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Abstract This paper proposes an in-depth analysis from the control point of view
of dynamic models of a modular multilevel converter (MMC) for high-voltage direct
current (HV-DC) application. Firstly, a generic method of analysis is presented for a
natural arm-level state-space model. Its structural analysis highlights the decoupled
nature of the MMC. Secondly, the well-known sum and difference of the upper and
lower arm state and control variables is considered to obtain a (Σ/Δ) model. This
transformation leads to a coupling between state and control variables and to an
increase of the system complexity. Using the analysis results of the natural model
and the (Σ/Δ) model, an original arm-modular control is finally proposed. The
simulation results show the effectiveness of the proposed control, which is simpler
to design compared to a conventional (Σ/Δ) control.

1 Introduction

With the constant development of renewable energy and interconnections between
countries, the high-voltage direct current (HVDC) transmission technology is in
expansion, thanks to its lower footprint and greater controllability. The reference
conversion structure today is the modular multilevel converter (MMC), which solves
most of the problems of the former technologies, providing a good efficiency and
an easy voltage scalability. MMC [1] has been invented and patented by Rainer
Marquardt in 2001, and published for the first time in 2003. Even if different
configurations of submodules are available, the most used today is the “half-bridge”,
shown in Fig. 1. The SM configuration has little or no influence on the normal
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Fig. 1 Half-Bridge MMC schematic

operation, and is essentially important for the fault condition, especially when the
DC link is shorted.

Many works have been made for the MMC modelling, such as switching models,
arm averaged models, non-linear state-space models or linearized small-signal state-
space models [2, 3]. Averaged type modelling is generally used for control design.
After examining the prior art in modelling analysis and control design of MMC, it
was found that on the one hand, not most models were enough exploited from the
control point of view, and on the other hand, most controls were based on (Σ/Δ)
transformation [4, 5] by using the sum and difference of the upper and lower arm
state and control variables. Compared to the previous published work on MMC
model analysis, the first contribution of this paper is to propose a generic analysis
method, which demonstrates the decoupled nature of the averaged model in natural
coordinates contrary to the (Σ/Δ) model where the state and control variables are
coupled between arms leading to a complex control system. This approach comes
with inherent benefits, like the use of the output variables as state variables or the
partial separation of AC and DC quantities, allowing the use of very classical control
means (e.g., Park transform for AC-grid-side and PI control for DC grid side).
However, additional conditions are necessary to make the (Σ/Δ) model decoupled
for its control design. When these assumptions are not verified, the control quality
can be degraded, hence leading to an interest of arm-based control. Thus, the second
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contribution of this paper is to propose a new MMC control based on the averaged
model in natural coordinate.

The paper is organized as follows: in Sect. 2, the description of average equivalent
schematic of the MMC is given. Based on a unified formulation, a global non-linear
state-space model is proposed both for natural coordinate system and for (Σ/Δ)
transformation. In Sect. 3, a structural analysis is performed for both models. A new
control is developed and validated in simulation in Sect. 4.

2 MMC Modelling

For MMC modelling, the “average” approach [3] is often used. Relying on the
assumption that every capacitor in a given stack has the same voltage level thanks
to a lower level control [6], it reduces strongly the model dimension. Each stack is
simply replaced by a DC transformer with a controllable ratio, feeding an equivalent
capacitor. This controllable ratio is called the modulation index of the stack. For an
half-bridge stack, it has the range m ∈ [0,+1] , and it becomes m ∈ [−1,+1] for a
full-bridge stack. The resulting schematic is shown in Fig. 2.

The modelling will be made under the following assumptions:

– All switching elements are considered to be ideal
– Each element of the equivalent schematic is linear
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Fig. 2 MMC—equivalent average schematic
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– Each storage element is associated with a dissipative term,1 as shown in Fig. 2
– The saturation of control variables is not modelled

The three-phase MMC has 12 state variables, 6 arm currents (noted I
u,l
abc) and

6 equivalent capacitor voltages (noted U
u,l
abc). It also has six control variables, the

modulation indexes of the six stacks, noted m
u,l
abc. The state vector is expressed in

(1), and the control vector in (2). The arm inductor is defined by its inductance L1
and its series resistance R1, whereas the stack capacitor is defined by its capacitance
C2 and its parallel resistance R2. The DC voltage E and the AC voltages Vg,abc

appear as exogenous disturbances on the model.

