuzzy extractors have cross-matching problems.
Reusable fuzzy extractors are proposed to realize multiple registrations of
the same biometrics and provide privacy-enhancing features such as revo-
cability and protection against cross-matching. Nonetheless, Canetti’s
reusable fuzzy extractors named sample-then-lock suffer from heavy stor-
age and computing resources burdens.

In this paper, after conducting a thorough correlation analysis
between performance and error tolerance in Canetti’s reusable fuzzy
extractors, we find that decreasing error tolerance threshold can improve
storage and computation performance of reusable fuzzy extractors. Based
on statistical analysis of the block error distribution of iris trait, we pro-
pose an iris-code preprocessing method which uses Hadamard code to
lower error tolerance. We conduct an experiment on a public iris dataset
and experimental result shows that our method can improve the perfor-
mance and security of the reusable fuzzy extractor schemes.

Keywords: Biometrics protection · Reusable fuzzy extractors ·
Iris-code

1 Introduction

With the popularity of mobile devices, biometrics are widely used in user authen-
tication systems. Compared to traditional authentication methods, biometric-
based authentication schemes have three advantages: identity binding, no mem-
ory and “carry-over”. However, biometrics authentication has two major weak-
nesses: fuzzy and non-renewable property. Fuzziness means that the repeated
reading values of the same biometric are similar but not identical. The classical
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 259–272, 2019.

https://doi.org/10.1007/978-3-030-37231-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_14&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_14

260 F. Zhu et al.

cryptography can’t tolerate the deviation between acquisitions of the same bio-
metric trait. Non-renewability means that once raw biometrics are compromised,
they cannot be revoked, cancelled, or reissued. At the same time, intrinsic traits
of a human are in limited number. Therefore, it is necessary to protect the raw
biometrics.

Although the system stores biometric templates instead of original trait data,
an experienced adversary can recover the initial biometrics from templates such
as minutiae points [9,15]. Therefore, it is necessary to secure biometric templates.
Feature transformation [2,3,12] and key-based protection [4–6,8,11] are effective
solutions to protect templates.

The conception of non-invertible feature transformation has been first pre-
sented in [14]. The main idea is that biometric templates are transformed by a
non-invertible and similarity-preserving function before they are stored. How-
ever, the security of these approaches depends on the secure storage of the
transform parameters and it is difficult to construct the transformations sat-
isfying necessary requirements [16].

In order to solve these problems, key based protection is proposed. The main
idea of key based protection is to establish a link between biometrics and cryp-
tographic keys, such as key-binding and key-extracting. Juels and Wattenberg
[11] proposed the first key based protection scheme, fuzzy commitment. In their
scheme, error correct code (ECC) is used to overcome fuzziness of biometrics
for the first time. Specifically, differences between multiple acquisitions of the
biometric are considered as “noise” and ECC is used to eliminate “noise”.

On the basis of previous work, Dodis et al. [8] systematically summarized
the concept of error correct code based fuzzy extractors and proposed a key-
extractor method, which showed how to extract a random certainty secret from
a noise input (such as biometrics) in Hamming, set difference and edit metrics.
In a fuzzy extractor scheme, it usually consists of two main algorithms, a gen-
erating algorithm (Gen) and a reproducing algorithm (Rep). In Gen module, a
random secret is generated and a public helper data is extracted from enrolled
biometric. In Rep module, the secret will be recovered by the public helper data
and certificated biometric, if the distance between certificated and registered
biometrics is less than the given threshold value.

However, error correcting code based fuzzy extractors have a problem of being
vulnerable to cross-matching attack [13]. Helper data is stored in plaintext in
the database and is sent to the user for each verification, so it is not difficult for
attackers to achieve helper data. When a biometric is enrolled multiple times and
several instances of helper data from same biometric are generated, an adversary
can select out helper data which belong to the same biometric according to the
similarity of helper data.

Reusable fuzzy extractors can solve the problems mentioned above. Boyen
et al.[4] introduced the conception of reusability and the definition of reusable
fuzzy extractors. In a reusable fuzzy extractor scheme, a trait can be securely
enrolled multiple times and the generated data are irrelevant. Based on the
concept of reusable fuzzy extractors, Canetti et al. [5] proposed a feasible con-

A Performance-Optimization Method for Reusable Fuzzy Extractor 261

struction named sample-then-lock. The approach applies cryptographic digital
lockers to achieve reusability. The construction is robust and reusable, but it
suffers from heavy computing and storage resources burdens. On the basis of
Canetti’s construction, Cheon et al. [6] designed a threshold scheme to achieve
the decline of storage consumption. However, due to applying the threshold
scheme, their solution consumes much computing consumption.

1.1 Our Contribution

In this paper, we point out that the performance of Canetti’s construction [5]
still has the promotion space. The main idea of our scheme is to decrease storage
and computing consumption by reducing the error tolerance threshold without
affecting recognition accuracy. We find that resource requirements are highly
related to the error tolerance of the biometrics. When the error tolerance is
higher, it requires more lockers which results in more storage space and comput-
ing cost. In order to fix this problem, we propose a performance-optimization
method which uses Hadamard code to preprocess iris-codes. We summarize our
contribution as follows:

– We analyse the relationship between performance and error tolerance in the
reusable fuzzy extractors and give a mathematical formalization of the rela-
tionship.

– We measure the intra-class and inter-class block error distribution in a public
iris database. Combining the analysis of the intra-class and inter-class block
error distribution, we propose a performance-optimization method based on
Hadamard code that can effectively reduce error tolerance without increasing
false acceptance rate (FAR) and false rejection rate (FRR).

– We conduct an experiment to demonstrate the performance of our method on
grayscale iris dataset. Meanwhile, we analyse the security and performance
of our approach to show that it is secure and effective.

1.2 Road Map

In Sect. 2, we provide some preliminaries for our work. In Sect. 3, we analyse
the relationship between performance and error tolerance in the reusable fuzzy
extractors. In Sect. 4, we give our performance-optimization method which is
based on error distribution. In Sect. 5, we analyse the security and performance
of our construction. Finally, we conclude our work in Sect. 6.

2 Preliminaries

In this section, we introduce reusable fuzzy extractors, block error distribution
and Hadamard code.

262 F. Zhu et al.

2.1 Entropy

Let Xi be a random variable over some alphabet Z for i = 1, . . . , n. We denote
by a random variable X = X1, . . . , Xn the tuple (X1, . . . , Xn). The minentropy
H∞(X) of X is defined as

H∞(X) = − log[max
x

Pr(X = x)].

The average (conditional) minentropy H̃∞(X|Y) of X given Y defined as

H̃∞(X|Y) = − log[Ey max
x

Pr(X = x|Y = y)].

For a given distinguisher D, the computational distance between variables
X and Y is defined by δD(X,Y) = |E[D(X)] − E[D(Y)]|. For a class of distin-
guishers D, we define δD(X,Y) = max

D∈D
δD(X,Y). We will consider the class Ds

of distinguishers (circuit) of size at most s which output a single bit.

2.2 Reusable Fuzzy Extractors

Fuzzy extractors consist of two parts: Gen algorithm and Rep algorithm. Gen
algorithm extracts a string r from an enrolled biometric data w and generates a
helper data p ∈ {0, 1}∗. Rep algorithm inputs verified biometric data w′ and p
generated in the Gen algorithm. The previous r can be recovered if w′ is enough
similar to w. In this subsection, we give the formal definition of computational
fuzzy extractors and reusable fuzzy extractors.

Definition 1 (computational fuzzy extractors [8]). Let W be a family of
probability distributions over M. A pair of randomized procedures “generate”
(Gen) and “reproduce” (Rep) is an (M,W, κ, t) - computational fuzzy extrac-
tor that is (εsec, ssec)-hard with error δ if Gen and Rep satisfy the following
properties:

– The generate procedure Gen on input w ∈ M outputs an extracted string
r ∈ {0, 1}κ and a helper string p ∈ {0, 1}∗.

– The reproduction procedure Rep takes an element w′ ∈ M and a bit string p ∈
{0, 1}∗ as inputs. The correctness property guarantees that if dis(w,w′) ≤ t
and (r, p) ← Gen(w), then Pr[Rep(w′, p) = r]≥ 1 − δ, where the probability is
over the randomness of (Gen, Rep).

– The security property guarantees that for any distribution W ∈ W, the string
r is pseudorandom conditioned on p, that is δDssec ((R,P), (Uκ, P)) ≤ εsec.

Definition 2 (reusable fuzzy extractors [5]). Let W be a family of prob-
ability distributions over M. Let (Gen, Rep) be a (M,W, κ, t)-computational
fuzzy extractor that is (εsec, ssec)-hard with error δ. Let (W 1,W 2, . . . ,W ρ) be
ρ-correlated random variables such that each W j ∈ W. Let D be an adversary.
Define the following game for all j = 1, . . . , ρ:

A Performance-Optimization Method for Reusable Fuzzy Extractor 263

– Sampling The challenger samples wj ← W j and u ← {0, 1}κ.
– Generation The challenger computes (rj , pj) ← Gen(wj).
– Distinguishing The advantage of D is

Adv(D) := Pr[D(r1, . . . , rj−1, rj , rj+1, . . . , rρ, p1, . . . , pρ) = 1]

− Pr[D(r1, ..., rj−1, u, rj+1, . . . , rρ, p1, . . . , pρ) = 1].

(Gen, Rep) is (ρ, εsec, ssec)-reusable if for all D ∈ Dssec
and for all j =

1, . . . , ρ, the advantage is at most εsec.

2.3 Block Error Distribution

In this subsection, we introduce the definition of block error and block error
distribution in Hamming metric.

Definition 3. Let b = b1 . . . b8 ∈ B be a block, where bi ∈ {0, 1} and B = {0, 1}8
is an input space. Let b′ ∈ B be a block and Eblock be the value of block error.
Eblock(b, b′) is Hamming distance between b and b′. Therefore, Eblock(b, b′) ∈
{0, 1, . . . , 8}.

In Definition 3, we give the concept of block error. In short, the block error
is Hamming distance between two block. We can divide the value of block error
into three levels: low block error (Eblock = 0, 1, 2), medium block error (Eblock =
3, 4, 5) and high block error (Eblock = 6, 7, 8).

Based on the definition above, we can infer the definition of block error
distribution.

Definition 4. Let M = {0, 1}8n be an input space and w = w1 . . . w8n ∈ M,
where wi ∈ {0, 1} and n is a positive integer. Let bi = w8i−7 . . . w8i be a block,
where i = 1, 2, . . . , n. Therefore, w can denote b1 . . . bn. Let w′ = w′

1 . . . w′
8n ∈

M and w′ can denote b′
1 . . . b′

n. Let DEblock
denote the block error distribu-

tion and thus the block error distribution of w and w′ is DEblock
(w,w′) =

{Eblock(b1, b′
1), . . . , Eblock(bn, b′

n)}, where Eblock(bi, b
′
i) ∈ {0, 1, . . . , 8}. Therefore,

DEblock
(w,w′) = {NEblock=i | 0 ≤ i ≤ 8}, where NEblock=i denotes the number of

blocks whose block error equals i.

Definition 4 is used to analyse the difference of inter-class and inter-class
block error distributions.

2.4 Hadamard Code

In this subsection, we introduce the basic concept of Hadamard code and show
the encoding and decoding process.

The Hadamard code is a kind of linear code over a binary alphabet. It maps
k length messages to 2k length codewords. The Hadamard code has a precise
Hamming weight 2k−1. The Hamming weight implies that the distance of the
code is also 2k−1.

264 F. Zhu et al.

Punctured Hadamard code is used to achieve noise reduction in our scheme.
In standard coding theory notation for block codes, the punctured Hadamard
code is a [2k, k + 1, 2k−1]2-code, which means 2k block length, k + 1 message
length (or dimension) and 2k−1 minimum distance. [2k, k + 1, 2k−1]2-Hadamard
code can be generated by a Hadamard matrix Hk of dimension k × k. Further
details about Hadamard code can be found in [1].

Fig. 1. The encoding and decoding of Hadamard code (faulty bit blocks are marked
gray).

Figure 1 illustrates the encoding and decoding flow of Hadamard error cor-
rection. Obviously, Hadamard code is a bit-level ECC and able to correct small
error. Therefore, Hadamard code can be used to eliminate small “noise” of iris-
code since the “noise” affects individual bits in iris-code.

3 Analysis of Fuzzy Extractor Scheme

In this section, we analyse the relationship between performance and error tol-
erance in the reusable fuzzy extractors.

3.1 Description

In this subsection, we describe Canetti’s construction [5] in detail. In Gen, a
random string r ∈ {0, 1}κ is chosen to act as the locked key. The key is locked
respectively by some substrings v1, ..., v� which are selected from an input string
w. In Rep, verifier must extract substrings v′

1, . . . , v
′
� corresponding to v1, . . . , v�.

The same r will be reproduced by unlock function if there exists i satisfied vi = v′
i

for 1 ≤ i ≤ �.

Construction (Sample-then-Lock) [5]. Let M = {0, 1}n be an input space
and w = w1 . . . wn ∈ M, where wi ∈ {0, 1}. Let � be a positive integer and let
(lock, unlock) be an �-composable secure digital locker with error γ. To recover
the random value r in Rep, information on how the substrings are generated
should be stored. Thus a helper value p containing the indices of the bits of
w = w1 . . . wn which are used for each substring is generated along with r in
Gen. The algorithms are described in Table 1.

A Performance-Optimization Method for Reusable Fuzzy Extractor 265

Table 1. Sample-then-Lock [5]

Gen Rep

Input: w = w1 . . . wn. Input: w′ = w′
1 . . . w′

n, p = p1 . . . pn.

1. Sample r
$← {0, 1}κ.

2. For i = 1, . . . , �: 1. For i = 1, . . . , �:
(i) Choose uniformly random (i) parse pi as ci, (ji,1, . . . , ji,k).

1 ≤ ji,1, . . . , ji,k ≤ n.
(ii) Set vi = wji,1 , . . . , wji,k . (ii) Set v′

i = w′
ji,1 , . . . , w′

ji,k
.

(iii) Set ci = lock(vi, r). (iii) Set ri = unlock(v′
i, r).

(iv) Set pi = ci, (ji,1, . . . , ji,k). If ri �=⊥, output ri.
Output: (r, p), where p = p1 . . . p�. Output: ⊥.

3.2 Security

To instantiate Canetti’s construction, k is chosen as security parameter. To make
the false rejection rate (FRR) less than δ, it will require the following condition:

(1 − (1 − t

n
)k)� + � · γ ≤ δ. (1)

The value � · γ denotes the maximum probability of the condition that Rep
may be incorrect due to an error in one of the lockers. Using the approximation
ex ≈ 1 + x, we can get

(1 − (1 − t

n
)k)� ≈ (1 − e− tk

n)� ≈ exp(−�e− tk
n). (2)

In fact, the value γ in Eq. 1 can be made very small in known locker con-
structions. Therefore, if γ is small enough so that � · γ ≤ δ/2, we can get

� ≈ log
2
δ

· e
tk
n . (3)

Iteration number � is exponentially related with error tolerance t
n and secu-

rity parameter k, where error tolerance t
n hinges on threshold Hamming distance.

Therefore, the value of iteration number � depends on security parameter k and
error tolerance.

3.3 Formal Analysis of Performance

In this subsection, we quantitatively analyse the performance of reusable fuzzy
extractors. Performance includes two measurement index: storage space and
computing cost. At the same time, they both have a linear relationship with
iteration number �.

266 F. Zhu et al.

Storage Space. Let parameter S denote storage overhead and Lhash denote the
output length of hash function. In a reusable fuzzy extractor scheme, storage
space is used to store helper data. The length of each helper data is value a, so
storage overhead is a · �. The value a depends on output size of hash function
Lhash and the length of substring vi, where Lhash is a fixed value and the length
of vi is k log n. Therefore, storage space mainly relies on iteration number � and
the security parameter k:

S = a · � ≈ (k log n + Lhash) · log
2
δ

· e
tk
n . (4)

Computing Cost. Let parameter Ttotal denote computing cost and Tunlock denote
the computation requirement of each unlocking. Computing cost is the maximum
required time of Rep, which is � · Tunlock. The parameter Tunlock approximates a
fixed value λ. Therefore, computing cost mainly relies on iteration number �:

Ttotal = Tunlock · � ≈ λ · log
2
δ

· e
tk
n . (5)

As Eqs. 4 and 5 shown above, storage space S and computing cost Ttotal are
associated with security parameter k and iteration number �, where iteration
number � depends on security parameter k and error tolerance t

n . In order to
ensure security, k must be large enough. Therefore, reducing error tolerance t

n
can effectively decrease storage space S and computing cost Ttotal.

4 Block Error Distribution and Our Scheme

The iris trait can be easily represented by binary sequence, so iris is a suitable
example to research how to reduce the error rate of the trait. It benefits our
analysis of the performance improvement.

Fig. 2. The intra-eyes and inter-eyes distributions.

In this paper, we use the Infrared iris images of UTIRIS.v1 [10] as test-
ing dataset and Daugman’s method [7] as iris feature extraction algorithm.

A Performance-Optimization Method for Reusable Fuzzy Extractor 267

The length of iris-code generated by [7] is 2048 bits. According to the exper-
iment and statistical analysis, we can get intra-eyes and inter-eyes distributions,
as shown in Fig. 2.

Through our experiment on the Infrared iris images of UTIRIS.v1 [10], the
intra-eyes and inter-eyes distributions approximate normal distribution. At the
same time, the average Hamming distance of intra-eyes and inter-eyes is 0.18 and
0.43, respectively. The cross region of intra-eyes and inter-eyes is small. There-
fore, the inter-eyes and intra-eyes can be distinguished in Hamming metric by
setting appropriate error tolerance. To balance security and matching accuracy,
the value of error tolerance is in the cross region which is between the maxi-
mum Hamming distance of intra-eyes and the minimum Hamming distance of
inter-eyes.

4.1 Analysis of Block Error Distribution

In this subsection, we provide the intra-class and inter-class block error distri-
bution of iris-code, which is a rationale of our scheme. The difference of the
intra-class and inter-class error distribution is used to seek for solution how to
decrease the intra-class distance without shortening the inter-class distance.

Through the experiment and statistical analysis on the Infrared iris images of
UTIRIS.v1 [10] by Daugman’s method [7], we get the intra-class and inter-class
block error distribution of iris-code. Figure 3 shows the experimental result.

Fig. 3. The intra-class and inter-class block error distribution

It can be concluded from Fig. 3 that the block error distribution has three
features:

– Intra-class block error distribution. The distribution of intra-class block
error approximates inverse proportional distribution except block error equals
8. As the block error increases, the proportion of block error presents a
decreasing trend. This trend illustrates that intra-class block error distri-
bution is concentrated in low block error area.

268 F. Zhu et al.

– Inter-class block error distribution. The distribution of inter-class block
error approximates secondary distribution, the peak value is 4 except block
error equals 0 and 8. Based on our statistical analysis, inter-class error block
is mainly distributed in medium block error area.

– Difference. The number of the intra-class low block error is more than that
of the inter-class. Meanwhile, the numbers of intra-class medium and high
block error are less than that of the inter-class.

Through the analysis of the data above, we summarize two points. Firstly,
with respect to the inter-class block error, the intra-class block error concentrates
the low block error. Meanwhile, the number of intra-class low block error is more
than that of the inter-class low block error. Secondly, in the cross region, the
intra-class and inter-class iris-code still satisfy three features above. Therefore,
reducing the low block error can decrease the intra-class distance of iris-code
without lowering the inter-class distance, FAR and FRR.

In summary, our target is to design a method which can only correct low
block error without decreasing medium and high block error.

4.2 Our Construction

Our construction consists of three modules: feature extractor, noise reduction
and reusable fuzzy extractors. Feature extractor module extracts biometric tem-
plate for raw trait. Noise reduction module generates correction data which is
able to optimize the input biometric data. Reusable fuzzy extractors extract key
from the optimized biometric data. Figure 4 shows the overall process.

Fig. 4. Gen and Rep of our construction

On the basis of Canetti’s reusable fuzzy extractors, our construction adds
noise reduction module to lower error tolerance threshold. [8, 4, 4]2-Hadamard
code is used to achieve this function. More precisely, the block length is 8 bit,
message length is (or dimension) 4 bit and minimum distance is 4 bit. According

A Performance-Optimization Method for Reusable Fuzzy Extractor 269

to coding theory, the error correct capability of [8, 4, 4]2-Hadamard code is 0.25.
Combined with the analysis of block error distribution, [8, 4, 4]2-Hadamard code
can correct low block error without decreasing medium and high block error.
Therefore, [8, 4, 4]2-Hadamard code is an appropriate method to achieve noise
reduction.

Let M = {0, 1}8n be an input space and w,w′ ∈ M. Let s be the random
number and s = s1 . . . sn, where si ∈ {0, 1}. Let h be the correction data. The
function Enc and Dec denote Hadamard encoding and decoding, respectively.
The parameter w′′ is optimized iris-code. Let � be a positive integer and let
(lock, unlock) be an �-composable secure digital locker with error γ. To recover
the random value r in Rep, information on how the substrings are generated
should be stored. Thus a helper value p containing the indices of the bits of
w = w1 . . . w8n which are used for each substring is generated along with r in
Gen. The algorithms are described in Table 2.

Table 2. Gen and Rep of our scheme

Gen Rep

Input: w = w1 . . . w8n. Input: w′ = w′
1 . . . w′

8n, (h, r, p).

1. Sample s
$← {0, 1}4n. 1. s′

decode = h ⊕ w′.
2. sencode = Enc(s). 2. s′ = Dec(s′

decode).
3. h = sencode ⊕ w. 3. s′

encode = Enc(s′).

4. Sample r
$← {0, 1}κ. 4. w′′ = s′

encode ⊕ h.
5. For i = 1, . . . , �: 5. For i = 1, . . . , �:

(i) Choose uniformly random (i) parse pi as ci, (ji,1, . . . , ji,k).
1 ≤ ji,1, . . . , ji,k ≤ n.

(ii) Set vi = wji,1 , . . . , wji,k . (ii) Set v′
i = w′′

ji,1 , . . . , w′′
ji,k

.
(iii) Set ci = lock(vi, r). (iii) Set ri = unlock(v′

i, r).
(iv) Set pi = ci, (ji,1, . . . , ji,k). If ri �=⊥, output ri.

Output: (h, r, p), where p = p1 . . . p�. Output: ⊥.

In Gen, the feature extractor module generates an iris-code w, which is the
input of reusable fuzzy extractors and our scheme. Then reusable fuzzy extrac-
tors output digital lockers and our scheme outputs correction data. Finally, the
digital lockers and the correction data are stored.

In Rep, the feature extractor module generates a verification iris-code w′.
Then our scheme corrects low block error of iris-code w′ by the correction data
and generates an optimized iris-code w′′. Finally, the reusable fuzzy extractor
uses the digital lockers and the optimized iris-code w′′ to extract the key.

5 Experimental Results

We compile our C++ source codes under the GNU C++ standard and run them
on ubuntu 18.04 machine that has a Intel(R) Core(TM) i7-4790 3.60 GHz CPU

270 F. Zhu et al.

with a 4 GB RAM. Our experimental results consist of the feature performance
evaluation and scheme overall evaluation. The feature performance evaluation
measures the FAR and FRR of our construction. The scheme overall evaluation
measures the performance and security of our schemes.

In the feature performance evaluation, our construction can reduce FAR and
FRR compared with Canetti’s [5]. In the cross region (the area [0.3, 0.4]-error
rate in Fig. 2), the Hamming distance of intra-eyes and inter-eyes drop by 0.065
and 0.051, respectively. The decline of intra-class Hamming distance is more
than that of the inter-class. It causes the reduction of cross region, which means
smaller FAR and FRR. Figure 5 shows ROC curves about FAR and FRR.

Fig. 5. ROC curves of Canetti’s [5] and our scheme using UTIRIS.v1 [10] for best EER
performance.

In the scheme overall evaluation, we measure the average time for 1 unlock
under various sets of parameters, and obtain results as displayed in Table 3.
We find that the extra computing and storage cost of our construction can be
neglected. The extra storage of Hadamard correction data is 256 bytes, which
is far less than the storage of digital lockers. Meanwhile, the extra computing
cost of Hadamard code is 0.11 ms, which is far less than the computing cost of
unlocking digital lockers.

Table 3 shows that error tolerance of our scheme will reduce by 5% com-
pared with Canetti’s [5]. The lower error tolerance means that our scheme needs
less number of lockers. It results in improving the performance and security of
reusable fuzzy extractors.

On one hand, our scheme can improve the performance under the same secu-
rity. To prove it, we fix security parameter k = 80. The storage space and
computing cost of our scheme decrease by 85% compared with Canetti’s.

On the other hand, our scheme can improve the security under similar per-
formance. When the performance of our scheme is similar to that of Canetti’s
(security parameter k = 80), the security parameter k of our scheme is increased
by 100−80

80 = 25%.

A Performance-Optimization Method for Reusable Fuzzy Extractor 271

Table 3. The performance and security of our scheme and Canetti’s [5] with security
parameter k = 80 and 500 iris-code

Scheme Error tolerance Storage space Computing cost

Canetti’s [5] 0.20 2.71 GB 15.5 × 1.77 × 101 s

Our (k = 80) 0.15 50.9 MB 15.5 × 3.26 × 10−1 s

Our (k = 100) 0.15 2.94 GB 15.7 × 1.61 × 101 s

Canetti’s [5] 0.22 13.4 GB 15.5 × 8.78 × 101 s

Our (k = 80) 0.17 252 MB 15.5 × 1.61 × 100 s

Our (k = 100) 0.17 13.1 GB 15.7 × 8.22 × 101 s

Canetti’s [5] 0.24 66.6 GB 15.5 × 4.35 × 102 s

Our (k = 80) 0.19 1.22 GB 15.5 × 7.99 × 100 s

Our (k = 100) 0.19 67.3 GB 15.7 × 4.14 × 102 s

Canetti’s [5] 0.26 330 GB 15.5 × 2.15 × 103 s

Our (k = 80) 0.21 6.04 GB 15.5 × 3.96 × 101 s

Our (k = 100) 0.21 333 GB 15.7 × 2.01 × 103 s

6 Conclusion

We analyse the relationship between the performance of reusable fuzzy extractors
and the error tolerance. We find out that the requirement of storage space and
computing cost is too large to be used in realistic scenario. To solve this problem,
we propose a performance-optimization scheme which is based on relationship
between error tolerance and performance in the reusable fuzzy extractor scheme.
In order to lower the error tolerance, our construction uses Hadamard code to
correct low block error. Our scheme reduces the requirement of storage space and
computing cost. The experiment proves that our scheme can greatly improve the
performance of fuzzy extractors which are based on the Canetti’s construction.

Acknowledgement. This work has been supported by National Key R&D Program
of China (No. 2017YFC0820700), National Science and Technology Major Project
(No. 2016ZX05047003), Biometrics Cryptography Project (No. NJHXCO1710021)
and Cyberspace Security Defense Theory and Key Technology Project (No.
Z181100002718001).

References

1. Agaian, S.S.: Hadamard Matrices and Their Applications. Springer, Heidelberg
(1985). https://doi.org/10.1007/BFb0101073

2. Ang, R., Safavi-Naini, R., McAven, L.: Cancelable key-based fingerprint templates.
In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 242–
252. Springer, Heidelberg (2005). https://doi.org/10.1007/11506157 21

3. Boult, T.E., Scheirer, W.J., Woodworth, R.: Revocable fingerprint biotokens: accu-
racy and security analysis. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2007, pp. 1–8 (2007)

https://doi.org/10.1007/BFb0101073
https://doi.org/10.1007/11506157_21

272 F. Zhu et al.

4. Boyen, X.: Reusable cryptographic fuzzy extractors. In: ACM Conference on Com-
puter and Communications Security, pp. 82–91 (2004)

5. Canetti, R., Fuller, B., Paneth, O., Reyzin, L., Smith, A.: Reusable fuzzy extractors
for low-entropy distributions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 117–146. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49890-3 5

6. Cheon, J.H., Jeong, J., Kim, D., Lee, J.: A reusable fuzzy extractor with practical
storage size: modifying Canetti et al.’s construction. In: Susilo, W., Yang, G. (eds.)
ACISP 2018. LNCS, vol. 10946, pp. 28–44. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-93638-3 3

7. Daugman, J.: How iris recognition works. IEEE Trans. Circ. Syst. Video Technol.
14(1), 21–30 (2004). https://doi.org/10.1109/TCSVT.2003.818350

8. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24676-3 31

9. Galbally, J., et al.: An evaluation of direct attacks using fake fingers generated
from ISO templates. Pattern Recogn. Lett. 31(8), 725–732 (2010). https://doi.
org/10.1016/j.patrec.2009.09.032. http://www.sciencedirect.com/science/article/
pii/S0167865509002669, Award Winning Papers from the 19th International Con-
ference on Pattern Recognition (ICPR)

10. Hosseini, M., Araabi, B., Soltanian-Zadeh, H.: Pigment melanin: pattern for iris
recognition. IEEE Trans. Instrum. Measur. 59(4), 792–804 (2010). https://doi.
org/10.1109/TIM.2009.2037996

11. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: Proceedings of the 6th
ACM Conference on Computer and Communications Security, pp. 28–36. ACM
(1999)

12. Maiorana, E., Campisi, P., Ortega-Garcia, J., Neri, A.: Cancelable biometrics for
hmm-based signature recognition. In: IEEE International Conference on Biomet-
rics: Theory, Applications and Systems, pp. 1–6 (2008)

13. Nandakumar, K., Nagar, A., Jain, A.K.: Hardening fingerprint fuzzy vault using
password. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 927–
937. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74549-5 97.
http://dl.acm.org/citation.cfm?id=2391659.2391765

14. Ratha, N.K., Connell, J.H., Bolle, R.M.: Enhancing security and privacy in
biometrics-based authentication systems. IBM Syst. J. 40(3), 614–634 (2001).
https://doi.org/10.1147/sj.403.0614

15. Ross, A., Shah, J., Jain, A.K.: From template to image: reconstructing fingerprints
from minutiae points. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 544–560
(2007). https://doi.org/10.1109/TPAMI.2007.1018

16. Sutcu, Y., Li, Q., Memon, N.: Secure sketches for protecting biometric templates.
In: Campisi, P. (ed.) Security and Privacy in Biometrics, pp. 69–104. Springer,
London (2013). https://doi.org/10.1007/978-1-4471-5230-9 4

https://doi.org/10.1007/978-3-662-49890-3_5
https://doi.org/10.1007/978-3-662-49890-3_5
https://doi.org/10.1007/978-3-319-93638-3_3
https://doi.org/10.1007/978-3-319-93638-3_3
https://doi.org/10.1109/TCSVT.2003.818350
https://doi.org/10.1007/978-3-540-24676-3_31
https://doi.org/10.1016/j.patrec.2009.09.032
https://doi.org/10.1016/j.patrec.2009.09.032
http://www.sciencedirect.com/science/article/pii/S0167865509002669
http://www.sciencedirect.com/science/article/pii/S0167865509002669
https://doi.org/10.1109/TIM.2009.2037996
https://doi.org/10.1109/TIM.2009.2037996
https://doi.org/10.1007/978-3-540-74549-5_97
http://dl.acm.org/citation.cfm?id=2391659.2391765
https://doi.org/10.1147/sj.403.0614
https://doi.org/10.1109/TPAMI.2007.1018
https://doi.org/10.1007/978-1-4471-5230-9_4

Detecting Root-Level Endpoint Sensor
Compromises with Correlated Activity

Yunsen Lei and Craig A. Shue(B)

Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, USA
{ylei3,cshue}@wpi.edu

Abstract. Endpoint sensors play an important role in an organization’s
network defense. However, endpoint sensors may be disabled or sabo-
taged if an adversary gains root-level access to the endpoint running
the sensor. While traditional sensors cannot reliably defend against such
compromises, this work explores an approach to detect these compro-
mises in applications where multiple sensors can be correlated. We focus
on the OpenFlow protocol and show that endpoint sensor data can be
corroborated using a remote endpoint’s sensor data or that of in-network
sensors, like an OpenFlow switch. The approach allows end-to-end round
trips of less than 20ms for around 90% of flows, which includes all flow
elevation and processing overheads. In addition, the approach can detect
flows from compromised nodes if there is a single uncompromised sensor
on the network path. This approach allows defenders to quickly identify
and quarantine nodes with compromised endpoint sensors.

Keywords: Endpoint security · Compromise detection ·
Software-defined networking

1 Introduction

To protect their organizations, defenders typically deploy a mixture of perimeter
and defense-in-depth techniques, such as endpoint tools and sensors. Perimeter
and endpoint defenses have varying strength: perimeter defenses can be centrally
administered and have a global view while endpoint sensors often have detailed
context about the associated endhost and can detect intra-subnet traffic. End-
user activity on the endpoint represents a common vector for threats to enter
an organization [8]. The value of context around these user actions has caused
even leaders of perimeter-based defenses to begin creating endpoint sensors [2].

While endpoint sensors can play an important role, they come with a signifi-
cant risk: an adversary could compromise the sensor to silence its reporting or to
provide false information. Many endpoint solutions, such as firewalls, host-based

Shue holds stock in ContexSure Networks, Inc., an arrangement that has been reviewed
and approved by WPI’s Conflict Management Committee.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 273–286, 2019.

https://doi.org/10.1007/978-3-030-37231-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_15&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_15

274 Y. Lei and C. A. Shue

intrusion detection systems, and anti-virus, rely upon a least-privilege assump-
tion in which the end-user operates in a regular user account. Those solutions
further assume that processes running as an administrator user and all ker-
nel space functionality will remain uncompromised. In the event of a root-level
compromise, these tools may use anti-circumvention techniques to hinder their
removal or sabotage, but they ultimately cannot offer any security guarantees.
In some cases, the data provided by endpoint sensors can be corroborated with
data from other sensors in the network. A sensor’s reports about network flows,
for example, can be easily corroborated by examining the data flows reported
by sensors on other machines.

In this paper, we examine how an endpoint sensor providing data via the
OpenFlow protocol can be evaluated using data from other OpenFlow nodes.
In the OpenFlow protocol, an OpenFlow agent seeks guidance from a logically-
centralized controller whenever the agent encounters a packet for which it lacks
a matching flow rule in its cache. When these caches are empty or when fine-
grained (i.e., connection-specific) flow rules are used, each OpenFlow agent along
the new flow’s path will “elevate” a request to the controller. Accordingly, a
controller can receive multiple reports about each new connection and determine
if the OpenFlow agent requests are consistent. If it detects any inconsistency, the
controller may be able to pinpoint a compromised or faulty node.

In this paper, we make the following contributions:

– Implement an Endpoint Flow Verification System: In our Correlated
Host-based OpenFlow Sensor Enforcement (CHOSE) system, an endpoint
sensor reports flow and contextual data (e.g., originating user and application)
for each new network connection. We correlate these reports across endpoint
and in-network devices to detect potentially compromised endpoints.

– Evaluate the System’s Security and Performance: Our system can
detect and block flows with inaccuracies that indicate a compromised sensor
even before a flow is fully established. We further find that legitimate flows
can corroborated by remote sensors and complete their first round trip in
less than 20 ms for about 90% of flows. We find that a controller can easily
detect a faulty OpenFlow agent when a single non-compromised sensor is on
the flow’s path.

2 Background and Related Work

In this section, we provide a brief overview of the OpenFlow protocol and its use.
We then describe prior work related to host-based software-defined networking
(SDN) and the detection of endpoint compromises.

2.1 OpenFlow and Software-Defined Networking (SDN)

The OpenFlow protocol [5] provides an API for a logically-centralized controller
to interact with a set of packet forwarding devices, which are often network

Detecting Root-Level Endpoint Sensor Compromises 275

switches. In OpenFlow, a switch will send a PacketIn packet to an OpenFlow
controller whenever the switch encounters a packet whose fields are not a match
for any of the switch’s cached rules. When issuing the PacketIn request, the
switch includes a copy of the associated packet. The controller consults its pol-
icy to determine the appropriate action. The controller may optionally create
a FlowMod packet to order the switch to store a new rule with match criteria
corresponding to the flow along with an action the switch should take on future
matching packets. Finally, the controller issues a PacketOut message that indi-
cates what the controller should do with the packet contained in the PacketIn
message.

The OpenFlow protocol allows a controller to essentially treat each Open-
Flow switch as a configurable rule cache. A controller could reactively push fine-
grained rules, which typically specify a fixed flow tuple (i.e., IPsource, IPdest.,
transport protocol, portsource, portdest.) that will only match a single connec-
tion. The use of these fine-grained rules can be attractive for security purposes
because the resulting packet elevations give the OpenFlow controller detailed
visibility into the communication occurring on the network. This empowers the
controller to act as a network-wide flow-based access controller.

2.2 Host-Based SDN

While OpenFlow was originally designed for use with physical hardware in net-
work switches, one of the more popular OpenFlow implementations is in software.
Open vSwitch (OVS) [9] is often used on virtual machine (VM) hypervisors
to provide SDN functionality between VMs. In the Scotch approach, Wang et
al. [12] proposed using OVS to enhance the scalability of fine-grained flows by
using OVS on VM hypervisors.

Taylor et al. [10] proposed a host-based SDN that provides information about
the end host in addition to the network flow information. Najd and Shue [7] trans-
formed Taylor’s host-based SDN into an OpenFlow compatible implementation
that could complete a flow elevation to a controller in less than 9 ms. These latter
two host-based SDNs fall into the class of endpoint sensors that we focus on in
this paper.

2.3 Detecting Compromises on Endpoints

Once a host is compromised, an attacker may attempt to conceal the compromise
in order to remain persistent or to spread laterally across the network. When
trust assumptions, such as a trustworthy OS or kernel space, are violated, attack-
ers can deactivate a host’s defenses. As an example, malware has been found to
deactivate anti-virus [6] to evade detection. Attackers may also disguise their
traffic, using mimicry techniques [11], to appear legitimate.

To relax assumptions about a trustworthy OS, trusted hardware, such as
trusted platform modules (TPMs) or secure co-processors, can be used to provide
attestations. These approaches tend to suffer from fragility to minor changes

276 Y. Lei and C. A. Shue

(when a static root of trust is used) [4] or from classic time-of-check-time-of-use
(TOCTOU) issues [3] (when a dynamic root of trust is used).

In this work, we proceed in a different direction: we try to detect sensors
that provide inaccurate data, or omit data, by comparing their outputs with
other sensors on the network. This distributed monitoring approach can highlight
attacks even without special trusted hardware.

3 Correlated Host-Based OpenFlow Sensor Enforcement

In this section, we provide example attacks, their consequences, and how cor-
related sensing could help. We then describe the system and threat model we
are considering. We then describe the Correlated Host-Based OpenFlow Sensor
Enforcement (CHOSE) system and scenarios in which it is effective.

3.1 Example Endpoint Sensor Compromises

An organization may use endpoint firewalls or host-based intrusion detection
systems (HIDS) in order to provide defense-in-depth protections.

The organization may configure each endpoint with a set of firewall and HIDS
rules that must be enforced to detect and prevent the spread of attacks or data
ex-filtration. If a host is somehow compromised, the compromise may occur at
the administrator or root level due to the end-user running with administrator
privileges or due to a privilege escalation attack. The attacker could simply dis-
able the endpoint firewall or IDS to engage in arbitrary network communication
and to prevent event reporting. With correlated sensing, other network sensors
could detect the disallowed communication. For example, a host on the network
receiving an illicit flow from another compromised machine on the network could
report the issue. In some cases, sensors may be redundant (e.g., at both end-
points) while in other cases, they may have correlated behavior (e.g., IDSes and
netflow records). Both types of data can help a defender detect inconsistencies
that belie a host compromise.

3.2 System Overview and Threat Model

In Fig. 1, we provide an example local area network for an organization.

Internet Network
Gateway

Switch

Controller

Legacy Switch

Host 3

Host 4

Legacy Switch

Host 1

Host 2

Fig. 1. An example enterprise network with OpenFlow agents on each end-point.

Detecting Root-Level Endpoint Sensor Compromises 277

In this example, the trusted computing base (TCB) includes the Open-
Flow controller and the network switches. The physical connections between
the switches, hosts, and controllers are considered uncompromised and reliable.
The hosts on the network are not part of the TCB; the sensor data obtained
from these hosts could be erroneous or absent due to a root-level compromise
on a host. In some cases, a set of compromised hosts may collude with a goal of
evading detection. In other cases, a compromised host may communicate with
an uncompromised host. In that case, the uncompromised host will report the
communication. If any switch is an OpenFlow switch, it is in the TCB and it is
managed by the controller, so it can be configured so that any communication
through the OpenFlow switch will be reported to the controller.

We consider an adversary who focuses on maintaining persistence, the abil-
ity to move laterally within an organization, and to maintain communication
with a command and control system. That adversary requires covert communi-
cation channels. Such an adversary would forgo resource exhaustion DoS attacks
since they are easily detected and can be trivially mitigated by prior work [1].
Accordingly, we omit any further analysis of DoS attacks.

The defender’s goal is to receive a full reporting of all communication flows
that occur in the network in a logically-centralized controller. The defender wants
to block any flow requests from sensors that are inconsistent with other sensors.
With full accounting of flows, the defender can construct arbitrary access control
policies. Since the development of effective network access control policy is its
own active research area, we consider it beyond the scope of this work.

3.3 Corroborated Sensing Deployment Scenarios

Some organizations deploy specialized security middleboxes, such as firewalls or
IDSes, that can vet communication. Often, these middleboxes are deployed at
network perimeters and they do not inspect internal traffic, such as intra-subnet
flows. These organizations may deploy endpoint sensors to gain insight into intra-
subnet traffic. But, with root-level compromises on the endpoints, these sensors
may fail to produce complete or accurate data. With sensors at both endpoints,
a network operator is more likely to detect a compromised sensor.

Using the network in Fig. 2 left as an example, consider a TCP SYN packet
sent by Host 1 to Host 2. If both Host 1 and Host 2 provide OpenFlow sensor
data, the controller will receive independent reports of this SYN packet within
PacketIn elevations from these hosts (shown by lines 1 and 2 for Host 1 and lines
5 and 6 for Host 2). In this case, if either Host 1 or Host 2 provided inaccurate
information about the SYN packet, or neglected to engage in a PacketIn elevation
entirely, the controller will easily be able to detect the mismatch.

This detection mechanism goes to the heart of the attacker’s goals. To estab-
lish communication for command and control or to propagate the attack to other
machines, the adversary must establish new connections. However, an OpenFlow
endpoint sensor will reveal this flow when the adversary makes the connection
attempt, causing the adversary to be detected. The attacker must alter a sen-
sor to avoid this reporting, but any alteration will result in a mismatch on the
remote host’s sensor.

278 Y. Lei and C. A. Shue

Controller

Legacy
Switch Host 2Host 1

3. TCP SYN

1. PacketIn

2. FlowMod + PacketOut

message and
connection

4. TCP SYN

5. PacketIn

6. FlowMod + PacketOut

7. TCP
SYN + ACK

8. TCP
SYN + ACK

Controller

OpenFlow
Switch Host 2Host 1

3. TCP SYN

4. PacketIn
10.PacketIn

5. FlowMod
PacketOut

6. TCP SYN

1. PacketIn 7. PacketIn

2. FlowMod + PacketOut 8. FlowMod + PacketOut

9. TCP
SYN + ACK

11. FlowMod
PacketOut

12. TCP
SYN + ACK

physical cables

Fig. 2. When both endpoints run an OpenFlow agent, if either is uncompromised,
that uncompromised sensor will alert the central coordinator of inconsistencies via
its PacketIn data. When an OpenFlow switch is on the network path, the controller
receives PacketIn data that allows it to identify which endpoint, if any, is faulty.

In the Fig. 2 left example, the controller will receive conflicting information
and know one of the two hosts is compromised, but will not know which has the
error. However, if the switch is an OpenFlow switch, as shown in Fig. 2 right, the
controller can determine which host is deceptive. The OpenFlow switch would
provide information about the SYN packet (shown by lines 4 and 5). Further,
since the OpenFlow switch is in the network’s TCB, its reports can be used as
ground-truth data. Without a ground-truth, network operators would need to
check both hosts for a potential compromise.

When using corroborated sensing, particularly when only the endpoints have
sensors (e.g., Fig. 2), the controller must be careful in how it manages the rules
it stores at each endpoint. By pushing uni-directional flow rules in its initial
FlowMod messages, the controller can detect if the destination fails to properly
elevate traffic. In the FlowMod messages in Message 2 in Fig. 2 left and Messages
2 and 5 in Fig. 2 right, the controller only pushes an approval for the flow in the
direction from Host 1 to Host 2. When responding to the destination, and on
agents elevating the SYN+ACK packets, the controller orders the agents to store a
bi-directional FlowMod approving both directions of the flow.

In Fig. 3, we show the process that would occur if either Host 1 or Host 2
was compromised in this example scenario. In the event Host 1 is compromised,
it could fail to send a PacketIn in Step 1 or send an inaccurate PacketIn
(e.g., a PacketIn with inaccurate payload or header information) and receive
the controller’s approval. However, Host 2 would then send a PacketIn in Step
5 and the controller would notice the discrepancy between the two PacketIn
messages, deny the flow in Step 6 and drop all the packets in the flow, preventing
the application at Host 2 from receiving them.

If Host 2 were compromised (the right side of Fig. 3), a similar process would
occur, but the detection would be slightly delayed. In this case, the first 4 steps
would proceed and Host 2 would either neglect to provide a PacketIn in Step
5 or provide inaccurate information. Since the SYN packet would already have
reached Host 2 in Step 4, Host 2 could process the message and respond in Step
7. However, if the controller only pushes a unidirectional FlowMod rule in Step 2,

Detecting Root-Level Endpoint Sensor Compromises 279

message and
connection

Controller

Legacy
Switch Host 2Host 1

3. TCP SYN 4. TCP SYN

1. PacketIn 5. PacketIn

2. FlowMod + PacketOut

6. FlowMod
PacketOut

(deny)

physical cables

Controller

Legacy
Switch Host 2Host 1

3. TCP SYN 4. TCP SYN

1. PacketIn
5. PacketIn

2. FlowMod + PacketOut 6. FlowMod + PacketOut

7. TCP
 SYN + ACK

8. TCP
 SYN + ACK

9. PacketIn

10. FlowMod
PacketOut

(deny)

Fig. 3. When one of the hosts is compromised (shaded in black), the controller will
notice a discrepancy when receiving a PacketIn from the non-compromised host
(shaded in gray).

Host 1 would again elevate the packet to the controller in Step 9. At that point,
the controller would note that Host 2 failed to send a proper PacketIn (Step
5) and would insert a denial FlowMod into Host 1 in Step 10, preventing the
application at Host 1 from communicating with the compromised host.

When both hosts are malicious and only legacy switches connect the hosts, it
is possible for the hosts to collude and choose not to elevate packets to the con-
troller. Without a middlebox or an OpenFlow switch that connects the devices,
this situation cannot be avoided.

3.4 Uncorroborated Data in Endpoint Sensors

In the OpenFlow data, all sensor data can be corroborated since the only infor-
mation, the elevated packet, is included it its entirety and is independently wit-
nessed by multiple vantage points. However, other sensors may include data that
is only available at a single vantage point.

The host-based SDNs created by Taylor et al. [10] and Najd et al. [7] pro-
vide additional information about the network flows. Some of that information
includes the user account and originating application on a sending endpoint and
the destination server and its user on a receiving endpoint. Since this context
is only available on the respective endpoints, neither the other endpoint nor a
middlebox can corroborate that contextual data. Accordingly, a compromised
host could arbitrarily forge this contextual data.

A controller may be able to detect obvious signs of forgery, such as a connec-
tion on port 22, commonly associated with the SSH protocol, purportedly orig-
inating from an email client. However, a sophisticated adversary would likely
be able to craft contextual data that would plausibly be associated with the
verifiable network headers and packet payload.

Some endpoint sensors, such as a reporting engine for an anti-virus tool, may
engage in communication that is completely unverifiable by other sensors. These
sensors would not be able to effectively use correlated sensing on its own.

To gain trust in information that cannot be corroborated, trusted hardware
or VM introspection techniques may play a role. However, in situations where

280 Y. Lei and C. A. Shue

corroboration is possible, correlated sensing can provide benefits without requir-
ing special hardware.

4 Implementing the CHOSE System

The CHOSE system has three components: (1) a standard OpenFlow agent for
physical switches, (2) an OpenFlow-compatible host agent for Microsoft Win-
dows machines, and (3) a custom OpenFlow controller that manages connections
for both switches and end-hosts. For the OpenFlow agent, we use the built-in
OpenFlow agent on an enterprise-grade switch. In the remainder of this section,
we focus on the host agent and the functionality in the OpenFlow controller.

4.1 Host Agent for Microsoft Windows

We created a host-based SDN agent for Microsoft Windows using a kernel-mode
Windows driver. The driver uses the Windows Filtering Platform (WFP) to mon-
itor all socket operations. The Application Layer Enforcement (ALE) filtering
approach provided by WFP allows us to monitor traffic at a per-connection or
per-socket level rather than having to process packets individually, enabling us
to replicate the OpenFlow process natively in Windows.

The SDN agent communicates to an SDN controller using a modification
to the OpenFlow protocol. As with standard OpenFlow, the agent elevates a
packet by including an OpenFlow header and encapsulating a copy of the original
packet. However, the SDN agent also includes contextual information about the
application in a custom structure that follows the encapsulated packet. This
contextual information includes the application path of the sending application,
the user running the software, and the process identifier among other fields.
The OpenFlow communication is then encrypted and authenticated using AES
encryption and a SHA-256 message authentication code (MAC). Upon receiving
a response from the SDN controller, the host-based agent either drops the packet
(for discard decisions) or updates the flow status in the WFP framework and re-
injects the packet into the network kernel queue for delivery.

4.2 OpenFlow Controller Customization

The SDN controller must support both the Windows OpenFlow agent and tradi-
tional OpenFlow agents running on switches. When receiving a PacketIn, this
controller distinguishes the OpenFlow agent type based on the destination trans-
port layer port and handles the communication in separate threads of execution.
When the first PacketIn on the path arrives, the controller consults its normal
policy rules to determine whether the flow should be allowed. If not, it sends
FlowMod and PacketOut messages to the agent that order the packet and all
other packets in the flow to be dropped. If the controller policy dictates the flow
should be allowed, the controller stores a record of the flow in a local list of

Detecting Root-Level Endpoint Sensor Compromises 281

active flows and then sends FlowMod and PacketOut messages to the requesting
OpenFlow agent to approve the source to destination direction of the flow.

Since the controller sent a FlowMod only to the originating OpenFlow agent
during its approval, subsequent OpenFlow agents on the path will again elevate
the packet to the controller. If the controller receives a PacketIn from an Open-
Flow agent, and that agent is not the first agent that should have appeared
on the flow, the controller will check to see if it already has an entry for the
flow in its active flows list. If it does not, the controller will send FlowMod and
PacketOut messages to the agent that order the packet and all other packets
in the flow to be dropped. It will also make note of the OpenFlow agent that
failed to elevate the flow. Alternatively, if the controller sees that the flow is in
its active list and was previously approved, it will order the OpenFlow agent to
approve the flow.

In this approach, the controller makes only unidirectional forwarding
approvals in its FlowMod messages. This is essential to detecting compromised
or malfunctioning agents that are at or near the destination. When a reply is
issued, such as the SYN+ACK packet in a TCP connection, each agent on the
reverse path will again elevate the packet to the controller. At that point, the
controller can confirm it has received all the expected requests from agents in the
original direction. It can then send a FlowMod message that updates the original
uni-directional flow approval to instead allow bi-directional communication on
each agent on the path.

With this approach, the controller receives corroboration on packets elevated
from each OpenFlow agent any time there are multiple OpenFlow agents on the
path. Further, if at least one OpenFlow agent on the path is not compromised,
the controller will be able to detect the existence of any compromised agent on
the path that omitted or modified the flow information.

5 Evaluating the Security and Performance of CHOSE

In this section, we describe our experimental setup, our performance evaluation
process and results, and the security evaluation methodology and results. In our
evaluation, we aim to answer two questions: (1) What overhead does correlated
sensing introduce to an existing SDN deployment? (2) What security guarantees
does correlated sensing offer to such a system?

5.1 Experiment Setup

In both our performance and security evaluation, we configure our network to
match Fig. 2. We use an HP 2920-24G enterprise switch with OpenFlow enabled
to connect our hosts and controller. Our controller runs on a laptop that runs
VirtualBox to host an Ubuntu 16.04 VM. We configure the controller with 2
IP address and place one of the IP addresses under the control of OpenFlow so
that the communication between sensors and controller will also be subject to
the OpenFlow’s elevation model. We then connect two end-hosts to the switch.

282 Y. Lei and C. A. Shue

The first host is a Mac mini that runs VirtualBox to host a Windows 10 VM.
The second host is a Macbook Pro that runs VirtualBox to host a Windows 10
VM.

5.2 Performance Evaluation

To determine the overhead associated with correlated sensing, we compare it
with regular OpenFlow behavior in both switch-based and host-based SDN con-
figurations. We create an HTTP client program to connect to an HTTP server.
Our client creates connections in a serial fashion. We ensure that the tested
OpenFlow agents will perform a flow elevation for each new connection. Since
the system uses FlowMod rules to avoid elevating subsequent packets in a flow,
the overheads associated with packet elevations will only affect the first round
trip in a flow. Accordingly, we use the round-trip time (RTT) on the first set of
packets in the flow as our performance metric.

By comparing the time required under varying deployment scenarios, we
can determine the latency associated with elevation requests from switch and
end-host agents along with the time required for the controller to correlate flow
requests. We use the following four scenarios in our testing:

– Scenario 1: Switch-Based OpenFlow Only: In this scenario, neither of
the hosts run an OpenFlow agent. The physical OpenFlow switch elevates
each new connection it sees to the OpenFlow controller. The controller is con-
figured to approves all new flow requests it receives from the switch. Since this
controller engages in minimal computation, this scenario provides a baseline
for a physical switch’s performance.

– Scenario 2: Host-Based Sensors Only: In this scenario, both of the hosts
run our Windows OpenFlow agents which gather contextual and flow data
and include this information in elevation requests for each new connection. In
this case, OpenFlow is disabled on the physical switch and the controller only
needs to processes the modified OpenFlow messages for the host sensors.

– Scenario 3: Both Switch and Host Sensors: This scenario uses Open-
Flow agents at both hosts and the physical switch. The controller processes
packet elevations from both types of agents. However, the controller state-
lessly approves the flows independently and does not perform any correlation
or analysis of the requests across OpenFlow agents.

– Scenario 4: Full Sensing and Flow Correlation: In this scenario, the
OpenFlow agents run at the hosts and the physical switch. The controller
examines the elevations across OpenFlow agents and correlates the requests
to identify discrepancies or missing elevation requests.

Round Trip Timings. For each of these scenarios, we conduct 500 trials, with
each trial consisting of a new connection in which the RTT for the initial packets
are measured. Once the connection is established, it is immediately terminated
and the next trial begins. We present the results of these trials in Fig. 4.

Detecting Root-Level Endpoint Sensor Compromises 283

Fig. 4. Round-trip time of serial connections across 500 trials.

The overhead of the correlated sensing is the timing difference between the
third scenario and the fourth scenario. In Fig. 4, the distribution curve of the
round-trip times associated with these two scenarios largely overlap, indicating
that the performance costs of correlated sensing are not significant.

From these experiments, we see that most flows complete in less than 15 ms,
even with correlated sensing, and that around 90% of flows complete in less
than 20 ms. This overhead only affects the first 2 packet within a TCP connection
which is significantly less than a comparable DNS look-up time. The performance
of the host-based only sensor is faster in most cases than the switch-only sensor.
This appears to be due to the physical switch using its relatively-slow integrated
processor for performing flow elevations in software whereas it can use a hardware
table for subsequent packet forwarding once a FlowMod is installed. As one might
expect, the RTTs in the third scenario, which requires elevations from the hosts
and the switch, are roughly the sum of the times in scenarios 1 and 2.

Parallel Connections. We next examine the performance of the SDN
approaches in a more real-world setting, we use end-to-end timing of a short
HTTP connection. Using parallel threads, we generate HTTP requests on Host
1 to an HTTP server running on Host 2. The client application on Host 1 is
designed to use a separate TCP connection for each HTTP request. It issues
an HTTP GET request for a short HTML document. After the server provides
the HTML document, the client closes the connection. Using a varying thread
count on the client, we measure how many new connections can be created by
the client in a five minute (300 s) period.

In Table 1, we show the results of the parallel connection experiments. We see
that in the host-only scenario, the hosts and controller can handle an average of
roughly 74 new flows per second. We create a fifth scenario that uses correlation
only at the endpoints sensors, called Scenario 5, and see that it largely keeps
pace with Scenario 2 up to 50 concurrent threads, but starts to slow down at
100 concurrent threads. That likely indicates that controller bottlenecks begin
to form at that higher thread count.

284 Y. Lei and C. A. Shue

Table 1. Number of flows created in five minute period.

Number of

threads

Scenario 1:

Switch-Only

Scenario 2:

Host-Only

Scenario 3:

Switch and Host

Scenario 4: Full

Correlation

Scenario 5: Host

Correlation

10 2,919 2,965 2,813 2,365 2,830

20 5,431 5,520 4,525 4,519 5,221

50 13,440 13,782 10,052 9,214 13,054

100 23,841 23,298 16,389 16,194 19,926

Additionally, when looking at Scenarios 3 and 4 in Table 1, we note a marked
decrease in the number of new flows during the testing period compared to the
other cases. In essence, it appears that these scenarios were latency bound: each
thread had to spend more time in elevations because there were serial elevations
for each thread from the hosts and the switch. As we see from Fig. 2 that the
number of OpenFlow messages required (namely PacketIn messages and the
associated PacketOut+FlowMod responses) are increased by a factor of three
in Scenarios 3 and 4 because the hosts and the switch are each performing the
elevations and the switch is also elevating the end-hosts’ own PacketIn messages.
As a result, each thread simply spends more time waiting for the initial round-
trip.

5.3 Security Evaluation

We examine the effectiveness of the correlated sensing approach using the con-
figuration described by Scenario 4 in the performance evaluation. We create four
cases in which we vary the proper operation status of the client and the server.
Across the four possible combinations, we vary whether the host elevates pack-
ets normally or whether it evades proper operation by not elevating the packet
appropriately.

Table 2. Number of connections allowed and denied by scenario.

Case
number

Client
status

Server
status

Client flows
approved

Server flows
approved

Client flows
rejected

Server flows
rejected

1 Normal Normal 500 500 0 0

2 Normal Evades 500 0 0 500

3 Evades Normal 0 N/A 500 N/A

4 Evades Evades 0 N/A 500 N/A

In Table 2, we show the results of testing these four cases across 500 trials
each. As expected, when both the client and server are operating normally, all
the flows are approved. In the second case, where the client acts properly but
the server agent does not, the initial packets are approved and reach the server,

Detecting Root-Level Endpoint Sensor Compromises 285

but the server’s responses are dropped because the server failed to elevate both
the client’s original packet and the server’s response packet to the controller.
Scenarios 3 and 4 proceed identically since the controller denies the packets
when the OpenFlow switch elevates them because the client failed to originally
elevate the packets. In that case, the packets are discarded before the server can
receive them, so the server never knows to create a response.

As we discussed in Sect. 3.3, if the switch between the hosts is legacy, the
uncompromised host triggers the controller’s detection rather than the Open-
Flow switch. Further, if both hosts are compromised with a legacy switch, the
communication goes undetected. We omit these cases for brevity.

In these experiments, we simply disable the sensor rather than having it
create forged data. Since the flow decisions use the network tuple (IP addresses,
ports, and transport protocol), any alteration of these fields would constitute a
new flow and thus the forgery in an elevation request would cause the actual
packets to not match a flow rule when an uncompromised agent elevates the
packet, resulting in a drop rule by the controller. Alterations of other fields in
the packet headers could be detected simply by including those fields in the
controller’s local active flows table.

6 Conclusion

In this work, we examine how network operators can detect even root-level com-
promises that affect the accuracy of data reported by host-based sensors by
correlating that data with other sensors in the network. We focus on the Open-
Flow protocol and show that if a single non-compromised sensor exists on the
network path a flow takes, a centralized network controller can detect discrep-
ancies in the information reported by any compromised sensors on that same
path with perfect accuracy. Our performance results show that this correlated
sensing comes with little extra cost over a standard OpenFlow deployment. In
around 90% of cases, the round trip time of the first packet exchange in a con-
nection takes less than 20 ms, which includes all of the required flow elevation.
Since this flow elevation occurs only during the first round-trip of a new flow,
these overheads are unlikely to affect the user experience while offering tangible
security benefits.

Acknowledgement. This material is based upon work supported by the National
Science Foundation under Grant No. 1422180.

References

1. Bawany, N.Z., Shamsi, J.A., Salah, K.: DDoS attack detection andmitigation using
SDN: methods, practices, and solutions. Arab. J. Sci. Eng. 42, 425–441 (2017).
https://doi.org/10.1007/s13369-017-2414-5

https://doi.org/10.1007/s13369-017-2414-5

286 Y. Lei and C. A. Shue

2. Bhattarai, R., Valle, E., Dhanraj, M., Kelly, R.: Advanced endpoint protec-
tion test report. Technical report, Palo Alto Networks (2018). https://www.
paloaltonetworks.com/resources/whitepapers/2018-nss-labs-advanced-endpoint-
protection-report

3. Bratus, S., D’Cunha, N., Sparks, E., Smith, S.W.: TOCTOU, traps, and trusted
computing. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS, vol.
4968, pp. 14–32. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
68979-9 2

4. Butterworth, J., Kallenberg, C., Kovah, X., Herzog, A.: Problems with the Static
Root of Trust for Measurement. Black Hat USA (2013)

5. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,
J., Shenker, S., Turner, J.: Openflow: enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev. 38, 69–74 (2008)

6. Min, B., Varadharajan, V.: A novel malware for subversion of self-protection in
anti-virus. Softw. Pract. Exper. 361–379 (2016). https://doi.org/10.1002/spe.2317

7. Najd, M.E., Shue, C.A.: DeepContext: an openflow-compatible, host-based SDN
for enterprise networks. In: IEEE Conference on Local Computer Networks (LCN),
pp. 112–119 (2017). https://doi.org/10.1109/LCN.2017.12

8. Neely, L.: Exploits at the Endpoint: SANS 2016 Threat Landscape Survey.
SANS Institute InfoSec Reading Room, September (2016). https://www.sans.org/
reading-room/whitepapers/firewalls/paper/37157

9. Pfaff, B., et al.: The design and implementation of open vSwitch. In: 1
USENIX Symposium on Networked Systems Design and Implementation (NSDI
2015), pp. 117–130 (2015). https://www.usenix.org/conference/nsdi15/technical-
sessions/presentation/pfaff

10. Taylor, C.R., MacFarland, D.C., Smestad, D.R., Shue, C.A.: Contextual, flow-
based access control with scalable host-based SDN techniques. In: IEEE Inter-
national Conference on Computer Communications, pp. 1–9 (2016)

11. Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems.
In: ACM Conference on Computer and Communications Security, pp. 255–264
(2002). https://doi.org/10.1145/586110.586145

12. Wang, A., Guo, Y., Hao, F., Lakshman, T., Chen, S.: Scotch: elastically scaling up
SDN control-plane using vSwitch based overlay. In: ACM International on Confer-
ence on Emerging Networking Experiments and Technologies, pp. 403–414 (2014).
https://doi.org/10.1145/2674005.2675002

https://www.paloaltonetworks.com/resources/whitepapers/2018-nss-labs-advanced-endpoint-protection-report
https://www.paloaltonetworks.com/resources/whitepapers/2018-nss-labs-advanced-endpoint-protection-report
https://www.paloaltonetworks.com/resources/whitepapers/2018-nss-labs-advanced-endpoint-protection-report
https://doi.org/10.1007/978-3-540-68979-9_2
https://doi.org/10.1007/978-3-540-68979-9_2
https://doi.org/10.1002/spe.2317
https://doi.org/10.1109/LCN.2017.12
https://www.sans.org/reading-room/whitepapers/firewalls/paper/37157
https://www.sans.org/reading-room/whitepapers/firewalls/paper/37157
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://doi.org/10.1145/586110.586145
https://doi.org/10.1145/2674005.2675002

Footprints: Ensuring Trusted Service
Function Chaining in the World of SDN

and NFV

Montida Pattaranantakul1,3,4(B), Qipeng Song1, Yanmei Tian2,
Licheng Wang2, Zonghua Zhang1,3, and Ahmed Meddahi1

1 IMT Lille Douai, Institute Mine-Télécom, Lille, France
{montida.pattaranantakul,qipeng.song,zonghua.zhang,

ahmed.meddahi}@imt-lille-douai.fr
2 Beijing University of Posts and Telecommunications, Beijing, China

tianym0213@163.com, wanglc2012@126.com
3 CNRS UMR 5157 SAMOVAR Lab, Télécom SudParis, Évry, France

4 National Electronics and Computer Technology Center, Pathumthani, Thailand

Abstract. Network Function Virtualization (NFV) and Software
Defined Networking (SDN) empower Service Function Chaining (SFC),
which integrates an ordered list of Virtualized Network Functions (VNFs)
together for implementing a particular service. However, the high-level
SFC policy specification cannot guarantee that the VNFs are always
chained in an expected manner (or the packet flows of the service are
forwarded to the VNFs of concern in a predefined order). An attacker
can manage to bypass or evade the security VNFs (e.g., firewall, virus
scanner, DPI) and deviate the packets flows from the pre-specified path.
It is thus a significant need to have an efficient self-checking mechanism
in place, ensuring the SFC to be implemented in a secure and correct
way. We develop such a scheme based on an improved crypto primitive,
Lite identity-based ordered multisignature, which enforces all the VNFs
in the same service chain to sequentially sign the packets received. Then
the last hop of the chain will verify the aggregate signature, so as to val-
idate the authenticity of the VNFs, as well as their orders in the chain.
We leverage the IETF Network Service Header (NSH) to implement our
scheme and run the experiments in a real-world environment to evaluate
its performance in terms of computational overhead and latency.

Keywords: NFV · SDN · SFC · Aggregate signature · Pairings

1 Introduction

Service Function Chaining (SFC) [7,12], also known as VNF forwarding graph,
refers to the capability of defining a set of service functions (e.g., firewall, NAT,
DPI) which are then stitched together in the network to create a service chain.
Thanks to this capability, network operators can arbitrary set up different service
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 287–301, 2019.

https://doi.org/10.1007/978-3-030-37231-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_16&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_16

288 M. Pattaranantakul et al.

chains from the instantiated VNFs to meet their application-specific require-
ments. For example, in data center use case, a service chain can be specified
as SFCi : firewall → virus scan → DPI → NAT. Recently, we have seen some
research efforts paid to SFC, with focus on optimizing the resources used for
creating a service chain. One significant issue that has been overlooked is the
gap between high-level SFC specification and its enforcement at data plane. It
lacks efficient mechanisms that can ensure the SFC specification is correctly and
securely enforced. In other words, we cannot make sure that a service chain spec-
ification is correctly translated into the network flow classification with accurate
packet forwarding rules. Also, we cannot guarantee that the packet flows asso-
ciated with a particular service chain are traversed correctly to appropriate and
legitimate VNFs according to the predefined policy. Anomalous flow redirection
and path deviation [20,23] are interesting threat model examples that can be
used by the attackers to manipulate the original service function path. Their
objective is to bypass or evade from security functions in the service chain, ulti-
mately leading to the violation of SFC policy. To achieve the objective, attackers
can either launch rule modification attack [3,10,23] against victim switches at
SDN data plane or topology tampering attack [4,8,21] at SDN control plane.
For the former case, a successful rule modification attack can subvert the orig-
inal rules installed on the victim switch, and redirect the packets. In the later
case, attackers can poison the controller’s global view of the network topology,
and deceive the controller to trust a spoofed topology. Despite various security
countermeasures have been proposed, few of them can protect service chain as
a whole, and it is extremely difficult to detect and trace back the anomalies in
the dynamic NFV and SDN environments.

To tackle the challenges, we propose a new security primitive, called Lite
identity-based ordered multisignature, which provides efficient self-verification
mechanism for examining the behavior of packet traversal and verifying the cor-
rect sequence of service function in the service chain. The idea is straightforward
indeed: we expect the packets to leave footprints in each VNF so that they can
be validated and tracked. We leverage NFV orchestrator and SDN controller,
as well as IETF Network Service Header (NSH), to implement the signature
scheme for achieving five properties simultaneously, i.e., unforgeability, authen-
ticity, re-order protection, constraint-size of keys and aggregate signatures, and
fast signature and verification. We provide sound theoretical proof and show that
the proposed scheme can prevent many attacks like anomalous flow redirection
and path deviation. The implementation details and prototype development are
also presented to demonstrate the feasibility and effectiveness of our scheme.

2 Related Work

Although the concept of Service Function Chain has been proposed long time
ago, it has not been really implemented due to the limitations of traditional
networks. Thanks to the promising benefits of NFV and SDN [17], SFC finds
its interesting use case and becomes an active research direction. Nowadays,

Ensuring Trusted SFC in the World of SDN and NFV 289

there are several ongoing research works attempting to address the different
challenges raised by SFC. Unfortunately, few studies are devoted to security and
dependability issues, the most related work falls into two general categories.

Static Verification. ChainGuard [6] makes use of SFC-related rules stored
within the flow tables of virtual switches to gather the actual SFC Overlay and
Traffic Steering (SOTS) snapshot and model it as property-based graphs. These
graphs are then used to examine whether the actual SOTS is conformed to the
required SFC specification. SFC-Checker [22] contains a Stateful Forwarding
Graph (SFG) representing how packets are forwarded, how the states of service
function are changed, and how the state changes affect the forwarding path. A
Quantitative Forwarding Graph (QFG) [24] was built on top of the exiting work
on SFG [22] to extend the capability of SLA verification. After a careful study on
their approaches, we observed that they introduce two major drawbacks. First, it
is a static verification. The verification has been examined based on the forward-
ing graph that is indeed generated according to the network information such
as topology, flow tables, service states, etc. This may incur much overhead, as
a verifier must periodically pull the underlying information from the data plane
elements (e.g., the flow tables from virtual switches), and regularly regenerate
the forwarding graph. Second, it is non-trivial to extract the right information
from a large number of flow tables entries which are relevant for SFC verification.

Active Verification. SFC Path Tracer [5] is a tool for troubleshooting SFC.
The controller artificially injects probe packet in the chain input to generate
the trace. Once the probe packet traverses the network elements in the target
chain, it is mirrored by the trace tool to discover which forwarder handled the
packet. SDNsec [20] and REV [23] are implemented based on Message Authenti-
cation Code (MAC). Each switch along the forwarding path computes MAC and
attaches as a tag to each packet. To compute MAC, they use a symmetric key
with the shared key sharing between controller and the corresponding switches
on the path. The controller can instruct any switches to provide report and
thus inspects the path that was taken through analyzing the tag. In addition to
SDNsec, REV leverages a public/private key pair to enforce a destination switch
to generate signature, and attaches it together with a verification report. One
problem of REV is that it comes at the cost of complicated key management
and has a high packet overhead, because it is implemented with RSA primitive.
Although SDNsec attempted to reduce the key management cost by using only
symmetric key for MAC computation (i.e., 128-bits AES), it still incurs engi-
neering complexity to modify and eventually add specific forwarding information
(e.g., flow ID, forwarding entry and path validation fields) into the packet header.
The same complexity issue also occurs in SFC Path Tracer, as it requires to set
specific bits in the IP header to trigger OpenFlow rules and installed the related
trace rules in switch tables, so as to instruct the switches to copy those mirrored
packets to the trace tool. As a result, heavy traffic overhead could be generated
between the controller and switches.

290 M. Pattaranantakul et al.

3 Background and Challenges

This Section firstly explains SFC background, its relationships with SDN and
NFV Management and Orchestration (NFV MANO) in ETSI NFV framework,
and then highlight the potential challenges.

3.1 SFC Working Principles

The implementation of SFC involves several steps, ranging from the specifica-
tion of high-level network service, resource allocation, VNF instantiation and
placement, to VNF selection, SFC composition, traffic steering and forwarding.
For better understanding SFC architecture and its relationship with SDN and
NFV, we start with explaining the architecture model from high-level business
description to low-level service deployment. As presented in Fig. 1, the network
operators specify high-level description about network service, such as applica-
tion topology, network policy, and SFC policy which instruct the traffic flows of
a particular user to go through an appropriate set of ordered service functions
from a given source to destination. In particular, NFV orchestrator parses the
information w.r.t VNF descriptions to VNF Manager (VNFM) for instantiating
specific VNFs (e.g., virus scan, firewall, DPI), and the corresponding information
to Virtualized Infrastructure Manager (VIM) for allocating NFVI resources. The
SDN controller is used to receive all the necessary instructions from VIM, man-
aged data-plane elements (e.g., classifier, Service Function Forwarders (SFFs),
VNFs, and proxy devices), provided SFC data path programmability, and con-
figured the flow rules.

Specifically, classifier acts as entry and exit points for SFC-based traffic steer-
ing. It performs packet classification, provides SFC encapsulation, and directs
the matched traffic to appropriate service function paths. To encapsulate the
packets, it adds NSH-header [15], also known as service chaining encapsulation
protocol for SFC, which contains Service Path Identifier (SPI) and Service Index

Fig. 1. Intra-domain orchestrated architecture with the corresponding SFC workflow

Ensuring Trusted SFC in the World of SDN and NFV 291

(SI) to each packet. The SPI represents the service path for a particular SFC
and identifies the ordering (position) of VNFs that must be performed. The SI is
used to determine the next VNF to be traversed. Once the packet reaches SFF,
it removes the outer encapsulation and trigger a lookup based on SPI and SI
to identify the outgoing encapsulation. For example, the packets are either for-
warded to SFFs or VNFs. Meanwhile, VNF is responsible for specific treatment
of the received packets. It can be either NSH-aware or NSH-unaware VNFs. In
the case of NSH-unaware VNF, an additional proxy function need to be added.

