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Abstract The optimization of power dispatching has been proved to be useful for
reducing the operation energy cost of a microgrid based on photovoltaic source.
However, the formulation of the optimization problem needs the weather forecast
to predict photovoltaic generation. The current hourly forecast is always available
and often lacks accuracy. Thus, this work proposes the optimization based on a clear
sky model to predict the solar irradiance. This model has the advantage of simplicity,
since it depends only on the geographical coordinates. The analyses have been done
to compare the weather data during 5 months, and the validation of the proposed
model is carried out by simulation. The results show the optimization results of the
proposed model are slightly better than a common hourly forecast weather provided
by a meteorological website.

1 Introduction

The DC microgrid has been the focus of research recently, because it can integrate
effectively renewable resources, such as photovoltaic (PV) panels [1]. Particularly,
the microgrid can be integrated into a building with rooftop PV panels to make a
zero-energy or positive-energy building [2].

Similar to the traditional power grid, optimal power dispatching can reduce
the power losses and the operation cost of the microgrid [3]. Till now, a lot
of optimization algorithms have been developed, and among them, the mixed
integer linear programming (MILP) method is widely used for being fast and
effective [4, 5]. However, their effects depend highly on the accuracy of the
load and production predictions [6]. For traditional grid, it involves only the load
consumption prediction, which has been thoroughly studied [7] and can be adapted
directly to the microgrid problems. However, in the context of microgrids based on
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renewable energy, the generation prediction is essential too [7]. Regarding the PV
panels, the prediction concerns mainly on the solar irradiance for a given site [6].
Indeed, this is still a challenge. Even though the weather satellites can give precise
information on a large scale, the high-resolution solar irradiance forecast is hardly
accessible or costing at a high expense.

Large amount of precedent research concentrates on the local irradiance forecast
problem. The solutions include using the numerical weather prediction model as
stated in [8], analysing the satellite images [9] and using all-sky imager for cloud
tracking [10]. Also, the statistical methods can be useful, such as the switching
Markov model [11]. Recently, it is also popular to predict by the machine learning
algorithms. In [12], the tree-based ensemble method predictions are presented and
compared with a support vector regression predictor. In [13], the prediction is done
by combining wrapper mutual information and extreme learning machine. Besides,
the probabilistic forecast is another way to deal with the high variability of the
renewable sources, such as presented in [14–16]. Unlike deterministic forecast,
which outputs a series of fixed values, the probabilistic forecast produces most
probable values with a certain interval. However, these methods need either the
extra data, such as satellite images and all-sky image, or the long-term historical
irradiance data to train the artificial intelligence model or establish the statistical
model. Thus, the application is limited by the availability of these conditions.

This paper proposes to use the simple clear sky (CS) model to realize irradiance
prediction. The advantage is that only the geographical coordinates of the site and
the PV panel orientation are needed, which are accessible easily. The prediction
results are compared with the real recorded data in Compiègne in Northern France,
as well as the free accessible forecast data made by Météo-France (MF), during a
period of 5 months in 2018. Moreover, the two sets of prediction are inputted into
a MILP-based optimization solver to do the power dispatching, and the real data
based simulations are done, in order to study the effectiveness of the prediction.

This paper is organized as follows: The clear sky model and MF forecast are
presented and compared in Sect. 2, and the optimization problem of a DC microgrid
is given in Sect. 3, followed by the simulation and the results presented in Sect. 4.
The final conclusion is given in Sect. 5.

2 Weather Forecast

In the context of microgrid power dispatching, the weather forecast is often expected
to give the solar irradiance prediction for the day-ahead and intraday optimization.
Thus, the prediction time horizon should cover the whole PV operation period. In
this paper, the daily period is set from 9:00 to 18:00.
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2.1 Clear Sky Irradiance Model

The CS model is a method based on geometric calculation to predict solar irradiance
on a specific surface while no cloud influence is considered. Obviously, it is accurate
only in sunny days, but its accuracy is acceptable when the sky is not heavily
covered. This is particularly useful for PV panels, since they are mostly installed
in sunny regions.

Since the CS model is classical, one common method is adopted in this work,
and more details can be found in [17].

