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Abstract
Angiogenesis is a critical process required for 
tumor progression. Newly formed blood ves-
sels provide nutrition and oxygen to the tumor 
contributing to its growth and development. 
However, endothelium also plays other func-
tions that promote tumor metastasis. It is 
involved in intravasation, which allows inva-
sive cancer cells to translocate into the blood 
vessel lumen. This phenomenon is an impor-
tant stage for cancer metastasis. Besides direct 
association with cancer development, endo-
thelial cells are one of the main sources of 
cancer-associated fibroblasts (CAFs). The het-
erogeneous group of CAFs is the main induc-
tor of migration and invasion abilities of 
cancer cells. Therefore, the endothelium is 
also indirectly responsible for metastasis. 
Considering the above, the endothelium is one 
of the important targets of anticancer therapy. 
In the chapter, we will present mechanisms 
regulating endothelial function, dependent on 
cancer and cancer niche cells. We will focus 
on possibilities of suppressing pro-metastatic 
endothelial functions, applied in anti-cancer 
therapies.
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6.1  Introduction

The vascular endothelium is a versatile structure 
that separates the circulating blood from tissues. 
Moreover, apart from regulation and mainte-
nance of blood fluidity, it plays multifunctional 
roles in the delivery of water and nutrient, main-
tenance of metabolic homeostasis, trafficking of 
immune cells, activation of innate and acquired 
immune responses, as well as angiogenesis [30, 
73]. The endothelium is a thin monolayer, com-
posed of endothelial cells (ECs) that are able to 
organize the growth and development of connec-
tive tissue cells, forming the surrounding layers 
of the blood vessel wall. This process is con-
trolled by a paracrine/endocrine network which 
involves fibrinolytic, pro- and anticoagulants, 
vasoactive, pro- and anti-inflammatory factors, as 
well as growth factors produced by ECs [84]. 
Thus, ECs must be constantly poised to sense and 
respond to changes within their environment. In 
tumor and its microenvironment, some agents 
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like hypoxia and chronic growth factor stimula-
tion might lead to endothelial dysfunction. There 
is more and more evidence showing that these 
abnormalities contribute to cancer progression.

The tumor has been recently described as an 
aberrant organ not only composed of cancer cells 
but also of numerous stromal, inflammatory, and 
vascular cells. Like other organs, in order to 
develop, the tumor requires a blood supply to 
provide nutrients and oxygen and waste removal. 
Initially, cancer cells might adopt tissue-resident 
vessels. However, the tumor eventually recruits 
its own vascular supply through the angiogenesis 
process [123]. The tumor-associated angiogene-
sis has been defined as sprouting of new vessels 
from preexisting vessels, which involves endo-
thelial cells [112]. Tumor modulates its microen-
vironment by releasing numerous cytokines, 
chemokines, and growth factors to activate nor-
mal, quiescent endothelial cells and adapt them 
to the angiogenic response. Moreover, surround-
ing stromal cells might also secrete a plethora of 
factors and cytokines influencing tumorigenesis 
and metastasis. Within them, TGF-β is consid-
ered one of the main factors modulating interac-
tions between cancer and surrounding cells, 
located within the tumor niche. Among the TGF- 
β- dependent effects is regulation of cancer cell 
proliferation, affecting immune response by sup-
pressing immune cells function, conversion of 
fibroblasts to myofibroblasts and epithelial- 
mesenchymal transition (EMT). Furthermore, 
TGF-β promotes the formation of cancer- 
associated fibroblasts (CAFs), a specialized 
group of fibroblasts involved in tumor growth 
and invasion of cancer cells by modulation of the 
tumor niche [119]. Until now normal fibroblasts 
(NFs) have been considered the main source of 
CAFs, but in the last years, endothelial cells have 
also become an important origin of CAFs. It has 
been shown that TGF-β is responsible for such 
EC conversion in a process called endothelial- 
mesenchymal transition (EndMT) [56]. During 
EndMT, endothelial cells lose endothelial mark-
ers and gain mesenchymal ones, which is fol-
lowed by increased expression of transcription 
factors such as Snail and Slug. The changes are 
accompanied by defaulting of their cellular func-

tion and taking on some characteristics of mesen-
chymal cells, including loss ability to form 
capillary tubes and cell-cell junctions, increased 
cell migration properties, and secretion of extra-
cellular matrix proteins.

In this review, we will focus on the role of 
endothelial cells in tumor microenvironment par-
ticularly on their direct and indirect role in cancer 
metastasis. While endothelial cells were origi-
nally believed to be involved in the direct devel-
opment of primary tumor due to vascularization, 
there is more and more evidence suggesting their 
indirect effect on cancer progression. CAFs are 
known to play an important role in tumor growth 
and progression via secretion of various growth 
factors and chemokines. The contribution of 
endothelial cells in CAF formation will be dis-
cussed. Finally, we will also present current and 
future therapeutic possibilities targeting at endo-
thelial cells, CAF formation, and chemokines in 
the context of anti-metastatic treatment.