3.2 Challenges

As SFC is currently still a concept-level technology, many challenges need to be
tackled. Below we intend to articulate some SFC security challenges.

– VNF authenticity: Verifying the authenticity of service functions has not
yet been addressed in much detail so far, especially in the context of SFC. One
of the grand challenges is that the network operators may not even notice and
have the right to examine whether a set of VNFs involved in a service chain
is compromised, or whether there exists any malicious VNF instances. An
example attack scenario is that an adversary may launch topology tampering
attack [4,8] or DDoS attack [21] to make the legitimate VNFs unavailable
and manage to impersonate these victim nodes, receiving and responding the
packets on their behalf. This situation misleads the network nodes, including
controller and other VNF instances, to communicate and synchronize with
the adversary instead of the legitimate ones.

– Reliable and consistent VNF chaining: The ability to build a complex
or a specific service chain by composing several types of VNFs is one of
the key features provided by SFC. However, a newly proposed NFV/SDN-
enabled SFC can be vulnerable to new pitfalls which can be exploited by the
attackers. For example, they may target individual SFF by using rule mod-
ification attacks to tamper the flow rules [3,10,23]. As a result, the packets
can be deviated from their original path, ultimately violating original SFC
policies. Considering the gap by design between NFV orchestrator, SDN con-
troller and virtualized functions at data plane, it is challenging to examine the
actual SFC deployment and make sure it is truly conformed to the predefined
SFC policy.

– Ordering property preservation: In particular, end-to-end application
traffic flows are often required to traverse various VNFs in a sequence man-
ner as specified in SFC policy. One of the key observations is that these VNF
instances involved in a particular service chain have been deployed indepen-
dently. Each VNF is responsible for specific treatment of the received pack-
ets, and totally unrelated to others [19]. Although many service functions in
a service chain are clearly defined in a strict order, it is almost impossible
for network operators to verify the ordering property of VNFs in their actual
SFC deployment. Out-of-order traversal attack [9,23] is an attack example
that can substantially disrupt the ordering (position) of VNFs in the service

292 M. Pattaranantakul et al.

chain. Our careful survey indicates that an efficient self-verification mecha-
nism for examining the correct sequence of service functions (or correct packet
traversal) in a service chain has not been extensively studied.

4 Problem Statement

4.1 System Model

Typically, in each intra-domain orchestrated architecture, there is a central-
ized controller which manages and controls a set of data-plane elements (e.g.,
classifier, SFFS). Network operators can either specify high-level SFC policies
using Network Service Descriptor (NSD) or directly interact with SDN con-
troller through the provided SFC API. The controller translates SFC policies
into a specific service function path, adjusts the path based on VNF status and
overlay links, and installs a set of forwarding rules on the data-plane elements
accordingly. To steer the traffic flows, SFF uses the flow rules installed in its
flow tables to determine the forwarding path and decide which action needs to
be performed. Specifically, the flow rules consist of two parts: (1) match fields
which filters packet headers; and (2) instructions indicate what actions need to
be taken when the matched packets are found, e.g., drop packet, forwarding to
the port. Upon the arrival of new packet, SFF checks if the packet matches any
existing flow rules. If so, it processes the packet based on the matching rule with
the highest priority. Otherwise, it sends a Packet-In message to controller to ask
for proper actions. The controller decides on the route of packet and sends the
corresponding rules to SFF through a standard control channel like OpenFlow
[14]. This event is known as Flow-Mod messages. Figure 2 illustrates an example

Fig. 2. Rule installation in SFF and the relevant attack models

Ensuring Trusted SFC in the World of SDN and NFV 293

where a routing action is taken once a matched packet with destination Y (e.g.,
Apache web server) and source X (e.g., client) arrived at SFF1.

4.2 Threat Model

This Section presents several important threat models that potentially lead to
anomalous flow redirection or path deviation. Specifically, those attack models
aim to not only compromise authenticity and integrity of VNFs, but also the
ordering property of service chains. We generally consider two families of attacks.

Rule modification attacks [3,10,23], which target at the victim SFFs
for changing the original service function path. Once such attack succeeds, an
attacker can manipulate the SFF’s flow rules to redirect anomalous packets.
Specifically, it can be further classified into three different forms (as shown in
the right corner of Fig. 2): (1) Bypass elements, in which one or more VNFs on the
intended service chain are bypassed; (2) Path detour, the packets are redirected
back to the original path after being forwarded to certain anomalous VNFs;
and (3) Out-of-order traversal, the purpose of this attack is to use brute force
to compromise the ordering property of the service chain specified in the SFC
policy. To achieve these goals, attackers can compromise the SFF by exploiting
the vulnerabilities of its hosting OS and install backdoor program that allows
them to arbitrarily perform malicious operations, e.g., install, delete, or modify
the flow tables. As shown in Fig. 2, attacker can modify the output port of
forwarding rule installed at the flow table of the compromised SFF1 in order to
evade from security functions (e.g., firewall and DPI) involved in a service chain.

Topology tampering attacks [4,8,21], in which attackers intend to spoof
the controller’s view of the network topology, and deceive it to believe in a
spurious topology. This finally causes the false flow rule installation in the SFFs,
making it possible to redirect the traffic flow from victim VNF to the one under
attacker’s control. As a matter of fact, SDN controller maintains a global view of
network topology, including hosts, virtual machines, VNFs, SFFs, and their link
connections, by the Host Tracking Service (HTS) and the Link Discovery Service
(LDS). In particular, the controller keeps listening to the Packet-In messages
coming from SFFs in order to maintain the Host Profile. An attacker can launch
host location hijacking to corrupt HTS module by spoofing the victim’s address
information (e.g., VNF’s IP address), which leads to the inconsistent location
information between the existing Host Profile and the information received from
incoming Packet-In messages. As a result, the HTS believes that the host has been
migrated and moved to a new location (which is not true), and then updates the
new location information in the Host Profile. One of the major reasons leading
to this attack is the lack of host authenticity checking.

5 Proposed Solution

To tackle the aforementioned challenges and solve the identified problem, we
intend to develop an efficient self-checking scheme that can preserve the authen-
ticity of VNFs, as well as the integrity and ordering property of the particular

294 M. Pattaranantakul et al.

Table 1. Notations used in Lite identity-based ordered multisignature formulation

Notations Description

e(., .) A symmetric bilinear form. For example,
e(ga, gb) = e(g, g)ab = e(gb, ga)

Z,Zp,Z
∗
p A set of integers, the integers modulo p ≥ 2, and the

multiplicative group modulo p

G,GT Groups of the same prime-order p on rational points of an
elliptic curve over a finite field

1G, 1GT The identity elements of G,GT respectively

G
∗ A set of generators of G, i.e., G∗ = G − 1G

{0, 1}∗ A set of all binary strings of finite length

|x| If x is a string then |x| is its length in bits

x||y If x, y are strings then x||y denotes an encoding from which x
and y are uniquely recoverable

service chains. Also, such a scheme needs to be fully distributed, lightweight and
scalable, in order to be implemented in the extremely dynamic NFV and SDN
environments. We seek the design foundation from digital signature scheme,
especially the ones meeting our design requirements, e.g., ordered multisigna-
tures and identity-based sequential aggregate signatures [2]. The motivation is
straightforward, i.e., generating footprints for packet flows at each VNFs. Specif-
ically, each VNF involved in a service chain needs to attest its signature on the
packet received, while a verifier can later verify the signature and determine
whether the security properties of concern for a particular service chain is well
preserved.

5.1 Design Properties

The new security primitive we propose is called Lite identity-based ordered mul-
tisignature, and its main objective is to achieve the following properties.

– Unforgeability: it should be computationally infeasible for any adversary
to produce a forged aggregate signature implicating an honest identity.

– Authenticity: signer’s authenticity should be preserved. Given a message,
the corresponding aggregate signature does not only provide the knowledge
indicating that some specific group of signers (e.g., VNF appliances) signed
it, but also to the order in which they signed.

– Re-order protection: it must enforce an additional unforgeability with
respect to the ordering of signers. In other words, it should not be possi-
ble to re-order the positions of honest signers, even if all other signers are
malicious.

– Constant size: the sizes of aggregate signature at any stage should be con-
stant regardless the number of signers and messages.

Ensuring Trusted SFC in the World of SDN and NFV 295

– Signature and verification accelerations: an alternative solution to min-
imize overall computational overhead is to ignore verification call at inter-
mediate nodes and accelerate the construction time using three pairing com-
putations. As our objective aims to verify the dependability and consistency
for the entire SFC, so that there is no need to perform intensive verification
before signing. While three pairing computations in the terms of (X,Y,Z) can
help to accelerate the construction times in both signature and verification.
Such each term is executed in parallel, resulting in a much faster computa-
tion time when compared to a typical model-based one-time processing. See
Sect. 5.2 for more construction details.

5.2 Construction Methodology

To construct the proposed scheme, there are four steps involved. All the notations
used in our formulation are summarized in Table 1.

Setup: the algorithm first run G as a bilinear-group generation algorithm to
obtain outputs (p,G,GT , e). It then chooses a random generator g ∈ G

∗, a
random number α ∈ Zp, and two cryptographic hash functions H1 : {0, 1}∗ →
G and H2 : {0, 1}∗ → Z

∗
p. It returns (p,G,GT , e, g, gα,H1,H2) as the public

parameters; where α and gα indicate the master secret key (msk) and the master
public key (mpk) respectively.

Key derivation: on inputs msk and user’s identity id ∈ {0, 1}∗ (say IP address,
etc.), the algorithm computes and returns the user’s secret key skid.

skid = H1(id)α (1)

Signing: on inputs his/her own secret key skidi
, a message m, and the corre-

sponding signature σ from an intended path L = (id1, ..., idi−1), the algorithm
first parses σ as a three pairing computations (X,Y,Z)1. Then, the signer with
identity idi continues to performs the following steps:

– Pre-computation2: s(i) = s1s2 · · · si; where sj = H2(id1||id2|| · · · ||idj) for
j = 1, 2, · · · , i.

– Choosing random number by the ith signer: r(i) ∈ Z
∗
p.

– Computation:

X ′ ← H1(m)r(i)·s(i) · skidi
(2)

Y ′ ← H1(H1(m))r(i) · skidi
(3)

1 For the first signer (i = 1), σ is defined as (1G, 1G, 1G).
2 If the intended signing order fixed, then s needs be computed only once. Whenever

the intended signing sequence change, this step needs to be re-executed.

296 M. Pattaranantakul et al.

– Finally, the algorithm returns (X · X ′, Y 1/si · Y ′, Z1/si · gr(i)
); where 1/si

means s−1
i mod p.

Verification: on inputs mpk, a message m, and the corresponding signature
σ from the intended path L = (id1, .., idn), the algorithm first returns 0 if all
of id1, ..., idn are not distinct. This check is needed to ensure that there are no
signers repetition occurred during signature construction. If the above condition
is met, it parses σ as (X,Y,Z) and a verifier performs the following steps:

– Pre-computation3: s = s(n) = s1s2 · · · sn; where sj = H2(id1||id2|| · · · ||idj),

S =
n∏

i=1

H1(idi)
1∏n

j=i+1 sj (4)

T =
n∏

i=1

H1(idi) (5)

– Verification: the algorithm checks whether the following two equations hold
true simultaneously. If not, the algorithm returns 0. Otherwise, it returns 1
indicating that the signature σ is valid with respect to the intended path,
authenticated signers and their ordering properties id1, · · · , idn.

e(Y, g) ?= e(H1(H1(m)), Z) · e(S, gα) (6)

e(X, g) ?= e(H1(m), Zs) · e(T, gα) (7)

To summarize, the proposed scheme aims at examining the behavior of packet
traversal. That says whether the packets associated with a particular service
chain are indeed traversed through all intended VNFs in sequence manner as
specified in SFC policy. Thanks to the verifiability properties of signing order
and ordinary signature given by the proposed scheme, that provide a verifier
the ability to examine the consistency of service chain and to ensure that only
the honest participants are able to produce a valid aggregate signature on that
message. Since the verifier knows a certain number of signer’s identity (say a set
of IP addresses of VNFs involved in a service chain) and their sequences, so that
it can straightforwardly verify its consistency from the bilinearity condition of a
pairing. As a result, any missing, detouring, bypassing one or more VNFs along
the intended path, out-of-order traversal, or the occurrence of impersonating the
target VNFs, can lead to unsatisfied condition under bilinear maps.

6 Implementation and Evaluation

In this Section, we present the proof of concept (PoC) implementation of our
proposal over NFV/SDN environment, and evaluate its performance in terms of
computational overhead and end-to end latency.
3 If the intended signing order fixed, then s, S, T needs be computed only once. Oth-

erwise, this step needs to be re-executed.

Ensuring Trusted SFC in the World of SDN and NFV 297

6.1 Implementation Details

The correctness of our digital signature scheme can be theoretically proved,
but its implementation in real environment is non-trivial, and we need to solve
the following technical challenges: (1) generate and distribute the cryptographic
parameters to each involved VNF node; (2) add signature generation into VNF
nodes; and (3) transmit packets with signature. To address these challenges, we
propose the following solutions.

A Trusted Private Key Generator (PKG). The first challenge requires a
PKG to generate its master public key mpk, the master secret key msk, and
the public parameters such as elliptic curve type, key size, user’s secret key skid,
etc., (as discussed in the Setup step of Sect. 5.2). Such a PKG server is developed
and run alongside the ODL SFC controller. To create a service chain, a SFC
description file including information identities of each service function, the SPI
associated with a particular service chain and SI which is used to determine the
next VNF to be traversed, is simultaneously sent to PKG and ODL controller.
With this information, PKG generates public parameters and distribute them to
each involved VNF through REST API. The implementation of PKG is built on
top of PBC (Pairing-Based Cryptography) library [16], PyPBC (Python binding
for PCB) [18] and Python Flask web framework.

NSH and OMS Aware VNF. In our implementation, the first VNF on a
given service chain is in charge of generating and inserting the aggregate sig-
nature. Then the next hop downstream VNFs should be able to retrieve the
signature from the received packet and update it with the new value generated
based on the Signing method described in Sect. 5.2. To achieve the goal, we
developed NSH and OMS (Ordered Multisignature) aware VNF, to be able to
parse the NSH header and perform the appropriate operations (e.g., generating,
inserting or updating the aggregate signature). Meanwhile, the signature verifi-
cation is done at the last classifier on a service chain, namely just before leaving
SFC domain. We developed a verification service as an extended function and
deployed alongside of the egress classifier to take charge of signature validation.
In addition, a message m which is used as input in signing process can be any
given value if it is known by all VNF nodes on a particular service chain. How-
ever, the NSH payload is not suggested to be used as m, because the content
of payload may be modified by some VNFs (e.g., NAT) along the service path.
This leads to the failure of signature verification.

Extended NSH Metadata Type-1. To use our proposed scheme, the sig-
nature should be inserted into the packets. In the current implementation, we
leverage the metadata field of NSH header, which has two types according to the
specification of RFC8300: (1) NSH MD type-1, which has fixed 16 bytes length;
(2) NSH MD type-2, which has a variable length. However, Type-1 has no suf-
ficient room to occupy the signature, while Type-2 has not been implemented

298 M. Pattaranantakul et al.

so far. Therefore, we extend NSH MD Type-1 with an extra variable signature
field. Also, we use one non-reserved bit in the NSH base header as signature bit
to indicate that the packet are carried with signature (value 1), and 0 otherwise.
If a packet with signature has been received by a VNF, the signature will be
extracted from the NSH header and updated with the newly generated value
using its VNF’s secret key skid shared by the PKG at the SFC setup step.

6.2 Performance Evaluation

Our prototype implementation is developed using VirtualBox virtualization and
the Vagrant tool. The hardware specification of the host system that runs the
testbed is based on Linux desktop with 2.5 GHz Intel Core i7 CPU and 16G
RAM. All the deployed network nodes including controller, VNFs, classifiers
and SFFs are implemented as docker containers running inside Vagrant VM
with Ubuntu/xenial 64, each node has been customized with 2 CPU cores and
4G RAM. Our motivation to use OpenDaylight (version Fluorine) [13] as an
ODL SFC controller, which is developed with fully NSH encapsulation support,
while allowing us to use it for developing a prototype that carries aggregate
signature generated from our proposed approach.

Computational Overhead. To evaluate the performance of our proposed
scheme, we ran a set of experiments and examined the relationship between the
processing capacity of our proposed scheme and the number of VNFs involved
in a service chain. In practice, we used PBC library with Type A pairings to
create a group of G and GT on the rational points of a elliptic curve y2 = x3 +x
over a finite filed. Using embedding degree (the degree of certain extension of the
ground filed), which is k = 2, the elements in G can be respectively represented
using 512, 256, and 160 bits for achieving the equivalent standard security level,
256, 180, and 80 bits [1]. It is clear that less bit-length of elements in G incur
less complexity, and less security level. However, to achieve the lowest security
level, at least 80 bits security are required, leading to 160 bits elliptic curve key.

We ran the experiment 50 epochs with different key sizes and calculate
the 95% confidence interval. As shown in Fig. 3, we observed that the lower
bound latency goes linearly. It strongly depends on three major factors: (1) the
employed cryptographic parameter settings which include the type of pairing
operations over the specified elliptic curve, the length of elements in G and keys,
as well as signing and verification algorithms; (2) the total number of VNFs
in a service chain; and (3) the processing delays caused by signing operations
conducted by each VNF and the verification operation at the last egress classi-
fier. For example, if we only consider the processing delay w.r.t signature and
verification constructions, without taking into account other parameters such as
the parameter settings, times for packet transmission and manipulation (e.g.,
inserting, parsing or updating the signature into NSH’s header), the overall pro-
cessing delays for a particular service chain DSFCi

can be obtained in the form:
DSFCi

=
∑N

i=1 dsi
+ dv; where dsi

is the delay time takes by each VNF to com-
plete signing, and dv is the delay time to verify and validate the signature. In

Ensuring Trusted SFC in the World of SDN and NFV 299

Fig. 3. The relationships between number of VNFs in a service chain and latency

practice, the number of VNFs involved in a service chain is normally less than
10 (the exemplified SFC use cases are given in [11]). For example, to achieve the
lowest bound of security level (80 bits), it takes around 34.76 ms to successfully
validate signature when 10 VNF nodes were involved in the service chain. This
latency is minimal and acceptable for most of network services.

Latency. To evaluate the end-to-end packet transmission latency brought by the
proposed scheme. We run 6 groups of experiments, in which the number of VNF
nodes involved in a service chain is varied from 2 to 7. Not that these numbers
of VNFs are reasonable value when considering several typical SFC deployment
use cases discussed in [11]. Within each group experiment, the case without
signature scheme is used as comparison reference. We consider two OMS enabled
cases with different elliptic curve key sizes (i.e., 160 bits and 256 bits). Also, we
apply a probabilistic method into our scheme to reduce as much as possible the
end-to-end latency related to the service chain. At the initialization stage, the
first VNF is configured to sign a received packet based on a given probability.
That says, in our experiment, we consider the cases of signing probability 100%,
50% and 10% respectively4.

To evaluate the performance, we continuously sent 100 ping messages from
client to server and measured the end-to-end latency. The results are illustrated
in Fig. 4. To achieve the lowest security level (160 bits elliptic key), if signing
probability is set as 100%, 50%, and 10%, on average the latency respectively
increased around 5.80, 3.25, and 1.52 times when compared to a conventional
packet transmission without signature. The experimental results showed that the
overall latency is significantly reduced, especially with 10% signing probability,
the resulting latency can be almost ignored.

4 When signing probability is set as 100%, every packets have to be signed. While 10%
and 50% mean on average only 10 and 50 out of every 100 packets will be signed.

300 M. Pattaranantakul et al.

Fig. 4. Transmission of ping packets with and without signature construction

7 Conclusion

SFC plays a key role in integrating various VNFs together for achieving a par-
ticular service in NFV and SDN. But a gap between SFC policy specification
(e.g., forward graph in NFV orchestrator, high-level policies in SDN controller)
and enforcement remains, leaving attackers to possibly manipulate the SFC. For
example, evading from the security functions or launch blackhole attacks. This
paper presented an efficient self-checking scheme for ensuring trust service func-
tions chaining (SFC) in NFV and SDN. More specifically, the scheme aims at
preserving authenticity of VNFs and their order in SFC by using an identity-
based ordered multisignature scheme. Each VNF involved in a service chain must
sign the packets it receives, and the last hop of the chain verifies the signature. As
the aggregate signature has compact and constant size, it can be easily inserted
into NSH header with minimal computational overhead. We theoretically proved
the security and effectiveness of the scheme, and experimentally demonstrated
its feasibility (w.r.t latency) in real-world environment. Our future work will be
focused on the implementation, deployment, and evaluation of our scheme in
several different use cases, e.g., web service, email, video service. We also expect
to leverage NSH MD Type-2 and improve our proposal with an efficient prob-
abilistic model to find the optimal tradeoff between the transmission overhead
and detection performance.

References

1. Barker, E.B., Barker, W.C., Burr, W.E., Polk, W.T., Smid, M.E.: SP 800-57. Rec-
ommendation for key management, Part 1: General (revised). Technical report
(2007)

2. Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisignatures and
identity-based sequential aggregate signatures with applications to secure routing.
In: CCS 2007, pp. 276–285 (2007)

Ensuring Trusted SFC in the World of SDN and NFV 301

3. Chi, P.W., Kuo, C.T., Guo, J.W., Lei, C.L.: How to detect a compromised SDN
switch. In: NetSoft 2015, pp. 1–6, April 2015

4. Dhawan, J., Poddar, R., Mahajan, K., Mann, V.: SPHINX: detecting security
attacks in software-defined networks. In: NDSS 2015, pp. 1–15, February 2015

5. Eichelberger, R.A., Ferreto, T., Tandel, S., Duarte, P.A.P.R.: SFC path tracer: a
troubleshooting tool for service function chaining. In: IM 2017, pp. 568–571 (2017)

6. Flittner, M., et al.: ChainGuard: controller-independent verification of service func-
tion chaining in cloud computing. In: NFV-SDN 2017, pp. 1–7 (2017)

7. Halpern, J., Pignataro, C.: Service function chainning (SFC) architecture, October
2015. https://tools.ietf.org/html/rfc7665

8. Hong, S., Xu, L., Wang, H., Gu, G.: Poisoning network visibility in software-defined
networks: new attacks and countermeasures. In: NDSS 2015, pp. 1–15 (2015)

9. Kim, T.H.J., Basescu, C., Jia, L., Lee, S.B., Hu, Y.C., Perrig, A.: Lightweight
source authentication and path validation. In: SIGCOMM 2014 (2014)

10. Li, Q., Zou, X., Huang, Q., Zheng, J., Lee, P.P.C.: Dynamic packet forwarding
verification in SDN. IEEE Trans. Dependable Sec. Comput. 16, 1–16 (2018)

11. Liu, W., Li, H., Huang, O., et al.: Service function chaining (SFC) general use
cases, September 2014. https://tools.ietf.org/html/draft-liu-sfc-use-cases-08

12. Medhat, A.M., et al.: Service function chaining in next generation networks: state
of the art and research challenges. Commun. Mag. 55(2), 216–223 (2017)

13. OpenDaylight fluorine release, August 2018. https://www.opendaylight.org/what-
we-do/current-release/fluorine

14. OpenFlow switch specification, June 2012. https://www.opennetworking.org/wp-
content/uploads/2014/10/openflow-spec-v1.3.0.pdf

15. Quinn, P., Elzur, U., Pignataro, C.: Network service hearder (NSH), January 2018.
https://www.rfc-editor.org/rfc/pdfrfc/rfc8300.txt.pdf

16. Pairing-based cryptography library (2006). https://crypto.stanford.edu/pbc/
17. Pattaranantakul, M., He, R., Song, Q., Zhang, Z., Meddahi, A.: NFV security

survey: from use case driven threat analysis to state-of-the-art countermeasures.
IEEE Commun. Surv. Tutor. 20(4), 3330–3368 (2018)

18. Python binding for PBC, November 2017. https://github.com/debatem1/pypbc
19. Quinn, P., Nadeau, T.: Problem statement for service function chaining, April

2015. https://tools.ietf.org/html/rfc7498#page-6
20. Sasaki, T., Pappas, C., Lee, T., Hoefler, T., Perrig, A.: SDNsec: forwarding account-

ability for the SDN Data plane. In: ICCCN 2016, pp. 1–10 (2016)
21. Sim, Y., Lee, H.Y.: Poster: denial-of-service attack using host location hijacking in

software-defined network. In: Euro S&P 2016, pp. 1–2 (2016)
22. Tschaen, B., Zhang, Y., et al.: SFC-checker: checking the correct forwarding behav-

ior of Service Function Chaining. In: NFV-SDN 2016, pp. 134–140 (2016)
23. Zhang, P.: Towards rule enforcement verification for software defined networks. In:

IEEE INFOCOM 2017, pp. 1–9 (2017)
24. Zhang, Y., Wu, W., Banerjee, S., Kang, J., et al.: SLA-verifier: stateful and quan-

titative verification for service chaining. In: IEEE INFOCOM 2017, pp. 1–9 (2017)

https://tools.ietf.org/html/rfc7665
https://tools.ietf.org/html/draft-liu-sfc-use-cases-08
https://www.opendaylight.org/what-we-do/current-release/fluorine
https://www.opendaylight.org/what-we-do/current-release/fluorine
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc8300.txt.pdf
https://crypto.stanford.edu/pbc/
https://github.com/debatem1/pypbc
https://tools.ietf.org/html/rfc7498#page-6

Security and Analytics

Hecate: Automated Customization
of Program and Communication Features

to Reduce Attack Surfaces

Hongfa Xue(B), Yurong Chen, Guru Venkataramani, and Tian Lan

The George Washington University, Washington, D.C., USA
{hongfaxue,gabrielchen,guruv,tlan}@gwu.edu

Abstract. Customizing program and communication features is a com-
monly adopted strategy to counter security threats that arise from rapid
inflation of software features. In this paper, we propose Hecate, a novel
framework that leverages dynamic execution and trace to create cus-
tomized, self-contained programs, in order to minimize potential attack
surface. It automatically identifies program features (i.e., independent,
well-contained operations, utilities, or capabilities) relating to applica-
tion binaries and their communication functions, tailors and eliminates
the features to create customized program binaries in accordance with
user needs, in a fully unsupervised fashion. Hecate makes novel use of
deep learning to identify program features and their constituent func-
tions by mapping dynamic instruction trace to functions in the bina-
ries. It enables us to modularize program features and efficiently create
customized program binaries at large scale. We implement a prototype
of Hecate using a number of open source tools such as DynInst and
TensorFlow. Evaluation using real-world executables including OpenSSL
and LibreOffice demonstrates that Hecate can create a wide range of
customized binaries for diverse feature requirements, with the highest
accuracy up to 96.28% for feature/function identification and up to 67%
reduction of program attack surface.

Keywords: Program customization · Deep learning · Binary analysis

1 Introduction

Feature creep, referring to the ongoing expansion and addition of new features
(e.g., excessive capabilities and utilities) in communication protocols and pro-
grams [8], leads to not only software system bloat, but also an increased attack
surface with higher possibility of vulnerabilities and exploitation. A number of
proposals have been made to identify redundant features and to enable cus-
tomization through static code analysis techniques such as [15,26,32].

In this paper, we propose Hecate, a framework that leverages dynamic exe-
cution and trace to create customized, self-contained programs to minimize the

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 305–319, 2019.

https://doi.org/10.1007/978-3-030-37231-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_17&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_17

306 H. Xue et al.

corresponding attack surface. A key feature of Hecate is that it makes novel
use of deep learning to identify program and communication-related features in
binary in an automated fashion. It employs the test-cases to invoke different
program features, applies trace splicing to extract dynamic execution paths (of
invoked features) from the complete instruction trace, maps the paths to owner
functions in the binary code, finally identifies program features (as targets for
customization) through their constituent functions. We note that this is a chal-
lenging problem, since full symbol or debug information is often not available in
optimized and obfuscated binaries, while static analysis techniques such as execu-
tion path alignment [14] cannot easily achieve scalability and accuracy. Hecate
addresses the challenge by leveraging deep learning. In particular, we consider
this mapping from execution path trace to their onwer funcsions as a multi-class
classification problem, where each function is considered as a class label, the
function’s binary code as samples of the class, and an execution path extracted
from dynamic instruction trace as the testing sample. Thus, we employ Recursive
Neural Network (RNN) to obtain binary code vector embeddings at lexical level
and train a multi-class Convolutional Neural Network (CNN) classifier to iden-
tify the feature-constituent functions. Instead of extracting the instructions of a
limited code fragment, our approach automatically identify various features in
large-scale program binaries with accuracy up to 96.28%, in a fully unsupervised
fashion.

Identifying the feature-constituent functions enables us to modularize and
tailor program features, in accordance with user needs. We propose program
customization techniques to tailor program binaries using union, intersection,
and subtraction operations if a target feature combination is not readily available
in the test-cases. The customized program can be viewed as a sub-graph of the
original CFG.

We implement a prototype of Hecate using two major modules: feature
identification and feature tailoring. It leverages several open-source tools and
deep learning algorithms to identify function boundaries and bodies from binary
executable. Evaluation using real-world applications, e.g., OpenSSL [22] and
LibreOffice [17], shows that Hecate achieves an average 92.76% accuracy for
function mapping and feature identification. It is able to create a wide range
of customized executables and significantly reduces the program size and attack
surface up to 85% and 67.6% respectively.

The main contributions of our work are as follows:

– We propose Hecate, an automated framework for software mass customiza-
tion using only binaries. Provided with test-cases for different features,
Hecate automatically identifies program features and customizes them in
accordance with user needs.

– Hecate leverages deep learning to identify program features in an unsu-
pervised fashion. In particular, it maps dynamic execution paths from the
instruction trace to feature-constituent functions in the executable using a
multi-class CNN classifier, achieving an average 92.76% accuracy.

Hecate: Automated Customization of Program and Communication Features 307

– We implement a prototype of Hecate using open-source tools, including
ByteWeight [3], RNNLM Toolkit [13], and Tensor-Flow [2]. Evaluation using
real-world applications, such as OpenSSL, shows that Hecate can efficiently
customize large-scale software, and significantly reduce the attack surface by
up to 67%.

2 Hecate Design Overview

Software customization comprises two tasks: (i) identifying program features
from a binary executable by analyzing and mapping dynamic instruction trace
that invokes different features, and (ii) tailoring and rewriting the binary, in
accordance with user needs, to create customized, self-contained programs.

Fig. 1. An illustrative example of feature identification by mapping dynamic instruc-
tion trace to functions in static code from OpenSSL.

2.1 Challenges

The goal of Hecate’s feature identification is to map dynamic instruction trace
(relating to different features) to feature-constituent functions in binary. Ideally,
it is possible to log the virtual addresses of each executed instruction. Then we
can get the memory layout of each binary module (e.g., through /proc/pid/ma
ps on Linux). With these two pieces of information, we could uniquely map a
dynamic trace back to static code. However, there are some scenarios in prac-
tice where the address is not available. For example, commercial software and
operating system are usually slightly obfuscated to deter reverse engineering and
unlicensed use. Further, system and kernel libraries are often optimized to reduce
disk space requirements [6]. It may be difficult to even locate function entry
points (FEPs) since the full symbol or debug information is usually not avail-
able in optimized binaries [3]. Thus, we have to utilize code patterns to match
dynamic traces. This is a challenging problem because dynamic trace and static
code often have different patterns and cannot be accurately matched through

308 H. Xue et al.

techniques such as execution path alignment [14]. Consider the example shown
in Fig. 1 with dynamic instruction trace and binary code snippet from OpenSSL.
First, as Arrows 1 and 2 indicate, the same basic block from dynamic instruction
trace could have multiple matches in the binary, and cannot be uniquely mapped
to a single function. Second, the same binary instruction can be interpreted into
different verbal presentations, in which case different disassemblers will give dif-
ferent outputs. As Arrow 3 indicates, the binary value 77H can be translated
to the opcode either “ja” (jump above) or “jnbe” (jump not below), causing
direct pattern matching to fail. Further, when loops and recursive function calls
exist in the binary, it is difficult to correctly identify these structures in dynamic
instruction trace. We conducted an experiment using a substring matching app-
roach to map the opcode pattern between instruction traces and binary code.
Examining two applications, bzip2 and OpenSSL, function mapping techniques
only achieves an average accuracy of 76.31% and 73.02%, respectively.

Binary Disassembly
Code

Function
List

Execution
Trace Trace

Seg-
ments

User’s
requirement

Features

Binary
Rewriting

Fuzzing

Customized
Binary

Disassembly
Code

FunF ction
List

Execu ntionn
TraceT TraceT

Seg-
ments

Binary
Rewriting

FuF zzing

Feature Identification Feature Tailoring

Fig. 2. Hecate system diagram

2.2 Problem Statement

To introduce our problem of software customization, we first need a definition
of what a feature is in binary code.

Definition 1. Function. The term function in this paper particularly refers
to the function identified in static binary code, which is a collection of basic
blocks with one entry point (i.e., the next instruction after a call instruction)
and possibly multiple exit points (i.e., a return or interrupt instruction). All
code reachable from the entry point before reaching any exit point constitutes the
body of the assembly function. For a given program, we use F = {fk, ∀k} to
denote the set of all functions existing in the static binary code.

Definition 2. Feature. A program feature is defined as a set of constituent
functions – denoted by Fi = {f1

i , f2
i , ..., fn

i } ⊆ F – which uniquely represent
an independent, well-contained operation, utility, or capability of the program.

Hecate: Automated Customization of Program and Communication Features 309

A feature at the binary level may not always correspond to a software module at
the source level. We use T = {Fi, ∀i} to denote the set of all available features
in the program.

The goal of Hecate is that, given a program binary, test cases invoking
program features, and user’s customization requirement (i.e., a set of desire
features T̂ ⊆ T), it will produce a modified binary that contains the minimum
set of functions to satisfy the user’s requirement and to support all desired
features in T̂ . We perform the customization after abstracting the program into
Control Flow Graph (CFG). From the perspective of CFG, the customized binary
is composed of a CFG that is a subgraph of the original program CFG.

2.3 Approach and System Architecture

Hecate consists of two major modules: feature identification and feature tailor-
ing. Its system architecture is illustrated in Fig. 2. Users provide their require-
ments (i.e., a list of features that are needed) as well as test-cases to reach differ-
ent features. Hecate takes the program binary and customization requirement
as inputs and generate a customized binary consisting of only the desired fea-
tures. For feature identification, Hecate first builds a function library based
on static analysis of program binary, including dynamically linked libraries.
Byteweight, a learning-based binary analysis tool, is employed to identify func-
tion body directly from static program binaries. Next, execute the program using
the test-cases provided, analyze the dynamic instruction trace, extract execution
paths relating to different features (or feature combinations), and maps them to
constituent-functions in the program binary.

The feature tailoring module is explained in Sect. 4. It modularizes program
features through their constituent functions and modifies the program binary in
accordance with user’s customization requirements. The CFG of the customized
program can be viewed as a sub-graph of that of the original program, which is
able to retain the behavior of only the desired features. At last, a fuzzing engine
can be employed to generate inputs and further test the customized binary.

3 Feature Identification

Feature Identification uses trace splicing to extract dynamic execution paths
and maps them to owner functions in the binary code, enabling us to identify
program features through their constituent functions. In this paper, we define
an execution path as a sequence of instructions that are executed from a function
entry point to an exit point. The function containing the execution path is known
as the owner function. Our approach leverages deep learning and works in a fully
unsupervised, autonomous fashion.

310 H. Xue et al.

Fig. 3. Extracting dynamic execution paths of each individual function through trace
splicing. Boxes stand for basic blocks. A1 and A2 belong to function A while B1 and
B2 belong to function B.

3.1 Function Recognition

We first construct the pre-image and image of our function mapping, using trace
splicing and deep-learning tools, respectively. The pre-image is defined as the set
of execution paths obtained from dynamic instruction trace, while the image is
defined as the set of functions recognized in static program binaries.

We run the target executable with provided test cases to invoke different
(combinations of) program features, and collect instruction trace to capture the
dynamic execution of the program. The trace is then spliced to extract execution
paths belonging to different functions, which serves as the pre-image of our
function mapping. Consider the illustrative example shown in Fig. 3, where a
sequence of 4 basic blocks, A1, B1, B2, A2, are captured in dynamic trace, when
function fB is called inside function fA. Clearly, we cannot directly map the
entire sequence to functions in binary code, because it contains two separate
execution path, belonging to functions fA and fB , respectively. We employ two
different methods to splice dynamic trace and extract different execution paths:
(1) We track call stack changes together with instruction trace. By recognizing
push and pop operations on the call stack, we can infer function call events, and
slice and associate basic blocks that belong to the same function. (2) From the
instruction trace, instructions that perform function calls and returns will be
recognized and put embedded function calls into different layers.

We remove duplicate basic blocks in execution traces to improve the accuracy
of function mapping. Furthermore, every time a function is invoked, a different
execution path may be traversed inside the function. These execution paths will
be separated and mapped to their owner functions independently, minimizing
the probability of false negative in function mapping. In this paper, we unitize
ByteWeight [3], a learning-based tool that identifies function bodies from binary.

Hecate: Automated Customization of Program and Communication Features 311

3.2 Function Mapping

In this paper, we leverage deep learning to propose a solution to enable auto-
mated function mapping. model binary instruction sequences using Recursive
Neural Network (RNN). The framework is constructed with two key components.
First, to obtain vector embedding for a given execution path (that consists of
an instruction sequence), we use RNN to map each term in the binary instruc-
tions (e.g., opcodes and operands) to a vector embedding at the lexical level,
resulting in a signature vector for the entire execution path. Second, we consider
the mapping problem as a multi-class classification problem, where each func-
tion is considered as a class label, different execution paths obtained from the
function’s binary code as samples of that class, and an execution path extracted
from dynamic instruction trace as the testing sample. We employ a multi-class
Convolutional Neural Network (CNN) classifier to identify the owner functions
of an arbitrary dynamic instruction trace. Our deep learning approach is inspired
by the related work on source code analysis [24,25,30].

Embedding Binary Code at the Lexical Level. Consider a disassembly
code corpus from a target program, with m distinct terms (e.g., different opcodes
and operands) across the whole corpus. We use an RNN with n hidden nodes to
convert each term in the code corpus into an embedding vector U ∈ R

n×m. RNN
is known as an effective approach for modeling sequential information, such as
sentences in texts or program code. Figure 4 presents the training process of our
RNN model for binary code. The input xt ∈ R

m+n at time step t is a one-hot
vector representation corresponding to the current term, e.g., ‘eax’. The hidden
layer state vector, st ∈ R

n, stores the current state of the network at step t and
captures the information that has already been calculated. Specifically, it can be
obtained using the previous hidden state st−1 at time step t − 1 and the current
input xt at time step t:

st = f(Uxt + Wst−1) (1)

Function f is a nonlinear function, e.g., tanh [12]. U ∈ R
n×m and W ∈ R

n×n

are the shared parameters in all time steps.

Fig. 4. An illustration of RNN. Fig. 5. An illustration of RAE.

312 H. Xue et al.

The output, Ot ∈ R
m, is a vector of probabilities predicting the distribution

of the next term in the code corpus. It is calculated based on current state vector
along with another shared parameter V ∈ R

m×n, i.e.:

Ot = softmax(V st) (2)

The parameters {U, V,W} are trained using backpropagation through time
(BPTT) method in our RNN network (We skip the technical details here and
refer readers to [4]). Once RNN training is complete, each term in the code corpus
will have a unique embeddings U from Eq. (1), which comprises its semantic
representation cross the corpus. We compute such embeddings U to represent
the terms of binary instructions at lexical level.

Generating Signature at the Syntax Level. We use Autoencoder to com-
bine embeddings U ∈ R

nm of the terms from multiple instructions and to obtain
a signature vector for a given execution path. Autoencoder is widely used to
generate vector space representations for a pairwise composed term with two
phases: encode phase and decode phase. It is a simple neural network with one
input layer, one hidden layer, and one output layer. As shown in Fig. 5, we apply
Autoencoder recursively to a sequence of terms, which is known as the Recursive
Autoencoder (RAE). Let x1, x2 ∈ R

nm be the vector embeddings of two differ-
ent terms, computed using RNN. During encode phase, the composed vector
embeddings Z(x1, x2) is calculated by:

Z(x1, x2) = f(W1[x1;x2] + b1), (3)

where [x1;x2] ∈ R
2nm is the concatenation of x1 and x2, W1 ∈ R

nm×2nm is the
parameter matrix in encode phase, and b ∈ R

nm is the offset. Similar to RNN,
f again is a nonlinear function, e.g., tanh. In decode phase, we need to assess if
Z(x1, x2) is well learned by the network to represent the composed terms. Thus,
we reconstruct the term embeddings by:

O[x1;x2] = g(W2[x1;x2] + b2), (4)

where O[x1;x2] is the reconstructed term embeddings , W2 ∈ R
nm×2nm is the

parameter matrix for decode phase, and b2 ∈ R
nm×1 is the offset for decode

phase and the function g is another nonlinear function. For training purpose,
the reconstruction error is used to measure how well we learned term vector
embeddings. Let θ = {W1;W2; b1; b2}. We use the Euclidean distance between
the inputs and reconstructed inputs to measure reconstruction error, i.e.,

E([x1;x2]; θ) = ||[x1;x2] − O[x1;x2]||22 (5)

For a given execution path with multiple terms and instructions, we adopt
a greedy method [23] to train our RAE and recursively combine pairwise vector
embeddings. The greedy method uses a hierarchical approach – it first combines
vector embeddings of adjacent terms in each instruction, and then combines the

Hecate: Automated Customization of Program and Communication Features 313

results from a sequence of instructions in an execution path. Figure 5 shows an
example of how to combine the vector embeddings to generate a signature vector.
It shows a (binary) execution path with a sequence of 8 instructions. The greedy
method is illustrated as a binary tree. Node 1 gives the vector embedding for the
first instruction Inst1 = (push %rbp) encoded from terms [push;%rbp]. Then,
we continue to process the remaining instructions, e.g., Nodes 2 and 3, until we
derive the final vector embedding (i.e., the signature vector) for the instruction
sequences of the given execution path.

Multi-class Classification for Function Mapping. Function mapping aims
to recognize the owner function (in static binary) of a given execution path
obtained from the dynamic trace. We consider each function as a class label,
different execution paths obtained from the function binary code as samples
of that class, and an execution path extracted from dynamic instruction trace
as the testing sample. Then, the mapping becomes a multi-class classification
problem, which is solved using Convolutional Neural Networks (CNN) in this
paper. We adopt the sentence classification model proposed in [9,33] for natural
language processing and train a multi-class classifier using CNN for function
mapping. Note that another line of work, such as tainting [19,31], can be used
for feature identification. We consider this as future work.

To obtain training samples for each class, we use CFG analysis to construct
different execution paths for each function identified in the binary code. More
precisely, once the function boundaries and bodies are recognized, we use a Depth
First Search (DFS) to traverse the static CFG of each function and construct
related execution path using a random walk.

4 Feature Tailoring

Feature tailoring creates customized software that consists of the desired features
and their constituent functions in accordance with user needs. It has to address
a number of challenges. First, a single execution trace may not reach all desired
features, requiring us to merge multiple outputs from feature identification. Sec-
ond, different features often share some common constituent functions. If the
goal of tailoring is to remove certain features, we need to identify and retain the
shared functions in the customized binary.

4.1 Feature Tailoring

Let F̂ be a set of target program features for tailoring. If the constituent func-
tions of each feature Fi ∈ F̂ can be successfully identified, we can simply create a
superset of their constituent functions, i.e., F̂ = ∪Fi. Two techniques are devel-
oped next to (i) create a customized program by retaining only the features in F̂
(e.g., if user only needs these features) and (ii) remove the features in F̂ from the
binary (e.g., if they are deemed as unnecessary or vulnerable). When F̂ cannot
be directly identified, we leverage set operations, including union, intersection,

314 H. Xue et al.

and subtraction, to construct F̂ from available feature combinations, in order to
fulfill feature tailoring.

Tailoring via Set Operations. When the target features’ constituent func-
tions F̂ are not directly identifiable, Hecate employs set operations including
union, intersection, and subtraction to compute F̂ from known feature combi-
nations. Union: A feature may contain multiple execution paths that cannot
be dumped and identified in a single execution. Hecate will collect traces from
different program executions to identify and compute the union of the related
feature-constituent functions. Intersection: A program may contain concurrent
features that cannot be identified separately from the available execution trace.
For instance, OpenSSL’s choosing cipher suite feature is always coupled with the
execution of encryption/hash functions in dynamic trace. To identify the con-
stituent functions of choosing cipher suite feature, we can take the intersection
of multiple executions with different choices of encryption/hash functions. Sub-
traction: This operation allows us to identify the unique constituent functions
of given features. So, we can safely remove them without affecting the soundness
of other features due to shared functions.

4.2 Binary Rewriting

We use feature tailoring to derive a set of functions to eliminate in program
binary. Simply replacing these function bodies with “NOP”s would not generate
a valid executable, because (i) some code segments in the eliminated function
body may be shared with other functions, and (ii) there may exist data segments
that are inserted into the eliminated functions and must be preserved.

To address these issues, Hecate utilizes a static binary rewriter, DynInst,
to modify the program binary by rewriting the binaries in basic blocks level in
the CFG. As DynInst is capable to abstract the program basic blocks in the
form of CFG. To remove the features in the programs, there are two steps in
Hecate. First, Hecate removes the functions that should not be called. The
call site of the eliminated functions will be replaced to redirect the program to

91.13%
96.28%

93.36% 94.28%
88.75%

93.14%
97.74% 95.61% 96.89%

90.88%

63.46%

83.39% 81.22%
78.70% 80.01%

0%

20%

40%

60%

80%

100%

polymorph man bzip2 thttpd openssl

A
cc
ur
ac
y

Classifier-O Classifier-L Classifier-S

Fig. 6. Accuracy of function mapping during feature identification

Hecate: Automated Customization of Program and Communication Features 315

exit point. Second, for those functions cannot be removed from the first step
(e.g., For indirect function calls, the address of the callee function cannot be
decided beforehand and can potentially lead to any other addresses), we replace
the rest of the function body with “NOP”. Furthermore, a verification process
is performed using program fuzzing approaches [32] by Hecate to validate the
effectiveness and correctness of feature tailoring.

5 Evaluation

5.1 Experiment Setup

Our experiments are conducted on a 2.80 GHz Intel Xeon(R) CPU E5-2680 20-
core server with 16 GByte of main memory. The operating system is Ubuntu
14.04 LTS.

Benchmarks. In our evaluation, we select three sets of real-world applications:
(i) Non-interactive applications including two applications from SPEC 2006
Benchmark suite [1], bzip2 and hmmer; two applications from a bug benchmark
suite bugbench [11], polymorph and man and (ii) Interactive applications includ-
ing a light-weight web server thttpd, version beta 2.23, an open source office
suite LibreOffice and a web browser links. (iii) An implementation of Transport
Layer Security (TLS) & Secure Sockets Layer (SSL) protocol, OpenSSL.

Dataset and Training. In our function mapping module, we collect static
execution paths as training dataset and dynamic execution paths as testing
dataset for evaluating the accuracy of the pre-trained models. We selected the
highest quality model and extracted the matrix of embeddings. We have observed
that a well trained function mapping model is with the hidden node size as 500 in
RNN and 200 maximum iterations for RAE, which is chosen as the parameters
of deep neural network in function mapping module.

5.2 Accuracy of Function Mapping

In this section, we evaluate the accuracy of the pre-trained function mapping
module in Hecate and presents the accuracy of five representative applications.
We construct the testing dataset as follows: We collect the dynamic instruction
traces for each identified function in the binary and perform the same random
walk process to generate execution paths as mentioned in Sect. 3.2. The test-
ing dataset size is controlled to be 30% as big as the training dataset We also
observed that due to the different amount of training data we can obtain from
different functions, the mapping accuracy will be higher if we split functions into
large and small categories, by using the median number of training data sam-
ple size. We trained three CNN classifiers for each application, one is trained

316 H. Xue et al.

cross all the functions as an overall classifier (Classifier-O), and the other two
are trained for large functions (Classifier-L) and small functions (Classifier-S)
respectively.

The function mapping accuracy is plotted in Fig. 6. We achieve an overall
average accuracy of 92.76%, with the highest up to 96.28% in man from bugbench.
In general, the mapping accuracy of larger programs, such as bzip2 and thttpd, is
higher than smaller programs like polymorph. Because the number of execution
traces used for training our CNN classifiers in those programs is much larger
than that in polymorph, there are 189,855 training execution paths in bzip2
comparing to 10,806 in polymorph). For the applications with more functions,
such as OpenSSL that has 4,023 functions, the overall accuracy can be as low
as 88.75% since there are more classes for classification. We also note that all
of the Classifier-Ls outperforms the Classifier-Os. For instance, in polymorph,
the accuracy of Classifier-L is 93.14% whereas the accuracy of Classifier-O is
91.13%. However, we observe that the accuracy for Classifier-S is lower than
Classifier-L. The reason is that functions trained in Classifier-Ss are relatively
small, with limited training data samples for classification. In particular, the
accuracy of Classifier-S is 63.46% for polymorph, which is the worst among all
the applications. We further analyzed and found that the median number of
training data size is 7 for polymorph, which means almost half of the functions
have only less than 7 training data samples. The lack of training data leads to a
bad performance for classification.

5.3 Impact on Program Security

We evaluate the impact of feature customization on program security here. As
shown previously, the reduction of code size also shrink the attack surface and
eliminate possible vulnerabilities in programs. We survey the known CVEs of dif-
ferent programs that can be removed by feature customization. For instance, in
OpenSSL, (i) the CVE-2014-0160, known as Heartbleed bug, can be eliminated
by removing the heartbeat extension; (ii) the CVE-2016-7054, which can lead to
DoS attack can be neutralized by removing *-CHACHA20-POLY1305 cipher-
suites; (iii) the CVE-2016-0701, which can cause information leakage, can be
negated by avoiding using DH ciphersuites; The CVE-2015-5212 in LibreOffice
(an integer underflow bug) can be removed by disabling the printer functionality
when users don’t need it.

In total, we found 101 CVEs in OpenSSL distributions during 2014–2017,
34 CVEs in LibreOffice, 13 CVEs in Thttpd and 9 CVEs in Bzip2. Not all
vulnerabilities can be disabled by our feature customization. Some vulnerabilities
are in the functions that are necessary for program execution. CVE-2010-0405
in Bzip2 is an integer overflow bug in function BZ2 decompress. In most of the
cases, decompression is a feature that users will not remove. The number and
ratio of program features that can be removed are shown in Table 1. We evaluate
the security impact of Hecate using the ratio of CVEs that can be removed by
feature customization.

Hecate: Automated Customization of Program and Communication Features 317

Table 1. Impact on Application and Communication security

Program # Removed CVEs % Features removed

OpenSSL (2014–2017) 45 44.6

LibreOffice 23 67.6

Thttpd 5 38.5

Bzip2 2 22.2

6 Related Work

Code Analysis and De-bloating: Several prior works have proposed program
customization frameworks only based one methods like de-bloating [7], cross-host
tainting [5] and so on. In terms of binary reuse, it has been studied by several
works [27,28]. The main challenge of reusing binary code is it only focuses on
reusing partial code in the program high-level assembly code. Some existing
works try to find memory-related vulnerabilities in source code or IR by direct
static analysis [20,21,29]. As such, the two approaches are quite complementary
and when combined together, can present an improved framework for eliminating
attack surfaces in programs.

Learning-Based Approach for Vulnerability Removal: Prior work has
studied bug/vulnerabilities removal using learning-based approaches. StatSym
[30] and SARRE [10] propose frameworks combining statistical and formal anal-
ysis for vulnerable path discovery. SIMBER [25] proposes a statistical inference
framework to eliminate redundant bound checks and improve the performance
of applications without sacrificing security.

7 Conclusion, Future Work and Opportunities

In this paper, we design and evaluate a binary customization framework Hecate,
that aims to generate customized program binaries with just-enough features
and can satisfy a broad array of customization demands. Feature identification
and feature tailoring are two major modules in Hecate, with the former one
discovering the target features using both static code and execution traces, and
the latter one modifying the features to reconstruct a customized program. Our
experiment results demonstrate that Hecate is able to identify features with
the highest accuracy up to 96.28% and reduce the attack surface by up to 67%.

Generating test cases to cover all corner cases of a feature is a challenging
problem in general. To deal with this problem, we note that some approaches,
such as fuzzing techniques [18], can be useful. As reported in Sect. 5, our deep
learning-based function mapping model achieves an average accuracy of 92.7%.
However, we could increase the training data size by collecting the dynamic
execution paths and use related machine learning optimization like cross-
validation to split small data set [16] for further performance improvements.

318 H. Xue et al.

Moreover, more complex deep learning algorithms can be further tested, such
as bi-directional RNN and long-short-term memory (LSTM), which have been
proven a better performance for modeling longer sequential information. We will
consider the above concerns as our future work.

Acknowledgments. This work was supported by the US Office of Naval Research
(ONR) under Awards N00014-15-1-2210 and N00014-17-1-2786. Any opinions, findings,
conclusions, or recommendations expressed in this article are those of the authors, and
do not necessarily reflect those of ONR.

References

1. SPEC CPU (2006). https://www.spec.org/cpu2006/
2. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI

(2016)
3. Bao, T., Burket, J., Woo, M., Turner, R., Brumley, D.: BYTEWEIGHT: learning

to recognize functions in binary code. In: USENIX (2014)
4. Bishop, C.M.: Machine Learning and Pattern Recognition. Information Science

and Statistics. Springer, Heidelberg (2006)
5. Chen, Y., Sun, S., Lan, T., Venkataramani, G.: TOSS: tailoring online server sys-

tems through binary feature customization. In: FEAST Workshop (2018)
6. Harris, L.C., Miller, B.P.: Practical analysis of stripped binary code. ACM

SIGARCH Comput. Archit. News 33, 63–68 (2005)
7. Jiang, Y., Wu, D., Liu, P.: JRed: program customization and bloatware mitigation

based on static analysis. In: IEEE Computer Software and Applications Conference
(2016)

8. Jiang, Y., Zhang, C., Wu, D., Liu, P.: Feature-based software customization: pre-
liminary analysis, formalization, and methods. In: High Assurance Systems Engi-
neering (2016)

9. Kim, Y.: Convolutional neural networks for sentence classification (2014). arXiv
preprint arXiv:1408.5882

10. Li, Y., Yao, F., Lan, T., Venkataramani, G.: SARRE: semantics-aware rule recom-
mendation and enforcement for event paths on android. IEEE Trans. Inf. Forensics
Secur. 11(12), 2748–2762 (2016)

11. Lu, S., Li, Z., Qin, F., Tan, L., Zhou, P., Zhou, Y.: Bugbench: benchmarks for
evaluating bug detection tools. In: Workshop on the Evaluation of Software Defect
Detection Tools (2005)

12. Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., Khudanpur, S.: Recurrent
neural network based language model. In: Annual Conference of the International
Speech Communication Association (2010)

13. Mikolov, T., Kombrink, S., Deoras, A., Burget, L., Cernocky, J.: RNNLM-recurrent
neural network language modeling toolkit. In: ASRU Workshop (2011)

14. Ming, J., Xu, D., Jiang, Y., Wu, D.: BinSim: trace-based semantic binary diffing
via system call sliced segment equivalence checking. In: USENIX Security (2017)

15. Oh, J., Hughes, C.J., Venkataramani, G., Prvulovic, M.: LIME: a framework for
debugging load imbalance in multi-threaded execution. In: Proceedings of the 33rd
International Conference on Software Engineering. ACM (2011)

16. Smith, G.C., Seaman, S.R., Wood, A.M., Royston, P., White, I.R.: Correcting for
optimistic prediction in small data sets. Am. J. Epidemiol. 180(3), 318–324 (2014)

https://www.spec.org/cpu2006/
http://arxiv.org/abs/1408.5882

Hecate: Automated Customization of Program and Communication Features 319

17. Open-Source: LibreOffice
18. Stephens, N., et al.: Driller: augmenting fuzzing through selective symbolic execu-

tion. In: NDSS (2016)
19. Venkataramani, G., Doudalis, I., Solihin, Y., Prvulovic, M.: FlexiTaint: a pro-

grammable accelerator for dynamic taint propagation. In: IEEE International Sym-
posium on High Performance Computer Architecture (2008)

20. Venkataramani, G., Doudalis, I., Solihin, Y., Prvulovic, M.: Memtracker: an accel-
erator for memory debugging and monitoring. ACM Trans. Archit. Code Optim.
(TACO) 6(2), 5 (2009)

21. Venkataramani, G., Hughes, C.J., Kumar, S., Prvulovic, M.: DeFT: design space
exploration for on-the-fly detection of coherence misses. ACM Trans. Archit. Code
Optim. (TACO) 8(2), 8 (2011)

22. Viega, J., Messier, M., Chandra, P.: Network Security with OpenSSL: Cryptogra-
phy for Secure Communications. O’Reilly Media Inc., Cambridge (2002)

23. White, M., Tufano, M., Vendome, C., Poshyvanyk, D.: Deep learning code frag-
ments for code clone detection. In: IEEE/ACM International Conference on Auto-
mated Software Engineering (2016)

24. Xue, H., Chen, Y., Venkataramani, G., Lan, T., Jin, G., Li, J.: MORPH: enhancing
system security through interactive customization of application and communica-
tion protocol features. In: Poster in ACM Conference on Computer and Commu-
nications Security (2018)

25. Xue, H., Chen, Y., Yao, F., Li, Y., Lan, T., Venkataramani, G.: SIMBER: elimi-
nating redundant memory bound checks via statistical inference. In: De Capitani
di Vimercati, S., Martinelli, F. (eds.) SEC 2017. IAICT, vol. 502, pp. 413–426.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58469-0 28

26. Xue, H., Sun, S., Venkataramani, G., Lan, T.: Machine learning-based analysis of
program binaries: a comprehensive study. IEEE Access 7, 65889–65912 (2019)

27. Xue, H., Venkataramani, G., Lan, T.: Clone-hunter: accelerated bound checks elim-
ination via binary code clone detection. In: ACM SIGPLAN International Work-
shop on Machine Learning and Programming Languages (2018)

28. Xue, H., Venkataramani, G., Lan, T.: Clone-slicer: detecting domain specific binary
code clones through program slicing. In: FEAST Workshop. ACM (2018)

29. Yao, F., Chen, J., Venkataramani, G.: JOP-alarm: detecting jump-oriented
programming-based anomalies in applications. In: IEEE 31st International Con-
ference on Computer Design (ICCD). IEEE (2013)

30. Yao, F., Li, Y., Chen, Y., Xue, H., Lan, T., Venkataramani, G.: StatSym: vulner-
able path discovery through statistics-guided symbolic execution. In: Dependable
Systems and Networks (DSN) (2017)

31. Yao, F., Venkataramani, G., Doroslovački, M.: Covert timing channels exploiting
non-uniform memory access based architectures. In: Great Lakes Symposium on
VLSI. ACM (2017)

32. Zalewski, M.: American fuzzy lop (2007)
33. Zhang, K., et al.: Personal attributes extraction based on the combination of trigger

words, dictionary and rules. In: Proceedings of the Third CIPS-SIGHAN Joint
Conference on Chinese Language Processing, pp. 114–119 (2014)

https://doi.org/10.1007/978-3-319-58469-0_28

Phish-Hook: Detecting Phishing
Certificates Using Certificate

Transparency Logs

Edona Fasllija1(B), Hasan Ferit Enişer2, and Bernd Prünster3

1 A-SIT Secure Information Technology Center Austria, Graz, Austria
edona.fasllija@a-sit.at

2 Computer Engineering Department, Bogazici University, Istanbul, Turkey
hasan.eniser@boun.edu.tr

3 Institute of Applied Information Processing and Communications,
Graz University of Technology, Graz, Austria

bernd.pruenster@iaik.tugraz.at

Abstract. Certificate misissuance is a growing issue in the context of
phishing attacks, as it leads inexperienced users to further trust fraud-
ulent websites, if they are equipped with a technically valid certifi-
cate. Certificate Transparency (CT) aims at increasing the visibility of
such malicious actions by requiring certificate authorities (CAs) to log
every certificate they issue in public, tamper-proof, append-only logs.
This work introduces Phish-Hook, a novel approach towards detecting
phishing websites based on machine learning. Phish-Hook analyses cer-
tificates submitted to the CT system based on a conceptually simple,
well-understood classification mechanism to effectively attest the phish-
ing likelihood of newly issued certificates. Phish-Hook relies solely on
CT log data and foregoes intricate analyses of websites’ source code and
traffic. As a consequence, we are able to provide classification results in
near real-time and in a resource-efficient way. Our approach advances the
state of the art by classifying websites according to five different incre-
mental certificate risk labels, instead of assigning a binary label. Evalu-
ation results demonstrate the effectiveness of our approach, achieving a
success rate of over 90%, while requiring fewer, less complex input data,
and delivering results in near real-time.

Keywords: TLS · Certificate Transparency · CA · Certificate
misissuance · Machine learning · Phishing detection

1 Introduction

Transport Layer Security (TLS) [18], critically relies on certificate authorities
(CAs) as trust anchors. A series of security incidents related to either compro-
mised CAs or poor CA certification practices have shown that this high degree

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 320–334, 2019.

https://doi.org/10.1007/978-3-030-37231-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_18&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_18

Phishing Detection with Certificate Transparency 321

of trust put into certificate authorities was, at times, misplaced. A prominent
example is the incident related to the compromised Dutch CA DigiNotar [10]
where attackers managed to issue TLS certificates for fake websites imperson-
ating Gmail and Facebook. Similar incidents occurred with a Malaysian sub-
ordinate CA DigiCert Sdn. Bhd. and the large U.S.-based CA TrustWave [13].
Events like these challenge the conceptually simple trust model the current TLS
public key infrastructure (PKI) system is based on.

Moreover, the popularity of free and automated TLS certificates by com-
panies like Let’s Encrypt and Cloudflare has led to a massive surge in the use
of automatically-issued certificates on phishing sites. A recent statistical report
from PhishLab [23] indicates that 49% of phishing sites were using HTTPS in
the third quarter of 2018. This percentage has rapidly increased from 25% just
one year ago, and from 35% in the second quarter of 2018. Current security
mechanisms in browsers fail at detecting fraudulent websites if they are pro-
visioned with mistakenly or maliciously issued certificates that are technically
valid. Furthermore, when such a misissuance happens, it can take weeks or even
months until the suspect certificates are detected and revoked. This window of
vulnerability gives malicious actors plenty of time to do damage.

Google responded to the need for auditing the web’s PKI system by imple-
menting Certificate Transparency (CT) [13]—an open and public framework that
audits and monitors TLS certificates in near real-time. CT publicly records TLS
certificates in append-only logs as they are issued, in a way that enables anyone
to audit a CA’s activity and notice the issuance of suspect certificates for the
domains they own. The instant visibility of newly issued certificates can signifi-
cantly reduce the amount of time needed until a malicious site or CA misconduct
can be detected.

Our main research contribution is an effective mechanism that detects phish-
ing websites in near real-time by leveraging machine learning techniques to eval-
uate CT logs. We identify eight features and build a classification model that
is able to utilize different algorithms to maximize fraud detection rates. This
model is trained and evaluated on real data and accounts for the asymmetric
distribution between legitimate websites and phishing sites for broad real-world
applicability.

This paper is organized as follows: Sect. 2 summarizes the fundamental prin-
ciples of the web’s PKI, TLS certificates, Certificate Transparency, and covers
phishing techniques. Section 3 describes previous research done on the topic.
Section 4 delves into the design and the properties of Phish-Hook, our machine-
learning-based phishing detection approach. Sect. 5 focuses on the evaluation of
our approach and reports on our model’s performance based on different classi-
fication models. Section 6 finally concludes this work and elaborates on possible
future work directions.

2 Background

Confidentiality and integrity of web traffic are ensured using the HTTPS protocol
and the supporting public key infrastructure. During the setup of a TLS channel

322 E. Fasllija et al.

and its underlying TCP connection, a client is required to authenticate a server
by validating its certificate. A website is successfully authenticated if it uses a
certificate that has not expired (and has not been revoked) and if a certificate
chain can be built up to one of the certificate authorities present in the browser’s
trusted CA list.

The web’s current PKI system allows any trusted CA, or intermediate CA,
to issue certificates for any subject identity. This assumption of trustworthy
CAs introduces a vulnerability to attacks based on improperly issued certificates,
either as a result of CA compromise, negligence, errors, or even malicious behav-
ior. The following section explains how this can be exploited to enable phishing,
while Sect. 2.2 explains the reasoning behind utilizing Certificate Transparency
as a promising building block in the fight against fraud.

2.1 Phishing Attacks

Malicious actors use several ways to trick users into visiting a website with a
domain name similar to that of a legitimate website. Examples include typo-
squatting [21], homoglyph (name spoofing) attacks [5], or incorporating a legit-
imate domain as a prefix, inner part, or suffix, as explained below.

Considering the domain phish-hook.com, a typo-squatting attack would
try to register domains by incorrectly spelling the domain name such as
phihs-hook.com or phish-hok.com. On the other hand, homoglyphic attacks
rely on character substitution using look-alike glyphs from the Unicode sets to
create fake domain names that are nearly indistinguishable from real ones to
the naked eye. A quick look at the confusables file [6] published by the Unicode
consortium, reveals that just for the character i in phish-hook, up to 41 look-
alike glyphs exist that can be utilized by attackers to produce examples such as
phish-hook.com, phish-hook.com, or phi sh-hook.com.

In addition, domains such as www-phish-hook.com, login-phish-hook.com,
and www.phish-hook.com.malicious.fakedomain.name can be built by incor-
porating the legitimate domain name into a longer domain. More details on
these techniques are provided in Sect. 4.2, where we explain how features were
extracted from the certificates present in CT logs as part of our solution. The
following section provides an overview of Certificate Transparency and the moti-
vation behind the system’s design.

2.2 Certificate Transparency

Certificate Transparency (CT) provides visibility of newly issued certificates and
CA operations. This open framework monitors and audits TLS certificates by
complementing the TLS ecosystem with three main components: Certificate
Logs, Monitors, and Auditors. Certificate log servers maintain cryptographi-
cally assured, append-only logs of issued certificates. Monitor servers periodi-
cally check these logs to determine whether an illegitimate certificate has been
issued for a particular domain. Auditors check whether logs are cryptographically
consistent and whether a particular certificate is registered in the logs.

Phishing Detection with Certificate Transparency 323

The strength of the framework stems from the append-only,
cryptographically-assured nature of the logs. On a technical level, this is accom-
plished by relying on a Merkle Tree (a data structure made up of linked crypto-
graphic hashes [14]). This ensures that back-dated certificates cannot be inserted
into the log, and added certificates cannot be edited or deleted afterward. In the
CT-augmented certificate issuance process, a CA submits a newly-issued certifi-
cate to the log, and is provided with a Signed Certificate Timestamp (SCT)—a
proof of inclusion to the log—in return. The SCT can be added to a certificate
either as an X.509v3 certificate extension, a TLS extension or during the hand-
shake as part of OCSP stapling [13]. This enables clients to verify whether the
SCT was provided by a trusted CT log by validating its signature and eventually
deciding on whether to accept a certificate as valid or not according to their CT
policy.

The following section elaborates on how machine learning has been used in
the past to detect fraudulent websites. It summarises both work conducted prior
to the introduction of CT and works already leveraging CT.

3 Related Work

One of the earliest proposals for using machine learning to detect phishing web-
sites based on certificates was published by Mishari et al. [15]. The authors
crawled certificates of both legitimate and phishing websites and used them to
build a classifier based on, amongst others, features either directly extracted or
computed from certain X.509 certificate fields. Their proposal was the first to
showcase the potential of using certificate information beyond client-side server
authentication to identify fraudulent websites that use HTTPS.

In another more recent effort, Dong et al. [8] propose to employ Deep Neural
Networks (DNNs) to identify potentially rogue certificates (and eventually CA
misconduct) in a timely manner using features extracted from standard X.509
certificates. The authors additionally address the dataset imbalance (between
rogue vs. benign certificate sets) by generating artificial rogue certificates.

Similar to the work by Dong et al. [8], Torroledo et al. [22] propose to use
DNNs to detect malicious use of TLS certificates. The authors perform a detailed
feature engineering and identify more than thirty features to classify malicious
websites. Results indicate that their system can detect malware certificates and
phishing certificates with an accuracy of a 94.8% and 88.6%, respectively.

Ghafir et al. [9] investigate the problem of malicious certificate detection as
means to defend against advanced persistent threats (APTs). They base their
proposal to detect APT command and control (C&C) communications on a
blacklist of three certificate fields, namely SHA-1 fingerprints, serial and sub-
ject. The module they propose analyses network traffic, filters secure communi-
cations and matches certificates that were used in these communications to the
certificates in the blacklist.

Kumar et al. [12] construct a certificate linter that checks certificates in the
wild for compliance to the CA/Browser Forum Baseline Requirements [3] and

324 E. Fasllija et al.

RFC5280 [7]. Their findings indicate that the certificate misissuance rate has
dramatically dropped since 2017 (down to 0.02%). Nonetheless, authors propose
an alternative way to make CA operations auditable and showcase how their
linter can be harnessed to identify poor CA practices.

It was not until very recently that CT was envisioned as a potential data
source for the detection of suspicious phishing domains. In 2018, companies like
Facebook1 and SSL Mate’s Certspotter2 started offering notification services
about suspiciously issued certificates to subscribing domain owners based on CT
log monitoring. Nonetheless, their approaches to solving the phishing detection
problem are not disclosed nor analysed for efficacy or accuracy.

Finally, Scheitle et al. [19] conducted a pilot experiment in order to gain
insights about the viability of using CT logs as phishing detection source. The
authors employ regular expression matching to find potential phishing domains
by means of CT. They observe that most phishing domains are constructed by
combining fully qualified domains (FQDN) of popular legitimate target domains.
Their paper aims at investigating variant implications that CT has had on the
Internet ecosystem and is not focused solely on phishing detection. They do
not employ any automated machine-learning based detection mechanism, but
rather base their phishing detection approach on regular expression matching
and visual inspection. They conclude that CT being used as data source for
phishing detection opens a promising new research direction.

We bring this idea forward by using CT logs as source for valuable data to
train and validate a classifier that predicts the phishing likelihood of certificates
submitted to the logs. We automate the phishing detection process by utilising
machine learning algorithms and employing a heuristics based scoring methodol-
ogy to assign five different phishing scores. In contrast to other machine-learning-
based approaches summarized in this section, we do not require downloading a
large set of certificates, but collect and label the data needed while streaming
certificate updates from the CT logs. By applying our classifier to certificates
newly submitted to the CT logs, we can detect phishing attempts in near real
time and dramatically reduce the window of vulnerability for such attacks.

4 Phish-Hook

We propose the idea of using CT logs as the sole data source for phishing detec-
tion by presenting a machine-learning-based solution called Phish-Hook. Com-
pared to other contributions discussed in Sect. 3, we do not require to download
and parse the certificates of corresponding websites, nor do we use extra features
from the websites’ source code or monitor traffic. As we will show in Sect. 5, this
approach delivers highly accurate results based on directly applying machine
learning techniques to certificates. This phishing detection system is composed
of three main components: namely the Certificate Collector, the Feature Extrac-
tor, and the Classifier. The CT logs feed the Certificate Collector, which in

1 https://developers.facebook.com/tools/ct/subscriptions/.
2 https://sslmate.com/certspotter/.

https://developers.facebook.com/tools/ct/subscriptions/
https://sslmate.com/certspotter/

Phishing Detection with Certificate Transparency 325

Fig. 1. Phish-Hook system components

turn passes the parsed CT logs to the Feature Extractor component. The set of
attributes generated from the Feature Extractor is finally used to train our Clas-
sifier model. New certificates streamed from the CT logs are then fed into the
trained Classifier to be classified into on of five incremental phishing likelihood
scores. Figure 1 provides an illustration of Phish-Hook’s main components.

The following section describes the data collection methodology, while
Sect. 4.2 elaborates on the extraction of certificate features, and Sect. 4.4 dis-
cusses the algorithms used to train the Classifier ’s model.

4.1 Data Collection

Given our aspiration of directly leveraging the CT logs to build the classifier
model, we built our own training dataset and used the CertStream3 open-source
library to interact with the CT network and aggregate CT log data. The Struc-
ture of the parsed CT logs is shown in Listing 1:

Listing 1. Parsed Certificate Log Update Entry

1 {"message_type": "certificate_update",

2 "data": {

3 "update_type": "X509LogEntry",

4 "leaf_cert": {...

5 "subject": {

6 "aggregated" : "/CN=phish-hook.com",

7 "C": null,

8 "ST": null,

9 "L": null,

10 "O": null,

11 "OU": null,

12 "CN": "phish-hook.com"

13 },

14 ...

15 "all domains" :

16 [

17 "login.phish-hook.com"

18 "phish-hook.com"]

19 },

20 "chain": [{

21 "subject": {

22 "aggregated" : "/C=US/O=Let’s Encrypt/CN=Let’s Encrypt Authority X3",

23 "C": "US",

24 "ST": null,

25 "L": null,

26 "O": "Let’s Encrypt",

27 "OU": null,

28 "CN": "Let’s Encrypt Authority X3"},

29 ...],

30 "cert_index": 27910635, }}}

3 https://medium.com/cali-dog-security/introducing-certstream-3fc13bb98067.

https://medium.com/cali-dog-security/introducing-certstream-3fc13bb98067

326 E. Fasllija et al.

The following section provides details on the features used to train our clas-
sifier model extracted from certificate updates submitted to CT logs.

