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Abstract. Development of reliable model in chemical engineering facilitates all
subsequent steps in process optimization and monitoring operation. Many
chemical process intended to wastewater treatment can exhibit complex non-
linear behaviour. In this paper, three layered feed forward neural network is used
to predict the photo-catalytic degradation yield of solophenyl red, an azo dye
widely used in textile industry. The approach adopted to find the optimal
topology of the network is based on finding the architectural parameters (the
hidden nodes number, the activation function and the training algorithm) that
minimize the prediction error. Experimental data required for the development
of the network are extracted from the study performed by [1]. In this study a new
photo-catalyst have been used to eliminate under solar light the solophenyl red.
The result show that the predicted data from the designed optimal neural net-
work architecture was in good agreement with the experimental data. The
excellent value of the correlation coefficient attested the accuracy of the model
and proved its ability to fit this complex system.

Keywords: Photo-catalysis -+ Wastewater treatment - Artificial intelligence -
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1 Introduction

Development of reliable model in chemical engineering facilitates all subsequent steps
in process optimization and monitoring operation. Many chemical process intended to
wastewater treatment can exhibit complex nonlinear behavior. The use of analytical
approach to model such system frequently have their limitations. Various papers have
been proved that Artificial Neural Networks (ANNs) can overcome these limitations.
ANNs are computational models that mimic the way in which the human brain deal
with enormous amounts of sensory information. These empirical models are able to
establish the unknown relationship between the input and output data without con-
sidering the complex physical and chemical laws governing the process under study
[2-4]. They offer fast and accurate solutions to various problems in wide range of
disciplines, particularly areas involving prediction, classification and data filtering [5].
An ANN always consists of at least three hierarchical layers of neurons fully
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interconnected and arranged in parallel structure: one input layer, one output layer and
one or more hidden layers. Each neuron is linked to certain of its neighbors with
weights that represent the strengths of these connections. According to the propagation
direction of information, neural networks are categorized into: feed-forward (FFNN)
networks and recurrent networks (RNN). In FFNN information flow only in one
direction towards the output layer and there is no feedback between neurons. In RNN
information pass both forward and backward by introducing loops between certain
neurons in the network [3, 6, 7].

Neuron is the basic block in a network structure. It is a processing element which
has usually one or more inputs and a single output (Fig. 1). Each neuron has an
associated activation function (f) and weight (w;). The purpose of the processing ele-
ment is to perform simple computations (summation and multiplication) in order to
determine the output signal (y) using the input values received from many other
neurons (x;) as a linear combination [8, 9].

p—1
y=f(v) with v:bl—i—Zx,»*wi
i=1

In fact, it applies the activation function to the sum of the weights and sends this
signal in a forward direction layer by layer until last layer is reached [2]. The output
delivered by the last layer is a prediction of the neural network that is compared to the
target.
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Fig. 1. Model of an artificial neuron [10].

When the predicted result is different of the target then the weight associated to
each neuron is updated in an iterative procedure called training or learning. The most
commonly learning method used to adjust weights is back propagation (BP). BP
consists on calculating the error between the observed and the predicted responses and
propagates this error signal in backward direction from the output layer to the input
layer. This step is repeated until a convergence criterion is reached.

The purpose of this study is to demonstrate the ability of a three layered feed-
forward neural network to model the complex behavior of a photo-catalytic wastewater
treatment process.
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2 Artificial Neural Network Modeling of Solophenyl Red
Photo-Catalytic Degradation

2.1 Experimental Data

In this study, a three layered feed-forward neural network was used to model the photo-
catalytic degradation of solophenyl red, an azo dye widely used in textile industry [1].
This organic pollutant is not biodegraded because of the complexity of the chemical
structure and its presence in water is harmful to human health. The degradation
experiments have been performed under solar light at different experimental conditions
using a new catalyst (ZnO/Bentonite). According to the obtained results, the elimi-
nation of the SR, using the composite material, was successfully achieved within
160 min and the degradation yield of the azo dye was considered a function of: initial
RS concentration, pH, ZnO/Bentonite dosage and irradiation time. The series of
experiments conducted in batch reactor by [1] were collected and used for the devel-
opment of the neural network. In fact, the 116 data were extracted from the experi-
mental study. The four experimental variables (initial RS concentration, pH,
ZnO/Bentonite dosage and irradiation time) were selected as inputs of the network
whereas the degradation yield of the azo dye was chosen as output. The model vari-
ables and their ranges are summarized in Table 1.