6.2  Heterogeneity of Normal 
and Tumor Endothelial Cells

The vascular endothelium is a specific inner cel-
lular lining that separates the circulating blood 
from the tissues. That thin monolayer plays an 
important multifunctional property, including the 
control of vasomotor tone, proliferation/angio-
genesis, permeability, hemostasis, humidifica-
tion, thermoregulation, leukocyte transmigration, 
sieve function, and scavenging innate and adap-
tive immunity [2]. This plethora of functions is a 
consequence of the fact that ECs, being part of 
the vascular tree, are differentially regulated in 
space and time. Thus, ECs differ in various 
organs, but also between distinct segments within 
or between neighboring of vascular architecture 
of the same organ. The EC thickness varies across 
the vascular tree, ranging from less than 0.1 μm 
in capillaries and veins to 1 μm in the aorta [2]. 
Endothelial cells are usually flat, but they might 
be plump or cuboidal occasionally [2]. 
Endothelium cells in monolayer are held by two 
main types of junctions: adherent junctions (AJs) 
and tight junctions (TJs). Their organization 
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 varies along the vascular tree [12]. For instance, 
the large artery is rich in TJs, whereas venules 
display less organized TJs. Similarly, in the brain, 
where protection of the nervous system is 
required, junctions are well developed and rich in 
TJs [31]. In contrast, post-capillary venules have 
a poorly organized TJs due to the dynamic traf-
ficking of circulating cells and proteins sus-
pended in plasma [31]. Another feature of 
endothelium diversity is its continuity. 
Continuous endothelium might be fenestrated or 
non-fenestrated. Fenestrated continuous endo-
thelium is found in the places where increased 
filtration or increased transendothelial transport 
is needed, like capillaries of exocrine and endo-
crine glands. Non-fenestrated continuous endo-
thelium is found in capillaries, veins, and arteries. 
Discontinuous endothelium occurs in some sinu-
soidal vascular beds, first of all in the liver [2]. It 
has been proposed that angiogenesis, being one 
of the main processes engaging endothelial cells, 
requires at least a few cells of discontinuous. 
ECs, called tip cells, are directly engaged in ves-
sel sprouting. Highly proliferative stalk cells fol-
low tip cells, and phalanx cells that are involved 
in improving the perfusion and oxygenation of 
newly formed blood vessels [51].

Mentioned ECs heterogeneity is provided 
mainly by one of two distinct mechanisms based 
on microenvironment pressure or epigenetic mod-
ulation [3]. Endothelium is not only  a specific 
inner cellular lining separating the circulating 
blood from the tissues, but it is exposed to a great 
variety of factors, secreted by tissue microenvi-
ronments. Moreover, to properly perform its func-
tions across the vascular tree, ECs have to detect 
and respond to environmental stimuli, which is 
guaranteed by endothelial cells heterogeneity. 
This mechanism is reversible when ECs are 
removed from their microenvironment and grow 
in tissue culture. The second mechanism involved 
posttranscriptional modification that seemed to be 
epigenetically programmed and independent of 
extracellular signals. Although it is widely 
accepted that microenvironment stimulation is 
responsible for triggering epigenetic modifica-
tions, they may remain during the removal of the 
signals and be transmitted during mitosis [3].

It should be noted that EC heterogeneity also 
translates into the heterogeneity of tumor endo-
thelium. In line with Folkman’s hypothesis, 
tumor growth strictly depends on blood vessels 
[41]. At the same time, tumor blood vessels are 
formed by ECs recruited from surrounding tis-
sue transformed to tumor endothelial cells 
(TECs). The tumor vasculature, in contrast to 
well- differentiated normal vessels, it is com-
posed of a chaotic mixture of abnormal, disorga-
nized artery–capillary–vein hierarchy vessels 
[109]. Unlike normal blood vessels, tumor ves-
sels are more dilated and tortuous. They branch 
irregularly, have chaotic flow patterns, and 
increased permeability to macromolecules [75]. 
Due to an imbalance between pro- and 
 antiangiogenic factors and with a predominance 
of stimulators (angiogenic switch), a classic 
hierarchical branching pattern system of arteri-
oles, veins, and capillaries is disturbed. The lay-
out of neoplastic capillaries is morphologically 
immature: chaotic, strongly twisted, with vari-
able vessel diameter and irregular edge [29]. In 
line to the unsettle tumor vasculature, endothe-
lial cells, forming tumor vessels, are structurally 
abnormal. TECs have a disturbed redistribution 
of phospholipids, a discontinuous or absent 
basement membrane, increased fenestrations 
and extended intercellular junctions, and a high 
proliferative rate compared to normal ECs and 
tend to grow one on top of the other and invade 
into the vessel lumen [3]. Phenotypic changes, 
accompanied by changes at the molecular levels, 
have been identified comparing normal ECs to 
TECs, isolated from normal and tumor tissues. 
In 2000, St. Croix et al. performed a comparative 
analysis of gene expression profiles between 
tumor endothelial cells and normal endothelial 
cells and identified the specific genes for TEC 
called tumor endothelial markers (TEMs) [95]. 
Since then, several studies have been published 
on molecular differences between TECs and 
NECs [15, 66, 77] e.g tumor endothelial markers 
(TEMs), endoglin (CD105), or endothelial pro-
tein-disulfide isomerase EndoPDI [50] has been 
also demonstrated that TECs can secrete several 
factors that affect their survival in an autocrine 
manner [17, 18, 74, 101].
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Increased permeability of the walls, hemor-
rhage, and plasma leakage result from a reduced 
number of pericytes and increased proteolytic 
activity within the vessel formation zone. TECs 
are characterized not only by an increased size, 
but they also presented aneuploidy, abnormal 
centrosomes, and high activation of the MAPK 
pathway, promoting cell survival [5, 43]. TECs 
exhibit several differences which contribute to 
their proangiogenic phenotype, including 
changed responsiveness to growth factors such as 
EGF, adrenomedullin, and VEGF. VEGF stimu-
lates the migration of TECs and enhances their 
survival in an autocrine manner, which leads to 
the antiapoptotic phenotype of TECs [51]. TECs 
show upregulated aldehyde dehydrogenase 
(ALDH) expression which is manifested by a for-
mation of increased tube number even under star-
vation conditions [80].

