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Data Journeys Beyond Databases 
in Systems Biology: Cytoscape and NDEx

William Bechtel

Abstract  This chapter investigates how data travels beyond databases in cell 
biology by focusing on Cytoscape, a platform that has been developed to repre-
sent networks, and NDEx, a database that allows for the reuse of network repre-
sentations. I begin with a brief review of the databases that have been developed 
for data involving, for example, protein-protein interactions, that are relational 
and hence productively represented in networks. Given the amount of data stored 
in modern databases, raw network representations are typically hairballs that pro-
vides researchers little useful information other than that lots of things interact. 
Cytoscape was created by systems biologists to facilitate moving beyond hair-
balls to informative representations. It provides tools for clustering nodes and 
annotating them according to what is known about the objects represented. I pro-
vide examples of how Cytoscape has been deployed to develop new knowledge 
about biological mechanisms. Cytoscape has been made freely available, and 
I describe how a large interational community of researchers has created Apps 
that enable researchers to make a number of more specialized inferences. NDEx, 
created by members of the same research lab, serves as an Expo for networks—
researchers can share networks they have developed and other researchers can 
search for networks and made them the basis for further incorporation of data or 
analyses.

1 � Introduction

As in many fields, contemporary biologists generate vast amounts of data. 
Increasingly, this data is stored in large, on-line databases that procure data from 
curation of published literature and from high-throughput experiments. There it is 
accessed by researchers distinct from those who produced the data. Leonelli (2016; 
this volume) has developed the useful metaphors of data travel and data journeys to 
characterize this process of data movement. Much of the work on data journeys to 
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date has focused on the preparation and travel of the data themselves, with less 
attention paid to the resources that are employed to analyze the data after they 
travel.1 When the data specifies relations (causal, co-occurrence, etc.) between enti-
ties, this analysis often involves the construction of network diagrams in which 
entities are represented as nodes and relations between them as edges.2 In the course 
of research, network diagrams are subject to various manipulations designed to 
reveal additional patterns in the data. Beyond their use in individual research proj-
ects, these networks themselves travel, providing the foundation for yet other 
research projects in which they are subject to further manipulation. Network dia-
grams are one format in which data are physically instantiated and subject to muta-
tion as they are incorporated into network diagrams and passed on to other 
researchers (see Leonelli, this volume, for discussion of how data are mutated in the 
course of data journeys).

My focus will be on the tools that systems biologists have created to construct 
and operate on network diagrams and to enable networks themselves to travel. 
Anyone could construct a network diagram by hand from a body of data using a 
standard graphics package. However, such a process is laborious and the product is 
frozen—the researchers cannot then integrate data from additional sources or trans-
form the diagram to reveal new patterns. Accordingly, researchers have developed 
software tools for creating, analyzing, and disseminating network diagrams. In Sect. 
4 I will discuss Cytoscape, the most widely used platform for constructing network 
diagrams in systems biology. While developed in a systems biology framework, 
Cytoscape has itself traveled to and is actively used in numerous other scientific 
fields. Cytoscape provides a platform on which researchers with specific analytic 
needs can develop their own add-ons, referred to as apps. In Sect. 5 I will describe 
several apps and, using them, illustrate some of the analysis strategies employed in 
systems biology. In Sect. 6 I will describe the recent development of NDEx, which 
serves as an online exposition (expo) to which networks themselves can travel so as 
to be viewed by others and selectively taken up for additional journeys. As a back-
ground for focusing on network diagrams, I begin in Sect. 2 by introducing the types 
of data used to construct network diagrams in systems biology and in Sect. 3 
describe the public databases and ontologies from which researchers extract data to 
create and analyze networks.

1 Leonelli (2016, chapter 6) provides a pioneering examination of reuse. See chapters by Tempini, 
Chap. 13, Morgan, Chap. 6, and Griesemer, Chap. 8 in this volume, for other aspects of reuse. 
Tempini addresses the reuse of data for different objectives than that for which it was collected, and 
in particular focuses on how this often involves linkage of data from different sources such as 
between weather, environment, and health data. As he demonstrates, this requires manipulations 
that attenuate the differences due to where the data originated.
2 Networks are just one mode of downstream analysis of data. See Cambrosio et al., this volume, 
for an account of knowledgebases that tailor large datasets for particular clinical applications.
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2 � Data Production: From Individual Experiments 
to High-Throughput Experiments

Through most of the twentieth century, experiments in fields like cell and molecu-
lar biology were conducted one at a time. But many of the procedures used in these 
experiments lent themselves to automation so that multiple variants on an experi-
ment could be conducted in parallel. For example, when Sanger first developed 
techniques for sequencing amino acids in the 1950s or nucleic acids in the 1970s, 
he applied them to one protein or gene at a time. By the late 1980s these techniques 
were automated and by the 1990s automation made possible the sequencing of 
whole genomes of numerous species. Sequencing data identifies proteins and 
genes, but not what they do. Automated procedures enabled procuring other types 
of data related to function such as techniques that reveal whether proteins form 
complexes either with other proteins or with DNA or whether genetic mutations 
interact epistatically. I discuss only techniques detecting whether proteins can form 
complexes.

