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Abstract Resilient microgrids have been the subject of growing interest from
information and communications technology (ICT) service providers to assure
service availability (and therefore revenue) even in the case of grid fault due to
bad weather conditions, as an internal storage capacity as uninterruptible power
supply is used. However, such storage equipment represents an unavoidable cost in
terms of initial investment, maintenance, and operational efficiency. In this work,
starting from a previous development of a prototype supply system for a landline
station, the control algorithm of the storage devices was investigated to optimize
the cost/benefit ratio. A fuzzy logic system controller was developed to exploit the
revenue opportunities offered by the energy market, converting a landline station
into an active system that exchanges power through the grid. Besides this, a fuel cell
generator was integrated to achieve further benefits (system resiliency and battery
size reduction). The simulation results indicated a well-reactive behavior for energy
price, battery state of charge, and grid fault probability variations.

1 Introduction

Nowadays, ICT equipment (e.g., radio base stations, data centers) needs stable and
continuous power supply, usually assured by dedicated storage systems. However,
such systems represent an additional cost to their owner and operator. From the
customer’s point of view, the economic losses are caused by service interruption,
while from the operator’s point of view, the extra costs are connected to contract
penalties toward their customers [1].
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Usually, the main causes of system downtime are ascribable to the weather
conditions [2], and even in the last decade, enormous phenomena such as floods
and hurricanes caused lot of system downtime events.

In a distributed generation (DG) scenario (as in [3]), microgrids can take an
active part on the grid regulation, as users (“prosumers” in this case). Such an
optimization process may be accomplished both by the hardware design (e.g., by
energy content and power peak value for the storage system, nominal power for
the internal generation system) and by the control logic to regulate the energy
flows through the grid exploiting the installed resources (generation and storage).
In this view, assuring both UPS functions and grid services, the design should be
addressed to provide the system with resiliency features. Despite not still defined by
international standards, “resiliency” (or “resilience”) has operational definitions (for
critical infrastructure), as in [4–6], rooting in the concurrent presence of robustness,
resourcefulness, and rapid recovery (in case of disruptive events) of the assessed
infrastructure. Indeed, since the unexpected occurrences are mostly grid faults, this
process would be based on a predictive algorithm approach that, in literature [7–9],
leads to the development of not fully deterministic control logic techniques, but is
based on the probability of the event occurrence.

Among these techniques (artificial intelligence) to implement predictive algo-
rithm, fuzzy logic (FL) has the capability of mapping blurry concepts in membership
sets and, as reported in Tables 1 and 2, appears flexible enough to support the
resilience implementation in systems operating in a DG scenario. This feature
suggests using FL to exploit weather forecast report data (such as rain probability,
expected wind and sky clarity, and so on) to guess if a grid fault has a relevant
occurrence probability or not.

Table 1 Literature comparison between FL and other approaches/techniques

Other approaches in literature Difference with fuzzy logic (FL)

Hardware redundancy: supporting the
distribution system by decentralized
plants and even combining the two
approaches [10]

FL implies absence of cost of new
hardware (since fuzzy logic control
algorithm can be implemented on very
cheap controller). Moreover, hardware
redundancy is usually (in literature)
represented by additional microgrid
(i.e., nodes) to support the electric
distribution system

Artificial intelligence (AI) techniques FL belongs to artificial intelligence
approach; a more detailed comparison
among these techniques is presented
below and in the main text

Demand response (DR) incentive (for
power delivery) scheme in an energy
market to simplify the load forecast
[11]

Incentives to DR (to simplify load
forecast) can be included in FL, but
their value (per time step) is
“modulated” by weather conditions and
system state (SoC in our case)
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Table 2 Literature comparison between FL and other artificial intelligence techniques

Other AI techniques (references
in squared brackets) Reason to prefer fuzzy logic (FL)

Artificial neural networks
(ANNs)—e.g. [12]

ANNs require long training to learn
system behavior. Moreover, due to
the rarity of the forecasted events,
the number of faults in the training
data is exiguous even with a lot of
input combinations

Multi-agent system (platforms)
(MAS)—e.g. [13]

These platforms improve the overall
grid resilience, but are not adequate
to enhance the single node (as
addressed by the present work). FL,
operating local optimization (even
thanks to the simplified dataset), has
quicker response representation.
Moreover, they require continuous
data exchange between nodes that
can be absent during the emergency
states (that is the target of the
proposed investigation)

System with inductive learning
(IL)—e.g. [14]

IL requires sensor network and,
therefore, besides the cost
increment, can (successfully) only
work at run-time. However, it is a
good alternative once the design and
set-up phase is concluded

In parallel, the exploitation of storage capacity availability (i.e., the expected
idle/emergency state, according to the weather prediction) can be optimized by an
algorithm based on the data coming from energy market (buying and/or selling
price) in the “day-ahead” price databases. FL was used to integrate the price value in
the overall control algorithm, as detailed in the following discussion. The developed
algorithm was addressed to model the hybridization of a battery with a solid oxide
fuel cell (SOFC) system as source of internal generation (whose prototype and load
profile were already studied in a previous work [1]) and to optimize the storage
capacity operation.