It is suggested that the persisting hypoxia 
together with the secretion of cytokines promotes 
tumor angiogenesis by inducing the mobilization 
of bone marrow-derived endothelial progenitor 
cells to cancer [45]. Glioblastoma cells and lym-
phoma ones are examples of tumor cells that are 
capable of differentiating into TECs [98, 106]. 
Interaction between tumor cells and the microen-
vironment leads to alteration of ECs into TECs 
that express high levels of biglycan through epi-
genetic modifications, which stimulates tumor 
cells to metastasize through activation of differ-
ent signaling pathways [67]. Furthermore, it was 
reported that endothelial progenitor cells release 
microvesicles with gene fragments that can acti-
vate endothelial cell angiogenic properties [33]. 
Due to the mechanisms mentioned above, TECs 
become cytogenetically abnormal and unstable in 
the tumor microenvironment.

6.3  Angiogenesis in Tumor 
Development

Efficient functioning of the circulatory system, 
responsible for gas exchange, transport of nutri-
ents, and metabolic products, is the basic condi-
tion for appropriate development during ontogeny. 
In embryo development, de novo formation of 

the vascular plexus from angioblasts (EPCs; 
endothelial precursor cells) is one of the earliest 
organogenesis processes, called vasculogenesis 
[1]. Next, the existing vascular network under-
goes proliferation, reorganization, and maturation 
in the process of angiogenesis (neovasculariza-
tion) [11]. A new capillary mesh network is cre-
ated by sprouting of endothelial cells. The last 
stage is the maturation of the vessel through the 
migration of pericytes and vascular smooth mus-
cle cells (VSMCs) on a newly formed basal mem-
brane (BM). Under physiological conditions, 
neovascularization occurs during embryo implan-
tation, the women’s monthly cycle, and wound 
healing, and in the muscles [16]. In pathological 
conditions, when the activity between pro-angio-
genic factors and antiangiogenic ones is disturbed, 
it occurs during chronic inflammation and hypoxia 
and in asthma, rheumatoid arthritis, psoriasis, 
Crohn’s disease, diabetic retinopathy, as well as 
endometriosis and obesity. However, angiogene-
sis plays the most significant role in the process of 
neoplasia [65].

In the initial stage, in order to survive and pro-
liferate, tumor takes oxygen and nutrients by dif-
fusion. The environment in which it develops 
undergoes hypoxia and acidification as a result of 
excess metabolic products. When its volume 
exceeds 1–2 mm3, the tumor must become angio-
genic and recruit their vasculature to grow. 
Cancer cells, together with host/niche cells, stim-
ulate the development of their blood vessels, 
using various mechanisms of tumor angiogenesis 
[36]. The most common one and best described is 
vessel sprouting (Fig. 6.1). In the classical model, 
the vasodilatation of the mother vessel occurs, 
which contributes to reduced BM density. It leads 
to partial degradation of BM and protrusion of 
endothelial cells in that place. As the ECs do not 
lose intracellular connection with each other and 
they migrate parallelly, the polarity of the cells is 
preserved. At the same time, the new lumen is 
formed by polarized ECs. They release proteins 
which rebuild the basal membrane along which 
pericytes migrate. This phenomenon stabilizes 
the capillary and contributes to its maturation 
[83]. The last step of vessels maturation described 
above is impaired during cancer angiogenesis. 
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Hypoxia-induced factor-1α (HIF-1α) is the main 
factor that initiates sprouting [69]. It induces 
secretion by ECs proangiogenic factors such as 
platelet-derived growth factor, type B (PDGF-B), 
hepatocyte growth factor (HGF), angiopoietins, 
epidermal growth factor (EGF), placental growth 
factor (PlGF) [29, 65] and is the main stimulator 
of angiogenesis vascular endothelial growth fac-
tor/vascular permeability factor (VEGF/VPF) 
[94]. VEGF, which works in an auto- and para-
crine manner, contributes to extravasations of 
plasma proteins, e.g., fibrinogen, which initiates 
integrin-dependent migration of ECs, a release of 
metalloproteinases, and activation of the mitogen- 
activated protein kinase (MAPK) pathway. 