Much of the early twentieth century research focused on the reactions individ-
ual proteins catalyze, but in the second half of the twentieth century it became 
increasingly evident that proteins form complexes with each other and these are 
important to their catalytic function. Two techniques have proven especially useful 
in enabling high-throughput studies of protein-protein interactions (PPIs). The 
first, the yeast two-hybrid technique introduced by Fields and Song (1989), begins 
by transfecting yeast cells with two plasmids, each attaching to a different protein. 
One serves as the bait and the other as the prey and when the proteins to which they 
are attached interact with each other, the two domains are united and form a func-
tional transcription factor that initiates transcription of a reporter gene. This tech-
nique identifies pairs of proteins that can interact, but many pairs do not do so in a 
given cell type. An alternative technique, affinity purification followed by mass 
spectrometry, starts with proteins that are actually bound into a complex in a cell 
and uses mass spectrometry to determine their identity (Rigaut et al. 1999). This 
approach identifies stable multi-protein interactions that actually occur in the cell. 
On the other hand, it misses more transient interactions that form and dissolve as 
cells carry out activities. As a result, both approaches to obtaining PPI data are 
actively employed.

High-throughput techniques for performing PPI studies were created shortly 
after automated gene sequencing was introduced and provided a means to study 
many of the novel genes they revealed. In the first high-throughput attempt to iden-
tify PPIs in yeast, Uetz et al. (2000) chose 192 proteins to use as baits and mated 
them with 6000 prey proteins. They identified 957 interactions between 1004 pro-
teins. The following year Ito et  al. (2001) performed an even larger-scale study, 
identifying 4549 interactions between 3278 proteins. Surprisingly, there was little 
overlap with the interactions identified in these two studies. I return to the Uetz et al. 
and Ito et al. studies to show how they were used in a pioneering network study in 
the next section.
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3 � Data Travels in Systems Biology: Databases 
and Ontologies

As biologists generated increasing volumes of data, they established publicly acces-
sible databases to make this data accessible. The first databases were created for 
protein and gene sequence data. Dayhoff created the Atlas of Protein Sequence and 
Structure (Dayhoff and Eck 1965-1972) which she published in book form. Shortly 
after her death in 1984 it was made available electronically as the Protein Information 
[originally Interaction] Resource’s Protein Sequence Database. It eventually merged 
into UniProt, which continues as a major source of information about proteins (The 
UniProt Consortium 2017). GenBank was developed in the same period for gene 
sequence data. Many additional databases for different types of biological data soon 
appeared—in 1989 the Listing of Molecular Biological Databases identified 50 
databases (Lawton et al. 1989) and the number has continued to grow ever since. 
Annually, the first issue of Nucleic Acids Research reviews new and updated data-
bases. On its website it provides a compilation of current databases, totaling 1613 in 
2019. As Leonelli (this volume) notes, this process is both uncontrolled and unsus-
tainable. In fact, each year the Nucleic Acids Research compilation annually elimi-
nates discontinued URLs, including 147 in 2019.

Two of the early databases to include PPI data were the Yeast Proteome Database 
(YPD) and the Martinsried Institute for Protein Sequences (MIPS) database of pro-
tein interactions. A study by Schwikowski et al. (2000) illustrates how these data-
bases were employed to construct a network from which new knowledge about 
yeast was extracted. They combined data from YPD and MIPS with data from the 
two high throughput studies noted at the end of the last section, yielding informa-
tion on 2709 interactions involving 2039 proteins. Employing hierarchical cluster-
ing based on functional assignments found in the YPD and a layout procedure that 
located similarly connected nodes near each other, Schwikowski et al. identified one 
large connected network, shown in Fig. 1, plus 203 much smaller networks. In cases 
in which YPD contained information about a protein’s cellular role, the researchers 
encoded it using the color of nodes: blue for membrane fusion, grey for chromatin 
structure, green for cell structure, yellow for lipid metabolism, and red for cytokine-
sis. By zooming in on parts of the network, as in panel B, they could focus on inter-
actions between proteins that performed similar cellular roles, in this case membrane 
fusion, lipid metabolism, and cell structure.

An important question about any network diagram is whether the patterns it 
reveals are informative or simply an artifact of the representation strategy the 
researchers employed. To investigate this, Schwikowski et al. started with a given 
node to which a cellular role was assigned and asked how often one of the nodes 
with which it was connected in the network was assigned the same cellular role. 
This happened 72% of the time, (compared with, on average, 12% for scrambled 
networks). The authors present this as vindicating the network—had they not known 
the cellular role of the initial protein, they could have predicted it correctly 72% of 
the time based on the roles of its neighbors.
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Fig. 1  Network diagram of protein interactions in yeast constructed by Schwikowski et al. 2000 
drawing both upon results of high-throughput yeast two-hybrid studies and data from low-
throughput studies collected in the MIPS and YPD databases. Reprinted by permission from 
Springer Nature: Nature Biotechnology, A network of protein-protein interactions in yeast, 
Schwikowski et al. 2000
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As researchers recognized the usefulness of drawing upon large datasets in their 
research, many researchers created their own databases, tailored to their interests, 
and made them publicly available. These included the Database of Interacting 
Proteins (DIP) (Xenarios et al. 2000), MINT (Zanzoni et al. 2002), BIND (Alfarano 
et  al. 2005), HPRD (Peri et  al. 2003), BioGRID (Breitkreutz et  al. 2003a), and 
IntAct (Hermjakob et al. 2004b). The infrastructure for each was relatively small—
on average, they employed two full-time curators who read published papers and 
entered the data. In addition to primarily serving the interest of a particular labora-
tory, each database developed its own data structures and procedures for download-
ing and curating data. No single database could keep up with the rapid appearance 
of new datasets. As a result, researchers who wanted to use PPI data often combined 
data from multiple databases, developing their own tools (parsers, etc.) to do so. 
Recognizing the problem users faced, the curators of several databases collaborated 
to develop a standardized format (Hermjakob et al. 2004a). A standard format, how-
ever, made another problem even more salient. In reporting data, journal articles 
often failed to supply sufficient information about the entities studied or the experi-
mental procedure used. This information is crucial for others to use and interpret the 
data (see Leonelli 2016, chapter 4; Rogers and Cambrosio 2007; and Boumans and 
Leonelli, this volume). Accordingly, the consortium generated guidelines as to the 
minimal information required in reporting a PPI experiment (Orchard et al. 2007). 
Several of the databases also began to work directly with journals so that data in 
new publications could be directly added to the databases. These efforts ultimately 
led to the development of the International Molecular Exchange (IMEx) Consortium, 
which among other initiatives introduced a deep curation standard aiming “to cap-
ture the full experimental detail provided in the interaction report, as this is often 
essential to assess interaction context and confidence” (Orchard 2012, p. 347). The 
initiative also sought to address another problem, that of maintaining funding for the 
various databases. The IMEx consortium also provided that if a member can no 
longer curate its databases, its records would be turned over to another member. 
Accordingly, when MPIDP ceased its curation efforts in 2012, it turned its records 
over to IntAct, which has subsequently maintained and updated them.