The block diagram of the prototype is reported in Fig. 1 and the load profile
in Fig. 2. In this work, the control and optimization by artificial intelligence are
presented.
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Fig. 1 Block diagram of the
hybrid power supply system
and connections to load
(telecommunication station)
and electric grid
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Fig. 2 Telecommunication station load profile. The peak load period occurs during the weekend;
this depends on the positioning of the station on the territory. The choice of such unbalanced
distribution represents an additional challenge to the hybrid system design

2 Numerical Simulations

2.1 Data Overview

To evaluate the potential benefits of the above-mentioned approach, a simulation
tool was developed in MATLAB Simulink environment.

The FL algorithm was implemented by using the following four signals (Tables
3, 4, and 5 show the partition of each overall signal span into overlapping intervals):

For this reason, the FL algorithm has been modified to be fully operative only
in a large range, but not 0–100%. Besides this, the thresholds would allow the
system (in the perspective of more flexible energy market) to have a reservation
of capacity both to store and release power from and to the grid. From the overall
logic point of view, the algorithm was based on a two-level FL scheme (Fig. 3), i.e.,
a first layer that, based on the weather forecast signals, only determines if the grid
faults have a relevant probability to occur or they should be negligible, respectively
identified as “resilient” or “normal.” Such states identify the operation mode of
the latter FL layer. The latter FL layer has two FLMs (FL machines) to determine
the charge/discharge rate of the battery. The charge or discharge operation is the
algebraic result of the difference between actual load and internal power production
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Table 3 Membership function assignment (first-layer FLM)

Variable Description

Wind sp. speed From a weather station near the
installation site and distributed in five
intensity intervals

Weather signal Combination of “sky clarity,” “rain
probability,” and “rain intensity” from
weather report

Energy price Varies according to the “day-ahead”
price of the Italian energy market for
electrical power
production/consumption [15]

State of Charge (SoC) The actual storage (battery) SoC that
is particularly critical once the usually
unused capability (UPS function) is
utilized to support the grid services

Table 4 Membership function assignment (first-layer FLM)

Variable
Membership intervals
(overlapping with different probability)

Wind sp. Low Moderate Average Intense High

(m/s) <3 2–7 5–11 7–18 >11
Weather signal No rain Moderate Heavy rain
Mode
(OUTPUT)

Normal
>0.4

Resilient
<0.6

Table 5 Membership function assignment (second-layer FLMs)

Variable Low range Medium range High range

SoC% (min
max)

0
30

25
40

35
60

50
80

70
100

Price/cAC/kWh 4–6 5.5–8 7–12
Grid disconnection expectation 0–0.3 0.22–0.6 0.5–1.0

(fuel cell generation). In each time step, the “net load” (negative when FC generation
power is greater than the actual load power) must be satisfied by the algebraic sum
of the power from battery and power from grid. The simulation was performed
by using 3-min time slots. This output acts like a switch for the latter-level FLM
that defines the normal or the resilient fuzzy mode algorithms. The forecast signals
were collected to determine the state profile (normal/resilient) by a first fuzzy logic
machine whose inputs are the weather (as a linear weighted combination of sig_wx
and rain probability) and the wind speed; both (input) signals are reported in Fig.
4. Wind speed, weather signal, energy price, and battery SoC were converted into
partially overlapping intervals named after logic labels, explained in the following
single-layer FLM descriptions:
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Fig. 3 Implemented two-layer fuzzy logic controller (“normal” and “resilient” modes). During
“emergency” mode (i.e., grid outage), the FL is bypassed to, since the only function is the surviving
of the load (telecommunication station)

2.2 Implementation of First-Layer FLM: Raw Signals
from Weather Forecast—Collection and Treatment

The two input signals of the first-level fuzzy machine (weather and wind) were
elaborated, through the tabled fuzzy rules (inference engine), to determine a single
output and select the operation mode of the controller (i.e., the system state: normal
or resilient). This signal was associated to a “fuzzy” threshold (with a smooth
transition in the range of 0.4–0.6, as indicated in Table 4) for the defuzzification
process. The resulting (output) mode profile is reported in Fig. 5.