Digestion by MMPs of extracellular matrix 
(ECM) releases the tumor growth factor (TGF- 
β), basic fibroblast growth factor (FGF-2), and 
insulin-like growth factor-1 (IGF-1), i.e., anti-
apoptotic factors, activating the survival signal 
transduction pathway [27, 47, 52].  The second 
group consists of tissue-resident cells, including 
normal tissue epithelial cells, vascular cells 
(endothelium and pericytes), normal fibroblasts, 
adipocytes, and leukocytes (mast cells and mac-
rophages) [20, 22, 34, 92]. It has been confirmed 
that leukocytes as well as ECs are important 
sources of VEGF-A, which is able to accelerate 
tumor angiogenesis [35]. But TASCs might 
increase vascular density in human tumors 

Fig. 6.1 Mechanisms of tumor vascularization. At the 
point when developing cancer reaches its size 1–2 mm, 
hypoxia and nutrient deprivation result in release of tumor 
cell-soluble growth factors, chemokines, and cytokines 
(VEGF (blue star), PDGF (triangle), FGF (square), angio-
poietins (diamond), and SD1a (cross)). The factors induce 
the sprouting and proliferation of endothelial cells on 
nearby blood microvessels. The created tumor blood ves-
sels are leaky and tortuous with partially exposed basal 

lamina where vascular leaks are observed. Additionally, 
the vascular remodeling is also enhanced by factor 
secreted by cancer-associated fibroblasts (CAFs) that are 
recruited to the tumor niche. CAFs cause the rearrange-
ment the profile of extracellular matrix protein and release 
matrix metalloproteinases (MMPs: MMP-2 (red star), 
MMP-9 (triangle), and MT1-MMP (square)) that cleave 
and remodel ECM therefore activating the endogenous 
angiogenesis inhibitors such as tumstatin and endostatin 
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through secretion of other numerous chemokines 
and growth factors (Fig. 6.1). 

Cancer stem cells (CSCs) can differentiate to 
endothelial cells and, as a consequence, induce 
new vessels via a phenomenon known as vascular 
mimicry. However, that ability does not lead to 
the form of mature and proper blood vessels 
which would counteract hypoxia. During pro-
gression, cancer recruits numerous types of cells 
to the cancer niche, which can modulate tumor 
vascularization. The cells located in the tumor 
microenvironment, called tumor-associated stro-
mal cells (TASCs), can be divided into two main 
groups. Leukocytes (lymphocytes, neutrophils, 
monocytes, and macrophages) infiltrating tumor 
constitute the first group delivered from the bone 
marrow via systemic circulation.  Macrophages 
that are recruited to the tumor environments, 
called TAMs (tumor-associated macrophages), 
have been described as a source of non- 
thrombogenic EC-like surfaces, constituting a 
potential scaffolding for tumor vascularization 
through mimicry vasculare [89]. However, the 
mechanism of that process is still unknown.

Tumor cells play a crucial role in initiation 
and regulation of cancer angiogenesis. It must be 
noted that, other cells, located in the tumor niche, 
also secrete numerous signaling molecules and 
induce pathways that influence the angiogenic 
response. Apart from sprouting new vessels in 
response to VEGF stimulation, blood vessels 
might also originate from cells of the bone mar-
row or tumor stem cells dedifferentiated to ECs 
(vascular mimicry). A wide diversity of molecu-
lar pathways which are able to induce tumor vas-
cularization can make antiangiogenic therapies 
ineffective [96].

Tumor endothelial cells may undergo endo-
thelial to mesenchymal transition (EndMT) and 
become carcinoma-associated fibroblasts, CAFs. 
It was demonstrated that stromal-derived factor-1 
(SDF-1) in CAFs recruits EPCs promoting angio-
genesis. Overexpression of MMP-2 by CAFs 
stimulates epithelial hyperplasia and abnormal 
branching in the mammary gland. It was shown 
that high level of MMP-2 production in stromal 
cells is required to support pathological neoan-

giogenesis of gliomas. Neovascularization is 
promoted also by induction of IL-8 secretion by 
CAFs, isolated from metastatic colon cancer 
patients [117]. CAFs express a membrane-bound 
serine protease, called fibroblast activation pro-
tein (FAP), which is associated with poor prog-
nosis in several cancer types.

Significant associations were found between 
tumor angiogenesis and miRNAs in activated 
endothelial cells. miRNAs have opposing effects 
on cancer and endothelial cells. Their overex-
pression inhibits angiogenesis and enhances pro-
liferation of cancer cells. MicroRNA-126 
(miR-126) is an endothelial-specific miRNA that 
regulates angiogenic signaling and vascular 
integrity as a negative regulator of VEGF-A. 
However, it was observed that overexpression of 
miR-126 in endothelial cells enhances VEGF-A 
activity and promotes vessel formation by 
repressing the expression of sprouty-related pro-
tein-1 (Spred-1) [105]. In oral squamous cell 
carcinoma, a low miR-126 expression is corre-
lated with tumor progression through the activa-
tion of angiogenesis and lymphangiogenesis via 
VEGF-A pathway [91]. miR-126 is involved in 
cancer cell–stromal cell crosstalk. CAFs induces 
downregulation of miR-126  in adjacent human 
umbilical endothelial cells (HUVEC). The low-
ered miR-126 confers increased tube formation 
in the early invasive stage of cervical cancer 
[53]. VEGFR2 can be targeted by miR-221 and 
miR-222 [55].