x =
[
Iu
a , Uu

a , I l
a, U

l
a, I

u
b , Uu

b , I l
b, U

l
b, I

u
c , Uu

c , I l
c, U

l
c

]T

:= [x1a, x2a, x3a, x4a, x1b, x2b, x3b, x4b, x1c, x2c, x3c, x4c]T
(1)

u =
[
mu

a,m
l
a,m

u
b,m

l
b,m

u
c ,m

l
c

]T

:= [u1a, u2a, u1b, u2b, u1c, u2c]T
(2)

A non-linear average state-space model of the MMC, under the form ẋ =
f (x, u), is presented in (3), and the state and control space over which it is defined
is shown in (4). Note that the absence of abc and/or u,l indexes indicates that the
result is relevant whatever the considered phase or arm.

f (x, u) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/L1 · (
E/2 − Vga − R1 · x1a − x2a · u1a

)
1/C2 · (x1a · u1a − x2a/R2)

1/L1 · (
E/2 + Vga − R1 · x3a − x4a · u2a

)
1/C2 · (x3a · u2a − x4a/R2)

1/L1 · (
E/2 − Vgb − R1 · x1b − x2b · u1b

)
1/C2 · (x1b · u1b − x2b/R2)

1/L1 · (
E/2 + Vgb − R1 · x3b − x4b · u2b

)
1/C2 · (x3b · u2b − x4b/R2)

1/L1 · (
E/2 − Vgc − R1 · x1c − x2c · u1c

)
1/C2 · (x1c · u1c − x2c/R2)

1/L1 · (
E/2 + Vgc − R1 · x3c − x4c · u2c

)
1/C2 · (x3c · u2c − x4c/R2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

x1,3 ∈ R , x2,4 ∈ R
+ , u1,2 ∈ [0,+1] (4)

1A rough idea of the converter losses is necessary to take into account all the “first-order” damping
phenomena.
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As shown in [4, 5, 7, 8], the most common method for MMC analysis and
control is based on both a state and a control change of coordinates, using sums
and differences of top/bottom state and control variables in a given leg.

This corresponds to state and control variable transformations defined in (5).

[
z1, z2, z3, z4

]T = [
x1 + x3, x2 + x4, x1 − x3, x2 − x4

]T
[
v1, v2

]T = [
u1 + u2, u1 − u2

]T (5)

The transformed model becomes ż = f̄ (z, v), whose components are detailed
in (6).

f̄ (z, v) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/L1 · (E − R1 · z1a − v1a · z2a/2 − v2a · z4a/2)

1/C2 · (v1a · z1a/2 − z2a/R2 + v2a · z3a/2)

1/L1 · (−2Vga + R1 · z3a − v2a · z2a/2 − v1a · z4a/2
)

1/C2 · (v2a · z1a/2 − z4a/R2 + v1a · z3a/2)

1/L1 · (E − R1 · z1b − v1b · z2b/2 − v2b · z4b/2)

1/C2 · (v1b · z1b/2 − z2b/R2 + v2b · z3b/2)

1/L1 · (−2Vgb + R1 · z3b − v2b · z2b/2 − v1b · z4b/2
)

1/C2 · (v2b · z1b/2 − z4b/R2 + v1b · z3b/2)

1/L1 · (E − R1 · z1c − v1c · z2c/2 − v2c · z4c/2)

1/C2 · (v1c · z1c/2 − z2c/R2 + v2c · z3c/2)

1/L1 · (−2Vgc + R1 · z3c − v2c · z2c/2 − v1c · z4c/2
)

1/C2 · (v2c · z1c/2 − z4c/R2 + v1c · z3c/2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

3 Structural Analysis

The underlying idea of the proposed analysis method is to obtain simple and if
possible non-parametric conclusions from the non-linear models presented above.
These conclusions play a role into the comprehension of the behaviour of MMC,
thus making the control law development easier. The difference between structural
and parametric properties will be highlighted.

3.1 Natural Model Analysis

3.1.1 Local Differentiation (Jacobian Analysis)

Formally, the Jacobian matrix Jf of the vector field f (·) is defined over the entire
argument vector, α := [x|u]. We introduce the partial Jacobian matrix Jf,x and
Jf,u such that Jf,α = [

Jf,x |Jf,u

]



184 P.-B. Steckler et al.

These matrix are presented, respectively, in (7) and (8).