2.3 Second-Layer FLM: Signals from Energy System:
Collection and Treatment

In the second layer of the fuzzy controller, the overall algorithm distinguishes a
normal and a resilient operation state and determines how the discrepancy (either
surplus or deficit) between the actual generation and the load consumption is
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Fig. 4 Weather signals recorded (1 week) as input variables of the first layer of the FLM (the
corresponding output is the operational mode “normal/resilient”)
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Fig. 5 Operational mode (normal/resilient) as output of the first-layer FLM. This signal switch
(in each time step, 3 min) between the two corresponding control algorithms

distributed between the battery and the grid. Thus, it requires actual energy price
(recorded with hourly base for a week, Fig. 6) and SoC as input variables.

The battery SoC values were divided into five intervals and the selected
membership functions are in Table 5. To cover the whole span of each variable,
the intervals are overlapping, like in Table 5.
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Fig. 6 Weekly profile of the energy price (cAC/kWh) in the considered week (one sample per hour)

Table 6 Power
surplus/deficit distribution
(battery charge/discharge
rate)

Interval name Actual grid current/nominal battery current

Battery � grid 0–0.4
Battery > grid 0.2–0.55
Balanced 0.45–0.67
Battery < grid 0.55–0.9
Battery � grid 0.8–1.0

To define a correspondence between the input and the output variable intervals,
this approach requires a table of rules (listed by a priority order) to univocally
assign the combination of two or more input variables to a single output interval.
Such rules work as Boolean combination of membership functions within “IF
. . . THEN” conditional statements, as in [16]. For example if the wind speed is
“high” and weather is “storm,” the response will belong with high probability
to “resilient”; otherwise it will belong with lower probability to it if they are,
respectively, “average” and “moderate.” Analogously, in the second layer, if SoC
is low, price is low, and there is a surplus, the grid rate tends to charge the battery
with a higher current; when the price is “high” (“low”), the grid power request
decreases (increases) consequently. On the other hand, in “resilient” mode the FLM
aims to bring the SoC to high values. The target is injecting the surplus preferably
to increase the battery SoC instead of toward the grid, regardless of the energy
price. The output variables result in a variation of the batteries’ charging/discharging
power, through a “defuzzification” process, which is able to translate the output
states in numbers to control the actuators. Except for the extreme values of the SoC
(qualitatively described above), the fuzzy layer determines the distribution of the
power surplus/deficit between batteries and grid, whose “nominal” interval limits
are highlighted in Table 6.

Basically, since the resilient case has relevant expectation of a forthcoming grid
failure, the algorithm does not take into account, as visible in Fig. 3, the energy
price. On the contrary, the “threshold and emergency controller” evaluates, in the
resilient mode only, an extra function “fast charge” to accumulate more energy
(since the probability of a grid fault is relevant) in the batteries to overcome the
grid fault periods. This defuzzification threshold value (0.4) was set to bias the
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control logic toward a conservative mode and adapted to trigger the “fast charge
output.” Indeed, the “fast charge function” determines an interruption of the basic
fuzzy logic to start an extra charging process. Moreover, if the grid failure occurs,
it is necessary to consider an emergency state that is determined by the absence of
energy exchange through grid, so that the battery SoC is a direct consequence of the
power surplus/deficit.

3 Results

To analyze the behavior of the FLM in different cases, in the simulation, different
artificial grid faults were forced. This was done to assess the effect of correct
(resilient state) or wrong (normal state) outage prediction impact on the surviving
capability of the system.

3.1 Analysis of Extreme Cases in Normal Mode

However, in case of extreme values of the considered variables (e.g., battery SoC
greater than about 85% or lower than about 30%), the algorithm optimizes the
storage capacity utilization for grid services by reducing the effect of the variable
“energy price” in the decision algorithm. To analyze this criticism of the algorithm,
the implemented simulation was performed in the normal mode only. This is visible
in the plots in Fig. 7. In A, A′, and A′′ sections, due to the very high SoC (those peak
values reach 85%), the system injects (for just one time slot per peak) power to the
grid even if the price is low to discharge the battery a little and avoid the probability
of being unable to offer reserve capacity to the grid.

On the other hand, in section B, despite the high price of energy, the system
prevents the battery from deep discharge to preserve both capacity for grid services
and battery life, as well as the residual capacity from further displacement that
would be detrimental for the necessary (even short) UPS function in case of an
abrupt disruptive event.