Table 1. Neural network model variables and their ranges

Variables Corresponding range
Initial RS concentration (mg/L) | 5-75

pH 2,5-9
ZnO/Bentonite dosage (g/L) 0,25-1

Irradiation time (min) 0-210

In a neural network, the input layer accepts only independent variables. That’s why,
it’s recommended to check whether the four variables are independent or not. In fact,
this test reduces the size of the data set and feeds the network with only the most
significant inputs by discarding those that are highly correlated. We use the Pearson’s
correlation coefficient that ranges from -1 (strong negative correlation) and 1 (strong
positive correlation) with an insignificant correlation when the coefficient is close to 0
[11, 12].

The correlation coefficients for the SR photo-catalysis input variables are presented
in the Fig. 2. The plot figure shows the Pearson coefficient for each pair of variables.
The obtained values are close to 0 which indicate quite small correlation that can be
neglected. Hence, all experimental variables are retained.
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Fig. 2. Correlation coefficients for the solophenyl red photo-catalysis input variables.

In the training phase, the importance of each input variable is related to the mag-
nitude of its range. Therefore, it is indispensable to normalize the raw data in the same
range prior to feeding network. We normalize data in order to: equalize the importance
of the input variables, minimize the bias and weight values within the network and
reduce the training time.

Many techniques of normalization are proposed in the literature. The min-max
method is adopted in this study and we normalize the data to fall in the range [—1, 1]
[12].

2.2 ANN Model Development

The 116 experimental data were divided into three subsets training (60%), validation
(20%) and test (20%). The training subset allowed the network to learn the linear and
nonlinear relationships between the inputs and output vectors. The validation subset
was employed to evaluate the generalization capability of the network and avoid over-
fitting. The test data were fed to the network to assessing its prediction performance.

The number of hidden nodes, the activation function and learning algorithm are
architectural parameters that affect the performance of the network model. The strategy
adopted in this paper to optimize these parameters and determine the best feed forward
network topology consists on:
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— Varying the number of hidden nodes between 1 and 10.

— Testing four activation functions (logsig, tansig, hardlim and purelin) and ten
training algorithms (trainlm, trainscg, trainbr, trainbfg, trainrp, traincgb, traincgf,
traincgp, trainoss and traingdx).

This approach has allowed to select the optimal hidden nodes number and the
suitable activation function and training algorithm that minimizes the prediction error.
The script developed in Matlab has generated 400 topologies. Their performance to
simulate the photo-catalysis process under study was evaluated by calculating the
validation Root Mean Squared Error (RMSE) and the Perason’s correlation coefficient
between experimental and predicted data.

P ng 2
RMSE = |35 (v — 1)

p=1 j=1

Where:

tj,: Expected target at the j™ output neuron for the input p.
¥i,: The output of the i™ neuron at layer L

2.3 Results
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Fig. 3. Variation of RMSE as function of activation function for Bayesian regularization
algorithm.
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Fig. 4. Variation of RMSE as function of activation function for Levenberg-Marquardt
algorithm.

It’s important to report that among the 400 networks generated by the Matlab program,
21 topologies predict the photo-catalytic removal efficiency of the pollutant with high
accuracy. In fact, the corresponding determination coefficients are over 0.97 and the
validation RMSE are ranged between 0.005 and 0.013.

According to the values of the cross-validation mean squared errors and the
determination coefficients between measured and predictable data, Bayesian regular-
ization back-propagation (trainbr) and Levenberg-Marquardt (trainlm) show excellent
ability to forecast the process efficiency compared to other algorithms (Figs. 3 and 4).

In addition, the two transfer functions namely hyperbolic log sigmoid (logsig) and
tangent sigmoid (tansig) give the best fitting models.

The combined effect of the training algorithm and the activation function to
improve the performance of the network is well confirmed and the best simulation of
the complex system is performed by the network with Bayesian regularization back-
propagation training algorithm and hyperbolic log sigmoid transfer function for the
hidden layer.

After choosing the suitable combination of training algorithm and activation
function, we discuss the neural network optimization with respect to the hidden neu-
rons number.

The Fig. 5 shows the variation of the root mean squared error as function of the
hidden neurons number and activation function for the best learning algorithm (trainbr).
In fact, the Bayesian regularization algorithm (trainbr) has demonstrated an excellent
ability to predict the degradation yield of the azo dye among the ten algorithms tested.
In deed the logsig and tansig functions are the most suitable to model this complex and
nonlinear system. For the logsig activation function, the best forecasting performance
(least RMSE = 0.005 and high R? = 0.99) is achieved with eight neurons (4-8-1).
Hence, the optimal topology of the feed forward network has four input neurons, eight
hidden neurons and one output neuron.
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Fig. 5. RMSE as function of hidden nodes number for the trainbr learning algorithm.

