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Abstract. Energy storage is a very important operation in continuously oper-
ating systems, such as telecommunications systems, embedded systems and
power systems. Energy storage can be performed by various means such as
batteries and super capacitors. In our work, we used neural networks to deter-
mine the capacitance values C of the planar capacitors as a function of the
relative permittivity er, the distance d and the dimensioning (Width and Length)
of the capacitor plates and as a function of the maximum desired charge Qmax.
The results of simulation will be better and more satisfying if the databases are
richer and good.
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1 Introduction

The methods of implementing electronic circuits with more optimal performance are
based primarily on their technical characteristics and experience during the experi-
mental or operating phases to predict future performance of the various components of
the circuits in question.

New technologies bring to the design of products, methods and information that
make it possible to do better than before and above all, to predict the future behavior of
a material or a component. The results of these studies can be used to identify critical
components and undesired failures, or to estimate failure probabilities and associated
downtime.

The universal predictive aspect of neural networks and their ability to adapt to the
desired behavior allow to expand their uses for system identification and control.

Artificial neural networks are one of the artificial intelligence approaches whose
development is done through the methods by which man always tries to imitate nature
and to reproduce his own modes of reasoning and behavior.
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In our study, we used gradient-retro-propagating multilayer neural networks to
predict the capacitance values from appropriate parameters from a good choice of
theoretical or experimental database.

2 Description of the Planar Capacitor [1–4]

A planar capacitor consists of two metal plates of surface A = La.Lo (La, Lo: are
respectively the width and the length of the two plates). Between these two plates of
distance d there is a dielectric of permittivity e = e0.er (with e0= 8,854.10−12 F/m the
permittivity of the vacuum and er the variable relative permittivity) as shown in Fig. 1.

The capacity of the capacitor is given by

C ¼ e0:er:
A
d
¼ e0:er:

LaLO

d
ð1Þ

3 Energy Storage in a Capacitor [3–6]

A capacitor is an energy storage device. When we connect a battery to both plates of a
capacitor, it charges. The potential difference gradually increases between the two
plates and the battery has had to do more work to provide the same amount of charge
due to the continuous increase in the potential difference as shown in Fig. 2.

dA
ε=ε0 εr

Fig. 1. Classic planar capacitor

Fig. 2. The capacitor charge circuit
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Storing energy on the capacitor involves doing the work to transport the charge
from one capacitor plate to the other against the electrical forces. As the load accu-
mulates in the charging process, each successive charging element requires more work
to force it onto the positive plate. The sum of these constantly changing quantities
requires an integral.

If a driver’s capacitance is C, it is initially unloaded and the potential difference
between its plates is V when connected to a battery. If q is the load on the plate at that
moment, then q = CV.

We know that W = Vq, that is, the work done is equivalent to the product of
potential V and load Q.

Therefore, if the battery delivers the infinitely small charge load dq to the capacitor
at constant potential V, then

dW ¼ Vdq ¼ q
C
dq ð2Þ

The total work done to provide a charge of Q quantity to the capacitor is given by

W ¼ ZQ

0

q
C
dq ¼ 1

2
Q2

C
ð3Þ

Therefore, the energy stored in a capacitor is

E ¼ 1
2
Q2

C
ð4Þ

By replacing Q = CV, we get

E ¼ 1
2
CV2 ð5Þ

So, if the capacity of a capacitor is charged to 10 F up to a potential of 10 V, the
energy stored in it is 5000 J.

4 Mathematical Model of the Artificial Neural
Network [4, 7–10]

Artificial neural networks are highly connected networks of elementary processors
operating in parallel. Each elementary processor calculates a single output based on the
information it receives. Any hierarchical network structure is obviously a network.

The mathematical model of an artificial neuron is shown in Fig. 3. A neuron
essentially consists of an integrator that performs the weighted sum of its inputs. The
result n of this sum is then transformed by a transfer function f which produces the
output of the neuron. Following the notation presented in the previous section, the
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R entries of the neurons correspond to the vector P = [P1 P2…… PR] while W = [W11

W12… W1R] represents the vector of the neuron weights. The output n of the integrator
is given by the following equation:

n ¼
XR
j¼1

W1;jPj � b

The structure of the multilayer networks consists of an input layer, a hidden layer
that can consist of several sub-layers, and another output layer as shown in Fig. 3.

In our case we used a hidden layer of 10 neurons as shown in Fig. 4.