6.4  Intravasation of Cancer Cells

Metastasis is a multi-step process, divided into 
two main phases: (1) translocation of cancer cells 
from the primary tumor to distant tissues and (2) 
colonization of these cancer cells at the second-
ary site [48]. Here we focused on the role of the 
endothelium in the first phase. The tumor meta-
static potential is dependent on its rapid extrava-
sation into the vascular system [13, 61, 82]. 
That process is composed of several steps: adhe-
sion of invading cancer cells to ECs, changes in 
the endothelial barrier and intravasation, 
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 dissemination into the bloodstream as migrated 
and proliferated circulating tumor cells (CTCs), 
and finally, after extravasation, colonization of 
other organs [6, 59, 61, 97]. Transendothelial 
migration (TEM) of invasive cancer is a critical 
phenomenon in the intra- and extravasation. 
During that phenomenon, tumor cells migrate 
between two endothelial cells [61, 93]. In vitro 
studies suggest that tumor cells might also pass 
through individual endothelial cells, in a process 
called transcellular migration [58, 99]. An inter-
action between transmigrated cancer cells and 
ECs induces contraction and disruption of their 
cell-cell contacts as well as secretion of pro-
inflammatory factors by the latter [103]. 
Metastatic microenvironment is also character-
ized by platelet aggregation and formed micro-
thrombi which promote ECs activation through 
induced inflammation [100]. As described above, 
blood vessels arising during cancer progression 
[49] are usually immature without proper junc-
tional contact between ECs. The blood vessels 
are leaky and vulnerable due to abnormal peri-
cyte coverage. Those injuries enable cancer cells 
to intravasate through the blood barrier [37, 116]. 
According to a favorable theory, both intravasa-
tion and extravasation are active processes, regu-
lated by several factors such as TGF-β [7], VEGF 
[38, 60, 86], angiopoietin- 2 (Angpt2) [88], stro-
mal-derived factor-1α (SDF-1α) [118], or TNF 
[121]. A notable difference between intravasation 
and extravasation is found in the fact that intrava-
sation mostly involves abnormal tumor vascula-
ture whereas extravasation targets at normal 
blood vessels. It has been observed that the inter-
action between tumor cells and ECs is modulated 
by VEGF or TNF favor intravasation. The pro-
cess is modulated when the number of blood 
microvessels increases and disruption of the 
blood barrier occurs [Fig. 6.2]. Additionally, 
presence of macrophages seems to be necessary 
for this process. However, macrophage-secreted 
TNF increases endothelial permeability, but its 
depletion does not reduce intravasation. The 
authors suggested the importance of other macro-
phage-secreted factors (probably IL-6) or juxta-
crine interactions in induction of intravasation. 

They also prove the importance of remodeling of 
the endothelial barrier, induced by tumor-endo-
thelial interaction for translocation of tumor cells 
via the blood barrier [121].

Some data suggested that endothelial- 
mesenchymal transition, leading to disruption of 
the cell-cell junction between ECs and disruption 
of blood barrier, also contributes and facilitates 
cancer cell intravasation.

6.5  CAF Formation

Endothelial cells forming a single-cell layer lin-
ing the inner surface of the blood vessels [55] are 
characterized by wide plasticity [23]. During 
cancer progression, the endothelium that under-
goes endothelial-mesenchymal transition 
(EndMT) is becoming, besides normal fibroblasts 
(NFs), one of the main sources of cancer- 
associated fibroblasts (CAFs). It has been postu-
lated that about 40% of CAFs are formed from 
endothelial cells [56].

During EndMT, cells lose cell-cell connec-
tions, detach from the cell layer, and elongate. 
Additionally, their adhesion ability is decreased, 
and migration properties increased (Fig.  6.3). 
Those behavioral modulations are accompanied 
by decreased endothelial marker levels, such as 
CD31 (platelet endothelial cell adhesion mole-
cule- 1 (PECAM-1)) or claudin, and gain of mes-
enchymal markers, such as fibroblast-specific 
protein 1 (FSP1; S100A4) or α-smooth muscle 
actin (αSMA) [9, 10, 76, 85, 120]. CAFs are also 
characterized by increased expression of contrac-
tion proteins like caldesmon and tropomyosin 
[26, 124].

The best-known inductors of EndMT belong 
to the transforming growth factor superfamily 
(TGF-β) which includes TGF-β1, TGF-β2, and 
bone morphogenetic protein (BMP). Activation 
of receptors for these factors leads to an induc-
tion of Smad-dependent and Smad-independent 
pathways [40, 102, 71]. In the canonical pathway, 
TGF-β1 or TGF-β2 binds to constitutively acti-
vate II TGF-β receptor (TGF-βRII) and then to 
recruit and activate I TGF-β receptor (TGF-βRI) 
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Fig. 6.2 Molecular pathways that regulate the intravasa-
tion. Cancer cells enter the circulation by transmigrating 
either paracellularly through the endothelial cell (EC) 
junctions or transcellularly through the EC body. Matrix 
metalloproteinase 1 (MMP-1) is crucial for paracellular 
intravasation in regions where protease-activated receptor 
1 (PAR1) on ECs mediates the remodeling of endothelial 
junctions (a). Cancer cells can use Notch receptors to bind 
to Notch ligands on ECs and thereby transmigrate through 
the endothelial junctions (a). Alternatively, a vascular 
endothelial cadherin (VE-cadherin) and angiopoietin-1 
receptor (TIE2) are cleavage by metalloproteinase-12 
(ADAM12), which leads to disruption of endothelial junc-
tions (b). Cancer cells moving to blood vessels are also 