4.2 Feature Selection

Certificate Transparency augments raw certificate data with time as another
dimension. Our contribution is rooted in the assumption that small amounts
of highly characteristic data are meaningful enough to enable classification of
phishing sites based on a relatively simple machine learning model. In con-
trast to related work on this sector, our solution thus employs only a compara-
tively small set of features and still delivers highly accurate results. In addition,
Phish-Hook evaluates features directly from the parsed CT log entries without
requiring to download the respective certificates. On a technical level, the data
points were extracted from the CT log entry fields representing domain names
([data][leaf cert][subject][aggregated] and [data][all domains]) and
the certificate issuer fields ([chain][subject][aggregated]) of each certificate
update entry.

As existing data indicating which features are relevant when it comes to
detecting phishing websites from CT log entries is hard to come by, we aggregated
and analyzed reports on phishing in general. Based on this, we derived the
following feature set:

F1 small levenshtein distance. Section 2 summarized some of the most com-
mon techniques utilised by attackers to generate misleading domain names for
phishing attacks, such as typosquatting, homograph attacks, etc. Our first fea-
ture is based on this, and on further observations made by Scheitle et al. [19]
suggesting that the majority of phishing website certificates registered in the
CT logs is constructed by incorporating domain names of popular legitimate
domains. The value of F1 is assigned by calculating the Levenshtein Distance—a
measure of similarity between two strings—of sub-words of the domain registered
with the certificate to suspicious popular keywords (for example: phish-hook vs
phish hook). Table 1 summarizes the popular keywords that were used in order
to calculate F1. In case the computed distance to the keywords is below a certain
threshold, we consider this an indicator of suspiciousness.

F2 deeply nested subdomains. We consider domain names with unusually
long subdomains such as www.phish-hook.com.security.account-update.gq
to be an indicator of suspiciousness. Similar domains have been widely used by
attackers to impersonate legitimate websites by hiding the primary domain in
deeply nested subdomains. These attacks particularly target small devices such
as tablets or mobile phones that can not display the full (long) domain at once.

F3 issued from free CA. Section 1 already pointed out that HTTPS phishing
has been increasing significantly in the past couple of years and is about to
become prevalent. The ubiquity of automated, fast, and free certificates has
given both good and bad actors the advantage of easily obtaining a SSL/TLS

Phishing Detection with Certificate Transparency 327

certificate for their websites. The problem actually does not lie on the free and
automated certificate issuance itself, but on the ongoing debate on which actors
of the Internet ecosystem have the responsibility of policing the content of nature
of websites. In one of their position papers [1], Let’s Encrypt disagrees that it is
a CA’s responsibility to check for malicious or phishing content at the level of
domain validated certificates. They instead prefer to delegate this responsibility
to services such as Google Safe Browsing or Microsoft SmartScreen. Additional
reports [16] ranking such free CAs in top positions with respect to the number
of phishing certificates blocked led us to consider certificates obtained from free
CAs as a potential indicator of suspiciousness.

F4 suspicious tld. Unlike the other lower level domains that can be generally
reserved by domain owners, top-level domains are generally prominent domains
such as .com,.net, .edu or .org that end users are familiar with. Malicious
actors often target these top-level domains in their attempt to create mali-
cious sites. The low cost at which a large number of newly added TLDs is
available makes certain TLDs more popular amongst attackers. Based on obser-
vations made from available reports [20] on most abused TLDs, we consider
top-level domains such as .ga’, ’.gdn’,’.bid’’.country’,’.kim’, etc. that
were widely adopted for phishing purposes as suspicious. The complete list of
the TLDs considered can be found in Table 1.

F5 inner tld in subdomain. Attackers may include popular top-level domains
(such as ‘org’, ‘com’, or ‘net’) in the inner domain in order to mislead users that
are familiar with them into trusting a fraudulent website. The presence of such
a TLD in an inner sub-domain is therefore considered suspicious.

F6 suspicious keywords. Another well-known phishing technique is the inclu-
sion of popular keywords from famous applications of social media, commerce, or
cryptocurrency in a domain name. We therefore check whether each CT certifi-
cate update entry contains one of the keywords present in Table 1, and consider
a match suspicious.

F7 high shannon entropy. F7 aims to detect algorithmically generated mali-
cious domain names in particular. This feature lays its foundation on the obser-
vation that these domain names differ significantly in terms of randomness when
compared to human generated domains. In order to do so, we calculate the Shan-
non entropy—i.e. degree of randomness—of the domain a certificate was issued
for. An unusually high entropy may then serve as indicator for maliciously issued
certificates from attackers.

F8 hyphens in subdomain. F8 is similar to F2, but instead of checking for the
presence of multiple periods (‘.’), we check for the presence of multiple hyphens
(‘-’) in the sub-domain, as both of these characters can be used to attach pop-
ular keywords of legitimate domains to generate malicious ones. Hence, for F8,
we consider an unusually high number of hyphens an indicator of a suspicious
website.

328 E. Fasllija et al.

T
a
b
le

1
.
S
u
sp

ic
io

u
s

k
ey

w
o
rd

s
a
n
d

T
L
D

s
[2

4
]

G
e
n
e
ri

c
A

p
p
le

E
m

a
il

C
ry

p
to

c
u
rr

e
n
c
y

S
o
c
ia

l

m
e
d
ia

F
in

a
n
c
ia

l
E

-c
o
m

m
e
rc

e
O

th
e
r

T
L
D

s
M

is
c
.

a
c
ti

v
it
y

o
ffi

c
e

a
p
p
le

id
o
u
tl

o
o
k

p
o
lo

n
ie

x
fa

c
e
b
o
o
k

m
o
n
e
y
g
ra

m
o
v
e
rs

to
ck

sk
y
p
e

‘.
b
a
n
k
’

‘.
o
n
li
n
e
’

.c
o
m

-

a
le

rt
o
n
li
n
e

ic
lo

u
d

o
ffi

c
e
3
6
5

c
o
in

h
iv

e
tu

m
b
lr

w
e
st

e
rn

u
n
io

n
a
li
b
a
b
a

g
it

h
u
b

‘.
b
u
si

n
e
ss

’
‘.
p
a
rt

y
’

-c
o
m

.

p
u
rc

h
a
se

re
c
o
v
e
r

if
o
rg

o
t

m
ic

ro
so

ft
b
it

h
u
m

b
re

d
d
it

b
a
n
k
o
fa

m
e
ri

c
a

a
li
e
x
p
re

ss
‘.
c
c
’

‘.
p
w

’
.n

e
t-

a
u
th

e
n
ti

c
a
ti

o
n

sa
fe

it
u
n
e
s

w
in

d
o
w

s
k
ra

k
e
n

y
o
u
tu

b
e

w
e
ll
sf

a
rg

o
le

b
o
n
c
o
in

‘.
c
e
n
te

r’
‘.
ra

c
in

g
’

.o
rg

-

a
u
th

o
ri

z
e

se
c
u
re

a
p
p
le

p
ro

to
n
m

a
il

lo
c
a
lb

it
c
o
in

tw
it

te
r

p
a
y
p
a
l

a
m

a
z
o
n

n
e
tfl

ix
‘.
c
f’

‘.
re

n
’

c
g
i-
b
in

b
il
l

se
c
u
ri

ty
tu

ta
n
o
ta

b
it

st
a
m

p
li
n
k
e
d
in

c
it

ig
ro

u
p

‘.
c
li
ck

’
‘.
re

v
ie

w
’

.c
o
m

-

c
li
e
n
t

se
rv

ic
e

h
o
tm

a
il

b
it

tr
e
x

in
st

a
g
ra

m
sa

n
ta

n
d
e
r

‘.
c
lu

b
’

‘.
sc

ie
n
c
e
’

.n
e
t.

su
p
p
o
rt

tr
a
n
sa

c
ti

o
n

g
m

a
il

b
lo

ck
ch

a
in

fl
ic

k
r

m
o
rg

a
n
st

a
n
le

y
‘.
c
o
u
n
tr

y
’

‘.
st

re
a
m

’
.o

rg
.

u
n
lo

ck
u
p
d
a
te

g
o
o
g
le

b
it

fl
y
e
r

w
h
a
ts

a
p
p

b
a
rc

la
y
s

‘.
d
o
w

n
lo

a
d
’

‘.
st

u
d
y
’

.c
o
m

.

w
a
ll
e
t

a
c
c
o
u
n
t

o
u
tl

o
o
k

c
o
in

b
a
se

h
sb

c
‘.
g
a
’

‘.
su

p
p
o
rt

’
.g

o
v
-

fo
rm

lo
g
in

y
a
h
o
o

h
it

b
tc

sc
o
tt

ra
d
e

‘.
g
b
’

‘.
te

ch
’

.g
o
v
.

lo
g
-i
n

p
a
ss

w
o
rd

,
g
o
o
g
le

la
k
e
b
tc

a
m

e
ri

tr
a
d
e

‘.
g
d
n
’

‘.
tk

’
.g

o
u
v
-

li
v
e

si
g
n
in

y
a
n
d
e
x

b
it

fi
n
e
x

m
e
ri

ll
e
d
g
e

‘.
g
q
’

‘.
to

p
’

-g
o
u
v
-

m
a
n
a
g
e

si
g
n
-i
n

b
it

c
o
n
n
e
c
t

b
a
n
k

‘.
in

fo
’

‘.
v
ip

’
.g

o
u
v
.

v
e
ri

fi
c
a
ti

o
n

v
e
ri

fy
c
o
in

sb
a
n
k

‘.
k
im

’
‘.
w

in
’

w
e
b
sc

r
in

v
o
ic

e
‘.
lo

a
n
’

‘.
w

o
rk

’

a
u
th

e
n
ti

c
a
te

c
o
n
fi
rm

‘.
m

e
n
’

‘.
x
in

’

c
re

d
e
n
ti

a
l

c
u
st

o
m

e
r

‘.
m

l’
‘.
x
y
z
’

‘.
m

o
m

’

Phishing Detection with Certificate Transparency 329

4.3 Classification Workflow

In a nutshell, our system works as follows: We stream certificate updates from
CT logs, while simultaneously labelling the data for each feature. We also employ
a heuristic methodology to compute a total phishing likelihood score according
to the presence or absence of a feature, or the computed value of a feature. We
use this overall score to classify the certificate and assign the resulting feature
called phishing likelihood category out of five different categories, namely
legitimate, potential, likely, suspicious, and highly-suspicious.

4.4 Learning Phase

This section goes into the details of the training phase. After collecting and
labelling the data from CT, we employ supervised learning algorithms to train
several classifier models in order to predict a certificate’s phishing likelihood.

One challenge was having imbalanced classes: The number of phishing web-
sites recorded publicly in CT logs is much smaller than the number of legitimate
websites. Thus, collecting the dataset from CT logs results in a very small number
of datapoints labelled as phishing compared to the number of datapoints labelled
as legitimate. To give an idea of the imbalance in the data: in a dataset of approx-
imately 600000 datapoints, the number of highly-suspicious, suspicious, likely,
potential and legitimate instances are 223, 230, 251, 719 and 602676, respectively.
This situation is referred to as imbalanced classes problem [11] and is a common
phenomenon in phishing detection-related learning processes.

Oversampling or undersampling techniques are potential countermeasures to
overcome this challenge. We employ SMOTE (Synthetic Minority Over-sampling
Technique) [4] and random undersampling to address the challenge presented
by the imbalanced classes problem. We chose to oversample highly-suspicious,
suspicious, likely and potential classes and undersample legitimate instances,
resulting with a much more balanced dataset.

5 Evaluation

This section describes how Phish-Hook was evaluated and discusses the obtained
results. It compares different key performance measures of our system against
existing work and clearly illustrates that our work presents a significant step
forward towards phishing detection. Most importantly, our system achieves its
results in near real-time based on a small set of only eight features and a simple
machine learning model. This not only makes it possible to react to phishing sites
as soon as they emerge, but also enables debugging and presenting the decision-
making process in a humanly-comprehensible manner. As our system relies on
traditional machine learning approaches, training and classification outperform
Deep Neural Networks in the time domain.

The following section describes the test setup and how we trained and eval-
uated our model based on an existing, pre-classified data set. Section 5.2 then

330 E. Fasllija et al.

establishes which metrics we used to measure the performance of Phish-Hook,
while Sect. 5.3 pits different classifiers against each other to evaluate which one
is best suited for the task at hand.

5.1 Training Dataset

To evaluate the performance of Phish-Hook, we made use of the pre-classified
phishing detection dataset publicly available under the UCI Machine Learn-
ing Repository [2]. This dataset consists of 11055 data points with 30 features.
Part of the features correspond directly to X.509 certificate fields, while oth-
ers are derived from certificates fields and/or website source code. Each feature
takes a ternary value of [−1, 0, 1] representing phishing, suspicious, and legitimate
respectively. Unlike features, result labels can take only two values: phishing and
legitimate.

This data set and the classification process do not account for CT log data.
However, our small set of simple features can be modelled as a subset of it
and thus aligns well with the pre-classified data to provide a ground truth. This
works because CT log data overlaps with the features present in the UCI Machine
Learning Repository dataset. The following section briefly presents the metrics
used for the evaluation process.

5.2 Metrics

In machine learning, classification is defined as the problem of assigning a new
observation to one category, based on a training set of data containing obser-
vations (or instances) whose category membership is known. In our case, we
basically want to predict if a website is legitimate or not.

The most basic metric used to quantify the performance of a classifier is
accuracy, i.e. the ratio of the number of correct predictions to the total pre-
dictions made. In problems with (highly) imbalanced classes, however, accuracy
can easily be boosted by always outputting the category of the largest class.
Consequently, accuracy is inadequate on its own as a performance measure and
additional metrics such as precision, recall and the so-called F1 score (see Eq. 3)
are typically used to measure the true aptitude of a classifier.

Precision and Recall are calculated according to Eqs. 1 and 2, with tp, fp,
and fn denoting the number of correctly identified instances, the number of
incorrectly identified instances, and the number of incorrectly rejected instances
respectively:

Precision =
tp

tp + fp
(1)

Recall =
tp

tp + fn
(2)

F1 score =
2 ×Recall × Precision

Recall + Precision
(3)

Phishing Detection with Certificate Transparency 331

Table 2. Classification results

Parameters Accuracy Precision Recall F1 score

DT max depth = 2 91.06 91.12 91.06 91.07

max depth = 5 91.42 91.46 91.42 91.39

max depth = 10 89.39 89.44 89.39 89.40

SVM kernel = ‘linear’

C = 0.03 91.62 91.68 91.62 91.58

kernel = ‘linear’

C = 0.3 91.29 91.37 91.29 91.25

kernel = ‘linear’

C = 1 91.39 91.45 91.39 91.35

KNN k = 1 86.41 86.40 86.41 86.37

k = 3 86.38 86.40 86.38 86.32

k = 10 87.23 87.23 87.23 87.19

MLP network size = 3 × 5 90.08 90.16 90.08 90.03

network size = 5 × 10 89.55 89.94 89.55 89.44

network size = 1 × 100 89.06 89.63 89.06 88.92

All of these scores apply to binary classification problems, which matches the
UCI Machine Learning Repository dataset. Our solution, on the other hand,
introduces a granular metric, classifying websites in one of five categories in
the range of [legitimate, potential, likely, suspicious, highly-suspicious].
In order to evaluate our results against the pre-classified data, we introduced
suspicious as the threshold for classifying a certificate to be issued for a phishing
website. The following section presents the classification performance of Phish-
Hook based on different classifiers.

5.3 Results

Although Deep Neural Networks are currently hailed as an almost universal solu-
tion (not only) to classification problems, we have intentionally focused our work
on classical machine learning approaches for reasons of performance and com-
prehensibility. We thus pitched the performance of well-understood algorithms
such as k-nearest neighbour (KNN), support vector machines (SVMs), decision
tree classifiers (DT), and multilayer perceptrons (MLP) against each other.

We report accuracy, precision, recall, and F1 scores regarding the classifica-
tion of phishing websites for each approach in Table 2. On a technical level, our
work is based on the scikit-learn [17] Python library.

Evaluation results are reported for various parameters tuned for each algo-
rithm, such as maximum depth for DT, network size for MLP, and the penalty
parameter C for the SVM classifier. The results demonstrate the effectiveness of
our approach, with an accuracy of over 90%, while maintaining precision, recall,

332 E. Fasllija et al.

and F1 scores of also over 90%. Support vector classifiers outperform others for
the certificate classification task, closely followed by decision trees by a small
margin. Reported results show that our approach can outperform existing solu-
tions while requiring fewer, less complex features. Labelling happens on-the-fly
without the need to download immense amounts of certificate data and results
in accurately detecting phishing attempts in almost real time when applied to
newly submitted CT log data.

5.4 Discussion

The first major insight from these results is that our assumption about the
choice of features to extract from CT log entries to identify phishing sites actu-
ally holds true for real-world data. Most importantly, this confirms that Cer-
tificate Transparency log data is indeed a valuable source of data that can be
machine-processed to mount automated alert systems. In addition, using tradi-
tional, well-understood machine learning techniques results in a system whose
classification process is comprehensible by humans and thus debuggable. We
therefore argue for the use of simple machine learning models such as SVMs
and DTs for two reasons: Firstly, the inner workings of the models are the easi-
est to understand and align with human intuition and basic algorithmic though
processes. Secondly, classifers such as decision trees consume the least resources
both during training and classification and can therefore be operated on com-
modity hardware. By solely relying on CT log data, the network traffic produced
by Phish-Hook is also kept to a minimum. Our system’s low demand for compu-
tational resources makes it even possible to deploy it on end-user devices such
that it can alert users whenever they are about to access a phishing website.
In addition, we advance the current state of the art with respect to detecting
fraudulent websites fitted with genuine certificates by providing more than just
an absolute (binary) decision, about a website’s legitimacy. This aligns with the
transparent decision making process in the sense that uncertainty is reflected in
the classification results, whenever it arises.

6 Conclusions

This work presented Phish-Hook, an effective and accurate CT-log-based phish-
ing detection system using classical machine learning algorithms. By not rely-
ing on deep neural networks, our system cannot only be trained efficiently, but
remains debuggable and humanly comprehensible while in operation. As phish-
ing heavily relies on the human factor to be successful, we firmly believe that the
same holds true for phishing detection systems. We advance the current state of
the art in phishing detection not only in a purely technical manner but also by
our process being transparent to the user, providing more granular classification
results according to five different incremental certificate risk labels.

On a technical level, our design is based on the assumption that a small set
of eight features extracted directly from CT log data is sufficient to successfully

Phishing Detection with Certificate Transparency 333

classify phishing websites. Thus, Phish-Hook foregoes the need to analyze website
source codes or inspect traffic. Evaluation results show that this assumption
holds true, as our system outperforms existing solutions and is able to correctly
identify more than 90% of phishing websites in near real-time. Our approach
thus demonstrates the utility of decision trees and support vector machines—
classical machine learning algorithms—for the problem at hand. This presents a
major advantage over the likes of deep learning, as not only the results, but also
the process of obtaining them remains intelligible. As a consequence, Phish-Hook
can be improved and extended in intuitive, straight forward ways and the results
will always be comprehensible by humans. Potential future work directions thus
include the incorporation of additional features extracted from other CT log
fields, such as validity period, extensions, etc.

In summary, Phish-Hook is able to reliably classify phishing websites based
solely on CT log data in near real-time as they appear. This can significantly
reduce the time it takes to detect phishing websites and consequently mitigate
their impact.

References

1. Aas, J.: The CA’S role in fighting phishing and malware. https://letsencrypt.org/
2015/10/29/phishing-and-malware.html. Accessed 29 Apr 2019

2. Asuncion, A., Newman, D.: UCI machine learning repository (2007)
3. Ca/browser forum baseline requirements documents. https://cabforum.org/

baseline-requirements-documents/. Accessed 13 Apr 2019
4. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic

minority over-sampling technique. J. Artif. Int. Res. 16(1), 321–357 (2002).
http://dl.acm.org/citation.cfm?id=1622407.1622416

5. Homoglyph advanced phishing attacks. https://www.cisco.com/c/en/us/support/
docs/security/email-security-appliance/200146-Homoglyph-Advanced-Phishing-
Attacks.pdf. Accessed 13 Apr 2019

6. Unicode Consortium: Recommended confusable mapping for IDN (2015). https://
www.unicode.org/Public/security/8.0.0/confusables.txt. Accessed 13 Apr 2019

7. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: RFC 5280:
Internet X.509 public key infrastructure certificate and certificate revocation list
(CRL) profile. IETF, May 2008

8. Dong, Z., Kane, K., Camp, L.J.: Detection of rogue certificates from trusted cer-
tificate authorities using deep neural networks. ACM Trans. Priv. Secur. (TOPS)
19(2), 5 (2016)

9. Ghafir, I., Prenosil, V., Hammoudeh, M., Han, L., Raza, U.: Gmalicious SSL certifi-
cate detection: a step towards advanced persistent threat defence. In: Proceedings
of the International Conference on Future Networks and Distributed Systems, p.
27. ACM (2017)

10. Hoogstraaten, H.: Black tulip report of the investigation into the DigiNotar cer-
tificate authority breach, August 2012

11. Kotsiantis, S., Kanellopoulos, D., Pintelas, P., et al.: Handling imbalanced datasets:
a review. GESTS Int. Trans. Comput. Sci. Eng. 30(1), 25–36 (2006)

12. Kumar, D., et al.: Tracking certificate misissuance in the wild. In: 2018 IEEE
Symposium on Security and Privacy (SP), pp. 785–798. IEEE (2018)

https://letsencrypt.org/2015/10/29/phishing-and-malware.html
https://letsencrypt.org/2015/10/29/phishing-and-malware.html
https://cabforum.org/baseline-requirements-documents/
https://cabforum.org/baseline-requirements-documents/
http://dl.acm.org/citation.cfm?id=1622407.1622416
https://www.cisco.com/c/en/us/support/docs/security/email-security-appliance/200146-Homoglyph-Advanced-Phishing-Attacks.pdf
https://www.cisco.com/c/en/us/support/docs/security/email-security-appliance/200146-Homoglyph-Advanced-Phishing-Attacks.pdf
https://www.cisco.com/c/en/us/support/docs/security/email-security-appliance/200146-Homoglyph-Advanced-Phishing-Attacks.pdf
https://www.unicode.org/Public/security/8.0.0/confusables.txt
https://www.unicode.org/Public/security/8.0.0/confusables.txt

334 E. Fasllija et al.

13. Laurie, B., Langley, A., Kasper, E.: Certificate transparency. Technical report
(2013)

14. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

15. Mishari, M.A., De Cristofaro, E., Defrawy, K.E., Tsudik, G.: Harvesting SSL cer-
tificate data to identify web-fraud. arXiv preprint arXiv:0909.3688 (2009)

16. Phishiest certificate authorities. https://toolbar.netcraft.com/stats/certificate
authorities. Accessed 29 Apr 2019

17. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

18. Rescorla, E., Dierks, T.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246, August 2008. 10.17487/RFC5246, https://rfc-editor.org/rfc/rfc5246.txt

19. Scheitle, Q., et al.: The rise of certificate transparency and its implications on the
internet ecosystem. In: Proceedings of the Internet Measurement Conference 2018,
pp. 343–349. ACM (2018)

20. Spamhaus: The 10 most abused top level domains. https://www.spamhaus.org/
statistics/tlds/. Accessed 30 Apr 2019

21. Szurdi, J., Kocso, B., Cseh, G., Spring, J., Felegyhazi, M., Kanich, C.: The long
“taile” of typosquatting domain names. In: 23rd USENIX Security Symposium
(USENIX Security 2014), pp. 191–206 (2014)

22. Torroledo, I., Camacho, L.D., Bahnsen, A.C.: Hunting malicious TLS certificates
with deep neural networks. In: Proceedings of the 11th ACM Workshop on Artificial
Intelligence and Security, pp. 64–73. ACM (2018)

23. Volkman, E.: 49 percent of phishing sites now use https. Technical report (2018).
https://info.phishlabs.com/blog/49-percent-of-phishing-sites-now-use-https

24. x0rz: Phishing catcher. https://github.com/x0rz/phishing catcher

https://doi.org/10.1007/3-540-48184-2_32
http://arxiv.org/abs/0909.3688
https://toolbar.netcraft.com/stats/certificate_authorities
https://toolbar.netcraft.com/stats/certificate_authorities
https://rfc-editor.org/rfc/rfc5246.txt
https://www.spamhaus.org/statistics/tlds/
https://www.spamhaus.org/statistics/tlds/
https://info.phishlabs.com/blog/49-percent-of-phishing-sites-now-use-https
https://github.com/x0rz/phishing_catcher

IIFA: Modular Inter-app Intent
Information Flow Analysis
of Android Applications

Abhishek Tiwari(B), Sascha Groß, and Christian Hammer

University of Potsdam, Potsdam, Germany
{tiwari,saschagross,chrhammer}@uni-potsdam.de

Abstract. Android apps cooperate through message passing via intents.
However, when apps have disparate sets of privileges inter-app commu-
nication (IAC) can accidentally or maliciously be misused, e.g., to leak
sensitive information contrary to users’ expectations. Recent research has
considered static program analysis to detect dangerous data leaks due
to inter-component communication (ICC), but suffers from shortcomings
for IAC with respect to precision, soundness, and scalability.

As a remedy we propose a novel pre-analysis for static ICC/IAC analy-
sis. Our main contribution is the first fully automatic ICC/IAC informa-
tion flow analysis that is scalable for realistic apps due to modularity,
avoiding combinatorial explosion: Our approach determines communicat-
ing apps using short summaries rather than inlining intent calls between
components and apps, which entails simultaneously analyzing all apps
installed on a device.

Using benchmarks we establish that IIFA outperforms state-of-the-art
analyses in terms of precision and recall. But foremost, applied to the 90
most popular applications from the Google Playstore, IIFA demonstrated
its scalability to a large corpus of real-world apps.

Keywords: Android · Inter-component communication · Intent ·
Static analysis

1 Introduction

To protect sensitive information on Android, various information flow control
(IFC) analyses have been developed. These analyze the (potential) flow of infor-
mation in apps and report a warning if a flow from a sensitive data source to an
untrusted/public data sink (like sending sensitive information to the internet)
is determined to be possible at runtime. Information flow is not restricted to a
single component, but occurs frequently between components of the same [11,16]
and even different apps [22]. Our study, using the top 90 apps from the Google
play store, revealed more than 10,000 inter-component calls. Scrutinizing the
flows between components therefore becomes imperative.
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 335–349, 2019.

https://doi.org/10.1007/978-3-030-37231-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_19&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_19

336 A. Tiwari et al.

Android’s inter-component communication (ICC) mainly leverages so-called
intents. The major challenge in identifying IFC through intents is identifying
which information flows from one component to another. Leveraging static analy-
sis is non-trivial because the receiver and the intent data may be unknown at
analysis time, being strings that might be composed at runtime.

Some tools consider intents during information flow analysis [4,14,16,22] but
suffer from multiple shortcomings: For ICC flows, they have a mediocre preci-
sion and recall, but fail significantly for IAC. To match senders and receivers
these approaches merely verify that the receiver-identifying data matches but
ignore other intent attributes that need to correspond, which leads to signifi-
cant imprecision. Further, the majority of related works [2,13,16,22] propose
a merging-based approach for IAC, inlining senders and receivers into a huge
singleton “app” to analyze, which does not scale up for realistic apps, and even
if it did, the complexity to analyze the merged app inflates. However, as most
combinations of apps do not communicate via intents the whole effort is mostly
futile. Simultaneously, the merging process itself may introduce spurious data
flow paths, increasing analysis imprecision. Even worse, each time an app is
updated or installed on a device this merging and re-analysis process must be
repeated.

Our Contributions. In this work we propose a novel information-flow analysis
for IAC (and ICC) based on an intent-flow pre-analysis that evades combinato-
rial explosion of analyzing all potential communication partners, while excluding
infeasible communication paths. Our approach can predict which combinations
of apps communicate by separating information flow analysis within app com-
ponents from thorough matching of communication partners. In a first step we
create a database of summary information about senders of intents, their charac-
teristics, as well as apps registered to receive implicit intents. Subsequently, we
identify potential communication partners based on a novel matching algorithm
which takes the potential intra-component flows into account. These flows are
provided by a baseline IFC analysis for all potential intent receivers. We lever-
age senders’ outbound intent data as input to the information flows identified in
respective receivers, eliminating the need for inlining or merging apps and thus
combinatorial explosion, as only summaries of actual communication partners
are subsumed. In case multiple apps are involved in intent communication our
approach performs a fixed point iteration through the DB information. Remem-
ber that our tool is not a stand-alone IFC analysis tool. Rather, IIFA leverages
flows and slices generated by other IFC analyzers. As these tools are already
heavily engineered for the intra-app case, we concentrated on the peculiarities
of intent communication and evasion of inlining and combinatorial explosion.

As a noteworthy novelty, our approach is modular and thus compositional
with respect to app installation. Whenever a new (version of an) app is available
for analysis, the database is updated (in case of new version) or extended (new
app) to include the intents broadcast or received by this app. Only the new app
has to be (re-)analyzed, as well as combinations with flows identified in potential
receivers. We aim to answer the following research questions:

IIFA: Modular Inter-app Intent Information Flow Analysis 337

– RQ1: Does our pre-analysis approach negatively impact the precision or
soundness of the results with respect to state-of-the-art analyses?

– RQ2: Does our approach scale to a realistic corpus of real-world apps?

We implemented our approach as a tool called IIFA and evaluated it on
DroidBench [6], the IccTA extension of DroidBench [16], ICC Bench [22],
our own benchmarks (https://github.com/mig40000/ICC-Benchmark) evaluat-
ing key and type matching of intent extra data, and a large set of apps from
the Google Playstore. We compared our results with multiple related analysis
tools. Our tool (combined with an external baseline intra-component IFC analy-
sis) achieves perfect precision and soundness on all benchmark sets with respect
to the ground truth provided, being more than on par with related IFC tools.
Additionally, we demonstrate that IIFA can improve the IAC precision of other
base IFC analyses with experiments, and assess the scalability of IIFA, apply-
ing it to the 90 most downloaded Playstore apps. Our experiments demonstrate
that due to its compositionality IIFA’s execution time scales well even to a large
corpus of real-world apps. In summary, we provide the following contributions:

– Compositional DB-backed Analysis. We propose a modular pre-analysis app-
roach for intent communication, in particular for analyzing inter-app com-
munication, based on summaries for all app components containing intent
senders, receivers, and the exact intent characteristics including types and
keys of data transmission.

– Novel Matching Algorithm. We present a novel algorithm which matches
intent senders with intent receivers based on these summaries and even detects
flows through more than two components via a fixed-point iteration.

– Evaluation of IIFA. We implemented our analysis (IIFA) and evaluated it
on multiple large-scale datasets. The evaluation shows that our pre-analysis
approach does not negatively impact precision and recall with respect to the
most relevant previous work on benchmarks, including a novel suite assessing
the correct matching of intent attributes. We demonstrate that we can effec-
tively evade combinatorial explosion, analyzing ICC/IAC information flows
of the top 90 real-world apps in approximately 2.2 h (excluding the baseline
IFC analysis).

2 Background

2.1 Android Components

Android apps are written (mostly) in Java, but instead of defining a main method
they consist of four component types: Activities are user interfaces to be inter-
acted with. Services run in the background, intended for computationally expen-
sive operations. Broadcast receivers register themselves to receive system or app
events. Content providers provide data via storage mechanisms. Each app defines
a manifest file (AndroidManifest.xml) providing essential information about the
app, e.g., its components and their capabilities.

https://github.com/mig40000/ICC-Benchmark

338 A. Tiwari et al.

Set of APKs
Analysis
Phase

Reporting
Phase

Intent

Database

Slices

Leaks

IFC
Analyzers

Fig. 1. Analysis framework

Apps are compiled to Dalvik bytecode [10], which is specialized for execution
on Android. Together with additional metadata and resources Dalvik bytecode
is compressed into an Android Package (APK) that can be published in market
places, such as the Google Playstore. Oberheide and Miller [17] demonstrated
that the security analysis on the Playstore can easily be circumvented. Even
though Google’s security mechanisms are constantly evolving, potential for mali-
cious and vulnerable software in the Google Playstore remains.

2.2 Android Intents

Android provides a dedicated mechanism for two components to communicate.
A component can send an intent as a message, e.g., to notify another component
of an event, trigger an action of another component, or transmit information to
another component. Note the universal nature of intents on Android: Intents
can be sent from the system to apps (and vice versa), from one app to another
(inter-app communication, IAC), or even from one component to another within
the same app (intra-app-communication, ICC) [9].

Additional information can be associated with an intent: The intent action
specifies an action supposed to be performed by the receiving component. A com-
ponent declares intent actions to be received via an intent filter in the manifest
file. The intent’s sender is unknown on the receiver side. The target component
mandates a specific receiver for an intent. Setting intent extra data adds addi-
tional information to be used as parameters by the receiving component.

Note that none of this information is mandatory. When a target component
is specified an intent is called explicit, otherwise implicit. Explicit intents are
delivered to the given target component only, while implicit intents can be deliv-
ered to any component with a matching intent filter. If multiple components
could receive an implicit intent, the user is asked to resolve the intent manually,
generally displaying a list of potential receiver apps. Li et al. [16] found that at
runtime 40.1% of the intents in Google Playstore apps are explicit intents. Broad-
cast intents are relayed to every component registered for an intent action instead
of only one of them. As intents are the universal means of inter-component com-
munication their analysis becomes critical. In this work we propose a modular
approach to precisely analyze information flow through Android intents.

IIFA: Modular Inter-app Intent Information Flow Analysis 339

3 Methodology

The fundamental problem of intent analysis for static analysis is the dynamic
nature of intents. Static IFC analyses generally leverage dataflow analyses like
backwards slicing to determine whether sensitive information (e.g., a device id)
may flow into a sink (e.g., internet). However, if a slice contains statements
where data is extracted from a received intent, it cannot determine the data’s
sensitivity without detailed knowledge on possible senders and their semantics.

Figure 1 presents the major building blocks of our analysis framework. In the
analysis phase a set of APKs under inspection (e.g., all apps installed on a device)
is processed and the extracted information stored into a SQL database named
IntentDB. We collect two sets of information, app-specific information, i.e., pack-
age and class name, and registered intent filters to receive implicit intents, as
well as intent sender-specific information, i.e., information required to identify
potential receiver(s), key, type, and the actual data being sent.

The database is fed into the reporting phase together with the receiving app’s
information flows from a baseline (intra-component) IFC analyzer. If a flow orig-
inates at a getXXXExtra method1, we consider the respective sender’s outbound
data as the actual data source to that flow. Remember that data can only suc-
cessfully be transmitted via put/getExtra methods if the key parameters of both
methods match and the signatures of the put and get methods correspond (e.g.
the parameter type of the put method equals the return type of the get method).
Thus we determine all potential senders of this intent based on matching the
target component or intent action. For each of these senders we extract the key,
value, and put signature (see Sect. 3.1) from the database. If the key and the
put signature match this getXXXExtra method invocation2, we determine the
sensitivity of the transmitted value based on a categorization of sources. If the
value is considered sensitive, we report a potential information flow violation.

Structure of IntentDB : Table 1 shows an example entry (from the Telegram
messenger app) of the database. As apps consist of several classes, this table
has potentially multiple entries for the same app. All entries belonging to one
app can be identified by the unique package name. Similarly, each class can
send out several intents and hence for each intent sent we will list a separate
entry (package name & class name are the same). The column “Put Signature”
is considered for mapping the put method to the corresponding getXXXExtra
method at the time of intent resolution. Depending on the non-empty fields, an
entry in the database represents an intent receiver and/or sender. If the Intent
Filter field is set, the app may receive intents. If either the Target Component
or the Intent Action field is set, it acts as an intent sender.

1 getXXXExtra methods retrieve type-specific data from a received intent that has
been added through the corresponding putExtra method.

2 The getXXXExtra’s key is determined via backward slicing.

340 A. Tiwari et al.

Table 1. Example database for a class that can receive as well as send intents

Package

name

Class name Intent filter Target

component

Intent action Key Value Put

signature

org.telegram.

messenger

Firebase-

InstanceId-

Service

com.google.

firebase.IN-

STANCE

ID EVENT

null com.google.

android.

gcm.intent.

SEND

“google.to” String url =

“google.com/

iid”

putExtra

(String,

String)

Set of APKs

APKTool

Extract Resources

Manifest
File

Class Files
(.smali)

Parse
Manifest

Extract Intent
Details

FPI

Fig. 2. Analysis Phase, FPI stands for fixed point iteration

3.1 Analysis Phase

Figure 2 depicts the workflow of the analysis phase. In the sequel, we describe
the details of each component.

Apktool. A set of APKs is processed by Apktool [1], which extracts and decodes
the resources of an APK (e.g., manifest.xml). It decodes the Dalvik bytecode
file (classes.dex) of the APK to more comprehensible Smali class files [7].

Manifest Parser. Parsing the manifest file extracts various app details (first set
of information), i.e., package and class name, as well as supported intent filters.
This information is mapped to the first three columns of the table and identifies
potential receivers of an intent. Even though intent receivers are typically reg-
istered in the manifest file, the registerReceiver method can register an intent
receiver at runtime. In our experiment with 90 apps, we find 433 dynamically
registered receivers (≈5% of all intent receivers). We scan class files for dynami-
cally registered receivers and store them in IntentDB.

Dynamic Intent Data Extraction (Extract Intent Details). In this mod-
ule, we scan each class file for methods that initiate an intent (sender meth-
ods), e.g., startActivity. The Android documentation [9] defines 25 such methods
including 12 variants of startActivity, 11 variants of broadcast, startService and
bindService.

– Identifying Target Component/Intent Action. For every sender
method we compute its backward slice to find the corresponding intent initial-
ization(s). The goal is to identify its target component (for an explicit intent)
or intent action (implicit intent). The intent type depends on the intent’s con-
structor but can be altered using the explicit-transformation methods make-
MainActivity, makeRestartActivityTask, setClass, setClassName, setCompo-
nent, setPackage or setSelector, which can also change the target component

IIFA: Modular Inter-app Intent Information Flow Analysis 341

Listing 1.1. Transit Flow

1 // APP A (OutFlowActivity)

2 TelephonyManager tel = (...) getSystemService(TELEPHONY_SERVICE);

3 String imei = tel.getDeviceId(); // source

4 Intent i = new Intent("action_test");

5 i.putExtra("data", imei);

6 startActivity(i); // sink

7 // APP B (Intermediate Activity) -- Capable of receiving "action_test"

8 Intent i = getIntent();

9 String imei = i.getStringExtra("data");

10 Intent newIntent = new Intent("action_test2");

11 newIntent.putExtra("secret", imei);

12 startActivity(newIntent);

13 //APP C (InFlow Activity) -- Capable of receiving "action_test2"

14 Intent i = getIntent();

15 String imei = i.getStringExtra("secret");

16 smsManager.sendTextMessage("1234567890", null, imei, null, null); // sink

after the fact. We analyze these cases to extract the actual target: In the
case of an explicit intent, we identify the name of the target component. For
an implicit intent, we extract the intent action. Any app defining this intent
action as supported intent filter (dynamically or in its manifest file) is a
potential receiver of this intent. Unfortunately, one cannot always statically
determine intent details (e.g., intent action) as they may be influenced by
runtime information, which is a general limitation of static analysis. We con-
servatively approximate such situations, i.e., may include several potential
intent actions into the database. Future work may rule out non-matching
substrings of potential target name/action strings similar to reflection
analyis [12].

– Identifying Key-Value Pairs. There are several methods to associate extra
data with an intent, generally leveraging key-value pair schemes. Senders
register a value specifying the key, e.g., Intent.putExtra(“key”, “value”) will
register the string “value” as data for the key “key”, which can be extracted
by a corresponding receiver using the Intent.getExtra(“key”) method. Trying
to receive a key with a non-matching data type results in no value being
transmitted. Therefore precise analysis mandates a correct matching of get
and put methods. Unlike related work [16,22] we handle the respective put/get
method pairs for all basic data types and store the precise signature of any
put method in IntentDB to consider matching types and keys when resolving
values received by getXXXExtra methods at intent receivers.

Fixed Point Iteration. Intent communication may involve more than two
apps/components. In our experiments with 90 apps, we find 54 cases where
more than two components were involved in a transitive information flow. In
such a case, IntentDB contains a getXXXExtra method in the column Value.
For example, in Listings 1.1, app A is sending the device id (secret data) to app
B. App B forwards this data to app C, and finally app C leaks it via an SMS.
The first 3 rows of Table 2 show the table IntentDB after analyzing all APKs. To

342 A. Tiwari et al.

resolve transitive flows through multiple components we perform a fixed point
iteration through all entries of IntentDB for which Value contains a getXXXExtra
method. The com.appB entry in Table 2 is such an example where data from a
received intent is being sent out via another intent. In order to identify the
received data, we determine all apps from which this component could receive
the intent on which getXXXExtra is invoked. In our example com.appB receives
from com.appA. Finally, we match the corresponding key-value pair through
their get-put signatures and create a new entry, replacing the original source
(getXXXExtra method) by the transmitted value. The created entry for our
example is shown in gray in Table 2. To accommodate for modular analysis and
thus potential new compatible senders, we retain the old database entry (row 2).
The reporting phase described in the next section now matches the added row
with the intent received in App C to reveal the transitive information flow of
sensitive data to the SMS sink.

Table 2. IntentDB for Listing 1.1. Fixed point iteration adds the last row

Pckg.

name

Class

name

Intent filter Target

component

Intent

action

Key Value Put

signature

com.appA OutFlow

Activity

null null action test “data” Device ID putExtra

(String,

String)

com.appB Interm.

Activity

action test null action test2 “secret” getString

Extra

(“data”)

putExtra

(String,

String)

com.appC InFlow

Activity

action test2 null null null null null

com.appB Interm.

Activity

action test null action test2 “secret” Device ID putExtra

(String,

String)

3.2 Reporting Phase

In the reporting phase, we process information flows obtained by a baseline
IFC analyzer together with IntentDB. For ICC/IAC we are only interested
in flows with sources that are potential intent receivers, i.e., a getXXXExtra
method (together with its key and signature). For every getXXXExtra method
in a reported information flow, we extract all potential senders to this receiver
from IntentDB, i.e., apps that use an intent with a matching target component
or a matching intent action. Finally, we match get-put method pairs and keys
to determine senders that actually send data to this receiver and report it as a
(potential) leak if the transmitted data stems from a sensitive source3.

For example, data flows from the getStringExtra method of the intent received
on line 14 (Listing 1.1) to the data sink sendTextMessage in App C. Our analy-
sis thus matches any sender of the intent action action test2 and finds two

3 We utilize the categorization of sources and sinks from R-Droid [3].

IIFA: Modular Inter-app Intent Information Flow Analysis 343

rows in IntentDB (Table 2). We check whether any of those uses the key secret,
which both of them do. Then we match the signature of getStringExtra with the
sender’s Put Signature, where again both match. Finally, we verify if one of the
potentially transmitted values (Device ID, getStringExtra(“data”)) is sensitive,
thus reporting the former as an illicit information flow.

Partial Support for String and Array Access Resolution. IIFA under-
stands the Smali signature of String methods and applies partial evaluation in
order to recover strings created by concatenation, substring, and other String
manipulation methods. Concretely, it extracts parameters, applies the respective
functionality and returns the resulting string. More contrived examples like con-
verting a string to an array of chars (to be manipulated) are beyond the scope
of our tool as we are currently not targeting obfuscated code.

4 Evaluation

We empirically evaluated our tool, IIFA, in two steps:

– Comparative evaluation on benchmark sets.
– Evaluation on real-world apps from the Google Playstore.

All experiments were performed on a MacBook Pro with a 2,9 GHz Intel Core
i7 processor and 16 GB DDR3 RAM and MacOS High Sierra 10.13.1 installed.
We used a version 1.8 JVM with 4 GB maximum heap size.

Table 3. Summary of Tool Results for Micro-Benchmarks

ICC comparison

IccTA Extension + ICC-Bench + Attribute-Mismatch-ICC-Benchmark (34 test cases)

Precision, Recall and F1-measure FlowDroid AppScan DidFail DIALDroid Amandroid IccTA Our Tool

Precision p = �/(� + �) 25% 16.7% 75% 71% 62% 80% 100%

Recall r = �/(� + ◦) 80% 62.5% 24% 80% 60% 96% 100%

F1-measure 2pr/(p + r) 0.41 0.26 0.36 0.75 0.61 0.87 1

IAC comparison

DroidBench IAC + Attribute-Mismatch-ICC-Benchmark (10 test cases)

Precision p = �/(� + �) 0% 0% 63% 73% 52% 0% 100%

Recall r = �/(� + ◦) 0% 0% 21% 56% 76% 0% 100%

F1-measure 2pr/(p + r) 0 0 0.31 0.63 0.43 0 1

4.1 RQ1: Precision and Soundness of IIFA

Benchmark Evaluation Datasets. Remember that IIFA is not a stand-alone
tool. Therefore its intention cannot be to replace any of the related works that
analyze intra-component information flows. Rather we are propagating ICC/IAC
analysis as a pre-analysis, and our experiments in this section are to show that
this design decision preserves the precision or soundness of the analysis results.
In order to evaluate the precision and soundness, we use four separate benchmark

344 A. Tiwari et al.

sets and compare the results of IIFA (combined with a basic intra-component
information flow analysis) to related approaches that aim at analyzing both
intra-component and ICC/IAC information flows simultaneously.

– The intent-related cases of the DroidBench test suite [6] (14 test cases)
– The extension proposed by IccTA [16] (18 test cases)
– ICC-Bench, proposed by Wei et al. [22] (9 test cases)
– Our extension4, Attribute-Mismatch-ICC-Benchmark, which evaluates cor-

rect matching of types and keys for data exchanged (7 test cases)

Note that the mentioned benchmark sets include several advanced usage sce-
narios of intents. An example of these scenarios is the usage of callback methods
that are triggered after an event has been delivered to its target, which requires
information tracking at both sender and receiver sides. Another challenge is
string manipulation, e.g., of keys for intent extra data. Finally one case passes
an intent with sensitive data through multiple components before finally leaking
the stored data. The authors of each benchmark set provide a ground truth for
each test case, which we use to measure precision and soundness.

Comparative Evaluation. Based on true positives (tp), false positives (fp),
and false negatives (fn) we use the following metrics to compare the performance
of IIFA with the related tools:

Precision Recall F1 -measure
p = tp

tp+fp r = tp
tp+fn

2pr
p+r

We applied IIFA to the original DroidBench benchmark set, where 14
test cases are relevant for intent communication. On these benchmarks IIFA
achieved perfect precision and recall ratios. We further applied IIFA to the
IccTA extension of Droidbench [6], ICC-Bench [22], and Attribute-Mismatch-
ICC-Benchmark, and compared the results to the six most prominent tools for
Android intent information flow analysis: FlowDroid [2] and AppScan [13] are
limited to ICC, IccTA [16] and AmanDroid [22] require an additional tool to sup-
port IAC, DidFail [14] and DIALDroid [4] come with their own inter-app analysis.
Table 3 summarizes the results of the different tools on these benchmark sets.

Matching the key and/or type of intent extra data is not reported in Li
et al. [16], DidFail [14], or AmanDroid [22]. They merely create a lifecycle method
that connects the sender of an intent with (the respective) receiver(s), thus cre-
ating a data flow between these components. In our experiments both IccTA
and Amandroid failed to detect a key and/or type mismatch during ICC (see
Sect. 3.1) due to missing checks of these constraints, resulting in significant pre-
cision loss with respect to previous benchmark suites alone.

4 https://github.com/mig40000/ICC-Benchmark.

https://github.com/mig40000/ICC-Benchmark

IIFA: Modular Inter-app Intent Information Flow Analysis 345

Table 4. IAC analysis support vs Android API

Tool IAC support API 19 >API 19

AmanDroid \� � –

DidFail � – � – �

AppScan × – –

DroidSafe \� � – �

DIALDroid � � �

FlowDroid × – –

IccTA \� � – �

� supported, × not supported

\� Not supported by default,

additional configuration required

� supported, – fails, � crashes

Our Approach: IIFA. We apply IIFA’s pre-analysis to the same benchmarks,
leveraging R-Droid [3] to generate the intra-app flows5 as it does not interfere
with our IAC/ICC model. Comparing the results with the ground truth revealed
perfect precision and soundness results.

Answer to RQ1:Our design of IIFA as a pre-analysis does not negatively
impact precision and soundness, but enables precise matching not only of intent
actions but also of the key and/or type of intent extra data without additional
constraint solving to exclude infeasible flows.

4.2 RQ2: Evaluating the Scalability of IIFA

Evaluation on Real-World Apps. We applied IIFA to the 90 most popu-
lar apps from the Google playstore, which arguably contain some of the most
challenging apps for program analysis, e.g. due to their size. IIFA successfully
analyzes each of these apps. Table 4 (extended from [20,21]) lists the related
works along with their IAC analysis capabilities in general and for API levels
of Android. It is important to observe that none of the tools (that support IAC
analysis) is able to analyze an app using API version greater than 19 (i.e. Android
KitKat). As this Android version was released in 2013, it is almost impossible
to find APKs amenable for analysis by these tools, rendering them obsolete for
IAC analysis of realistic Android apps. While probably technically solvable with
some engineering effort, we will argue in the sequel, that only pre-analysis is
scalable to analyze the IAC information flows for all apps installed on a given
device.

As 60% of all intents are implicit, analyzing IAC flows becomes paramount to
detect hidden or accidental leaks of sensitive data contrary to user expectations.
ApkCombiner was proposed to merge APKs in order to extend standard ICC
analysis mechanisms (where all potential communicating components are in one
APK) to IAC. As mentioned in the previous paragraph, APKCombiner fails for
practically all relevant APKs. But even if merging was possible (some related
5 Note that any other tool that resolves intra-component flows (in particular those of

Table 3 except for DIALDroid) would also have been a possible base analysis, but
may have interfered with our ICC/IAC model.

346 A. Tiwari et al.

work merges directly in their tools) analyzing the resulting APK faces combina-
torial explosion of potential communication paths and would require additional
constraint solving technologies to prune unrealizable inter-component data flow
paths due to mismatching communication partners (e.g. intent action) or keys/-
types of the data exchanged via intend extra data.

In contrast IIFA propagates a divide-and-conquer approach where ICC/IAC
communication partners are determined and constraints solved in a pre-analysis
based on summary information extracted from each app in isolation. The base
IFC analyses then only need to provide intra-component information flows (pro-
gram slices), which is what most of these tools have originally been designed
and leverage intricate optimizations for. To demonstrate the advantage of the
pre-analysis approach we created a potential IAC flow from a widely used real-
world app Katwarn to a synthetic app (written using target API level 19 to
enable analysis by these tools). One of Katwarn’s activities (GuardianAngelSer-
vice) shares the last known location via an implicit intent. An app that declares
the corresponding intent filter (kwrn:ga:location:update) may receive this intent.
Our synthetic app declares the kwrn:ga:location:update intent filter and illicitly
intercepts this intent. Analyzing this IAC without IIFA failed as APKCombiner
was incapable of merging these two apps, and tools that create their own paths,
e.g., DIALDroid, crashed.

IIFA’s Scalability vs Merging-Based Analysis. Every tool except Did-
Fail and DIALDroid requires merging of APKs to extend their ICC capabili-
ties to IAC. To analyze inter-app communication, ApkCombiner [15] was pro-
posed in order to merge two or more apps into one. However, ApkCombiner
supports only Android app versions published on or before 2014, and crashes
with the recent apps, thus being practically unusable. But even if the merg-
ing process itself was not problematic, it would aggravate the scalability issues
reported in related work [16], and confirmed in an independent recent com-
parative study [21]. Practically attempting to analyze a huge APK with all
of the top 90 apps from the Google Playstore would lead to a combinatorial
explosion of communication paths between potentially communicating compo-
nents to be analyzed, precluding any precise static analysis. In particular as
we found in our study with the top 90 apps from the Google Playstore that
60% of intents are implicit and thus the receiver may not be unique. Alter-
natively, one would have to eagerly merge all combinations of (at least) two
complete apps. This is at least 8,100 combinations for our 90 apps already, most
of which are not communicating. However, this approach assumes that there is
no communication involving more apps than the maximum tuple size. Unfor-
tunately there is no guarantee for this assumption unless analyzing all tuples
of larger size (which does not scale anymore). In contrast, IIFA analyzes the
communication compositionally based on small summaries in a database and
combines only the transmitted ICC/IAC data with the intra-app flows of respec-
tive intent receivers. The average per app execution time of IIFA over 90 apps is
87.91 s. On average, the analysis phase took 46.81 s (maximum 52.20, minimum
32.40 s) and the reporting phase 41.10 s (maximum 48.60, minimum 35.10 s).

IIFA: Modular Inter-app Intent Information Flow Analysis 347

Considering that (intra-app) static IFC analyses usually require a large amount
of time to analyze real world apps, IIFA’s additional cost is quite feasible for a
realistic usage scenario.

Answer to RQ2: IIFA’s modular analysis avoids combinatorial explosion of
the potential flow paths in a single merged APK (containing all potential com-
munication partners), or of analyzing all tuples of a given size. Therefore, we
were able to analyze the ICC/IAC flows of the 90 most downloaded real-world
apps in approx. 2.2h (ignoring the time to compute intra-component slices).

5 Related Work

Arzt et al. proposed Flowdroid [2], a static taint analysis tool that includes
an extensive component lifecycle model. Flowdroid was originally designed for
intra-component analysis and cannot analyze string manipulations. R-Droid [3]
is an information flow analysis tool that resolves common string manipulations. It
does not support intents but conservatively reports every flow to an intent sender
function as a leak. AppScan [13] is a commercial tool to detect vulnerabilities
in mobile and web apps, including information leaks in Android apps. However,
it only supports intra-app ICC analysis and requires the source code of the
inspected apps.

IccTA [16] leverages static taint analysis to analyze ICC flow leaks. It ignores
some “rarely used ICC methods such as startActivities” [16], multi-threading
and slightly involved string analysis, which may lead to missed information
leaks. While the IccTA paper reports no experience with IAC, their GitHub
page proposes the usage of APKCombiner [15], but as IccTA already has scala-
bility issues, merging apps will aggravate this situation and may require eager
combinations of all tuples of apps, resulting in combinatorial explosion. DIAL-
Droid [4] is designed to analyze ICC and IAC flows. However, it often fails (IAC)
or aborts (ICC) to analyze implicit intents. Additionally, DIALDroid is unable
to detect flows involving more than two components. Wei et al. proposed Aman-
droid [22], which computes control and data flow graphs to resolve intents and
inlines the invoked component’s lifecycle. However, Amandroid ignores several
sink functions as well as extra types and keys for intent data resolution. Droid-
Safe [11] improves intent resolution via precise points-to analysis and string res-
olution. As their ICC resolution does not take extra types and keys into account
their results are imprecise. Klieber et al. proposed DidFail [14] that analyzes
information flow in Android applications. However, DidFail is limited to the
analysis of Activities and implicit intents. Zhang et al. [23] proposed Androi-
dLeaker, a hybrid approach to detect intent-based privacy leaks on Android.
They require instrumenting all apps under inspection, which may not be fea-
sible due to self-integrity checks. Unlike IIFA, AndroidLeaker requires manual
adaption of sources and sinks for each new Android version. Epicc [19] analyzes
Android ICC precisely but focuses on ICC-related vulnerabilities. It does not
fully resolve information flows [22]. ScanDroid [8] analyzes Android intents via

348 A. Tiwari et al.

a constraint system. However, the lack of distinction between component con-
texts leads to imprecise analysis results. DroidChecker [5] is a taint analysis
tool for Android apps supporting intents. Due to imprecise permission handling,
DroidChecker is neither sound nor complete. Further, it cannot handle dynamic
features of Java, such as polymorphism. Octeau et al. [18] proposed IC3, an
analysis tool for Android intents, which requires expert knowledge in the form
of source code annotations.

6 Conclusion

In this work we propose a novel pre-analysis approach to analyze information
flows through Android’s intents. Using a database of precise intent communica-
tion summaries, IIFA avoids the combinatorial explosion of inlining all poten-
tial communication partners. We compared IIFA to six related tools on several
standard and a novel benchmark sets. IIFA’s precision and recall rates are on
par or even better than previous tools, which demonstrates that our scalability
improvements do not come at the cost of other essential analysis properties.

Acknowledgements. This work was partially supported by the German Federal Min-
istry of Education and Research (BMBF) through the project SmartPriv (16KIS0760)
and the German Research Foundation (DFG) via the collaborative research center
“Methods and Tools for Understanding and Controlling Privacy” (SFB 1223), project
B02.

References

1. 2.0, A.: Apktool. GitHub, July 2017. https://ibotpeaches.github.io/Apktool/
2. Arzt, S., Rasthofer, S., Fritz, E.A.: Flowdroid: precise context, flow, field, object-

sensitive and lifecycle-aware taint analysis for android apps. ACM SIGPLAN Not.
49(6), 259–269 (2014)

3. Backes, M., Bugiel, S., Derr, E., Gerling, S., Hammer, C.: R-droid: Leveraging
android app analysis with static slice optimization. In: 11th ACM on ASIACCS.
pp. 129–140. ACM (2016)

4. Bosu, A., Liu, F., Yao, D.D., Wang, G.: Collusive data leak and more: large-scale
threat analysis of inter-app communications. In: AsiaCCS 2017, Abu Dhabi, United
Arab Emirates, April 2–6, 2017, pp. 71–85 (2017)

5. Chan, P.P., Hui, L.C., Yiu, S.M.: Droidchecker: analyzing android applications
for capability leak. In: Proceedings of the Fifth ACM Conference on Security and
Privacy in Wireless and Mobile Networks, pp. 125–136. ACM (2012)

6. Christian Fritz, S.A., Rasthofer, S.: Droid-benchmarks. https://github.com/secure-
software-engineering/DroidBench. Accessed Dec 2017

7. Freke, J.: Baksmali. https://github.com/JesusFreke/smali
8. Fuchs, A.P., Chaudhuri, A., Foster, J.S.: Scandroid: automated security certifica-

tion of android. University of Maryland, Technical report (2009)
9. Google: Android intent documentation. https://developer.android.com/reference/

android/content/Intent.html. Accessed May 2017

https://ibotpeaches.github.io/Apktool/
https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
https://github.com/JesusFreke/smali
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Intent.html

IIFA: Modular Inter-app Intent Information Flow Analysis 349

10. Google: Dalvik byteycode documentation. https://source.android.com/devices/
tech/dalvik/dalvik-bytecode. Accessed May 2017

11. Gordon, M.I., Kim, D., Perkins, J.H., Gilham, L., Nguyen, N., Rinard, M.C.: Infor-
mation flow analysis of android applications in droidsafe. In: NDSS (2015)

12. Grech, N., Kastrinis, G., Smaragdakis, Y.: Efficient reflection string analysis via
graph coloring. In: Millstein, T. (ed.) ECOOP. vol. 109, pp. 26:1–26:25 (2018)

13. IBM: Ibm security appscan source. https://www-03.ibm.com/software/products/
en/appscan. Accessed May 2017

14. Klieber, W., Flynn, L., Bhosale, A., Jia, L., Bauer, L.: Android taint flow analysis
for app sets. In: Proceedings of the 3rd ACM SIGPLAN International Workshop
on the State of the Art in Java Program Analysis, pp. 1–6. ACM (2014)

15. Li, L.: Apk combiner. GitHub, December 2014. https://github.com/lilicoding/
ApkCombiner

16. Li, L., Bartel, A., Bissyandé, E.A.: Iccta: detecting inter-component privacy leaks
in android apps. In: Proceedings of the 37th International Conference on Software
Engineering, vol. 1. pp. 280–291. IEEE Press (2015)

17. Oberheide, J., Miller, C.: Dissecting the android bouncer. SummerCon2012, New
York (2012)

18. Octeau, D., Luchaup, D., Dering, M., Jha, S., McDaniel, P.: Composite constant
propagation: application to android inter-component communication analysis. In:
Proceedings of the 37th International Conference on Software Engineering, vol. .
pp. 77–88. IEEE Press (2015)

19. Octeau, D., McDaniel, P., Jha, S., Bartel, A., Bodden, E., Klein, J., Le Traon,
Y.: Effective inter-component communication mapping in android with EPICC:
an essential step towards holistic security analysis. In: Proceedings of the 22nd
USENIX Security Symposium,pp. 543–558 (2013)

20. Pauck, F., Bodden, E., Wehrheim, H.: Do android taint analysis tools keep their
promises? In: Proceedings of the 2018 26th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software Engi-
neering. ESEC/FSE 2018, ACM, New York (2018)

21. Qiu, L., Wang, Y., Rubin, J.: Analyzing the analyzers: Flowdroid/ICCTA, Aman-
droid, and Droidsafe. In: Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pp. 176–186. ACM (2018)

22. Wei, F., Roy, S., Ou, X., et al.: Amandroid: a precise and general inter-component
data flow analysis framework for security vetting of android apps. In: Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1329–1341. ACM (2014)

23. Zhang, Z., Feng, X.: AndroidLeaker: a hybrid checker for collusive leak in android
applications. In: Larsen, K.G., Sokolsky, O., Wang, J. (eds.) SETTA 2017. LNCS,
vol. 10606, pp. 164–180. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-69483-2 10

https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://www-03.ibm.com/software/products/en/appscan
https://www-03.ibm.com/software/products/en/appscan
https://github.com/lilicoding/ApkCombiner
https://github.com/lilicoding/ApkCombiner
https://doi.org/10.1007/978-3-319-69483-2_10
https://doi.org/10.1007/978-3-319-69483-2_10

Power Analysis and Protection
on SPECK and Its Application in IoT

Jing Ge1,2, An Wang1,3(B), Liehuang Zhu1, Xin Liu1, Ning Shang1,
and Guoshuang Zhang4

1 School of Computer Science, Beijing Institute of Technology, Beijing 100081, China
wanganl@bit.edu.cn

2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
3 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing 100093, China
4 Science and Technology on Information Assurance Laboratory,

Beijing 100072, China

Abstract. Emerging applications such as the Internet of Things (IoT)
promotes the development of lightweight cryptography. SPECK is a
lightweight block cipher, specially designed for limited resource devices
that was presented by National Security Agency. Nevertheless, before
using SPECK in any practical application, protection against side-
channel attacks must be paid attention to. In this paper, we take two
attack positions into account and make effort to implement correlation
power analysis on a naive software implementation of SPECK algorithm
in the IoT application scenario. Our experimental results show that the
real key fixed in the register can be successfully recovered when attack
the XOR operations, while there is always an interference item that con-
fuses the correct key when attack the modulo addition operation. Fur-
thermore, we proposal a countermeasure against power attacks in the
IoT application, and the protected SPECK only cost 53.01%, 6.27% and
318.18% of extra code, RAM and time, respectively.

Keywords: SPECK · Lightweight · Side-channel · Correlation power
analysis · Mask

1 Introduction

Due to the emerging era of pervasive computing and the Internet of Things
(IoT), an increasing number of portable intelligent devices such as wireless sen-
sors, smart cards and RFID tags sprung up in daily life. With limited resources
and computing capability, these devices often deal with sensitive data and have

Supported by National Natural Science Foundation of China (Nos. 61872040,
U1836101), National Cryptography Development Fund (No. MMJJ20170201), Founda-
tion of Science and Technology on Information Assurance Laboratory (No. KJ-17-009).

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 350–362, 2019.

https://doi.org/10.1007/978-3-030-37231-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_20&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_20

Power Analysis and Protection on SPECK and Its Application in IoT 351

certain requirements for security. Nevertheless, traditional cryptographic algo-
rithms are no longer suitable for resource-constrained devices because of higher
requirements on hardware and software resources. Thus, lightweight cryptogra-
phy which achieves both performance and security requirements is currently a
very active research domain in the cryptography community [1]. We have recently
seen the apparition of many lightweight block ciphers, hash functions and stream
ciphers, among them, lightweight block ciphers are in the majority [2]. While an
abundant of lightweight block ciphers appeared, most were designed to perform
well on a single platform and were not meant to provide high performance across
of devices [3]. In 2013, Ray et al. proposed two families of block ciphers, SIMON
and SPECK, whose target is to satisfy the need for secure, flexible, and analyz-
able lightweight block ciphers [4].

Side-channel attack technology is a hot topic in international cryptogra-
phy research. The threat of side-channel attacks against circuits, in which a
cipher whose safety is computationally secured has been embedded, is pointed
out [5]. Cryptographic algorithms are mostly implemented in embedded hard-
ware. These devices tend to leak processed data and operations through physi-
cal channel information such as power consumption, electromagnetic emanations
and time delay. Based on kinds of leakage, it can obtain the intermediate infor-
mation of cryptographic operation directly and recover the long key in segments,
so it is easier to attack the actual cryptosystem than traditional cryptoanaly-
sis [6]. Particularly, power analysis attacks are identified as the most dangerous
types of attacks due to using power consumption can easily analyze confidential
information.

For all we know, many studies have been reported on implementing side-
channel attacks on SIMON and applying their relevant countermeasures against
these attacks [7–9]. As for SPECK, whose security is well documented [10,11],
only Chen et al. carried out a tiny side-channel resistant SPECK for Field Pro-
grammable Gate Array (FPGA) [12], other studies on SPECK implemented
in software embedded in devices have not been published up till now. In this
paper, we show that naive software implementation is vulnerable to the corre-
lation power attack and perform experiments for the correlation power attack.
Furthermore, we come up with a countermeasure against this attack on SPECK
algorithm.

2 Preliminaries

2.1 Specification of SPECK

The ten versions of SPECK have been optimized for outstanding performance
in both hardware and software implementations. SPECK encrypts a block of 2n
bits where n is the word size and supports the word sizes of n = 16, 24, 32, 48
and 64 bits. Besides, the key size is commonly notated by mn for a value m in
{2, 3, 4}. According to various combinations block sizes and key sizes, the round
of encryption ranges from 22 to 34.

352 J. Ge et al.

Fig. 1. SPECK round function.

Figure 1 shows the round function of SPECK family. At first, the plaintext is
divided into two parts, each of size n. Afterwards three different types of oper-
ations are applied during the encryption maps: an addition modulo 2n, bitwise
XOR, and left and right circular shifts, which enable high throughput and effi-
cient implementation on most microprocessors. We use S j and S−j to represent
left and right circular shifts, respectively, by j bits. And k i is the i th round key
starting from 0. Hereby, the round function can be defined by:

xi+1 = (S−α(xi) + yi) ⊕ ki

yi+1 = Sβ(yi) ⊕ xi+1

(1)

In fact, the same round function is also employed for the key scheduling, but
there is a matter needed attention while making use of this function. Comparing
with the encryption round function, the key used in key scheduling can be viewed
as the plaintext, and the constant representing the round number should be
regarded as the key. Obviously, the above description can also be formulized.
Let K be an initial key for a SPECK cipher, and K = (lm−2, . . . ,l0, k0), where
l i, k0 ∈GF(2n), for a value of m in {2, 3, 4}. k i and l i are given by:

li+m−1 = (yi + S−α(li)) ⊕ i

ki+1 = Sβ(ki) ⊕ li+m−1

(2)

2.2 Power Analysis Attacks

A lot of embedded devices tend to inevitably leak physical information such
as power consumption [13], electromagnetic radiation [14] and time delay [15],
which can be utilized to acquire sensitive information of users. Side-channel
attacks exactly take advantage of this leakage and have become a most powerful
attack aimed at cryptographic devices. Varieties of side-channel attacks include

Power Analysis and Protection on SPECK and Its Application in IoT 353

timing attacks, power analysis attacks, electromagnetic radiation attacks, fault
attacks and so on. Among them, power analysis attacks are the easiest and
the most effective, which consist of three types: Simple Power Analysis (SPA),
Correlation Power Analysis (CPA) [16] and Differential Power Analysis (DPA).

SPA can directly analyze power traces obtained during encryption or decryp-
tion, which makes use of the dependence of the secret key. Namely, attackers
attempt to gain the key directly or indirectly from only one specified power trace,
which makes implementing SPA attack a challenging work. Generally, attackers
are supposed to have a good command of concrete cryptographic algorithm in
devices. In addition, complicated statistic approaches are used to extract the
signal. In contrast, although more power traces are essential in CPA and DPA
attacks, the attacker only need to know what the cryptographic algorithm is
rather than how to implement specified details. In a CPA attack, the attacker
uses certain plaintexts and the fixed value in internal register to perform encryp-
tion, then the same plaintexts with the guessed key experience the exact crypto-
graphic operations. Thus, two kinds of power traces will be acquired. According
to key points selected from these traces, the key in a register can be recovered by
correlation analysis. In a DPA attack, the attacker makes a guess at a bit in the
unknown key, partitions the power traces in accordance with some internal reg-
ister values depended on this guess, and checks if the partitions show meaningful
difference.

3 Correlation Power Analysis on Non-linear Layer
of SPECK

3.1 Attack Method

It is vital to have a good knowledge of specific details about encryption algo-
rithms in SPA attacks, and DPA attacks take advantage of differential approach
to analyze leaked message of the key. Comparing with two types of attacks,
apart from no need for implementation details, CPA improves the statistical
method DPA used, in which case a more suitable correlation coefficient was con-
sidered to replace the difference score for statistical analysis [18]. Therefore, less
power traces would be obtained to retrieve the fixed key and CPA is chosen to
attack SPECK algorithm. In the following, we focus on the version of SPECK
(SPECK32/64) processing 32-bit plaintext blocks with a 64-bit key in 22 rounds.

Owing to the correlation between power consumption of cryptographic
devices and the data being processed, in the actual attack, the attacker needs
to map the operand to the value of power consumption. That is, to select an
effective power simulation mathematical model to model the power consump-
tion. Commonly used power consumption models are Hamming Weight (HW)
model and Hamming Distance (HD) [16] model. HW [13] model is on account
of the assumption that the power consumption of the cryptographic device is
proportional to the number of 1 in the data being processed. HD model not
only focuses on the processed data itself, but also takes the data values before
and after the processed data into account. It is intractable to employ HD model

354 J. Ge et al.

because that the attacker needs to command more information about crypto-
graphic devices. Apart from little information of devices needed, HW model is
suitable for software implementation of the cryptography system. Hence in our
CPA attack, we select HW model to analyze the leakage of power consumption
information.

For convenience and simplicity, we recover the real key in bytes. Here are our
attack procedures:

(1) At first, it is essential to select the appropriate attack location, which means
finding an intermediate value generated in encryption.

(2) The experimental platform was set up to collect power consumption during
the encryption. For example, n groups of random plaintexts and the key
fixed in the register are used to perform SPECK algorithm, then we can
obtain a group of power traces, denoted as P1, P2, . . .Pn.

(3) According to power traces and HW model, we select sample points to find
the intermediate leakage point, where the hamming weight of median has the
greatest correlation with power consumption. Furthermore, the power con-
sumption of each trace at the leakage point is expressed as T 1, T 2, . . .Tn.

(4) In order to calculate the assumed median, we guess the first byte of the fixed
subkey represented as k in the first encryption round, and the initial value
of k is 0.

(a) n groups of plaintexts are applied to compute separately with the
guessed k and then n groups of intermediate values of x are also known.
After that, we calculate their corresponding Hamming weight, presented
as HW (x).

(b) We use n groups of HW (x) and n groups of T to calculate correlation
coefficient, denote as r :

r =

N∑

i=1

(HWi − HW)(Ti − T)
√

N∑

i=1

(HWi − HW)2
√

N∑

i=1

(Ti − T)2
(3)

(c) k = k + 1, repeat step (4) and not finish until k > 255.

(5) Finally, the key with the greatest correlation coefficient is the real key that
we want to retrieve.

3.2 Experimental Results

In our experiment, we implement SPECK algorithm as MCS-51 C codes
on STC89C52 processor of MathMagic side-channel analyzer, which can be

Power Analysis and Protection on SPECK and Its Application in IoT 355

viewed as an IoT application scene. With sampling rate 1GSa/s, the power
consumption can be acquired accurately during the encryption. In addi-
tion, the obtained power traces are analyzed by C# program. A fixed key:
key = 0x1122334455667788 in the register is used to conduct our experiment.
We assume the real key is not known during the attack, and the real key is just
to verify whether our experimental result is true or not.

With respect to the choice of attack location, we try to attack addition mod-
ulo 2n operation in the second round of encryption function. In AES, the attack
position of CPA is after the S-box, for that the S-box is a non-linear opera-
tion. If two guessed keys differ by only one bit, the hamming weight difference
obtained after the S-box confusion is generally not 1, which is very conducive
to distinguishing the correct key from the wrong key. Taking advantage of the
characteristics of non-linear operations, the median value after modulo addition
is selected to attack in SPECK algorithm.

0 51 102 153 204 255
Key Guess

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n

C
oe

ff
ic

ie
nt

key=0x22 key=0xAA

Fig. 2. The recovered subkey of the first round.

The intermediate value after addition modulo 2n is the result that the plain-
text is divided into left and right two parts and experiences a series of operations,
so the four-bit leakage information here is related to the eight-bit plaintext and
as well related to the eight-bit key information of the first round. Corresponding
to that, the eight-bit key can be recovered by only utilizing the four-bit infor-
mation leakage. However, it is necessary to emphasize that the eight bits of the
key were not in order. Because before the second round of addition modulo 2n,
the median hidding the key information undergoes a circular shift operation.