The beam radiation on earth gb can be simply expressed as follows:

gb = gsc · T m. (1)

gsc is the extraterrestrial solar irradiation and can be set as 1367 W/m2. T is the
atmospheric transmittance for short wave solar irradiance and can be seen as 0.7 for
simplicity. m is the air mass coefficient, and it is approximately expressed by the
local zenith angle θz as given in Eq. (2):

m = 1

cos (θz)
. (2)

The beam radiation on a given sloped surface can be then determined as the
following:

gbg = gb · cos θ. (3)

θ is the angle of incidence between the beam irradiance on the surface and the
normal to the surface. An approximate expression of θ is given in Eq. (4).

cos θ = sin δ · sin ϕ · cos β−
sin δ · cos ϕ · cos β · cos γ

+ cos δ · cos ϕ · cos β · cos ω

+ cos δ · sin ϕ · sin β · cos γ · cos ω

+ cos δ · sin ϕ · sin γ · sin ω

(4)

where δ is the declination angle of the sun at the solar noon, ϕ is the latitude, β is
the slope angle of the given surface, γ is the surface azimuth angle which is 0 if
due south and ω is the hour angle. It is evident that these data can be derived from
the geographical coordinates and the slope of the given surface, i.e. the installed PV
panels. All of them are easily accessible for any PV installation.

Besides, the diffuse radiation on the surface gdg is obtained by Eq. (5).

gdg = 0.3 · (
1 − T m

) · (1 + cos β) gsc

2
· cos θ. (5)
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The reflect radiation may exist if there exists any building near the PV panels.
However, it needs a complex geometric modelling and differs from one site to
another. Thus, it is not considered in this work. As a result, the total radiation gtg
obtained by the clear sky model is the sum of the beam radiation and the diffuse
radiation.

gtg = gbg + gdg. (6)

2.2 Météo-France Forecast

MF is a public establishment that offers meteorological information in France.
It offers high-resolution metrological forecast covering all the French territory
under open licence [18]. The forecast is generated by the AROME model, and the
geographical resolution is 0.025◦, which corresponds to an area of 6.25 km2. The
hourly forecast is made several times per day including the accumulated ground
solar radiation in J/m2. Aiming at the day-ahead optimization, this work focuses
on the forecast made at midnight. In order to obtain the instant solar irradiance, a
hypothesis is made assuming that the irradiance is homogeneous in the area and
uniformly distributed in the 1-h interval.

2.3 Case Study

A group of PV panels are installed in the parking area of Université de Technologie
de Compiègne as depicted in Fig. 1, whose coordinates are 49.401◦N, 2.796◦E.
The PV panels are with a slope of 4◦ and an azimuth angle of −97◦, almost in the
direction of east. In addition, a sensor system is installed to record the instant solar
irradiance on the panels at every 10 s.

In order to validate the CS model, the instant irradiance prediction given by CS
model is compared with the recorded data for sunny days as depicted in Fig. 2. The
blue and red curves are the beam radiation and total radiation obtained by the CS
model, and the yellow curve is the recorded real data.

In Fig. 2a, the real irradiance is close to the beam radiation except for the early
hours in the morning. On the contrary, the real irradiance is close to the total
radiation in Fig. 2b. This is because the buildings nearby are sheltering the PV
panels from the diffuse radiation, when the sun position is high. This is the case
of Fig. 2a. When the sun position is relatively low, the same buildings reflect the
solar irradiance on the PV panels.

Since the hourly forecast from MF is of ladder form and the visual comparison
to the continuous curve in Fig. 2 is not significant, the hourly average irradiances
are compared in Fig. 3, in which the yellow bar represents the MF forecast. It can
be seen that this forecast gives a higher prediction than the total radiation from
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Fig. 1 Photovoltaic panels in
the campus in Compiègne,
France

the CS model but close to the real irradiance on the 26th June 2018. However, the
forecast on the 10 October is far from the reality. The real irradiance of this day
is even higher than the total radiation of the CS model, meaning the atmospheric
transparency T is exceptionally higher than 0.7. Besides the graphs, some usual
statistical indicators can help to compare the CS prediction and the MF forecast with
the recorded data, such as mean absolute error (MAE), mean bias error (MBE), root
mean square error (RMSE), mean absolute percentage error (MAPE) and Pearson
correlation coefficient (ρ). They are defined as follows:

MAE = 1

n

n∑

k=1

∣∣gpred,k − greal,k
∣∣ . (7)

MBE = 1

n

n∑

k=1

(
gpred,k − greal,k

)
. (8)

RMSE =
√√√√1

n

n∑

k=1

(
gpred,k − greal,k

)2
. (9)
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Fig. 2 Instant irradiance
comparison between the
prediction given by CS model
and recorded data: (a) on the
26th June 2018; (b) on the
tenth October 2018