The activation function chosen is the sigmoid function

f xð Þ ¼ 1
1þExp xð Þ

The database used is related to the different types of insulation as shown in the
following Table 1:

Fig. 3. Back propagation neural network

Fig. 4. Back propagation neural network of one hidden layer
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The stages of the gradient retro-propagation algorithm are:

1. Initialization of weights to random values of small quantities.
2. Selection of a learning matrix [A, d, e_(0), e_r] of the learning base
3. Calculation of the output si of each Neuron
4. Propagation of layer-by-layer outputs
5. Evaluation of the error between the output calculated by the network and the desired

output (s-d).
6. Backward propagation of the error to the back of all neurons from the output to the

input

• If i is an output neuron then di ¼ f 0 sið Þðsi � di)
• If i is a hidden neuron then di ¼ f 0 sið ÞP

k
ðWki:skÞ)

k: neuron between the current layer and the output layer

7. Adjustment of weights by the gradient procedure

Wij tþ 1ð Þ ¼ Wij tð Þþ l:di:si

l: No learning
8. As long as the error is too important, go back to step 2 (following example).
9. Save the weights and end.

5 Simulation Results

The software MATLAB realized the simulation of our algorithm based on neural
networks to prevent the values of the capacities. The algorithm consists of two main
parts, the learning part and the test part.

Table 1. Permittivity and calculated capacitance of used insulators database.

Insulation er : Permittivity (pF/m) Capacitance (pF) Insulation er : Permittivity (pF/m) Capacitance (pF)

Dry air 1 26,562 * 10�12 Polyethylene 2,25 59,76 * 10�12

Bakelite 5 132,81 * 10�12 Polyprpylène 2,2 58,43 * 10�12

Rubber 4 106,24 * 10�12 Polystyrene 2,4 63,74 * 10�12

Silicone rubber 4,2 11,56 * 10�12 Polycarbonate 2,9 77,02 * 10�12

Cardboard 4 106,24 * 10�12 Porcelain 5 132,81 * 10�12

Mica 6 159,36 * 10�12 Pressboard 3 79,68 * 10�12

Paper 2 53,12 * 10�12 Steatite 5,8 154,04 * 10�12

Baked paper 5 132,81 * 10�12 Styroflex 2,5 66,4 * 10�12

Paraffin 2,2 58,43 * 10�12 Teflon 2,1 55,77 * 10�12

PVC 5 132,81 * 10�12 Glass 5 132,81 * 10�12

Plexiglass 3,3 87,64 * 10�12 Stratifé
glass-epoxy

5 132,81 * 10�12

Polyster 3,3 87,64 * 10�12
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In the learning part we used a part of the database to determine the weighting
coefficients (weights) by setting the iteration number by determining the mean squared
error between the desired value and the calculated value of capacitance.

The variation of the mean squared error between the desired outputs and calculated
by the neural network as a function of the number of iterations represented in the
following figure Fig. 5.

In the Test part, to determine the desired values, we used the weights determined by
learning. Where the results are very satisfactory and show a very good convergence
with a low quadratic error. The following Table 2 presents some examples of tests:

Fig. 5. Evolution curve of NSE according to the number of iterations

Table 2. Desired and calculated capacitance of some test insulators.

Area
A
[m2]

Distance
d [m]

Permittivity
of the void e0
[pF/m]

Relative
permittivity
er

Desired
capacitance
Cd[pF]

Calculated
capacitance by
NN Cout [pF]

Normalised
square error

0.03 0.01 8.85 1.5 39.825 39.815 5.021 10−4

0.03 0.01 8.85 2.2 58.430 58.420 3.423 10−4

0.03 0.01 8.85 2.8 74.34 74.33 2.69010−4

0.03 0.01 8.85 5.2 138.06 138.05 1.44910−4
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From these results it can be seen that the normalized quadratic error becomes rather
weak, the higher the permittivity. So we can extend this study to the case study of
energy storage in the capacitor based on a well-chosen database, so that we can do the
predetermination stored energy following the load Q, the supply voltage V and the
dimensioning of the capacitor.

6 Conclusion

What can be drawn as a conclusion is that the use of the algorithm of the gradient retro-
propagation gave us good results in the field of the prediction of the computations with
an acceptable convergence according to the dimensioning of the capacitors.

For this type of study, a very rich database is needed by changing the sizing
parameters, permittivity and power parameters in the case of energy storage. So the
learning phase is very important for this study based on neural networks by carefully
choosing the weight coefficients and the activation function.

During the test, the choice to take slight variations on the permittivity parameter of
the insulator or the dielectric is the final goal of the subject because in fact this
variation, even if it is taken randomly, it actually represents the influence of the
characteristics or external phenomena applied to the capacitor of his working envi-
ronment such as temperature, humidity, pressure or even if it is variable capacitor use.

The results obtained were quite reliable and quite satisfactory in order to be able to
predict a final capacitance of a capacitor deployed in a medium subjected to external
stresses taking into account its geometrical parameters as well as to the construction
characteristics.
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