Jf,x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−R1
L1

− u1a

L1
0 0 0 0 0 0 0 0 0 0

u1a

C2
− 1

R2·C2
0 0 0 0 0 0 0 0 0 0

0 0 −R1
L1

− u2a

L1
0 0 0 0 0 0 0 0

0 0 u2a

C2
− 1

R2·C2
0 0 0 0 0 0 0 0

0 0 0 0 −R1
L1

− u1b

L1
0 0 0 0 0 0

0 0 0 0 u1b

C2
− 1

R2·C2
0 0 0 0 0 0

0 0 0 0 0 0 −R1
L1

− u2b

L1
0 0 0 0

0 0 0 0 0 0 u2b

C2
− 1

R2·C2
0 0 0 0

0 0 0 0 0 0 0 0 −R1
L1

− u1c

L1
0 0

0 0 0 0 0 0 0 0 u1c

C2
− 1

R2·C2
0 0

0 0 0 0 0 0 0 0 0 0 −R1
L1

− u2c

L1

0 0 0 0 0 0 0 0 0 0 u2c

C2
− 1

R2·C2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

Jf,u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− x2a

L1
0 0 0 0 0

x1a

C2
0 0 0 0 0

0 − x4a

L1
0 0 0 0

0 x3a

C2
0 0 0 0

0 0 − x2b

L1
0 0 0

0 0 x1b

C2
0 0 0

0 0 0 − x4b

L1
0 0

0 0 0 x3b

C2
0 0

0 0 0 0 − x2c

L1
0

0 0 0 0 x1c

C2
0

0 0 0 0 0 − x4c

L1

0 0 0 0 0 x3c

C2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

3.1.2 Coupling Analysis

In the proposed analysis method, both input-state and state-state coupling will be
studied. Whereas the former describes the access of energy inside the system, the
latter corresponds to its propagation inside it. To study the behaviour of the global
converter, both are significant. For the first point, it is clear from the block structure
of Jf,u that the arms are decoupled from their inputs, because each modulation
index only affects its own arm. On the other hand, the analysis of Jf,x shows that
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it is purely block-diagonal. Consequently, there is no coupling paths between the
phases of the converter, neither between the upper and lower arms in each phase.
The natural representation of the MMC is consequently purely decoupled.

The analysis performed above shows that the converter can effectively be
decomposed in three phases and each phase in two arms, and that its whole
behaviour can be described by one latter only. By definition, this arm will be defined
as the irreducible element of the converter. After linearization and by defining
xi := Xi + x̃i (resp. ui := Ui + ũi), the small variations x̃i dynamics around
Xi (resp. Ui) are described in (9).

[ ˙̃x1˙̃x2

]
=

[
−R1

L1
− U

L1
U
C2

− 1
R2·C2

]
·
[
x̃1

x̃2

]
+

[
−X2

L1

+X1
C2

]
· ũ (9)

It plays a very significant role in the converter analysis, since all the important
properties (like stability, observability and controllability) can be studied directly on
this element, whose size is much reduced compared to the full-order model.

3.2 Transformed (Σ/Δ) Model Analysis

3.2.1 Local Differentiation (Jacobian Analysis)

Using the same formalism, the two partial Jacobian matrix of the transformed
system are shown in (10) and (11).

Jf̄ ,z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−R1
L1

− v1a

2L1
0 − v2a

2L1
0 0 0 0 0 0 0 0

v1a

2C2
− 1

R2C2

v2a

2C2
0 0 0 0 0 0 0 0 0

0 − v2a

2L1
−R1

L1
− v1a

2L1
0 0 0 0 0 0 0 0

v2a

2C2
0 v1a

2C2
− 1

R2C2
0 0 0 0 0 0 0 0

0 0 0 0 −R1
L1

− v1b

2L1
0 − v2b

2L1
0 0 0 0

0 0 0 0 v1b

2C2
− 1

R2C2

v2b

2C2
0 0 0 0 0

0 0 0 0 0 − v2b

2L1
−R1

L1
− v1b

2L1
0 0 0 0

0 0 0 0 v2b

2C2
0 v1b

2C2
− 1

R2C2
0 0 0 0

0 0 0 0 0 0 0 0 −R1
L1

− v1c

2L1
0 − v2c

2L1

0 0 0 0 0 0 0 0 v1c

2C2
− 1

R2C2

v2c

2C2
0

0 0 0 0 0 0 0 0 0 − v2c

2L1
−R1

L1
− v1c

2L1

0 0 0 0 0 0 0 0 v2c

2C2
0 v1c

2C2
− 1

R2C2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)
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Jf̄ ,v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− z2a