PPI databases have provided the data for constructing networks, but another 
database created during the same period, Gene Ontology (GO), has played a crucial 
role in allowing biologists to interpret networks. The motivation for developing GO 
was to develop “a structured, precisely defined, common, controlled vocabulary for 
describing the roles of genes and gene products” (Ashburner et al. 2000, p. 26) rep-
resented in the databases that had been developed for different model organisms 
(initially yeast, fruit fly, and mouse). GO comprises three ontologies, one for bio-
logical processes, another for molecular functions, and a third for cellular compo-
nents, each providing general terms, organized hierarchically, that can be used to 
annotate individual genes. These ontologies are themselves undergoing continual 
revision and development (Leonelli 2010, 2016).

By 2000 systems biologists had a rich set of databases on which they could draw. 
Some, such as GenBase and UniProt, emphasized structural knowledge, but many 
focused on relational information, including PPI data. GO provided a common lan-
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guage for annotating the entries in the different databases. These are the raw materi-
als from which systems biologists constructed network diagrams with the goal of 
developing new biological knowledge.

4 � Cytoscape: A Platform for Generating and Analyzing 
Network Diagrams

Tables in databases are great for storing and organizing data, but it is often difficult 
for humans to examine data tables directly and draw biologically meaningful infer-
ences or even figure out what algorithms they might employ to generate inferences.3 
For this reason, most of the databases include a self-developed program to display 
the results of searches as network diagrams. These, however, typically employ a 
fixed format designed by the curators of the database.4 Individual network formats 
support some inferences but not others. In order for users to leverage the vast amount 
of data contained in these databases, they need to generate network representations 
appropriate for their needs (see Leonelli, this volume, for a discussion of the rela-
tional nature of data).

Although several programs for creating network diagrams, including Osprey, 
VisANT, Gephi, and GraphViz, were developed in the first decade of the twenty-
first century, Cytoscape (Shannon et al. 2003) has emerged as the most widely used. 
Ideker and his collaborators at the Institute for Systems Biology began developing 
Cytoscape in late 2001 for their own research and publicly released Cytoscape 0.8 
as an opensource platform in June 2002. When Ideker moved to the University of 
California, San Diego, it became the center for Cytoscape development. The local 
team of 3–5 developers collaborates with numerous other developers at other insti-
tutions (currently including the Academic Medical Center in Amsterdam, the 
Institute for Systems Biology, the Institute Pasteur, the Gladstone Institute, the 
University of California, San Francisco, and the University of Toronto).

Although it is hard to measure actual use, in 2018 Cytoscape was downloaded on 
average 17,600 times per month and started on users’ computers about 5000 times 
each day. According to Google Scholar, the standard reference used to acknowledge 
Cytoscape, Shannon et  al. (2003), has been cited more than 14,750 times as of 
September 2019, most often by papers that include a network diagram generated 
with Cytoscape. These numbers likely significantly underestimate how frequently 
Cytoscape is used since many users do not explicitly acknowledge it (just as most 
people do not acknowledge Microsoft Excel or Adobe Illustrator even if they made 
extensive use of these in their research).

3 Tables, though, sometimes enable viewers to visualize data. See Müller-Wille and Porter (this 
volume) for examples.
4 The exception is BioGRID, whose developers also created Osprey, a network visualization pro-
gram (Breitkreutz et al. 2003b). However, development of Osprey has ended and its webpage sug-
gests researchers use Cytoscape.
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Cytoscape, now in version 3.7.1, is an open-source, freely available java-based 
software package that runs on individual computers. It is a key platform of the 
National Resource for Network Biology and its development team continues to add 
new features to facilitate investigations directed at a range of topics such as repre-
senting networks at multiple scales and representing dynamic changes in cellular 
network organization in disease. An even larger community of computationally ori-
ented biologists from around the world generates apps (initially referred to as plug-
ins) that extend Cytoscape’s capacities for analyzing networks. These are made 
available through the Cytoscape App Store, hosted on the Cytoscape website (http://
cytoscape.org). In this section I will describe how Cytoscape is used to construct 
and modify network diagrams. In the subsequent section I will discuss apps and 
how they support analyses of networks.