Due to the carry problems in addition, the leakage analysis is required to
start from the low position. Furthermore, the high-order position bit is affected
by the low-order position carry and the recovery of the high-order position key
is based on the completion of the low-order position key recovery. In our exper-
iment, we concentrate on leakage of the lowest four bits, whose corresponding

356 J. Ge et al.

key information is the 6th, 7th, 8th, 9th, 13th, 14th, 15th and 16th bits of the
initial key. These eight bits are regarded as the value of a byte to make key
guess. Theoretically, the correct key restored in the register is the value 0x22
after taking the eight bits.

100 waveforms were collected up and 8500 sampling points were selected
for CPA attack. The experimental results are shown in Fig. 2. In particular,
the correlation coefficients of two guessing keys were the same, and the same
correlation coefficient was the greatest among all guessing keys. We collected
more waveforms and conducted a lot of experiments, each of which presented the
identical result. There was always a guessing key whose correlation coefficient
was the same to correlation coefficient of the correct key, which became the
interference term.

By comparing the two keys, we found the problem. There was always a
key confusing the correct key so that the left and right parts of the four bits
of plaintext information were added to get the identical result or one existed
carry problem, but the lowest four bits were the same. From what has been
discussed above, when CPA is performed after the modulo addition operation,
there is always an interference item to confuse the correct key. On the other
hand, the key must be recovered from the low to the high. If the low key is
guessed wrong, the high key is bound to go wrong. Therefore, we choose another
place to implement CPA.

4 Correlation Power Analysis on Linear Layer of SPECK

In this section, we chose another attack location to complete CPA to recover fixed
in the register. The first operation the key participates in is the XOR operation
in the first round, which can be regarded as our attack position. Besides, the
equipment we used and the SPECK algorithm we implemented were the same
as the experiments in the previous section. The only difference was the location
of the attack. Let K be an initial key in the used device, and K = (l2, l1, l0, k0),
where k0 = 0 × 1122, l0 = 0 × 3344, l1 = 0 × 5566, l2 = 0 × 7788.

We first went through the CPA for the first round, and Fig. 3 shows the result
of leakage analysis. The leakage points with absolute value of the correlation
coefficient more than 0.9 were recorded, and the correlation coefficients were
analyzed separately. Theoretically, the same correct key could be obtained. After
a lot of experimental verification, we could successfully deciphered the key.

The first round of XOR attacks can only restore 16-bit keys. To restore the
complete key information, the four round function must be attacked. In these
four attacks, all operations are the same except that the number of rounds
is different. However, it is worth noting that the recovered key in each round
except for the first round is not the initial key, but the subkey used in each
round, namely k i.

After four rounds of attack with eight CPA, the recovered key is shown in
Fig. 4. As shown in the figure, k0 = 0× 1122, k1 = 0×DD00, k2 = 0×DDA8,
k3 = 0× 9836. The initial key can be calculated according to the formula gen-
erated by the key.

Power Analysis and Protection on SPECK and Its Application in IoT 357

0 850 1700 2550 3400 4250 5100 5950 6800 7650 8500
Sample

-1

-0.6

-0.2

0.2

0.6

1

C
or

re
la

tio
n

C
oe

ff
ic

ie
nt

Fig. 3. The leakage analysis of CPA with attacking XOR operation.

l3 = k1 ⊕ S2(k0) = 0 × DD00 ⊕ S2(0 × 1122) = 0 × 9988

l0 = S7((l0 ⊕ 0 × 0000) − k0) = S7((0 × 9988 ⊕ 0 × 0000) − 0 × 1122) = 0 × 3344

l4 = k2 ⊕ S2(k1) = 0 × DDA8 ⊕ S2(0 × DD00) = 0 × A9AB

l1 = S4((l4 ⊕ 0 × 0001) − k1) = S7((0 × A9AB ⊕ 0 × 0001) − 0 × DD00) = 0 × 5566

l5 = k3 ⊕ S2(k2) = 0 × 9836 ⊕ S2(0 × DDA8) = 0 × EE95

l2 = S7((l5 ⊕ 0 × 0002) − k2) = S7((0 × EE95 ⊕ 0 × 0002) − 0 × DDA8) = 0 × 7788

(4)

By calculation, the initial key we got was the correct key, which means it is
feasible to carry out CPA after XOR operations.

5 Countermeasure Against Power Attacks

Many countermeasures targeted at power attacks such as masking and hiding [19]
have been put forward, which weaken the correlation between sensitive interme-
diate values and energy consumption to achieve the purpose of protection. More-
over, the basic principle of masking is to add random mask data into the input
of the cryptographic module to cover up the real data. At the same time, the
corresponding de-mask circuit needs to be designed. For that the result of the
encryption is also masked, it is necessary to eliminate the influence of masking
at the end of the calculation and restore the real ciphertexts.

In our paper, we brainstorm a masking scheme to protect SPECK algorithm
from correlation analysis attacks. There are both boolean operations and modulo
addition operations in SPECK algorithm round function, in which case secure
conversion between boolean masking and modulo addition should be considered
while masking. Here is our scheme.

First and foremost, we add a random mask mp to the plaintext during encryp-
tion. It is worth noting that mp should be split into mx and my with the plaintext

358 J. Ge et al.

0 51 102 153 204 255
Key Guess

-1

-0.5

0

0.5

1

C
or

re
la

tio
n

C
oe

ff
ic

ie
nt

key=0x11

0 51 102 153 204 255
Key Guess

-1

-0.5

0

0.5

1

C
or

re
la

tio
n

C
oe

ff
ic

ie
nt

key=0x22

0 51 102 153 204 255
Key Guess

-1

-0.5

0

0.5

1

C
or

re
la

tio
n

C
oe

ff
ic

ie
nt

key=0xDD

0 51 102 153 204 255
Key Guess

-1

-0.5

0

0.5

1

C
or

re
la

tio
n

C
oe

ff
ic

ie
nt

key=0x00

0 51 102 153 204 255
Key Guess

-1

-0.5

0

0.5

1

C
or

re
la

tio
n

C
oe

ff
ic

ie
nt

key=0xDD

0 51 102 153 204 255
Key Guess

-1

-0.5

0

0.5

1

C
or

re
la

tio
n

C
oe

ff
ic

ie
nt

key=0xA8

0 51 102 153 204 255
Key Guess

-1

-0.5

0

0.5

1

C
or

re
la

tio
n

C
oe

ff
ic

ie
nt

key=0x98

0 51 102 153 204 255
Key Guess

-1

-0.5

0

0.5

1

C
or

re
la

tio
n

C
oe

ff
ic

ie
nt

key=0x36

Fig. 4. The recovered subkey of four round function.

Power Analysis and Protection on SPECK and Its Application in IoT 359

Fig. 5. Masked SPECK round function.

segmented into two parts. Besides, for the sake of reducing the frequency of ran-
dom mask changes, we raise a method to take off the mask to guarantee that
the masked value is the same in each round of encryption function. Figure 5
shows masked SPECK round function, and the “B2A” and “A2B” modules rep-
resent BoolaenToArithmetic and ArithmeticToBoolean conversions respectively.
By adding the masked values mx and my again, original unmasked x i+1 and y i+1

will also be masked and not change the random masks of each round function.
The goal of extra masked data S−α(mx) + my and Sβ(my) ⊕ mx is getting rid
of the effect of other masks. In addition, we should emphasize that it will leak
encryption information if switch the order of these two masking procedures.

We implement both the original and our masked round function of SPECK
algorithm in software embedded in devices. Comparation of their performance
is shown in Table 1, and the efficiency of CPA on masked SPECK is presented
in Fig. 6. The red trace represents correlation coefficient of the right key, and
other traces show the wrong guessed key. It is obvious that our masking scheme
can commendably protect SPECK algorithm from CPA. In contrast, our timing
overhead is four to five times larger, we cannot avoid the timing overhead because
conversions between boolean and arithmetic masking are necessary in SPECK
masking.

360 J. Ge et al.

50 100 150 200 250 300 350 400 450 500
Trace Number

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

C
or

re
la

tio
n

C
oe

ff
ic

ie
nt

Wrong key
Correct key

Fig. 6. The efficiency of CPA on masked SPECK. (Color figure online)

Table 1. Comparisons between unmasked and masked SPECK.

Unmasked SPECK Masked SPECK Extra cost

Code 1079B 1651B 53.01%

RAM 255B 271B 6.27%

Time 0.44 ms 1.84 ms 318.18%

6 Conclusion

In this paper we have presented a security analysis of the SPECK block cipher
from a side-channel point of view. In the IoT application scenario, we imple-
mented CPA on a naive software implementation of SPECK algorithm for two
different attack positions. By comparison, we find that the XOR operation of the
attack can successfully recover the real key fixed in the register, while when the
attack location of the modulo addition operation is selected, there is always an
interference item that confuses the correct key. Moreover, we proposal a coun-
termeasure against power attacks, which can effectively protect SPECK from
power attacks.

References

1. Eisenbarth, T., Kumar, S.S., Paar, C., Poschmann, A., Uhsadel, L.: A survey of
lightweight-cryptography implementations. IEEE Des. Test Comput. 24(6), 522–
533 (2007)

2. Omrani, T., Rhouma, R., Sliman, L.: Lightweight cryptography for resource-
constrained devices: a comparative study and rectangle cryptanalysis. In: Bach
Tobji, M.A., Jallouli, R., Koubaa, Y., Nijholt, A. (eds.) ICDEc 2018. LNBIP,
vol. 325, pp. 107–118. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
97749-2 8

https://doi.org/10.1007/978-3-319-97749-2_8
https://doi.org/10.1007/978-3-319-97749-2_8

Power Analysis and Protection on SPECK and Its Application in IoT 361

3. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: a small
present – towards reaching the limit of lightweight encryption. In: Fischer, W.,
Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321–345. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66787-4 16

4. Beaulieu, R., Shors, D., Smith, J., Smith, T.-C., Weeks, B., Wingers, L.: The
SIMON and SPECK Families of Lightweight Block Ciphers. IACR Cryptology
ePrint Archive 2013, 404 (2013)

5. Heuser, A., Picek, S., Guilley, S., Mentens, N.: Side-channel analysis of lightweight
ciphers: does lightweight equal easy? IACR Cryptology ePrint Archive 2017, 261
(2017)

6. Bache, F., Plump, C., Gneysu, T.: Confident leakage assessment - a side-channel
evaluation framework based on confidence intervals. In: DATE 2018, pp. 1117–1122
(2018)

7. Takahashi, J., Fukunaga, T.: Fault analysis on SIMON family of lightweight block
ciphers. In: Lee, J., Kim, J. (eds.) ICISC 2014. LNCS, vol. 8949, pp. 175–189.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15943-0 11

8. Bhasin, S., Graba, T., Danger, J.-L., Najm, Z.: A look into SIMON from a side-
channel perspective. In: HOST 2014, pp. 56–59 (2014)

9. Shanmugam, D., Selvam, R., Annadurai, S.: Differential power analysis attack on
SIMON and LED block ciphers. In: Chakraborty, R.S., Matyas, V., Schaumont, P.
(eds.) SPACE 2014. LNCS, vol. 8804, pp. 110–125. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-12060-7 8

10. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
Notes on the design and analysis of SIMON and SPECK. IACR Cryptology ePrint
Archive 2017, 560 (2017)

11. Song, L., Huang, Z., Yang, Q.: Automatic differential analysis of ARX block ciphers
with application to SPECK and LEA. In: Liu, J.K., Steinfeld, R. (eds.) ACISP
2016. LNCS, vol. 9723, pp. 379–394. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-40367-0 24

12. Chen, C., İnci, M.S., Taha, M., Eisenbarth, T.: SpecTre: a tiny side-channel resis-
tant speck core for FPGAs. In: Lemke-Rust, K., Tunstall, M. (eds.) CARDIS 2016.
LNCS, vol. 10146, pp. 73–88. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-54669-8 5

13. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

14. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1 21

15. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

16. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-319-15943-0_11
https://doi.org/10.1007/978-3-319-12060-7_8
https://doi.org/10.1007/978-3-319-12060-7_8
https://doi.org/10.1007/978-3-319-40367-0_24
https://doi.org/10.1007/978-3-319-40367-0_24
https://doi.org/10.1007/978-3-319-54669-8_5
https://doi.org/10.1007/978-3-319-54669-8_5
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-540-28632-5_2

362 J. Ge et al.

17. Reparaz Dominguez, O.: Analysis and design of masking schemes for secure crypto-
graphic implementations. Analyse en ontwerp van maskeringsschema’s voor veilige
cryptografische implementaties. Katholieke Universiteit Leuven, Belgium (2016)

18. Stepnek, F., Bucek, J., Novotny, M.: Differential power analysis under constrained
budget: low cost education of hackers. In: DSD, pp. 645–648 (2013)

19. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks. Springer, Boston
(2007). https://doi.org/10.1007/978-0-387-38162-6. ISBN 978-0-387-30857-9, pp.
I–XXIII, 1–37

https://doi.org/10.1007/978-0-387-38162-6

Machine Learning, Privately

Adversarial False Data Injection Attack
Against Nonlinear AC State Estimation

with ANN in Smart Grid

Tian Liu and Tao Shu(B)

Department of Computer Science and Software Engineering, Auburn University,
Auburn, USA

{tzl0031,tshu}@auburn.edu

Abstract. Artificial neural network (ANN) provides superior accuracy
for nonlinear alternating current (AC) state estimation (SE) in smart
grid over traditional methods. However, research has discovered that
ANN could be easily fooled by adversarial examples. In this paper, we ini-
tiate a new study of adversarial false data injection (FDI) attack against
AC SE with ANN: by injecting a deliberate attack vector into measure-
ments, the attacker can degrade the accuracy of ANN SE while remaining
undetected. We propose a population-based algorithm and a gradient-
based algorithm to generate attack vectors. The performance of these
algorithms are evaluated through simulations on IEEE 9-bus, 14-bus and
30-bus systems under various attack scenarios. Simulation results show
that DE is more effective than SLSQP on all simulation cases. The attack
examples generated by DE algorithm successfully degrade the ANN SE
accuracy with high probability.

Keywords: Smart grid · AC state estimation · False data injection
attack · Adversarial learning

1 Introduction

With the increase of residential and industrial power demand, nowadays a
regional or nationwide power outage often leads to catastrophes in the matter of
public safety. After the Northeast Blackout of the US in 2003, the US and Canada
have reached a consensus in transferring into smart grid system, which is cleaner,
more efficient, reliable, resilient and responsive than traditional grid. While the
transition provides many attractive new features such as remote and automatic
grid monitoring, control, and pricing, it also raised serious security challenges
by opening up traditional power system to many potential attacks in the cyber
space. In the 2015 Ukraine power outage [4,12], the hacker successfully com-
promised the information systems of three energy distribution companies and
caused power disruption to over 225,000 customers. Since then, cyber attacks in

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 365–379, 2019.

https://doi.org/10.1007/978-3-030-37231-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_21&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_21

366 T. Liu and T. Shu

smart grid have become a realistic and growing concern. Therefore, it is signif-
icant and urgent to identify possible threats, and propose countermeasures to
eliminate such threats, so as to reduce the potential loss of the society.

State estimation (SE) plays an important role in system monitoring and
control, as it provides current system status for control center operators to take
actions in advance to avoid potential accidents. In alternating current (AC)
power flow systems, states and measurements are non-linearly related, several
efforts have been made to adopt artificial neural networks (ANNs) for AC SE
to better model this non-linear relationship [1,11,15,16]. Although the training
phase of these ANN models is costly, it has been shown that these ANN SE
models are more accurate. However, studies have shown that SE is vulnerable
to false data injection (FDI) attacks [13]. The adversary can corrupt state vari-
ables by injecting a well-coordinated false data to meter measurements, while
evading detection. FDI attacks on direct current (DC) power flow model can
be linearly formulated, hence it is easy to understand their impact and propose
countermeasures against them. Nonetheless, FDI attacks towards AC SE are
more complicated. The non-linearity between state variables and measurements
diffuses the strength of false injection, and makes it hard to identify how the
change of measurements would result in the errors to state variables. There are
few studies tackling the FDI attacks to AC SE. Jia et al. [9] claims that the
ability of malicious attack designed for DC power flow model is alleviated on
AC power flow model. Several FDI attacks against AC SE are derived from DC
FDI attack and predominantly based upon weighted least square (WLS) [7,17].

In the area of image classification, Szegedy first noticed that neural networks
may be easily fooled by well-coordinated samples with small perturbations [20].
Since then, there have been many efforts in exploring the robustness of ANN by
designing adversarial attacks [6,19].

In this paper, we are interested in examining whether the above vulnerability
of ANN presented in image classification problem can be extended to SE problem
in smart grid. Furthermore, we attempt to develop algorithms that can system-
atically generate polluted measurements that maximize ANN SE error while
eluding from being detected by the bad data detector. By answering these ques-
tions, we intend to establish new understanding on the security vulnerabilities
of the latest high-accuracy ANN AC SE models. To the best of our knowledge,
our work is the first in the literature that studies FDI to ANN AC SE models.

Solving our problem faces new and significant challenges. First, our problem
has an optimization nature in the sense that we seek the optimal attack vector that
maximizes the attack outcomes, while the goal of the image-classification counter-
parts is just to finda feasible attack vector. Second, the attackmodel in our problem
considers the attacker’s access and resource constraints, by which the attacker only
has access to and can only manipulate a certain numbers of meters. In contrast, the
image-classification problem has no such constraint and the attacker is allowed to
change any pixel of the image. Lastly, the output of ANN SE model is a continu-
ous value, whereas that of the image-classification is discrete and covers a limited
number of pre-defined cases. Due to these fundamental structural differences, the

Adversarial FDI Attack Against AC State Estimation with ANN 367

existing results from image-classification ANN are not directly applicable to our
problem. The main contributions of our work include the following four-fold:

– In creating the target ANN SE models for large-scale grid systems, a novel
penalty term is proposed for the loss function, which significantly improves
the accuracy of the ANN on modeling voltage phase angle.

– An optimization-based FDI attack formulation is proposed for AC SE under
the nonlinear ANN model, which can accommodate various practical con-
straints on the attacker, including its resource and meter accessibility.

– We adapt DE and SLSQP to solve the above optimization, targeting at two
different attack scenarios: DE generates attack vectors for which the attacker
can compromise any k meters, while DE and SLSQP target on the scenario
where the attacker is restricted to compromise specific k meters.

– The effectiveness of the proposed attack models is verified based on extensive
simulations on three test systems under various attack scenarios. Our results
show that the DE attack succeeds for more than 80% cases even with a small
number of compromised meters and low false injection level.

This paper is structured as the following. We start by providing preliminary
for SE and bad data detection in Sect. 2. We construct AC SE models with ANN
as targets for our attacks in Sect. 3. Subsequently, we introduce our adversary
model in Sect. 4. Our two attack algorithms, DE algorithm and SLSQP algo-
rithm would be presented in Sect. 5. Finally, the experimental analysis and the
comparison of our two attacks on target models and conclusions are presented
in Sects. 6 and 7.

2 Preliminaries

In AC power flow model, measurements of power flows are non-linearly depen-
dent on state variables, as characterized by the following equations: z = h(x)+e,
where z and x denote a Nm-dimension measurement vector and a Nn-dimension
state vector, respectively, e denotes a Nm-dimension vector of normally dis-
tributed measurement errors, and h is a set of nonlinear functions relating states
to measurements. In an over-determined case (Nm > Nn), the state variables
are determined from WLS optimization over a residual function J(x) [21]:

x̂ = arg min
x

J(x),where J(x) = (z − h(x))TW(z − h(x)) (1)

Here, the weight matrix W is defined as diag{σ−2
1 , σ−2

2 , ..., σ−2
Nm

}, and σ2
i is

the variance of the ith measurement (i = 1, ..., Nm).
Bad measurements would be introduced due to various reasons, such as mea-

suring noise, transmission error, meter malfunction and malicious attack. The
ability to detect and identify bad data is extremely critical to the stability of a
smart grid. Most bad data detection schemes rely on the residuals J(x̂) as their
decision variable. In particular, given the assumption that e is normally dis-
tributed, it is shown that J(x) follows χ2(K) distribution, where K = Nm −Nn

368 T. Liu and T. Shu

is the degree of freedom [21]. Any residual exceeding some pre-determined thresh-
old τ is recognized as a bad data:

z is identified as a bad data, if J(x̂) = (z − h(x̂))TW(z − h(x̂)) > τ. (2)

The threshold τ can be determined by a significant level α in hypothesis
testing, by which the false alarms would occur with probability α.

3 ANN-Based AC SE

In lack of actual state-measurement data from real power grid, the training and
testing cases in our study are generated based on simulations over the IEEE
test systems (9-bus, 14-bus, 30-bus). A Matlab package, MATPOWER [22], is
used for data generation and power flow analysis. Note that the use of simulated
data in training does not affect the validity of the proposed ANN model. Usu-
ally the model is trained off-line, and then to be retrain or improved with the
accumulation of actual data following the same procedure.

State variables, including magnitudes and phase angles of bus voltages may
change within a small range under different loads. To account for this dynamic
behavior, we consider a series of loads of the power grid ranging from 80% to
120% to simulate actual load pattern. For each instance of the load, the states
are calculated by power flow analysis using MATPOWER. According to [2], ±2%
error is allowed in a power measurement reading. In line with this specification,
we add an independent Gaussian noise ε to each measurement reading ψ, so that
the simulated measurement reading becomes (1 + ε)ψ, where ε ∼ N(0, 0.67%2).
For each of systems, 10,000 and 1,000 state-measurement pairs are generated for
training and testing, respectively.

Three ANN SE models are trained for the three systems, respectively. Fol-
lowing [1,8,14,15], each ANN SE model possesses a multi-layered perceptron
architecture. We use mean WLS error as loss function:

loss(z,x) =
1
N

N∑

i=1

(z − h(x))TW(z − h(x)) (3)

where N is number of training samples. Our experiments show this loss function
works well for small-scale systems (such as 9-bus and 14-bus power grid), but
fails to provide accurate estimation for voltage phase angles in larger scale sys-
tems (30-bus power grid). This is consistent with previous findings in [14]. To
address this issue, we revise the loss function in Eq. (3) by adding a new penalty
term of the mean square error (MSE) between the actual and the estimated
states, leading to the new loss function in Eq. (4) specially designed for large-
scale systems. In this new loss function, a small constant c is added to balance
both error terms so that the gradient descent works on both terms simultane-
ously. Our experiments show that by adding this new penalty term, the voltage
phase angle estimation error is reduced from 12% to 1.3% in 30-bus system.

loss(z,x) =
1
N

N∑

i=1

(z − h(x))TW(z − h(x)) + c
1
N

N∑

i=1

(x − x̂)2 (4)

Adversarial FDI Attack Against AC State Estimation with ANN 369

After the ANN models are trained, the testing data is used to evaluate their
performance. A good SE model should preserve two properties: (1) provide accu-
rate SE irrespective of the noise in the measurements; (2) bad-data alarms not
triggered by regular measurement noise. Accordingly, we evaluate the estimation
accuracy of the ANNs by maximum absolute relative error (MARE) between the
true and the estimated values. An estimation is considered accurate if MAREs
of the voltage magnitude and the voltage phase angle do not exceed 1% and
5%, respectively. Table 1 summarizes the performance evaluation results based
on a significant level α = 0.01 for the trained ANN models. It is clear from these
tables that the proposed ANN models are able to estimate AC states accurately,
and have low false alarm rate for bad data under regular measurement noises.

Table 1. ANN SE model evaluation

Test
system

MARE
(|V |)

Accuracy
(|V |)(%)

MARE
(θ)

Accuracy
(θ)(%)

Bad
data (%)

9-bus 2.4 × 10−5 100 1.6 × 10−2 96 0

14-bus 5.6 × 10−5 100 1.6 × 10−2 99 3

30-bus 6.5 × 10−5 100 1.3 × 10−2 98 5

4 Adversarial Model and Attack Formulation

4.1 Adversarial Model

The goal of the attacker is to launch a FDI attack, in which the attacker aims
to decide and inject a manipulated measurement vector into the measurement
under given resource and meter accessibility constraints, such that the injection
can maximize SE error while remaining stealthy.

The attacker is assumed to have full knowledge of the topology and configu-
ration of the power grid, such as the nodal admittance matrix. Such information
could be accessed or estimated from public database or historical records. In
addition, the attacker is also assumed to know everything about the ANN SE
model, including the architecture and the parameters. These information could
be obtained by the attacker either through breaking into the information system
of the power grid (similar to the 2015 Ukraine case) or through training a shadow
ANN that mimics the real ANN SE model on a substitute data set. The attacker
is also assumed to know the threshold of the bad data detector. Although these
assumptions render a strong attacker that may not always represent the prac-
tical cases, it enables us to evaluate the robustness and vulnerabilities of the
ANN SE models under the worst-case scenario, providing an upper bound on
the impact of FDI attacks on ANN AC SE.

In addition to the bad data detection threshold, the adversary is also facing
other constraints, including the set of meters she has access to, the maximum
number of meters she can compromise, and the maximum amount of errors she
can inject into a true measurement to avoid being detected.

370 T. Liu and T. Shu

Note that in this paper we only consider the FDI attacks that happen during
the operational phase of the ANN SE. In other words, the adversary is only
able to tamper the measurement inputs after the ANN model is trained. It
is not allowed to perturb either the training data or the trained model. The
investigation of training data and model pollution is out of the scope of this
paper and will be studied in our future work.

4.2 Attack Formulation

Let za be the measurement vector in the presence of FDI attack, then za can be
described as:

za = z + a = h(x) + a, (5)

where a is a Nm-dimension non-zero attack vector. Given the input of manipu-
lated measurement za, the output by the ANN SE f is as follows:

x̂a = f(za) = f(z + a) (6)

According to Eq. (2), an adversary intending to elude from bad data detection
must satisfy the following condition:

J(x̂a) = (za − h(x̂a))TW(za − h(x̂a)) ≤ τ (7)

The error injected to SE hence can be calculated by:

x̂a − x̂ = f(za) − f(z). (8)

With the above notations, the problem of finding the best adversarial injec-
tion a for a given measurement z can be formulated as a constrained optimiza-
tion:

maximize
a

‖x̂a − x̂‖p
subject to (z − h(x̂a))TW(za − h(x̂a)) < τ,

‖a‖0 ≤ L,

al
i ≤ ai ≤ au

i , i = 1, ..., Nm,

zmin
i ≤ zai

≤ zmax
i , i = 1, ..., Nm,

(9)

where L is the maximum number of meters the attacker can compromise, [al
i, a

u
i]

provides limits of modification to each compromised meter, and [zmin
i , zmax

i]
denotes the valid range for each measurement, ensuring the manipulated mea-
surement to still be within the power range permitted on that particular unit.
The strength of measurement modification depends on the attacker’s resource
and meter accessibility constraints, which have not been considered in previous
work. In our work, by limiting the measurement manipulation to a subset of
meters, we are able to prevent from injecting excessive errors, which can be eas-
ily detected by univariate analysis. In addition, if the adversary can locate high

Adversarial FDI Attack Against AC State Estimation with ANN 371

precision meters, she can avoid injecting too much errors into those meters and
instead allocate resource to other meters to improve the overall attack outcomes.

The objective function in the optimization Eq. (9) requires a distance metric
‖ · ‖p to quantify attack impact. This distance metric should be carefully defined
to reflect the severity of physical impact on the power grid caused by the SE
error. In reality, the voltage magnitudes in the state are always limited in a tight
range to ensure stable electricity supply, while the voltage phase angles could
vary in a relatively large range, and hence an erroneous estimation of the latter
may seriously affect the consistent operation of the power grid, but cannot be
easily detected. Therefore, we define the adversary’s objective function as the
maximum change to the voltage phase angles θ:

‖x̂a − x̂‖∞ = max(|θ̂a1 − θ̂1|, ..., |θ̂an
− θ̂n|) (10)

5 Attack Methodology

5.1 Solving the Proposed Attack with DE

As a population based stochastic optimization algorithm, DE algorithm was first
proposed in 1996 by Rainer et al. [18]. The population is randomly initialized
within the variable bounds. In each generation, a mutant vector is produced by
adding a target vector (father) with a weighted difference of other two randomly
chosen variables. Then a crossover parameter mixes father and mutant vector
to form a candidate solution (child). A comparison is drawn between father and
child, whichever that is better will enter the next generation.

We follow [19] to encode our measurement attack vector into an array, which
contains a fixed number of perturbations, and each perturbation holds two val-
ues: the compromised meter index and the amount to inject to that meter. The
use of DE and the encoding has the following three advantages: 1. Higher
probability of finding global optimum - In each generation, the diversity
introduced by mutation and crossover operations ensures the solution not stuck
in local optimum, and thus leads to a higher probability of finding global opti-
mum. 2. Adaptability for multiple attacks - DE can adapt to different
attack scenarios based on our encoding method. By DE can search for both
meter indices and injection amount or only search for injection amount to these
specified meters, by specifying the number of meters to compromise or fixing the
meter indices. 3. Parallelizibility to shorten attack time - As the smart grid
scale increases, generating one attack vector may take from seconds to minutes.
An attacker must finish attack vector generation and injection before next SE
takes place. As it is based on a vector population, DE is parallelization friendly,
so as to significantly expedite the computation for the attack vector.

Next, we present how we adapt DE algorithm to our proposed attack. The
pseudo code for the proposed attack using DE is presented in Algorithm 1:

– Deal with duplicate meter indices - Instead of outputting the exact
meter value, we select to output the injection vector to narrow down search

372 T. Liu and T. Shu

space. We use two approaches to ensure the uniqueness of meter indices in
the solution. First, we generate meter indices without replacement in popu-
lation initialization. Second, we add a filter in the crossover operation. This
filter keeps the meter indices unchanged if the newly selected meter index is
repetitive with previous meter indices.

– Ensure the measurement after injection is within range - A valid
measurement reading must satisfy zmin

i ≤ zi + ai ≤ zmax
i for all i, where

zmin
i and zmax

i are lower and upper limit power permitted on zi. We use an
intuitive approach by replace za = z+a with za = min(max(za, zmin), zmax),
where the min and max are element-wise operations.

– Deal with the overall constraint - In addressing constraints with DE,
using a penalty function has been the most popular approach. However, they
do not always yield satisfactory solutions since the appropriate multiplier for
the penalty term is difficult to choose and the objective function may be
distorted by the penalty term. Therefore, we use a heuristic constraint han-
dling method [5]. A pair-wise comparison is performed between fathers and
children in order to differentiate better solutions from population. The three
criteria of the pair-wise comparison are as the following: 1. If both vectors are
feasible, the one with the best objective function value is preferred. 2. If one
vector is feasible and the other one is not, the feasible one is preferred. 3. If
both two vectors are infeasible, the one with the smaller constraint violation
is preferred. The above comparisons handle constraint in two steps: first, the
comparison among feasible and infeasible solutions provides a search direction
towards the feasible region; then, the crossover and mutation operations keep
the search near the global optimum, while maintaining the diversity among
feasible solutions.

5.2 Solving the Proposed Attack with SLSQP

In some gradient based attack algorithms in image classification [3,20], the logis-
tic function is added to the objective function as a penalty term and the param-
eter for the penalty term is chosen by line search. These algorithms aim to find a
feasible solution, not the optimal one. Therefore, we use a conventional optimiza-
tion algorithm (SLSQP) [10]. SLSQP is a variation on the SQP algorithm for
non-linearly constrained gradient-based optimization. In our SLSQP attack, we
encode the solution to a Nm-dimension vector, in which the ith element denotes
the injection amount to the ith meter. This encoding allows the attacker to gen-
erate attack vectors with a set of specified meters by placing upper and lower
bounds to corresponding elements in the attack vector. To solve the proposed
optimization problem, we first construct the Lagrangian function:

L(a, λ) = f(a) + λ · g(a), (11)

where {
f(a) = ‖x̂a − x̂‖∞
g(a) = (z − h(x̂a))TW(za − h(x̂a)) < τ

(12)

Adversarial FDI Attack Against AC State Estimation with ANN 373

Algorithm 1. DE attack
Input: measurement z, GENMAX{maximum number of generations}, N{population

size}, f{objective function}, g{constraint function}, CR{crossover rate}
Output: injection vector a
1: g = 0
2: Population initialization ai,0 for i = 1, ..., N . Meter indices are randomly select

without replacement and injection amounts are randomly select within the uni-
variate bound.

3: Evaluate the f(ai,g) and constraint violation CV (ai,g) = max(g(ai,g), 0), for i =
1, ..., N

4: for g = 1 : MAXGEN do
5: for i = 1 : N do
6: Randomly select r1 and r2
7: jrand = randint(1, Nm)
8: for j = 1 : D do
9: if (randj [0, 1) < CR or j = jrand) and the meter index not repetitive with

previous meter indices then
10: uj

i,g+1 = xj
best,G + F (xj

r1,g − xj
r2,g)

11: else
12: uj

i,g+1 = xj
i,G

13: end if
14: end for
15: Evaluate f(ui,g+1) and CV (ui,g+1)
16: Update the population if the child ui,g+1 is better than the father xi,g by the

above three criteria
17: end for
18: end for

In each iteration k, the above problem can be solved by transferring to a
linear least square sub-problem in the following form:

max
d

‖(Dk)
1/2

(Lk)Td + ((Dk)−1/2(Lk)−1∇(ak)‖
subject to ∇g(ak)d + g(ak) ≥ 0

(13)

where LkDk(Lk)T is a stable factorization of the chosen search direction
∇2

zzL(z, λ) and is updated by BFGS method. By solving the QP sub-problem
for each iteration, we can get the value of dk, i.e., the update direction for zk:

zk+1 = zk + αdk (14)

where α is the step size, which is determined by solving an additional optimiza-
tion. The step size ψ(α) := φ(ak+αdk) with xk and dk are fixed, can be obtained
by a minimization:

φ(ak; r) := f(ak) + max(r · g(a), 0) (15)

with r being updated by:

rk+1 := max(
1
2
(rk + |λ|, |λ|)) (16)

374 T. Liu and T. Shu

6 Attack Evaluation

Here, both FDI attacks are evaluated on IEEE 9-bus, 14-bus, and 30-bus test
systems. The simulation is done in Python, using package TensorFlow and SciPy,
on a computer with a 3.5 GHz CPU and a 16 GB memory.

Depending on the attacker’s capability and practical constraints, the attacker
can launch attack under different scenarios. Inspired by [13], we construct two
attack scenarios to facilitate the evaluation: (1) Any k meter attacks. The
attacker can access all meters, but the number of meters to compromise is limited
by k. In this scenario, the attacker can wisely allocate the limited resources, by
selecting meters and injection amounts that will maximize her attack impact.
(2) Specific k meter attacks. The attacker has the access to k specific meters.
For example, the attacker may only access the a set of meters in a small region.
She needs to determine injection amount to maximize attack impact.

We perform the experiment as follows. To fairly compare attack performance
on different test systems, we choose the percentage of meters being compromised,
R, to be 5%, 10% and 20%. For each R, we explore the attack performance under
different error injection levels: 2%, 5% and 10%. Each experiment runs on 1000
measurement instances, and is repeated for 10 times to reduce randomness.

We consider four metrics throughout evaluating the effectiveness of the
attacks. We measure the MAE and MARE of the error injected to voltage phase
angles. We also report the success probability, where success is defined as the
attack produce more than 1% or 5% MARE to voltage magnitude or phase angle,
respectively. Moreover, since the smart grid is assumed to be a quasi-static sys-
tem and the states change slowly over time, we want to investigate if the time
allows an adversary to mount an FDI attack to smart grid.

6.1 Any k Meter Attack

Under this scenario, the attacker can access all meters and has freedom to choose
any k meters to compromise. The way we encode the attack vector in DE enables
the search for better meters in every generation. In contrast, SLSQP only allows
us to put constraint on specific meter indices. Therefore, only DE can be used
to find attack vectors in any k meter attack.

Our DE attack inject error to one of voltage phase angles while other values
keep unchanged. In Fig. 1(b) and (c), for injection level 10% and 20%, the maxi-
mum injections are concentrated around 5% and seldom go beyond 10%, due to
the overall constraint of bad data detection.

In general, the success probability and attack impact increase as the attacker
controls more resource. The attack would succeed with larger probability (80%
of simulation instances) by compromising 10% of meters with injection level
10%. Especially for 14-bus system, the attack achieves 100% success for any
combination of R and injection level (Fig. 2).

Interestingly, for 30-bus system, the impact of compromising 10% of meters
surpasses that of compromising 20% of meters. Moreover, the performance of
20% of meter compromised drops drastically as the injection level increases.

Adversarial FDI Attack Against AC State Estimation with ANN 375

Fig. 1. An example of a 5-m attack to 14-bus system

0.05 0.10 0.15 0.20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Injection Level

R
el

at
iv

e
E

rr
or

5% meters
10% meters
20% meters

(a) 9-bus Relative Error

0.05 0.10 0.15 0.20

0.
10

0.
15

0.
20

0.
25

Injection Level

R
el

at
iv

e
E

rr
or

5% meters
10% meters
20% meters

(b) 14-bus Relative Error

0.05 0.10 0.15 0.20

0.
00

0.
05

0.
10

0.
15

0.
20

Injection Level

R
el

at
iv

e
E

rr
or

2% meters
5% meters
10% meters
20% meters

(c) 30-bus Relative Error

0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Injection Level

S
uc

ce
ss

 P
ro

ba
bi

lit
y

5% meters
10% meters
20% meters

(d) 9-bus Success Prob.

0.05 0.10 0.15 0.20

0.
85

0.
90

0.
95

1.
00

1.
05

Injection Level

S
uc

ce
ss

 P
ro

ba
bi

lit
y

5% meters
10% meters
20% meters

(e) 14-bus Success Prob.

0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Injection Level

S
uc

ce
ss

 P
ro

ba
bi

lit
y

2% meters
5% meters
10% meters
20% meters

(f) 30-bus Success Prob.

Fig. 2. Relative error (first row) and success prob. (second row) of Any k meter attack
with N = 400 and GMAX = 400

A possible explanation for this might be that, as the expansion of search dimen-
sion and space, it would require more attempts to find a satisfactory solution.

Figure 3 shows the first seven cumulative meter indices’ frequency in the
attack vectors. Injection to meters with higher frequency can introduce larger
errors to state variables. Our DE attacks provide a practical way for system-
atically identifying key meters whose readings have a higher weight on the AC

376 T. Liu and T. Shu

Q5,6 P6,5 Q9,8 P4,1 P5,6 Q2 P1

Meter Index

F
re

qu
en

cy

0
10

20
30

40
50

60

(a) 9-bus

Q7,8 Q8 Q8,7 P6,11 Q4,9 Q8 P10,11

Meter Index

F
re

qu
en

cy

0
20

40
60

80
(b) 14-bus

P12 P28, 8P4,12P6,28 Q1 Q4 P1,2

Meter Index

F
re

qu
en

cy

0
10

20
30

40
50

60

(c) 30-bus

Fig. 3. Cumulative frequency of meters presenting in attack vectors

SE, and thus may guide the utility company to reach a more focused protection
towards these key meters under resource and budget constraints.

Table 2. Average NFEs and execution time (in second) of any k attacks

Test system NFEs Time (s)

9-bus 500–1500 0.25–0.45

14-bus 500–3500 0.5–1.73

30-bus 800–5600 1.5–2.7

6.2 Specific k Meter Attack

To explore the effect of population size and iteration number, we evaluate the
average number of function evaluations (NFEs) before delivering a successful
attack or there is no significant change in the solution. The NFEs and corre-
sponding running time are shown in Table 2.

In this constrained scenario, the attacker is able to compromise specific k
meters due to physical location restrictions. DE and SLSQP are implemented and
compared under this attack scenario. To search the injection amounts to specific
k meters, DE specifies the indices of the k meters in population initialization
and disables the mutation operation, while SLSQP only allows modifications to
the k meters in the attack vector. We randomly select R to be 5%, 10% and 20%
from test systems and perform the same set of experiments using both DE and
gradient-based algorithm and compare their performance by the same metrics.

In general, DE algorithm outperforms the gradient-based algorithm in effec-
tiveness (Fig. 4). This is not surprising, as DE brings in more diversity in every
generation while SLSQP only explores neighbors in each iteration.

Table 3 shows the execution time of DE attack with 1×104 NFEs and SLSQP
attack with 100 iterations. Both attacks can be finished quickly within 3 s, which

Adversarial FDI Attack Against AC State Estimation with ANN 377

0.05 0.10 0.15 0.20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Injection Level

R
el

at
iv

e
E

rr
or

5% meters
10% meters
20% meters

(a) 9-bus Relative Error

0.05 0.10 0.15 0.20

0.
00

0.
05

0.
10

0.
15

Injection Level

R
el

at
iv

e
E

rr
or

5% meters
10% meters
20% meters

(b) 14-bus Relative Error

0.05 0.10 0.15 0.20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Injection Level

R
el

at
iv

e
E

rr
or

5% meters
10% meters
20% meters

(c) 30-bus Relative Error

0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Injection Level

S
uc

ce
ss

 P
ro

ba
bi

lit
y

5% meters
10% meters
20% meters

(d) 9-bus Success Prob.

0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Injection Level

S
uc

ce
ss

 P
ro

ba
bi

lit
y

5% meters
10% meters
20% meters

(e) 14-bus Success Prob

0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Injection Level

S
uc

ce
ss

 P
ro

ba
bi

lit
y

5% meters
10% meters
20% meters

(f) 30-bus Success Prob.

Fig. 4. Relative error (first row) and success prob. (second row) of specific k meter
attack

is feasible for an attacker to mount on smart grid. The comparison of running
time between them can be misleading, since the execution time highly relies on
NFEs for DE and max iteration numbers for SLSQP. In addition, the execution
time can be further shortened by implementing a early-stop criteria or parallel
processing for DE, or adjusting the max iteration numbers for SLSQP. Therefore,
taking no account for running time, our experiments exhibit clear pattern that
DE attack is more effective than SLSQP attack.

Table 3. Execution time (in second) comparison of specific k attacks

Test system DE (s) SLSQP (s)

9-bus 0.12–0.4 0.036–0.6

14-bus 0.06–0.6 0.14–1.0

30-bus 0.3–3.0 0.26–2.2

378 T. Liu and T. Shu

7 Conclusions

In this paper, we perform the first study of adversarial FDI attacks against
ANN-based AC SE. We first create target models that are sufficiently strong.
Then we formulate the adversarial FDI attack into an optimization problem. We
extensively evaluate the proposed attacks under two attack scenarios on three
test systems, with adapted DE and SLSQP aiming to find attack vectors. In
the any k meter attack, our results show that the DE attack is successful with
high probability even with a small number of compromised meters and low false
injection level. DE outperforms SLSQP in the specific k meter attack.

Acknowledgement. The work of T. Shu is supported in part by NSF under grants
CNS-1837034, CNS-1745254, CNS-1659965, and CNS-1460897. Any opinions, findings,
conclusions, or recommendations expressed in this paper are those of the author(s) and
do not necessarily reflect the views of NSF.

References

1. Abdel-Nasser, M., Mahmoud, K., Kashef, H.: A novel smart grid state estimation
method based on neural networks. Int. J. Interact. Multimed. Artif. Intell. 5(1),
92–100 (2018)

2. ANSI: ANSI C12.1-2008: American National Standard for Electric Meters: Code
for Electricity Metering (2008)

3. Carlini, N., Wagner, D.: Towards Evaluating the Robustness of Neural Networks.
Technical report (2017). https://doi.org/10.1109/SP.2017.49. http://nicholas.
carlini.com/code/nn

4. Case, D.U.: Analysis of the cyber attack on the Ukrainian power grid. Electricity
Information Sharing and Analysis Center (E-ISAC) (2016)

5. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput.
Methods Appl. Mech. Eng. 186(2–4), 311–338 (2000)

6. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

7. Hug, G., Giampapa, J.A.: Vulnerability assessment of AC state estimation with
respect to false data injection cyber-attacks. IEEE Trans. Smart Grid 3(3), 1362–
1370 (2012)

8. Jain, A., Balasubramanian, R., Tripathy, S.: Topological observability: artificial
neural network application based solution for a practical power system. In: 2008
40th North American Power Symposium, pp. 1–6. IEEE (2008)

9. Jia, L., Thomas, R.J., Tong, L.: On the nonlinearity effects on malicious data attack
on power system. In: 2012 IEEE Power and Energy Society General Meeting, pp.
1–8. IEEE (2012)

10. Kraft, D.: A software package for sequential quadratic programming. Forschungs-
bericht Deutsche Forschungs und Versuchsanstalt für Luft und Raumfahrt 88, 33
(1988)

11. Kumar, D.M.V., Srivastava, S.C., Shah, S., Mathur, S.: Topology processing and
static state estimation using artificial neural networks. IEE Proc. Gener. Transm.
Distrib. 143, 99–105 (1996)

https://doi.org/10.1109/SP.2017.49
http://nicholas.carlini.com/code/nn
http://nicholas.carlini.com/code/nn
http://arxiv.org/abs/1412.6572

Adversarial FDI Attack Against AC State Estimation with ANN 379

12. Liang, G., Weller, S.R., Zhao, J., Luo, F., Dong, Z.Y.: The 2015 Ukraine blackout:
implications for false data injection attacks. IEEE Trans. Power Syst. 32(4), 3317–
3318 (2017). https://doi.org/10.1109/TPWRS.2016.2631891

13. Liu, Y., Ning, P., Reiter, M.K.: False data injection attacks against state estimation
in electric power grids. ACM Trans. Inf. Syst. Secur. (TISSEC) 14(1), 13 (2011)

14. Menke, J.H., Bornhorst, N., Braun, M.: Distribution system monitoring for smart
power grids with distributed generation using artificial neural networks. arXiv
preprint arXiv:1801.04705 (2018)

15. Mosbah, H., El-Hawary, M.: Multilayer artificial neural networks for real time
power system state estimation. In: 2015 IEEE Electrical Power and Energy Con-
ference (EPEC), pp. 344–351. IEEE (2015)

16. Onwuachumba, A., Musavi, M.: New reduced model approach for power system
state estimation using artificial neural networks and principal component analysis.
In: 2014 IEEE Electrical Power and Energy Conference, pp. 15–20. IEEE (2014)

17. Rahman, M.A., Mohsenian-Rad, H.: False data injection attacks against nonlinear
state estimation in smart power grids. In: 2013 IEEE Power & Energy Society
General Meeting, pp. 1–5. IEEE (2013)

18. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

19. Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural networks.
CoRR abs/1710.08864 (2017). http://arxiv.org/abs/1710.08864

20. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199 (2013)

21. Wood, A.J., Wollenberg, B.F., Sheblé, G.B.: Power Generation, Operation, and
Control. Wiley, New York (2013)

22. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: MATPOWER: steady-
state operations, planning, and analysis tools for power systems research and edu-
cation. IEEE Trans. Power Syst. 26(1), 12–19 (2011)

https://doi.org/10.1109/TPWRS.2016.2631891
http://arxiv.org/abs/1801.04705
http://arxiv.org/abs/1710.08864
http://arxiv.org/abs/1312.6199

On Effectiveness of Adversarial Examples
and Defenses for Malware Classification

Robert Podschwadt(B) and Hassan Takabi

University of North Texas, Denton, TX 76201, USA
robertpodschwadt@my.unt.edu, takabi@unt.edu

Abstract. Artificial neural networks have been successfully used for
many different classification tasks including malware detection and distin-
guishing between malicious and non-malicious programs. Although artifi-
cial neural networks perform very well on these tasks, they are also vulner-
able to adversarial examples. An adversarial example is a sample that has
minor modifications made to it so that the neural network misclassifies it.
Many techniques have been proposed, both for crafting adversarial exam-
ples and for hardening neural networks against them. Most previous work
was done in the image domain. Some of the attacks have been adopted
to work in the malware domain which typically deals with binary feature
vectors. In order to better understand the space of adversarial examples in
malware classification, we study different approaches of crafting adversar-
ial examples and defense techniques in the malware domain and compare
their effectiveness on multiple data sets.

Keywords: Adversarial machine learning · Malware detection ·
Android

1 Introduction

Machine learning and deep neural networks in particular have been highly suc-
cessful in different applications. For example, they can be used for image recog-
nition with human accuracy or above [1,2], and they have also been employed
to perform malware detection [3–5]. However, it has been shown that neural
networks could be vulnerable to adversarial examples created by perturbing
input data. Most adversarial machine learning research [6–9] focuses on images
data since it is easy to visualize the perturbations, and all changes made to an
image still produce a valid image. When perturbing malware instead of images
[10,11], there are more constraints that need to be taken into consideration.
This paper investigates neural networks applied to malware classification task.
We focus on a range of attacks and defense mechanisms proposed in recent years,
providing an overview of the algorithms and comparing their efficacy in a con-
sistent manner. With an increasing number of attacks and defenses available,
it is non-trivial to compare their effectiveness. Most publications use different
datasets and different model architectures which makes it even harder to com-
pare different approaches. Currently there is no straightforward way of telling
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 380–393, 2019.

https://doi.org/10.1007/978-3-030-37231-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_22&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_22

Adversarial Examples and Defenses for Malware Classification 381

which defense is efficient against which attack and vice versa. In this paper, we
compare twelve attacks, their effectiveness against undefended models, and the
impact of four proposed defenses. To achieve this, we use two different datasets
from the malware domain and train deep neural networks on both. We imple-
ment or use existing implementations of the attacks and defenses to gain a better
understanding of which defenses are effective in the malware domain. Our results
show that all defenses, except for adversarial training, perform worse on malware
than they do on images.

2 Background

2.1 Threat Model

In a malware detection system, the goal is to accurately distinguish between mal-
ware and non-malware. The attacker is the author of a malicious program, and
their goal is to evade detection by the system. In order to evade the detection sys-
tem the attacker has two options. The first option is to “sabotage” the classifier
to the point that it becomes untrustworthy; the second is to modify their software
is such a way that the classifier views it as benign. It is possible that the target
of an attacker is to have a benign sample classified as malicious but it is a less
straightforward attack like flooding the classifier with false-positives therefore
eroding the users trust in the system. While neural networks bring advantages
for malware detection, their use leaves the system vulnerable to attacks that
can be leveraged against neural networks in general. If an attacker can mislabel
instances that are in the training data it is called a data poisoning attack [12,13].
The goal of data poisoning is to evade the classifier by having it trained on mis-
labeled data. In this paper, we consider a less powerful attacker who can only
interact with the system after it has been trained and has no influence over the
training data. All they can do is present an instance to the detection system and
receive the classification result. For most methods of creating adversarial exam-
ples, the attacker needs access to the internal structure and information of the
model. But even with only query access to the system, attacks are still possible.
Papernot et al. [14] have shown that any black box attack can be transformed
into a semi white box attack. This is due to transferability of machine learning
algorithms. It has been shown that adversarial examples created on one model
can also be used to attack another model as long as the models have learned
a similar enough decision boundary. For this reason, attacks considered in this
paper are all white box attacks.

2.2 Adversarial Examples

First described by Szedgy et al. [15] adversarial examples are instances that are
very close to a legitimate instance but are classified differently. Given an instance
x with the class label C(x) = t, one can find an instance x′ such that C(x′) �= t.
An additional constraint is that some distance metric ||x − x′|| should be kept

382 R. Podschwadt and H. Takabi

small, meaning changes made to the sample should be as small as possible. In
images that usually means that it is impossible for a human to perceive the
changes between x and x′. Different norms including L0 [16,17], L1 [18], L2 [17],
and L∞ [19] have been used. Since we are working with binary feature indication
vectors, feature values can either be 0 or 1. Therefore the L∞ norm would always
be 1 if at least one change was made. The ||x − x′||0 norm yields all the changes
that have been made. This makes L0 a good choice.

3 Experiments

3.1 Datasets

We use the Drebin dataset [20] of Android apps. It contains extracted features
for both classes. Drebin relies on static features, i.e., those that can be extracted
from an app without executing it. The specific features are: requested hardware,
requested permissions, app components, filtered intents, restricted API calls,
used permissions, suspicious API calls and network addresses. Those features
come either from the manifest or decompiling the code. We also run experiments
on another dataset, APDS, which consists of permissions extracted from android
apps. It contains 398 instances with 330 features; 50% of the samples are malware
and 50% are benign. The data is available on kaggle [21].

3.2 The Victim Model

To test the performance of attacks and defenses we define a victim model. Our
model consist of four fully connected hidden layers with ReLU as the activation
function (details in Table 1). We trained the model for 100 epochs using the
Adam optimizer with a learning rate of .001, β1 = .9, β2 = .999 using binary
cross entropy as the loss function. See Table 2 for the performance of the model.
For all of our training, we use 56.25% of the data as training data, 18.75% as
validation data and 25% as test data.

Table 1. Architecture of the victim
model

Layer Neurons Activation

Fully connected 300 ReLU

Fully connected 250 ReLU

Fully connected 200 ReLU

Fully connected 128 ReLU

Fully connected 2 Softmax

Table 2. Accuracy (acc) of the victim
model on the test set, false negatives rate
(FNR), false positives rate (FPR), true
positives rate (FPR) and true negatives
rate (TNR)

Dataset acc FNR FPR TPR TNR

Drebin500 0.99 0.10 0.01 0.89 0.99

APDS 0.98 0.04 0.0 0.96 1.0

Adversarial Examples and Defenses for Malware Classification 383

3.3 Feature Selection

The Drebin dataset is composed of features for over 120,000 instances of which
roughly 5,500 are malware. Each instance has more than 550,000 features. Build-
ing a neural network graph with features that size leads to memory problems
very quickly. Grosse et al. [10] find that only a small number of features are
used for creating adversarial examples. In order to test more complex models we
employ feature selection. We use the scikit-learn [22] implementation of Selec-
tKBest with chi-squared as the scoring function and run feature selection for
different values of K. The accuracy on the benign class does not change much
with the number of features, due to the class imbalance. With 500 and 1000 fea-
tures we achieve 99.6% accuracy on the benign class and 89.2% on the malware
class. Throughout the paper, we indicate that we have used feature selection by
giving the number features K used as follows: DrebinK .

4 Attack Mechanisms

4.1 Jacobian-Based Saliency Maps Attack (JSMA)

Grosse et al. [10] adapted the approach developed for images in [23] based
on Jacobian-based Saliency Maps Attack (JSMA). The Jacobian matrix is the
matrix of the forwards derivatives for every feature of a sample w.r.t. the output
classes. The feature with maximum positive gradient towards the desired output
class is selected and perturbed. In order to guarantee a correctly functioning
adversarial example, features are only added and not removed. Calculating the
Jacobian and changing a feature are repeated multiple times, until a maximum
number of allowed perturbations have been made or misclassification is achieved.
The attack is effective against our victim models (Table 3). On APDS we achieve
an evasion rate of 100%. On the Drebin500 data we were only able to evade the
classifier 33% of the time. The change column gives the average changes made
to all adversarial examples.

Table 3. Attack based on JSMA [10] with a maximum of 25 perturbations.

Dataset acc acc adv FNR FNR adv # Features changed Evasion

Drebin500 0.99 0.98 0.01 0.19 1.89 0.33

APDS 0.93 0.63 0.12 0.56 13.57 1.00

4.2 Feature Enabling and Disabling

Stokes et al. [24] propose different variants for creating adversarial examples,
relaxing the constraints on allowed modifications. Instead of only adding fea-
tures, which preserve the functionality of the malware, they also allow for the

384 R. Podschwadt and H. Takabi

removal of features. The authors reason that attackers can find different ways
to implement the same malicious behavior. We include these methods for com-
pleteness.

They propose three iterative methods which are based on the Jacobian using
positive features and negative features. A positive feature is a feature that is
an indicator of malware, meaning that the Jacobian for the malware class with
respect to the input is positive for this feature. Similarly, a negative feature is
an indicator for the benign class. From these attributes, the authors develop
three different iterative methods for creating adversarial examples. For every
iteration the Jacobian of the sample is calculated w.r.t. the output classes and
one feature is perpetuated. This is done until the maximum number of allowed
perturbations is reached or the sample is misclassified. Iteratively disabling posi-
tive features is called the dec pos attack, and enabling negative features, inc neg.
These approaches can be applied in alternating fashion to get dec pos + inc neg.
Instead of choosing the feature with the maximum value, a random feature can
be chosen. This leads to three more different techniques; randomized dec pos,
randomized inc neg and randomized dec pos + inc neg. Note that inc neg is the
same strategy as the one described in [10]. We apply the attacks to our victim
model trained on Drebin500 and the results can be seen in Table 4.

Table 4. Attacks from Stokes et al. [24]. Numbers on Drebin500

Attack acc acc adv FNR FNR adv Change Evasion

dec pos 0.99 0.98 0.05 0.16 1.65 0.25

inc neg 0.99 0.98 0.05 0.19 1.89 0.32

dec pos inc neg 0.99 0.98 0.05 0.16 0.08 0.27

rand. dec pos 0.99 0.98 0.05 0.15 2.09 0.24

rand. inc neg 0.99 0.99 0.05 0.06 0.09 0.06

rand dec pos inc neg 0.99 0.99 0.05 0.12 0.23 0.18

The randomized inc neg achieves no additional evasions at all, suggesting
that randomly enabling features is not a good approach. The relative effective-
ness of the attacks is similar over all compared models. The notable difference is
that on Drebin500 inc neg achieves a higher evasion with only slightly increased
average change when compared to dec pos. On the other victim model, dec pos
is able to achieve the same rate as inc neg although at a smaller change cost.

4.3 Fast Gradient Sign Method (FGSM)

Huang et al. [25] propose four different approaches. The first two methods are
based on the Fast Gradient Sign Method (FGSM). It is a one step method of
moving the sample in the direction of the greatest loss. A more powerful variation
of the attack is multi step FGSMk where k is the number of iterations. To apply

Adversarial Examples and Defenses for Malware Classification 385

this method to the discrete malware domain rounding is required. The authors
propose two different rounding schemes: deterministic rounding dFGSMk and
random rounding rFGSMk. A third method is introduced which explores the
possible feature space more thoroughly. This method is called multi-step Bit
Gradient Ascent(BGAk). BGAk works by setting a bit if the feature contributes
more than the average feature to the l2 norm of the loss. Another method is
multi-step Bit Coordinate Ascent BCAk. At every step the bit corresponding
to the feature with the maximum partial derivative of the loss is changed. The
results on Drebin500 can be found in Table 5.

Table 5. FGSMk, rFGSMk, dFGSMk, BGAk and BCAk [25]. Results on Drebin500

Attack acc acc adv FNR FNR adv Change Evasion

dFGSMk 0.99 0.99 0.05 0.10 7.16 0.15

rFGSMk 0.99 0.99 0.05 0.10 7.16 0.15

BGAk 0.99 0.99 0.05 0.05 1.14 0.05

BCAk 0.99 0.99 0.05 0.09 1.26 0.12

The iterative variants of FGSM produce the most effective adversarial exam-
ples when it comes to evasion. The rounding scheme employed has very little
effect. On the APDS model both attacks achieve 100% evasion rate. BGAk fails
to achieve any significant evasion across all models, while BCAk performs very
differently depending on the model. On Drebin500 BCAk achieves 12% evasion
rate which is almost 2.5 times the natural evasion rate of 5%. On APDS the
evasion rate achieved is 14% which is barely more than the natural rate of 12%.

4.4 MalGAN

Malgan is an attack introduced by Hu et al. [26]. It uses a Generative Adversarial
Network (GAN) [27] to create adversarial examples. The idea behind GAN is
to create data by training neural networks. For our experiment we use the same
architecture as [26]. The Generator takes a legitimate sample as input and a 10D
noise vector. This gets fed into a fully connected layer with 256 units and ReLU
activation function. This layer is fully connected to the output layer with Sigmoid
as activation function. The size of the output layer is the size of a sample. After
the last layer, the output is rounded and transformed into a proper binary feature
representation and the constraint of only adding features is enforced. For the
Discriminator, we use a simple network with one hidden layer, 256 neurons, and
ReLU activation. The output layer includes one neuron with Sigmoid activation.

The generator and discriminator are trained for 100 epochs. Every epoch
the generated adversarial examples are tested against a black box detector. At
the end, the generator with highest misclassification rate on the black box is

386 R. Podschwadt and H. Takabi

Table 6. Hu et al. [26] approach which uses a GAN to create adversarial examples

Dataset acc acc adv FNR FNR adv Change Evasion

Drebin500 0.99 0.99 0.05 0.03 227.46 0.0

APDS 0.93 0.70 0.12 0.43 163.90 0.77

used. For the black box detector a model with two hidden layers is used. The
first hidden layer has 256 and the second one has 128. Both use ReLU as the
activation and a dropout of 0.2 during training. The output layer has two neurons
and uses softmax activation function. The black box is trained for 200 epochs
using Adam with a learning rate of .001, β1 = .9, β2 = .999 (see Table 6).

Interestingly, when attacking the Drebin500 victim model no evasion at all is
achieved. In fact the opposite happens, and all adversarial examples get classi-
fied correctly, improving model performance. On APDS the attack achieves an
evasion rate of 77%. The attack on the Drebin500 model could possibly be made
more effective by using a more complex Discriminator and/or Generator. Also
noteworthy is the high modification count. The original approach as presented
in [26] offers no way of controlling the modification count. It is possible to add
a penalty to the loss of Generator that penalizes large modifications. Another
potentially interesting idea to pursue is to use more stable GAN training meth-
ods such as Wasserstein GANs [28] and Improved Wasserstein GANs [29].

Table 7. Comparison of the effectiveness of the different attacks on all victim models

Attack Evasion (in %) on: Drebin500 APDS

natural 5.6 11.7

dfgsm k 15.0 100.0

rfgsm k 15.0 100.0

bga k 5.6 11.7

bca k 12.7 13.7

JSMA 32.8 100.0

random inc neg 6.0 11.7

dec pos 25.4 100.0

inc neg 32.8 100.0

random dec pos 24.7 100.0

random dec pos inc neg 18.1 96.1

dec pos inc neg 27.0 100.0

malgan 0.0 77.1

Adversarial Examples and Defenses for Malware Classification 387

4.5 Attack Effectiveness

The effectiveness of an attack can be measured by its ability to create adversarial
examples that evade the classifier. The previous experiments have shown that
not all attacks work equally well. The victim model also influences the effec-
tiveness. We summarize the evasion rates in Table 7. There are a few interesting
things to note. First, the evasion rate for the Drebin500 model is lower for all
attacks except BGAk and random inc neg. The natural evasion is still lower for
the Drebin500 model. BGAk on Drebin500 achieves 0.0% increase in evasion. For
random inc neg, the increase in evasion is 7.4% for Drebin500. This makes the
model trained on the Drebin500 dataset more resistant to adversarial examples
than the other models. A possible explanation is that we perform feature selec-
tion on the data before training the model. Zhang et al. [4] investigate feature
selection as a possible defense against evasion attacks.

5 Defense Mechanisms

5.1 Distillation

Distillation was originally introduced as a technique to train smaller models.
To achieve this, the smaller model is trained with soft class labels which is the
output of the bigger model. Distillation as a defensive technique also trains a
second network with soft class labels, but in this case the two networks have the
same architecture. The idea is not to make the network smaller but to make it
more resilient to adversarial examples. Papernot et al. [30] propose the idea for
the image classification domain, and [10] and [24] have investigate distillation as
a possible defense against adversarial examples in malware detection. In their
experiments, it did not perform as well on malware as on images. Additionally,
choosing a temperature T that is too high will actually hurt the performance of
the model. We chose T = 10 in accordance with the result of [24]. As the table
shows, distillation does not actually add any robustness to the network. The
impact on accuracy is almost negligible. The undefended network achieves an
accuracy of 93% while the distilled network manages an accuracy of 91.6%. When
training the Drebin500 model with distillation and T = 10 the model already has
a 1.0 FPR, making evasion attacks superfluous. This may be due to feature
selection, the class imbalance, or a combination of the two.

5.2 Adversarial Training

Szegedy et al. [15] propose a strategy called adversarial training. The idea is
that adding adversarial examples to the training data acts as regularization.
This improves the generalization capabilities of the model and therefore makes
it more resistant against adversarial examples. The idea has been picked up by
many different researchers and modified. Kurakin et al. [31] introduce a scal-
able adversarial training framework based on mini batches. They also find that
examples created with single step methods such as FGSM offer greater benefits
than iterative approaches. On the other hand, when using adversarial samples for

388 R. Podschwadt and H. Takabi

adversarial training Mossavi et al. [8] find that using DeepFool samples increases
robustness, whereas using FGSM samples could lead to decreases in robustness.
Tramèr et al. [32] find that models trained with adversarial training are more
resistant to white box attacks but are still vulnerable to black box attacks.
Multiple authors have looked at adversarial training as a defense in the mal-
ware domain. [10] find that the amount of adversarial examples introduced dur-
ing training needs to be carefully controlled. In their experiments, adding more
than 100 adversarial examples during training left the network more vulnerable.
Al-Dujaili et al. [25] describe adversarial learning as a saddle point problem. It
relies on finding the parameters θ for a classifier that minimizes a loss function
L when assigning class labels y to inputs x taken from a dataset D. Creating an
adversarial example xadv is a maximization problem. Given all binary represen-
tations S(x) ⊆ X of an example x that still preserve the functionality of x. We
are looking for S∗(x) ⊆ S(x) that maximizes the loss. To create an adversarial
example we need to find x̄ for which the loss is maximal. Combining both the
learning problem and the loss gives us the equation for adversarial learning

θ∗ ∈ arg min
θ∈RP

E(x,y)∼D

[
max

x̄∈S(x)
L(θ, x̄, y)

]
(1)

The outer minimization problem can be solved by various different gradient
descent algorithms. The inner maximization problem can be solved by multiple
methods. [25] propose four different approaches, discussed earlier in the attacks
section. Theoretically, any method to create adversarial examples can be used
here. We use dFGSMk to create adversarial examples. The results suggest that
adversarial training is very efficient at making the network more robust against
adversarial examples. A possibly beneficial strategy is using adversarial examples
from different attacks during training.

5.3 Ensembles

A modification of the ensemble method is proposed by Tramèr et al. [32], a
defense called Ensemble Adversarial Training. As in normal adversarial train-
ing, adversarial examples are included in the dataset. In Ensemble Adversarial
Training, the adversarial examples come not only from the model being trained
but also from another pretrained model. This training technique enhances the
defense against black box attacks. [24] looked at ensemble learning to defend
malware detectors as well. In our experiments we train three different models
and combine them into an ensemble. For ensembles to work, it is best to have
models that behave differently. For that reason we have chosen three very differ-
ent architectures. The three architectures are as follows: (1) For our first model
we have chosen a very wide but rather flat architecture. It consists of two fully
connected hidden layers with 1000 neurons each; (2) The second model was
designed to be the opposite of the first model a rather flat but deeper architec-
ture. It consists of eight hidden layers with 64 neurons each; (3) The third model
is a rather small model with 2 hidden layers consisting of 256 neurons for the

Adversarial Examples and Defenses for Malware Classification 389

first one and 128 for the second. All models use ReLU as activation for all layers,
except the last layer which uses softmax. To force a greater difference between
the models, we employ dropout of 0.5. We train all three models for 200 epochs
using the Adam optimizer with default parameters.

Compared to the victim model, the natural evasion of the ensemble is better,
but the ensemble does not add anything in terms of adversarial robustness. The
ensemble performs worse, when under attack. This backs up Goodfellow et al.
claims that ensemble is not a good defense. A potential idea that could improve
the resistance of ensembles in a black box setting is having the different classifiers
work on different features. Binary programs do not typically get fed to the clas-
sifier directly. Features are extracted first [20]. The two main ways of extracting
features from an application are dynamic and static feature extraction. Dynamic
feature extraction collects the features running time while static extraction does
not execute the program and only performs analysis on the compiled code or
other available resources. Different models in the ensemble can use different fea-
tures to train on. This might improve the resilience, although Rosenberg et al.
[33] have devised an attack that works with an ensemble of two classifiers where
one classifier learns from static and the other learns from the dynamic features.

5.4 Random Feature Nullification

To make the gradient harder for an attacker to compute, Wang et al. [34] intro-
duce a defense called random feature nullification. During training and classi-
fication a random set of features gets disabled. This is achieved by choosing a
binary vector Ipi of uniformly distributed zeros and computing the Hadamard-
Product of the instance xi and the vector Ipi . Increasing the number of features
that are nullified will hurt the performance, and not disabling enough will have
no impact on the attacker’s ability to create adversarial examples. It is simple
to see that with nullifying all features the input would be a vector of all zeros,
making meaningful predictions impossible. Disabling only a very small subset of
features, especially on high dimensional data, decreases the chances of hitting
features that are important for an attacker. The results vary a lot, which is to be
expected given the random nature of the network. It is possible that averaging
could make the model more robust. This raises the question, though, of whether
averaging would hurt the robustness and could be exploited by an attacker. In
the end averaging over different runs is analogous to having an ensemble of clas-
sifiers with averaged results. As shown earlier an ensemble offers little to no
improvement in adversarial robustness.

6 Discussion

Comparing the different defense mechanisms paints a bleak picture (comparison
in Table 8). Distillation has almost no positive impact on adversarial robustness
and effectively hurts it against certain attacks. Random feature nullification
could be potentially beneficial, as it increases the robustness significantly, but in

390 R. Podschwadt and H. Takabi

Table 8. Comparison of the different attacks effectiveness on all victim models.
Reported is evasion (in %). Used defenses: undefended (undef.), Distillation (Dist.),
Random Feature Nullification (RFN), Adversarial Training (AT) and Ensembles (Ens.)

Attack undef. Dist. RFN AT Ens.

natural 11.7 12.0 85.6 2.7 8.7

dfgsm k 100.0 100.0 13.7 7.8 100.0

rfgsm k 100.0 100.0 9.8 7.8 100.0

bga k 11.7 100.0 72.5 3.9 100.0

bca k 13.7 31.4 68.5 3.9 17.6

JSMA 100.0 100.0 100.0 27.5 100.0

random inc neg 11.7 13.7 3.9 3.9 15.7

dec pos 100.0 100.0 96.1 100.0 100.0

inc neg 100.0 100.0 100.0 27.5 100.0

random dec pos 100.0 100.0 86.3 100.0 100.0

random dec pos inc neg 96.1 90.2 51.0 25.5 98.0

dec pos inc neg 100.0 100.0 100.0 25.5 100.0

malgan 77.1 95.8 100.0 62.5 12.5

our experiments it also reduced the performance considerably. While the ensem-
ble proves to be helpful in improving performance, it does not protect against
adversarial evasion. It is possible that having classifiers in the ensemble, trained
on different feature representations, would make the system more robust. The
only defense that provided significant robustness is adversarial training. We use
the saddle point formulation presented in [24]. It improves robustness against all
attacks that adhere to our threat model. We suggest a possible improvement to
training process that includes adversarial examples from more than one attack,
possibly hardening the classifier further against more attacks. The problem with
adversarial training is that it is most efficient against attacks that have been
used during the training. Therefore, it does not necessarily provide robustness
against new yet unknown attacks. Even if a defense does not impact the perfor-
mance of the classifier significantly, it might make it more vulnerable to certain
adversarial examples creation methods. This poses the question of whether the
defenses we employ today in fact make models more vulnerable to future attacks.

A good defense should ideally be robust against unknown attacks. So far,
none of the defenses provide any mathematical hardness guarantees in the way
that encryption does in traditional security. There is no guarantee that would
make it impossible or computationally infeasible for an attacker to create adver-
sarial examples. Not only is the problem of adversarial examples unsolved as
shown in [17], defense performance also varies when applied to malware data.
This suggests that the defense needs to be adapted to the domain. An approach
tailored more directly to binary data could improve resilience. There is currently

Adversarial Examples and Defenses for Malware Classification 391

no special adaptation for binary data in machine learning and neural networks.
In image classification, convolutional layers have moved feature extraction into
the network itself. In text processing, embedding layers have done the same. For
binary data no such layers exist. Security could be taken into consideration in
the design of such layers for malware detection, as well as in feature extraction.

7 Related Work

Yuan et al. [35] have compiled a summary of available methods for creating
adversarial examples and defenses. Their work is not limited to malware but con-
tains a section on applications to malware detection. They provide an overview
of the different approaches and the underlying algorithms but do not provide
any numbers which would allow for a comparison based on effectiveness. Carlini
et al. [17] look closely at ten available defenses and show that none of them
are unbeatable. All of them are in the image domain. Rosenberg et al. [33] use
recurrent neural networks (RNN) to do malware detection on dynamic features.
The authors pair the RNN with an deep neural network (DNN) to learn from the
static features. Their goal is to come up with an attack which evades a system
that takes advantage of different feature representations. The dynamic features
that the RNN learns from are call sequences. The attack on the static classifier
works similar to the attacks described in this paper. The attack on the RNN is
based on an attack working on text data [36]. The paper also features a compar-
ison of different RNN architectures and the effectiveness of the attack on a given
architecture, with a simple RNN being the must vulnerable and BLSTM being
the most robust. An interesting discovery the authors make is that the trans-
ferability property of adversarial examples, described in [15], also holds true for
RNNs. Hu et al. [37] propose an attack to leverage against black box classifiers,
training their own substitute RNN and using a generative RNN to create adver-
sarial examples. Chen et al. [38] develop an approach to defend the classifier
that relies on feature selection and ensembles. Their feature selection technique
is named SecCLS and the ensemble learning technique is called SecENS. By
combining both methods, the authors develop a system called SecureDroid. In
[11] Chen et al. propose a secure two phased learning system. During the offline
learning phase a classifier is trained and during the online detection phase sus-
picious false negatives are used in further training the classifier. Yang et al. [39]
propose feature evolution and confusion. These techniques look at how different
features evolve over different versions of malware and can be used to create new
synthetic malware instances for a classifier to be trained on.