promoted by tumor-associated macrophages (b) by secret-
ing epidermal growth factor (EGF). Retraction of endo-
thelial junctions, that facilitate cancer cell transendothelial 
migration (TEM), might be induced by transforming 
growth factor β1 (TGFβ1) secreted by cancer cells (c). 
That process can be stimulated by macrophage-secreted 
tumor necrosis factor 1α (TNF1α) as well. Transcellular 
intravasation is observed in sites of cancer cell attach-
ment. There complexes of Ca2+ –calmodulin induce phos-
phorylation of myosin light chain (MLC) by myosin light 
chain kinase (MLCK) causing actomyosin contraction. 
Finally, that pathway results in creation of transitory pore- 
like structure enable cancer cell to cross the EC barrier
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via its phosphorylation [90]. The last of the 
receptors binds and phosphorylates Smad2/3 
which made a complex with Smad4. The created 
transcription complex moves to the nucleus and 
triggers the expression of numerous genes which 
are specific for EndMT [40, 70] such as NOTCH1, 
TWIST1, and SNAI1/2 [102]. The in vitro obser-
vation was confirmed during in vivo analysis on 
mouse models. The knockdown and knockout of 
several TGF-β signaling-related genes, such as 
SMAD2, SMAD3, and TGFBR2, prevented 
EndMT [28, 115].

TGF-β signaling might be induced indirectly 
by caveolin-1 (CAV1), Wnt pathway, and endo-
thelin- 1 (ET-1). CAV1, located in caveolae, is 
involved in the internalization of TGF-β recep-
tors [32]. It has been shown that its expression 
is upregulated during cancer progression. In vivo 
studies demonstrated that lack of CAV1 induced 

spontaneous EndMT in mice model. Additionally, 
TGF-β might accelerate the process [62]. Wnt 
proteins are involved in EndMT by Smad- 
dependent TGF-β signaling. They can modulate 
the phenomenon through canonical (i.e., involv-
ing β-catenin) and non-canonical Wnt signaling 
pathways [4, 63, 107]. Although numerous stud-
ies demonstrated that Notch signaling work 
together with TGF-β pathway [21, 42, 79, 107], it 
has been shown they act independently in devel-
opment of Kaposi’s sarcoma-associated herpes 
virus [46]. It has been recently revealed that 
ET-1, which is an endogenous vasoconstrictor 
polypeptide, might alone or together with TGF-β 
cause EndMT in human ECs [25, 113, 114].

Cellular elongation and acquisition of migra-
tion ability observed during EndMT correlate 
with cytoskeleton remodeling. The alterations 
concern to all types of cellular filaments such as 

Fig. 6.3 Endothelial-mesenchymal transition. During the 
tumor progression, the tumor cells secrete TGF-β (a), 
which affects EndMT. TGF-β by stimulation the located 
in cell membrane TGF receptors (activated after phos-
phorylation (P) TGFβRI (I) and constitutively active 
TGFβRII (II)) leads to the activation of Smad proteins, 
which translocate to the nucleus (b). The Smad proteins 

induce expression of Snail and Slug, TWIST, and ZEB-1 
transcription regulators. These transcription modulators 
cause an increase in the expression of mesenchymal mark-
ers and numerous cytoskeletal proteins, leading to the 
elongation of the endothelial cell and induced its invasive 
character (as described in the text)
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microfilaments, microtubules, and intermediate 
filaments. EndMT is characterized by a gain of 
vimentin expression, which was described as a 
marker of mesenchymal cells. The regulation of 
actin cytoskeleton is controlled by proteins 
belonging to the Rho GTPase family (RhoA, 
RhoB, Rac-1, cdc42) whose activity is regulated 
by TGF-β signaling. Activation of small 
G-proteins causes incorporation of globular actin 
proteins (G-actin) into filaments of F-actin. This 
process is critical to forming the stress fibers and 
results in an increased contraction ability of CAFs 
[87]. The G-actin pool is released from cytosolic 
complexes with MRTFs (MRTF-A and MRTF-B) 
which in “actin-free stage” translocate to the 
nucleus. MRTFs are the well-described coactiva-
tors of serum response factor (SRF) which regu-
late expression of cytoskeleton regulators and 
focal adhesion protein such as FAK, vinculin, and 
α-SMA, necessary for shaping the mesenchymal 
and contractile nature of CAFs [81]. In our stud-
ies, we found that activation of MRTFs are depen-
dent on RhoA and Rac-1/MMP-9 and finally 
induce ILK and vinculin expression [26]. That 
axis regulates generation and maturation of focal 
adhesion, which is characterized by accelerated 
cell movement, typical for EndMT.

Microtubules, the largest cytoskeleton fibers 
are involved in the translocation of newly 
expressed mesenchymal markers, one of which is 
N-cadherin [68]. It has been proposed that the 
alteration of β-tubulin subunit expression modu-
lates microtubule dynamics [44]. We revealed 
that upregulation of tubulins β-3 and β-4 levels, 
during EndMT, is critical for faster CAFs move-
ment [110, 111].