Figure 2 provides a schematic overview of the Cytoscape architecture. The 
Cytoscape Window contains both the tables of node and edge attributes, from which 
Cytoscape constructs the network diagram, and the network diagram itself. Other 
components operate on the tables and graphs. I will not elaborate on the Graph 
Editing and Selection component. It performs functions much like those contained 
in the File and Edit components of word processing programs: opening stored net-
works or creating new ones, selecting, deleting or hiding, or copying nodes or 
edges, etc.

Visual Mapper (later termed VizMapper and in Cytoscape 3.5 renamed Style) 
and the Layout Engines take their input from the Node and Edge Attribute Tables. 
An Edge Attribute Table is shown in the screenshot in Fig. 3; a similar table defines 

Fig. 2  Schematic overview of the Cytoscape architecture reprinted from Shannon et  al. 2003. 
Although the labels for some of the components have changed, the overall architecture has not. 
Reprinted with permission of Trey Ideker
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Fig. 3  Screenshot of Cytoscape 3.5. The window at the bottom shows the Edge Table from which 
the diagram in the upper window is generated. The window on the left shows the assignments of 
visual properties to nodes in Style. Screenshot used with permission of Trey Ideker

the nodes. A researcher can generate these tables based on data he or she has col-
lected or from data downloaded from one or more of the databases discussed in the 
previous section. At a minimum, these tables must identify the entities to be repre-
sented by the nodes and the relations to be represented by edges, but they may also 
identify a variety of attributes of the entity (e.g. its concentration) or relation. The 
tables can also include annotations (e.g., cell location or cell function) procured 
from sources such as GO.

Style, shown on the left in Fig. 3, maps features specified in the table unto visual 
properties of nodes and of edges. Thus, an investigator can map attributes or annota-
tions specified in the node and edge tables to labels or to visible features such as 
shape, size, and color. If color, for example, is used to indicate biological processes 
as specified in GO and size is used to represent the level of expression of a gene, the 
viewer can quickly see patterns in how these attributes and annotations vary.

There are many ways to lay out nodes in a 2-dimensional representation—nodes 
can be positioned randomly, around a circle, in a grid, or in a hierarchical arrange-
ment. It is often useful to group nodes by their values on a particular annotation such 
as biological process or cellular component. When used with a circular layout, this 
results in nodes that share an attribute being located close together around the circle. 
There is great flexibility in how nodes are laid out and the choice affects what pat-
terns the researcher can identify. For example, it is easier to see that several nodes 
are highly interconnected or are all connected to another set of nodes when they are 
positioned near each other. Spring-embedded layouts do this by treating edges like 
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springs (Eades 1984): connected nodes that are far apart are drawn together, but if 
they get too close, they are repelled a bit. For each of these strategies for laying out 
nodes there are a variety of algorithms, each of which generates a somewhat differ-
ent result. After an algorithm is applied, the user can also manually move one or a 
selected group of nodes. Researchers find it useful to try out different layout strate-
gies to find one that generates interpretable patterns.

Since the goal of network analysis is to generate biologically interpretable 
results, researchers derogatorily refer to networks such as shown in Fig. 4a as hair-
balls. Although the data is represented, it is not presented in a manner that can be 
interpreted biologically. Merico et al. (2009) illustrate how, by altering visual fea-
tures and layout in Cytoscape, to transform this hairball into an informative network 
diagram revealing components of mechanisms involved in chromosome mainte-
nance and duplication in yeast (Fig. 4b). Figure 4a was generated from curated data 
of PPIs (represented as edges) from both low- and high-throughput experimental 
studies retrieved from BioGRID. The nodes represent proteins and their colors indi-
cate their location in the chromosome: red, replication fork; green, nucleosome; 
blue, kinetochore; yellow, other chromosome components. The use of color in 
Fig. 4a is already a step away from a pure hairball, but the network diagram offers 
no mechanistic insight. By applying a spring-embedded layout in which edges are 
assigned forces so as to draw highly connected nodes closer together and yet keep 
them from getting too close, the authors transformed Fig. 4a into 4b. Being highly 
connected, the nodes for proteins in the kinetochore, nucleosome, and replication 
fork are now situated adjacent to each other. VizMapper (Style) used data about how 
much gene expression changes over the cell cycle to determine node size. In addi-
tion, the width of the edges is determined by the Pearson correlation between tran-
script profiles. Looking at the network diagram one can readily see that many green 

Fig. 4  (a) A hairball network diagram based on PPIs among proteins involved in chromosome 
maintenance and duplication in Saccharomyces cerevisiae. (b) The network has been transformed 
into an informative network diagram. Reprinted by permission from Springer Nature: Nature 
Biotechnology, How to visually interpret biological data using networks, Merico et al. 2009
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nodes are large and connected with numerous thick edges, indicating that the 
expression of proteins in the nucleosome is changing together during the cell cycle.