8 Conclusion

We studied the space of adversarial examples in malware classification by evaluat-
ing twelve attacks and four defenses on different datasets. Our experiments show
that attacks work reliably and it is relatively easy and straightforward to create
adversarial examples. The defenses, on the other hand, are not as straightforward

392 R. Podschwadt and H. Takabi

and might not always be suitable. The right choice of defense depends on many
different factors such as dataset, model architecture and more. Our results show
that most defense mechanisms adapted from image classification, with the excep-
tion of adversarial training, are not efficient in the malware domain, and there is a
need for approaches tailored to binary data to ensure robustness of the classifiers.

References

1. Devries, T., Taylor, G.W.: Improved regularization of convolutional neural net-
works with cutout. CoRR, abs/1708.04552 (2017)

2. Zagoruyko, S., Komodakis, N.: Wide residual networks. CoRR, abs/1605.07146
(2016)

3. Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro, B., Nicholas, C.: Mal-
ware detection by eating a whole EXE (2017)

4. Zhang, F., Chan, P.P.K., Biggio, B., Yeung, D.S., Roli, F.: Adversarial feature
selection against evasion attacks. IEEE Trans. Cybern. 46(3), 766–777 (2016)

5. Saxe, J., Berlin, K.: Deep neural network based malware detection using two dimen-
sional binary program features. In: 2015 10th International Conference on Mali-
cious and Unwanted Software (MALWARE), pp. 11–20, October 2015

6. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples (2014)

7. Carlini, N., Wagner, D.A.: Adversarial examples are not easily detected: bypassing
ten detection methods. CoRR, abs/1705.07263 (2017)

8. Mohsen Dezfooli, S.M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate
method to fool deep neural networks. CoRR, abs/1511.04599 (2015)

9. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical
world. CoRR, abs/1607.02533 (2016)

10. Grosse, K., Papernot, N., Manoharan, P., Backes, M., McDaniel, P.D.: Adversar-
ial perturbations against deep neural networks for malware classification. CoRR,
abs/1606.04435 (2016)

11. Chen, S., Xue, M., Fan, L., Hao, S., Xu, L., Zhu, H.: Hardening malware detec-
tion systems against cyber maneuvers: an adversarial machine learning approach.
CoRR, abs/1706.04146 (2017)

12. Biggio, B., Nelson, B., Laskov, P.: Poisoning attacks against support vector
machines (2012)

13. Huang, L., Joseph, A.D., Nelson, B., Rubinstein, B.I.P., Tygar, J.D.: Adversarial
machine learning. In: Proceedings of the 4th ACM Workshop on Security and
Artificial Intelligence, AISec 2011, pp. 43–58 (2011)

14. Papernot, N., McDaniel, P.D., Goodfellow, I.J., Jha, S., Celik, Z.B., Swami, A.:
Practical black-box attacks against deep learning systems using adversarial exam-
ples. CoRR, abs/1602.02697 (2016)

15. Szegedy, C., et al.: Intriguing properties of neural networks. CoRR, abs/1312.6199
(2013)

16. Su, J., Vargas, D.V., Kouichi, S.: One pixel attack for fooling deep neural networks.
arXiv preprint arXiv:1710.08864 (2017)

17. Carlini, N., Wagner, D.A.: Towards evaluating the robustness of neural networks.
CoRR, abs/1608.04644 (2016)

18. Carlini, N., Katz, G., Barrett, C., Dill, D.L.: Ground-truth adversarial examples.
arXiv preprint arXiv:1709.10207 (2017)

http://arxiv.org/abs/1710.08864
http://arxiv.org/abs/1709.10207

Adversarial Examples and Defenses for Malware Classification 393

19. Warde-Farley, D., Goodfellow, I.: 11 adversarial perturbations of deep neural net-
works. In: Perturbations, Optimization, and Statistics, p. 311 (2016)

20. Arp, D., Spreitzenbarth, M., Hübner, M., Gascon, H., Rieck, K.: DREBIN: effective
and explainable detection of android malware in your pocket (2014)

21. Dataset malware/beningn permissions android. https://www.kaggle.com/xwolf12/
datasetandroidpermissions/home

22. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

23. Papernot, N., McDaniel, P.D., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The
limitations of deep learning in adversarial settings. CoRR, abs/1511.07528 (2015)

24. Stokes, J.W., Wang, D., Marinescu, M., Marino, M., Bussone, B.: Attack and
defense of dynamic analysis-based, adversarial neural malware classification mod-
els. CoRR, abs/1712.05919 (2017)

25. Huang, A., Al-Dujaili, A., Hemberg, E., and Una-May O’Reilly: Adversarial deep
learning for robust detection of binary encoded malware. CoRR, abs/1801.02950
(2018)

26. Hu, W., Tan, Y.: Generating adversarial malware examples for black-box attacks
based on GAN. CoRR, abs/1702.05983 (2017)

27. Goodfellow, I.J., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems 27: Annual Conference on Neural Information Process-
ing Systems 2014, Montreal, Quebec, Canada, 8–13 December 2014, pp. 2672–2680
(2014)

28. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN (2017)
29. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved

training of wasserstein GANs. CoRR, abs/1704.00028 (2017)
30. Papernot, N., McDaniel, P.D., Wu, X., Jha, S., Swami, A.: Distillation as a defense

to adversarial perturbations against deep neural networks. CoRR, abs/1511.04508
(2015)

31. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial machine learning at scale.
CoRR, abs/1611.01236 (2016)

32. Tramèr, F., Kurakin, A., Papernot, N., Boneh, D., McDaniel, P.: Ensemble adver-
sarial training: attacks and defenses (2017)

33. Rosenberg, I., Shabtai, A., Rokach, L., Elovici, Y.: Generic black-box end-to-
end attack against RNNs and other API calls based malware classifiers. CoRR,
abs/1707.05970 (2017)

34. Wang, Q., Guo, W., Zhang, K., Xing, X., Giles, C.L., Liu, X.: Random feature nul-
lification for adversary resistant deep architecture. CoRR, abs/1610.01239 (2016)

35. Yuan, X., He, P., Zhu, Q., Bhat, R.R., Li, X.: Adversarial examples: attacks and
defenses for deep learning. CoRR, abs/1712.07107 (2017)

36. Papernot, N., McDaniel, P.D., Swami, A., Harang, R.E.: Crafting adversarial input
sequences for recurrent neural networks. CoRR, abs/1604.08275 (2016)

37. Hu, W., Tan, Y.: Black-box attacks against RNN based malware detection algo-
rithms. CoRR, abs/1705.08131 (2017)

38. Chen, L., Hou, S., Ye, Y.: Securedroid: enhancing security of machine learning-
based detection against adversarial android malware attacks. In: Proceedings of
the 33rd Annual Computer Security Applications Conference, ACSAC 2017, pp.
362–372. ACM, New York, NY, USA (2017)

39. Yang, W., Kong, D., Xie, T., Gunter, C.A.: Malware detection in adversarial set-
tings: exploiting feature evolutions and confusions in android apps. In: Proceedings
of the 33rd Annual Computer Security Applications Conference, ACSAC 2017, pp.
288–302. ACM, New York, NY, USA (2017)

https://www.kaggle.com/xwolf12/datasetandroidpermissions/home
https://www.kaggle.com/xwolf12/datasetandroidpermissions/home

PrivC—A Framework for Efficient Secure
Two-Party Computation

Kai He, Liu Yang(B), Jue Hong, Jinghua Jiang, Jieming Wu, Xu Dong,
and Zhuxun Liang

Baidu Inc., Beijing, China
{hekai07,yangliu11,hongjue,jiangjinghua,wujieming,

dongxu01,liangzhuxun}@baidu.com

Abstract. Secure Multiparty Computation (SMC) allows mutually dis-
trusted parties to jointly evaluate a function on their private inputs with-
out revealing anything but the output of the function. SMC has been
extensively studied for decades by the research community and signif-
icant progresses have been made, both in the directions of computing
capability and performance improvement. In this work, we design and
implement PrivC, an efficient framework for secure two-party comput-
ing. Our design was based on arithmetic sharing, oblivious transfer, and
garbled circuits. We demonstrate the efficiency of our design and imple-
mentation using benchmark datasets and real world applications at our
organization. Evaluations have shown that PrivC outperforms several
other competitive two-party frameworks.

Keywords: Secure Multiparty Computing · Secret sharing · Oblivious
transfer

1 Introduction

Privacy has become a major concern nowadays, as people are more and more
dependent on online services provided by different organizations. Activities like
map navigation, searching, online shopping, etc. often disclose users’ personal
information to service providers. Data collected from users are valuable to ser-
vice providers. However, improper use of collected data may result in privacy
compromise or even major data leakage [19], which in turn may cause property
damage to individuals or even financial losses to service providers.

To protect individual privacy, strict regulations have been proposed by
countries and organizations [1,2]. In addition, privacy protecting techniques
have been developed during the past decades. These techniques broadly fall
into three categories: statistically-based [28], information flow-based [16], and
crypto-based [12]. Statistically-based approaches often introduce anonymiza-
tion, perturbation, randomization, aggregation, or noise adding to the process
of data analysis at the price of accuracy degradation. Representative techniques
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 394–407, 2019.

https://doi.org/10.1007/978-3-030-37231-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_23&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_23

PrivC 395

include k-anonymization [28] and differential privacy [15]. Information flow-based
approaches employ techniques in program analysis to trace privacy leakage in
applications. Crypto-based approaches preserve privacy by hiding sensitive infor-
mation, e.g., via encryption, secret sharing, tokenization, etc.

In this paper we focus on secure multi-party computing (SMC), which is
a crypto-based technique. SMC allows distrusted parties to jointly evaluate a
function on their private inputs without revealing anything but the output of
the function. The start of SMC can be dated back to the Millionaire prob-
lem [31]. Over years, more general problems were studied and three lines of
techniques have been developed: garbled circuits (GC), arithmetic circuits (AC),
and boolean circuits (BC). Early SMC protocols usually had high overhead on
both time and space complexity, making them less practical. Recently, research
works in [9,11,13,14,24,30] have demonstrated significant performance improve-
ment in this area, bringing back the topic to public attention again. Since then,
SMC has been employed to address real problems, e.g., the sugar beets auction
system of Danish government [10], the private log analysis service at Google [11],
etc.

Our work was motivated by privacy challenges encountered in real production
environment at Baidu. In particular, we have faced a lot of situations where one
department needs to perform data analysis with inputs from different depart-
ments. However, according to regulations of data management, data exchange
between different departments requires a tedious, complicated and strict work-
flow consisting of rounds of application and approval. Sensitive data like user
ids, phone numbers, and credit card numbers are even not allowed to go through
departments. Even worse, there is no way to guarantee that the exchanged sen-
sitive data is properly handled (e.g., clearance) at the end of its lifecycle. This
actually increases the risk of data leakage. To address the above issues, we first
tried several open source SMC implementations [9,11,13,14,30]. However, none
of them is tailored for real production environment, where large data volume,
stability, and performance are major concerns. Many of them work well for small
datasets, but exposed severe performance and stability (e.g., crash) issues as data
size increases.

In this paper we present PrivC, a practical implementation of two-party
computing framework. PrivC allows software engineers to write secure comput-
ing code without the need to understand the underlying mechanism. PrivC is
built upon arithmetic circuits and garbled circuits. It supports basic operations
of addition, subtraction, multiplication, division, and comparison for both inte-
gers and fixed-point data types. Vector and matrix operations are implemented
to support machine learning applications as well. We also make optimization on
the underlying communication protocol, and parallelize some of the computa-
tion to improve performance. We have evaluated PrivC via benchmark datasets,
as well as real-world applications from Baidu, including abnormal data access
detection, suspicious file downloading, and data verification. Results show that
PrivC outperforms several competitive 2PC frameworks while providing quali-
fied stability.

396 K. He et al.

1.1 Our Contribution

The first contribution of this paper is that we provide a product-level design
and implementation of a two-party secure computing framework, namely PrivC,
to meet the demand of performance and stability at our organization. With a
series of optimization, PrivC outperforms several SMC frameworks for the most
commonly used operations. In particular, compared to SPDZ [13], ABY [14], and
EMP [30], the addition and multiplication operations in PrivC are at least two
times faster for the Int64 data type. For 64-bit fixed-point operations, the addi-
tion and multiplication of PrivC are at least an order of magnitude faster than
the other three tools. For a machine learning benchmark dataset, MNIST [23]
(70,000 images, each has 784 features), a multi-classification application written
in PrivC completes the training and testing in 13.5 h, while code written in other
three frameworks failed to complete, either running out of memory of or taking
unacceptable time.

The second contribution is that we have applied PrivC to preserve privacy
in cross-department data analysis in product environment, including abnormal
data warehouse access behavior detection, suspicious file downloading detection,
and data verification. The practice testifies the performance and stability of
PrivC.

1.2 Outline

This paper is organized in the following way. We present related work in Sect. 2,
followed by some preliminaries in Sect. 3. We describe the main algorithms and
protocols used in our work in Sect. 4 and the design of PrivC in Sect. 5. We
present the evaluation in Sect. 6, and conclude in Sect. 7.

2 Related Work

Secure multi-party computing was formally introduced by Yao in the Million-
aire’s problem [31]. The problem was later generalized to compute any Boolean
circuit by two parties with private inputs. The basic idea of Yao’s approach was
to encrypt a Boolean circuit (called garbled circuit) by one party, and evaluate
the encrypted circuit by the other one. The two party problem was followed
up by a generalization to multi-party by Goldreich, et al [18]. Their approach
was based on additive secret sharing of all inputs [18]. The BGW [8] protocol
defines how to compute polynomial functions with Shamir secret sharing. Secret
sharing schemes can tolerate an adversary controlling up to t out of n parties.
For additive secret sharing schemes [9,18], t < n, and for Shamir secret sharing
schemes [8,11], t < n

2 .
Fairplay [24] was the first work that implements a two-party generic secure

function evaluation. It defines a SDFL language that allows human to specify
functions that need to be evaluated. Fairplay was later extended to FairplayMP
to support multi-parity computing [7]. Garbled circuits (GCs) are capable of

PrivC 397

processing any function that can be expressed as Boolean circuits. However,
the size of circuits can be very large if the problem is complex, as a circuit is
encrypted bit-by-bit. Arithmetic circuits (ACs) are usually faster than GCs in
arithmetic computing and are better at solving problems that can be expressed
as polynomial functions. Two-party arithmetic circuit protocols need genera-
tion of triples to assist the computing [18]. Triples generation can be performed
using semi-homomorphic encryption or OT [27]. Early work of OTs [6,26,27]
was mainly based on public-crypto operations and was inefficient. The invention
of OT-extension [20] has significantly speeded up the triples generation, which
in turn significantly improves performance of two-party AC protocols.

ABY [14] was a work that leverages the performance of ACs and the expres-
siveness of GCs (also called Yao circuits) and Boolean circuits (BCs). It allows
programmers to build AC, BC, and YC in a mixed way. Our work bears the
similarity with ABY in that we also implement AC and GC. However, we differ
from ABY in the fact that ABY relies on its own compiler to translate a user’s
code into circuits at an offline phase. In our work, code written in PrivC is com-
piled directly by the C++ compiler into binary executables. As we will show,
our work has much better performance than ABY. EMP [30] is a GC-based
two-party computing framework that support both semi-honest and malicious
models. EMP is fast and friendly to programmers. Our work differs from EMP
in that we rely on arithmetic circuits to implement arithmetic operations, and
use GC to perform non-arithmetic operations.

SPDZ [13] is an SMC implementation based on additive secret sharing
and semi-homomorphic encryption. It supports both semi-honest and malicious
model. Our work only considers semi-honest model. Our benchmark evaluation
shows that PrivC is faster in four out of five atomic operations than SPDZ for
the Int64 data type. For 64-bits fixed-point operations, PrivC is at least five
times faster than SPDZ for all atomic operations. SEPIA [11] is a multi-party
framework implemented at Google to perform privacy-preserving log analysis.
It was based on Shamir secret sharing [29]. SEPIA is fast, and easy to use, but
does not support decimal operations. Our PrivC distinguishes from SEPIA by
two aspects: the first, PrivC supports both integer and decimal operations; the
second, our implementation is based on additive sharing and garbled circuits.
Sharemind [9] is a three-party framework that provides rich arithmetic opera-
tions, while PrivC is two-party based.

Oblivious transfer (OT) is a technique that allows a sender transfers one
of several enclosed pieces of information to a receiver, but remains unknown
to which information is received by the receiver, and the receiver can disclose
only one piece of information. OT is an important building block in SMC and
was first introduced by Rabin [27]. Early OT protocols [6,26,27] were based on
public crypto and were inefficient. Ishai et al., proposed to an approach that
uses public crypto operations to generate a small number of “base” OTs, and
extends the “base” OTs to massive number of OTs using symmetric crypto oper-
ations [20]. Their work is called OT-extension, and has significantly improved
the performance of OT generation.

398 K. He et al.

3 Preliminaries

3.1 Notation

The description in this section borrows notations from [14]. In our following
discussion, we use P0 and P1 to denote two parties that run a secure computation.
We use x⊕y for bitwise XOR and x∧y for bitwise AND. For a list x, we denote
its ith element by x[i]. If x is a sequence of bits, then x[i] denotes the ith bit of x,
and x[0] denotes the least significant bit of x. We use κ to denote the symmetric
security parameter.

We use 〈x〉t to denote a shared variable x, where the superscript t ∈ {A, Y }
indicates the type of sharing, A for arithmetic sharing, and Y for garbled sharing.
For a shared variable 〈x〉t, we use 〈x〉t

i to denote the share held by Pi (i ∈ {0, 1}).
We define a sharing operation 〈x〉t = SHRt

i(x) to denote that Pi shares a varialbe
x with P1−i. The recovering operation is denoted by x = RECt

i(〈x〉t), meaning
that Pi obtains a share of x from P1−i and reconstructs x from the two shares. An
operation • on shared variables are denoted by 〈z〉t = 〈x〉t • 〈y〉t for t ∈ {A, Y }.
For example, 〈z〉A = 〈x〉A + 〈y〉A adds two arithmetic shares and returns the
arithmetic shares of the sum.

3.2 Oblivious Transfer

In this work, we use 1-out-of-2 OT where the sender sends two pieces of infor-
mation (m0,m1) and the receiver inputs a choice bit c ∈ {0, 1} and obtains mc

as output. The receiver learns nothing about the other message m1−c, and the
sender keeps unknown which message is learned by the receiver, i.e., the sender
learns nothing about c.

OTs can be generated efficiently through OT extension. We use random-OT
(R-OT) and correlated-OT (C-OT) [3] to further increase OT efficiency. In R-
OT, the sender obtains random (m0,m1) and the receiver obtains t from an
OT-extension such that t = m0 or m1 according to receiver’s choice bit. In C-
OT, instead of having to obliviously transfer two fixed independent bit strings,
the sender transfers two random bit strings with a fixed correlation function
f(·). Namely, the sender obtains a random m0 and a correlated m1 = f(m0).

4 Algorithms

In this section, we present the algorithms and protocols used in our framework,
which mainly follow [14] with some optimizations in the implementation. In
particular, we employ two types of circuits: arithmetic circuit (Sect. 4.1) and
Yao’s garbled circuit (Sect. 4.2).

4.1 Arithmetic Circuit

In 2PC protocol of arithmetic circuits, an �-bit value x is additively shared in the
ring Z2� as the sum of two values modulo 2�. The basic protocols for arithmetic
circuits are described as follows, mainly based on [14].

PrivC 399

Sharing Semantics. For a �-bit variable x, its arithmetic shares between two
parties should satisfy the following property: 〈x〉A

0 + 〈x〉A
1 ≡ x mod 2� with

〈x〉A
0 , 〈x〉A

1 ∈ Z2� .

Share Generation. SHRA
i (x): Pi randomly chooses r ∈R Z2� , computes 〈x〉A

i =
x − r, and sends r to P1−i, who computes 〈x〉A

1−i = r.
Reconstruction. RECA

i (x): Both parties send its share to the other side to
recover the value of a variable, i.e., P1−i sends its share 〈x〉A

1−i to Pi who
computes x = 〈x〉A

0 + 〈x〉A
1 .

Operations. Every polynomial can be expressed as an arithmetic circuit, which
can be translated to a sequence of additions and multiplications.

Addition. To compute the sum of two arithmetic shared values, i.e., 〈z〉A =
〈x〉A + 〈y〉A, Pi locally computes 〈z〉A

i = 〈x〉A
i + 〈y〉A

i .
Multiplication. 〈z〉A = 〈x〉A · 〈y〉A: multiplication of two arithmetic shared

values is performed via the help of a pre-computed Beaver’s triple [4] ai, bi, ci

satisfying 〈c〉A
0 + 〈c〉A

1 = (〈a〉A
0 + 〈a〉A

1) · (〈b〉A
0 + 〈b〉A

1). Step 1: Pi sets 〈e〉A
i =

〈x〉A
i − 〈a〉A

i and 〈f〉A
i = 〈y〉A

i − 〈b〉A
i . Step 2: both parties perform RECA(e)

and RECA(f). Step 3: Pi computes 〈z〉A
i = i · e · f + f · 〈a〉A

i + e · 〈b〉A
i + 〈c〉A

i .

Triples Generation. The OT extension based triples generation protocol [17]
has been proved as an efficient approach. In our framework, we employ a fast
correlated OT extension based approach to generate triples as in [14]. The details
are omitted due to space limit.

4.2 Yao’s Garbled Circuit

In Yao’s protocol, one party called garbler represents a function as a Boolean
circuit and assigns each wire w two random encryption keys (also called labels)
(k0, k1) with k0, k1 ∈ {0, 1}κ. The garbler encrypts the output keys of each gate
on its all combinations of the two input keys using an encryption function. She
then sends the garbled circuit, together with her input keys, to another party
called evaluator. The evaluator obtains the garbled values of his inputs by using
one or more OTs, then evaluates the garbled circuit and obtains the output.

In the following description, we assume P0 is a garbler and P1 is an evaluator.
The garbler generates wire keys by randomly selecting a κ-bit string R with
R[0] = 1. For each wire w, she randomly selects k0 ∈R {0, 1}κ and computes
k1 = k0 ⊕ R. The least significant bit k0[0] resp. k1[0] = 1 − k0[0] is called
permutation bit. Note that the above techniques are free-XOR [22] and point-
and-permute [5].

Sharing Semantics. The intuition behind garbled sharing is that P0 holds two
keys k0 and k1 for each wire w, and P1 receives only one of the two keys according
to his choice bit, but P0 remains unknown whether the received key corresponds
to bit 1 or 0. This is achieved by letting P0 and P1 engaged in an OT protocol
where P0 acts as sender and P1 acts as receiver.

400 K. He et al.

Share Generation. For a wire with two keys k0 and k1 = k0 ⊕R, a value x can
be shared as 〈x〉Y

0 = k0 and 〈x〉Y
1 = k0 ⊕ xR. Case 1: denoted by SHRY

0 (x),
i.e., if P0 needs to share a value x, she randomly chooses 〈x〉Y

0 = k0 ∈R {0, 1}κ

and sends kx = k0 ⊕xR to P1. Case 2: denoted by SHRY
1 (x), i.e., if P1 needs

to share a value x, then both parties run a correlated OT where P0 acts as
sender, inputs (k0, k1 = k0 ⊕ R) with k0 ∈R {0, 1}κ and P1 acts as receiver
with his choice bit x and obliviously obtains 〈x〉Y

1 = kx.
Reconstruction. RECY

i (x): P1−i sends his/her permutation bit π = 〈x〉Y
1−i[0]

to Pi. Pi recovers the value of x by computing x = π ⊕ 〈x〉Y
i [0].

Operations. The computing of any Boolean circuits can be performed by eval-
uating a sequential number of XOR and AND. In our design, we use XOR and
AND to implement other bit gates such as OR, NOT, and word gates such as
+, -, *, and /.

XOR. 〈z〉Y = 〈x〉Y ⊕〈y〉Y is evaluated using the free-XOR technique in [22]: Pi

locally computes 〈z〉Y
i = 〈x〉Y

i ⊕ 〈y〉Y
i .

AND. To compute 〈z〉Y = 〈x〉Y ∧ 〈y〉Y , P0 creates a garbled AND table
(〈z〉Y , T) ← GbAND(〈x〉Y , 〈y〉Y), where GbAND is a garbling function as
defined in [32]. P0 then sends the garbled table T , together with the keys
of her inputs, to P1, who decrypts T using keys 〈x〉Y

1 and 〈y〉Y
1 and obtains

〈z〉Y
1 .

More details like complexity analysis can be found in [14] and thus are omit-
ted here.

4.3 Sharing Conversions

In our design, for some operations, e.g., division, we need to convert values from
their arithmetic sharing to garbled sharing, or the other way back, in order to
leverage the expressiveness of garbled circuits and the performance of arithmetic
circuits on polynomial evaluation. We follows the circuit conversion approach
in [14], which is briefly described below.

Arithmetic to Yao’s Garbled Sharing (A2Y): The conversion of a value
x from its arithmetic share 〈x〉A to garbled share 〈x〉Y can be done by securely
evaluating an addition circuit. In particular, P0 generates garbled sharing of
x0 = 〈x〉A

0 by doing 〈x0〉Y = SHRY
0 (x0), and P1 generates garbled sharing of

x1 = 〈x〉A
1 by doing 〈x1〉Y = SHRY

1 (x1). After that, the two parties compute
〈x〉Y = 〈x0〉Y + 〈x1〉Y .

Yao to Arithmetic Sharing (Y 2A): An �-bits word x can be shared by an
array of Yao sharing {〈x[i]〉Y }i∈{0,...,�−1}. Let xi =

∑�−1
j=0 2j · 〈x[j]〉Y

i [0], notice
that x = x0 ⊕ x1. Analogously, a technique similar to the arithmetic multiplica-
tion triples generation can be used. The general idea is to perform a C-OT for
each bit where we obliviously transfer two values that are additively correlated
by a power of two. The receiver can obtain one of these values and, by summing
them up, the parties obtain a valid arithmetic share.

PrivC 401

5 Design of PrivC

PrivC is implemented using C++ language. It supports both 2PC integer and
decimal operations. We create two data types, named Int64 and Fix64, to rep-
resent 64-bit integer and fixed-point numbers respectively. Operations are pro-
vided over both Int64 and Fix64, mostly in the way of operator overloading in
C++, which means no extra circuit compiler is required. Furthermore, PrivC
carries out free circuit conversion as needed. For example, if a code block only
involves operations of addition or multiplication, the underlying protocol will
be arithmetic circuit. If a division operation is followed, then the operands are
automatically converted from arithmetic sharing to garbled sharing without any
intervention, which leverages the performance of AC and the expressiveness of
GC. Below we present the detailed design of PrivC.

5.1 Operators

Addition and Subtraction are implemented by overloading the operator+- in
C++. They represent the addition and subtraction operations on arithmetic
sharing, i.e., 〈z〉A = 〈x〉A + 〈y〉A. The operations only involves local computing
and no communication is needed.

Scalar Operations represent operations between a secret shared value and a
plaintext value. Note that 〈x+a〉A = 〈x〉A

0 +a+〈x〉A
1 . For operator+- to plaintext

operand, P0 locally adds a to 〈x〉A
0 . For an operator* to a plaintext operand, Pi

times 〈x〉A
i by a. This holds true due to the fact that a〈x〉A = a · 〈x〉A

0 + a · 〈x〉A
1 .

Multiplication is implemented by overloading operator*. It represents 〈z〉A =
〈x〉A · 〈y〉A. To reduce number of communication rounds, we generate triples in
batch and store them in a buffer. When running out the buffered triples, another
batch will be generated. We also extend the multiplication operator * to imple-
ment the inner product of vectors. We further optimize the multiplication in
triples generation. This is achieved by observing that both Int64 and Fix64 are
64-bit sharings while the length of OT masks generated by cryptographic hash
function are long enough for two sharings (SHA1 for 160-bits). This indicates
that we can generate two triples 〈c〉A = 〈a〉A · 〈b〉A and 〈c′〉A = 〈a′〉A · 〈b〉A for
the same multiplier 〈b〉A in one shot. Such an optimization saves one half of
C-OTs while computing two multiplications that share a same multiplier. This
optimization is also employed to speed up matrix multiplication in PrivC.1

Division is implemented by overloading the operator/ in C++. Note that Z2�

is not friendly with inverse operation, and thus division is implemented using
garbled circuit. For a �-bits division, O(�2) GbANDs are invoked during the
evaluation.

1 We learnt this trick from [25].

402 K. He et al.

Comparison is implemented by overloading operator<==> in C++. This is
achieved by converting the operands to their garbled sharing and evaluating
the comparison operation in garbled circuits. At the end of the evaluation, we
reconstruct the resulting garbled bit when necessary.

Conditional Statement. Unfortunately, C++ disallows the overloading of condi-
tional operator. We implement the conditional statement via a function named
if else. if else takes a conditional garbled bit 〈c〉Y 2, possibly generated by
some comparison functions, e.g., <, and two branching variables 〈a〉A, 〈b〉A, and
returns 〈a〉A if 〈c〉Y is a true sharing; otherwise it returns 〈b〉A. Still we con-
vert all operands to garbled sharing and evaluate a garbled MUX (a gate-level
if else). The output of MUX is converted to arithmetic sharing. To evaluate
an �-bits garbled MUX, O(�) GbANDs are invoked.

We summarize the computation and communication cost of all operations in
Table 1. As we can see, division is the most expensive one among all operations
we have implemented.

Table 1. The computation (number of symmetric crypto operations), communication
(bits) cost, and number of messages of different operations on �-bit values, where κ is
the symmetric security parameter.

Operation Computation Communication Round OT

+,−,× (scalar) 0 0 0 0

× 0 2� 1 2�

÷ 6�(� + 2) 2κ�(� + 2) 4 3�

<, =, > 18� 6κ� 4 3�

if else 18� 6κ� 4 3�

C-OT 3 κ + � 1 N/A

5.2 Notes for Fix64

In PrivC, decimal operations are implemented by fixed-point arithmetic in the
type of Fix64, where half of bits are used to represent the fractional part. Fixed-
point numbers behave almost the same as integers ∈ Z2� except that we need to
do rounding and truncation after multiplication.

When evaluating multiplication on Fix64, rather than generating triples on
larger ring (say Z296), we let the addition and multiplication in the correlation
function fi(x) = (〈a〉A

0 · 2i + x) mod 2� be performed on 64-bits fixed-point
numbers. Such an approach saves us 32 C-OTs. Correctness follows from the
fact that fixed-point multiplication is distributive over addition.

2 We provide a class Bool to express 1-bit Yao sharing.

PrivC 403

Generating triples using this approach could cause some precision loss since
every multiplication is rounded up in the correlation function fi(·). To resolve
this issue, we add a fixed compensation on estimation to the generated triples.
As we will see in Sect. 6, such an optimization does not cause any precision issue
for all the datasets and applications we have evaluated.

6 Evaluation

We evaluate the performance of PrivC in terms of atomic operations and real-
world applications in product environment. We compare the results with ABY,
EMP and SPDZ, which are most relevant to our work.

6.1 Experimental Settings

The experiments are conducted on two servers running Ubuntu 16.04.3 LTS,
with 128 GB of RAM each. The CPU settings are both Intel(R) Xeon(R) CPU
E5-2650 v4, 48 processors at 2.20 GHz. The two servers are located in the same
IDC, with 10 Gbps NIC and the measured average network delay is 100µs.

6.2 Workloads

We present the workloads used in our evaluation, which are used for training
linear logistic regression (LR) models and performing private set intersection
(PSI) operations.

MNIST Dataset. The MNIST dataset [23] contains images of handwritten digits
from “0” to “9”. It has 60,000 training samples, and 10,000 test samples, each
with 784 features representing 28× 28 pixels in the image. Each feature is a
grayscale between 0-255. We split the features among two parties and train an
LR model by running code written in PrivC.

Abnormal Data Warehouse Access. The dataset is an one-day access logs from
two data warehouses, composing of 1471 users’ access logs, among which we use
100 labeled records for training and the remaining 1371 rows for testing. Each
sample has six features describing the accessing actions. Half of features are from
one party, and the rest and the label are from another. We train an LR model
by running code written in PrivC to predict abnormal data access behavior.

Abnormal File Download. This dataset describes the file downloading behavior
of users. The size of the dataset is about one million, where 30,000 records are
used for training, and the remaining 997,000 records are used for testing. The
dataset has six features, where three of them are owned by one department, and
the other three features and the label are owned by another department. An LR
model is trained by running code written in PrivC between the two departments.

404 K. He et al.

Private Set Intersection. It is a usual case at our organization that two depart-
ments want to find out the percentage of common users, e.g., to decide AD
coverage, in product environment without revealing users that do not belong
to the intersection. We implement a 2PC PSI application for this scenario. The
datasets consist of real user groups from two departments, with the size ranging
from 10,000 to 50 million.

6.3 Benchmarking of Atomic Operations

We first evaluate the performance of all the atomic operations of PrivC, and
compared the results with ABY, EMP, and SPDZ. Table 2 shows the running
time in microseconds of different implementations for the Int64 and Fix64 data
types. Each test result is an average of 10,000 runs.

For integer operations, it can be observed that PrivC outperforms all other
implementation in four out of the five atomic operations. The division operation
of PrivC is slower than EMP and SPDZ, mainly due to the time spent on circuit
conversion. ABY does not provide division operator for integer. For decimal
operations, results show that PrivC outperforms the other three frameworks in
four out of the five operations. In particular, the addition and multiplication
operator of PrivC is more than an order of magnitude faster than the others.
Note that ABY uses SIMD gates to process multiple data elements in a single
operation. SIMD gates are faster than the regular gates in ABY. We did not
evaluate SIMD gates.

Table 2. The rounded up running time (in μs, the less the better) per atomic operation
in the LAN setting, averaged over 10,000 sequential operations. Note: ABY does not
provide division operation for integer data type, nor comparison for decimal data.

ADD MUL DIV CMP EQ

Int64 Fix64 Int64 Fix64 Int64 Fix64 Int64 Fix64 Int64 Fix64

ABY 61990 85,736 65080 95,427 NA 208,501 62,638 NA 62,634 NA

EMP 1765 4,487 2885 4,426 3025 4,574 1718 4,574 1749 3,132

SPDZ 887 1,638 931 35,819 1747 90,128 81567 77,256 31144 26,352

PrivC 107 108 404 395 9218 18,281 1,157 1,116 674 650

6.4 Application Performance

MNIST Dataset. The performance of secure LR training on MINIST by PrivC is
shown in Table 3. The training completes in 48736 s (about 13.5 h) for 2 epochs,
and generates a model with accurate rate of 86.36%. We also tried to implement
the same task using ABY’s code, but failed due to OOM with unclear reason.

PrivC 405

Table 3. The performance of PrivC on the MNIST Dataset, the Data Warehouse
Access Dataset, and the File Download Dataset.

Dataset name Time (s) Memory (MB) Accuracy

MNIST dataset 48,736.0 11,750 0.8636

Data warehouse access logs 1.6 172 1.0

File download logs 261.0 468 0.999

Abnormal Data Warehouse Access. We train an LR model using 100 records
for one epoch and test the accuracy using the other 1371 records. The results
are shown in Table 3. The training completes in 1.6 s and consumed 172 MB of
memory, resulting an overfitted model. We note that more data may be helpful
to resolve the overfitting issue.

Abonomal File Download. We use 30,000 records for a 2 epochs training and the
rest 997,000 records for testing. As shown in Table 3, the task completes in 261 s
and consumes 468 MB memory, resulting a model with 99.90% accuracy.

Private Set Intersection. Table 4 shows that our PSI application in PrivC is
able to complete in about 10 min with each party has a dataset of 50 million
records. To our best knowledge, this is by far the largest PSI dataset reported
in literature.

Table 4. The running time (in seconds) of our PSI implementations in PrivC. Note:
the implementation was based on the protocol in [21]

Size of datasets 10,000 1000,000 10,000,000 20,000,000 50,000,000

Running time (s) 2.43 12.56 118.70 237.26 603.14

Table 5 shows the memory space, communication cost, and network band-
width consumed by our PSI implementation written in PrivC. It can be observed
that the memory consumption increases almost linearly with the size of datasets.

Table 5. The memory and communication cost of our PSI implementation (MB)

Dataset size MEM NET IN NET OUT NET TOTAL

10,000 12.6 0.3 0.7 1.0

1000,000 644.7 34.7 66.8 101.5

10,000,000 4,784.8 357.4 679.4 1,054.8

20,000,000 9,290.5 1,501.5 2,720.1 4,221.6

50,000,000 22,616.2 2,020.7 3,401.4 5,422.1

406 K. He et al.

For datasets with 50 million of records, our implementation consumes about
22.6 GB of memory, and the network communication cost is about 5.4 GB.

7 Conclusion

In this work, we present the design and implementation of PrivC, a product-level
two party secure computing framework. Our design was based on arithmetic and
garbled circuits. We have evaluated the performance of the atomic operations
provided by PrivC and compared the numbers with several other competitive
2PC frameworks. Overall, PrivC outperforms the other three frameworks for
the most commonly used operations. In addition, we have demonstrated the
effectiveness and efficiency of PrivC using a machine learning benchmark dataset
and real-world applications at our organization. In the future, we plan to apply
PrivC to address more privacy challenges. We are in the process of opening the
source code of PrivC.

Acknowlegements. We thank Prof. Sheng Zhong, Yuan Zhang, and Jingyu Hua at
Nanjing University for their insightful discussions with us on our work. We also thank
Dr. Tao Wei, Chief Security Scientist, and Dr. Yueqiang Cheng, Staff Security Scientist
at Baidu for their feedbacks and suggestions on our paper.

References

1. EUGDPR - Information Portal. https://eugdpr.org/. Accessed 26 Mar 2019
2. What is HIPAA (Health Insurance Portability and Accountability Act)? https://

searchhealthit.techtarget.com/definition/HIPAA. Accessed 26 Mar 2019
3. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer

and extensions for faster secure computation. In: ACM CCS, pp. 535–548 (2013)
4. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-

baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

5. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: STOC, pp. 503–513 (1990)

6. Bellare, M., Micali, S.: Non-interactive oblivious transfer and applications. In: Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557. Springer, New York
(1990). https://doi.org/10.1007/0-387-34805-0 48

7. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party
computation. In: ACM CCS, pp. 257–266 (2008)

8. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC, pp. 1–10 (1988)

9. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: ESORICS, pp. 192–206 (2008)

10. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03549-4 20

11. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.A.: SEPIA: privacy-
preserving aggregation of multi-domain network events and statistics. In: USENIX
Security Symposium, pp. 223–240 (2010)

https://eugdpr.org/
https://searchhealthit.techtarget.com/definition/HIPAA
https://searchhealthit.techtarget.com/definition/HIPAA
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/0-387-34805-0_48
https://doi.org/10.1007/978-3-642-03549-4_20

PrivC 407

12. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (1981)

13. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

14. Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

15. Dwork, C.: Differential privacy. In: ICALP (2), pp. 1–12 (2006)
16. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.A.: Android permissions

demystified. In: ACM CCS, pp. 627–638 (2011)
17. Gilboa, N.: Two party RSA key generation. In: Wiener, M. (ed.) CRYPTO 1999.

LNCS, vol. 1666, pp. 116–129. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48405-1 8

18. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: STOC, pp. 218–229
(1987)

19. Isaac, M., Frenkel, S.: Facebook security breach exposes accounts of 50 million
users (2018). https://www.nytimes.com/2018/09/28/technology/facebook-hack-
data-breach.html. Accessed 26 Mar 2019

20. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

21. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious
PRF with applications to private set intersection. In: ACM CCS, pp. 818–829
(2016)

22. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and appli-
cations. In: ICALP (2), pp. 486–498 (2008)

23. LeCun, Y., Cortes, C., Burges, C.J.: MNIST handwritten digit database. http://
yann.lecun.com/exdb/mnist/. Accessed 26 Mar 2019

24. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y., et al.: Fairplay - secure two-party
computation system. In: USENIX Security Symposium, pp. 287–302 (2004)

25. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: IEEE Symposium on Security and Privacy, pp. 19–38 (2017)

26. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA, pp. 448–457
(2001)

27. Rabin, M.O.: How to exchange secrets with oblivious transfer. In: Technical Report.
vol. TR-81. Aiken Computation Lab, Harvard University (1981)

28. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing
information. In: PODS, vol. 98, p. 188 (1998)

29. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
30. Wang, X., Malozemoff, A.J., Katz, J.: EMP-toolkit: efficient MultiParty computa-

tion toolkit (2016). https://github.com/emp-toolkit
31. Yao, A.C.C.: Protocols for secure computations. In: FOCS, pp. 160–164 (1982)
32. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E.,

Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 8

https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/3-540-48405-1_8
https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html
https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html
https://doi.org/10.1007/978-3-540-45146-4_9
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/emp-toolkit
https://doi.org/10.1007/978-3-662-46803-6_8

CoRide: A Privacy-Preserving
Collaborative-Ride Hailing Service
Using Blockchain-Assisted Vehicular

Fog Computing

Meng Li1, Liehuang Zhu2(B), and Xiaodong Lin3

1 Key Laboratory of Knowledge Engineering with Big Data (Hefei University
of Technology), Ministry of Education; School of Computer Science and Information

Engineering, Hefei University of Technology, Hefei 230601, China
mengli@hfut.edu.cn

2 School of Computer Science and Technology, Beijing Institute of Technology,
Beijing, China

liehuangz@bit.edu.cn
3 School of Computer Science, University of Guelph, Guelph, Canada

xlin08@uoguelph.ca

Abstract. Ride-hailing services have experienced remarkable develop-
ment throughout the world, serving millions of users per day. However,
service providers, such as Uber and Didi, operate independently. If they
are willing to share user data and establish collaborative-rides (c-rides),
more ride services and commercial interests will be produced. Meanwhile,
these collaborations raise significant security and privacy concerns for
both users and service providers, because users’ sensitive information
and service providers’ business secrets could be leaked during c-rides.
Moreover, data auditability and fairness must be guaranteed. In this
paper, we propose CoRide: a privacy-preserving Collaborative-Ride hail-
ing service using blockchain-assisted vehicular fog computing. First, we
anonymously authenticate users and disclose a targeted user only if all
collaborative service providers are present while requiring no trusted
authority. Then, we construct a consortium blockchain to record c-rides
and create smart contracts to pair riders with drivers. Private proximity
test and query processing are utilized to support location authentica-
tion, driver screening and destination matching. Last, we modify Zero-
cash to achieve anonymous payment and defend double spending attacks.
Finally, we analyze the security of CoRide and demonstrate its efficiency
through extensive experiments based on an Ethereum network.

Keywords: Ride hailing · Privacy · Blockchain · Fog computing

1 Introduction

Ride-hailing services (RHSs) have proliferated in the past decade, thanks to the
promotion of share economy and the increased connectivity, serving millions of
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 408–422, 2019.

https://doi.org/10.1007/978-3-030-37231-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_24&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_24

CoRide: A Privacy-Preserving Collaborative-Ride Hailing Service 409

Fig. 1. A common practice for a RHS driver to find riders

users (i.e., riders and drivers) worldwide per day [1]. RHSs allow riders and
drivers to send ride requests and responses to the platforms, and set up rides
conveniently through user-friendly mobile applications. Meanwhile, fog comput-
ing [2] has been introduced in vehicular networks to provide real-time services,
such as surface condition monitoring. It locally collects and pre-processes users’
data by fog nodes, i.e., road-side units (RSUs) to save unnecessary bandwidth
for transmitting data to a remote cloud server [3].

However, service providers (SPs), like Uber, Lyft, and Didi, have their own
datasets which inevitably lead to information isolated islands. For instance, an
Uber rider/driver searches for a Uber driver/rider already for a long time, but
there are no Uber users close by. This situation results in not only time waste
but frustrating user experience. It would be nice if a driver/rider from another
SP jumps in to help this Uber rider/driver which is a win-win situation. The
competitions between SPs are also fierce, if one SP triumphs in the end, it will
possibly incur rapacious monopoly [4] where the service quality declines and the
ride fare grows. These are bad news for users. Hence, there is an urgent need
to unite SPs. Nowadays, it is very common that drivers run several apps from
different SPs on several smartphones to find riders shown in Fig. 1. However,
this is inconvenient for drivers who have to continuously monitor these apps and
smartphones which is unsafe. Also they have to register to multiple SPs, it could
put drivers’ personal information at greater risk which is unnecessary.

To tackle this problem, we point out that SPs can collaborate with each
other and share user data [5]. We propose a concept of “collaborative-ride”
(c-ride) which refers to a ride paired through collaborations between multiple
SPs. The benefits of c-rides are multi-folds: a rider saves time in waiting a ride; a
driver make more money by picking up more ride orders; collaborative SPs gain
more profits and improve service quality by adopting user feedback after c-rides;
c-rides also improve city mobility, alleviate traffic congestion, and reduce emis-
sion of automobile exhaust. We assume that c-ride users adopt the same data
formats for matching and payment.

Unfortunately, along with the advantage of c-rides come some vital security
and privacy concerns, since users’ sensitive information (i.e., identity, location,
transaction) and SPs’ business secrets are included in c-rides, and SPs/RSUs
are semi-honest. Firstly, the priority is to authenticate users’ identities in an

410 M. Li et al.

anonymous way. Different from existing work [6,7], we argue that the ideal way
to track a targeted user has three requirements: (1) only if all SPs participate,
(2) no trusted authority is required, and (3) other users still remain anonymous.
Secondly, the users’ locations should be authenticated to defend the location
cheating attack [8], e.g., a rider in a remote area reports an urban(false) loca-
tion to an RSU such that a matched driver travels a long way to pick him up.
Thirdly, we need to match users’ get-on locations, destinations and conditions
(e.g., driving age, vehicle brand) simultaneously while they are encrypted to
protect privacy. Next, a rider ought to pay a ride fare to a driver at the end
of the c-ride, although Zerocash [9] can achieve anonymous payment, but it
cannot resist the double spending attack [10], i.e., the rider uses a same ran-
domness in the Pour transaction and withdraw the fare before the driver does,
so the driver will be unable to receive the fare. Lastly, different from existing
settings [3,7,11,12], SPs have business secrets in collaborations that they have
not encountered before. For example, if the Uber’s identity is not hidden, anyone
could estimate the service fees or commissions based on Uber’s fare estimator
and commission standard (25% of all fares) in order to acquire its corporate
income from c-rides; if Uber’s drivers keep picking up Didi’s riders in a certain
area, Uber will know Didi’s confidential operation situation (i.e., rider resource
deficiency) and convene more drivers to occupy the market in this area.

Given that these c-rides are formed by different SPs, it is crucial to record
them in a consistent and tamper-proof ledger to guarantee data auditability and
fairness. A blockchain [13–16] is a feasible tool to tackle this problem. First,
SPs are distrustful of other SPs for their scandals. SPs and RSUs may collude
to control the matching process to maximize profits. Second, although c-rides
can be anonymized to protect privacy, storing them on a public blockchain still
confronts information leakage. If the ledger is owned by one SP, it may arbitrarily
tamper with the blockchain. Hence, we resort to a consortium blockchain (CB)
which is owned by collaborative SPs and constructed by distributed RSUs. A
CB is a permissioned blockchain running among identified parties and it secures
transactions between users who do not fully trust each other but share a common
goal. CB is already applied in searchable encryption and vehicular networks.
Fairness means that riders receive correct c-ride matching results, drivers redeem
exact c-ride fares, and SPs charge service fees from drivers in c-rides. Efficiency
is also important to the system, including how to efficiently match rides with
drivers and how to efficiently maintain the CB.

To address the above issues, we propose CoRide: a privacy-preserving collab-
orative ride hailing service using consortium blockchain-assisted vehicular fog
computing. To the best of our knowledge, this is first work to focus on the infor-
mation isolation problem in commercial RHSs, call for a collaboration among
SPs, and present a secure and effective solution. Contributions are as follows.

– We first introduce a concept of “c-ride” and it refers to a new system model for
RHS where several SPs are collaborating. More importantly, we eliminate the
need of an online trusted authority, which is required in traditional setting.
Further, we establish a corresponding security model where users may launch

CoRide: A Privacy-Preserving Collaborative-Ride Hailing Service 411

the false location attack, RSUs may be compromised, and SPs may collude
with RSUs to interfere with matching processes.

– We propose CoRide to preserve users’ conditional privacy [7] and disclose a
targeted user only if all SPs are present. We construct an immutable CB
among SPs to record c-rides and create automatically enforced smart con-
tracts on RSUs to match riders with drivers. Specifically, we leverage private
proximity test [17] to authenticate users’ locations and establish secret keys
for user matching and negotiation, we utilize privacy-preserving query pro-
cessing [18] to support driver screening and destination matching. Further, we
use Proof-of-Stake (PoS) mechanism [19] to reach consensus. Last, we modify
Zerocash [9] to achieve anonymous under double spending attack.

– We prove the security and privacy properties of CoRide. Most significantly, we
simulate CoRide in a Ethereum network [20] with laptops, desktops and com-
mercial cloud servers. Extensive experiments are conducted to demonstrate
the practicability and efficiency of CoRide.

2 Problem Statement

2.1 System Model

Our system model consists of a certificate authority CA, n1 SPs, n2 RSUs, n3

riders and n4 drivers. Let SPi, RSi, Ri,Di represent the i-th SP, RSU, rider and
driver. CA generates keys used for users and SPs, and stays offline after system
initialization. Each SP runs its own ride-hailing service and collaborates with
other SPs to form a c-ride hailing system. SPs co-generate a set of keys for
user matching and fare payment. SPs collect c-ride requests and responses from
RSUs, construct a consortium blockchain CB to store c-ride records, and obtain
service fees from drivers in c-rides. An RSU locally collects real-time requests
and responses, authenticates users, verifies data integrity, uploads encrypted
c-ride data to SPs, puts transactions as well as hash value of c-ride data on
the blockchain. The network is synchronous in the sense that an upper bound
can be determined during which any RSU is able to communicate with other
RSUs. A rider registers to CA and his SP, deposits some money on CB to
send a request to a local RSU for a c-ride, and pays a fare to a matched
driver after the c-ride. A driver registers to CA and her SP, responses to a
c-ride hailing message broadcasted by a local RSU, and receives a fare from a
rider after the r-ride.

2.2 Security Model

External adversaries can eavesdrop on communication channels, launch attacks,
such as impersonation attack, replay attack and tampering attack. SPs are inter-
ested in the privacy of users and eager to profile them and their activities by
mining some private information from c-ride data [21–23], and they may collude
with RSUs to interfere with the matching process toward gaining extra prof-
its. RSUs may be compromised by adversaries or colluding with SPs, thus the

412 M. Li et al.

matching results will be incorrect. Users are honest-but-curious and a part of
them may launch location cheating attacks to mislead an RSU.

2.3 Design Goals

Security. Security contains data confidentiality, data integrity, user authenti-
cation and location authentication. The scheme should protect c-ride data from
illegal entities, verify requests and responses before they are accepted, authenti-
cate users’ identities in an anonymous way, and validate users’ locations.

Privacy. (1) User privacy: (anonymity) any user’s identity/location is protected
from other entities in a normal c-ride; (unlinkability) any two requests/responses
from a same rider/driver cannot be linked together; (traceability) any company
cannot know any user’s real identity unless all SPs disclose it together; (transac-
tion privacy) any transaction’s payer, payee, and transferred amount are protect
from other entities. (2) SP privacy: any SP cannot know which SP it shares a
c-ride with, other SPs’ number of users, and ride fares.

Data Auditability. All SPs are able to manage an internally shared ledger
and every permissioned entity can verify all c-rides based on it.

Fairness. The rider receives correct matching results within a period of time if
he pre-pays for a c-ride. The driver receives a fare after c-ride and cannot gain
extra fees. The SPs get a service fee from drivers in c-rides.

3 The Proposed Scheme CoRide

3.1 System Initialization

First, given a security parameter k, CA generates three multiplicative cyclic
groups G1, G2, G3 of the same prime order p. Let g1, g2 be the generators of
G1, G2 respectively, and e : G1 × G2 → G3 be a bilinear map. CA chooses two
random numbers u, v ∈ Z

∗
p as group private keys for SPs, computes U1 = gu

1 ,
U2 = gu

2 , V = gv
1 as group public keys, and distributes u, v among SPs such

that SPi has two secret shares ssi1, ssi2 and u, v can only be recovered by all
SPs [24]. CA selects a collision-resistant hash function H1 : {0, 1}∗ → Z

∗
p [7].

Given a security parameter λ, CA picks a signature scheme Sig := (GSig, KSig,
SSig, VSig), a public-key encryption scheme Enc := (GEnc, KEnc, EEnc, DEnc), a
private-key encryption scheme Enc′ := (GEnc′

, KEnc′
, EEnc′

, DEnc′
), samples parSig,

parEnc and parEnc
′
, generates {skEnc

SPi
, pkEnc

SPi
}. CA sets public parameters par1 :=

(p,G1, G2, G3, g1, g2, e, U1, U2, V,H1, parSig, parEnc, {pkEnc
SPi

}) [9].
Second, SPs divide the c-ride hailing area into a grid set GR = {gr[1],

gr[2], ..., gr[nG]} and form them into a tree such that the root index is 1 and the

CoRide: A Privacy-Preserving Collaborative-Ride Hailing Service 413

node index increases from top to bottom. SPs choose par2 including an environ-
mental signal filtering function φ, a Bloom filter B with length f , a hash function
tuple h := {h1, h2..., ho} and GR. Third, SPs select par3 including a length w
for prefix, an indistinguishable Bloom filter B′ with f ′ twins, a hash function
H ′(.) = H ′(.)%2, and an authentication code HMAC [18]. Last, given a security
parameter λ, SPs select a hash function H2, three collision-resistant pseudo-
random functions PRFadd

x (i) = PRFx(00||i),PRFsn
x (i) = PRFx(01||i),PRFpk

x (i) =
PRFx (10||i) where x is a seed, construct CPOUR for NP statement POUR at
λ, probabilistically sample a proving key pkPOUR and a verifying key vkPOUR

[9], establish decentralized payment scheme ΠDAP := (CreateAdd, Deposit, Pour,
Redeem), and create SC := (Verify, Hail, Match). It is worth pointing out that
smart contract prevents RSUs and SPs from colluding to gain their own benefits.
SPs set par4 := (H2, PRF

add
x (i), PRFsn

x (i), PRFpk
x (i), pkPOUR, vkPOUR, SC).

Fig. 2. C-ride requesting and responding

3.2 Entity Registration

A rider with identity Ri belonging to SPz joins the c-ride hailing system by first
registering to CA: CA chooses a secret key SKRi

, computes {E}Enc(Ri||SKRi
),

i.e., a multi-encryption of Ri and SKRi
using EEnc and {pkEnc

SPj
}s

j=1,j �=z, chooses
a random number rRi

∈ Z
∗
p with rRi

+ u �= 0 mod p, computes r̂Ri
=

g
1/(rRi

+u)
1 , and returns SKRi

, an authorized anonymous key aki := (rRi
, r̂Ri

),
{E}Enc(Ri||SKRi

) and a signature σCA
Ri

on (r̂Ri
, {E}Enc(Ri||SKRi

)) to Ri. Ri

sends (r̂Ri
, {E}Enc(Ri||SKRi

), σCA
Ri

) to SPz which stores (r̂u
i , {E}Enc(Ri||SKRi

)
after checking the signature’s validity. Ri chooses li random numbers {xij}li

j=1

as private keys and computes public keys {Yij = g
xij

1 }li
j=1. Then Ri selects K +1

414 M. Li et al.

secret keys SKRi
:= {skRi1, skRi2, ..., skRiK+1} and constructs a pseudo-random

hash function tuple h′
Ri

(.) := {h′
Ri1

(.), h′
Ri2

(), ..., h′
RiK

(.)} where h′
Rij

(.) :=
HMACskRij

(.)%f ′ for 1 ≤ j ≤ K and h′
RiK+1(.) = HMACskRiK+1(.). Next, Ri

computes (skEnc
Ri

, pkEnc
Ri

) = KEnc(parEnc), randomly samples a seed ssk
Ri

, computes
spk

Ri
= PRFadd

ssk
Ri

(0), and sets addpk
Ri

:= (spk
Ri

, pkEnc
Ri

), addsk
Ri

:= (ssk
Ri

, skEnc
Ri

). Ri also
buys some intercompany tokens from SPz as digital currency. Similarly, a driver
Dj obtains (SKDj

, akDj
, {E}Enc(Dj ||SKDj

), σCA
Dj

, addpk
Dj

, addsk
Dj

).
SPs utilize RSUs in c-rides by permitting them to join the CB network and

executing the smart contract SC on each RSU to perform user matching and
fare payment. Each RSU RSm has addsk

RSm
:= (ssk

RSm
, skEnc

RSm
), an address public

key addpk
RSm

:= (spk
RSm

, pkEnc
RSm

) and a public signing key pair (skSig
RSm

, pkSig
RSm

).

3.3 C-Ride Requesting

A rider Ri belonging to SPz is now hailing a c-ride through a local RSU
RSm. First, Ri deposits two coins c1, c2 of value v1, v2 at RSm as a prepaid
fare. Ri randomly samples a PRFsn seed τ , two commitment trapdoors tr1, tr2,
and computes cm1 := Comtr1(s

pk
Ri

||τ), cm2 := Comtr2(v1||cm1) where Com is a
statistically-hiding non-interactive commitment scheme [9]. Ri sets c1 := (addpk

Ri
,

v1, τ, tr1, tr2, cm2) and a deposit transaction txDep
Ri1

:= (cm2, v1, cm1, tr2, time).
After obtaining c2, tx

Dep
Ri2

, Ri uploads (c1, c2) and (txDep
Ri1

, txDep
Ri2

) via RSm to coin
pool CP and transaction pool TP, respectively. This step is not necessary for
each requesting.

Second, Ri computes a pseudo-identity pidRi
= H(Ri||RSm||time), collects

environmental signals within time period (t1, t2), inserts observations y(t1, t2)
into BRi1 = {0}f to obtain a location tag BRi1 := Ins(h(yi(t1, t2)), BRi1) [17].
Ri computes a pair of RSA keys skRi

, pkRi
∈ {0, 1}len, embeds pkRi

into BRi1 :
EnRi

= Encode(f, len, pkRi
), and computes SRi

= EnRi
− BRi1. Ri transforms

current location locRi
into GRRi

to be the minimal set of vicinity region, and
inserts grid indexes into BRi2 := Ins(h(GRRi

||pkRi
), BRi2). By doing this, Ri has

embedded his public key for proximity matching and encrypted current location.
Third, Ri encrypts SKRi

and a random number rB′ using pkRi
and

obtains ERi
= EEnc′

(pkRi
,SKRi

||rB′). For non-numeric conditions, Ri encodes
it into a keyword by concatenating its corresponding attribute name and
obtains a set of condition keywords WRi

[18]. For each keyword wj ,
Ri hashes it into f ′ twins B′

Ri1
:= Ins(h′(wj), B′

Ri1
). For each twin

BRi1[h
′
i(wj)], Ri assigns B′

Ri1
[h′

i(wj)][H ′(h′
K+1(h

′
i(wj))⊕rB′)] = 1 and B′

Ri1
[1−

h′
i(wj)][H ′(h′

K+1(h
′
i(wj)) ⊕ rB′)] = 0. For the numeric destination grid grRi

, Ri

computes its prefix family, encodes it into a keyword by concatenating its cor-
responding attribute name, and computes a similar B′

Ri2
. Then, Ri constructs

an IBTree TRi
using two leaf nodes B′

Ri1
and B′

Ri2
. Using this method, Ri

has encrypted his matching keys, conditions, and destination. Rj generates an
encrypted c-ride data packet PaRi

= EEnc’(SKRi
, locRi

||WRi
||grRi

||time).

CoRide: A Privacy-Preserving Collaborative-Ride Hailing Service 415

Last, Ri forms a c-ride request ReqRi
:= (t1, t2, SRi

, BRi2, ERi
, TRi

, PaRi
),

computes an anonymous certificate CRi
:= {Y || V1|| V2|| h̃|| s̃1|| s̃2|| s̃3} and a

signature σRi
on ReqRi

[7], and sends (pidRi
, ReqRi

, CRi
, σRi

) a local RSU RSm.
The process of c-ride requesting and responding is depicted in Fig. 2.

3.4 C-Ride Responding

After receiving ReqRi
, RSm first runs SC.Verify. RSm verifies the validity of

CRi
, σRi

[7] and verifies cm2 in txDep
Ri1

is a coin commitment of a coin of value v1.
RSm sets cm′ := Comtr2(v1||cm1) and accepts txDep

Ri1
if cm′ := cm2, else reject it.

Similarly, RSm verifies txDep
Ri2

. RSm uploads c1, c2 to CP and txDep
Ri1

, txDep
Ri2

to TP.
Then RSm runs SC.Hail. RSm broadcasts a hailing message hailRi

:= {t1, t2,
SRi

, ERi
} to drivers nearby. After receiving hailRi

, each available driver Dj

belonging to SPz′ at current location locDj
computes a pseudo-identity pidDj

,
computes Bj1 as the rider did, and recovers a pk′

Ri
from SRi

[17]. We note that
only when Dj is in Ri’s vicinity, can Dj recover pkRi

correctly and Dj cannot
verify whether she has retrieved a correct pkRi

. Dj chooses a communication
key skcom

Dj
, computes eidDj

= EEnc(pk′
Ri

, pidDj
||skcom

Rj
) and broadcasts eidDj

.
Dj collects eids from nearby drivers to form a location proof PDj

, and computes
h(grDj

||pk′
Ri

). By doing this, Dj has encrypted her current location grDj
.

Next, Dj can decrypt ERi
using correct pk′

Ri
to obtain (SKRi

||rB′) =
DEnc′

(pk′
Ri

, ERi
). Given a set of condition keywords WDj

, Dj computes
T RDj1 containing {h′(w),H ′(h′

RiK+1(h
′
Ri

(w)) ⊕ rB′) for each keyword w.
Dj computes destination trapdoors T RDj2. Using this method, Dj has
encrypted her conditions and potential destinations. Dj generates an encrypted
data packet PaDj

= EEnc’(SKDj
, locDj

||WDj
||grDi

||time). Dj forms a c-ride
response Resj := (eidDj

,PDj
, h(grDj

||pk′
Ri

), T RDj1, T RDj2, PaDj
), and sends

(pidDj
, ResDj

, CDj
, σDj

) to RSm.
Last, RSm runs SC.Match. RSm queries h(grDj

||pk′
Ri

) and T RDj1, T RDj2

into BRi2 and TRi
, returns to Ri one eidDj

existing in B̂i2 and TRi
. Ri decrypts

pidDj
||skcom

Rj
= DEnc(skRi

, eidDj
). Ri communicates with Dj using skcom

j to
determine a precise pick-up/get-off location. After receiving a confirmation from
Ri and Dj , RSm uploads PaRi

, PaDj
to SPs for backup and sends a handshake

transaction txHan
RiDj

with a signature to TP:

txHan
RiDj

= (pidRi
, pidDj

, RSm, V Ri
1 , V Ri

2 , V
Dj

1 , V
Dj

2 ,H2(PaRi
||PaDj

), time).

3.5 C-Ride Termination

After a c-ride is complete, the rider Ri pays a fare to a matched driver Dj by
splitting previously deposited two old coins c1, c2 to two new parts: the first
one is for his refund and the second one is sent for Dj . Specifically, for a ∈
{1, 2}, Ri computes sna = PRFsn

addsk
Ri

(τa), randomly samples a PRFsn seed τnew
a

416 M. Li et al.

Fig. 3. Construction of the consortium blockchain

(the second one is sampled by Dj to defend double spending attacks) and two
commitment trapdoors trnew

a1 , trnew
a,2 , computes cmnew

a1 := Comtrnew
a1

(spk,new
a ||τnew

a)
and cmnew

a2 := Comtrnew
a2

(vnew
a ||cmnew

a1), sets cnew
a := (addpk,new

a , vnew
a , τnew

a , trnew
a ,

trnew
a , cmnew

2) and sets Ca = EEnc′
(skcom

Dj
, vnew

a ||τnew
a ||trnew

a1 ||trnew
a2). Here, spk,new

1

and spk,new
2 correspond to Ri and Dj , respectively.

Then Ri generates (skSig, pkSig), computes hSig = H2(pkSig), h1 = PRFpk

ssk
Ri1

(hSig), h2 = PRFpk

ssk
Ri2

(hSig), sets −→x := (root, sn1, sn2, cmnew
12 , cmnew

22 , 0, hSig, h1,

h2), −→a := (path1, path2, c1, c2, addsk
Ri1

, addsk
Ri2

, cnew
1 , cnew

2), computes a non-
interactive proof π for the statement −→x , sets M := (−→x , π,C1,C2), computes σ =
SSig(skSig,M), sets a pour transaction txPouRi

:= (root, sn1, sn2, cm
new
1,2 , cmnew

2,2 , 0,

info, pkSig, h1, h2, π,C1,C2, σ, time), where path gives the authentication path
from a coin commitment appearing in the list of all coin commitments to the
root of a Merkle tree over the list. Ri sends (cnew

1 , cnew
2 , txPouRi

) to an RSU RSm′

(Fig. 3).
Next, RSm′ runs SC.Verify and verifies txPouRi

. If it passes, RSm′ uploads
cnew
1 , cnew

2 to CP and sends txPouRi
to TP.

Last, Dj redeems her fare cnew
2 through her SP by computing (v2, τnew

2 ,

trnew
21 , trnew

22) = DEnc′
(skcom

Dj
, C2), verifies that whether cmnew

22 := Comtrnew
22

(vnew
2 ||Comtrnew

21
(spk,new

Dj
||τnew

2)) and sn′
2 = PRFsn

addsk
Dj

(τ2) is not on CP. If they

pass, Dj outputs c := (addpk
Dj

, vnew
2 , τnew

2 , trnew
21 , trnew

22 , cmnew
12) and pays a fixed

service fee (e.g., $1/c-ride) to SP.
We use PoS mechanism [19] to periodically elect a leader RSU to gener-

ate a new block and avoid forks. Rather than RSUs spending computational
resources and time on the leader election process, they instead run a function that

CoRide: A Privacy-Preserving Collaborative-Ride Hailing Service 417

randomly selects one RSU proportionally to the stake or balance that each RSU
possesses according to the current blockchain ledger. Specifically, each RSU is a
stakeholder and its stake is the number of paired c-rides.

3.6 User Tracking

If a complaint has been filed against a malicious user i with a pseudo-identity
pidi and an anonymous certificate Ci, SPs recover the group secret keys u, v
together from their secret shares and compute V u

2 /V v
1 = r̂u

i · V ur0/Uvr0
1 = r̂u

i ·
guvr0
1 /guvr0

1 = r̂u
i and track the encrypted identity of i through looking up the

entry {r̂u
i , {E}Enc(i||SKi)} in their tracking list. If a matched record is found at

SPz, SPz first asks the other SPs to decrypt {E}Enc(i||SKi) using their secret
keys to obtain i||SKi = {D}Enc({E}Enc(i||SKi)), and then recover its c-ride
data (time||loci||Wi||gri) = DEnc’(EEnc’(SKi, Pai)). Finally, SPs append this
malicious user into an intercompany blacklist. It is worth noting that even though
the group secret keys are recovered, CoRide still needs all SPs to recovers the
identity of a user which prevents any SP opening an identity on its own.

4 Security and Privacy Analysis

Security. First, a rider Ri’s current location is inserted into a Bloom filter BRi1

and his public key pkRi
is embedded into a fuzzy extractor SRi

. Any entity which
is not physically close to Ri cannot obtain pkRi

. Due to the nature of the BCH
decoder, any driver Dj cannot tell whether she has extracted a correct pkRi

[17]. Therefore, no one can acquire Ri’s location. A driver’s current location is
transformed into o hash values h(grDj

||pk′
Ri

). SPs and RSUs cannot learn Dj ’s
location without Ri’s public key. Since the RSUs do not relay h(grDj

||pk′
Ri

)
to Ri, Ri cannot know Dj ’s location either. Second, the IBtree based querying
scheme is IND-CKA secure against an adaptive adversary A [18] because a
probabilistic polynomial-time simulator can be constructed to simulate future
unknown queries, and A is not able to distinguish the results of the real secure
index from those of the simulator with a non-negligible probability. The use of
secure one-way hash functions h achieves one-wayness and the use of the hash
function H ′(.) achieves equivocation for each item in an indistinguishable Bloom
filter IBF . For each twin in an IBF , the cell is randomly chosen. A random
number is used in an IBF to cut off relations between IBF s. Third, the data
integrity is guaranteed by users’ signatures [7]. We generate a signature on a user’
r-ride request and a driver’s c-ride response by using anonymous authentication,
and the RSU cannot recover a user i’s anonymous key r̂i from the anonymous
certificate Ci. Fourth, a user’s location is authenticated by the location tags [17],
if he is not near drivers, he cannot collect corresponding environmental signals
which are used to provide a location proof.

Privacy. First, a user’s anonymous certificate reveals nothing about user’s
identity and it is randomized in each c-ride requesting and c-ride responding.

418 M. Li et al.

Each user computes a new pseudo-identity in each requesting and responding.
Users’ locations are transformed into Bloom filters as explained above. Every two
requests/responses from a same rider/driver cannot be linked together because
they use different pseudo-identities, randomized location Bloom filters, random-
ized c-ride data packets. Users’ identities are encrypted by all SPs’ public keys
such that they can only be disclosed if all SPs agree to reveal them unanimously.
Even if a SP can open a user’s anonymous key, its corresponding identity and
secret key are encrypted by all SPs. Therefore, the anonymity, unlinkability, and
traceability are guaranteed. Second, transaction privacy is protected due to the
ledger indistinguishability of Zerocash [9] meaning that the transactions disclose
no information to the adversary A′ beyond the values of deposited coins, infor-
mation strings, and number of transactions, even when the adversary adaptively
induces honest parties to perform transaction operations of its choice. In a ledger
indistinguishability experiment L-IND, challenger C samples a random bit b, ini-
tializes two ΠDAP oracles O0 and O1 and maintains two ledgers L0 and L2. C
provides A′ with Lleft := Lb and Lright := L1−b. In L-IND, A′ issues two queries
Q0, Q1 of the same type. If the type is CreateAdd, then a same address is created
at O0 and O1; if it is to Deposit,Pour or Redeem, then Q0 is forwarded to L0 and
Q1 to L1; if A′ inserts arbitrary transactions, Q0 is forwarded to Lleft and Q1 is
forwarded to Lright. In each case, the response to A is computed independently
of b. At the end of L-IND, A′ outputs a bit b′, and it wins if b′ = b. Ledger
indistinguishability guarantees that A′ wins L-IND with a probability at most
negligibly bigger than 1/2, i.e., AdvL-IND

Π,A′ (λ) < negl(λ). Third, during any c-ride,
the information of which SP a user belongs to is not included in any interaction
or anonymized, such as Certi, pidi. Although a user’s The anonymous certificate
Certi and the corresponding encrypted identity and secret key {E}Enc(i, SKi)
can be used to disclose his identity and SP related information, they are only
stored at his SP and revealing them requires efforts from all SPs. The fare is
also protect from SPs via Zerocash. Although c-ride data are stored at all SPs,
they cannot be opened unless all SPs participate.

Data Auditability. We build a consortium blackchain to keep c-ride records
in a verifiable and tamper-proof manner. The stakeholders, i.e., RSUs, must
be invited or permitted by SPs to join the blockchain network and create new
blocks. Other entities without an invitation from SPs cannot insert any block
to the blockchain. Each RSU maintains a backup of an intercompany shared
and append-only ledger of c-ride records. All the transactions can be verified by
entities within the blockchain network and each RSU runs a smart contract to
faithfully pair users, which guarantees immutability.

Fairness. Due to the verifiability of smart contracts, the matching process
is protected from malicious tampering and riders can always receive correct
pairing results, even though a SP can collude with an RSU. Transaction non-
malleability guarantees that no adversary can change the data stored within a
pour transaction txPou and transaction balance guarantees that no adversary

CoRide: A Privacy-Preserving Collaborative-Ride Hailing Service 419

can obtain extra fare than what she deposited or received via payments from
riders. Moreover, the second randomness number τnew

2 in ride termination phase
is sampled by driver and the addpk,new

2 is the driver’s public address, therefore,
only the driver can redeem the new coin poured by the rider. The SP can get a
service fee from drivers when they redeem their fares.

5 Performance Analysis

5.1 Implementation Details

We instantiate 100 riders and 100 drivers on a laptop with 8.00 GB of RAM,
an Intel Core i7-7500 CPU @2.70 GHz, running Windows 10 Home. The smart
contracts are deployed on 10 desktops with 6 GB of RAM, an Intel Core i5
CPU@3.20 GHz, running 64-bit Microsoft Windows 7 Enterprise. We instantiate
3 service providers by an Amazon cloud servers, two Alibaba cloud servers. The
cryptographic toolset we used is Miracl. Table 1 lists experimental parameters.

Table 1. Experimental parameters

Parameters Value

p, q, n1, n2, n3, n4, nG, nTx |p| = 160, |q| = 512, 3, 10, 100, 100, 1023, 8

H1, H′(.), H2;h, h′ SHA256; {SHA224, SHA384, SHA512}
PRFadd

x (.),PRFsn
x (.),PRFpk

x (.); Sig/Enc,Enc’ SHA3− 224;RSA,AES

l, f, f ′, o,K 10, 1000, 1000, 3, 2

5.2 Experiments on Simulated Network

We first count the number of the cryptographic operations to analyze its compu-
tational costs. The main time consuming operation for a rider is Request which
takes approximately 56 ms, each driver spends 55 ms on responding to a hail-
ing message, and it costs an RSU less than 85 ms to verify a c-ride request and
1.86 ms to match a rider and driver. Detailed results are shown in Table 2.

