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Abstract Recently, the Lambert W function has emerged as a valuable mathemat-
ical tool in photovoltaic (PV) modeling and other scientific fields. This increasing
interest is because it can be used to reformulate the implicit equations of the single-
diode PV model into explicit form. However, the computation of the Lambert W
function itself is still not clear in the literature; some studies use the iterative built-
in functions in MATLAB or other computational platforms, while others adopt their
own approximation formulae. This paper takes a deeper look at the ways the Lam-
bert W function is evaluated in PV models and carries out a comparative study to
assess the most commonly used methods in terms of accuracy, computational cost,
and application range. These alternatives are implemented in a modern computer
and a typical microcontroller to evaluate their performance in both simulations and
embedded applications. The analysis concludes that some series expansions are
good options for PV modeling applications, requiring less execution time than the
built-in MATLAB lambertw function and exhibiting negligible approximation error.

1 Introduction

The field of photovoltaic (PV) modeling has been steadily attracting the research
interest for more than three decades. Various models for different PV technologies
have been proposed in the literature, the single-diode PV model still being the
most widely adopted approach. One of the main computational challenges of this
model is the implicit nature of the fundamental current-voltage (I-V) equation (i.e.,
f (I, V ) = 0), which dictates numerical or iterative solution that hinders evaluation.
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An alternative was first proposed in 2005 by Jain et al. [1], further developed
afterwards by Petrone et al. [2]: they used the Lambert W function to reformulate
the I-V equation of the PV cell into an equivalent explicit form (i.e., I = f (V )

or V = g(I)). This allowed for easier and straightforward calculation, avoiding
numerical solution difficulties such as increased computational time, initialization
challenges, convergence issues, etc. [3, 4]. It also provided theoretical insight on
how each variable and parameter relate to each other, and permitted derivation of
analytical models for more complicated PV structures, such as the PV string and
array under partial shading [2–4].

Historically, the mathematical expression wew was first studied by Lambert in
1758 and afterwards by Euler in 1783, but it did not get much attention from their
contemporaries at that time. It was revived in the 1990s when developers of the
Maple computational platform, Corless et al., managed to give an exact solution
to the double-well Dirac delta function model in quantum mechanics and other
mathematical problems of the sciences [5]. The inverse relation of wew was then
identified as a function on its own, denoted Lambert W function (also found as
product logarithm or omega function in the literature). In PV modeling, several
published studies and a book [3] have adopted this approach since 2005; a SCOPUS
search using the keywords “photovoltaic” and “lambert W” yields 75 papers and
more than 1000 citations in total, while the actual number of relevant papers is
hundreds. Clearly, the use of Lambert W function in PV modeling has created a new
trend in the field.

However, when it comes to the computation of this function, the literature is
not very clear; as it is an elementary function, it can be calculated either through
iterative algorithms or approximation formulae. In this paper, the most common
calculation approaches used in PV modeling are examined [4–9], including the
MATLAB lambertw built-in function, and compared in terms of accuracy, com-
putational performance, and formulation complexity; this comparison takes place in
a modern computer and a typical microcontroller (MCU). Common implementation
challenges are discussed and the developed code in MATLAB and C for each
alternative is made available. Notably, this is the first comparative study to assess
the implementation methods of the Lambert W function in PV modeling.

2 Single-Diode PV Model

The circuit of the single-diode PV model is shown in Fig. 1, being characterized by
the so-called five parameters: photocurrent Iph, diode saturation current Is , diode
modified ideality factor a, series resistance Rs , and shunt resistance Rsh [2–4, 7–
11]. This model describes any PV generator (cell, module, array, etc.) under uniform
operating conditions.
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Fig. 1 Electrical equivalent circuit of the single-diode PV model [8]

The current-voltage (I-V) equation of this circuit is given conventionally in
implicit form by

I = Iph − Is

(
e

V +IRs
a − 1

)
− V + IRs

Rsh

(1)

where I and V are found in both sides of the equation; to solve (1), one has
to employ a numerical or iterative algorithm with all associated difficulties. The
equivalent explicit forms of (1) as I = f (V ) or V = g(I) are found by applying
the Lambert W function W {x} [1–4, 8, 9]:

I = Rsh(Iph + Is) − V

Rs + Rsh

− a

Rs

W

{
RsRshIs

a(Rs + Rsh)
e

RsRsh(Iph+Is )+RshV

a(Rs+Rsh)

}
(2)

V = Rsh(Iph + Is) − (Rs + Rsh)I − aW

{
RshIs

a
e

Rsh(Iph+Is−I )

a

}
(3)

3 Calculation of the Lambert W Function

The Lambert W function W {x} is the inverse of the function wew, i.e., the root
of the equation wew = x (e.g., wew = 2 ↔ w = W {2} = 0.8526). In general,
this relation has several branches in the complex plane, thus not being a function
in the conventional sense. In PV applications, however, the argument x takes real
positive values (see (2) and (3)), which restricts W {x} to the principal branch [5].
The principal branch is a function, thereafter referred to simply as the Lambert W
function; an indicative plot is shown in Fig. 2 along with the logarithmic function
for comparison.

The Lambert W function cannot be expressed in terms of other elementary
functions and it is calculated either numerically or through approximation formulae.



586 E. I. Batzelis et al.

0 10 20 30 40 50 60 70 80 90 100
x

-2

-1

0

1

2

3

4

5

y

Lambert W function - W{x}
Logarithmic function - ln(x)

Fig. 2 The Lambert W and logarithmic functions

More information on the theoretical background and calculus may be found in [5]
and other publications of these authors. In the following, the computational methods
usually adopted in PV models in the literature are described and discussed.

3.1 The MATLAB lambertw Function

The lambertw function in MATLAB provides solution to the general multi-
valued relation in the complex plane; to get the principal branch, one can write
lambertw(0, x) or simply lambertw(x). The evaluation is made numerically, using
the Haley’s method with an iteration step of [6]:

Wj+1 = Wj − Wje
Wj − x

eWj (Wj + 1) − (Wj +2)(Wj e
Wj −x)

2Wj +2

(4)

where W is the Lambert W function of x and j indicates the iteration step. The
majority of the relevant studies in PV modeling adopt this approach, as it is readily
available and achieves machine accuracy. Nevertheless, the iterative nature renders
this method computationally less efficient compared to the series expansions,
especially when it comes to MCU implementation as shown later in the paper.

3.2 The Asymptotic Formula

The asymptotic formula was proposed by Corless et al. in 1996 [5]:
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W {x}=L1−L2+L2

L1
+L2(−2 + L2)

2L2
1

+L2(6 − 9L2 + 2L2
2)

6L3
1

+ L2(−12 + 36L2 − 22L2
2 + 3L3

2)

12L4
1

+ L2(60 − 300L2 + 350L2
2 − 125L3

2 + 12L4
2)

60L5
1

+ O

[(
L2

L1

)6
]

(5)

where L1 = ln(x) and L2 = ln(ln(x)). This formula is suitable for large arguments
only; the Wolfram MathWorld suggests x ≥ 3 [12], while the number of terms of (5)
used in the literature varies: the first 7 terms in [4, 10], the first 4 terms in [7]. As
shown in Sect. 4, the maximum approximation error for 7 terms and x ≥ 3 is 1.32%.

A common difficulty faced when applying (5) is numerical error for very large
arguments, as reported in [11] (returning Inf or NaN, calculation fails, etc.). For
example, if x = 800e800 which is larger than the maximum floating-point number
in IEEE double precision (64bit arithmetic), L1 and L2 become Inf and (5) yields
NaN (not a number), although clearly W {800e800} = 800 which is a perfectly finite
value.

To overcome this limitation, the argument could be given in the form of x = aeb,
effectively making L1 = ln(a) + b and L2 = ln(ln(a) + b) in (5). In other words,
instead of evaluating the large term x and then taking the logarithms, calculate
directly L1 and L2 as functions of the finite a and b components of x. This trick
is used in the implementation code of this formula and most of the following series
expansions (see Appendix).