MAPE = 1

n

n∑

k=1

∣∣
∣∣
gpred,k − greal,k

grealk

∣∣
∣∣ · 100%. (10)

ρ = cov
(
gpred, greal

)

σgpred · σgreal
. (11)

gpred,k is kth predicted irradiance and greal,k is kth real irradiance. cov(gpred, greal)
indicates the covariance between the prediction and the reality; σ g_pred and σ g_real
are the standard deviation of the predicted irradiance and that of the real irradiance,
respectively.
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Fig. 3 Hourly average
irradiance of the predictions
and the recorded data: (a) on
the 26th June 2018; (b) on the
tenth October 2018

MAE and MBE tell the mean accuracy of the prediction without and with the
bias. A positive bias means the over-prediction, whereas negative means the under-
prediction. RMSE value is more impacted by the large errors than by the small ones.
MAPE reflects the average relative error. ρ describes the linear similarity between
the prediction and the reality. From Table 1, it can be seen that the CS prediction is
superior to the MF forecast, since the values of MAE, MBE, RMSE and MAPE are
smaller, meaning less error, and the Pearson coefficient is higher. It validates the CS
model in case of sunny days.

Further validation must be done for longer period. The studied site is located
in Northern France, and in winter day, little PV generation can be made. Thus,
a 5-month study, dated from the third June to the 31st October 2018, is carried
out (except the eighth October, data unavailable due to system maintenance). The
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Table 1 Statistical
comparison of 2 sunny days

Statistics 26th June 2018 10th October 2018
Clear sky MF Clear sky MF

MAE 86.69 110.02 18.96 329.00
MBE 86.69 110.02 −17.75 −329.00
RMSE 91.85 115.48 24.86 350.97
MAPE 10.80% 15.59% 7.49% 95.64%
ρ 99.39% 99.26% 99.16% 48.28%

Table 2 Statistical
comparison for 5 months

Statistics Clear sky MF

Average MAE 197.35 208.60
Average MBE 184.62 141.22
Maximal RMSE 627.44 549.56
Average MAPE 33.69% 97.85%
Average ρ 62.32% 62.75%

statistics are done each day between 9:00 and 18:00, and the results are given in
Table 2.

The mean MAE of the CS model is close to the mean MBE, since in cloudy days
the model always tends to over-predict. On the contrary, the average MBE for MF
forecast is obviously less, since it can both over- and under-predict the irradiance.
The maximal RMSE of CS model is quite large, and it is surely due to the bad
weather, such as the heavy rain. But the MAPE of 33% is acceptable for such a
simple model, especially when compared to the nearly 100% of MF forecast. In the
end, both predictions present a Pearson coefficient of 62%, meaning in general the
predictions are synchronized with the reality.

3 Prediction in the Optimization Problem for DC Microgrid
Power Dispatching

The power dispatching problem in this work is formulated according to a building-
integrated microgrid as depicted in Fig. 4. It is composed of a group of PV panels, an
energy storage system, a connection to the public grid and the loads in the building.
All these components are connected to a common capacitive DC bus via power
converters. The PV panels are driven by a maximal power point tracking (MPPT)
algorithm in most of time, but it is possible to shed some PV power pPV_S to limit
the power injected into the bus pPV if needed. The energy storage system is classical
lead acid batteries and can be discharged or charged with the power pS_D or pS_C
to supply the load or absorb the excessive PV generation. Similarly, the grid can
supply power to the microgrid with the power pG_S as well as absorb the power pG_I
from the microgrid. The loads in the building are seen as a single power demand
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Fig. 4 Topology of the studied DC microgrid

PL_DEM. If the available power is insufficient, the real load power PL can be shed to
keep the power balance.

Some constraints, physical and regulatory, must be respected in the microgrid
operation. For example, the state of charge (SOC) of the storage, as defined in Eq.
(12), must be kept in a certain range to avoid over-discharge and overcharge. In Eq.
(12), vS is the storage voltage and CREF is the battery capacity in Ah, while SOC0
is the initial value.

soc (ti) = SOC0 +

ti∑

t=t0

[pSC (ti) − pSD (ti)] Δt

3600 · vS · CREF
. (12)

The power supplied or absorbed by the storage and the grid must be constrained
owing to the component capacity. Furthermore, the microgrid is neither allowed
to charge the battery by the grid power nor inject the power into the grid while
discharging the battery.