Table 2. Computational costs

Rider (ms) Driver (ms) RSU (ms)

Register Deposit Request Pour Register Respond Redeem Verify1a Verify2b Matching BlCr.c

37.00 0.06 56.47 0.05 37.00 55.23 0.06 0.02 84.38 1.86 1.73

Rider (KB) Driver (KB) RSU (KB) SP (ms)

Deposit Request Pour Respond Redeem BrCad Match BlCr Dublin Beijing Dublin

0.61 0.90 1.02 0.92 0.21 0.15 0.72 0.26 33 263 114
a Verify txDep; b Verify (pid, Res/Req, C, σ); c Create a new block; d Broadcast

420 M. Li et al.

5.3 Comparison with Existing Work

We first compare the computational costs for riders in their Deposit, Request and
Pour, because they are the main operations for a rider, even though the other
three schemes do not have Deposit and Pour. Figure 4(a) shows that CoRide
outperforms PPRS and ORide, and approximates AMA. The computational
costs for drivers are compared in Respond and Redeem, Fig. 4(b) shows a similar
result as Fig. 4(a). RSUs have two operations Verify and Match. Verify in our
scheme contains verifying deposited coins and verifying users’ certificates and
signatures. The comparison results in Fig. 4(c) shows that CoRide has the lowest
cost among all schemes in Verify and has a small cost in Match. Then we compare
the communication overhead for riders. Since the riders have to deposit coins and
pour coins, their communication overhead in CoRide are inevitably higher than
other schemes, as depicted in Fig. 4(d). For the drivers, their communication
overhead is moderate in comparison, as depicted in Fig. 4(e). Each RSU has to
run Broadcast, Match, and BlockCreation, and the other schemes do not have an
RSU in their designs. The result is depicted in Fig. 4(f).

Fig. 4. Comparison with existing work.

6 Conclusion

Traditional privacy-preserving ride hailing schemes rely on a central service
provider to complete user matching tasks and different service providers have

CoRide: A Privacy-Preserving Collaborative-Ride Hailing Service 421

isolated user datasets. In this study, we proposed a concept of collaborative-
ride and constructed a decentralized design using fog computing and blockchain
technologies to pair riders with drivers from different service providers, record
c-rides on an intercompany ledger, and defend malicious adversaries. Different
from existing RHS schemes, our matching results are verifiable and immutable,
and anonymous payment between users is also achieved. Experimental results
demonstrate the practicability and efficiency of our scheme.

Acknowledgment. This work was supported by the National Natural Science Foun-
dation of China (NSFC) under the grant No. U1836102 and the China National Key
Research and Development Program under Grant 2016YFB0800301.

References

1. 2017: The Year The Rideshare Industry Crushed The Taxi (2017). https://
rideshareapps.com/2015-rideshare-infographic

2. Bonomi, F., Milito, R.A., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: Proceedings Mobile Cloud Computing Workshop, pp. 13–16
(2012)

3. Zhu, L., Li, M., Zhang, Z., Zhan, Q.: ASAP: an anonymous smart-parking and
payment scheme in vehicular networks. In: IEEE TDSC (2018)

4. How to keep Uber from becoming a terrifying monopoly (2017). http://theweek.
com/articles/681459/how-keep-uber-from-becoming-terrifying-monopoly

5. Private mobility services need to share their data. Here’s how (2017). https://
www.citylab.com/transportation/2017/07/private-mobility-services-need-to-
share-their-data-heres-how/532482

6. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 3

7. Lu, R., Lin, X., Luan, T.H., Liang, X., Shen, X.: Pseudonym changing at social
spots: an effective strategy for location privacy in VANETs. In: IEEE TVT (2012)

8. He, W., Liu, X., Ren, M.: Location cheating: a security challenge to location-based
social network services. In: Proceedings 31st ICDCS, pp. 740–749 (2011)

9. Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin.
In: Proceedings IEEE 35th S&P, pp. 459–474 (2014)

10. Garman, C., Green, M., Miers, I.: Accountable privacy for decentralized anonymous
payments. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 81–
98. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 5

11. Li, M., Zhu, L., Lin, X.: Privacy-preserving traffic monitoring with false report
filtering via fog-assisted vehicular crowdsensing. In: IEEE TSC (2019)

12. Zhu, L., Li, M., Zhang, Z.: Secure fog-assisted crowdsensing with collusion resis-
tance: from data reporting to data requesting. IEEE IoT J. 6, 5473–5484 (2019)

13. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
14. Conti, M., Kumar, S., Lal, C., Ruj, S.: A survey on security and privacy issues of

bitcoin. IEEE Commun. Surv. Tutorials 20(4), 3416–3452 (2018)
15. Jaballah, W.B., Conti, M., Lal, C.: A survey on software-defined VANETs: benefits,

challenges, and future directions. https://arxiv.org/abs/1904.04577

https://rideshareapps.com/2015-rideshare-infographic
https://rideshareapps.com/2015-rideshare-infographic
http://theweek.com/articles/681459/how-keep-uber-from-becoming-terrifying-monopoly
http://theweek.com/articles/681459/how-keep-uber-from-becoming-terrifying-monopoly
https://www.citylab.com/transportation/2017/07/private-mobility-services-need-to-share-their-data-heres-how/532482
https://www.citylab.com/transportation/2017/07/private-mobility-services-need-to-share-their-data-heres-how/532482
https://www.citylab.com/transportation/2017/07/private-mobility-services-need-to-share-their-data-heres-how/532482
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-662-54970-4_5
https://arxiv.org/abs/1904.04577

422 M. Li et al.

16. Baza, M., Nabil, M., Lasla, N., Fidan, K., Mahmoud, M., Abdallah, M.: Blockchain-
based firmware update scheme tailored for autonomous vehicles. arXiv preprint
arXiv:1811.05905 (2018)

17. Zheng, Y., Li, M., Lou, W., Hou, Y.T.: Location based handshake and private
proximity test with location tags. IEEE TDCS 14(4), 406–419 (2017)

18. Li, R., Liu, A.X.: Adaptively secure conjunctive query processing over encrypted
data for cloud computing. In: Proceedings IEEE 33rd ICDE, pp. 697–708 (2017)

19. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

20. Ethereum. https://github.com/ethereum/mist/releases
21. Ni, J., Zhang, K., Lin, X., Yang, H., Shen, X.: AMA: anonymous mutual authenti-

cation with traceability in carpooling systems. In: Proceedings ICC, pp. 1–6 (2016)
22. Pham, A., Dacosta, I., Endignoux, G., Troncoso-Pastoriza, J.R., Huguenin, K.,

Hubaux, J.-P.: ORide: a privacy-preserving yet accountable ride-hailing service.
In: Proceedings 26th USENIX Security Symposium, pp. 1235–1252 (2017)

23. Sherif, A.B.T., et al.: Privacy-preserving ride sharing scheme for autonomous vehi-
cles in big data era. IEEE IoT J. 4(2), 611–618 (2017)

24. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

http://arxiv.org/abs/1811.05905
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://github.com/ethereum/mist/releases
https://doi.org/10.1007/3-540-46766-1_9

Better Clouds

Non-Interactive MPC with Trusted
Hardware Secure Against Residual

Function Attacks

Ryan Karl, Timothy Burchfield, Jonathan Takeshita, and Taeho Jung(B)

University of Notre Dame, Notre Dame, IN 46556, USA
{rkarl,tburchfi,jtakeshi,tjung}@nd.edu

Abstract. Secure multiparty computation (MPC) has been repeatedly
optimized, and protocols with two communication rounds and strong
security guarantees have been achieved. While progress has been made
constructing non-interactive protocols with just one-round of online com-
munication (i.e., non-interactive MPC or NI-MPC), since correct evalua-
tion must be guaranteed with only one round, these protocols are by their
nature vulnerable to the residual function attack in the standard model.
This is because a party that receives a garbled circuit may repeatedly
evaluate the circuit locally, while varying their own inputs and fixing
the inputs of others to learn the values entered by other participants.
We present the first MPC protocol with a one-round online phase that
is secure against the residual function attack. We also present rigorous
proofs of correctness and security in the covert adversary model, a reduc-
tion of the malicious model that is stronger than the semi-honest model
and better suited for modeling the behaviour of parties in the real world,
for our protocol. Furthermore, we rigorously analyze the communica-
tion and computational complexity of current state of the art protocols
which require two rounds of communication or one round during the
online-phase with a reduced security requirement, and demonstrate that
our protocol is comparable to or outperforms their complexity.

Keywords: Non-Interactive MPC · Communication round
complexity · Trusted hardware

1 Introduction

Secure multiparty computation (MPC) is formally defined as functionality that
allows a group of parties to jointly compute a function over their inputs, while
keeping those inputs private. Two conditions must be satisfied: Correctness (the
correct value must be computed from the given inputs) and Security (no infor-
mation about the function’s inputs should be gleaned after computation, other
than the output). One of the primary tools for achieving this goal is the gar-
bled circuit [35], where one party (the sender) encrypts a Boolean circuit and
then assigns two randomly generated strings (labels) to each wire in the cir-
cuit: one each for 0 and 1. The sender also encrypts the output entry for each
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 425–439, 2019.

https://doi.org/10.1007/978-3-030-37231-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_25&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_25

426 R. Karl et al.

of the circuit’s gate’s truth tables so that the table can only be decrypted if a
receiving party has the correct two input labels. A great deal of work has been
invested into extending and optimizing MPC protocols to build more secure, effi-
cient, and scalable MPC systems [26,36]. Generally, modern MPC protocols are
divided into three phases: the function-independent preprocessing phase, where
parties do not need to know their inputs or the function to be computed, the
function-dependent preprocessing phase, where parties know the function, but
do not know their inputs, and the online phase, where parties evaluate the agreed
function over their respective inputs [33].

Great progress has been made improving the computational complexity of
these systems, but it is only recently that researchers have started to investigate
improving these protocols’ communication round complexity, or the minimum
number of sets of parallel messages sent between parties in the protocol. For
example, if during a protocol party A must wait to receive a message from party
B before sending a followup message back to party B, we would consider this to
be a two-round protocol. Note that in many cases, especially when MPC is con-
ducted over the Internet, communication round complexity is the primary bot-
tleneck, as network latency slows the delivery of packets necessary for continuing
the protocol [5]. This problem becomes worse when parties are geographically
distant, and is currently a major obstacle preventing MPC from being deployed
in a global setting [34]. For several years, the total number of rounds needed has
continued to decrease. To the best of our knowledge, the most efficient known
protocols that satisfy security requirements in the standard model require two
rounds of online communication [6,11–13,16,23,31].

In an effort to further reduce the number of rounds of communication, there
has been a movement among MPC researchers to construct non-interactive MPC
protocols (NI-MPC) which only require one-round of online communication [4,
19–21]. Clearly, this would have many practical benefits, since it would allow
participants in the protocol to immediately terminate communication as soon
as they received the needed response from other participants, and not waste
energy and other resources maintaining an Internet connection while awaiting
further messages. However, all NI-MPC protocols with a one-round online phase
are vulnerable to the residual function attack, and thus cannot guarantee input
privacy of participants under the standard security model [25]. In this attack,
because correct evaluation must be guaranteed with only one round, the party
that receives a garbled circuit should be able to repeatedly evaluate the circuit
locally on different inputs while fixing the inputs of others until they learn the
values inputted by other participants.

Existing works [4,20,22] choose to relax the security of the standard model,
and define a new model of security that allows adversaries to learn nothing more
than what can be discovered via this attack, which they define as the “best-
possible security” for any given set of corrupted parties. Intuitively, this means
that the adversary is prevented from learning more than they can via the residual
function attack, as this is, practically speaking, the most meaningful security that
can be achieved in the standard model given the one-round constraint. In more

NI-MPC with Trusted Hardware Against Residual Function Attacks 427

formal terms, they assert that if the evaluator colludes with a set of corrupted
parties, denoted T , it is allowed to learn the value of the original function on
the honest parties inputs combined with every possible choice of inputs from set
T . As long as nothing more than that is learned, their relaxed security model
defines that the protocol is secure.

This paper aims to design an NI-MPC scheme constructed with only one
communication round in the online phase without sacrificing security or pri-
vacy. Achieving this goal is challenging, because any MPC protocol with only
one communication round in the standard model is vulnerable to the residual
function attack described above. We address this by building our protocol using
secure functionality available in trusted hardware (e.g., TPM and Intel SGX).
The TPM is a mature cryptoprocessor technology that has existed for over a
decade and has been internationally standardized by the ISO, and Intel SGX is
a set of instructions that protect application code and data from being disclosed
or modified. Both types are widely available in consumer and enterprise systems.
For the purposes of our protocol, we use various secure functionalities including
a monotonic counter, binding, sealing, and remote attestation. Monotonic coun-
ters enable us to only permit certain steps of our protocol to be executed a finite
number of times. Combining this with binding and sealing will limit the users’
ability to perform arbitrary evaluation for launching the aforementioned residual
function attack. We also make use of remote attestation to verify the integrity
of the protocol. All functions are available in both TPM and Intel SGX.

Although there has been some controversy over the use of a TPM, which we
address in a later section, TPMs are rapidly becoming a major part of the digital
security and privacy ecosystem, having been deployed in hundreds of millions
of devices and on almost all commercial PCs and servers [1]. The Intel SGX is
a newer development, but it is maintained and supported by Intel, making it
credible and trusted hardware for practical purposes.

We have the following contributions in this paper.

1. We propose the first NI-MPC protocol that is secure under standard security
models even though there is only one communication round in the online
phase.

2. We provide a comprehensive analysis of existing state-of-the-art MPC
schemes which require two rounds of communication or one-round during
the online-phase and demonstrate that our NI-MPC protocol is comparable
to or outperforms their asymptotic complexity.

3. We prove that our NI-MPC protocol is secure by showing simulation-based
security under standard models.

2 Related Work

Since BMR [3], there have been many advances made in improving the round
complexity of MPC using garbled circuits. [28] combines the BMR protocol with
the SPDZ protocol [10] to achieve a twelve-round protocol given certain assump-
tions concerning the adversary, which was later improved to six rounds after

428 R. Karl et al.

modifying the protocol to use SHE instead of SPDZ [29]. Later, [19] were able to
achieve a four-round MPC protocol under standard polynomial-time hardness
assumptions by utilizing a black-box proof of security. This was later combined
with tamper-proof hardware tokens to achieve a three-round protocol [25]. Fol-
lowing this work, [5] presented a four-round protocol that can be optimized to
three or two rounds after performing several precomputations.

Recently, there has been much interest in constructing two-round MPC pro-
tocols, as this was shown in [23] to be necessary to securely compute certain
common functionalities. [11] achieved the first two-round MPC scheme by rely-
ing on indistinguishability obfuscation, but later this assumption was reduced to
witness encryption [16]. Following this work, two-round protocols were achieved
in [31] based on the learning with errors assumption (LWE), in [6] based on the
DDH assumption, and in [13] based on bilinear maps, after using ideas from [9].
Currently, the protocol with the best known communication round complexity
which makes the least assumptions is [14], which notably achieves a two-round
protocol by only relying on oblivious transfer (OT). This protocol was later made
more efficient by minimizing the number of public key operations required, but
it still requires two communication rounds [12].

However, there has been less work constructing protocols with a one-round
online phase. “One-round” protocols for the two-party setting [27] and the mobile
agents setting [8] have been constructed, but their “one round” refers to sending
two messages back and forth (i.e., one round of exchange), so these protocols
would be categorized as a two-round protocol with the current round definition.

Recently, there has been an interest in constructing Non-Interactive MPC
(NI-MPC) protocols that have only one round of communication, but use a
weaker security model that tolerates the residual function attack. [4] was the
first to initiate study in this area, and notably achieved protocols for several
special use cases such as group products, symmetric functions, etc. Later, [21]
robustly studied the setting of NI-MPC to develop a unified framework for study-
ing secure multi-party computation (MPC) under restricted interaction patterns,
and went on to build more efficient NI-MPC protocols. These techniques were
later improved [22] to concretely improve the communication and computational
complexity of NI-MPC, after further developing a theory of the best-possible
information theoretic security that could be achieved in this setting. This the-
ory showed that for NI-MPC, since the communication strings for each player
in a particular evaluation depend on each other, an adversary can prevent any
simulator from generating views computationally indistinguishable from those
in a real execution of the protocol by performing the attack. This makes prov-
ing security impossible for NI-MPC under standard security definitions using
simulation proofs. Recently, [20] also proposed a protocol that notably achieved
NI-MPC without the commonly assumed correlated randomness at the expense
of relying on fully homomorphic encryption, which negatively impacts its overall
efficiency. A summary of our comparison of different protocols is presented in
Tables 1 and 2.1

1 Note that the notation O(1λ) is used commonly in the literature to indicate the
complexity grows linearly with respect to the security parameter [6,12–14,16,31].

NI-MPC with Trusted Hardware Against Residual Function Attacks 429

Table 1. Comparison of existing two-round MPC and our protocol

Paper Computation complexity Communication complexity Assumptions

[16] O((DL)ω) where L is the
circuit depth, D is the
dimension parameter of
the matrix, and
ω >= 2.3727 is the
matrix multiplication
exponent

O(qλ) where q is the size
of the input, and λ is the
security parameter

Honest majority, a
broadcast channel,
point-to-point channels,
and witness encryption

[6] O(M/δ) where M is an
upper bound on the
difference between inputs
and δ is an upper bound
on the error probability

O(S) + poly(λ) where S
is the size of the circuit
and λ is the security
parameter

DDH Assumption,
multiple servers, and
Public Key Infrastructure

[12] O((nSλ)k) where n is the
number of parties, S is
the size of the circuit, λ
is the security parameter,
and k is constant

O(1λ) + Ω(S) where λ is
the security parameter
and S is the size of the
circuit

2-round OT

[14] O((nλ)k) where n is the
number of parties, λ is
the security parameter,
and k is constant

O(1λ) where λ is the
security parameter

2-round OT

[31] O((DL)ω) where L is the
depth of the circuit, D is
the dimension parameter
of the matrix, and
ω >= 2.3727 is the
matrix multiplication
exponent

O(Smλ)k where k is a
constant, S is the size of
the input, m is the size of
the output, and λ is the
security parameter

CRS model, broadcast
channel, LWE, and
NIZKs

[13] O((nSλ)k) where n is the
number of parties, S is
the size of the circuit, λ
is the security parameter,
and k is constant

O(1λ) + Ω(S) where λ is
the security parameter
and S is the size of the
circuit

Standard Bilinear Map
Assumptions

[11] O((DL)ω) where L is the
depth of the circuit, D is
the dimension parameter
of the matrix, and
ω >= 2.3727 is the
matrix multiplication
exponent

O(Sλ) where S is the size
of the input, and λ is the
security parameter

Indistinguishability
obfuscation, CCA-secure
public key encryption,
NIZKs, and 1 honest
party

Ours O(n2S) where n is the
number of parties and S
is the size of the circuit

O(1λ) where λ is the
security parameter

Trusted Hardware

430 R. Karl et al.

3 Preliminaries

Both TPM and Intel SGX are equipped with the secure functionalities we need
for constructing NI-MPC schemes that are secure under a standard (i.e., not
relaxed) security model. We chose to rely on the TPM in this paper for the
implementation, because of its availability. Almost all laptops and desktops
are equipped with a TPM, and it is even compatible with embedded systems.
Because our scheme relies on the functionality, rather than the hardware itself,
it can be implemented using Intel SGX as well.

Table 2. Comparison of Existing NI-MPC and our Protocol

Paper Computation complexity Communication complexity Assumptions

[4] Polynomial in the
communication
complexity

O(nt) where n is the
number of parties and t is
a constant 0 ≤ t ≤ n

Correlated
randomness

[22] O(
(n
n/2

)
n) where n is the

number of parties

O(nsA) where n is the
number of parties, s is a
random vector in field F k

where k is a constant,
and A is the number of
AND gates

One-way functions
for reusable
correlated
randomness and
non-interactive key
exchange for PKI
setup

[21] O(2n) where n is the
number of parties

O(n2n) where n is the
number of parties

Fully homomorphic
encryption and
indistinguishibility
obfuscation for
general circuits

[20] O((DL)ω) where L is the
depth of the circuit, D is
the dimension parameter
of the matrix, and
ω >= 2.3727 is the
matrix multiplication
exponent

O(Smλ)k where k is a
constant, S is the size of
the input, m is the size of
the output, and λ is the
security parameter

PKI and a
common random
string

Ours O(n2S) where n is the
number of parties and S
is the size of the circuit

O(1λ) where λ is the
security parameter

Trusted Hardware

∗Ours is the only scheme secure against residual function attacks under standard security
models.

3.1 GNIOT for Non-interactivity and Covert Security

To achieve a protocol with a one-round online phase, our protocol relies on a
special Oblivious Transfer (OT) called Generalized Non-Interactive Oblivious
Transfer (GNIOT), proposed in [18], which makes use of the monotonic counter.
Traditional OT allows a sender to safely transfer one of potentially many pieces
of information to a recipient, but the sender cannot determine which piece was

NI-MPC with Trusted Hardware Against Residual Function Attacks 431

transferred. This idea was first proposed by Rabin in 1981 [32] for the two-party
case, but in the years following has been extended to support multiple parties,
and transferring more than one piece of information [7]. Traditional OT requires
two or more communication rounds, but GNIOT requires just one round for the
multiparty case.

Besides, with GNIOT, users are unable to receive more than one valid input
for each input wire, making it impossible for malicious users to publish messages
with fake inputs to others while locally evaluating the circuit with true inputs.

3.2 Justification of Using TPMs

TPMs have been underutilized when designing cryptographic protocols, due to
impressions that they are insecure, an undesirable assumption to make, or simply
too difficult to use [1]. TPMs have gained a reputation of being insecure, partially
due to notable security breaches of TPM 1.2 [15]. However, a new and patched
version (TMP 2.0) was released in 2015 with an updated specification that avoids
the shortcomings of its predecessor. In 2017, an attack was reported against TPM
2.0, but this attack was only successful against an improperly implemented code
library developed by Infineon, and did not exploit any underlying weakness in
the TPM 2.0 specification itself. There are no known threats against the TPM
2.0.

While standard algorithmic assumptions (DDH, LWE, etc.) are preferable,
since they do not impose hardware requirements, certain functionality cannot
be supported in the standard model without relying on secure hardware. We
argue it is worthwhile to make this assumption to support the computation of
many useful functions in certain settings, e.g., where a one-round online phase
is desirable, if there are no known alternatives. Some of the functionality that
cannot be supported without relying on secure hardware include: unconditional
and non-interactive secure computation for one-time programs against malicious
adversaries, interactive secure computation from stateless tokens based on one-
way UC-secure functions, and program obfuscation from stateless tokens against
malicious adversaries [17].

3.3 Definitions

Adversary Model. When considering weaknesses in our protocol, we consider
three types of adversarial behavior: a semi-honest adversary, covert adversary,
and fully malicious adversary. A semi-honest adversary will not deviate from
behavior prescribed by the protocol, though they may carry out local compu-
tation to attempt to gain information about other parties’ private inputs. The
semi-honest attacker model provides only weak guarantees of security (though
in some situations more realistic), but allows more efficient cooperation. Con-
versely, a fully malicious adversary may deviate from a protocol in any way, and
may attempt to carry out a wide range of malicious behavior. This behavior may
include gaining information about other parties’ private inputs, giving incorrect
information to other parties, or even preventing the completion of the protocol.

432 R. Karl et al.

A protocol robust against fully malicious adversaries provides a strong security
guarantee, but may be less efficient and more complex.

When discussing the security of our scheme, we use the covert adversary
model as described in [2] to model users. Under the covert adversary model,
while adversaries may behave in a fully malicious manner, they will refrain from
deviating from the protocol if such an action would probably be noticed by other
parties. In other words, a covert adversary will be only honest-but-curious unless
they are likely to be able to behave maliciously with only a small chance of being
detected.

Note that NI-MPC protocols cannot achieve active security against fully
malicious adversaries as a result of the non-interactivity. Because each party
sends all of their messages to the other parties in one round, if a malicious party
chooses to send malformed data to other parties, the honest parties will not
become aware of this until after they have sent their messages. In this way, the
adversary can recover all of the data needed to complete the protocol success-
fully while preventing others from having access to enough valid data needed to
complete the protocol. For our protocol, we thus find it most salient to consider
the case where the computing parties may be covert adversaries and a trusted
garbler is semi-honest. (If the trusted garbler is not semi-honest, then it becomes
impossible to guarantee the security or correctness of the protocol.)

Simulation Correctness and Security. We define correctness and security
as a simulation as is commonly done in the literature [6,12–14,16,31] so that
we can use simulation based proof techniques later in Sect. 6. Note that because
this is a protocol, and not an encryption scheme, techniques such as proving
IND-CCA or IND-CPA do not directly demonstrate the security of the entire
protocol.

Definition 1 (Correctness). An MPC scheme π for a class of functions F
is said to correctly compute F among players if, for any f ∈ F and for any set
of inputs X := (x1, · · · , xn) in the domain of f where the i-th player Pi controls
xi, all players receive f(X) from the scheme with a probability not less than
1 − negl(λ) for some negligible function negl(·) and the security parameter λ.

Definition 2 (Security). An MPC scheme π for a class of functions F is
said to be secure for F against covert adversary if, for any f ∈ F and for any
probabilistic polynomial time adversary A controlling a subset A of all players,
there exists a probabilistic polynomial-time simulator S such that for any set of
inputs X := (x1, · · · , xn) in the domain of f where the i-th player Pi controls xi,

{S(f(X), A, {xj | Pj ∈ A})}λ
c≡ {Viewρ

A(X)}λ

where
c≡ refers to computational indistinguishability, λ is the security parameter,

and Viewπ
A(X) represents the messages received by members of A during the

execution of protocol π and any cheating by a covert adversary can be detected
with significant probability.

NI-MPC with Trusted Hardware Against Residual Function Attacks 433

4 High-Level Description of Our Protocol

Figure 1 in Sect. 5 presents a formal description of the proposed protocol. We pro-
vide a high level description here. Our protocol relies on the monotonic counter
functionality, a secure functionality that stores a non-negative integer which can
only be read from or incremented [1]. With this, along with binding and sealing,
we can limit the user’s access to a public/private key pair stored on the trusted
hardware to a finite number of times, after which the ability of users to make
use of the keys to perform an action is revoked [25]. We also make use of the
remote attestation functionality implemented with the Attestation Identity Key
(AIK) in TPM. AIK is a special-purpose TPM-resident cryptographic key used
to provide platform authentication and verify that users have not performed
unauthorized changes to the software. By querying the TPM, we can certify
that the software currently running on the device is in the presence of a crypto-
graphic key that came from an identifiable piece of hardware that will function
correctly. In the event this certification fails, we can deny a malicious party’s
access. Note that such a functionality is available in Intel SGX as well.

We assume that the parties have access to trusted hardware which supports
a monotonic counter, and have agreed on the circuit to be evaluated C (we
will say the circuit has N input wires). We denote the number of parties as
n (we sometimes refer generally to party Pi for i ∈ [1, n). To participate in
our protocol, each party queries the on-board trusted hardware to generate a
public/private key pair (Kpi

, Ksi) stored in the secure memory that can only be
used Wi times where Wi will denote the number of input wires a party controls.
This behaviour can be enforced using the TPM by assigning an upper bound to
the cryptographic keys that depends on the monotonic counter.

Each time the keys are used, the monotonic counter is incremented, but after
the counter exceeds the assigned bound, users will no longer be able to use the
keys. To certify that these keys were generated correctly, each party certifies it
did not tamper with the key generation process by broadcasting a certification
using the TPM’s AIK of the public key. A semi-honest garbler also creates a
symmetric key R(i). After generating the garbled circuit, for each party Pi the
garbler encodes both of Pi’s possible inputs as wire labels (we work with Boolean
circuits, so these labels correspond to 0 or 1) for each wire w ∈ Wi and encrypts
using the symmetric key. Note that to an adversary, the wire labels appear to be
random strings whose length is proportional to the security parameter, so the
adversary cannot evaluate the garbled circuits without retrieving the correct keys
from the TPM. The garbler then proceeds to split the symmetric key R(i) into
Wi secret shares. Following this, each encoded input is paired with a secret share
of R(i) as a tuple, referred to as an intermediate ciphertext. This intermediate
ciphertext is encrypted using the public key Kpi

. Then each respective Pi’s
encrypted intermediate ciphertexts are then broadcast to them.

434 R. Karl et al.

Because the number of decryptions permitted using the public key is equal to
the number of input wires of the garbled circuit, due to the monotonic counter,
each party can only decrypt one possible input for each wire. This means that
no party can decrypt both encoded inputs corresponding to 0 and 1 for a wire
and perform the residual function attack described above, as this will use up a
decryption that they need to recover the input to one of the remaining input
wires. They can only decrypt one encoded input per wire or they will be unable to
complete the protocol. After decrypting the encrypted intermediate ciphertexts,
the parties can locally combine the secret shares to recover the symmetric key
R(i) that was used to encrypt the encoded inputs to the circuit and recover
the wire labels. Since the wire labels reveal nothing about a party’s choice of
input, they can be sent to the other parties, and be used by each party to locally
evaluate the circuit to receive the output.

Note that NI-MPC protocols cannot achieve active security against fully
malicious adversaries as a result of their non-interactivity as described above,
because all parties send all of the data the other parties need to complete the
protocol in one round simultaneously. The best that can be achieved is covert
security, which models the situation where malicious adversaries are willing to
cheat only if they are not caught. In our protocol, if an adversary sends mal-
formed data to another honest party, the honest party will be unable to finish
evaluating the circuit, but because all data sent can be traced back to the send-
ing party with significant probability. The honest party will know who acted
maliciously, and notify the other participating parties of the bad behaviour.

5 Our Protocol

Our protocol employs the following algorithms as building blocks: gen, enc pub,
enc sec, dec pub, dec sec, and garble. Any algorithms that have the described
input/output can be adopted.

– gen(λ) −→ R, Kp, Ks: this is an algorithm that takes the security parameter
λ as input and outputs a symmetric key R and a public/private key pair (Kp,
Ks). For example, RSA/ECC or AES key generation algorithms.

– enc pub(Kp,X) −→ PKKp(X): this is a public key encryption algorithm
that takes public key Kp and plaintext X as input and returns ciphertext
PKKp(X). For example, RSA or ECC encryption algorithms.

– enc sec(R, X) −→ SKR(X): this is a symmetric key encryption algorithm
that takes symmetric key R and plaintext X as input and returns ciphertext
SKR(X). For example, the AES encryption algorithm.

– dec pub(Ks ,PKKp
(X)) −→ X : this is a public key decryption algorithm

that takes private key Ks and ciphertext PKKp(X). For example, the RSA
or ECC decryption algorithms.

– dec sec(R,SKR(X)) −→ X : this is a decryption algorithm that takes sym-
metric key R and ciphertext SKR(X) as input and returns plaintext X . For
example, the AES decryption algorithm.

NI-MPC with Trusted Hardware Against Residual Function Attacks 435

– garble(C) −→ GC: this is a circuit garbling algorithm that takes as input a
circuit C and returns a garbled circuit GC. For example, a garbling algorithm
or related software tools (i.e. Frigate [30]) from the survey [24] may be used.

Our protocol is described in detail in Fig. 1. Note that in the preprocess-
ing phase, ordinarily our protocol would be vulnerable to the residual function
attack, as an adversary could hypothetically decrypt more than one ciphertext
pair (Cw,0, Cw,1) associated with an input wire to recover its associated symmet-
ric key and gain access to both wire labels. This would allow them to evaluate
the function repeatedly over both inputs while fixing the input of others, until
they learn the values inputted by other participants. However, because the num-
ber of decryptions of the ciphertexts Cw,0 or Cw,1 is limited with the monotonic
counter in the trusted hardware, if they attempt to perform more decryptions
than specified for the circuit, they will be unable to access enough shares of the
symmetric key to later recover R(i) and complete the protocol. As a result, the
residual function attack is blocked. Also, note that only steps 2 and 4 of the ini-
tialization phase and step 1 of the online phase require a communication round.
However, the communication in the initialization phase only needs to occur once
during setup. After this, communication only occurs during the online phase for
each iteration of the protocol.

6 Proofs

6.1 Proof of Correctness and Security

Simulation Correctness. Our protocol π correctly computes Boolean circuits
as defined in Definition 1.

Proof. We include this proof in the full version of the paper.

Simulation Security. Assuming |C| = O(log λ), all parties use the TPM as the
protocol describes, the public key and symmetric key encrypted ciphertexts sup-
ported by the TPM are indistinguishable, players properly perform attestation
with their keys, and the semi-honest, noncolluding garbler correctly garbles cir-
cuits, our protocol π securely computes Boolean circuits as defined in Definition 2.

Proof. We include this proof in the full version of the paper.

436 R. Karl et al.

Fig. 1. Our MPC protocol that evaluates a Boolean circuit among n players.

NI-MPC with Trusted Hardware Against Residual Function Attacks 437

7 Conclusions and Future Work

This paper demonstrates the first MPC scheme constructed with one commu-
nication round in the online phase that does not sacrifice security or privacy
and can be proven secure in the standard model. Previous protocols subject to
this one-round constraint in the standard model were vulnerable to the residual
function attack, where a party that receives a garbled circuit may repeatedly
evaluate the circuit locally while varying their own inputs and fixing the input
of others to learn the values entered by other participants. We overcome this
problem by building our protocol using a secure hardware primitive, specifically
a Trusted Platform Module (TPM), a mature cryptoprocessor technology. We
rigorously analyzed the communication and computational complexity of cur-
rent state of the art protocols which require two rounds of communication or
one-round during the online-phase with a reduced security requirement, and
demonstrated that our protocol is comparable to or outperforms their complex-
ity. Also, we provided rigorous proofs of correctness and security in the covert
adversary model for our protocol. We are actively developing an implementation
of the algorithms in our NI-MPC scheme with Microsoft’s TPM 2.0 Simula-
tor, and the MPIR, OpenSSL, and TPM.CPP libraries. Our code is available
at https://github.com/Ryan-Karl/one round mpc with tpm. We hope that this
further improves the viability of MPC as a practical solution for facilitating
private communication, especially in global environments.

References

1. Arthur, W., Challener, D.: A Practical Guide to TPM 2.0: Using the Trusted
Platform Module in the New Age of Security. Apress, New York (2015)

2. Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols
for realistic adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
137–156. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-
7 8

3. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In:
STOC, pp. 503–513. ACM (1990)

4. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-
Cherniavsky, A.: Non-interactive secure multiparty computation. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 387–404. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-44381-1 22

5. Ben-Efraim, A., Lindell, Y., Omri, E.: Optimizing semi-honest secure multiparty
computation for the internet. In: CCS, pp. 578–590. ACM (2016)

6. Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimizing
rounds, communication, and computation. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017. LNCS, vol. 10211, pp. 163–193. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56614-6 6

7. Brassard, G., Crepeau, C., Robert, J.-M.: All-or-nothing disclosure of secrets. In:
Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238. Springer, Hei-
delberg (1987). https://doi.org/10.1007/3-540-47721-7 17

https://github.com/Ryan-Karl/one_round_mpc_with_tpm
https://doi.org/10.1007/978-3-540-70936-7_8
https://doi.org/10.1007/978-3-540-70936-7_8
https://doi.org/10.1007/978-3-662-44381-1_22
https://doi.org/10.1007/978-3-319-56614-6_6
https://doi.org/10.1007/3-540-47721-7_17

438 R. Karl et al.

8. Cachin, C., Camenisch, J., Kilian, J., Müller, J.: One-round secure computation
and secure autonomous mobile agents. In: Montanari, U., Rolim, J.D.P., Welzl, E.
(eds.) ICALP 2000. LNCS, vol. 1853, pp. 512–523. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-45022-X 43

9. Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic
oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10402, pp. 33–65. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63715-0 2

10. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

11. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indis-
tinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
74–94. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 4

12. Garg, S., Miao, P., Srinivasan, A.: Two-round multiparty secure computation min-
imizing public key operations. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10993, pp. 273–301. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96878-0 10

13. Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear
maps. In: FOCS, pp. 588–599. IEEE (2017)

14. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8 16

15. Goodin: Ex-army man cracks popular security chip. The Register (2010). http://
theregister.co.uk/2010/02/17/infineon tpm crack/

16. Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness and guar-
antee of output delivery. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48000-7 4

17. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography
on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 308–326. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-11799-2 19

18. Gunupudi, V., Tate, S.R.: Generalized non-interactive oblivious transfer using
count-limited objects with applications to secure mobile agents. In: Tsudik, G.
(ed.) FC 2008. LNCS, vol. 5143, pp. 98–112. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85230-8 8

19. Halevi, S., Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Round-
optimal secure multi-party computation. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10992, pp. 488–520. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96881-0 17

20. Halevi, S., Ishai, Y., Jain, A., Komargodski, I., Sahai, A., Yogev, E.: Non-
interactive multiparty computation without correlated randomness. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 181–211. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70700-6 7

21. Halevi, S., Ishai, Y., Jain, A., Kushilevitz, E., Rabin, T.: Secure multiparty com-
putation with general interaction patterns. In: Proceedings ACM Conference on
Innovations in Theoretical Computer Science, pp. 157–168. ACM (2016)

https://doi.org/10.1007/3-540-45022-X_43
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-54242-8_4
https://doi.org/10.1007/978-3-319-96878-0_10
https://doi.org/10.1007/978-3-319-96878-0_10
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
http://theregister.co.uk/2010/02/17/infineon_tpm_crack/
http://theregister.co.uk/2010/02/17/infineon_tpm_crack/
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/978-3-540-85230-8_8
https://doi.org/10.1007/978-3-540-85230-8_8
https://doi.org/10.1007/978-3-319-96881-0_17
https://doi.org/10.1007/978-3-319-96881-0_17
https://doi.org/10.1007/978-3-319-70700-6_7

NI-MPC with Trusted Hardware Against Residual Function Attacks 439

22. Halevi, S., Ishai, Y., Kushilevitz, E., Rabin, T.: Best possible information-theoretic
MPC. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp.
255–281. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 10

23. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 8

24. Hastings, M., Hemenway, B., Noble, D., Zdancewic, S.: SoK: general purpose com-
pilers for secure multi-party computation. In: SoK: General Purpose Compilers for
Secure Multi-Party Computation. IEEE (2019)

25. Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Composable security in
the tamper-proof hardware model under minimal complexity. In: Hirt, M., Smith,
A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 367–399. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53641-4 15

26. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: USENIX Security, SEC 2011, p. 35. USENIX Association,
Berkeley (2011)

27. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 40

28. Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-
party computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 319–338. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 16

29. Lindell, Y., Smart, N.P., Soria-Vazquez, E.: More efficient constant-round multi-
party computation from BMR and SHE. In: Hirt, M., Smith, A. (eds.) TCC 2016.
LNCS, vol. 9985, pp. 554–581. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53641-4 21

30. Mood, B., Gupta, D., Carter, H., Butler, K., Traynor, P.: Frigate: a validated,
extensible, and efficient compiler and interpreter for secure computation. In: 2016
IEEE European Symposium on Security and Privacy (EuroS&P), pp. 112–127.
IEEE (2016)

31. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-
5 26

32. Rabin, M.: How to exchange secrets with oblivious transfer. Harvard University
Technical report (1981)

33. Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and efficient maliciously
secure two-party computation. In: CCS, pp. 21–37. ACM (2017)

34. Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In:
CCS, pp. 39–56. ACM (2017)

35. Yao, A.C.C.: How to generate and exchange secrets. In: FOCS, pp. 162–167. IEEE
(1986)

36. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 8

https://doi.org/10.1007/978-3-030-03810-6_10
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-662-53641-4_15
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-662-48000-7_16
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-46803-6_8

A Study of the Multiple Sign-in Feature
in Web Applications

Marwan Albahar1, Xing Gao2, Gaby Dagher1, Daiping Liu3, Fengwei Zhang4,5,
and Jidong Xiao1(B)

1 Boise State University, Boise, USA
jidongxiao@boisestate.edu

2 University of Memphis, Memphis, USA
3 Palo Alto Networks, Santa Clara, USA

4 SUSTech, Shenzhen, China
5 Wayne State University, Detroit, USA

Abstract. Nowadays, more and more web applications start to offer the
multiple sign-in feature, allowing users to sign into multiple accounts
simultaneously from the same browser. This feature significantly improves
user experience. Unfortunately, if such a feature is not designed and imple-
mented properly, it could lead to security, privacy, or usability issues. In
this paper, we perform the first comprehensive study of the multiple sign-
in feature among various web applications, including Google, Dropbox.
Our results show that the problem is quite worrisome. All analyzed prod-
ucts that provide the multiple sign-in feature either suffer from poten-
tial security/privacy threats or are sacrificing usability to some extent.
We present all issues found in these applications, and analyze the root
cause by identifying four different implementation models. Finally, based
on our analysis results, we design a client-side proof-of-concept solution,
called G-Remember, to mitigate these issues. Our experiments show that
G-Remember can successfully provide adequate context information for
web servers to recognize users’ intended accounts, and thus effectively
address the presented multiple sign-in threat.

Keywords: Web security · Multiple sign-in feature · Cookies

1 Introduction

Historically, most websites allowed users to access only one account at any given
time using the same browser. As a result, users who needed to access multiple
accounts (e.g., personal and business) at the same time from the same machine
had to either use different browsers, or use some browser extensions [4]. In the
past decade, the multiple sign-in feature was introduced as a solution to this
problem, which enables users to sign in simultaneously using multiple accounts
from the same browser. e.g., Google started offering this feature in 2010 [1]. Since
then, many other well-known web applications have started to offer this feature,
including Dropbox, Yahoo, Twitter, and Instagram.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 440–453, 2019.

https://doi.org/10.1007/978-3-030-37231-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_26&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_26

A Study of the Multiple Sign-in Feature in Web Applications 441

However, as of now, there is no standard that defines expected behaviour
for safe and secure multiple-account access, and how cookies should be shared
among multiple accounts. As a result, the design and implementation of this
feature varies from one web application to another. In this paper, we attempt
to fill this gap by analyzing how web applications differentiate among multiple
accounts connected from the same browser. To the best of our knowledge, this is
the first work that studies the design and implementation details of the multiple
sign-in feature in major web applications. One major finding of our study is that
most products provided by Google and Dropbox lack sufficient isolation and
are not able to differentiate among multiple accounts connected from the same
browser, which could lead to:

1. usability issues. When the user attempts to access some web resource (R) via
one account (A), which has the proper permission to access R, yet the web
server mistakenly thinks the user is using another account (B), which does
not have the proper permission to access R. The user’s access would therefore
be denied. This is a mistake, and could hurt user experience.

2. security and privacy issues. When the multiple sign-in feature is used in con-
junction with capability-based access control, the problem is exacerbated.
More specifically, when the capability-based access control is used, and the
server fails to differentiate among the user’s multiple accounts, the conse-
quence is, one account could interfere with another account. This includes
peeking into another account, gaining extra access to undisclosed information
belonging to another account, or even altering the contents in files belonging
to another account.

After analyzing corresponding web traffic (i.e., http requests and responses),
we have identified the root cause of why the web server is not able to differ-
entiate among the user’s multiple accounts. When the user clicks a URL to
access certain web resource, the web server oftentimes could not recognize the
user’s accounts because the context information (i.e., information about a spe-
cific account) included within the http request is inadequate. To address this
problem, we have implemented a client-side proof-of-concept solution to force
users to provide necessary context information such that the web server is able
to identify which account it is currently dealing with. With such a solution, the
aforementioned usability, security, and privacy issue would be solved.

1.1 Contribution

The contributions of this paper can be summarized as follows:

– We conduct the first systematic analysis of the design and implementation
of the multiple sign-in feature among different web applications. We identify
four different implementation models used by different web applications to
implement the multiple sign-in feature, and we discuss why they are, or are
not, able to differentiate among multiple accounts.

442 M. Albahar et al.

– For web applications that fail to differentiate among users’ multiple accounts,
we present what usability, security, and privacy problems could happen. We
also report our major findings with respect to Google and Dropbox applica-
tions. Specifically, for the first time, we define and report a problem that we
call it the cross-account information leakage problem.

– We implement a client side proof-of-concept solution, that includes a browser
extension, to help users provide context information for the web server. Our
experimental results show that our solution enables web servers to grant
clients access resources using the correct account, thus avoid the aforemen-
tioned usability, security, and privacy issues.

2 Background

2.1 Multiple Accounts

When multiple accounts are involved, cookies become more complicated. Some
cookies are shared among multiple accounts, while others are non-shared and
bound to a specific account. Take Google’s products as an example. Shared cook-
ies usually have the domain attribute as google.com and the path attribute as
“/”. By contrast, the domain attribute of a non-shared cookie is more specific
and typically includes more subdomain information. For instance, most cookies
related to Gmail accounts have the domain attribute of mail.google.com, and
their paths are longer, like /mail/u/0, /mail/u/1, /mail/u/2, etc. The num-
bers 0, 1, and 2 denote the login order of this account, with the first signed-in
Gmail account’s cookies having the path of /mail/u/0, the second one having
/mail/u/1, and so forth. As we will explain in Sect. 6, it is because Gmail uses
separate cookies and create separate URLs for different accounts that make it
possible to differentiate among a user’s multiple accounts connecting from the
same browser. Unfortunately, most other Google products do not have such a
separation. The consequence of this is Google fails to differentiate among users’
multiple accounts. The same problem also occurs in Dropbox.

2.2 Capability-Based Access Control: Sharing a File via a Link

Online storage service products such as Google Drive, Dropbox, Microsoft
Onedrive, typically support two classic access control mechanisms: access control
list (ACL) and capability-based access control. Both mechanisms provide secure
access controls, and to the best of our knowledge, there is no literature proving
that one is more secure than the other. However, in this work, we identify that,
when the multiple sign-in feature is used in conjunction with the capability-based
access control, security problems could happen.

More specifically, most problems we have identified happen when the user has
multiple accounts signed in and one file is shared via a link - whoever has the link
can access the file. This file could be stored in a Google drive, or in a Dropbox
folder. The link is the capability in the context of capability-based access control,

A Study of the Multiple Sign-in Feature in Web Applications 443

while in other situations, the capability could be a token, ticket, or a key [12],
which gives a subject an access to an object. To ensure such a capability is not
extended to a untrustworthy person, on the one hand, the owner should try
to keep the link privately and only share it with a trustworthy party; On the
other hand, service providers typically make such a capability hard to predict.
For example, a typical Google document URL includes a randomly generated
string of more than 40 characters, which makes such URLs almost unguessable
to a random person. As far as we know, there is no existing literature or reports
showing any evidence that such long URLs, when used in the context of HTTPS
(which is exactly what Google and Dropbox have adopted), can be exploited by
attackers. Furthermore, to the best of our knowledge, Google or Dropbox have
not, in any of their documents, told their users that such long URLs are insecure.
Therefore, it is reasonable and understandable for people to share files in such a
manner - whoever has the link can access the file. In the remaining part of this
paper, we assume all the file sharing situations we talk about refers to this type
of sharing. Also, in Google Drive, with such a sharing method, when an account
accesses a file shared by another account, the shared file would be automatically
saved in this destination account’s Google Drive.

In summary: our observation - web applications fail to differentiate among
users’ multiple accounts, plus the fact - when a shared file (shared via the above
method) is accessed by another account, the shared file will be automatically
saved in the other account’s online drive, could cause several security problems,
as described in the next section.

3 Threat Model

Overall, we consider the following three multiple sign-in scenarios where security
or privacy problems exhibit. All of them involves some type of information leak-
age. In the following, we use Google Drive as an example, and we will present
our findings in Dropbox in Sect. 5. We use Alice to denote the victim, use GP to
denote Alice’s personal Google account, and use GB to denote Alice’s business
Google account.

– Classic cross site request forgery (CSRF) attack. Considering an
attacker Bob, who knows the victim Alice’s personal email address GP, but
has no knowledge of Alice’s work email address GB. We also assume at work,
Alice shares that email address with several other co-workers - meaning they
all have access to GB’s Google Drive storage. Now let us say Bob has some
Alice’s sensitive (e.g., sexual) videos or pictures, and he wants to distribute
these videos or pictures to Alice’s co-workers, but he doesn’t know how to
get their contact information. To achieve his malicious goal, Bob could send
a link to Alice’s A1 account and share the videos or pictures with Alice. And
if Alice has both GP and GB account active running in the same browser,
and then she opens the link (from within its GP account’s inbox) - just as
every other CSRF attack instance, the victim needs to have its account active

444 M. Albahar et al.

and has to click on the link or access some web page which includes the link.
Unfortunately, Google thinks it’s GB attempting to open the link

– In Sect. 4, we will explain why and when Google would think this way. Thus,
the moment Alice opens the videos or the pictures, the videos and/or pictures
will be automatically saved in GB’s drive. As we just mentioned, GB is a
shared email address for work. Therefore, on a different day, Alice’s co-worker
Eva, or any other co-workers, signs in to GB from a different computer or
device, would be still able to view those videos and pictures. This describes
a classic CSRF attack scenario.
This same attack could also be performed so as to help attackers to spread
malicious programs or virus, or ransomware, which might require more social
engineering tricks. Note that even if Bob is not a bad actor - for example, Bob
is Alice’s friend, and is just sharing some private files between two friends,
the fact that Alice’s private information being automatically saved in her
business account Google Drive, is still a problem. In the following, we call
this the cross-account information leakage problem.

– Information leakage from one user’s account to another user’s
account. Alice signs her personal Google account from a public or shared
device, on which Bob already has one of his accounts signed in from the
same browser. This case frequently occurs in public devices, like a desktop
in a public library. It could also happen in a professional talk or conference
presentation, where the speaker oftentimes has to login his/her account in
other people’s laptops (e.g., laptops provided by the conference organizer
or the session chair) so as to get presentation materials from his/her email
box or some online drive space. Note that in this scenario, Bob has no bad
or malicious intentions, yet the cross-account information leakage problem
could unexpectedly expose Alice’s sensitive information or data to Bob. In
the example of Google drive, once Alice visits her Google drive documents,
Alice’s documents could be automatically saved in Bob’s Google drive folder
without Alice’s knowledge.

– User’s one account is hacked, while other accounts are NOT hacked.
User Alice signs multiple personal accounts, and one of which was hacked by
the attacker Bob (e.g., the account and password are leaked). In recent years,
credential leaking has been not rare: a dark web leaks 1.4 billion leaked pass-
words in 2017 [2]; twitter exposes the passwords of 330 million users in plain
text [5]; and 272 million email username/password combinations are possessed
by hackers in 2016 [3]. We assume the victim Alice sets different passwords for
her different accounts, as this is a very basic security practice. Thus, except
for the compromised account, Bob should not be able to directly obtain infor-
mation from Alice’s other accounts. Yet, once again, in the example of Google
drive, once Alice accesses her data on Google drive, her data could be auto-
matically saved in that compromised account’s Google drive folder, which is
under Bob’s control.

A Study of the Multiple Sign-in Feature in Web Applications 445

4 Google Multiple Accounts

Our study shows most Google products fail to differentiate among multiple
accounts, although Gmail is an exception. In this section, we specifically use
Google Drive as a case study.

Google Drive. Google Drive provides a file synchronization and storage service
which empowers users to share and synchronize files across different devices. It
also allows file sharing across different users. When sharing files with others,
for each file, the owner can set the permission, indicating whether other users
can view or edit the file. The owner can then send a link of the file to other
people, and a common sharing scenario is whoever has the link can access the
file. The problem happens when the receiver has more than one account active
in the same browser, and he/she intends to use one of his/her accounts to click
the link and open the file. Since such link usually does not contain any context
information, Google is unable to decide the intended account, and thus opens
the file with some account at its choice (i.e., the Google-chosen account) - as
opposed to the user’s (i.e., the user-chosen account) choice.

Determine the Google-Chosen Account. To determine which account
would be the Google-chosen account, we further conduct experiments to under-
stand the implicit policy used by the Google server side. We first register three
regular Google accounts with the gmail.com domain. We also have three Gmail
education (formerly known as G Suite for Education) accounts with the .edu
domain. We use one regular account (denoted as Gs) and one .edu account
(denoted as Es) to share the file. Other accounts are signed in on the receiv-
ing end from the same browser, denoted as G1, G2, E1, and E2, respectively.
We use different accounts to share the file, and change the sign-in sequence
of testing accounts, to understand the policy for the default account (i.e., the
Google-chosen account). The results are listed in Table 1.

We first share the file using the regular account Gs. We change the log-in
sequence of other two regular accounts G1, G2, and find that the first log-in
account is always used to open the file (acting as the Google-chosen account).
This is also the same case when we sign in two .edu accounts, E1 and E2: the first
log-in account is the Google-chosen account. However, if we sign in one regular
account and one .edu account, the regular account with .gmail.com domain will
always be the Google-chosen account. Changing the log-in sequence will not affect
the Google-chosen account here.

We then share the file using an .edu account Es, and repeat the experiments.
In this case, the first log-in account will always be the Google-chosen account,
even if two different types of accounts are signed in (e.g., E1 and G1). The
policy is implemented on the Google server side, thus obscure to users. From
our experiments, we find that this policy depends on the log-in sequence and
types of accounts.

Security Implications. As can be seen from our experimental results in
Table 1, among the 16 sharing experiments, in 50% of the experiments, the

446 M. Albahar et al.

Table 1. Experiments on Google Drive to determining the Google-chosen accounts

File sharing Log-in sequence Google-chosen account

From User-chosen account First Second

Gs G1 G1 G2 G1

Gs G2 G1 G2 G1

Gs G1 G2 G1 G2

Gs G2 G2 G1 G2

Gs E1 E1 E2 E1

Gs E2 E1 E2 E1

Gs E1 E2 E1 E2

Gs E2 E2 E1 E2

Gs G1 G1 E1 G1

Gs E1 G1 E1 G1

Gs G1 E1 G1 G1

Gs E1 E1 G1 G1

Es G1 G1 E1 G1

Es E1 G1 E1 G1

Es G1 E1 G1 E1

Es E1 E1 G1 E1

Google-chosen account is not the user-chosen account. Meaning Google wrongly
chose an account that is not what the user intended, and this could lead to secu-
rity or privacy problems. Once the shared document is opened by the Google-
chosen account, this document will be recorded in that account’s history. Even
if this Google-chosen account is later on signed in from another device, the file is
still accessible to the account. The user with control of the Google-chosen account
can then get the information, or even tamper the file if this file is shared with
write permission. In particular, suppose Eva shares a file by sending Alice’s edu-
cation account with a sharable link. The file is accessible by anyone who knows
the link, but the link is kept privately by Eva. In this case, without knowing
the link, other users are still unable to read or write the file. However, Bob suc-
cessfully signs his Gmail account in the Alice’s machine through the third cases
mentioned in the threat model (Sect. 3). As mentioned before, the regular Gmail
account with the gmail.com domain will become the Google-chosen account. As
a result, when Alice clicks the link, Bob will get the access of the target file.
In other words, the multiple sign-in feature, when used in conjunction with the
capability-based access control, could cause a file to be shared to an user against
the recipient’s will and without the recipient’s knowledge.

A Study of the Multiple Sign-in Feature in Web Applications 447

Table 2. Experiments on Dropbox file sharing to determining the Dropbox-chosen
accounts

File sharing Log-in sequence Sharing manner Dropbox-chosen
account

User-chosen
account

First Second

DB DB DP link, view file DB

DP DB DP link, view file DB

DB DB DP invite people, view folder DB

DP DB DP invite people, view folder DP

DB DB DP invite people, view file DB

DP DB DP invite people, view file DP

DB DP DB invite people, view folder DB

DP DP DB invite people, view folder DP

DB DP DB invite people, view file DB

DP DP DB invite people, view file DP

DB DB DP invite people, request file DP

DP DB DP invite people, request file DP

DB DB DP link, request file DP

DP DB DP link, request file DP

DB DP DB invite people, request file DP

DP DP DB invite people, request file DP

DB DP DB invite people, request file DP

DP DP DB invite people, request file DP

5 Dropbox Multiple Accounts

5.1 How Dropbox Multiple Accounts Works

Dropbox is mainly for online storage sharing. Dropbox allows users to have a
personal account and a business account; users can have both accounts active
in the same browser. Users can access their person account by visiting the URL
https://www.dropbox.com/personal and access their business account by visit-
ing the URL https://www.dropbox.com/work.

Dropbox uses a cookie called “Last active role” to record the last active
account, which could be the personal account, or the business account. For exam-
ple, when both pages are open, if the user refreshes the personal account page,
the personal account will be considered as the last active account; if the user
then refreshes the business account page, the business account will become the
last active account.

https://www.dropbox.com/personal
https://www.dropbox.com/work

448 M. Albahar et al.

5.2 Main Problem

The main problem of Dropbox occurs when resource sharing is happening. At
the time of this study, Dropbox supports three types of resource sharing: regular
file, paper, showcase. We perform various experiments to measure each of these
three services, and we find several issues. Since both Dropbox and Google Drive
are storage sharing products, most problems we identify in Dropbox are similar
to those problems in Google Drive. They exhibit in a similar manner: i.e., there
is a mismatch between the user-chosen account and the server-chosen account.
In the following, we use the term “Dropbox-chosen account” to represent this
server-chosen account. We also define the “user-chosen account” in the Dropbox
context as follows: in order to use Dropbox, users need to register an account
with their email address. Thus, each Dropbox account is essentially bound with
an email address. Therefore, the “user-chosen account” in the Dropbox context is
similar to the Google Drive situation - the resource recipient opens the resource
from within its email box. We conduct different experiments to determine the
Dropbox-chosen account. In the following, we use D1 to denote the business
account, and D2 to denote the personal account.

Dropbox File. Similar to Google drive, Dropbox allows users to share files in
different ways. The owner can generate a link and send the link to the recipient
over either an email or an instant message. The owner can also select “invite
people”, which will automatically constructs an email to notify the recipient.
Users can either share a single file, or a folder containing multiple files. We also
notice there is a feature called “request file”, which allows a user to request a
file from another user. We test all of these scenarios and record our results in
Table 2. As illustrated in the table, it can be seen that in nearly 30% of situations
the Dropbox-chosen account does not match with the user-chosen account.

Dropbox Paper. Dropbox paper is a paper collaboration service, which allows
multiple people to edit the same paper simultaneously. Dropbox paper allows
users to send an invitation to collaborators, and the owner can specify whether
the recipient should have the edit permission or just the comment permission.
We test both of these two scenarios and record our results in Table 3. As can be
seen from Table 3, when sharing a paper with someone who has two accounts
alive from the same browser, no matter which account is the paper shared to,
the personal account will always be used to access to the paper.

We also notice another interesting and surprising issue with the Dropbox
paper feature. When a paper is shared with a business account in the comment
mode only, if the business account is active with a personal account from the
same browser, the personal account will get the permission of both commenting
and editing.

Dropbox Showcase. Dropbox showcase is a service that allows users to share
a project to other people on a single page. Similarly, Dropbox showcase allows

A Study of the Multiple Sign-in Feature in Web Applications 449

Table 3. Dropbox paper sharing

File sharing Log-in sequence Sharing manner Dropbox-chosen
account

User-chosen
account

First Second

DB DB DP invite people, edit DP

DP DB DP invite people, edit DP

DB DB DP invite people, comment DP

DP DB DP invite people, comment DP

DB DP DB invite people, edit DP

DP DP DB invite people, edit DP

DB DP DB invite people, comment DP

DP DP DB invite people, comment DP

Table 4. Dropbox showcase sharing

File sharing Log-in sequence Sharing manner Dropbox-chosen account

User-chosen account First Second

DB DB DP invite people DB

DP DB DP invite people DB

DB DB DP link DB

DP DB DP link DB

DB DP DB invite people DB

DP DP DB invite people DB

DB DP DB link DB

DP DP DB link DB

users to either send an invitation to other people, or send a link to other people.
For both cases, the recipient can make comments about the shared project. We
test both scenarios and record our results in Table 4.

The main insights we gain from this set of experiment is, when we share a
showcase with someone who has two accounts (one business and one personal
account) alive from the same browser, the Dropbox-chosen account is always the
last active account. In other words, when the recipient opens the showcase, the
last active account will always be used to open the showcase - and when we were
performing the experiments for Table 4, the last active account was the business
account.

Privacy Implications. For all the three main services Dropbox provides, as we
can see, there is always a decent chance (30% to 50%) that the Dropbox-chosen
account is not the user-chosen account. This could lead to some privacy leakage
issue. Next we will describe an example in which this privacy leakage issue could

450 M. Albahar et al.

hurt Dropbox users. Let us suppose user Bob wants to share a business file with
his co-worker Alice. Bob creates a link, and sends this link to Alice via email.
Alice has two Dropbox accounts signed in the same browser. The link goes to her
business account email box, and she tries to open it, but Dropbox does not know
it is opened from her business account email box. So a Dropbox-chosen account
will be used, which at this moment could happen to be her personal account. So
the file will be opened from her personal account, and she does not realize this.
After viewing the file, she writes a comment about this file - and this comment
will be visible to everybody in the business group - meaning that everybody
would see Alice’s personal account and its profile picture. This could lead to two
problems. First, Alice would be embarrassed if her personal profile picture is
an inappropriate picture. Second, Alice might be violating the company’s policy
and be punished for using her personal account to access business resources. Yet
in her defense, she does not expect any of her personal account’s information
to be exposed to her colleagues or business partners, and she does not have
any intention to access business resources with her personal account. The whole
procedure happens without her knowledge.

6 Defense

The root cause of all the problems we have identified in the multiple sign-in
process is due to the shortcomings in current cookies mechanism. When a shared
link is opened in a browser where multiple accounts have signed-in, there is
insufficient context information in the cookies about the accounts. Specifically,
if the link is clicked inside one account (e.g., Gmail), the server side has to
open the default account (e.g. Google-chosen or Dropbox-chosen) because the
current cookie mechanism lacks the account information. This could be solved by
enhancing servers with new cookies containing accounts information. However,
if a link is clicked outside web browsers, the browsers will not be able to know
which account should be used to open this link. For instance, a user simply
copies and pastes a Google Drive link to the browser’s address bar. In this case,
the server side has no idea on which account is the “correct” account. Therefore,
it would open the link with a default account, which might not be the user’s
intended account. As a result, we argue that this account selection procedure
must be in some way explicitly delegated to users.

6.1 Server Side Defense

Ideally, such a delegation mechanism should be implemented by the service
providers, i.e., Google, Dropbox, etc. We have reported the issues we found
to Google. After reading our report, the corresponding security team at Google
told us that our finding is surprising, but instead of fixing the security issues,
they stressed that the capability-based access control should not be used to
share a document if the document is very confidential. We do not agree with
Google, as no existing research or literature has shown that the capability-based

A Study of the Multiple Sign-in Feature in Web Applications 451

Fig. 1. A snapshot of G-Remember.

access control is less secure than the ACL based access control. As we have
stated before, the security issues do not manifest just because of the capability-
based access control, they arise when both the multiple sign-in feature and the
capability-based access control are used.

6.2 Client Side Defense

Since the server side is out of our control, we consider to demonstrate that the
issue could also be mitigated from the client side, even though that is not ideal.
We propose a proof-of-concept solution for Google products by allowing end-
users to make the decision on which account should further proceed upon open-
ing links without context information. We call our solution G-Remember, which
is a browser extension, and is implemented with JavaScripts+HTML+JSON. G-
Remember collects all accounts’ information, intercepts URLs, and reproduces
the link sent to remote server by adding some user input (account choice). As a
result, G-Remember enables the user to choose the appropriate account. Specif-
ically, G-Remember consists of four parts.

– First, G-Remember collects the account information by recording a unique
identifier (e.g., session index), the profile picture, as well as the email address.
The unique identifier works as a trusted parameter for verifying accounts’
identities. The email address and the profile picture will be presented to the
user for account selection. All of these pieces of information are automatically
collected while the user signs in.

– When a link is opened, G-Remember intercepts the HTTP request, extracts
and analyzes the URL information to determine the target service and prod-
uct. This function is accomplished by keyword and structure matching.

– After figuring out the target product, G-Remember will display a customized
web page with all of the accounts’ details (e.g., picture and email address
from step one) included, and ask the user to select one account to proceed.

452 M. Albahar et al.

– Finally, after the user’s selection, G-Remember inserts the unique identifier in
the correct place in the URL, and sends corresponding request to the remote
server. Figure 1 shows a snapshot of G-Remember using our tested emails.

Our experimental results show that G-Remember enables web clients to send
context information to the Google web server, and the Google server is therefore
able to recognize the intended account. During our experiments, we consistently
observe that the Google-chosen account matches with the user-chosen account.
As a proof-of-concept solution, G-Remember supports Google products only, but
it is trivial to extend its support for other companies such as Dropbox’s products.

7 Related Work

To the best of our knowledge, we are the first to study cookie issues in the
context of multiple accounts. Our work is related to web security, especially
cookies related security issues.

Cookies enable web servers to store the states of clients, and thus they are
widely used by first-party and third-party websites [14]. Previous large-scale
measurements [8,11] found that cookies in practice are much more sophisti-
cated than the standard. Ill-managed cookies could be exploited by attackers to
obtain private data or track users. As a result, cookies have attracted numerous
attention. Sivakorn et al. [16] presented a comprehensive study on the HTTP
cookie hijacking attack. They showed that such attacks not only disclose private
and sensitive information, but also can gain access to protected account func-
tionality. Historiographer [9] demonstrates that the web search history of Google
users could be reconstructed from the personalized suggestions. Englehardt et al.
[10] showed that third-party cookies could be used as unique identifiers to track
users even with different IP addresses. Even worse, cookies are prone to be
leaked due to cross-site scripting (XSS) attacks [15]. To mitigate the risk of
client side scripts accessing cookies, HTTP-only cookies are introduced. Unfortu-
nately, Zhou et al. [17] demonstrated that such a mechanism cannot completely
eliminate XSS vulnerabilities. Cookies are also widely used as fingerprinting
to track users [6,7]. Mendoza et al. [13] studied the inconsistencies between
mobile and desktop HTTP security response, and showed that the inconsisten-
cies on the same website can cause various vulnerabilities. Our work also studies
the fragility in existing cookies design. However, we focus on the scenarios of
multiple-accounts, which have not been studied in previous work.

8 Conclusion

In this paper we study the multiple sign-in feature in several web applications,
including Google, Dropbox, Yahoo and Postman. We identify four different mod-
els used by web applications to implement the multiple sign-in feature, and report
various security, privacy, and usability concerns regarding its implementation in
Google and Dropbox applications. We investigate the root cause and present

A Study of the Multiple Sign-in Feature in Web Applications 453

a proof-of-concept client solution to alleviate these concerns. Until the service
providers fix the problems on the server side, we recommend users to be cautious
when using those web services that provide the multiple sign-in feature.

References

1. Access two gmail accounts at once in the same browser. https://gmail.googleblog.
com/2010/08/access-two-gmail-accounts-at-once-in.html

2. File with 1.4 billion hacked and leaked passwords found on the dark web. https://
www.forbes.com/sites/leemathews/2017/12/11/billion-hacked-passwords-dark-
web/#1d2ef9ec21f2

3. Hold security recovers 272 million stolen credentials from a collector. https://
holdsecurity.com/news/the collector breach/

4. Sessionbox. https://sessionbox.io/discover
5. Twitter advising all 330 million users to change passwords after bug exposed them

in plain text. https://www.theverge.com/2018/5/3/17316684/twitter-password-
bug-security-flaw-exposed-change-now

6. Acar, G., Eubank, C., Englehardt, S., Juarez, M., Narayanan, A., Diaz, C.: The
web never forgets: persistent tracking mechanisms in the wild. In: Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security,
pp. 674–689. ACM (2014)

7. Acar, G., et al.: FPDetective: dusting the web for fingerprinters. In: Proceedings of
the 2013 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1129–1140. ACM (2013)

8. Cahn, A., Alfeld, S., Barford, P., Muthukrishnan, S.: An empirical study of web
cookies. In: Proceedings of the 25th International Conference on World Wide
Web, pp. 891–901. International World Wide Web Conferences Steering Committee
(2016)

9. Castelluccia, C., De Cristofaro, E., Perito, D.: Private Information disclosure from
web searches. In: Atallah, M.J., Hopper, N.J. (eds.) PETS 2010. LNCS, vol. 6205,
pp. 38–55. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14527-
8 3

10. Englehardt, S., et al.: Cookies that give you away: the surveillance implications of
web tracking. In: Proceedings of the 24th International Conference on World Wide
Web (WWW) (2015)

11. Gonzalez, R., et al.: The cookie recipe: untangling the use of cookies in the wild.
In: 2017 IEEE Network Traffic Measurement and Analysis Conference (2017)

12. Levy, H.M.: Capability-Based Computer Systems. Digital Press, Bedford (2014)
13. Mendoza, A., Chinprutthiwong, P., Gu, G.: Uncovering HTTP header inconsisten-

cies and the impact on desktop/mobile websites. In: Proceedings of the 2018 World
Wide Web Conference on World Wide Web (WWW) (2018)

14. Roesner, F., Kohno, T., Wetherall, D.: Detecting and defending against third-party
tracking on the web. In: Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation (NSDI) (2012)

15. Singh, K., Moshchuk, A., Wang, H.J., Lee, W.: On the incoherencies in web browser
access control policies. In: 2010 IEEE Symposium on Security and Privacy (SP)
(2010)

16. Sivakorn, S., Polakis, J., Keromytis. A.D.: Cookie hijacking in the wild: security
and privacy implications. BlackHat (2016)

17. Zhou, Y., Evans, D.: Why aren’t http-only cookies more widely deployed. In: Pro-
ceedings of 4th Web 2.0 Security and Privacy (2010)

https://gmail.googleblog.com/2010/08/access-two-gmail-accounts-at-once-in.html
https://gmail.googleblog.com/2010/08/access-two-gmail-accounts-at-once-in.html
https://www.forbes.com/sites/leemathews/2017/12/11/billion-hacked-passwords-dark-web/#1d2ef9ec21f2
https://www.forbes.com/sites/leemathews/2017/12/11/billion-hacked-passwords-dark-web/#1d2ef9ec21f2
https://www.forbes.com/sites/leemathews/2017/12/11/billion-hacked-passwords-dark-web/#1d2ef9ec21f2
https://holdsecurity.com/news/the_collector_breach/
https://holdsecurity.com/news/the_collector_breach/
https://sessionbox.io/discover
https://www.theverge.com/2018/5/3/17316684/twitter-password-bug-security-flaw-exposed-change-now
https://www.theverge.com/2018/5/3/17316684/twitter-password-bug-security-flaw-exposed-change-now
https://doi.org/10.1007/978-3-642-14527-8_3
https://doi.org/10.1007/978-3-642-14527-8_3

Authenticated LSM Trees
with Minimal Trust

Yuzhe Tang(B), Kai Li, and Ju Chen

Syracuse University, New York, USA
ytang100@syr.edu

Abstract. In the age of user-generated contents, the workloads imposed
on information-security infrastructures become increasingly write inten-
sive. However, existing security protocols, specifically authenticated
data structures (ADSs), are historically designed based on update-in-
place data structures and incur overhead when serving write-intensive
workloads.

In this work, we present LPAD (Log-structured Persistent Authenti-
cated Directory), a new ADS protocol designed uniquely based on the
log-structure merge trees (LSM trees) which recently gain popularity
in the design of modern storage systems. On the write path, LPAD
supports streaming, non-interactive updates with constant proof from
trusted data owners. On the read path, LPAD supports point queries
over the dynamic dataset with a polynomial proof. The key to enable this
efficiency is a verifiable reorganization operation, called verifiable merge,
in LPAD. Verifiable merge is secured by the execution in an enclave of
trusted execution environments (TEE). To minimize the trusted com-
puting base (TCB), LPAD places the code related to verifiable merge in
enclave, and nothing else. Our implementation of LPAD on Google Lev-
elDB codebase and on Intel SGX shows that the TCB is reduced by 20
times: The enclave size of LPAD is one thousand code lines out of more
than twenty thousands code lines of a vanilla LevelDB. Under the YCSB
workloads, LPAD improves the performance by an order of magnitude
comparing with existing ADSs.

Keywords: Storage security · Query authentication · Key-value
stores · LSM trees · TEE

1 Introduction

In the age of cloud computing, outsourcing data storage to the cloud is a common
practice (e.g., Dropbox [6], Google drive [9], etc). When using the cloud storage
to host security-critical infrastructures (e.g., Bitcoin like cryptocurrencies [2,3,
7,18], Google’s certificate transparency schemes [4,5,38], etc.), the lack of trust
to the public clouds is real and becomes increasingly pressing, in the presence of
the constant cloud-security incidents. It calls for security hardening of untrusted

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 454–471, 2019.

https://doi.org/10.1007/978-3-030-37231-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_27&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_27

Authenticated LSM Trees with Minimal Trust 455

cloud storage. In particular, the authenticity of data storage is a fundamental
security property critical to many information-security applications. To protect
the data authenticity, a common approach is to instantiate an authenticated
data structure (ADS) protocol with an untrusted cloud provider and trusted
clients.

Many emerging security applications feature a write-intensive workload. For
instance, in cryptocurrency, transactions are constantly generated. A public key
directory (for certificate transparency) features an intensive stream of certificate-
registration and revocation requests. To serve the write-intensive workload with
data authenticity, existing ADS protocols present an ill-suited solution. Because
most existing ADS protocols [30,34,36,40–43,49,52–54] are designed based on
update-in-place data structures, which incur multiple rounds of communications
for serving an update (i.e., interactive update), incurring high overhead in write-
intensive workloads.