Now that the nodes are laid out in an informative manner, a researcher can zoom 
in to local regions and make his or her own inferences about parts and operations. A 
commonly used inference strategy is guilt-by-association—if neighbors of a node 
without an annotation share a common annotation (in this case, for a cellular com-
ponent), the researchers infer that the unannotated node should receive the same 
annotation. The three proteins shown in the region shaded in orange in Fig. 4b, Psf1, 
Psf2 and Psf3, are colored yellow since GO did not assign them a cellular compo-
nent annotation below the level of chromosome. The layout procedure, however, 
situated them among the red nodes that have the replication fork annotation. 
Employing guilt-by-association, the researchers inferred these proteins should be 
assigned that annotation as well. Merico et al. report that although these proteins are 
not so annotated in GO, research already published showed that they belonged to 
the GINS complex in the nucleosome that is responsible for assembling the DNA 
replication machinery. Guilt-by-association led the network researchers to make a 
correct assignment.

The layout algorithm also enables the identification of new mechanisms. The 
nodes labeled Orc1, Orc2, Orc3, Orc4, Orc5 and Orc6 are located together (in a 
region shaded in violet) apart from the three regions of nodes annotated to cellular 
components. The authors infer that they form a distinct mechanism and report that 
although these nodes lacked specific annotations in GO, “they are known members 
of the yeast origin recognition complex (ORC), responsible for the loading of the 
replication machinery onto DNA” (p.  922). In this case again the inference is 
supported.

Cytoscape thus provides researchers the ability to transform tables into network 
diagrams, assign visible features to attributes and annotations of entities and their 
relations, and determine how the nodes and edges will be laid out. Exploration with 
different approaches (e.g., changing whether an attribute is represented by the shape 
or color of nodes) is often important to finding informative patterns. This would be 
very cumbersome if researchers had to construct each network diagram by hand but 
relatively easy with Cytoscape.

5 � Further Analyzing Networks: Cytoscape’s App Store

As I have noted, Cytoscape provides a platform for other researchers to construct 
apps to perform specific analyses for their own purposes but also make the resulting 
apps available to others. In this way Cytoscape serves multiple groups of users who 
have different research agendas and require different tools for their execution. Many 
of the apps are the focus of journal publications that describe the procedures 
employed in the app and one or more examples of its use (I have identified such 
publications for several of the apps discussed below). In Spring 2017 there were 
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more than 180 apps in the Cytoscape App Store that work with Cytoscape 3.X.5 
Some apps support the import and integration of data from specific databases that 
researchers might wish to represent in networks. For example, KEGGScape, 
GeneMania, ReactomeFIViz, and STRING, draw results from these different data-
bases into Cytoscape. Bisogenet integrates and imports data from multiple data-
bases such as DIP, BIOGRID, BIND, MINT, and IntAct. AgilentLiteratureSearch 
allows users to directly query published literature for PPIs and incorporate the 
results into a Cytoscape network. Apps such as BiNGO and ClueGO facilitate anno-
tation of nodes and edges using Gene Ontology.

Yet other apps provide layout and visualization algorithms that extend beyond 
what is offered in the core. For example, Cy3D generates three-dimensional views 
of networks while CyAnimator supports the construction of animations. With 
respect to layout, GOlorize enables the use of GO annotations to direct the layout of 
nodes so that the network is interpretable in terms of biological functions while 
DeDaL facilitates using principal components analysis in developing layouts, align-
ing one network with another, and morphing between selected layouts so as to find 
ones that are biologically interpretable.

Yet other apps support particular analyses of networks useful for specific lines of 
research. I will first discuss two classes of analysis apps: those used to compute a 
variety of standard network measures and those designed to identify clusters or 
modules in a given network. I will then offer two illustrations of how particular apps 
contribute to a better understanding of biological processes.

Apps for Computing Network Measures  Graph theorists have developed an exten-
sive set of measures to characterize networks. For purposes of this exposition, I will 
focus only on networks with undirected edges. Some of the most common measures 
are mean shortest path length, the clustering coefficient, and node degree distribu-
tion. The length of a path between two nodes is the number of edges that are tra-
versed in going from one to the other; the mean shortest path length is the mean for 
all pairs of nodes of the shortest (or characteristic) path lengths between them. It 
provides a measure of how quickly effects can travel through the network. The 
nodes to which any given node is connected are its neighbors and the clustering 
coefficient characterizes the degree to which the neighbors of a node are connected 
to one another. Finally, node degree refers to the number of connections a given 
node has to other nodes. Of particular interest are networks in which node degree is 
not distributed normally but according to a power law. In such a case, some nodes 
are highly connected to other nodes, and serve as hubs, whereas most nodes have 
few connections. NetworkAnalyzer (Assenov et al. 2008) computes these and many 
other statistics that are used to characterize networks, displaying the results in his-
tograms or scatterplots. Apps such as CytoHubba identify hubs.

5 Another 132 Apps were written for Cytoscape 2.X but have not been recoded to work with 
Cytoscape 3.X. This was a serious cost of completely revising the Cytoscape’s program interface 
in 2013, which was done in part to improve the architecture through which apps interact with the 
core program.
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Apps for Identifying Clusters  For many research objectives it is valuable to iden-
tify nodes that are especially highly interconnected. These clusters, sometimes 
referred to as modules, often reflect groups of components that perform a common 
activity—that is, work as a mechanism. The apps Molecular Complex Detection 
(MCODE) (Bader and Hogue 2003) and ClusterMaker2 (Morris et al. 2011) identify 
clusters. Modules may be organized hierarchically, sometimes with different types 
of connections at different levels. When Bandyopadhyay et al. (2008) developed a 
network based on both PPI and genetic interactions they found that PPIs tended to 
link nodes in modules while genetic interactions generated higher level clusters. 
Srivas et al. (2011) implemented the procedure Bandyopadhyay et al. employed in 
the app PanGIA.