In Fig. 6, the variation of the RMSE during the training step is reported as function
of the epoch for the optimal topology (4-8-1). 100 training epoch was sufficient to reach
the desired performance.
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Fig. 6. RMSE as function of training epoch for the optimal network (4-8-1).
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For further explanation, the prediction accuracy of the optimal neural network is
investigated. Hence, Figs. 7, 8 and 9 illustrate the plots of the experimental results
against the predicted ones for training, validation and test sets.
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Fig. 7. Experiment results versus predicted ones for training set.

The coefficients R? for training, validation and test are 0.985, 0.995 and 0.983
respectively. These high values indicate a strong linear correlation between observed
and predicted data. This result confirm the reliability of the developed model to predict
the photo-catalytic degradation yield of solophenyl red (Fig. 10).

Artificial neural network are more and more frequently applied in various fields
essentially to resolve forecasting problems. Nevertheless, these empirical models are
generally regarded to behave as black box systems, unable to clarify the contribution of
the independent variables to dependent one. Several authors have thus focused on the
analysis of the relative influence of the input variables on the neural network response
in order to make ANNs more interpretable [13]. In this paper, the algorithm proposed
by Garson is performed. It’s a sensitive analysis method which uses combinations of
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Fig. 8. Experiment results versus predicted ones for validation set.

the absolute values of the weights between layers of the neural network as shown in the
formula (1) to obtain the relative importance of the input variable i with respect to the
output variable k:

m Wij|
D i (271 wi] * "’ﬂ«’)

S (S (o« b))

where i, j, k, respectively, refers to input layer, hidden layer and output layer neurons;
wj; is the connection weights between input layer and hidden layer neurons, vj;, is the
connection weights between hidden layer and output layer neurons, m is the total
number of input neurons and r is the total number of hidden layer neurons.

GRI; =



152 A. Sebti et al.

testing: R?=0.98384

1F T T T T T T T T

Out= 0.98"Exp + 0.0049

O Data

Model Output

-06 -04 -02 0 02 04 0.6 0.8 1
Experimental result

Fig. 9. Experiment results versus predicted ones for validation set.
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Fig. 10. Structure of the optimal neural network (4:8:1).
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The weights matrix of the optimal neural network is given in Table 2.

Table 2. Weights matrix of the optimal neural network.

153

Weights and bias : Input layer — Hidden layer

Weights and bias:

Hidden layer — Output

layer
Neuron | Inputs Bias | Neuron | Weights | bias
Irradiation | Initial Initial | Catalyst
time (h) solophenyl red | pH amount
concentration ZnO-
(mg/L) Bentonite
(gL)
1 -3,35 2,14 -1,31 2,07 —4,13|1 -3,46 |—0,28
2 —-0,44 —1,45 3,65 |1,62 —-0,76 | 2 3,99
3 1,19 0,01 -1,78 | -0,28 0,53 |3 2,17
4 3,86 -1,99 321 |—-1,22 4,02 |4 3,19
5 1,54 1,34 0,40 0,05 320 |5 2,54
6 —-0,28 -2,52 230 145 023 |6 -2,53
7 —1,64 1,57 1,64 3,94 1,26 |7 -2,09
8 -1,56 —-0,31 —-0,15 | 1,49 0,34 |8 1,59

The main objective of applying the Garson algorithm is to rank the four variables in
order of the relative share of their contribution to the prediction of the solophenyl red
removal efficiency by photo-catalytic under solar radiation. The obtained results are
summarized in the Table 3.

Table 3. Relative importance of the process input variables

Input variable Relative importance (%) | Rank
Irradiation time (h) (g/L) 7,10 4
Initial solophenyl red concentration (mg/L) | 58,78 1
Initial pH 8,27 3
ZnO-Bentonite dosage (g/L) 25,84 2

Through the results of the sensitive analysis, it is possible to observe that the
considered input variables possess strong effect on the pollutant removal. The initial
concentration of solophenyl red is the most influential variable with relative importance
of 58%. This parameter is followed by the catalyst loading (25%) and initial pH (8%).
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3 Conclusion

The complexity of the photo-catalytic wastewater treatment process makes difficult the
use of analytical approach for modelling purpose. Hence, in this work development of
artificial neural network model was performed to predict the degradation yield of the
solophenyl red azo dye. The strategy based on varying the three architectural param-
eters namely: hidden neurons number, activation function and learning algorithm has
been adopted to optimize the network topology able to reproduce the experimental
data. The best prediction performance was achieved with eight hidden neurons, logsig
activation function and Bayesian regularization algorithm. This optimal architecture
allowed to forecast the observed data with correlation coefficient of 0.995.
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