In this work, we propose LPAD,1 an authenticated data structure designed
uniquely based on the log-structured merge tree (LSM tree) [39]. An LSM tree
is an external-memory data structure that optimizes the write performance
and is widely adopted in many modern storage systems such as Google Lev-
elDB [11]/Big-table [27], Apache HBase [12], Apache Cassandra [10], etc. With
the LSM tree’s append-only write design, the LPAD supports streaming, non-
interactive data updates from cloud clients. To support verifiable merge opera-
tion in an LSM tree, we assume a trusted third-party (TTP) in formulating the
LPAD protocol. We believe this assumption is necessary, otherwise the proto-
col construction will require expensive protocols such as verifiable computations
(VC) [22,23,45] – the state-of-the-art VC systems [25,44,46,50] cause multiple
orders of magnitude performance slowdown comparing to an unsecured system
(without VC).

This work aims at building a real LPAD system with minimal third-party
trust. We propose to build the LPAD system by leveraging Intel SGX [15] which
supports a trusted “enclave” on an otherwise untrusted platform. The proposed
system design runs minimal functions inside SGX enclave, that is, the merge
operation and timestamp management. Other than this, majority of the codebase
of an LSM data store runs outside the enclave. By this means, it is promising
to minimize the trusted computing base (TCB) in the enclave, which renders
the system amenable to formal program verification. To authenticate the data
storage outside the enclave, we design a digest structure that is aligned well
with the LSM tree. The LPAD digest structure is implemented by co-locating
the digests (Merkle trees [33]) with the data index, which is promising to save
disk seeks when retrieving the query proof.

We evaluate our LPAD protocol and systems in terms of (1) security, (2)
minimal TCB and (3) performance overhead. We analyze the protocol secu-
rity by reducing the query authenticity to the hardness of finding collision in
cryptographic hashes. We build a functional LPAD system based on Google Lev-

1 LPAD stands for Log-structured Persistent Authenticated Dictionary which follows
the naming of a common ADS protocol, PAD [20,32].

456 Y. Tang et al.

elDB [11] and SGX SDK. In our LPAD implementation, the TCB size, namely
the lines of code running in enclave, is reduced to 4.4% of the entire codebase. We
evaluate the performance of our LPAD prototype extensively: Under the common
YCSB workloads that are write intensive, LPAD improves the performance by
an order of magnitude comparing existing update-in-place ADS.

In summary, the contributions of this work are:

New ADS protocol: This work addresses the authenticated storage of data
updates in emerging security scenarios. We identify the performance problem
of all existing ADS protocols: The update-in-place data structures existing
ADSs rely on cause significant performance slowdown on the write path. To
the best of our knowledge, we are the first to propose a log-structured ADS
protocol, named LPAD, that allows for non-interactive updates from clients.
New system design: We materialize LPAD with a functional system built
on Google LevelDB and Intel SGX. The system design of LPAD reduces the
TCB size in enclave. This is done by placing only the computation-oriented
code routine inside the enclave. The system design of LPAD also collocates
the digests with data, saving data-retrieve overhead.

2 Preliminaries

This section presents the preliminaries of related techniques to this work.

2.1 LSM Trees and Write-Intensive Workloads

A log-structured merge tree (LSM) is designed to be a middle ground between
classic B+tree like data structures that are read-optimized and the temporal
log structures that are write-optimized. An LSM tree only causes sequential IO
for writes, thus preserving write locality similarly to the pure log-structured
storage. It avoids the full-disk scan per read by decomposing the storage into
several sorted runs, each of which can be indexed and randomly accessed in
sublinear time.

Target Workloads: The targeted workload of LSM tree is write-intensive work-
loads which become popular in serving user-generated contents in modern appli-
cations. The target workloads feature (1) an intensive stream of updates on indi-
vidual data records and (2) data reads that result in random data accesses. In
addition, (3) our workloads are issued from security-sensitive scenarios where the
data integrity, membership and freshness needs to be guaranteed. Such applica-
tion scenarios include Bitcoin-alike cryptocurrencies, data-transparency schemes,
etc.

2.2 Authenticated Data Structures

An authenticated data structure (ADS) is a protocol that allows a data owner
to outsource the data storage to a third-party host which will be queried later by

Authenticated LSM Trees with Minimal Trust 457

data users. In a public-key setting, the data owner holding the secret key can ini-
tially sign and later update the dataset, and the user trusting the owner’s public
key can verify the query result (assuming an external PKI). An ADS protocol
can be thought of as an extended digital signature scheme where the message is a
dataset and new algorithms are added to support data-read/write queries. While
there is recent ADS research [43,49,54] to support expressive queries and various
data structures, in this work we consider the most foundational form of ADS,
that is, an authenticated dictionary supporting set-membership queries [20].

Existing ADS constructions [34,48] are mainly based on update-in-place data
structures. In the case of a Merkle tree, for instance, an update-in-place ADS
requires the data owner (keeping a simple digest/signature) to issue read query
first, modify the Merkle authentication proof, and then generate a new signa-
ture before writing it to the host. Variants of update-in-place ADSes are pro-
posed, such as replicated ADSes [34,54] and cached ADSes [31]; they improve
the update efficiency at the expense of a larger owner state. Update-in-place
ADS constructions have been used to implement system prototypes, such as
consistency-verified storage [35] and authenticated databases [34].

2.3 Intel Software Guard eXtension (SGX)

Intel SGX is a security-oriented x86-64 ISA extension on the Intel Skylake CPU,
released in 2016. SGX provides a “security-isolated world” for trustworthy pro-
gram execution on an otherwise untrusted hardware platform. At the hardware
level, the SGX secure world includes a tamper-proof SGX CPU which automat-
ically encrypts memory pages (in the so-called enclave region) upon cache-line
write-back. Instructions executed outside the SGX secure world that attempt
to read/write enclave pages only get to see the ciphertext and cannot succeed.
SGX’s trusted software includes only unprivileged program and excludes any OS
kernel code, by explicitly prohibiting system services (e.g., system calls) inside
an enclave.

To use the technology, a client initializes an enclave by uploading the in-
enclave program and uses SGX’s seal and attestation mechanism [21] to verify the
correct setup of the execution environment (e.g., by a digest of enclave memory
content). During the program execution, the enclave is entered and exited proac-
tively (by SGX instructions, e.g., EENTER and EEXIT) or passively (by interrupts
or traps). These world-switch events trigger the context saving/loading in both
hardware and software levels. Comparing with prior TEE solutions [1,14,17,19],
SGX uniquely support multi-core concurrent execution, dynamic paging, and
interrupted execution.

3 System Overview and Motivation

In this section, we present the system architecture in terms of target applications
and trust model. We also present our motivating observation, that is, placing
existing update-in-place ADS construction over log-structured storage results in
inefficiency.

458 Y. Tang et al.

3.1 System Model and Security Goals

We consider the common cloud-storage scenario that cloud customers outsource
their data storage to a third-party cloud platform. The cloud instance runs
over an SGX machine and exposes an enclave to the customer. The server runs
application and storage services. It persists data to its storage media through a
key-value store. In this work, we consider the LSM tree based key-value stores
exposing a standard Put/Get interface (will be elaborated soon). The use of
LSM-based key-value store allows the system to ingest an intense stream of data
writes, featured in our target applications.

Fig. 1. System trust model: The box with solid lines (in green) means the trusted
domain including the enclave and owners. The box with dotted lines (in red) means
the untrusted host domain. (Color figure online)

The enclave is trusted by the cloud customer and we assume the standard
techniques to establish such trust (e.g., software attestation mechanism [21] and
key-exchange protocols [33]). The communication channel between the customer
and the server enclave is thus secured by standard TLS protocols. In our sys-
tem model, we assume the enclave and cloud customer are securely connected.
Figure 1 illustrates the system architecture.

In the system, the enclave runs the server-side applications, and the host
outside the enclave runs an LSM-tree based key-value store. The two interact
through a standard key-value store API: Given key k, value v, timestamp ts, a
write operation Put(k, v) returns an acknowledgment about committed times-
tamp ts, and a read operation Get(k, tsq) returns result record 〈k, v, ts〉 where
tsq denotes the timestamp at the invocation time of Get and ts denotes the
timestamp of record returned. Formally,

ts := Put(k, v)
〈k, v, ts〉 := Get(k, tsq) (1)

Timestamp Management: In our scheme, timestamp is managed inside
enclave and is backed by a trusted storage service (e.g., TPM chip) to defend roll-
back attacks by the untrusted host. Upon Put/Get requests, the timestamps

Authenticated LSM Trees with Minimal Trust 459

are managed in the following manner: (1) For each Put operation issued by the
application, the enclave serializes the operation and monotonically increases the
current timestamp to assign a unique timestamp for the operation. (2) For each
Get operation issued by the application, it simply retrieves the current times-
tamp and uses it as tq in the Get request. (3) The timestamp is periodically
“flushed” to the trusted storage. The “flush” of timestamp counter can be set at
a fixed rate or be coupled with the “flush” operation in the underlying LPAD.

Given a read operation, there are several properties associated: (1) Result
integrity is about whether the result of a read, say 〈k, v, ts〉, is a valid data record
(meaning the one written by a legitimate write before). The result integrity can
be protected by a simple use of message authentication code (MAC), and it is
not our main security goal. (2) Result membership is about whether a read result
is fresh and complete in the dataset stored in the key-value store. The freshness
states whether the result 〈k, v, ts〉 has the largest timestamp (or is the latest)
among all records of the queried key k and with a timestamp smaller than tsq.
The completeness prevents a legitimate result from being omitted. The result
membership in freshness and completeness can be authenticated using the LPAD
scheme.

Threat Model: The trust boundary in our system occurs between the enclave
and the server host. The server host includes (1) hardware devices except for the
SGX processor, and (2) software that is loaded and is executed in the untrusted
memory, including the privileged operating system. The adversary can control
the server host software stack and subvert the storage systems there by forging
operation results (will be described next). The adversary in this work is assumed
not to compromise the SGX hardware which is tamper resistant. In addition, this
work does not address the following attacks: denial-of-service attacks, proven
deletion under Sybil attacks, SGX side-channel attacks [51], design flaws or
enclave program security.

A query-forging adversary can modify the result of a data read (or a write)
returned from the untrusted server host. Given a read query, the adversary can
present an incorrect result. Specifically, she can present a non-exist data record
(breaking the result integrity), present a properly signed but stale result to the
enclave (breaking the freshness), or present an empty result while omitting a
matching record in the dataset (breaking the completeness).

Security Goals: The security goal in this work is that the enclave issuing
Put/Get requests can verify the freshness of the query results. If the untrusted
host forges any query results, the verification algorithm in the enclave cannot
pass. Note that in this work, we don’t address the mitigation of query-forging
attack, that is, when the forging occurs, the enclave cannot recover the honest
result from the forged result.

460 Y. Tang et al.

4 LPAD Protocol: Scheme and Constructions

In this section, we define the standard LPAD scheme. An LPAD is an ADS
scheme tailored to the LSM tree structure. We first present a model of an LSM
tree before describing the LPAD scheme and security.

4.1 Design Motivation

To motivate our LPAD protocol, we present a strawman design that layers the
update-in-place ADS over an LSM-tree based store.

When placing an update-in-place ADS over an LSM tree, an immediate
problem is that the authentication data has a different structure from the actual
data. The structure mismatch creates extra engineering difficulty and perfor-
mance overhead. As the motivation of our work, we conduct a performance
study and show the slowdown. We consider an update-in-place ADS built on
top of an imaginary binary search tree, which is mapped to the input domain of
the underlying LSM store (e.g., through the encoding of in-order tree traversal).
Each tree node is mapped to a key-value record in the LSM store. By this means,
each read (write) is translated to a series of index-node lookups and the final
data transfer. The performance result of this strawman comparing the ideal case
(an LSM tree without any ADS) is illustrated in Fig. 2a. It shows that with the
presence of an update-in-place ADS, it adds a significant amount of overhead to
the write performance. In addition, in the target workload featuring an intensive
stream of writes, the slowdown is up to several orders of magnitudes.

4.2 Model of LSM Tree

An LSM tree represents a dataset m by a series of so-called levels, l0, l1...lq−1.
A level li is a list of ordered data records li = b1b2...bj An LSM tree supports
the basic data reads and writes, where a write only updates the first level l0.
A read may iterate through all levels to find a match. An LSM tree supports
the Merge operation that merges two adjacent levels (e.g., li and li+1) into one
level. In the LSM tree, the first level l0 resides in memory and all immutable
levels l≥1 reside on disk. Note this simple structure ensures writes are clustered
into sequential storage access (Table 1).

Table 1. Notations

b Key-value record m Dataset

n Security parameter ts Timestamp

a Answer π Proof

l LSM-tree level q Number of levels

Authenticated LSM Trees with Minimal Trust 461

Fig. 2. Performance of update-in-place ADS over LSM and the design of LPAD

4.3 LPAD Scheme and Security

LPAD extends an ADS scheme with new algorithms to handle the Merge opera-
tion interactively. Formally, consider a set-membership predicate: Given dataset
m and record b, a set-membership predicate is 0, 1 := P (m, b) where 0/1 repre-
sent non-membership/membership of the record in dataset m. The scheme of an
LPAD is the following:

LPAD scheme ΠLPAD consists of eight probabilistic polynomial-time (PPT)
algorithms (Gen, Setup, Query, Vrfy, Update, Refresh, Merge,
SigMerge), where the first six are defined in a standard ADS scheme,
and the last two are new algorithms in LPAD. Specifically, Setup signs the
initial dataset (m), (Query,Vrfy) forms an interactivea sub-protocol for
point-read (record b), and (Update,Refresh) forms an interactive point-
write sub-protocol. The pair of new algorithms, (Merge,SigMerge), inter-
actively merge the levels.
For simplicity, consider the three-party ADS modelb where a data owner
writes to a server host and clients read ADS from the server. The owner
holding secret key sk keeps a full copy of dataset m.
– pk, sk ←Gen(1n): A pair of public/private keys are generated with secu-

rity parameter n.
– s ←Setupsk(m): Owner signs the initial dataset m using secret key sk.
– π, a ←Querypk,P (·,·)(m, b): The host processes a set-membership query

on record b against dataset m using public key pk. It returns the answer
a of set-membership relation P (·, ·) and a proof π.

– 1,0 :=Vrfypk(π, a): The client receiving proof π and answer a verifies
using public key pk whether the answer is authentic. 1 means the authen-
tic answer.

462 Y. Tang et al.

– l′0, s
′
0, upd ←Updatesk(b, l0): The owner adds a new record b to level-zero

in the dataset l0. It also generates update information upd.
– l′0, s

′
0 :=Refreshpk(b, l0, upd): The host receiving a new record to add b

and update information upd (resulted from Algorithm Update or Sig-
Merge) refreshes the signature of level zero to be s′

0 using upd.
– ∅, s′

i, l
′
i+1, s

′
i+1, upd :=SigMergesk(li, si, li+1, si+1): The owner merges

two adjacent levels (li, li+1) in the prior state to posterior state (∅, l′i+1).
It generates the signatures of the two levels in the posterior state (s′

i, s
′
i+1)

with update information upd.
– ∅, s′

i, l
′
i+1, s

′
i+1 :=Mergepk(li, si, li+1, si+1, upd): The host merges two

adjacent levels (li, li+1) to posterior state (∅, l′i+1) using public key pk
and update information upd.

a Here, interactive means that the two algorithms (Query and Vrfy) can be
called multiple times.

b The extension from the three-party model to the two-party model is straight-
forward and can be found in related work [43].

The correctness of LPAD scheme is straightforward and similar to that of
ADS [43]; informally, the correctness can be stated by that given any state
resulted from calling Update/Refresh and Merge/SigMerge, and given any
correct Query on the state, running the verification algorithm (Vrfy) will
return 1. The security of LPAD scheme is defined in a game where an adversary
can access public key pk (i.e. freely access Vrfy,Merge,Refresh).

4.4 LPAD Construction by a Forest of Merkle Trees

This subsection presents a basic construction of LPAD and next subsection
presents a read-optimized construction.

The basic LPAD construction authenticates each level by a standard ADS
such as a Merkle tree. While this paper considers Merkle tree for construction,
we stress that the LPAD is a paradigm that can work with other per-level ADS
primitives (e.g., multi-set hash [28]). Concretely, Gen(1n) runs the standard
public-key generation algorithm, and Setupsk(m) signs the initial dataset m
using secret key sk before the owner uploads the digest to the server. On the
read path, the untrusted server runs π, a ←Querypk,P (·,·)(m, b) that prepares
a query proof by including the membership proof for the level that contains
the answer and more importantly the non-membership proofs for the levels that
don’t contain the answer. Then the client receiving proof π and answer a verifies
the answer integrity by running 1,0 :=Vrfypk(π, a), which further runs the ver-
ification algorithms of the per-level ADS against corresponding per-level proofs.
It only accepts when all per-level verification accept.

On the write path, the trusted owner updates the remote dataset
by running the Update algorithm of the first-level ADS, namely l′0, s

′
0,

upd ←Updatesk(b, l0). Then, the untrusted server refreshes the dataset based
on the owner’s update by running the first-level ADS’s Refresh algorithm,
namely m′

0, s
′
0 :=Refreshpk(b,m0, upd).

Authenticated LSM Trees with Minimal Trust 463

Asynchronously, the server and owner interactively run algorithms to merge
two adjacent levels: The owner locally updates the two adjacent levels (li, li+1) to
posterior state (∅, l′i+1), with signatures and update information upd. The server
then merges two adjacent levels (mi,mi+1) to (∅,m′

i+1) and simply updates their
signatures using update information upd. The SigMerge(li, li+1) is constructed
by the owner retrieving from the host the two input levels, li and li+1, and
linearly scanning them. This straightforward construction with linear cost may
not be feasible in the traditional setting, but is practical in the case with TEE
where the server is co-located with the enclave owner.

The correctness of LPAD construction is straightforward and we omit it in
this and subsequent constructions.

Security Analysis: The basic LPAD construction is secure as long as the per-
level ADS constructions are secure. Because our security proof is based on the
reduction to the security of per-level ADS. That is, if LPAD is insecure, it means
at least one of per-level ADSes is insecure. Briefly, our formal security proof
under the LPAD-forging game relies on the idea that Merge can be “simulated”
by a series of Updates.

5 LPAD Systems

In this section, we present the engineering of LPAD protocol when building a
functional storage system on Intel SGX. We build the system based on Google
LevelDB [11], which is a representative and widely adopted storage system based
on the LSM trees. In this paper, we use the term “LevelDB” to represent a
broad class of log-structured key-value stores, such as Apache HBase [12], Apache
Cassandra [10], Facebook RocksDB [8].

5.1 System Design and Implementation

System Overview. Our LPAD schemes are built on public key cryptogra-
phy. When instantiating the scheme on SGX, we naturally place the secret key
inside the enclave. Note that we assumed a secure key-management component
in enclave such as sgx-kms [26]. In addition, all LPAD algorithms that access the
secret key are run inside enclave. Algorithms with the public key are run by the
untrusted host, except for the Vrfy algorithm whose return value is security
critical.

Therefore, our system runs the following LPAD algorithms in enclave: (1)
The algorithms involving secret keys, that is, Gen, Setup, Update, SigMerge
(recall the LPAD scheme in Sect. 4) are executed in an enclave. (2) The verifi-
cation algorithm (i.e. Vrfy) is placed in an enclave as the verification result is
critical to the protocol security.

In particular, to support SigMerge, it runs a clone of Merge computation
inside enclave. The data buffered in memory is placed outside the enclave but
we allow the in-enclave Merge computation to directly access the buffer out-
side enclave. The data buffer is placed outside enclave, because it is accessed

464 Y. Tang et al.

by the enclave for once (i.e. no locality) and placing it in enclave does not save
boundary-crossing overhead. During the Merge, the inputs are read from the
disk to buffer and enclave, and are authenticated in a deferred fashion by recon-
structing the entire Merkle tree of the levels. By the end of Merge, the newly
generated level is signed by the enclave. Details about implementing verifiable
Merge is presented in Sect. 5.

Digest Structures. In LPAD, the data storage is hosted in the untrusted world
and it entails to authenticate the data outside the enclave by building a digest
structure. We design and implement a digest structure that is aligned well with
the data layout in an LSM store, aiming to minimize the imposed IO overhead.

Digests and index

Data records

Level L0

Level L2

1

t0

Level L1

Enclave

LPAD digests

Merge

PutGet

Merge

2

t2

4

t3

7

t4

12

t6

17

t1

18

t5

Key

Timestamp

Timestamp

[0,9] i1 h1 [10,19] i2 h2

[0,4] a1 h3 [5,9] a7 h4 [10,14] a12 h5 [15,19] a17 h6

i0

i1
i2

Fig. 3. LPAD system architecture with digest structures

The LPAD digest structure consists of Merkle trees built over the LSM
tree dataset. Each Merkle tree digests an LSM-tree level. The data records are
digested in their original order, that is, sorted first by data keys and then by
timestamps. In an LSM store, data records are stored in a data file where records
are indexed to facilitate the data lookup. The LPAD Merkle tree is stored by
being embedded in the index. That is, each pointer in a tree index is augmented
to store the hash of the Merkle tree.

An Example: In Fig. 3, there is an LSM tree with three levels. For the third
level, it contains a list of key-value records, sorted first their data keys and then
by timestamps. There exist an index structure that facilitates the lookup of a
data key in the level. The index is a three-node B tree (of nodes i0, i1, i2). Each
index node contains multiple entries, each with a data-key range and a pointer
to the child index node. For instance, the index node i1 has an entry ([0, 4], a1),
which is used to direct a search with data key in [0, 4] to the data block starting
with record 〈1, t0〉. LPAD system augments each index entry with a Merkle-tree
hash. For instance, the index entry ([0, 4], a1) is augmented with hash h3 where

Authenticated LSM Trees with Minimal Trust 465

h3 = H(〈1, t0〉‖〈2, t2〉‖〈4, t3〉). In the LPAD Merkle tree over level l2, the Merkle
tree is constructed by h1 = H(h3‖h4) and h2 = H(h5‖h6).

In LPAD system, the storage of LPAD Merkle trees is co-located with the
index in an LSM store. One of the benefits for this design is that the co-located
data and digest storage can reduce the data-access cost. That is, when storing
the Merkle trees in a separate file, retrieving the Merkle proof involves multiple
random accesses on disk, incurring expensive disk seeks. In our co-located digest
storage, the random-access to retrieve proof is piggybacked in the data access
path, namely, the seek to look up the index is also used to prepare the hashes
in a LPAD proof, saving extra seeks.

MERGE Implementation. Our system runs three functionalities in enclave for
verified Merge: (1) the computation of Merge, (2) the authentication of input
data that comes into the enclave in a streaming fashion, (3) the signing of the
output data. The code of these three functions run inside the enclave and the
data buffer resides outside the enclave. More specifically, given multiple files at
consecutive levels as input, the verified Merge inside enclave loads the data files
into data buffers outside enclave, merge-sort the data records, reconstructs the
Merkle root hashes for all input files, and builds a Merkle tree over the merged
output stream of records. If the reconstructed Merkle root hashes are identical to
what are stored in enclave, the enclave make effective of this Merge operation
by updating the digest of the relevant levels with the reconstructed Merkle hash.

5.2 Security Analysis

In our system in SGX, an invariant is that on both write and read paths, the
in-enclave algorithm of LPAD (i.e. Update and Vrfy) occurs after the outside-
enclave algorithm (i.e. Refresh and Query). This invariant, with the promise
of fully serialized execution,2 allows the enclave to construct the execution order
(of reads and writes) from the order these in-enclave algorithms are called. This
execution order further allows to fully specify the execution history, based on
which the membership can be authenticated by LPAD (e.g., freshness assumes
the temporal order among reads/writes).

Concretely, we consider the freshness attack that the adversary from the
untrusted host presents a correct but stale read result. The freshness property
requires that a read result 〈k, v, ts〉 = Get(k, tsq) is fresh as of timestamp tsq. By
definition, it can be authenticated by the membership of result record 〈k, v, ts〉
and the non-membership of a virtual record 〈k, v′, ts′〉 that is “fresher” and
with ts′ ∈ [ts, tsq]. Both the membership and non-membership can be further
authenticated by the LPAD scheme underneath. Based on freshness authentica-
tion, any stale result returned from the untrusted host can be easily detected (by
the failure of Vrfy). Here, special notes should be taken that under the above
invariant (i.e. in-enclave algorithms occur after the untrusted LPAD algorithms),
the untrusted host is given the chance to store the data no older than the digest
2 The untrusted host can break the promise of serialized execution, but will eventually

be detected through the in-enclave checks.

466 Y. Tang et al.

in enclave, and thus any deviation from the (non)-membership proven by the
digest can be attributed to the misbehavior of the untrusted host.

The freshness attack can be extended to different forms: (1) The complete-
ness attack is a special form of freshness attack where the untrusted host omits
the result and falsely returns an empty result. In this case, the non-membership
authentication (for the empty result) will not pass. (2) The forking attack [37]
works by the untrusted host presenting different views to different reads. As our
enclave under LPAD protocol fully specifies the operation history (without ambi-
guity), there is always only one legitimate result that can be authenticated, thus
eliminating the forking vulnerability. Note that we do not consider concurrency
attacks.

6 Evaluation

In this section, we evaluate LPAD system with the goal of answering the following
questions:

– What is the trusted code size (Sect. 6.1)?
– What is the performance of LPAD under IO-intensive workloads (Sect. 6.2)?

6.1 Implementation and Enclave Code Size

Original LevelDB Codebase: The codebase of LevelDB consists of several
code modules. Their profiles are the following: (F1) A skip list that is accessed
by reads and writes on level l0 consists of 1.3K lines of code. (F2) A write-
ahead log (WAL) that is accessed by a write at level l0 consists of 1K LoC to
persist writes and recover state. (F3) LRU data cache and Bloom filter that are
accessed by reads on levels l≥1 consists of 1K LoC. (F4) Merge computation for
compaction consists of 0.2K LoC. (F5) Thread management code for compaction
(<0.1K LoC), (F6) Application-specific IO handling, e.g., for file parsing, file
meta-data management, etc., consists of 4.7K LoC, and F7) miscellaneous utility
code, e.g., for computing regular hash, consists of 4K LoC.

Code Modification of LevelDB: The system implementation is based on the
codebase of LevelDB with the following changes: 1. We add a program to hook
our in-enclave program to the LevelDB running in the untrusted host. 2. We add
a program to store and serve the Merkle trees for Query on the untrusted host;
several LevelDB utilities are reused for the Merkle-tree persistence. 3. We modify
the LevelDB codebase to make each Put return its timestamp. The change is
not significant and does not cause overhead.

For evaluating the trusted code size, we prepare a baseline realizing Haven-
style partitioning. In particular, our baseline is based on the latest systems-
level support in enclave, Panoply [47]. Comparing with Haven [24], Panoply
considers the application logic is partitioned to several modules, with each loaded
in a container with Panoply’s rich systems interface (e.g., thread management).
Despite its rich in-enclave functionalities and minimized systems-level TCB, we

Authenticated LSM Trees with Minimal Trust 467

stress Panoply is not application partitioning scheme and cannot specify how to
partition LevelDB. Thus, in our baseline, we map the entire codebase of LevelDB
into enclave.

Recall that the LPAD places inside the enclave trusted LPAD algorithms
(SigMerge,Update,Vrfy) and requires the enclave to include the code for
Merkle proof and SHA computation. Additionally, the enclave runs some glue
code generated by Intel SGX SDK [16]. The total number of code lines in enclave
is around 900. Comparing with the baseline approach, trust-minimized partition-
ing reduces the application-level trusted code size by 20 times.

The result of enclave code size is presented in Table 2.

Table 2. Trusted code size with LPAD partitioning strategies

Partitioning scheme Trusted code size (LoC)

LPAD 891

The Haven [24] approach (LevelDB in enclave) ∼20000

6.2 Performance Evaluation

In this section, we present the performance of LPAD under Yahoo Cloud Serving
Benchmark (YCSB) [29] which is a standard benchmark suite. We evaluate the
performance under IO-intensive workloads. We start by describing the common
experiment setup.

Experiment Setup: We did all the experiments on two laptops with an Intel
8-core i7-6820HK CPU of 2.70 GHz and 8 MB cache, 32 GB Ram and 1TB Disk.
This is one of the Skylake CPUs with SGX features.

We used the YCSB benchmark suite [29] that provides a workload gener-
ator and a multi-threaded execution platform for evaluating the performance
of generic key-value stores. We leverage the LevelDB-YCSB adapter based on
online projects.3 In our experiment, we run the YCSB workload driver on one
machine and the storage system on another machine; the two machines are con-
nected in a high-speed LAN network.

We use two datasets in this experiment: The large dataset contains 200 mil-
lion records (which is 24 GB without compression under 100-byte values), and
the small dataset contains 1 million records (140 MB without compression). The
large dataset is intended to capture the IO-intensive workload where the working
set is larger than memory and IO is constantly triggered during data serving.
The small dataset captures the memory intensive workloads with the working
set fully residing on memory; in this case memory references (or cache misses)
are the bottleneck. Both datasets are generated with uniformly distributed keys,

3 https://github.com/jtsui/ycsb-leveldb.

https://github.com/jtsui/ycsb-leveldb

468 Y. Tang et al.

Fig. 4. LPAD-SGX performance

each key-value record contains a 16-byte key and a value that can take a size
of 100 or 1000 bytes.4 We used the SHA3 hash algorithm from the Crypto++
library [13].

IO-Intensive Workload. In the experiment, we varied the read percentage
from 0% (that is, a write-only workload), 20%, 40%, 60%, 80% to 100% and we
tested 1 million queries. We consider both SHA1 and SHA3 algorithms. We vary
record size (116 bytes and 1016 bytes). Our experiments are conducted with
Merge turned on and in a single thread. Each experiment is run at least three
times. We report the latency per operation.

We compare the performance of our LPAD-SGX system against two base-
lines: (1) The first is a raw LevelDB instance running in the untrusted world.
This is an unsecured solution, but its performance is ideal. We name this baseline
by “Raw LevelDB (Ideal)”. (2) The second baseline is a LevelDB protected by
a single Merkle tree, which represents most existing work in the ADS literature.
This baseline is named by “SingleMT (Baseline)”.

The performance result under the IO-intensive workload is presented in
Fig. 4a and b. For both 1016-byte and 116-byte record sizes, the LPAD-SGX
scheme matches well with the write-optimized characteristics of the original Lev-
elDB – their latency increases as the workload becomes more read intensive. By
contrast, the baseline of a single Merkle tree exhibits a read-optimized behav-
ior. More over, with any read-write ratio, the LPAD-SGX systems’ slowdown
comparing the ideal performance is at most 2X, which is much smaller than
the 500X slowdown of the SingleMT baseline (the single Merkle tree). By using
SHA1 instead of SHA3, the LPAD-SGX system further reduces the slowdown

4 Note the smaller size a value is (e.g., 100 byte), the more challenging to serve for a
storage system as small writes cause more random access IO.

Authenticated LSM Trees with Minimal Trust 469

to 36% for the 116-byte records and 12% for the 1016-byte records. This result
confirms the benefit of matching security protocol with the underlying storage
system.

7 Conclusion

This work presents LPAD, an ADS protocol designed based on LSM trees to
address the efficiency under write-intensive workloads. A functional system is
built based on LPAD that is on top of Google LevelDB with Intel SGX. The
system design of LPAD features three salient properties: (1) It supports a small
enclave program by having around one thousand in-enclave code lines out of
more than twenty thousands code lines of LevelDB. (2) It guarantees query
authenticity in terms of data integrity and membership. (3) The performance
slowdown of LPAD is less than 12%.

Acknowledgement. Yuzhe Tang’s work is supported by National Science Foundation
under Grant CNS1815814 and a gift from Intel.

References

1. ARM TrustZone. https://www.arm.com/products/security-on-arm/trustzone
2. Bitcoin core. https://bitcoin.org/en/bitcoin-core/
3. Bitcoin. https://bitcoin.org/en/
4. Certificate transparency
5. Certificate transparency, the internet standards
6. Dropbox. http://www.dropbox.com
7. Ethereum project. https://www.ethereum.org/
8. Facebook RocksDB. http://rocksdb.org/
9. Google drive. https://www.google.com/drive/

10. http://cassandra.apache.org/
11. http://code.google.com/p/leveldb/
12. http://hbase.apache.org/
13. http://www.cryptopp.com/benchmarks.html
14. IBM SCPU. http://www-03.ibm.com/security/cryptocards/
15. Intel corp. software guard extensions programming reference, no. 329298–002

(2014)
16. Intel software guard extensions (Intel SGX) SDK

plus .1em minus .1em
17. Intel TXT. http://www.intel.com/technology/security/downloads/

trustedexecoverview.pdf
18. Litecoin. https://litecoin.org/
19. TPM. http://www.trustedcomputinggroup.org/tpm-main-specification/
20. Anagnostopoulos, A., Goodrich, M.T., Tamassia, R.: Persistent authenticated dic-

tionaries and their applications. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001.
LNCS, vol. 2200, pp. 379–393. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45439-X 26

21. Anati, I., Gueron, S., Johnson, S.P., Scarlata, V.R.: Innovative technology for CPU
based attestation and sealing (2013)

https://www.arm.com/products/security-on-arm/trustzone
https://bitcoin.org/en/bitcoin-core/
https://bitcoin.org/en/
http://www.dropbox.com
https://www.ethereum.org/
http://rocksdb.org/
https://www.google.com/drive/
http://cassandra.apache.org/
http://code.google.com/p/leveldb/
http://hbase.apache.org/
http://www.cryptopp.com/benchmarks.html
http://www-03.ibm.com/security/cryptocards/
http://www.intel.com/technology/security/downloads/trustedexecoverview.pdf
http://www.intel.com/technology/security/downloads/trustedexecoverview.pdf
https://litecoin.org/
http://www.trustedcomputinggroup.org/tpm-main-specification/
https://doi.org/10.1007/3-540-45439-X_26
https://doi.org/10.1007/3-540-45439-X_26

470 Y. Tang et al.

22. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

23. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP.
J. ACM 45(1), 70–122 (1998)

24. Baumann, A., Peinado, M., Hunt, G.C.: Shielding applications from an untrusted
cloud with haven. In: 11th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2014, Broomfield, CO, USA, 6–8 October 2014, pp.
267–283 (2014)

25. Braun, B., Feldman, A.J., Ren, Z., Setty, S.T.V., Blumberg, A.J., Walfish, M.: Veri-
fying computations with state. In: Kaminsky, M., Dahlin, M., (eds.) ACM SIGOPS
24th Symposium on Operating Systems Principles, SOSP 2013, Farmington, PA,
USA, 3–6 November 2013, pp. 341–357. ACM (2013)

26. Chakrabarti, S., Baker, B., Vij, M.: Intel SGX enabled key manager service with
openstack barbican. CoRR, abs/1712.07694 (2017)

27. Chang, F., et al.: Bigtable: a distributed storage system for structured data
(awarded best paper!). In OSDI, pp. 205–218 (2006)

28. Clarke, D., Devadas, S., van Dijk, M., Gassend, B., Suh, G.E.: Incremental multiset
hash functions and their application to memory integrity checking. In: Laih, C.-
S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 188–207. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-40061-5 12

29. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: SoCC, pp. 143–154 (2010)

30. Devanbu, P., Gertz, M., Martel, C., Stubblebine, S.G.: Authentic data publication
over the internet. J. Comput. Secur. 11, 2003 (2003)

31. Elbaz, R., Champagne, D., Gebotys, C.H., Lee, R.B., Potlapally, N.R., Torres, L.:
Hardware mechanisms for memory authentication: a survey of existing techniques
and engines. Trans. Comput. Sci. 4, 1–22 (2009)

32. Goodrich, M.T., Tamassia, R., Schwerin, A.: Implementation of an authenticated
dictionary with skip lists and commutative hashing. In: Proceedings of DARPA
Information Survivability Conference & Exposition II, DISCEX 2001, vol. 2, pp.
68–82. IEEE (2001)

33. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and Hal-
l/CRC Press, Boca Raton (2007)

34. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic authenticated index
structures for outsourced databases. In: SIGMOD Conference, pp. 121– 132 (2006)

35. Li, J., Krohn, M.N., Mazières, D., Shasha, D.: Secure untrusted data repository
(SUNDR). In: OSDI, pp. 121–136 (2004)

36. Martel, C.U., Nuckolls, G., Devanbu, P.T., Gertz, M., Kwong, A., Stubblebine,
S.G.: A general model for authenticated data structures. Algorithmica 39(1), 21–
41 (2004)

37. Mazières, D., Shasha, D.: Building secure file systems out of Byantine storage.
In: Proceedings of the Twenty-First Annual ACM Symposium on Principles of
Distributed Computing, PODC 2002, Monterey, California, USA, 21–24 July 2002,
pp. 108–117 (2002)

38. Melara, M.S., Blankstein, A., Bonneau, J., Felten, E.W., Freedman, M.J.:
CONIKS: bringing key transparency to end users. In: Jung, J., Holz, T., (eds.)
24th USENIX Security Symposium, USENIX Security 2015, Washington, D.C.,
USA, 12–14 August 2015, pp. 383–398. USENIX Association (2015)

39. O’Neil, P.E., Cheng, E., Gawlick, D., O’Neil, E.J.: The log-structured merge-tree
(LSM-TREE). Acta Inf. 33(4), 351–385 (1996)

https://doi.org/10.1007/978-3-540-40061-5_12

Authenticated LSM Trees with Minimal Trust 471

40. Pang, H., Tan, K.-L.: Authenticating query results in edge computing. In: Pro-
ceedings of the 20th International Conference on Data Engineering, ICDE 2004,
Washington, DC, USA, p. 560. IEEE Computer Society (2004)

41. Papadopoulos, S., Yang, Y., Papadias, D.: CADS: continuous authentication on
data streams. In: VLDB, pp. 135–146 (2007)

42. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Authenticated hash tables. In:
Ning, P., Syverson, P.F., Jha, S., (eds.) Proceedings of the 2008 ACM Conference
on Computer and Communications Security, CCS 2008, Alexandria, Virginia, USA,
27–31 October 2008, pp. 437–448. ACM (2008)

43. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Authenticated hash tables
based on cryptographic accumulators. Algorithmica 74(2), 664–712 (2016)

44. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, 19–22 May 2013, pp. 238–252. IEEE Computer Society (2013)

45. Rubinfeld, R., Shapira, A.: Sublinear time algorithms. SIAM J. Discrete Math.
25(4), 1562–1588 (2011)

46. Setty, S.T.V., Braun, B., Vu, V., Blumberg, A.J., Parno, B., Walfish, M.: Resolving
the conflict between generality and plausibility in verified computation. In: Eighth
Eurosys Conference, EuroSys 2013, Prague, Czech Republic, 14–17 April 2013, pp.
71–84 (2013)

47. Shinde, S., Tien, D.L., Tople, S., Saxena, P.: Panoply: Low-TCB Linux applications
with SGX enclaves. In: 24th Annual Network and Distributed System Security
Symposium, NDSS 2017, San Diego, California, USA, 26 February–1 March 2017
(2017)

48. Stefanov, E., van Dijk, M., Juels, A., Oprea, A.: Iris: a scalable cloud file system
with efficient integrity checks. In: ACSAC, pp. 229–238 (2012)

49. Tamassia, R.: Authenticated data structures. In: Di Battista, G., Zwick, U. (eds.)
ESA 2003. LNCS, vol. 2832, pp. 2–5. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-39658-1 2

50. Wahby, R.S., Setty, S.T.V., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM
and control flow in verifiable outsourced computation. In: 22nd Annual Network
and Distributed System Security Symposium, NDSS 2015, San Diego, California,
USA, 8–11 February 2014 (2015)

51. Xu, Y., Cui, W., Peinado, M.: Controlled-channel attacks: deterministic side chan-
nels for untrusted operating systems. In: 2015 IEEE Symposium on Security and
Privacy, SP 2015, San Jose, CA, USA, 17–21 May 2015, pp. 640–656. IEEE Com-
puter Society (2015)

52. Yang, Y., Papadias, D., Papadopoulos, S., Kalnis, P.: Authenticated join processing
in outsourced databases. In: Çetintemel, U., Zdonik, S.B., Kossmann, D., Tatbul,
N. (eds.) Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 2009, Providence, Rhode Island, USA, 29 June–2 July
2009, pp. 5–18. ACM (2009)

53. Yang, Y., Papadopoulos, S., Papadias, D., Kollios, G.: Authenticated indexing for
outsourced spatial databases. VLDB J. 18(3), 631–648 (2009)

54. Zhang, Y., Katz, J., Papamanthou, C.: IntegriDB: verifiable SQL for outsourced
databases. In: Ray, I., Li, N., Kruegel, C. (eds.) Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Denver, CO,
USA, 12–16 October 2015, pages 1480–1491. ACM (2015)

https://doi.org/10.1007/978-3-540-39658-1_2
https://doi.org/10.1007/978-3-540-39658-1_2

Modern Family: A Revocable Hybrid
Encryption Scheme Based on

Attribute-Based Encryption, Symmetric
Searchable Encryption and SGX

Alexandros Bakas(B) and Antonis Michalas

Tampere University, Tampere, Finland
{alexandros.bakas,antonios.michalas}@tuni.fi

Abstract. Secure cloud storage is considered as one of the most impor-
tant issues that both businesses and end-users take into account before
moving their private data to the cloud. Lately, we have seen some inter-
esting approaches that are based either on the promising concept of
Symmetric Searchable Encryption (SSE) or on the well-studied field of
Attribute-Based Encryption (ABE). In this paper, we propose a hybrid
encryption scheme that combines both SSE and ABE by utilizing the
advantages of both these techniques. In contrast to many approaches,
we design a revocation mechanism that is completely separated from the
ABE scheme and solely based on the functionality offered by SGX.

Keywords: Access control · Attribute-based encryption · Cloud
security · Hybrid encryption · Policies · Storage protection · Symmetric
searchable encryption

1 Introduction

Cloud computing plays a significant role in our daily routine. From casual inter-
net users, to big corporations, the cloud has become an integral part of our lives.
However, using services that are hosted and controlled by third parties raises
several security and privacy concerns. For example, in [12] it is stated that there
has been a 300% increase in Microsoft cloud-based user’s account attacks over
the past couple of years. However, when considering a cloud-based environment,
cyber-attacks performed by remote adversaries is only a part of the problem.
More precisely, when we design cloud services we also need to take into consid-
eration cases where the actual cloud service provider (CSP) acts maliciously.

To overcome this, both academia and big industrial players have started
looking on how to build cloud-based services that will utilize Symmetric Search-
able Encryption (SSE) [4,7]. In such a scheme, whenever a user wishes to access
her files, she can search directly over the encrypted data for specific keywords.
Unfortunately, revocation cannot be implemented efficiently since sharing an
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 472–486, 2019.

https://doi.org/10.1007/978-3-030-37231-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_28&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_28

Modern Family: ABE & SSE Hybrid Encryption 473

encrypted file implies sharing the encryption key. As a result, if a data owner
wishes to revoke a user, then all files that are encrypted with the same key
must be decrypted and then re-encrypted under a fresh key. Another promising
technique that fits cloud-based services is Attribute-Based Encryption (ABE).
In ABE schemes, all files are encrypted under a master public key but in con-
trast to traditional public key encryption, the generated ciphertext is bounded
by a policy. Each user has a distinct secret key which is associated with specific
attributes. This way a user’s secret key can decrypt a ciphertext if and only if
the her attributes satisfy the policy bound to the ciphertext. However, using an
asymmetric encryption scheme to store data is rather inefficient.

Contribution: We propose a hybrid encryption scheme that combines SSE and
ABE in a way that reduces the problem of multi-user data sharing to that of a
single-user. We use the ABE scheme as a sharing mechanism and not as a revo-
cation one to achieve better efficiency. To deal with the problem of revocation,
we utilize the functionality offered by SGX. Furthermore, this work extends the
protocol presented in [11].

Organization: In Sect. 2, we present important works that have been published
and address the problem of secure cloud storage, data sharing and revocation. In
Sect. 3, we define our system model while in Sect. 4, we present the cryptographic
tools needed for the construction of our scheme. In Sect. 5, we give a formal
construction of our scheme which is followed by the security analysis in Sect. 6.
Finally, Sect. 7 concludes the paper.

2 Related Work

In [13] authors present a revocable hybrid encryption scheme while at the same
time a key-rotation mechanism is used to prevent key-scrapping attacks. The
authors use Optimal Asymmetric Encryption Padding (OAEP) as an All-or-
Nothing-Transformation (AONT) [2] to prevent revoked users from accessing
stored data. This is due to the fact that reversing OAEP, requires to the entire
output. Thus, changing random bits, renders the reversion infeasible. Hence, to
decrypt a file, the changed bits need to be stored. However, this implies that
with each re-encryption, the size of the ciphertext grows. Thus, decrypting a file
that has been re-encrypted multiple times is an expensive operation. Moreover,
to achieve better efficiency, authors suggest that the AONT could be applied by
the server. However, this implies the existence of a fully trusted server.

A promising idea is presented in [5], where the authors present a protocol
based on functional encryption, with the main functionalities running in isolated
environments. The decryption of a file, and the application of a function f on
the decrypted file both occur in SGX enclaves. Moreover, all enclaves can attest
to each other and exchange data over secure communication channels. In our
construction, even though we use the same hardware principles, we build a hybrid
encryption scheme by combining SSE and ABE.

In [9] authors present a revocable ciphertext-policy attribute-based encryp-
tion scheme. The revocation mechanism is offered by a revocation list that is

474 A. Bakas and A. Michalas

attached to the resulted ciphertexts. To avoid maintaining long revocation lists, a
policy through which users’ keys expire after a certain period of time is enforced.
As a result, the revocation list only includes keys that have been revoked before
the expiration date. Another Hybrid encryption scheme is presented in [6], in
which authors propose a scheme based on SSE and ABE. In the proposed scheme,
data owners encrypt their files using SSE, but the resulted indexes are encrypted
under ABE. This way, users can locally generate search tokens based on their
attributes, that are then sent to the cloud. However promising, their scheme is
static and as a result can only have very limited applications in real-life scenar-
ios. Moreover, authors do not provide a revocation mechanism – a problem of
paramount importance in cloud-based services.

In our construction, we overcome these issues by designing an efficient revo-
cation mechanism that is utilizing the SGX functionality and it is separated from
the ABE scheme.

3 Architecture

In this section, we introduce the system model by explicitly describing the main
entities that participate in our protocol as well as their capabilities. The system
model of our work is built on top of the model presented in [10] and it is enhanced
with some important additions.

Cloud Service Provider (CSP): We consider a cloud computing environment
similar to the one described in [14,15]. Moreover, the CSP must support SGX
since core entities will be running in a trusted execution environment offered by
SGX.

Master Authority (MS): MS is responsible for setting up all the necessary public
parameters for the proper run of the involved protocols. MS is responsible for
generating and distributing ABE keys to the registered users. Finally, MS is
SGX-enabled and is running in an enclave called the Master Enclave.

Key Tray (KT): KT is a key storage that stores ciphertexts of the symmetric
keys that have been generated by various users and are needed to decrypt data.
Registered users can directly contact KT and request access to the stored cipher-
texts. KT is also SGX-enabled and runs in an enclave called the KT Enclave.

Revocation Authority (REV): REV is responsible for maintaining a revocation
list (rl) with the unique identifiers of the revoked users. Similar to MS and KT,
REV is also SGX-enabled and is running in an enclave called the Revocation
Enclave. Finally, for the security of the stored revocation list, it is important to
mention that rl is generated by the enclave (i.e. in an isolated environment) and
never leaves its perimeter. Therefore, there is no need to encrypt rl.

SGX: Below we provide a brief presentation of the main SGX functionalities
needed for our construction. A more detailed description can be found in [3,5]

Isolation: Enclaves are located in a hardware guarded area of memory and they
compromise a total memory of 128 MB (only 90 MB can be used by software).

Modern Family: ABE & SSE Hybrid Encryption 475

Intel SGX is based on memory isolation built into the processor itself along
with strong cryptography. The processor tracks which parts of memory belong
to which enclave, and ensures that only enclaves can access their own memory.

Attestation: One of the core contributions of SGX is the support for attesta-
tion between enclaves of the same (local attestation) and different platforms
(remote attestation). In the case of local attestation, an enclave enci can verify
another enclave encj as well as the program/software running in the latter. This
is achieved through a report generated by encj containing information about
the enclave itself and the program running in it. This report is signed with a
secret key skrpt which is the same for all enclaves of the same platform. In remote
attestation, enclaves of different platforms can attest each other through a signed
quote. This is a report similar to the one used in local attestation. The difference
is that instead of using skrpt to sign it, a special private key provided by Intel is
used. Thus, verifying these quotes requires contacting Intel’s Attestation Server.

Sealing : Every SGX processor comes with a Root Seal Key with which, data is
encrypted when stored in untrusted memory. Sealed data can be recovered even
after an enclave is destroyed and rebooted on the same platform.

4 Cryptographic Primitives

In this section, we give a formal definition for the two main encryption schemes
that the paper is based on. We proceed with the definition of a CP-ABE and
SSE schemes as described in [1] and [7] respectively.

Definition 1 (Ciphertext-Policy ABE). A revocable CP-ABE scheme is a
tuple of the following five algorithms:

– CPABE.Setup is a probabilistic algorithm that takes as input a security param-
eter λ and outputs a master public key MPK and a master secret key MSK.
We denote this by (MPK,MSK) ← Setup(1λ).

– CPABE.Gen is a probabilistic algorithm that takes as input a master secret
key, a set of attributes A and the unique identifier of a user and outputs a
secret key which is bind both to the corresponding list of attributes and the
user. We denote this by (skA,ui) ← Gen(MSK,A, ui).

– CPABE.Enc is a probabilistic algorithm that takes as input a master public
key, a message m and a policy P ∈ P. After a proper run, the algorithm
outputs a ciphertext cP which is associated to the policy P . We denote this
by cP ← Enc(MPK,m, P).

– CPABE.Dec is a deterministic algorithm that takes as input a user’s secret key
and a ciphertext and outputs the original message m iff the set of attributes
A that are associated with the underlying secret key satisfies the policy P that
is associated with cp. We denote this by Dec(skA,ui , cP) → m.

Definition 2 (Dynamic Index-based SSE). A dynamic index-based sym-
metric searchable encryption scheme is a tuple of nine polynomial algorithms
SSE = (Gen,Enc,SearchToken,AddToken,DeleteToken,Search,Add,Delete,Dec):

476 A. Bakas and A. Michalas

– SSE.Gen is a probabilistic key-generation algorithm that takes as input a secu-
rity parameter λ and outputs a secret key K.

– SSE.Enc is a probabilistic algorithm that takes as input a secret key K and
a collection of files f and outputs an encrypted index γ and a sequence of
ciphertexts c.

– SSE.SearchToken is a (possibly probabilistic) algorithm that takes as input a
secret key K and a keyword w and outputs a search token τs(w).

– SSE.AddToken is a (possibly probabilistic) algorithm that takes as input a
secret key K and a file f and outputs an add token τa(f) and a ciphertext cf .

– SSE.DeleteToken is a (possibly probabilistic) algorithm that takes as input a
secret key K and a file f and outputs a delete token τd(f).

– SSE.Search is a deterministic algorithm that takes as input an encrypted index
γ, a sequence of ciphertexts c and a search token τs(w) and outputs a sequence
of file identifiers Iw ⊂ c.

– SSE.Add is a deterministic algorithm that takes as input an encrypted index
γ, a sequence of ciphertexts c, an add token τa(f) and a ciphertext cf and
outputs a new encrypted index γ′ and a new sequence of ciphertexts c′.

– SSE.Delete is a deterministic algorithm that takes as input an encrypted index
γ, a sequence of ciphertexts c and a delete token τd(f) and outputs a new
encrypted index γ′ and a new sequence of ciphertexts c′.

– SSE.Dec is a deterministic algorithm that takes as input a secret key K and
a ciphertext c and outputs a file f .

The security of an SSE scheme is based on the existence of a simulator that
is given as input information leaked during the execution of the protocol. In
particular to define the security of SSE we make use of the leakage functions
Lin,Ls,La,Ld associated to index creation, search, add and delete operations [4].

5 Modern Family (MF)

In this section, we present Modern Family (MF) – the core of this paper’s con-
tribution. We start by giving an overview of the SGX hardware functionalities
used by the communicating parties as defined in [5]. and we continue with a
formal construction.

Hardware:

– HW.Setup(1λ): Takes as input a security parameter λ and produces the
secret key skrpt

1 used to MAC the reports.
– HW.Load(Q): Takes as input a program Q. An enclave enci is created in

which Q will be loaded. Moreover a handle hdlenc is created that will be used
as an identifier for the enclave.

– HW.Run(hdl, in): Takes as input a handle hdl and some input in. It runs
the program in the enclave specified by hdl with in as input.

1 skrpt is shared with every enclave on the same platform.

Modern Family: ABE & SSE Hybrid Encryption 477

– HW.Run&Report(hdl, in): Takes as input a handle hdl and some input
in. It will output a report that is verifiable by any other enclave on the
same platform. The report contains information about the underlying enclave
signed with skrpt.

– HW.ReportVerifiy(hdl′, rpt): Takes as input a handle hdl′ and a report rpt.
Uses skrpt generated by HW.Setup to verify the MAC of the report.

5.1 Formal Construction

MF is divided into a Setup phase and four main phases; Initialization, Key Shar-
ing, Editing and Revocation. During the Setup phase, all the necessary enclaves
are initialized by running the MF.Setup algorithm. In the rest of the phases, the
user is interacting with the enclaves by running one of the following algorithms:
MF.ABEUserKey, MF.Store, MF.KTStore, MF.KeyShare, MF.Search, MF.Update,
MF.Delete and MF.Revoke as described below.

Setup Phase: In this phase MF.Setup runs. Each entity receives a public/private
key pair (pk, sk) for a CCA2 secure public cryptosystem PKE. In addition to that,
the entities running in enclaves generate a signing and a verification key pair.
Finally, MS runs CPABE.Setup to acquire the master public/private key pair
(MPK,MSK). An enclave is initialized as follows:

MF.Setup(“initialize”, 1λ): Each enclave is initialized by generating a pub-
lic/private and signing/verification key pairs. To do so, the program Qinit

ID is
loaded:

Qinit
ID

– On input (“initialize”, 1λ):
1. Run (pk, sk) ← PKE.KeyGen(1λ).
2. Output pk.

Run hdl ← HW.Load(Qinit
ID).

Additionally, during the setup phase, the MS enclave loads a program QSetup
MS

that outputs the master public/private key pair (MPK,MSK):

QSetup
MS

– On input (“initialize”, 1λ):
1. Run (MPK,MSK) ← PKE.KeyGen(1λ).
2. Output MPK.

Run hdlMS ← HW.Load(QSetup
MS).

Initialization Phase: As a first step, a user ui contacts the MS enclave and
requests a secret CP-ABE key. Upon reception, MS authenticates ui and checks
if the user is eligible for receiving such a key. If so, MS generates a CP-ABE key
skA,ui , encrypts it under pki and sends it back to ui. This is done by running the
program QSKey

MS in the MS enclave as shown below:

478 A. Bakas and A. Michalas

MF.ABEUserKey(“KeyRequest”,MSK, ui, credi,A): The master enclave pro-
gram QSKey

MS for generating users’ ABE keys is defined as follows:

QSKey
MS

– On input (“KeyRequest”,MSK, ui, credi, A):
1. Verify that ui is registered. If not, output ⊥.
2. Use MSK and compute skA,ui .

3. Compute and output c = PKE.Enc(pki, skA,ui).
Run c ← HW.Run(hdlMS, (“KeyRequest”,MSK, i, credi, A)).

After ui successfully received skA,ui she can start using the CSP to store files
remotely. To do so, she first sends a store request StoreReq to the CSP. Specif-
ically, ui sends mreq = 〈r1,EpkCSP(credi), StoreReq,H(r1||credi||StoreReq)〉
where ri is a random number. The CSP authenticates ui as legitimate and sends
back an authorization Auth as mver = 〈r2, (Auth), σCSP (H(r2||ui||Auth))〉.
At this point, ui generates a symmetric key Ki to encrypt her files and sends
mstore = 〈r3,EpkCSP(γi), ci,H(r3||γi||ci)〉 to the CSP.

MF.Store(“Store”,mreq): The CSP enclave program QStore
CSP that is responsible

for storing encrypted files is defined as follows:

QStore
CSP

– On input (“StoreReq”, mreq):
1. Open mreq ; verify the messagea; if the verification fails, output ⊥.
2. Compute and output mver = 〈r2, (Auth), σCSP (H(r2||ui||Auth))〉.

Run mver ← HW.Run(hdlCSP, (“StoreReq”, m4)).
– On input (”store”, mstore):

1. Open mstore; verify the message; if the verification fails, output ⊥.
2. Store (ci, γi).

Run HW.Run(hdlCSP, (“store”, mstore)).

a By this, we mean that the entity receiving the message verifies the freshness and
the integrity of the message and it can also authenticate the sender.

Initialization phase concludes with MF.KTStore where ui encrypts Ki under
MPK to get cKi

P and sends mkeystore =
〈
EpkKT(r4), c

Ki

P , σi

(
H

(
r4||cKi

P

))〉
to KT.

Upon reception, KT generates a random number rKi that is stored next to cKi

P .
MF.KTStore(“store”,mkeystore): The KT enclave program QStore

KT that stores a
symmetric key Ki encrypted with MPK is defined as follows:

Modern Family: ABE & SSE Hybrid Encryption 479

QStore
KT

– On input (“store”, mkeystore):
1. Open mkeystore; verify the message. If the verification fails, output ⊥.
2. Generate a random number rKi

.
3. Compute c = PKE.Enc(pkui , rKi

).

4. Store
(
c
Ki
p , c

)
.

Run
(
c
Ki
p , c

)
← HW.Run(hdlKT, (”store”, mkeystore)).

Key Sharing Phase: This phase begins with uj executing MF.KeyShare to prove
that is not revoked. To this end, uj sends mverReq = 〈r5,EpkREV(uj), σj(r5||uj)〉 to
REV. Upon reception, REV verifies the message and checks whether uj ∈ rl or
not. Assuming that uj /∈ rl (i.e. she has not been revoked), REV replies with
mtoken = 〈r6,EpkKT(uj),EpkKT(τKS), σREV (H(r6||uj ||τKS))〉. The user then sim-
ply forwards mtoken to KT who verifies it. After the verification is complete KT
sends mkey =

〈
(EpkCSP(uj , t)), cKi

p , σKT (H(uj ||t))
〉

back to uj , where t is a times-
tamp declaring the time that uj accessed cKi

p . If uj already received Ki in the past,
KT will only send back the first and last components of mkey.
MF.KeyShare(“share”,m4): REV and KT enclave programs (QVer

REV, QShare
KT)

that are responsible for sharing cKi
p are defined as follows:

QVer
REV

– On input (“share”, mverReq):
1. Open mverReq ; verify the message; if the verification fails, output ⊥.
2. Check if uj ∈ rl; if so, output ⊥.
3. Generate τKS .
4. Compute and output mtoken.

Run mtoken ← HW.Run(hdlREV, (“share”, mverReq)).

Qshare
KT

– On input (“share”, mtoken):
1. Open mtoken; verify the message; if the verification fails, output ⊥.
2. Decrypt PKE.Enc(pkKT, uj) and PKE.Enc(pkKT, τKS).
3. Compute and output mkey .

Run mkey ← HW.Run(hdlKT, (“share”, mver)).

User uj can now run MF.Search to access certain files that are stored in the
CSP. To do so, she locally runs SSE.SearchToken to generate τs(w) and then sends
msearch = 〈EpkCSP(uj , t, τs(w)), σi(H(uj ||t||τs(w))), σKT (H(uj ||t))〉 to the CSP2.
Upon reception, CSP runs SSE.Search.
MF.Search(“search”,msearch,): The CSP enclave program QSearch

CSP that is
responsible for searching over the encrypted data is defined as follows:

2 The user simply forwards the components of mkey to the CSP along with a search
token τs(w).

480 A. Bakas and A. Michalas

QSearch
CSP

– On input (“search”, msearch):
1. Open msearch; verify the message; if the verification fails, output ⊥.
2. Run SSE.Search(γi, ci, τs(w)) → Iw
3. Output Iw.

Run HW.Run(hdlCSP, (“search”, msearch), which internally runs SSE.Search → Iw.

Editing Phase: In this phase3, registered users can add files to the database and
data owners can also delete files. To do so, ui executes MF.Update and MF.Delete.
To update the database, ui first generates an add token by running (τa(f), cf) ←
SSE.AddToken(Ki, f). This token is sent to the CSP via madd = 〈EpkCSP(ui, t,
τα(f), ci, γi), σi

(
H(ui||t||τα(f)||ci||γi)

)
, σKT (ui||t)〉. Finally, the CSP verifies the

message and its freshness and executes SSE.Add(γi, ci, τα(f), cf) → (γ′
i, c

′
i).

MF.Update(“update”,madd): The CSP enclave program QUp
CSP for adding files to

the database is defined as follows:

QUp
CSP

– On input (“update”, madd):
1. Verify the message. If the verification fails, output ⊥.
2. Run SSE.Add(γi, ci, τα(f), cf) → (γ′

i, c
′
i).

Run HW.Run(hldCSP, (“update”, madd), which internally runs SSE.Add(γi, ci,
τα(f), cf) → (γ′

i, c
′
i).

Deletion of a file is a more complicated task. This is due to the fact that we
only allow the data owner to delete files. To achieve this, ui needs to prove her
ownership over Ki. This can be done by requesting the random number rKi from
KT. After ui receives rKi , she signs it, runs τd ← SSE.DeleteToken(Ki, f) and replies
to KT with: mdelete = 〈EpkCSP(ui, t, τd(f), γ′

i), σi(H(ui||τd(f)||γ′
i||rKi〉. KT verifies

the message and is convinced that ui is the owner of Ki. Finally, KT generates
a report (rpt) containing the delete token. This is sent to the CSP who proceeds
with the deletion of the specified files.
MF.Delete(“request”, σ

i
(ui||t), cKi

p): The enclave programs QDel
CSP,QDel

KT that are
responsible for deleting files from the database are defined as follows:

QDel
KT

– On input (“request”, σi (ui||t), cKi
p):

1. Verify the signature. If the verification fails, output ⊥.
2. Get rKi

and compute c = PKE.Enc(pkui , rKi
).

3. Output c.
Run c ← HW.Run(hdlKT, (“request”, σi(ui||t), cKi

p).
– On input (“delete”, mdelete):

1. Open mdelete; verify the message and authenticate ui as the owner of Ki. If

the verification or the authentication fail, output ⊥.
2. Generate and output rpt.

Run HW.Run(hdlKT, (“delete”, mdelete) and then
rpt ← HW.RunReport(hdlKT, (“delete”, mdelete)).

3 One could completely ignore the Editing Phase and the result would be a static MF.

Modern Family: ABE & SSE Hybrid Encryption 481

QDel
CSP

– On input (“delete”, rpt):
1. Verify rpt. If the verification fails, output ⊥.
2. Run SSE.Delete(γ′

i, c
′
i, τd(f)) → (γ′′

i , c′′
i).

Run HW.Run(hdlCSP, (“delete”, rpt) who will internally run HW.ReportVerify
(hdlCSP, rpt) and SSE.Delete(γi, ci, τd(f)) → (γ′′

i , c′′
i).

Revocation Phase: To successfully run MF.Revoke, ui first needs to prove own-
ership over Ki by following the same steps as in MF.Delete. When ui signs rKi ,
she sends mrevoke =

〈
r10,EpkKT

(
ui, uj , c

Ki

P

)
, σi

(
H(ui||uj ||cKi

P ||rKi

)〉
to KT. Now

that KT is convinced that ui is the owner of Ki, it generates rpt containing uj ’s
identity, which is then sent to REV, who adds uj to rl.
MF.Revoke(“request”, σ

i
(ui||t), cKi

p): The enclave programsQRev
KT ,QRev

REV that are
responsible for revoking users are defined as follows:

QRev
KT

– On input (“request”, σi (ui||t), cKi
p):

1. Verify the signature. If the verification fails, output ⊥.
2. Get rKi

and compute c = PKE.Enc(pkui , rKi
).

3. Output c.

Run c ← HW.Run(hdlKT, (“request”, ui, c
Ki
p)).

– On input (“revoke”, mrevoke):
1. Open mrevoke; verify the message and authenticate ui as the owner of Ki. If

the verification or the authentication fails, output ⊥.
2. Generate rKi

′ and replace it with rKi
.

3. Generate and output rpt.
Run HW.Run(hdlKT, (“revoke”, mrevoke) and then
rpt ← HW.RunReport(hdlKT, (“revoke”, mreport)).

QRev
REV

– On input (“revoke”, rpt):
1. Veirfy rpt. If the verification fails, output ⊥.
2. Add uj to the revocation list rl.

Run HW.Run(hdlREV, (“revoke”, rpt) who will internally run HW.Report Verify
(hdlREV, report).

6 Security Analysis

We construct a simulator S that simulates the algorithms of the real protocol in
such a way that any polynomial time adversary ADV will not be able to distin-
guish between the real protocol and S. S intercepts ADV’s communication with
the real protocol and replies with simulated outputs.

Definition 3 (Sim-Security). We consider the following experiments. In the real
experiment, all algorithms run as defined in our construction while in the ideal one,
S intercepts ADV’s queries and replies with simulated responses.

482 A. Bakas and A. Michalas

Real Experiment

1. EXPreal
MF (1λ) :

2. (MPK,MSK) ← MF.Setup(1λ)

3. skA,ui
← ADVMF.ABEUserKey(MSK,A)

4. ct ← CPABE.Enc(mpk, m)

5. (γ, c) ← ADVSSE.Enc(K,f)

6. MF.Search(“search”, ms) → Iw
7. MF.Update(“update”, madd) → (γ′, c′)
8. MF.Delete(“delete”, mdelete) → (γ′, c′)
9. Output b

Ideal Experiment

1. EXPideal
MF (1λ) :

2. (MPK) ← S(1λ)

3. skA,ui
← ADVS(1λ)

4. ct ← S(1λ, 1|m|)
5. (γ, c) ← ADVS(Lin(f))

6. S(“search”, ms) → Iw
7. S(“update”, madd) → (γ′, c′)
8. S(“delete”, mdelete) → (γ′, c′)
9. Output b′

We say that MF is sim-secure if for all PPT adversaries ADV:

EXPreal
MF (1λ) ≈ EXPideal

MF (1λ)

Everything ADV observes in the real experiment can be simulated by S. More-
over, we use an IND-CCA2 public key encryption scheme. If ADV can distin-
guish between real and ideal answers, she can also break the IND-CCA2 security.
Finally, we let ADV can load different programs in the enclaves and record the
output. This assumption significantly strengthens ADV since we need to ensure
that only honest attested programs will be executed in the enclaves.

Theorem 1. Assuming that PKE is an IND-CCA2 secure public key cryptosystem
and Sign is an EUF-CMA secure signature scheme then MF is a sim-secure protocol
according to Definition 3.

Proof. We start by defining the algorithms used by the simulator. Then, we will
replace them with the real algorithms. Finally, the help of a Hybrid Argument we
will prove that the two distributions are indistinguishable.

– MF.Setup∗: Will only generate MPK that will be given to ADV.
– MF.ABEUserKey∗: Will generate a random key to be sent to the adversary. That

is, when ADV makes a key generation query, S will simulate CPABE.KeyGen
and it will output sk∗

A,ui
. This key is a random string that has the same length

as the output of the real MF.ABEUserKey∗. The key will be given to ADV.
– MF.KeyShare∗: In the ideal experiment, after ADV requests a secret key, S will

encrypt a sequence of bits based on Lin, under MPK. The ciphertext will be
returned to ADV.

– MF.Search∗: When ADV generates a search token τs(w), S gets as input the
leakage function Ls and outputs a simulated response. When ADV makes a
search query, S will once again generate a simulated I∗

w which will be sent back
to her.

– MF.Update∗: When ADV generates an add token τα(f), S gets as input the
leakage function La and outputs a simulated response. S will simulate the add
token, the ciphertext to be added to the database and will also update the
encrypted index.

– MF.Delete∗: When S generates a delete token, S gets as input the leakage func-
tion Ld and outputs a simulated response. Apart from τd(f), S will also update
the encrypted index.

Modern Family: ABE & SSE Hybrid Encryption 483

– MF.Revoke∗: The system does not revoke any user.

In the pre-processing phase, S runs HW.Setup(1λ), just as in the real experiment,
in order to acquire skrpt. Moreover, the challenger C generates a symmetric key Ki,
that will be needed in order to reply to search, add and delete queries. We will
now use a hybrid argument to prove that ADV cannot distinguish between the
real and the ideal experiments.

Hybrid 0 MF runs normally.

Hybrid 1 Everything runs like in Hybrid 0, but we replace MF.Setup with
MF.Setup∗.

These algorithms are identical from ADV’s perspective and as a result the
hybrids are indistinguishable.

Hybrid 2 Everything runs like in Hybrid 1, but MF.ABEUserKey∗ runs instead
of MF.ABEUserKey.

Hybrid 2 is indistinguishable from Hybrid 1 because nothing changes from
ADV’s point of view.

After Hybrid 2, we have ensured that ADV has followed all the required
steps in order to ask for Ki. We are now ready to replace MF.KeyShare with
MF.KeyShare∗.

Hybrid 3 Like Hybrid 2, but MF.KeyShare∗ runs instead of MF.KeyShare. Also,
the algorithm outputs ⊥ if HW.Run is queried with (hdlKT, (“share”,mtoken)) but
ADV never contacts REV.

Lemma 1. Hybrid 3 is indistinguishable from Hybrid 2.

Proof. Replacing the two algorithms, does not change from ADV’s perspective. If
ADV can generate mtoken, then she can forge REV’s signature. Given the security
of the signature scheme, this can only happen with negligible probability. So ADV
can distinguish between the Hybrids with negligible probability. �

At this point, ADV has received what she thinks is a valid Ki. The simulator
now gets access to all leakage functions L from the SSE scheme.
Hybrid 4 Like Hybrid 3, but when HW.Run is queried with (hdlCSP, (“search”,

msearch)), S is given the leakage function LS and generates I∗
w which is then sent

to the user.

Lemma 2. Hybrid 4 is indistinguishable from Hybrid 3.

Proof. Assuming the Li − security of the SSE scheme, the token sent by ADV to
the CSP, as part of msearch, is generated by S with Ls as input. As a result when S
receives msearch, it will generate a sequence of file identifiers I∗

w that will be send
back to ADV. ADV cannot distinguish between the real and the ideal experiment
since she receives a sequence of files corresponding to a search token that was also
simulated by S. Moreover, if ADV manages to generate msearch without having

484 A. Bakas and A. Michalas

contacted KT earlier, then she can also forge KT’s signature. However, this can
only happen with negligible probability, and as a result ADV can only distinguish
between hybrids 4 and 3 with negligible probability. �

Hybrid 5 Like Hybrid 4, but when HW.Run is queried with (hdlCSP, (“update”,

madd)), S is given the leakage function La and tricks ADV into thinking that she
updated the database.

Lemma 3. Hybrid 5 is indistinguishable form Hybrid 4.

Proof. By assuming the Li − security of the SSE scheme, we know that ADV will
not be able to distinguish between the real add token and the simulated one. More-
over, similar to the previous Hybrid, if ADV can generate madd without having
contacted KT, then she can also forge KT’s signature – which can only happen
with negligible probability. Hence, ADV can only distinguish between hybrids 5
and 4 with negligible probability. �

Hybrid 6 Like Hybrid 5, but when HW.Run is queried with (hdlKT, (“delete”,

mdel)), S is given the leakage function Ld and tricks ADV into thinking that she
deleted a certain file from the database. Moreover, S outputs ⊥, if ReportVerify
is queried with (hdlCSP, rpt) for a report that was not generated by executing
HW.RunReport(hdlKT, (“delete”,mdelete)).

Proof. By assuming the Li − security of the SSE scheme, we know that ADV will
not be able to distinguish between the real delete token and the simulated one.
Moreover, if ADV can query HW.ReportVerify with (hdlCSP, rpt), for a rpt that was
not generated by KT, then ADV can produce a valid MAC which can only happen
with negligible probability since she does not know skrpt. Thus, ADV can only
distinguish between Hybrids 5 and 6 with negligible probability. �

Hybrid 7 Like Hybrid 6 but instead of MF.Revoke, S executes MF.Revoke∗.
The hybrids are indistinguishable since no one can access the content of the

revocation list and as a result nothing changes from ADV’s point of view.
With this Hybrid our proof is complete. We managed to replace the expected

outputs with simulated responses in a way that ADV cannot distinguish between
the real and the ideal experiment. �

6.1 SGX Security

Recent works [3,8,16,17] have shown that SGX is vulnerable to software attacks.
However, according to [5], these attacks can be prevented if the programs running
in the enclaves are data-obvious. Thus, leakage can be avoided if the programs
do not have memory access patterns or control flow branches that depend on the
values of sensitive data. In our construction, no sensitive data are used by the
enclaves. KT acts as a storage space for the symmetric keys and does not per-
form any computation on them. Hence, all the cKi

p are data-obvious. Moreover, rl
is stored in plaintext and every entry in the list is padded to achieve same length.

Modern Family: ABE & SSE Hybrid Encryption 485

7 Conclusion

In this paper, we proposed MF, a hybrid encryption scheme that combines both
SSE and ABE in a way that the main advantages of each encryption technique are
used. The proposed scheme enables clients to search over encrypted data by using
an SSE scheme, while the symmetric key required for the decryption is protected
via a Ciphertext-Policy Attribute-Based Encryption scheme. Moreover, our con-
struction supports the revocation of users by utilizing the functionality provided
by SGX. In contrast to recent works, the revocation mechanism has been sepa-
rated from the actual ABE scheme and is exclusively based on the utilization of
trusted SGX enclaves.