5.1 � Applying an App for Identifying Active Modules

Most clustering algorithms view networks as static structures, but Ideker et  al. 
(2002) sought to identify nodes that organize into clusters or mechanisms only in 
specific circumstances such as when particular genes are mutated or yeast are grown 
on specific media. In an earlier paper, Ideker et al. (2001) has investigated the galac-
tose (GAL) utilization mechanism in yeast. They started with PPI and protein-DNA 
interaction data to construct a network of 348 genes with 362 interactions. They 
grew colonies of wild-type and nine mutant strains, each lacking one known GAL 
gene, on media containing or lacking 2% galactose, measured global mRNA 
changes and protein concentration changes across the conditions, and plotted these 
on the network. As Cytoscape had not yet been developed, they used the LEDA 
toolbox developed at the Max-Planck-Institut für Informatik (Mehlhorn and Näher 
1999) to construct the network shown in Fig. 5a. Arrows represent protein-DNA 
interactions and straight edges PPIs. The nodes are shown in clusters corresponding 
to genes that exhibited similar changes in expression over all perturbations and the 
clusters are labeled by their biological functions. Darker shading of nodes indicates 
increased and lighter shading decreased expression. The size of the nodes reflects 
the magnitude of change in the case in which gal4 (the node colored in red) is 
knocked out in the presence of galactose. The network diagram reveals that the 
expression changes resulting from the perturbation is more correlated in connected 
proteins than among randomly selected proteins, a result Ideker et al. further con-
firmed with statistical analysis.

In the 2002 study, Ideker et al. sought to identify modules in which expression 
changed the most in specific conditions. Having developed Cytoscape, they repre-
sented the network in it and developed an analysis strategy that became one of the 
first Cytoscape apps, jActiveModules. The analysis first computes a z-score for the 
degree of change in expression of each gene in a particular condition, indicated by 
the shading of the nodes in Fig. 5b. It then identifies subnetworks of genes under or 
over expressed and rank-orders them in terms of activity. The top five subnetworks 
are indicated in Fig. 5b by common coloring of the node border and the attached 
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Fig. 5  Comparative network diagrams: (a) from Ideker et al. 2001 and (b) from Ideker et al. 2002. 
Both show the same 362 associations between genes whose expression was increased or decreased 
when grown with or without 2% galactose. In the diagram on the left, darker nodes indicate 
increased expression when gal4 (shown in red) is knocked out. The edges shown in color other than 
black in the diagram on the right indicate the subnetworks that were most altered when gal80 was 
knocked out. A. From Ideker, T., Thorsson, V., Ranish, J. A., Christmas, R., Buhler, J., Eng, J. K., 
Bumgarner, R., Goodlett, D. R., Aebersold, R., & Hood, L. (2001). Integrated genomic and pro-
teomic analyses of a systematically perturbed metabolic network. Science, 292, 929–934. 
Reprinted with permission from AAAS. B. reprinted from Ideker, T., Ozier, O., Schwikowski, B., 
& Siegel, A. F., Discovering regulatory and signalling circuits in molecular interaction networks, 
Bioinformatics, 2002, Volume 18 Suppl 1, S233–240, by permission of Oxford University Press

edges. Ideker et  al. interpret the subnetworks active in a particular condition as 
mechanisms involved in transmitting signals and performing regulatory functions. 
In the example shown, GAL80 (the only labeled node) is deleted. The adjacent 
node, GAL4, is a hub with protein-DNA connections to seven other genes. This 
suggests the hypothesis that GAL80 influences these genes through its effect on 
GAL4, a hypothesis for which there was already empirical support (Lohr et al. 1995).

5.2 � Applying an App for Modeling Diffusion

Whereas jActiveModules was one of the first apps developed for Cytoscape, 
Diffusion (Carlin et  al. 2017) is one of the most recent. Diffusion implements a 
distinctive strategy for discovering underlying clusters that correspond to mecha-
nisms that has proven effective in fields such as cancer research in which researchers 
confront extremely heterogeneous data. For example, in The Cancer Genome Atlas 
study of 500 tumors of various types, individual tumors exhibited from 20 to 300 
somatic mutations, with the genes mutated varying substantially across samples of 
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the same type of tumor. This made it difficult to determine which mutations might 
play a causal role. To address this problem, Vandin et al. (2011) developed a strategy 
of mapping mutated genes onto a PPI network and treating them as hot spots from 
which simulated heat could diffuse. In many cases, heat diffusing from different 
nodes would converge on the same cluster of nodes. These nodes were hypothesized 
to represent a mechanism or pathway that, when disrupted through any of the muta-
tions, leads to cancer. The approach was further developed by Hofree et al. (2013), 
who used propagation in networks to stratify cancer populations in ways that cor-
responded to patient survival. Heat diffusion algorithms are computationally 
extremely demanding. Thus, the designers of Diffusion linked the app locally 
installed on an individual researcher’s computer to an internet service that performs 
the computation. Using Diffusion within Cytoscape, the user can visually select 
nodes as heat sources, invoke the service, and then visualize the diffusion results.