6.6  Perspective: Endothelium 
as the Therapeutic Agent 
in Anticancer Therapy

6.6.1  Antiangiogenesis [AA] 
Therapies

A variety of signaling molecules such as VEGF- 
VEGFRs, ephrin-Eph receptors, angiopoietin- 
Tie, and the Delta-Notch play important roles in 
angiogenesis. These vascular endothelial growth 

factors and their receptors regulate both vasculo-
genesis and pathological angiogenesis. The 
VEGF family members, i.e., VEGF-A/VEGF-B/
VEGF-E and PlGF, regulate angiogenesis and 
vascular permeability by activating receptors 
VEGFR-1 (Flt-1) and VEGFR-2 (KDR/Flk1  in 
mice). VEGF-C/VEGF-D and their receptor 
VEGFR-3 (Flt-4) are mainly observed in lym-
phangiogenesis. VEGFR-2 is a major signal 
transducer for neovascularization by the activa-
tion of the MAPK signaling pathway. VEGF-A, 
which demonstrates a variety of functions, 
including proangiogenic and vascular permeabil-
ity activity, is the main player. Due to this fact, 
the VEGF-VEGFR system is an important target 
for antiangiogenic therapy in cancer progression 
[94, 104]. Currently, there are four main 
approaches targeting at cancer angiogenesis 
tested in clinical trials and approved for clinical 
practice: (1) neutralizing monoclonal antibody 
that binds circulating VEGF; (2) recombinant 
protein (decoy receptor or VEGF-Trap) that binds 
more than one proangiogenic growth factor; (3) 
small-molecule tyrosine kinase inhibitors that 
block tyrosine kinase activity of VEGFRs; and 
(4) therapeutic monoclonal antibodies targeting 
VEGFR-2 [72, 78].

One of the first antiangiogenic therapies was a 
therapy with a humanized monoclonal antibody, 
neutralizing circulating VEGF-A, i.e., 
Bevacizumab (Avastin®, Roche/Genentech). The 
first phase III trial results showed that Bevacizumab 
combined with chemotherapy in metastatic 
colorectal cancer (MCRC) improved progression-
free survival (PFS) (10.6 vs. 6.2 months) and over-
all survival (OS) (23 vs. 15.3 months) compared to 
chemotherapy [54]. Aflibercept (Zaltrap ®, Sanofi 
Genzyme) is a human recombinant fusion protein 
that acts as a decoy receptor of VEGF-A, VEGF-B, 
and PlGF. Aflibercept treatment was approved in 
MCRC with infusional fluorouracil, leucovorin, 
and irinotecan [24]. Tyrosine kinase inhibitors 
(TKIs) are small-molecular-weight drugs that 
inhibit the kinase activity of different receptors 
and their downstream signaling. Sorafenib 
(Nexavar®, Bayer/Onyx) or Sunitinib (Sutent®, 
Pfizer) target not only at VEGFR but other kinases 
such as PDGFR and FGFR [78]. Ramucirumab 
(Cyramza® Eli Lilly) is a human monoclonal anti-
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body that inhibits angiogenesis by blocking bind-
ing VEGF to the extracellular domain of VEGFR2. 
It is recommended in combination with FOLFIRI 
(folinic acid,  5′-fluorouracil and irinotecan) in 
MCRC patients if the disease progresses after 
therapy with Bevacizumab, oxaliplatin, and fluo-
ropyrimidine [8].

Direct suppression of tumor angiogenesis and 
vascular normalization results in suppression of 
tumor growth. However, after a long-term ther-
apy, tumor cells acquire a resistant phenotype as 
a result of hypoxia and low nutrition stress. 
Overall, the survival benefits of antiangiogenic 
(AA) drugs have not been impressive and sur-
prisingly most cancer patients stop responding 
or do not respond to the AA therapy at all. What 
is more, recently it was shown that AA drugs 
cause a switch to vasoinvasion of tumor cells, 
leading to increased metastasis and shortened 
life in mice [39]. The tumor resistance to AA 
agents can partly be a consequence of non-
sprouting mechanisms of vessel recruitment. In 
intussusceptive microvascular growth, new ves-
sels are generated by creating columns from 
connective tissue within the lumen of existing 
vessels. Glomeruloid angiogenesis is character-
ized by tight nests of vessels that resemble renal 
glomerulus. In vessel co-option, tumor cells 
incorporate host vessels in the normal surround-
ing tissue, and vasculogenic mimicry tumor cells 
directly from perfused channels bind to the host 
vasculature. In turn, in the case of looping angio-
genesis, contractile myofibroblasts pull host ves-
sels into the cancer tissue [78].

Several phase I and II studies targeting at 
fibroblast activated protein (FAP) with a human-
ized monoclonal antibody (Sibrotuzumab) failed 
to produce clinical benefits in the colon and non- 
small- cell lung cancer alone or in combination 
with docetaxel. The latest proposed strategy is 
based on a specific location of FAP which can be 
used for precise administration of cytotoxic pro-
drugs. This strategy is expected to enhance effi-
cacy of the drug delivered to the tumor 
microenvironment [14].