3.3 The Hybrid Calculation Formula

To cope with the unsuitability of the asymptotic formula at small arguments, a
hybrid formula is proposed in [4] which combines the asymptotic expansion (5)
(7 terms) with a series expansion found in [13] that is accurate for small values:

W {x} =
{

W1, when 0 ≤ x < 9

W2, when x ≥ 9
(6)

where

W1 = u + u

1 + u
p + u

2(1 + u)3 p2 − u(2u − 1)

6(1 + u)5 p3
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+ u(6u2 − 8u + 1)

24(1 + u)7
p4 − u(24u3 − 58u2 + 22u − 1)

120(1 + u)9
p5 (7)

W2 = L1 − L2 + L2

L1
+ L2(−2 + L2)

2L2
1

+ L2(6 − 9L2 + 2L2
2)

6L3
1

+ L2(−12 + 36L2 − 22L2
2 + 3L3

2)

12L4
1

+ L2(60 − 300L2 + 350L2
2 − 125L3

2 + 12L4
2)

60L5
1

(8)

having u = x/e, p = 1−x/e and L1 = ln(x), L2 = ln(ln(x)). This formula yields
a relative error lower than 0.1% for the entire real non-negative argument range [4].

3.4 The Simple Approximation Formula

In [8], a much simpler calculation series is proposed, based on a 1961 study [14]:

W {x} = ln(x)

[
1 − ln(ln(x))

ln(x) + 1

]
(9)

reported to yield errors less than 1.5% for x ≥ 2 [8]. At smaller arguments, the
calculation error is very large and (9) is not suitable for application.

3.5 The Analytical Approximation Formula

A similar in nature approximation was introduced by Barry et al. in 2000 [15],
adopted recently in a PV model [9]:

W {x} = (1 + ε)ln

⎛
⎜⎜⎜⎜⎝

6
5x

ln

[
12
5 x

ln
(

1+ 12
5 x

)
]

⎞
⎟⎟⎟⎟⎠

− εln

[
2x

ln(1 + 2x)

]
(10)

where ε = 0.4586887 is a constant. The approximation error of this formula is
claimed to be 0.196% for x ≥ 0. However, during our investigation we found that
this level of accuracy is achieved for approximately x ≥ 3 × 10−5 in 64bit double
precision arithmetic (x ≥ 3 × 10−3 in 32bit single precision arithmetic), since (10)
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does not seem to be convergent at near-zero values of the argument as explained
later. The implementation code in this paper employs this consideration.

4 Simulation Results

In this section, the accuracy and computational performance of the various Lambert
W implementations are assessed and compared in simulations environment; these
are denoted here as MATLAB, Asymp7 (asymptotic formula with 7 terms), Asymp4
(asymptotic formula with 4 terms), Hybrid, Simple, and Analyt, respectively. First,
they are applied to the general case of real positive arguments, and then to an I-
V curve of a PV array. The implementation code is made publicly available (see
Appendix), while the MATLAB approach (i.e., the lambertw function) is employed
as a benchmark for assessing accuracy. All simulations are performed in MATLAB
R2017b, in a computer with a 3.5-GHz CPU and 64-GB RAM at the default 64bit
arithmetic.

4.1 Evaluation at Real Positive Arguments

Here the six alternative methods are evaluated at real positive values of the
argument; Fig. 3a–b depicts the function outputs and the relative errors for the
indicative case of 0 < x ≤ 100 (one million values uniformly distributed).

It seems that the results of all methods match quite well in Fig. 3a, the main
difference being the range of the argument x: the Asym7 (red line) and Asym4
(yellow line) approaches are defined for x ≥ 3, and the Simple formula (green line)
for x ≥ 2. A clearer picture on the accuracy is given in Fig. 3b: the errors are larger
at small arguments, the Asym7, Asym4 and Simple methods exceeding 1% for some
values. The Hybrid formula (purple line) seems to be the most accurate among the
series expansions.

To investigate the argument range of the Analyt method, the results of the Analyt
and MATLAB approaches at very small arguments up to 10−4 are shown in Fig. 4. It
is evident that the formula (blue line) is not convergent at near-zero values; a lower
bound of 3 × 10−5 has to be applied to the input range to achieve a relative error of
about 0.2%, which is close to 0.196% considered by the authors [9, 15].