Carlin et al. employed Diffusion to better understand why one melanoma cell 
line responds to the drug Vemurafenib (LOX-IMVI) while another is resistant. They 
use a network generated from the NCI Pathway Interaction Database (an amalgama-
tion of expert-curated cancer pathways) and initiated diffusion from six genes with 
known relations to the drug: BRAF, PDGFRB, NRAS, HGF, MAP 2  K1, and 
MAPK1. Diffusion identified a subnetwork of 53 nodes and 448 edges. Cytoscape 
was then used to filter the top 10% of nodes activated after diffusion. Based on 
combining the results of multiple queries followed by filtering, Carlin et al. deter-
mined that TSC2 and BLNK are mutated in the resistant but not the sensitive cell 
lines and proposed that this might explain the difference.

6 � Network Expo: NDEx

In the previous two sections I have characterized how tools like Cytoscape allow for 
data that has traveled to databases to travel one step further and be used in network 
analyses. But is that the end of the line? In this section I show how network dia-
grams themselves can also travel. Traditionally, network diagrams have been dis-
tributed as static visual representations and those who wanted to analyze them 
further had to recreate them for themselves. But networks generated with Cytoscape 
and similar programs can be stored in structured data formats in which they can then 
be distributed to other users, who may then incorporate additional data into the net-
work or perform a different type of analysis (e.g., a different clustering procedure) 
to the existing network. While such sharing can be carried out informally by 
authors,6 the Network Data Exchange (NDEx) is providing a platform for doing this 
on a large scale.

6 A collaboration between Elsevier and Cytoscape created the Interactive Network Viewer which 
allowed authors to make networks available in online publications in a viewer with some capacities 
for readers to further explore the network or download it to Cytoscape. This project is no longer 
active.
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NDEx was introduced in 2014 as “an online commons” (Pillich et al. 2017) or 
expo that functions much like World Expos. In this case, the exhibits are the net-
works that provide original interpretations of data. By uploading their networks, 
researchers can showcase them and others can download them for use in their own 
work. The developers further characterize NDEx as “a step toward an ecosystem in 
which networks bearing data, hypotheses, and findings flow easily between scien-
tists” (Pratt et al. 2015). The project employs its own group of developers in Ideker’s 
lab at UC San Diego and is supported by the National Cancer Institute, the National 
Resource for Network Biology, the California Stem Cell Agency, Pfizer, Janssen, 
and Roche.7

At its core, NDEx functions much like Google Docs or Dropbox. Networks are 
added to NDEx either from other online sources such as Pathway Commons, which 
draws data from a wide range of databases including BIND, DIP, and BioGRID that 
were discussed in Sect. 2, or by individual users via either direct file import or from 
Cytoscape. Individual users store their own networks and have control over who can 
access them—they can keep them private, share them with designated others, or 
make them public. Sharing with a group of researchers allows a group to collaborate 
in further developing a network. If made public, other users might use the network 
as the basis for their own work and upload new versions for others to access. Each 
network that is added to NDEx is assigned a Universally Unique Identifier (UUID) 
so that it can be easily referenced. If someone modifies a public network and saves 
it, it is assigned a new UUID. NDEx is distinct from other online network reposito-
ries such as KEGG and Pathway Commons in that users manage their own networks 
rather than the networks being managed by the organization that maintains the 
resource. To facilitate visualizing and indexing networks as well as interactions with 
Cytoscape, NDEx employs the Cytoscape Cyberinfrastructure network exchange 
format, CX, to store information. CX, however, maintains the semantics of the for-
mat employed by the creator of the network.8

For networks to be useful to others, it is important that depositors provide suffi-
cient information about how they were created and the data that was used (databases 
are updated regularly and attempts to reconstruct networks will not necessarily 
yield the same results unless the same iteration of the database is used). Accordingly, 
NDEx maintains a provenance history that contains this information. The history 
also includes information about other networks that were used in constructing a 
particular network.

For NDEx to provide a useful expo, other users must be able to find networks 
that are relevant to them. Thus, when networks are uploaded, NDEx indexes text 
strings for network descriptions, the user and group that manages the network, the 

7 Legally, the Cytoscape Consortium, a 5.0.1cs corporation, owns Cytoscape and NDEx, along 
with NeXO and Cytoscape.js. It contracts with the various pharmaceutical companies and sub-
contracts with UC San Diego.
8 WikiPathways provides a useful comparison case with NDEx. WikiPathways is based on the Wiki 
model in which everyone collaborates on a common public document. It is also limited to small 
networks and allows for content that is not represented in a network.
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genes or proteins represented by the nodes, the relations represented by the edges, 
and references cited. Users can initiate searches from NDEx homepage by entering 
names of cell processes or names of genes or proteins. This will bring up a table 
listing a number of networks. Figure 6 shows the results of a search for three circa-
dian genes, per2, cry2, and bmal1. This returned 165 networks in which at least one 
of these genes is included. The table shows the name of the network, the number of 
nodes and edges, whether the network is public or private, the owner, and the date it 
was last modified. When one hovers a mouse over the name of a network, a popup 
window appears with a description of the network if one has been provided. If there 
is an icon in the Ref. column, it links to a publication in which the network appeared. 
One can proceed to download the network by selecting the icon with a white down-
ward arrow.