The goal of the optimal power dispatching is to maximize the PV generation and
respond to the load power demand. In this objective, the operation energy cost for
each element is defined in Eq. (13):

CPVS =
tF∑

ti=t0

TPVS · Δt · pPVS (ti)

CS =
tF∑

ti=t0

TS · Δt · [pSC (ti) + pSD (ti)]

CG =
tF∑

ti=t0

TG · Δt · [pGS (ti) − pGI (ti)]

CLS =
tF∑

ti=t0

TLS · Δt · pLS (ti)

(13)

Based on the above definitions and constraints, the power dispatching optimiza-
tion problem can be formulated as following:
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Minimize CTOTAL = CG + CS + CPVS + CLS

with respect to
pPV (ti) + pGS (ti) + pSD (ti) = pL (ti) + pSC (ti) + pGI (ti)

SOCMIN ≤ soc (ti) ≤ SOCMAX

0 ≤ pPVS (ti) ≤ pPVMPPT (ti)

0 ≤ pSD (ti) ≤ PS MAX, 0 ≤ pSC (ti) ≤ PS MAX

0 ≤ pGI (ti) ≤ PGI MAX, 0 ≤ pGS (ti) ≤ PGS MAX

if pPV (ti) − pL (ti) ≥ 0, then pSD = 0, pGS = 0
else, pSC = 0, pGI = 0

(14)

MILP solver is suitable for this problem, but the accurate PV generation
prediction is essential. For a given PV panel, its generation depends mostly on the
solar irradiance. If the predicted irradiance is not accurate enough, the optimization
results can be invalidated. Thus, the accuracy of the irradiance prediction has a direct
impact on the operation energy cost of the microgrid.

4 Simulation Validation

In order to test the CS prediction in the realistic scenarios, the simulation of the
microgrid is realized with the 5-month data. The simulation includes a two-layer
structure. The upper layer inputs the predictions into IBM CPLEX optimization
solver and outputs the power dispatching reference. The lower layer, consisting
of a MATLAB/Simulink model of the microgrid, computes the real operation cost
while taking the recorded irradiance data and the power dispatching reference into
account. The values of the parameters are given in Table 3.

Aiming at simplifying the comparison, a same load profile is used in the
optimization and simulation for all the 150 days. The optimization is operated twice
for each day, using, respectively, the CS prediction and the MF forecast. A typical
profile is shown in Fig. 5, in which the difference between the prediction and the
real production can be seen.

As a result, the CS prediction has a total cost of 12.4 AC for the 150 days, and the
MF forecast has 14.7AC. For a more detailed analysis, a daily relative cost difference
Δ is defined as in Eq. (15)

Table 3 Microgrid
parameters

Parameters Values Parameters Values

PV peak power 4140 Wc TPVS 0.7 AC/kWh
Storage capacity 185 Ah TLS 1.5 AC/kWh
Storage voltage 96 V TS 0.01 AC/kWh
Storage power limit ±3000 W TG 0.1 AC/kWh
Grid power limit ±3000 W SOC limit [20%, 80%]
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Fig. 5 PV generation and
load profiles on the 31st
August 2018

Fig. 6 Distribution of
relative difference of the
operation cost

Δ = CCS − CMF

|CMF| · 100%. (15)

CCS and CMF are, respectively, the daily cost based on CS prediction and on
MF forecast. Hence, Δ is positive if the CS prediction leads to a higher cost. The
distribution of Δ during the 150 tested days is shown in Fig. 6. It can be figured
out that the relative difference is mostly in the range of 0–10%, meaning in most
days the operation cost for CS prediction is slightly higher than that of MF forecast.
Though, the probability of Δ being negative is higher than that of being positive.
That explains why the total cost of CS prediction is lower than the other.

The results show that the open licence MF forecast is not accurate enough for the
microgrid power dispatching, since the geographical resolution is not high enough
and the hourly forecast cannot cover the high variability of the solar irradiance.
Hence, the CS prediction can be useful for sites for which more precise forecast is
unavailable.
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5 Conclusions

The power dispatching of a PV-based microgrid can help in improving the perfor-
mance, but the prediction of the solar irradiance is necessary. In this paper, a CS
model is presented to predict the solar irradiance on the PV panels. This model
involves only geometric calculation and thus can be widely applied and requires
no extra instrument or historical data. A case study is carried out to compare the
CS prediction with the free available MF forecast during 5 successive months in
2018. Moreover, the optimal power dispatching is done with the same data. The
simulation results show that the proposed model can lead to less operation cost than
the MF forecast, even though some prediction errors persist. In conclusion, the clear
sky irradiance model can play a key role for low-cost optimal power dispatching.
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