The complete picture on the accuracy, argument range, and execution time is
given in Table 1, where bold font indicates most favorable values. The Hybrid
formula is the most accurate, followed by Analyt method, while the rest yield
higher max errors above 1%. As for the calculation cost, clearly the MATLAB
function exhibits the highest execution time due to the iterative algorithm involved;
the approximation formulae require approximately 1

3 of the MATLAB time, except
for the more demanding Analyt method due to the larger number of the logarithmic
function calls.
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Fig. 3 (a) The Lambert W function outputs and (b) the respective relative errors at real positive
arguments
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Fig. 4 The Analyt method at very small positive arguments
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Table 1 Performance of the six Lambert W function implementations at real positive arguments

Method Range Max error Time per evaluation

MATLAB Entire – 103 ns

Asymp7 x ≥ 3 1.32% 35 ns

Asymp4 x ≥ 3 4.46% 33 ns

Hybrid Entire 0.06% 36 ns

Simple x ≥ 2 1.47% 31 ns

Analyt x ≥3e-5 0.19% 63 ns

Table 2 Five parameters of the PV array

STC parameters

Iph 15.88 A Is 7.44e–10 A a 14.67 V

Rs 2.04 � Rsh 425.2 �

4.2 Evaluation of the I-V Curve of a PV Array

The results of the previous section are somewhat theoretical and do not indicate
clearly the effectiveness of the Lambert W function implementations when it comes
to a PV model. To assess this, the six alternatives are employed here to produce the
I-V characteristic of a 4 kW PV array at standard test conditions (2 strings, 12 Yingli
YL-165 modules per string, parameters in Table 2). The I-V curve is found in two
ways: calculating I as a function of V based on (2) (I-approach) and the opposite
using (3) (V-approach). The results in the two cases are shown in Fig. 5a–b (1000
points).

Apparently all curves coincide, but some of them are incomplete; the arrows
indicate the range of application. The Asymp7, Asymp4, and Simple methods
(purple, yellow, and green colors) can produce very limited part of the I-V
characteristic in either figures, while the Analyt formula provides a larger part but
still only a portion of the curve. This is due to the lower bound of the input range of
these methods that leads to exclusion of some parts towards the short-circuit current
region. In other words, the argument of the W {x} terms in (2) and (3) varies within
[9.3e–10, 17.7] and [2.2e–8, 1.5e+192], respectively, the lower bounds being out of
the input ranges of these methods (see Table 1). Only the MATLAB and Hybrid
approaches provide the entire I-V characteristic in both cases.

The complete picture is given in Table 3. It is quite interesting how the seemingly
small lower bounds in the argument range of the Asymp7, Asymp4, Simple, and
Analyt approaches restrict that much their application in calculating the I-V curve.
If these bounds are relaxed, larger parts of the characteristic are produced, but they
appear to be distorted and highly erroneous. These results correspond to the study-
case 4 kW PV array; for different PV system sizes, larger or smaller portions of the
I-V curve can be produced.
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Fig. 5 I-V curve produced: (a) I-approach and (b) V-approach

The accuracy is measured using the normalized root mean square error (NRMSE)
metric: the results seem acceptable for all methods, the Hybrid formula exhibiting
the lowest errors in both I-approach and V-approach. As for the computational time
per I-V curve point, similar results to the previous section are extracted, except that
all times all slightly higher due to the additional overhead of (2)–(3). This analysis
concludes that the Hybrid formula is the safest and most accurate method to produce
the I-V curve among the series expansions.

5 Experimental Results

The Lambert W function has found recently embedded applications to PV systems,
such as in model-based MPPTs and other control algorithms [16]. In these cases,
the computational complexity is even more important due to the limited calculation
capacity of the common MCUs. To investigate this aspect, this section discusses
some experimental results from the implementation of the six Lambert W function
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Table 3 Performance of the six Lambert W function implementations in calculating the I-V curve
of a 4 kW PV array (times per points)

I-approach V-approach

Method Range NRMSE Time Range NRMSE Time

MATLAB Entire – 203 ns Entire – 450 ns

Asymp7 >323 V 0.16% 39 ns >229 V 0.001% 54 ns

Asymp4 >323 V 1.28% 36 ns >230 V 0.009% 52 ns

Hybrid Entire 4.7e–5 72 ns Entire 1.3e–6 71 ns

Simple >317 V 0.82% 40 ns >226 V 0.021% 50 ns

Analyt >153 V 0.03% 65 ns >76 V 0.178% 96 ns

Table 4 Computational performance of the six methods when implemented in an MCU (times
per evaluation)