Clinking on a network name brings it up in a window (if there are too many 
edges, a sample of 500 edges will be displayed). Users can choose instead to see a 
listing of the edges in a table view. The screen also shows either network info (e.g., 
when it was created, its UUID address) or the provenance history. A search box 
enables users to query particular nodes and select a number of edges out from those 
nodes. The network selected in Fig.  6 has 195 nodes and 4534 edges. Entering 
CRY2 and distance 1 returns the more restricted network shown in Fig. 7. Selecting 
the nodes PER2, CRY2, and the two edges connecting them, brings up information 
about the nodes, including links to UniProt, GenBank, and publications providing 
evidence for the edges.

Fig. 6  Screen shot of NDEx after search for networks that include per2, cry2, or bmal1, three 
prominent mammalian circadian genes
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Fig. 7  Screen shot of the network selected in Fig. 6 after a query requesting nodes directly con-
nected to CRY2

NDEx has been designed to integrate smoothly with Cytoscape. From within 
Cytoscape, one can use the app CyNDEx to query networks in NDEx and import 
selected ones. CyNDEx also allows users to export networks developed or modified 
in Cytoscape to NDEx. Once a network has been imported from NDEx to Cytoscape, 
a researcher can use it to continue the inquiry for which it was originally designed 
by carrying out additional analyses or accept the analysis offered and incorporate 
further data into the network.

The developers of NDEx have advanced a bold vision of how NDEx can provide 
“new models of scientific publication.” It provides an expo “in which live data struc-
tures replace static diagrams and supplemental files.” Drawing upon these live data 
structures, other biologists can create new networks that serve their own ends and 
create new expositions in NDEx. For NDEx to realize these goals, network biolo-
gists must be willing to share their networks. There is evidence that they will as use 
of NDEx is showing steady growth. From July 2015 until March 2016 the number 
of unique visitors per month increased from 151 to over 1200. As of July 2017 there 
were 3190 public networks, 810 registered users and 37 groups, although not all of 
these have uploaded networks to NDEx. The developers are pursuing a number of 
strategies to encourage greater use such as making NDEx a platform on which 
authors may make networks in their papers available to reviewers. To the extent that 
NDEx is successful as an expo of networks, network diagrams will be both products 
of inquiry and inputs for future inquiries.
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7 � Conclusions

In systems biology and many other fields, relational data travel from individual 
researchers to publicly accessible databases, from which they are accessed and 
employed by subsequent researchers. I have focused on the resources that systems 
biologists have created to enable further data journeys. These resources are allowing 
researchers both to represent and extract interpretations from the data and to share 
the products of their research so that other researchers can build upon them. These 
tools enable data and the analyses constructed from them to continue to travel far 
beyond the initial database to which they were uploaded.

My focus has been on the increasingly popular use of network representations of 
relational data. Networks are not just an attractive format in which to represent data. 
As I have developed in earlier publications, they are employed in novel ways to 
make discoveries about biological mechanisms. In recent decades, philosophers of 
biology have characterized the research strategies by which biologists in a variety of 
fields search for mechanisms to explain phenomena of interest (Bechtel and 
Richardson 1993/2010; Craver and Darden 2013). Most of these strategies start 
with hypothesized mechanisms and decompose them to find their constituents. 
Network biology pursues a different strategy, starting with data about how biologi-
cal entities are related to each other (e.g., which proteins interact), identifying 
mechanisms as local clusters within the network and appealing to them to explain 
biological phenomena (Bechtel 2017, 2019).

Key to network biology is the construction of network representations and the 
application of tools to analyze these representations. Since its introduction in 2002, 
Cytoscape has emerged as a freely available and widely used platform for creating 
and analyzing network representations. The core of Cytoscape allows researchers to 
import databases of relational data and generate network representations employing 
a variety of different layouts that enable specific inferences from the data and differ-
ent ways to annotate the representation to incorporate yet additional information. A 
user can, for example, quickly switch between different layouts until he or she finds 
one that provides insight into the data. Of central importance are algorithms used to 
find clusters of nodes that are then interpreted as potential mechanisms.

The construction of a revealing network representation is often just the starting 
point for further analysis. The core of Cytoscape provides a range of tools intended 
for use on a wide variety of network studies (extending, for example, to the social 
sciences). But Cytoscape also provides a platform for other researchers, often with 
interests limited to specific domains, to develop their own analytic tools in the form 
of apps. By providing an App store, the developers of Cytoscape have encouraged 
researchers to make these available to yet other researchers.

Cytoscape and its apps are powerful tools for researchers to reuse data that has 
been deposited into the growing number of databases developed by biologists. A 
particularly valuable feature is allowing researchers to readily integrate data from a 
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variety of different databases into a single network that can then be analyzed in dif-
ferent ways. Until recently, however, these network representations and the analyses 
performed on them represented the end of data journeys—they might be published, 
but anyone who wanted to carry on the inquiry would have to procure the network 
in a useable format from the researchers or reconstruct it for themselves. By provid-
ing an easily searchable expo of networks that other users can access, add data to, 
and further analyze (using Cytoscape or another platform), NDEx enables data to 
travel yet further. Since users can both download networks and upload their revised 
network, data can be recirculated potentially indefinitely.

Resources such as databases, Cytoscape and its apps, and NDEx, constitute 
important infrastructures that are increasingly relied upon by contemporary biolo-
gists. These tools supplement traditional experimental tools, allowing results to 
travel widely and to be analyzed by multiple researchers using different techniques 
for network analysis. They thereby contribute in novel ways to the development of 
scientific knowledge.
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