References

1. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: Proceedings of the 2007 IEEE Symposium on Security and Privacy, SP
2007, pp. 321–334. IEEE Computer Society, Washington, DC (2007)

2. Boyko, V.: On the security properties of OAEP as an all-or-nothing transform. In:
Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 503–518. Springer, Heidel-
berg (1999). https://doi.org/10.1007/3-540-48405-1 32

3. Costan, V., Devadas, S.: Intel SGX explained. Cryptology ePrint Archive, Report
2016/086 (2016). https://eprint.iacr.org/2016/086

4. Dowsley, R., Michalas, A., Nagel, M., Paladi, N.: A survey on design andimplemen-
tation of protected searchable data in the cloud. Comput. Sci. Rev. 26, 17–30 (2017)

5. Fisch, B., Vinayagamurthy, D., Boneh, D., Gorbunov, S.: Iron: functional encryp-
tion using Intel SGX. In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017, pp. 765–782. ACM (2017)

6. Guo, W., Dong, X., Cao, Z., Shen, J.: Efficient attribute-based searchable encryp-
tion on cloud storage. J. Phys. Conf. Ser. 1087, 052001 (2018)

7. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion, pp. 965–976 (2012)

8. Lee, S., Shih, M., Gera, P., Kim, T., Kim, H., Peinado, M.: Inferring fine-grained
control flow inside SGX enclaves with branch shadowing. In: 26th USENIX Security
Symposium, BC, Canada, 16–18 August 2017, pp. 557–574 (2017)

9. Liu, J.K., Yuen, T.H., Zhang, P., Liang, K.: Time-based direct revocable ciphertext-
policy attribute-based encryption with short revocation list. Cryptology ePrint
Archive, Report 2018/330 (2018). https://eprint.iacr.org/2018/330

10. Michalas, A.: Sharing in the rain: secure and efficient data sharing for the cloud.
In: Proceedings of the 11th IEEE International Conference for Internet Technology
and Secured Transactions (ICITST-2016). IEEE (2016)

11. Michalas, A.: The lord of the shares: combining attribute-based encryption and
searchable encryption for flexible data sharing. In: Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing, SAC 2019, pp. 146–155. ACM,
New York (2019). https://doi.org/10.1145/3297280.3297297, http://doi.acm.org/
10.1145/3297280.3297297

12. Microsoft: Microsoft Security Intelligence Report (2017)
13. Myers, S., Shull, A.: Practical revocation and key rotation. In: Smart, N.P. (ed.) CT-

RSA 2018. LNCS, vol. 10808, pp. 157–178. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-76953-0 9

https://doi.org/10.1007/3-540-48405-1_32
https://eprint.iacr.org/2016/086
https://eprint.iacr.org/2018/330
https://doi.org/10.1145/3297280.3297297
http://doi.acm.org/10.1145/3297280.3297297
http://doi.acm.org/10.1145/3297280.3297297
https://doi.org/10.1007/978-3-319-76953-0_9
https://doi.org/10.1007/978-3-319-76953-0_9

486 A. Bakas and A. Michalas

14. Paladi, N., Gehrmann, C., Michalas, A.: Providing user security guarantees in public
infrastructure clouds. IEEE Trans. Cloud Comput. 5(3), 405–419 (2017). https://
doi.org/10.1109/TCC.2016.2525991

15. Paladi, N., Michalas, A., Gehrmann, C.: Domain based storage protection with
secure access control for the cloud. In: Proceedings of the 2014 International Work-
shop on Security in Cloud Computing. ASIACCS 2014. ACM, New York(2014)

16. Weichbrodt, N., Kurmus, A., Pietzuch, P., Kapitza, R.: AsyncShock: exploiting syn-
chronisation bugs in Intel SGX enclaves. In: Askoxylakis, I., Ioannidis, S., Katsikas,
S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp. 440–457. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-45744-4 22

17. Xu, Y., Cui, W., Peinado, M.: Controlled-channel attacks: deterministic side chan-
nels for untrusted operating systems. In: Proceedings of the 36th IEEE Symposium
on Security and Privacy (Oakland). IEEE, May 2015

https://doi.org/10.1109/TCC.2016.2525991
https://doi.org/10.1109/TCC.2016.2525991
https://doi.org/10.1007/978-3-319-45744-4_22

ATCS Workshop

A Nature-Inspired Framework
for Optimal Mining of Attribute-Based

Access Control Policies

Masoud Narouei(B) and Hassan Takabi

Department of Computer Science and Engineering, University of North Texas,
Denton, TX, USA

Masoudnarouei@my.unt.edu, Takabi@unt.edu

Abstract. Even though attribute-based access control (ABAC) has
been applied to address authorization in areas such as cloud and inter-
net of things, implementing ABAC policies can become complex due
to the high expressiveness of ABAC specifications. In order to semi-
automate this process, several policy mining approaches have been pro-
posed that mostly derive ABAC policies from access request logs. These
approaches, however, do not take into account the existing ABAC policies
and attempt to define all policies from scratch, which is not acceptable
for an enterprise that already has an implemented ABAC system. Given
basic assumptions on how access control configurations are generated,
we first provide a formal definition of ABAC policy mining with minimal
perturbation that fulfills the requirements that enterprises typically have.
We then present an effective and efficient methodology based on particle
swarm optimization algorithm for addressing the ABAC policy mining
and ABAC policy mining with minimal perturbation problems. Exper-
imental results demonstrate that the proposed methodology is able to
generate much less complex policies than previous works using the same
realistic case studies. Furthermore, we perform experiments on how to
find an ABAC state as similar as possible to both the existing state and
the optimal state.

Keywords: Access control policy · Attribute-based access control ·
Policy engineering · Particle swarm optimization

1 Introduction

In attribute-based access control (ABAC), a subject’s request to perform an
operation on an object is granted or denied based on the attributes of the subject,
attributes of the object, environmental conditions, and a set of policies that are
specified in terms of those attributes and conditions [10]. The key difference
between ABAC and the other models of access control such as role-based access
control (RBAC) is the concept of policies, which express a complex Boolean rule
set and can evaluate many different attributes. For example, a subject is assigned
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 489–506, 2019.

https://doi.org/10.1007/978-3-030-37231-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_29&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_29

490 M. Narouei and H. Takabi

a set of attributes upon being employed by the organization (e.g., James, B is
a lecturer in the computer science department). An object is also assigned a
set of attributes upon being introduced to the system (e.g., a laboratory with
cloud service capabilities). The administrator then creates an ABAC rule using
the attributes of subject and object to control the set of operations that the
subject is allowed to perform on that object (e.g., all lecturers in the computer
science department can access cloud service capabilities). Migrating to ABAC
simplifies system implementation, in which hundreds of roles can be replaced
by just a few ABAC policies. While this enables flexibility in large enterprises
[10], implementing ABAC policies can become complex due to the existence
of an attribute management infrastructure and high expressiveness of ABAC
specifications. To reduce the complexity of policy specification, several policy
mining approaches have been proposed [13,25]. While these approaches aim to
semi-automate the construction of ABAC policies from available access control
information such as access logs, they do not take into account the existing ABAC
policies and attempt to define all policies from scratch, which is not acceptable
for an enterprise that already has an implemented ABAC system. Once an ABAC
model is in place, system maintenance becomes important as the system requires
regular updates to meet the new access requirements. For example, employees
may leave or move to a different department within the enterprise, new resources
may be added that need new permissions, some permission needs to be updated
to comply with new regulations, etc. Adopting a completely distinct ABAC
system and redefining policies may cause disruptions that prevent the enterprise
from functioning properly. In fact, migrating to a new set of policies should cause
as few disruption as possible. We aim to address this issue by looking for a new
set of ABAC policies that are as similar as possible to both the existing ABAC
state (current set of policies) and the optimal ABAC state (set of policies that
cover all old and new permission requirements).

We first provide a formal definition of ABAC policy mining with minimal per-
turbation and then present a nature-inspired algorithm based on particle swarm
optimization (PSO) for solving the ABAC policy mining and ABAC policy min-
ing with minimal perturbation problems. Furthermore, we propose a global opti-
mization function (GOF) and perform experiments to facilitate migrating to a
new ABAC state with the goal of minimizing possible disruptions to the system.
This methodology can also be helpful for organizations that want to adopt an
already implemented ABAC from a different organization. To the best of our
knowledge, there is no work in the literature that addresses how to update an
ABAC state with minimal perturbation and this is the first report on doing so.
The contributions of this paper are hence three-fold:

– We provide a formal definition of ABAC policy mining with minimal pertur-
bation.

– We propose a nature-inspired mechanism based on PSO algorithm in order
to effectively and efficiently mine ABAC policies.

– We propose a methodology to find a new ABAC state as close as possible to
both the current ABAC state and the optimal state.

A Nature-Inspired Framework for Optimal Mining of ABAC Policies 491

The rest of the paper is organized as follows: An overview of the previous litera-
ture is presented in Sect. 2. We formalize the problem of mining ABAC policies
with minimal perturbation in Sect. 3, followed by the explanation of the algo-
rithm and its components in Sect. 4. The experiments, results, and discussions
are then presented in Sect. 5. Section 6 concludes the paper.

2 Related Work

The problem of mining ABAC policies from logs was first investigated in [25].
The authors presented an algorithm that iterates over tuples in a user-permission
relation extracted from the logs, uses selected tuples as seeds for constructing
candidate rules, and attempts to generalize each candidate rule to cover addi-
tional tuples in the user-permission relation. Medvet et al. proposed a multi-
objective evolutionary approach based on genetic operators for learning ABAC
policies [13]. Using an iterative process, they executed an evolutionary search,
where all the rules in the population were updated based on genetic operators
(mutation and crossover). Iyer and Masoumzadeh proposed another algorithm
based on concepts adopted from the PRISM rule mining algorithm to mine
ABAC policies that may contain both positive and negative authorization rules
[11]. Most recently, Cotrini et al. proposed Rhapsody, an ABAC mining algo-
rithm that mines a rule if and only if the rule covers a significant number of
requests, its reliability is above a given threshold, and there is no equivalent
shorter rule [4]. The proposed algorithm avoids mining overly-permissive rules
by using reliability, a new rule quality measure, to guide the mining of rules.

Das et al. investigated the problem of policy adaptation for ABAC. They
defined the policy adaptation as the problem of assigning proper values to subject
attributes with respect to a given set of desired accesses [5], and presented a
migration path in which an organization adapts to the ABAC policy of another
organization with which it enters into a collaboration for data sharing.

Regarding measuring the goodness of RBAC state, literature has provided
some reports. Zhang et al. proposed a heuristic algorithm for role mining, which
modeled an RBAC state as a graph and considered the role mining problem as
a graph optimization problem [27]. Their algorithm starts with an initial RBAC
state and iteratively improves the system using pairs of roles such that merging or
splitting the two roles will result in a graph with a lower cost. Vaidya et al. defined
the minimal perturbation as the “problem of discovering an optimal set of roles
from existing user permissions that are similar to the currently deployed roles”
[22]. They proposed a heuristic solution based on previously developed FastMiner
algorithm [23] and computed the similarity or distance between two roles as well
as between two sets of roles using the Jaccard Coefficient. Takabi et al. proposed
StateMiner, a heuristic solution to find an RBAC state as similar as possible to
both the existing RBAC state and the optimal state. They formally defined the
problem of mining a role hierarchy with minimal perturbation and introduced
two measures: a measure for goodness of an RBAC state and a measure for
minimal perturbation [21].

492 M. Narouei and H. Takabi

While mining ABAC policies from natural language documents have not been
extensively investigated in the literature, there have been some reports that
discuss extracting ABAC policies from natural language documents. Narouei
et al. proposed two methodologies based on recurrent neural networks [15] and a
combination of multiple natural language processing techniques [14] in order to
identify access control policy (ACP) sentences from non-ACP sentences. Then,
they used semantic role labeling (SRL) technique to extract access control pol-
icy elements (subject, object, action) from ACP policy sentences [16,17]. Most
recently, Das et al. discussed a hybrid approach toward policy engineering that
used entropy and frequency to construct an ABAC policy [6]. An essential step
towards automatically converting ACP sentences to ABAC policies is the extrac-
tion of attributes and environment conditions from policy documents. Das et al.
presented an ABAC policy mining algorithm that considered the environmen-
tal attributes and their associated values while forming the rules [7]. They used
Gini impurity to form the rules, which helped minimize the number of rules
in the generated policy. Narouei et al. proposed a top-down policy engineer-
ing framework for ABAC where they briefly discussed attribute extraction and
how to represent an ABAC policy using the extracted subject, object, and envi-
ronmental attributes [15]. Then, Alohaly et al. [1] proposed the first evaluated
effort, leveraging natural language processing (NLP), relation extraction (RE)
and machine learning (ML) techniques to automate the attributes extraction
task of the ABAC policy authoring lifecycle [3].

3 The Problem of ABAC Policy Mining with Minimal
Perturbation

In this section, we provide a formal definition of ABAC policy mining with
minimal perturbation and introduce two measures: a measure of goodness and a
measure of perturbation for an ABAC state. We consider the same ABAC policy
language described in [26] and further considered in [13]. In this language, U
refers to the set of users, R refers to the set of resources, O refers to the set of
operations, Au is the set of user attributes, Ar is the set of resource attributes,
du is the user attribute data, dr is the resource attribute data, UAE is the
user attribute expression, and RAE is the resource attribute expression. More
information about the policy languages can be found in the original report [26].

3.1 Policy Mining Problem

The input to the problem of mining ABAC policies with minimal per-
turbation is a set of users U , a set of resources R, a set of opera-
tions O, attribute data ATT = 〈Au, Ar, du, dr〉, a current ABAC configu-
ration π = 〈U,R,O,Au, Ar, du, dr, Rules〉, a user-permission relation ρ′ =
〈U ′

, R
′
, O

′
, UPR

′〉 indicating the new permission requirements, and depending
on its availability, top-down information (TDI = 〈A′

u, A
′
r, d

′
u, d

′
r〉). TDI is the

information about the new users and resources such as their attributes, and can

A Nature-Inspired Framework for Optimal Mining of ABAC Policies 493

includes, for instance, department, affiliations, or location of the users. We infer
that UPR′ can be expressed as UPR′ ⊆ U ′ × R′ × O′, where U

′
can include

some members of U and potentially introduces new members. R
′

and O
′

are
defined similarly. We define U

′′
= U ∪ U

′
, where U

′′
is the union of both U

and U
′
, similarly, R

′′
= R ∪ R

′
, O

′′
= O ∪ O

′
, A

′′
u = Au ∪ A

′
u, A

′′
r = Ar ∪ A

′
r,

d
′′
u = du ∪ d

′
u, and d

′′
r = dr ∪ d

′
r.

Definition 1 (ABAC Policy Mining Problem). Given an existing ABAC
state π = 〈U,R,O,Au,Ar, du, dr,Rules〉, find a new ABAC state γ =
〈U ′′

, R
′′
, O

′′
, Au

′′
, Ar

′′
, du

′′
, dr

′′
, Rules

′′〉 that is consistent with user-permission
relation ρ′ accompanied by TDI and is as close as possible to the existing ABAC
state π. Rules

′′
is a new set of ABAC policies that includes Rules and possibly

introduces new rules to support the new user-permission relation configurations
ρ′. The ABAC state is consistent with ρ′ if every user in π has the same set of
authorized permissions as in γ.

3.2 A Measure for Goodness of an ABAC State

Given an existing ABAC state π, a user-permission relation ρ′, and possibly
TDI, many ABAC states may be consistent with π that cover ρ′. We need to have
a measurement of how good an ABAC state is in order to select among them.
[26] used weighted structural complexity (WSC) as the policy quality metric in
order to measure the quality of mined ABAC policies. WSC is described as the
weighted sum of the number of elements in the policy. Formally, [26] described
WSC as Eq. 1:

WSC(e) =
∑

a∈attr1(e)

|e(a)| +
∑

a∈attrm(e),a∈e(a)

|s|

WSC(〈eu, er, O, c〉) = w1WSC(eu) + w2WSC(er) + w3|O| + w4|c|
(1)

where |s| is the cardinality of set s. We adopt the same definition of WSC for
an ABAC policy, which is defined as the sum of the WSC of all the rules in
that policy, to measure the goodness of an ABAC state. For the experiments, we
used the same weights (wi = 1); however, these weights can be adjusted based
on specific needs.

3.3 A Measure for Minimal Perturbation.

In order to evaluate whether the new ABAC state is as close as possible to the
initial ABAC state, we need to measure perturbation. In other words, we need
to measure how similar the new ABAC policies are to the initial ABAC policies.
In the following sections, we will define a similarity measure for policies that will
consider both syntactic and semantic similarities.

494 M. Narouei and H. Takabi

Syntactic Similarity. Measures the fraction of conditions, constraints, and
actions that rules or policies have in common. Xu and Stoller described syntactic
similarity of rule sets Rules1 and Rules2 as the average, over rules ρ in Rules1,
of the syntactic similarity between ρ and the most similar rule in Rules2 [26].
They further defined syntactic similarity of policies π1 and π2 (Syn(π1, π2)) as
the maximum of the syntactic similarities of the sets of rules in the policies,
considered in both orders. We adopt the same definition for syntactic similarity
with the assumption that Rules1 is the larger rule set.

Semantic Similarity. We adopt the same definition of semantic similarity
of two policies as described in [26], which aims to measure the fraction of
requests that both policies accept. First, we define accepted requests of rule
r1, accepted(r1), as the number of requests that are accepted by rule r1. Then
we expand this definition to the accepted requests of policy π1, accepted(π1) as
the number of requests that are accepted by all rules in policy π1, as presented
in Eq. 2:

For any policy π1, we define accepted requests of π1 as

accepted(π1) =
∑

i∈π1

accepted(ri) (2)

Using Eq. 2, we define the semantic similarity of policies π1 and π2 as Eq. 3:

Sem(π1, π2) =
∣∣∣∣
accepted(π1) ∩ accepted(π2)
accepted(π1) ∪ accepted(π2)

∣∣∣∣ (3)

Policy Similarity. We define the similarity between policies as follows:

Definition 2 (Policy Similarity). For any two policies π1 and π2, their sim-
ilarity is defined as Eq. 4:

sim(π1, π2) = w1 × Syn(π1, π2) + w2 × Sem(π1, π2) (4)

where Syn is the syntactic similarity of policies and w1 + w2 = 1. We consider the
weights as w1 = w2 = 1/2 for the experiments, giving equal weights to both syn-
tactic and semantic similarities. However, these weights could be adjusted based
on the requirements. When two policies are identical with regards to all conditions,
constraints, and actions, their similarity is 1, and when two policies have mutually
exclusive conditions, constraints, and actions, their similarity is 0.

Global Optimization Function. Takabi et al. defined the global optimization
function (GOF) for RBAC with the goal of (1) minimizing the WSC of the
resulting RBAC state, and (2) maximizing the similarity between identified roles
and the existing roles [21]. We expand their definition for the problem of mining
ABAC policies with minimal perturbation as follows:

A Nature-Inspired Framework for Optimal Mining of ABAC Policies 495

Definition 3 (Global Optimization Function). Given a weighted structural
complexity, wsc, of an ABAC state, a new weighted structural complexity of an
updated ABAC state, wsc′, and a similarity measure, sim, between two policies
πcurrent (current ABAC state) and πnew (updated ABAC state), GOF is defined
as Eq. 5:

GOF (wsc,wsc′, sim(πcurrent, πnew))
= (1 − wf) × (wsc/wsc′) + wf × sim(πcurrent, πnew)

(5)

where wf ∈ [0, 1] is a user defined weighting factor for similarity. As the new
ABAC state is the result of updating the initial ABAC state with some new
rules that cover new permission requirements, we tend to minimize the ratio of
wsc′/wsc. In this formula, if the wf = 0, GOF (wsc, sim) = wsc/wsc′, which
means the only important issue is the ratio of weighted structural complexities. In
other words, we do not care about how similar the new ABAC state is compared
to the initial one. Also, choosing wf = 1 yields GOF (wsc, sim) = sim, which
means we only care about the similarity of the new ABAC model to the initial
one. Choosing the proper wf can also control the level of over-assignments1 and
under-assignments2 introduced to the system. The higher the wf , the higher
the emphasize is on choosing similar rules. This will reduce the chances of intro-
ducing new over-assignments and under-assignments as the new rules will have
many elements in common with the current rules and hence there will be less
perturbation. We will analyze this issue in future works. Finally, we define the
problem of mining ABAC policies with minimal perturbation as follows:

Definition 4 (The problem of Mining ABAC Policies with Minimal
Perturbation). Given an existing ABAC state π = 〈U,R,O,Au,Ar, du, dr,
Rules〉, and a user-permission relation ρ′ = 〈U ′, R′, O′, UPR′〉 accompanied by
TDI = 〈A′

u, A
′
r, d

′
u, d

′
r〉, find a new ABAC state γ = 〈U ′′

, R
′′
, O

′′
, Au

′′
, Ar

′′
, du

′′
,

dr
′′
, Rules

′′〉 consistent with UPR′ such that it maximizes GOF (wsc,wsc′,
sim(πcurrent, πnew)).

Our goal is to maximize the GOF so that we can find an updated ABAC state
as close as possible to the existing one and the optimal one. In other words, an
updated ABAC state that does not introduce many over-assignment and under
assignments.

4 Methodology

In its most basic terms, optimization is a mathematical discipline that concerns
with finding the best solution, if it is possible, from all feasible solutions. Many
real-world problems such as policy mining 3 have various solutions and sometimes
1 An over-assignment is when a permission is inappropriately granted to a user.
2 An under-assignment is when a user lacks a permission that he or she should be

granted.
3 Identifying a set of policies that can satisfy a number of requests.

496 M. Narouei and H. Takabi

an infinite number of solutions may be possible. For such problems, optimization
can be achieved by finding the best solution from an infinite number of solutions
in terms of some performance measure [2]. While mathematical optimization
techniques such as linear programming and dynamic programming have been
successful in addressing optimizations problems with few variables, they often
fail (or reach local optimum) in solving NP-hard problems with large number
of variables and non-linear objective functions [12]. To overcome these issues,
evolutionary-based algorithms have been proposed for finding near-optimum
solutions [8]. There are two major categories of optimization problems, namely
discrete optimization and continuous optimization. In a continuous optimization
problem, the variables used are required to be continuous variables (i.e. chosen
from a set of real values between which there are no gaps). In discrete optimiza-
tion, on the other hand, some or all of the variables used are restricted to be
discrete variables (i.e. assume only a discrete set of values, such as the integers).
As policy mining problem is restricted to a finite set of users, resources, and
operations, it is categorized as a discrete optimization problem.

Medvet et al. proposed an evolutionary approach based on genetic algorithm
(GA) for learning ABAC policies from sets of authorized and denied access
requests [13]. They presented an incremental strategy for learning a policy by
learning single rules, each one focused on a subset of requests. Their methodol-
ogy used genetic operators (mutation and crossover) and was able to deal with
complex case studies. However, in a discrete optimization setting, it has been
shown that PSO algorithm generally outperforms most other algorithms (e.g.
GA) in terms of success rate, solution quality [8], and processing time [18]. A
particle in PSO is analogous to a chromosome in GA. However, as opposed to
GA, the evolutionary process in PSO is not solely based on creating new solu-
tions, but rather modifying the existing solutions to become a more desirable
solution set. In other words, each particle only evolves its social behavior and
accordingly its movement towards the desired destination [19].

In this paper, we propose a heuristic method based on PSO algorithm to
solve the policy mining problem. In PSO, each solution simulates a ‘bird’ in
the flock and is called a particle. As a flock of birds search for food, each bird
communicates with the other birds and locates the bird that is closest to the
food. Then, the bird moves towards that bird using a velocity that depends
on its current location. This process repeats until the flock reaches the desired
destination (food). Similarly, each particle moves in the problem search space
looking for the closest position to the optimal solution, and over time adjusts
its position according to its own experience (i.e. the best position it reached
in the past) as well as other particles. Hence, each particle utilizes both social
interaction or global search (i.e. the experience of other particles around it)
as well as local search (i.e., its self-experience), attempting to balance both
exploration and exploitation.

Throughout the search process, each particle considers the following three
variables in an n-dimensional space:

A Nature-Inspired Framework for Optimal Mining of ABAC Policies 497

– Current position: Xi = (xi1, xi2, ..., xin)
– Best previous position: PBest = (pi1, pi2, ..., pin)
– Velocity: Vi = (vi1, vi2, ..., vin)

where the velocity for particle i, Vi, represents the distance that the particle
needs to travel in order to get to the new desired location. In each iteration,
each particle updates its velocity according to the Eq. 6:

New Vi = ω × current Vi + C1 × rand() × (PBest − Xi)
+ C2 × rand() × (GBest − Xi)

(6)

where GBest represents the global search elements, the position of the best par-
ticle among the entire population. c1 and c2 are positive constant parameters
that control the maximum step size the particle can do (usually c1 = c2 = 1),
and rand() is a random functions with a range of [0, 1]. The inertia weight, ω,
is a user-specified parameter proposed by Shi and Eberhart [19] that controls,
alongside c1 and c2, the impact of the previous history of velocities on the current
velocity. ω is intended to balance the global search and the local search, where
a larger ω puts more weight towards exploration (searching new area) while a
smaller ω prefers exploitation (fine-tuning the current search area). ω alongside
c1 and c2 are generally called “learning factors” and can be updated throughout
the circulation of the algorithm.

Using the new velocity Vi, particle i adjusts its position using Eq. 7:

New Xi = current Xi + New Vi (7)

This process repeats until a stopping criteria is satisfied. Throughout the pro-
cess, the performance of each particle is calculated based on a fitness function,
which is usually proportional to the cost function associated with the problem [20].

4.1 A Particle Swarm Optimization Algorithm for ABAC Policy
Mining

Similar to [13], we adopt a divide-and-conquer strategy [9] in order to build an
ABAC policy. Given a problem instance π = 〈U,R,O,Au,Ar, du, dr〉 and a num-
ber of input requests UP = U ×R×O in the form of 〈user, resource, operation〉,
our methodology first attempts to create an initial population of particles based
on the requests in UP , where each particle is a rule accepting each request in UP .
Considering the following request in UP from one of the case-studies considered
in this research4:

– u = 〈uid = stu4, position = applicant〉
– r = 〈rid = app5, student = stu4, type = application〉
– o = 〈checkStatus〉

4 University case-study.

498 M. Narouei and H. Takabi

The corresponding rule ρ generated from this request will be:

ρ = 〈{position = applicant} ∧ {student = stu4 ∧ type = application},

{checkStatus}, {}〉.

We execute the PSO algorithm, where at each iteration, each particle
attempts to update its position based a new updated Velocity V . When all the
population have updated their positions (end of a cycle), we rank all particles
according to the number of requests from UP that they accept (the fitness func-
tion). We then pick the particle ρ that accepts the highest number of requests,
and add it to the set of new ABAC policies. Finally, we exclude all the requests
that ρ accepts from the UP and repeat the process on the new smaller set of
UP . This process continues until there is no more requests remaining in UP .
The overall process is illustrated in Algorithm 1.

There are two versions of the POS algorithm based on the neighborhood
topology used to exchange experience among particles: GlobalBest and LocalBest.
In the GlobalBest model, the neighborhood of the particle is the entire swarm.
In the LocalBest model, however, a swarm is divided into overlapping neighbor-
hoods of particles and each particle looks at its own neighborhood to find its
neighborhood best particle [24]. In order to take advantage of both topologies,
we incorporated both in the velocity function. Instead of updating the velocity
based on all three parameters (global best, local best, previous best) using the
adjustable weighs in the original formula (Eq. 6), we randomly pick one of the
parameters and update the velocity based on it. Note that to update using the
LocalBest parameter, we chose a neighbourhood of 12 rules around the current
rule. We verified experimentally that variations in this neighbourhood value do
not cause significant difference in the results. Finally, we introduce a new param-
eter called requestLimit. This parameter ensures the quality of the final policy
as after each iteration, for a rule to be chosen, it has to at least satisfy a minimum
requestLimit number of requests.

The details of the velocity algorithm are illustrated in Algorithm 2. Note
that we used the randomsubset() function instead of adding/removing all the
elements that are difference between two rules r and y. This is because few of
the rules contained a large number of some elements such as operations (due to
random generation of some rules) and adding all those elements to the updated
rule would lead to more generalized rules (rules that accept over-assignments).

5 Experiments

The evaluation consists of two independent experiments. We first compare the
performance of the proposed PSO algorithm with the GA, proposed by [13], with
respect to mining ABAC policies. We then analyze the framework, described in
Sect. 3, in updating an ABAC model using a new set of permission requirements.
For the experiments, we used the case studies introduced in [25]. We considered

A Nature-Inspired Framework for Optimal Mining of ABAC Policies 499

Algorithm 1. Particle Swarm Optimization
1: procedure PSO (toAcceptRequests)
2: Population ← InitPopu(toAcceptRequests) → Initialize Population
3: Rules ← []
4: for all x ∈ Population do → Initialize parameters
5: x ← initParameters() → fitness, previous best rule, etc.
6: end for
7: gbr ← GetGlobalBest(Population) → Find global best particle
8: while toAcceptRequests.isEmpty() do
9: toRemoveRequests ← []

10: for all r ∈ Population do
11: Choice ← Random(3) → Randomly pick how to update velocity
12: if Choice = GlobalBest then → IF pick is based on global best
13: Vr = velocity(r, gbr);
14: else if Choice = LocalBest then → IF pick is local best
15: LocalRules ← []
16: shift ← 6 → Initialize local neighbourhood
17: minIndex ← rindex − shift
18: maxIndex ← rindex + shift
19: LocalRules ← Population[minIndex : maxIndex]
20: lbr ← GetLocalBest(LocalRules) → Find local best particle
21: Vr = velocity(r, lbr);
22: else if Choice = PreviousBest then → IF pick is Previous best
23: Vr = velocity(r, rpbr);
24: else
25: Vr = 0; → Do not update
26: end if
27: r′ = r + Vr → Update the rule based on the new velocity
28: if r′! = r then → IF the rule is updated
29: if r′ > r′

pbr then → IF new rule is better than previous best:
30: r′

pbr ← r′ → replace previous best with the new rule
31: end if
32: if r′ > gbr then → IF new rule is better than the global best:
33: gbr ← r′ → replace global best with the new rule
34: end if
35: Population.remove(r) → Remove the old rule
36: Population.add(r′) → Add the new rule to the population
37: end if
38: end for
39: newRule = FindBestRule(Population) → Find the best rule
40: toRemoveRequests ← SatisfyRequests(newRule) → Get all

requests that are satisfied by the new rule
41: if toRemoveRequests.size() ≥ requestLimit then
42: toAcceptRequests.removeAll(toRemoveRequests)
43: rules.add(newRule)
44: end if
45: end while
46: return rules
47: end procedure

500 M. Narouei and H. Takabi

Algorithm 2. Velocity
1: procedure Velocity(r,y) → y is the rule by which x will be updated
2: Component ← Random() → Randomly pick a component of the rule to

update: e.g. operation, constraint, UAE, RAE
3: if Component = operation then → IF pick is operation
4: O1 ← Ops(r) − Ops(y)
5: O2 ← Ops(y) − Ops(r)
6: if O1 > 0 then → IF the current rule has elements in difference
7: Ops(r) ← Ops(r)− randomSubset(O1) → remove a random sub-

set of the elements in difference
8: else if O2 > 0 then → IF updating rule has elements in difference
9: Ops(r) ← Ops(r) + randomSubset(O2) → add a random subset

of elements in difference to the rule
10: else
11: Ops(r).add(Random(ops)) → add a random operation to the rule
12: end if
13: else if Component = constraint then → IF pick is constraint
14: ... → Similar to operation
15: else if Component = UAE then → IF pick is user attribute expression
16: uae1 ← UAE(r) − UAE(y)
17: uae2 ← UAE(y) − UAE(r)
18: if uae1 > 0 then
19: UAE(r) ← UAE(r) − randomSubset(uae1)
20: else if uae2 > 0 then
21: UAE(r) ← UAE(r) + randomSubset(uae2)
22: else
23: UAE(r).add(Random(uae)) → add a random user attribute
24: end if
25: else if Component = RAE then
26: ... → Similar to UAE
27: end if
28: end procedure

four hand-crafted policies and one of the synthetic (i.e., pseudo randomly gen-
erated) policies. Each case study includes a set of users U , a set of resources R,
a set of operations O, a set of user attributes AU , a set of resource attributes
AR, and a set of rules P0. The hand-crafted policies contain a few instances of
each type of user and resource. For example, there are two academic depart-
ments, several students, a few faculty, etc. in the University case study. On
the other hand, synthetic policies include a much larger number of users and
resources. The details of each case study is presented in Table 1. Note that for
the University synthetic case study, there are 11 operations listed, instead of
9. We added two random operations to this case study because in the second
experiment, we wanted to generate new permission requirements that have not
been seen by the system. In this table, SA represents the portions of requests
(from all possible requests, i.e., S = U ∗ R ∗ O) that are accepted by P0 and SD

represents the portions that are rejected by P0.

A Nature-Inspired Framework for Optimal Mining of ABAC Policies 501

Table 1. Details of hand-crafted and synthetic case studies. |P0| is the number of
manually written rules and UP is the total number of generated requests.

Case study |P0| |U | |R| |O| |AU | |AR| |SA| SD UP WSC(P0)

Healthcare 9 21 16 3 6 7 51 957 1008 33

Online video 6 12 13 1 3 3 78 78 156 20

Project mgmt 11 19 40 7 8 6 189 5131 5320 49

University 10 22 34 9 6 5 168 6564 9732 37

University (synthetic) 10 168 315 11 6 5 3633 575022 578655 37

5.1 Comparison of PSO Performance with the State of the Art

In order to have a direct comparison with the most recent work [13], we exe-
cuted our approach on the same four hand-crafted case studies that they used (see
Table 1). For the synthetic case studies, since [13] used a smaller random sample
(|SD| = 5|SA|) of these policies, we were not able to compare our methodology
as generating a new random sample will not yield the same samples that they
used. To perform the experiments, we used the same population size (npop = 100)
and repeated the experiments three times to make sure the results are consistent.
Throughout the experiments, we also verified that a value of requestlimit = 15
(see Sect. 4.1) yields the highest quality rules. The experimental results are pre-
sented in Table 2. All of the experiments were performed on a 2 GHz Intel Core
i7 PC with 8 GB of physical memory. The results are presented with respect to
WSC(P0)
WSC(P)

, where WSC(P0) refers to the WSC of the original policies (presented

in Table 1) and WSC(P) refers to the WSC of the generated policies. A value
greater than one indicates that the generated policies are less complex than the
original policies. The table also presents the number of rules generated, the total
evaluations (the total number of times the rules were updated and new rules cre-
ated), and the execution time. Similar to [13], our approach was able to generate
policies without special attributes rid and uid as these attributes make policies
less general. Overall, our methodology was able to produce a smaller set of poli-
cies that are much less complex and redundant than the baseline and [13], using
fewer number of evaluations and a faster execution time. One reasons for the bet-
ter performance of PSO especially in terms of less number of evaluations and faster
performance is because in PSO, rules are updated based on global, local, and pre-
vious best rules, which make the rules lean towards the better rules. In comparison,
in the genetic algorithm, each rule goes through a mutation or a crossover oper-
ation with another randomly chosen rule, which means more cycles of evaluation
is needed to find more favorable rules. Compared to the genetic algorithm, our
approach has fewer parameters to tune (only population size and requestlimit).
In order to analyze the effects of using different values for npop, we performed

experiments with respect to
WSC(P0)
WSC(P)

using varying values of npop (100, 200,

..., 2000). The results are presented in Fig. 1 where Green depicts the perfor-
mance on the University case study while blue is on the healthcare. While [13]

502 M. Narouei and H. Takabi

mentioned that reasonable variations in parameters do not cause significant varia-
tions in their results, it is clear that our methodology tends to achieve much higher
performances using larger population sizes.

Table 2. Comparison with genetic methodology.

Case study neval
WSC(P0)

WSC(G)

WSC(P0)

WSC(P)
Rules(G) Rules(P) Evals(G) Evals(P) Time(G) Time(P)

Healthcare 500 1.07 1.375 11 4 5536 3101 1.2 0.172

2500 1.18 9 19776 4

5000 1.18 9 22691 5.3

Online video 500 1 1.82 6 2 2768 310 0.6 0.067

2500 1 6 5215 0.8

5000 1 6 7715 1.1

Project mgmt 500 0.96 1.26 13 10 6646 8622 3.5 0.397

2500 1.06 11 24368 14.7

5000 1.06 11 27791 22.2

University 500 0.95 1.02 10 9 5904 6706 3.1 0.318

2500 0.98 10 22846 14.1

5000 1 10 26487 21.8

0100250 500 1,000 1,500 2,000
0

0.5
1

1.5
2

2.5
3

3.5
4

5

6

7

Population size

W
S
C
(P

0
)

W
S
C
(P

)

Fig. 1. Trade-off between population size and
WSC(P0)

WSC(P)
. Green is the performance on

the University case study while blue is the performance on the healthcare case study
(Color figure online)

A Nature-Inspired Framework for Optimal Mining of ABAC Policies 503

5.2 Updating an ABAC Model

As motioned in Sect. 1, an ABAC system requires regular updates to meet the
new access requirements. Adopting a completely new ABAC system and redefin-
ing all policies from scratch may cause disruptions that prevent the enterprise
from functioning properly. So the goal is to search for a new set of policies
that are as similar as possible to both the existing ABAC state and the opti-
mal ABAC state. For this experiment, we considered both hand-crafted and
synthetic policies of the University case study. This case study has a larger
number of hand-crafted rules and more variety of users, resources, and opera-
tions. We considered the hand-crafted policies as the current ABAC state and
then generated random permission requirements using the synthetic policies,
which serve as the new updates introduced to the system. While the original
case study includes nine operations, we manually added two new random oper-
ations to this set in order to come up with unique permission requirements, not
seen by the current ABAC model. To generate the new permission requirements,
we first considered all possible requests from synthetic University case study,
i.e., S′ = U ′×R′×O′, divided into |SA|′ and |SD|′. We excluded from this set, all
those requests that are accepted by the current ABAC state, respectively. Out
of the remaining ∼500K requests, we randomly picked 50K requests as the new
updates (UP ′). Instead of creating a new population solely based on UP ′, we
first initialized the population based on the current policies in the initial ABAC
state. Even though the current ABAC state has only nine rules, that will help
convey the current settings and organizational structures to the new policies,
which will help create rules that are more similar to the current rules. We then
added new random rules based on requests in UP ′ to create an initial popula-
tion of size npop = 500. We chose 500 as according to the Fig. 1, a population

of 500 resulted in the highest value of the
WSC(P0)
WSC(P)

for University case study.

We executed the PSO algorithm and each time a new rule was generated, we
added it to the initial ABAC model and calculated the perturbation using GOF .
If the new ABAC model did not perturb more than a pre-specified threshold,
we continued with more iterations until we exceeded the threshold or all the
new permission requirements were covered. Evaluation results are presented in
Table 3. As the Table 3 illustrates, defining the proper value for GOF plays the
key role in generating a new ABAC state that is as similar as possible to both
current ABAC state and optimal ABAC state. A lower GOF value means we
are covering more permission requirements. However, this leads to generating an
ABAC state that is not very similar to the current state, potentially introducing
more overhead (over-assignments) to the system. A higher value, however, leads
to covering fewer permission requirements, but, resulting in a more stable ABAC
state. GOF can be used as a measure for automated/manual policy mining as we
can run the algorithm as long as it does not exceed the threshold. Once the new
ABAC state hit the threshold, we can resume rule generation manually with a
much smaller set of requests to satisfy.

504 M. Narouei and H. Takabi

Table 3. GOF values while updating an ABAC state. ABAC is size of the final ABAC,
WSC is the WSC of the final ABAC, AcceptedRQ is the number of accepted requests,
and Remaining RQs is the number of remaining requests.

ABAC WSC Accepted RQ Remaining RQs Syntactic Semantic GOF

11 40.0 3600 46400 0.888 0.0445 0.696

12 43.0 3585 42815 0.866 0.0228 0.653

13 48.0 2350 40465 0.838 0.0173 0.599

14 53.0 3600 36865 0.818 0.0126 0.557

15 58.0 1880 34985 0.797 0.0110 0.521

16 63.0 1500 33485 0.784 0.0100 0.492

17 66.0 2425 31060 0.768 0.0087 0.474

18 70.0 3380 27680 0.753 0.0074 0.455

19 87.0 16553 11127 0.733 0.0043 0.397

20 91.0 1000 10127 0.721 0.0041 0.385

21 94.0 1000 9127 0.711 0.0040 0.376

22 98.0 1250 7877 0.702 0.0039 0.365

23 100.0 940 6937 0.693 0.0038 0.359

24 102.0 625 6312 0.686 0.0038 0.354

25 104.0 225 6087 0.683 0.0038 0.349

26 108.0 1106 4981 0.676 0.0037 0.341

27 110.0 656 4325 0.670 0.0036 0.337

28 120.0 3875 450 0.658 0.0033 0.319

29 126.0 450 0 0.648 0.0033 0.309

6 Conclusion and Future Work

In this paper, we focused on ABAC policy mining problem in scenarios that
there is already an ABAC system in place. We first defined the problem of min-
ing ABAC policies with minimal perturbation and then presented an effective
and efficient methodology based on PSO algorithm for solving the policy min-
ing task. Our methodology was able to produce a smaller set of policies that
are less complex than the baseline and related works, using a fewer number of
evaluations and faster execution time. Furthermore, we presented global opti-
mization function and experimentally presented how to find an ABAC state as
similar as possible to both the existing state and the optimal state. A limitation
of our current solution is the sole use of support as the fitness function, which
does not account for over-assignments and under-assignments. In the future, we
plan on incorporating new metrics to address the over-assignments and under-
assignments introduced using our methodology.

A Nature-Inspired Framework for Optimal Mining of ABAC Policies 505

References

1. Alohaly, M., Takabi, H., Blanco, E.: A deep learning approach for extracting
attributes of ABAC policies. In: Proceedings of the 23nd ACM on Symposium
on Access Control Models and Technologies, pp. 137–148. ACM (2018)

2. Antoniou, A., Lu, W.S.: The optimization problem. In: Antoniou, A., Lu, W.S.
(eds.) Practical Optimization, pp. 1–26. Springer, Boston (2007). https://doi.org/
10.1007/978-0-387-71107-2 1

3. Brossard, D., Gebel, G., Berg, M.: A systematic approach to implementing ABAC.
In: Proceedings of the 2nd ACM Workshop on Attribute-Based Access Control, pp.
53–59. ACM (2017)

4. Cotrini, C., Weghorn, T., Basin, D.: Mining ABAC rules from sparse logs. In: 2018
IEEE European Symposium on Security and Privacy (EuroS&P), pp. 31–46. IEEE
(2018)

5. Das, S., Sural, S., Vaidya, J., Atluri, V.: Policy adaptation in attribute-based access
control for inter-organizational collaboration. In: 2017 IEEE 3rd International Con-
ference on Collaboration and Internet Computing (CIC), pp. 136–145. IEEE (2017)

6. Das, S., Sural, S., Vaidya, J., Atluri, V.: Hype: a hybrid approach toward policy
engineering in attribute-based access control. IEEE Lett. Comput. Soc. 1(2), 25–29
(2018)

7. Das, S., Sural, S., Vaidya, J., Atluri, V.: Using Gini impurity to mine attribute-
based access control policies with environment attributes. In: Proceedings of the
23nd ACM on Symposium on Access Control Models and Technologies, pp. 213–
215. ACM (2018)

8. Elbeltagi, E., Hegazy, T., Grierson, D.: Comparison among five evolutionary-based
optimization algorithms. Adv. Eng. Inform. 19(1), 43–53 (2005)

9. Fürnkranz, J.: Separate-and-conquer rule learning. Artif. Intell. Rev. 13(1), 3–54
(1999)

10. Hu, V.C., et al.: Guide toattribute based access control (ABAC) definition and
considerations (draft). NIST Spec. Publ. 800(162) (2013)

11. Iyer, P., Masoumzadeh, A.: Mining positive and negative attribute-based access
control policy rules. In: Proceedings of the 23nd ACM on Symposium on Access
Control Models and Technologies, pp. 161–172. ACM (2018)

12. Løvbjerg, M.: Improving particle swarm optimization by hybridization of stochastic
search heuristics and self-organized criticality (2002)

13. Medvet, E., Bartoli, A., Carminati, B., Ferrari, E.: Evolutionary inference of
attribute-based access control policies. In: Gaspar-Cunha, A., Henggeler Antunes,
C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 351–365. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-15934-8 24

14. Narouei, M., Khanpour, H., Takabi, H.: Identification of access control policy sen-
tences from natural language policy documents. In: Livraga, G., Zhu, S. (eds.)
DBSec 2017. LNCS, vol. 10359, pp. 82–100. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-61176-1 5

15. Narouei, M., Khanpour, H., Takabi, H., Parde, N., Nielsen, R.: Towards a top-down
policy engineering framework for attribute-based access control. In: Proceedings of
the 22nd ACM on Symposium on Access Control Models and Technologies, pp.
103–114. ACM (2017)

16. Narouei, M., Takabi, H.: Automatic top-down role engineering framework using
natural language processing techniques. In: Akram, R.N., Jajodia, S. (eds.) WISTP
2015. LNCS, vol. 9311, pp. 137–152. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-24018-3 9

https://doi.org/10.1007/978-0-387-71107-2_1
https://doi.org/10.1007/978-0-387-71107-2_1
https://doi.org/10.1007/978-3-319-15934-8_24
https://doi.org/10.1007/978-3-319-61176-1_5
https://doi.org/10.1007/978-3-319-61176-1_5
https://doi.org/10.1007/978-3-319-24018-3_9
https://doi.org/10.1007/978-3-319-24018-3_9

506 M. Narouei and H. Takabi

17. Narouei, M., Takabi, H.: Towards an automatic top-down role engineering approach
using natural language processing techniques. In: Proceedings of the 20th ACM
Symposium on Access Control Models and Technologies, pp. 157–160. ACM (2015)

18. Salman, A., Ahmad, I., Al-Madani, S.: Particle swarm optimization for task assign-
ment problem. Microprocess. Microsyst. 26(8), 363–371 (2002)

19. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: The 1998 IEEE
International Conference on Evolutionary Computation Proceedings. IEEE World
Congress on Computational Intelligence, pp. 69–73. IEEE (1998)

20. Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization. In: Pro-
ceedings of the 1999 congress on Evolutionary computation, CEC 99, vol. 3, pp.
1945–1950. IEEE (1999)

21. Takabi, H., Joshi, J.B.: StateMiner: an efficient similarity-based approach for opti-
mal mining of role hierarchy. In: Proceedings of the 15th ACM Symposium on
Access Control Models and Technologies, pp. 55–64. ACM (2010)

22. Vaidya, J., Atluri, V., Guo, Q., Adam, N.: Migrating to optimal RBAC with mini-
mal perturbation. In: Proceedings of the 13th ACM Symposium on Access Control
Models and Technologies, pp. 11–20. ACM (2008)

23. Vaidya, J., Atluri, V., Warner, J.: RoleMiner: mining roles using subset enumera-
tion. In: Proceedings of the 13th ACM Conference on Computer and Communica-
tions Security, pp. 144–153. ACM (2006)

24. Wenbiao, Z., Yan, Z., Zhigang, M.: A link-load balanced low energy mapping and
routing for NoC. In: Lee, Y.-H., Kim, H.-N., Kim, J., Park, Y., Yang, L.T., Kim,
S.W. (eds.) ICESS 2007. LNCS, vol. 4523, pp. 59–66. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-72685-2 6

25. Xu, Z., Stoller, S.D.: Mining attribute-based access control policies from logs. In:
Atluri, V., Pernul, G. (eds.) DBSec 2014. LNCS, vol. 8566, pp. 276–291. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43936-4 18

26. Xu, Z., Stoller, S.D.: Mining attribute-based access control policies. IEEE Trans.
Dependable Secur. Comput. 12(5), 533–545 (2015)

27. Zhang, D., Ramamohanarao, K., Ebringer, T.: Role engineering using graph opti-
misation. In: Proceedings of the 12th ACM Symposium on Access Control Models
and Technologies, pp. 139–144. ACM (2007)

https://doi.org/10.1007/978-3-540-72685-2_6
https://doi.org/10.1007/978-3-662-43936-4_18

Author Index

Alagil, Ahmad I-472
Alashwali, Eman Salem I-341
Albahar, Marwan II-440
Al-Hashimi, Ali II-163
Alhazbi, Saeif I-549
Alvarez, Raquel II-47
Amin, Md Ali Reza Al II-205

Babun, Leonardo I-126
Bai, Bo I-171
Bakas, Alexandros II-472
Bortolameotti, Riccardo I-450
Burchfield, Timothy II-425
Burkhalter, Christopher I-235

Cao, Jiahao I-429
Chantem, Thidapat II-163
Chan-Tin, Eric I-386
Chen, Chi II-259
Chen, Ju II-454
Chen, Tao I-386
Chen, Tianyu II-89
Chen, Ting II-245
Chen, Yurong II-67, II-305
Chow, Edward I-365
Chu, Dawei I-511
Continella, Andrea I-450
Cui, Weiqi I-386

Dagher, Gaby G. I-569
Dagher, Gaby II-440
Deng, Yao I-23
Denney, Kyle I-126
Di Pietro, Roberto I-549
Ding, Jiahao I-257
Ding, Shaohua I-299
Doerr, Christian I-406
Dong, Xu II-394
Du, Kun II-3
Du, Xiaojiang I-105
Duan, Haixin II-3

Enişer, Hasan Ferit II-320
Erdin, Enes I-126
Errapotu, Sai Mounika I-257
Everts, Maarten I-450

Fan, Kefeng I-532
Fasllija, Edona II-320
Fu, Chenglong I-105

Gao, Lixin I-63
Gao, Xing II-440
Ge, Jing II-350
Ge, Ruihai I-490
Geng, Zhifeng II-3
Gerdes, Ryan II-163
Gianvecchio, Steven I-235
Gong, Xiaorui I-319
Gong, Yanmin I-257
Götzfried, Johannes II-224
Groß, Sascha II-335
Gu, Dawu I-23
Guizani, Mohsen I-105

Hammer, Christian II-335
Han, Zhu I-257
Hao, Shuang II-3
Hartel, Pieter I-450
Hasan, Kamrul II-146
Hassanzadeh, Amin II-146
He, Kai II-394
Hong, Jue II-394
Hou, Jing II-126
Hou, Yantian I-85, I-569
Hu, Keke II-108
Hu, Xunchao I-191

Jang, Jiyong I-278
Jiang, Jinghua II-394
Jonker, Willem I-450
Jung, Taeho II-425

Kamhoua, Charles II-205
Karl, Ryan II-425
Khatri, Tanya I-569
Kim, Beom Heyn (Ben) I-39
Kwak, Kyung Joon I-429

Lai, Xin I-532
Lan, Hongying I-235
Lan, Tian II-67, II-305
Lei, Yunsen II-273
Levenson, Jake II-47
Li, Chunchun I-365
Li, Fengjun I-511
Li, Husheng II-126
Li, Jason I-429
Li, Kai I-39, II-454
Li, Meng II-408
Li, Qi I-429
Li, Qun I-299
Li, Yingjiu II-184
Li, Yuping I-278
Li, Zhiqiang I-214
Li, Zhou II-3
Liang, Jinjin II-3
Liang, Zhuxun II-394
Lin, Jingqiang I-511, II-89
Lin, Xiaodong II-408
Liu, Baojun II-3
Liu, Daiping II-440
Liu, Guang II-3
Liu, Guangqi I-511
Liu, Mingxuan II-3
Liu, Tian II-365
Liu, Ximeng II-184
Liu, Xin II-350
Liu, Yao I-472
Liu, Yaping I-63
Liu, Yu II-26
Liu, Zhen I-23
Liu, Zhiqiang I-23
Long, Yu I-23
Lu, Can II-245
Luo, Mengxia I-319

Ma, Lichuan I-532
Ma, Xiaobo I-171
Ma, Yuan II-89
Martin, Andrew I-341
McDaniel, Patrick II-47

Meddahi, Ahmed II-287
Michalas, Antonis II-472
Mohamed, Amr I-105

Narouei, Masoud II-489
Nayak, Anup II-146
Neubaum, Andreas II-224
Nguyen, Truc D. T. I-3
Njilla, Laurent II-205

Oosthoek, Kris I-406
Ou, Xinming I-278
Oza, Pratham II-163
Ozcan, Fatma Rana II-245

Palutke, Ralph II-224
Pan, Miao I-257
Pattaranantakul, Montida II-287
Pei, Qingqi I-532
Peter, Andreas I-450
Podschwadt, Robert II-380
Prünster, Bernd II-320

Qu, Youyang I-532

Sciancalepore, Savio I-549
Shang, Ning II-350
Sheatsley, Ryan II-47
Shen, Peisong II-259
Shenefiel, Chris I-147
Shetty, Sachin II-146, II-205
Shu, Tao II-126, II-365
Shue, Craig A. II-26, II-273
Sillers, Andrew I-235
Smith, Ken I-235
Song, Houbing I-85
Song, Qipeng II-287
Squires, Matthew R. II-26
Srisa-an, Witawas I-214
Su, Xiaodong II-3
Sun, Jianhua I-147
Sun, Jun I-214
Sun, Kun I-147, I-429
Sun, Li II-126
Szalachowski, Pawel I-341

Takabi, Hassan II-380, II-489
Takeshita, Jonathan II-425
Tang, Qiang II-245

508 Author Index

Tang, Shuyang I-23
Tang, Yuzhe I-39, II-454
Taylor, Curtis R. II-26
Testa, Brian I-191
Thai, My T. I-3
Tian, Changbo I-490
Tian, Yanmei II-287
Tian, Yifan I-85
Tian, Yulong I-299
Tiwari, Abhishek II-335
Tosh, Deepak K. II-205
Tsutano, Yutaka I-214
Tuo, Yupeng I-490

Ullah, Sharif II-146
Uluagac, Selcuk I-126

Vai, Michael I-126
van Ede, Thijs I-450
Venkataramani, Guru II-67, II-305

Walls, Robert J. II-26
Wan, Peng-Jun I-63
Wang, An II-350
Wang, Boyang II-245
Wang, Licheng II-287
Wang, Qiongxiao I-511
Wang, Yongming II-108
Wang, Ziyu I-23
Wei, Xuetao II-245
Wu, Di II-245
Wu, Jieming II-394
Wu, Longfei I-105
Wu, Xinying II-89

Xiao, Jidong II-440
Xu, Fengyuan I-299
Xu, Jianliang I-39

Xu, Mingwei I-429
Xu, Shengmin II-184
Xue, Hongfa II-305

Yan, Qiben I-214
Yang, Can I-319
Yang, Guomin II-184
Yang, Hao II-3
Yang, Jing II-89
Yang, Liu II-394
Yang, Zijie I-429
Ye, Yuxiao II-3
Yin, Heng I-191
Yin, Tao I-490
Yu, Lei I-319
Yu, Shucheng I-85
Yuan, Jiawei I-85

Zeng, Qiang I-105
Zhang, Fengwei II-440
Zhang, Guoshuang II-350
Zhang, Haijun I-257
Zhang, Shuo I-63
Zhang, Xiaohui II-108
Zhang, Xiaokun I-511
Zhang, Yaoxue I-63
Zhang, Yinghui II-184
Zhang, YongZheng I-490
Zhang, Zaifeng II-3
Zhang, Zonghua II-287
Zhao, Rui I-365
Zhao, Shuang I-171
Zheng, Jilai I-23
Zhong, Sheng I-299
Zhu, Feng II-259
Zhu, Haojin I-63
Zhu, Liehuang II-350, II-408
Zou, Wei I-171

Author Index 509

	Preface
	Organization
	Contents – Part II
	Contents – Part I
	Deep Analytics
	TL;DR Hazard: A Comprehensive Study of Levelsquatting Scams
	1 Introduction
	2 Background
	3 Finding levelsquatting Domains
	3.1 System Overview
	3.2 Implementation of Checkers

	4 Evaluation
	5 Measurement
	5.1 Datasets
	5.2 Impact of Levelsquatting
	5.3 Infrastructure

	6 Characterization
	6.1 Types of Malicious Activities
	6.2 Visiting Strategies
	6.3 An Example of Fake Search Engine

	7 Browser UI Vulnerabilities
	8 Discussion
	9 Related Work
	10 Conclusion
	References

	Account Lockouts: Characterizing and Preventing Account Denial-of-Service Attacks
	1 Introduction
	2 Background and Related Work
	2.1 Other Application-Layer Availability Attacks
	2.2 Active Directory (AD)
	2.3 Middleboxes for Security

	3 System Overview
	3.1 Assumptions and Threat Model

	4 Characterizing the Account Lockout Problem
	4.1 Case Study: Identifying the Attack Surface in Production
	4.2 Case Study: Testing Account Lockouts in Production
	4.3 Characterizing the Risk with Internet Measurements

	5 Discussion of Potential Countermeasures
	5.1 Distinct Authentication Pools
	5.2 Protecting Requests from Residential Networks
	5.3 Supporting Private Usernames

	6 Evaluation of the Authentication Pools System
	6.1 Implementation and Experimental Setup
	6.2 Security Effectiveness
	6.3 Performance Evaluation

	7 Conclusion
	References

	Application Transiency: Towards a Fair Trade of Personal Information for Application Services
	1 Introduction
	2 Background
	2.1 Android OS Overview
	2.2 Sensitive Resource Access Control

	3 Application Transiency Design Goals
	4 Application Transiency Implementation
	4.1 Enforcing Transiency
	4.2 Making Transiency Intuitive
	4.3 Applying Transiency to Popular Applications
	4.4 Android Implementation: Transiency Launcher

	5 Evaluation
	5.1 Characterization of Market Applications
	5.2 Classification Through Google Play Categories
	5.3 Implementation Performance

	6 Case Study: Measuring Impact of Transiency on Data Collection
	6.1 Metis, the Knowledge Sharing App
	6.2 Data Collection: Transient vs. Non-transient

	7 Discussion
	8 Future Work
	9 Conclusion
	References

	CustomPro: Network Protocol Customization Through Cross-Host Feature Analysis
	1 Introduction
	2 Motivation
	3 System Overview
	4 Feature Identification
	4.1 Execution Tracing
	4.2 Cross-Host Packet Tainting
	4.3 Guided Symbolic Execution

	5 Feature Rewriting
	5.1 Instruction Identification
	5.2 Binary Rewriting
	5.3 Verification

	6 Implementation
	7 Evaluation
	7.1 Customizing OpenSSL
	7.2 Customizing MQTT

	8 Discussion
	9 Related Work
	10 Conclusion
	References

	Systematic Theory
	On the Security of TRNGs Based on Multiple Ring Oscillators
	1 Introduction
	2 Related Work
	3 Proposed Entropy Estimation Method
	3.1 Notation and Definitions
	3.2 Entropy Estimation for SRO-TRNG
	3.3 Probability Calculation for MRO-TRNG
	3.4 Lower Bound of Minimum Entropy for MRO-TRNG
	3.5 Lower Bound of Entropy for MRO-TRNG
	3.6 Approximate Lower Bound of Entropy
	3.7 Security Design Parameters

	4 Simulation Verification
	4.1 Verification of the Worst Case
	4.2 MRO-TRNG with Jitter-Free

	5 Hardware Verification on FPGA
	5.1 Phase Interlock
	5.2 Verification

	6 Conclusion
	A Appendix
	References

	Secrecy on a Gaussian Relay-Eavesdropper Channel with a Trusted Relay
	1 Introduction
	2 Preliminaries
	3 Lower Bounds on the Secrecy Capacity of the Gaussian Relay-Eavesdropper Channel
	3.1 Direct-Transmission Lower Bound
	3.2 Multi-hop Lower Bound
	3.3 Decode-Forward Lower Bound

	4 The Cut-Set Bound on the Secrecy Capacity
	5 Conclusion
	References

	Target Information Trading - An Economic Perspective of Security
	1 Introduction
	2 Related Work
	3 System Model and Problem Formulation
	4 Single Attacker Model
	4.1 Not Buy Information
	4.2 Buy Information
	4.3 Optimal Pricing Decisions of the Data Broker

	5 Competition Model
	5.1 Games of Attacking
	5.2 Games of Purchasing
	5.3 Optimal Pricing Decisions of the Data Broker

	6 Extension-Partial Information Model
	6.1 Games of Attacking
	6.2 Games of Purchasing
	6.3 Optimal Pricing Decisions of the Data Broker

	7 Conclusion
	References

	Cyber Threat Analysis Based on Characterizing Adversarial Behavior for Energy Delivery System
	1 Introduction
	2 Overview of Threat Indicators
	3 Framework
	3.1 Attack Graph and Action State Model
	3.2 Mapping to Technique-Tactics

	4 Path Complexity and Effort Estimation
	4.1 Vulnerable Component Risk
	4.2 Technique Priority Score
	4.3 Correlation Coefficient Calculation
	4.4 Hardness of a Path

	5 Implementation and Results
	6 Conclusion and Future Work
	References

	Bulletproof Defenses
	The Disbanding Attack: Exploiting Human-in-the-Loop Control in Vehicular Platooning
	1 Introduction
	1.1 A Motivating Example
	1.2 Related Work
	1.3 Organization

	2 System Model
	2.1 Vehicle and Platoon Models
	2.2 Threat Model

	3 Human-in-the-Loop Attacks
	3.1 Finding Optimal Disbanding Attack
	3.2 Simulation Setup
	3.3 Results

	4 Attack Mitigation
	4.1 Optimal Mitigation
	4.2 Efficient Heuristic Mitigation
	4.3 Results and Discussion

	5 Experimental Validation
	5.1 Hardware Setup
	5.2 Experimental Results

	6 Conclusion
	References

	Generic Construction of ElGamal-Type Attribute-Based Encryption Schemes with Revocability and Dual-Policy
	1 Introduction
	1.1 Contribution
	1.2 Outline

	2 Preliminaries
	2.1 Notations
	2.2 Bilinear Map
	2.3 Access Structure and Monotone Span Program
	2.4 Definition of ElGamal Type Cryptosystem
	2.5 Candidates of ElGamal Type Cryptosystem
	2.6 Tree-Based Revocation Mechanism

	3 Definition of Revocable ABE and Dual-Policy ABE
	3.1 Revocable ABE
	3.2 Security Model of RABE
	3.3 Definition of DP-ABE
	3.4 Security Model of DP-ABE

	4 Proposed Schemes
	4.1 Generic Construction of Revocable ABE
	4.2 Generic Construction of Parallel DP-ABE
	4.3 Generic Construction of Sequential DP-ABE

	5 Instantiations Based on ElGamal Type Cryptosystem
	5.1 Instantiations of RABE
	5.2 An Instantiation of Parallel DP-ABE
	5.3 An Instantiation of Sequential DP-ABE

	6 Efficiency Analysis
	7 Conclusion
	References

	Online Cyber Deception System Using Partially Observable Monte-Carlo Planning Framework
	1 Introduction
	2 Security Model
	2.1 Exploit Dependency Graph
	2.2 Deploy Fake Nodes
	2.3 POMDP Model

	3 Defender's Actions
	3.1 Utility Function
	3.2 Cost Function

	4 Online Deception Algorithm
	5 Experimental Results and Discussion
	6 Conclusion
	References

	SEVGuard: Protecting User Mode Applications Using Secure Encrypted Virtualization
	1 Introduction
	1.1 Contribution
	1.2 Related Work
	1.3 Outline

	2 Background
	2.1 Secure Encrypted Virtualization
	2.2 The KVM API

	3 Design of SEVGuard
	3.1 Architectural Overview
	3.2 Virtual Machine Layout
	3.3 Host Call Interface

	4 Implementation
	4.1 Control Flow Redirections
	4.2 System Call Trapping
	4.3 Reserved Guest Area

	5 Evaluation
	5.1 Correctness
	5.2 Performance

	6 Conclusion and Future Work
	6.1 Future Work
	6.2 Conclusion

	References

	Blockchains and IoT
	A Behavior-Aware Profiling of Smart Contracts
	1 Introduction
	2 Datasets
	3 Profiling Without the Consideration of Categories
	4 Profiling with the Consideration of Categories
	5 Implications and Discussion
	6 Related Work
	7 Conclusion
	References

	A Performance-Optimization Method for Reusable Fuzzy Extractor Based on Block Error Distribution of Iris Trait
	1 Introduction
	1.1 Our Contribution
	1.2 Road Map

	2 Preliminaries
	2.1 Entropy
	2.2 Reusable Fuzzy Extractors
	2.3 Block Error Distribution
	2.4 Hadamard Code

	3 Analysis of Fuzzy Extractor Scheme
	3.1 Description
	3.2 Security
	3.3 Formal Analysis of Performance

	4 Block Error Distribution and Our Scheme
	4.1 Analysis of Block Error Distribution
	4.2 Our Construction

	5 Experimental Results
	6 Conclusion
	References

	Detecting Root-Level Endpoint Sensor Compromises with Correlated Activity
	1 Introduction
	2 Background and Related Work
	2.1 OpenFlow and Software-Defined Networking (SDN)
	2.2 Host-Based SDN
	2.3 Detecting Compromises on Endpoints

	3 Correlated Host-Based OpenFlow Sensor Enforcement
	3.1 Example Endpoint Sensor Compromises
	3.2 System Overview and Threat Model
	3.3 Corroborated Sensing Deployment Scenarios
	3.4 Uncorroborated Data in Endpoint Sensors

	4 Implementing the CHOSE System
	4.1 Host Agent for Microsoft Windows
	4.2 OpenFlow Controller Customization

	5 Evaluating the Security and Performance of CHOSE
	5.1 Experiment Setup
	5.2 Performance Evaluation
	5.3 Security Evaluation

	6 Conclusion
	References

	Footprints: Ensuring Trusted Service Function Chaining in the World of SDN and NFV
	1 Introduction
	2 Related Work
	3 Background and Challenges
	3.1 SFC Working Principles
	3.2 Challenges

	4 Problem Statement
	4.1 System Model
	4.2 Threat Model

	5 Proposed Solution
	5.1 Design Properties
	5.2 Construction Methodology

	6 Implementation and Evaluation
	6.1 Implementation Details
	6.2 Performance Evaluation

	7 Conclusion
	References

	Security and Analytics
	Hecate: Automated Customization of Program and Communication Features to Reduce Attack Surfaces
	1 Introduction
	2 Hecate Design Overview
	2.1 Challenges
	2.2 Problem Statement
	2.3 Approach and System Architecture

	3 Feature Identification
	3.1 Function Recognition
	3.2 Function Mapping

	4 Feature Tailoring
	4.1 Feature Tailoring
	4.2 Binary Rewriting

	5 Evaluation
	5.1 Experiment Setup
	5.2 Accuracy of Function Mapping
	5.3 Impact on Program Security

	6 Related Work
	7 Conclusion, Future Work and Opportunities
	References

	Phish-Hook: Detecting Phishing Certificates Using Certificate Transparency Logs
	1 Introduction
	2 Background
	2.1 Phishing Attacks
	2.2 Certificate Transparency

	3 Related Work
	4 Phish-Hook
	4.1 Data Collection
	4.2 Feature Selection
	4.3 Classification Workflow
	4.4 Learning Phase

	5 Evaluation
	5.1 Training Dataset
	5.2 Metrics
	5.3 Results
	5.4 Discussion

	6 Conclusions
	References

	IIFA: Modular Inter-app Intent Information Flow Analysis of Android Applications
	1 Introduction
	2 Background
	2.1 Android Components
	2.2 Android Intents

	3 Methodology
	3.1 Analysis Phase
	3.2 Reporting Phase

	4 Evaluation
	4.1 RQ1: Precision and Soundness of IIFA
	4.2 RQ2: Evaluating the Scalability of IIFA

	5 Related Work
	6 Conclusion
	References

	Power Analysis and Protection on SPECK and Its Application in IoT
	1 Introduction
	2 Preliminaries
	2.1 Specification of SPECK
	2.2 Power Analysis Attacks

	3 Correlation Power Analysis on Non-linear Layer of SPECK
	3.1 Attack Method
	3.2 Experimental Results

	4 Correlation Power Analysis on Linear Layer of SPECK
	5 Countermeasure Against Power Attacks
	6 Conclusion
	References

	Machine Learning, Privately
	Adversarial False Data Injection Attack Against Nonlinear AC State Estimation with ANN in Smart Grid
	1 Introduction
	2 Preliminaries
	3 ANN-Based AC SE
	4 Adversarial Model and Attack Formulation
	4.1 Adversarial Model
	4.2 Attack Formulation

	5 Attack Methodology
	5.1 Solving the Proposed Attack with DE
	5.2 Solving the Proposed Attack with SLSQP

	6 Attack Evaluation
	6.1 Any k Meter Attack
	6.2 Specific k Meter Attack

	7 Conclusions
	References

	On Effectiveness of Adversarial Examples and Defenses for Malware Classification
	1 Introduction
	2 Background
	2.1 Threat Model
	2.2 Adversarial Examples

	3 Experiments
	3.1 Datasets
	3.2 The Victim Model
	3.3 Feature Selection

	4 Attack Mechanisms
	4.1 Jacobian-Based Saliency Maps Attack (JSMA)
	4.2 Feature Enabling and Disabling
	4.3 Fast Gradient Sign Method (FGSM)
	4.4 MalGAN
	4.5 Attack Effectiveness

	5 Defense Mechanisms
	5.1 Distillation
	5.2 Adversarial Training
	5.3 Ensembles
	5.4 Random Feature Nullification

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	PrivC—A Framework for Efficient Secure Two-Party Computation
	1 Introduction
	1.1 Our Contribution
	1.2 Outline

	2 Related Work
	3 Preliminaries
	3.1 Notation
	3.2 Oblivious Transfer

	4 Algorithms
	4.1 Arithmetic Circuit
	4.2 Yao's Garbled Circuit
	4.3 Sharing Conversions

	5 Design of PrivC
	5.1 Operators
	5.2 Notes for Fix64

	6 Evaluation
	6.1 Experimental Settings
	6.2 Workloads
	6.3 Benchmarking of Atomic Operations
	6.4 Application Performance

	7 Conclusion
	References

	CoRide: A Privacy-Preserving Collaborative-Ride Hailing Service Using Blockchain-Assisted Vehicular Fog Computing
	1 Introduction
	2 Problem Statement
	2.1 System Model
	2.2 Security Model
	2.3 Design Goals

	3 The Proposed Scheme CoRide
	3.1 System Initialization
	3.2 Entity Registration
	3.3 C-Ride Requesting
	3.4 C-Ride Responding
	3.5 C-Ride Termination
	3.6 User Tracking

	4 Security and Privacy Analysis
	5 Performance Analysis
	5.1 Implementation Details
	5.2 Experiments on Simulated Network
	5.3 Comparison with Existing Work

	6 Conclusion
	References

	Better Clouds
	Non-Interactive MPC with Trusted Hardware Secure Against Residual Function Attacks
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 GNIOT for Non-interactivity and Covert Security
	3.2 Justification of Using TPMs
	3.3 Definitions

	4 High-Level Description of Our Protocol
	5 Our Protocol
	6 Proofs
	6.1 Proof of Correctness and Security

	7 Conclusions and Future Work
	References

	A Study of the Multiple Sign-in Feature in Web Applications
	1 Introduction
	1.1 Contribution

	2 Background
	2.1 Multiple Accounts
	2.2 Capability-Based Access Control: Sharing a File via a Link

	3 Threat Model
	4 Google Multiple Accounts
	5 Dropbox Multiple Accounts
	5.1 How Dropbox Multiple Accounts Works
	5.2 Main Problem

	6 Defense
	6.1 Server Side Defense
	6.2 Client Side Defense

	7 Related Work
	8 Conclusion
	References

	Authenticated LSM Trees with Minimal Trust
	1 Introduction
	2 Preliminaries
	2.1 LSM Trees and Write-Intensive Workloads
	2.2 Authenticated Data Structures
	2.3 Intel Software Guard eXtension (SGX)

	3 System Overview and Motivation
	3.1 System Model and Security Goals

	4 LPAD Protocol: Scheme and Constructions
	4.1 Design Motivation
	4.2 Model of LSM Tree
	4.3 LPAD Scheme and Security
	4.4 LPAD Construction by a Forest of Merkle Trees

	5 LPAD Systems
	5.1 System Design and Implementation
	5.2 Security Analysis

	6 Evaluation
	6.1 Implementation and Enclave Code Size
	6.2 Performance Evaluation

	7 Conclusion
	References

	Modern Family: A Revocable Hybrid Encryption Scheme Based on Attribute-Based Encryption, Symmetric Searchable Encryption and SGX
	1 Introduction
	2 Related Work
	3 Architecture
	4 Cryptographic Primitives
	5 Modern Family (MF)
	5.1 Formal Construction

	6 Security Analysis
	6.1 SGX Security

	7 Conclusion
	References

	ATCS Workshop
	A Nature-Inspired Framework for Optimal Mining of Attribute-Based Access Control Policies
	1 Introduction
	2 Related Work
	3 The Problem of ABAC Policy Mining with Minimal Perturbation
	3.1 Policy Mining Problem
	3.2 A Measure for Goodness of an ABAC State
	3.3 A Measure for Minimal Perturbation.

	4 Methodology
	4.1 A Particle Swarm Optimization Algorithm for ABAC Policy Mining

	5 Experiments
	5.1 Comparison of PSO Performance with the State of the Art
	5.2 Updating an ABAC Model

	6 Conclusion and Future Work
	References

	Author Index