Positive arguments I-approach V-approach

Method Range Time Range Time Range Time

MATLAB Entire 26.2 µs Entire 15.0 µs <294 V 31.4 µs

Asymp7 x ≥ 3 7.7 µs >323 V 8.9 µs >229 V 7.9 µs

Asymp4 x ≥ 3 7.4 µs >323 V 8.6 µs >230 V 7.6 µs

Hybrid Entire 7.7 µs Entire 8.0 µs Entire 7.9 µs

Simple x ≥ 2 7.3 µs >317 V 8.3 µs >226 V 7.5 µs

Analyt x ≥3e−3 17.9 µs >221 V 21.2 µs [90,294] V 21.5 µs

alternatives in a typical MCU. The Texas Instruments model TMS320F28335 is
used, which is often found in power electronics and motor drive applications; this
MCU has an 150 MHz clock and a 32bit hardware multiplier, but no division unit.
The respective C code is properly optimized for this MCU (see Appendix).

The three case studies of the previous section are reexamined here. In terms of
accuracy, the results are the same as the respective simulation ones, except from the
Analyt method; the latter faced worse convergence issues at low arguments due to
the 32bit arithmetic (64bit in simulations) which necessitated increase of the lower
bound to 3 × 10−3 (from 3 × 10−5). The findings on the application range and
execution times are shown in Table 4.

Comparing the application ranges of Table 4 to Table 1 and Table 3, it seems
that Analyt is more restricted at low voltages, and that there is now an upper limit
to both MATLAB and Analyt methods in the V-approach. The former is due to the
increased lower bound of Analyt, whereas the latter is because the maximum value
of the argument 1.5e+192 (see Sect. 4.2) is not supported in the 32bit arithmetic
of the MCU (as opposed to the 64bit MATLAB arithmetic). On the contrary, the
rest of the approximation formulae do not face this difficulty, as they employ the
large argument manipulation trick discussed in Sect. 3.2; unfortunately, this is not
applicable to MATLAB’s (4) or Analyt’s (10).

As for the execution cost, the MCU times are of a few µs here, as opposed to
the ns simulation values of Sect. 4. This becomes a critical computational burden
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to the MCU when the control algorithm requires evaluation of the Lambert W
function at every switching cycle. For example, for a typical switching period of
50 µs (switching frequency 20 kHz), MATLAB and Analyt take up almost half
of the calculation window, as opposed to the other much more cost-effective
approximation formulae.

The main conclusion from this investigation is that when it comes to embedded
applications, proper handling of large arguments and computational efficiency
should be the main criteria in selecting the calculation method of the Lambert
W function. The analysis concludes that the Hybrid approach exhibits the most
favorable performance in this regard.

6 Conclusions

In this paper, we examine how the Lambert W function is calculated in PV models
in the literature, including the MATLAB lambertw function and five approximation
formulae. The accuracy, computational cost, and applicability are assessed on a
modern computer and a typical microcontroller.

The results indicate that the argument of the Lambert W function in the PV
equations takes near-zero values close to the short-circuit and very large values
close to open-circuit regions; this dictates that the calculation formula should be
applicable to a wide range of real positive numbers (no lower or upper bounds if
possible). The MATLAB lambertw function exhibits the best accuracy at the cost of
higher execution time, but may fail at very large arguments when implemented in an
MCU. Alternatively, the Hybrid formula given in [4] proves more computationally
efficient and robust, but yields a calculation error of the order of 10−5 or 10−6.

Acknowledgements Dr. E. Batzelis’ work has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant
agreement No 746638. The rest of the authors’ work has been conducted as part of the research
project “Joint UK-India Clean Energy Centre (JUICE)” which is funded by the RCUK’s Energy
Programme (contract no: EP/P003605/1).

Appendix

The implementation code in MATLAB and C of the six Lambert W function alter-
natives is available online in the GitHub repository: https://github.com/ebatzelis/
Lambert-W-function-in-PV-modeling.git.

The C code is properly optimized for MCU implementation (minimum number
of divisions and logarithmic/exponential evaluations, factoring terms, etc.). The
implementation of the asymptotic, Hybrid, and Simple formulae overcomes the
large argument contingency by inputting the Lambert W argument in the form of

https://github.com/ebatzelis/Lambert-W-function-in-PV-modeling.git
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x = aeb (see Sect. 3.2). For example in (3), instead of calculating first the possibly

large x = RshIs

a
e

Rsh(Iph+Is−I )

a and then the Lambert W term W {x}, one can directly

find W {x} = lambertW
(

RshIs

a
,

Rsh(Iph+Is−I )

a

)
.