3.2 Dynamic Behavior of the System to Abrupt Signal
Variation

A close-up on a valuable price variation (Fig. 8) allows to verify the effect of
an abrupt (decreasing) variation of the hourly energy price. For instance, in the
time window from minute 4000 to 4500, the discrepancy between generated and
consumed power has some sign variations and the energy prices move quite rapidly
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Fig. 7 “Normal” mode—effect of different SoC: in A, A′, and A′′ the power is injected into the
grid even at low energy price, due to the compensation effect of the high SoC. In B, extremely low
SoC makes the system to inject power into grid even at low price

from the highest values to the minimum. The comparison of the plots ranging around
4100–4250 shows that while the fuel cell generation exceeds the load consumption,
since the price is high, the power surplus goes entirely to the grid (i.e., SoC is
constant). In particular, it is evident that, due to the rapidly diminished energy price,
despite a positive discrepancy between generation and load, the power drained from
the grid has an increasing trend, so that the low energy price signal is interpreted
as the right time to re-charge the battery with higher power instead of injecting
power to the grid. Hence, in this case, the battery is re-charged both from grid and
SOFC generator. On the contrary, in the time slots in which the load exceeds the
FC generation, the most part of the necessary power comes from the battery and a
small part (with a decreasing trend) from the grid (this is because the SoC is in the
intermediate range).

Moreover, once the price has its most relevant drop (around minute 4260), the
grid contribution to load supply increases and the battery contribution decreases.
These two results demonstrate that fuzzy logic controller has effective consequences
both in long-time observation windows and in fast dynamics (comparable with the
examined phenomena).
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Fig. 8 At high energy price values, the battery injects power to the grid. Once the energy price
abruptly drops, even if the load requires more power than the FC generation, the grid is used to
contemporarily supply the load to re-charge the battery

3.3 Analysis in Emergency Mode: Limits, Constraints,
and System Corrections

Since in emergency mode the fuzzy control system cannot operate, only solutions
at system level were implemented. Due to the very unbalanced profile, the selected
load profile can severely stress the storage regulation.

In particular, two opposite case have been simulated:

1. A long grid failure occurs while the SoC has very high value, in a working day.
2. A long grid failure occurs while the SoC has intermediate value, during the

weekend with high power consumption.

In the former case, as visible in Fig. 9, the SoC may reach 100% due to the
average excess of the generated power with respect to the average load in the
working days. For this reason, in Fig. 9, from section A to section B, since the
grid power must be zero, the battery SoC would increase over 100%. Therefore,
the algorithm was refined to balance this point with a programmed (in slow steps,
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Fig. 9 Emergency mode—SoC drift due to the low load consumption over time without the
possibility of injecting generation excess into the grid. The correction is operated by limiting the
SOFC production in compliance with the system dynamics

compliant with manufacturer indications) reduction of fuel cell power generation
down to half of the nominal power to limit the battery SoC increment. Such
correction introduces a loss of efficiency in the energy conversion process, but lets
the algorithm operate without risk of being shut-down to avoid malfunctioning.

The carried out analysis highlighted that, to be compliant with the power
dynamics indicated by the manufacturer, it is possible to set a SoC threshold value
of 87% to start the power generation reduction. However, this event occurred (in
Italy) extremely rarely in the last few years.

4 Conclusions

In the presented work, a control strategy based on fuzzy logic was developed and
analyzed to exploit the storage resources (UPS/battery) to provide energy services to
the grid while satisfying the regular necessity of continuous operation of a landline
station for telecommunications. To reach an appropriate balanced goal between
revenue from energy market and service surviving, a fuzzy logic-based algorithm
was tested against different conditions of the system operation. In particular, during
normal operation, the controller outputs were analyzed at the most rapid variations
of the energy price, to verify the adaptation of the battery charging/discharging rate
regulation even according to the SoC value evolution. Weather, price, consumption,
and generation were considered to calculate the energy flows through the battery
and the grid. This led even to discharging battery toward load and grid in case of
high price and high SoC or, in contrast, draining power to satisfy the load in case
of low energy price depending on the battery SoC. On the other hand, the resilient
working mode, acting as a pre-alert state, did not include the energy cost in the
battery rate calculation, since the system downtime is considered (in those time
slots of the simulation) by far disadvantageous than the purchase from grid even at
high price. Concerning the emergency mode, it was studied by forcing grid outage
periods at different combinations of weather forecast signal, power load, and energy
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price levels, to analyze the effect of the weather forecasting and FL, reducing the
probability of service down-time.
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