VEGFR-2 is known as a target for Sunitinib 
which is a receptor tyrosine kinase inhibitor. ECs 
transfected with miR-221/miR-222 and treated 
with Sunitinib showed a reduction in total tube 

length, and enhancement of cellular proliferation 
was observed. Sunitinib was not able to abolish 
the effect of miR-221/222 at pharmacologically 
relevant concentrations. Such resistance to treat-
ment with Sunitinib may develop when the tar-
geted protein is not accessible for the drug 
binding. In therapeutic implications, inhibition of 
miR-221 and miR-222 might improve the 
patient’s survival if administered as an adjuvant 
therapy in combination with Sunitinib [57].

6.6.2  Inhibition of CAF Formation

Currently, tumor immunomodulation is the main 
focus of anti-cancer therapies [64]. CAFs, being 
an important element, regulate cancer invasive-
ness and characterize by a wide range of cross- 
talk with other cells located in tumor 
microenvironments, are a target of anti-cancer 
therapies. In contrast to preinvasive stages of 
cancers, the cross-talk processes are mainly 
observed in invasive cancer stages [64]. That 
interaction seems to be the main source of che-
moresistance. CAFs highly express chemoresis-
tance receptors like retinoic acid receptor β, 
which improves therapeutic responses of the 
cells. Cell surface molecules CD10 and GPR77 
expressed on CAFs, also contribute to chemore-
sistance through supporting cancer stemness. 
Hence, the effectiveness of anticancer therapies 
in preinvasive stages may not be disturbed but 
the treatment may additionally intensify tumor 
growth in invasive stages. Therefore, complexed 
therapies should be applied.

TGF-βs are the main EndMT inductors con-
tributing to formation of CAFs. Thus, the inhibi-
tion of TGF-β pathway seems to be the most 
promising strategy to decrease the population of 
CAFs. Theoretically, three levels of inhibition 
are possessed: (i) ligand inhibition which pre-
vents TGF-β synthesis, (ii) ligand-receptor inter-
action blocking, and (iii) restriction of signal 
transduction. Despite the numerous tested inhib-
itors, studies on their functions mainly focused 
on modulation of cancer cells. Only one study 
demonstrated the role of the inhibitor on the 
cancer niche. TGFβ-activated microenvironment 
increases the metastasis ability of colon cancer 
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cell into lungs and liver. Zhang et  al. [122] 
revealed that LY2109761 significantly reduces 
liver metastases and prolongs survival (by about 
25%) in a mouse model. Galunisertib treatment 
resulted in a blocked formation of subcutaneous 
tumors by primary colorectal cancer stem cells 
[19]. Results of these studies demonstrated that 
STAT3 signaling enhances liver and lung metas-
tasis through TGF-β and IL-11-dependent path-
ways. The authors prove that targeting at TGF-β 
signaling can alter cancer cells via cells located 
in the tumor microenvironment.

Finding effective therapies which would 
inhibit CAF formation or block their effect on 
cancer progression appears to be quite difficult.

As described above, CAFs are a heteroge-
neous group of cells, formed from several sources 
under the influence of different immunomodula-
tors. Therefore, inhibition of only one pathway is 
not strong enough to counteract an occurrence of 
CAFs. Secondly, particular CAF subpopulations 
demonstrated different functions. It has been 
recently shown that depending on the location in 
the cancer niche, CAFs can regulate cancer cells 
contraction (CAFs located in the close area or 
within the tumor) or affect the tumor through 
secreted immunomodulators. Additionally, it has 
been suggested that different levels of the α-SMA 
marker, demonstrated by CAFs, depend on the 
origin of these fibroblasts [70]. Expression of 
particular markers is another problem that should 
be considered while searching for anti-CAF ther-
apy. Numerous studies revealed that their expres-
sion is dependent on the CAF source. Difficulty 
is that the presence of particular markers is not 
specific to CAFs, but it can be observed in other 
cells of the tumor niche, especially macrophages 
or lymphocytes [108].

6.7  Conclusion

The endothelium plays a critical role in cancer 
progression. Inhibition of cancer vascularization, 
intravasation of cancer cells, and CAF formation 
are the main reasons for creating effective anti- 
cancer therapies and, above all, inhibition of 
metastasis.

Nevertheless, many strategies limiting the 
growth of blood vessels proved to be ineffective. 
The reasons for that should be explained by 
diversified vasculature of the types of recruited 
inducing cells or those localized in the tumor area 
as well as possibilities of their interaction. It 
should be emphasized that the above-mentioned 
processes can be induced by tumor cells and 
tumor niche cells in response to the applied treat-
ment. These elements should be included in the 
search for new effective therapies that inhibit 
tumor vascularization. Intravasation of cancer 
cells could be limited in three ways: by prevent-
ing cancer vascularization; by blocking an inva-
sion of tumor cells into the vessel, i.e., by 
maintaining cell-cell connections; and finally, by 
inhibiting tumor cells invasiveness. Unfortunately, 
the last two possibilities are practically not used 
in anti-cancer therapies. CAFs may serve as the 
last mechanism that may constitute a source of 
anti-cancer strategies. It is known that these cells 
significantly contribute to a development of the 
tumor, either by induction of proliferation in pre-
invasive cancer stages or through the acceleration 
of EMT and metastatic capacity in invasive tumor 
stages. EndMT inhibition, which accounts for 
approximately 40% of CAFs, could prevent these 
adverse effects of CAF formations. However, so 
far, the role of mechanisms conditioning the 
transformation and functions of individual CAF 
subpopulations have not been clearly clarified.
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