References

1. A. Jain, A. Kapoor, A new approach to study organic solar cell using Lambert W-function. Sol.
Energy Mater. Sol. Cells 86(2), 197–205 (2005)

2. G. Petrone, G. Spagnuolo, M. Vitelli, Analytical model of mismatched photovoltaic fields by
means of Lambert W-function. Sol. Energy Mater. Sol. Cells 91(18), 1652–1657 (2007)

3. G. Petrone, C.A. Ramos-Paja, G. Spagnuolo, Photovoltaic Sources Modeling, 1st edn. (Wiley-
IEEE Press, New York, 2017)

4. E.I. Batzelis, I.A. Routsolias, S.A. Papathanassiou, An explicit PV string model based on the
Lambert W function and simplified MPP expressions for operation under partial shading. IEEE
Trans. Sustainable Energy 5(1), 301–312 (2014)

5. R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, D.E. Knuth, On the Lambert W function.
Adv. Comput. Math. 5(4), 329–359 (1996)

6. C. Moler, The Lambert W Function (2013), https://blogs.mathworks.com/cleve/2013/09/02/
the-lambert-w-function/

7. Y.M. Roshan, M. Moallem, Maximum power point estimation and tracking using power
converter input resistance control. Sol. Energy 96, 177–186 (2013)

8. E.I. Batzelis, S.A. Papathanassiou, A method for the analytical extraction of the single-diode
PV model parameters. IEEE Trans. Sustain. Energy 7(2), 504–512 (2016)

9. E. Moshksar, T. Ghanbari, A model-based algorithm for maximum power point tracking of
PV systems using exact analytical solution of single-diode equivalent model. Sol. Energy 162,
117–131 (2018)

10. Y.M. Roshan, M. Moallem, Maximum power point tracking using boost converter input
resistance control by means of Lambert W-Function, in Proceedings of 2012 3rd IEEE
International Symposium on Power Electronics for Distributed Generation Systems, Aalborg,
pp. 195–199, June 2012

11. A. Xenophontos, A.M. Bazzi, Model-based maximum power curves of solar photovoltaic
panels under partial shading conditions. IEEE J. Photovoltaics 8(1), 233–238 (2018)

12. E.W. Weisstein, Lambert W-function, http://mathworld.wolfram.com/LambertW-Function.
html

13. R.M. Corless, D.J. Jeffrey, D.E. Knuth, Sequence of series for the Lambert W function, in
Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation,
ISSAC, Maui, HI, pp. 197–204, July 1997

14. W. Borsch-Supan, On the evaluation of the function φ(λ) for real values of λ. J. Res. 65B(4),
245–250 (1961)

15. D. Barry, J.-Y. Parlange, L. Li, H. Prommer, C. Cunningham, F. Stagnitti, Analytical approx-
imations for real values of the Lambert W-function. Math. Comput. Simul. 53(1–2), 95–103
(2000)

16. E.I. Batzelis, S. Papathanassiou, B.C. Pal, PV system control to provide active power reserves
under partial shading conditions. IEEE Trans. Power Electron. 31(11), 9163–9175 (2018)

https://blogs.mathworks.com/cleve/2013/09/02/the-lambert-w-function/
https://blogs.mathworks.com/cleve/2013/09/02/the-lambert-w-function/
http://mathworld.wolfram.com/LambertW-Function.html
http://mathworld.wolfram.com/LambertW-Function.html

	Computation of the Lambert W Function in Photovoltaic Modeling
	1 Introduction
	2 Single-Diode PV Model
	3 Calculation of the Lambert W Function
	3.1 The MATLAB lambertw Function
	3.2 The Asymptotic Formula
	3.3 The Hybrid Calculation Formula
	3.4 The Simple Approximation Formula
	3.5 The Analytical Approximation Formula

	4 Simulation Results
	4.1 Evaluation at Real Positive Arguments
	4.2 Evaluation of the I-V Curve of a PV Array

	5 Experimental Results
	6 Conclusions
	Appendix
	References