2L1
− z4a

2L1
0 0 0 0

z1a

2C2

z3a

2C2
0 0 0 0

− z4a

2L1
− z2a

2L1
0 0 0 0

z3a

2C2

z1a

2C2
0 0 0 0

0 0 − z2b

2L1
− z4b

2L1
0 0

0 0 z1b

2C2

z3b

2C2
0 0

0 0 − z4b

2L1
− z2b

2L1
0 0

0 0 z3b

2C2

z1b

2C2
0 0

0 0 0 0 − z2c

2L1
− z4c

2L1

0 0 0 0 z1c

2C2

z3c

2C2

0 0 0 0 − z4c

2L1
− z2c

2L1

0 0 0 0 z3c

2C2

z1c

2C2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

3.2.2 Coupling Analysis

In the (Σ/Δ) coordinates, the system is no longer decoupled. Whereas the three
phases remain independent, a structural coupling appears between the two arms of
each one through the “difference” quantities, in this case the equilibrium points of
v2, z3 and z4, as shown in (10) and (11). To illustrate these phenomena, it is possible
to consider an identical current flowing through both arms in the presence of two
different modulation indexes (v2 �= 0). As this current will charge differently both
capacitors, it contributes to the apparition of a differential voltage: the sum current
z1 contributes to the differential voltage z4 through the differential modulation index
v2.

From the coupling analysis presented before, it is obvious that the irreducible
element is now a whole phase. The small-signal model of one phase around an
arbitrary [V,Z] operating point is shown in (12).

⎡
⎢⎢⎣

˙̃z1˙̃z2˙̃z3˙̃z4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−R1
L1

− V1
2L1

0 − V2
2L1

V1
2C2

− 1
R2C2

V2
2C2

0

0 − V2
2L1

−R1
L1

− V1
2L1

V2
2C2

0 V1
2C2

− 1
R2C2

⎤
⎥⎥⎥⎦ ·

⎡
⎢⎢⎣

z̃1

z̃2

z̃3

z̃4

⎤
⎥⎥⎦

+

⎡
⎢⎢⎢⎣

− Z2
2L1

− Z4
2L1

Z1
2C2

Z3
2C2

− Z4
2L1

− Z2
2L1

Z3
2C2

Z1
2C2

⎤
⎥⎥⎥⎦ ·

[
ṽ1

ṽ2

]
(12)
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3.2.3 Parametric Condition for Decoupling

To obtain a decoupling configuration comparable with the initial one, the conditions
V2 = Z3 = Z4 = 0 should be respected. In steady-state, v2, z3 and z4 are essentially
sinusoidal, corresponding indeed to the AC component of the manipulated quanti-
ties. Even if the former assumptions are relevant from the control point of view (if
v2(t) = sin(ωt) then V2 =< sin(ωt) >= 0), they are questionable because the so-
called sine waves inside mu, ml , Iu and I l are comparable in magnitude to their DC
components. In other words, the Σ/Δ transformation changes a structural arm-arm
decoupling into a questionable parametric arm-arm decoupling.

4 Proposed Control and Simulation Results

Making use of the arm-decoupled behaviour of the MMC, the proposed controller
contains six control systems, almost identical except the feedforward/modulating
terms. Its structure is shown in Fig. 3. Each control system includes two standard
single-input, single-output dynamic controllers (arm current controller and stack
voltage controller), making each state variable controlled explicitly one time. The
proposed scheme allows both active, reactive and circulating current control.

The DC-grid power is explicitly controlled through the DC arm current, which
is equal between top and bottom arms. To maintain the DC stack voltage, the
associated controller generates an individual AC power set point, converted into
an instantaneous active current reference. By adding the latter, the former DC
component, a reactive current reference and possibly a 2f circulating current
reference (not shown in Fig. 3), the global arm current reference is obtained. It is
then fed to the dedicated controller with generates the corresponding arm voltage.

Stack voltage
controller

ΔPac,arm

U #

U +-
P → I

θpll

1/2

Q → I

Pac,arm

Qac,arm

x ÷ +

+

+

E

Arm current
controller

I#

I

Iarm,dc 
#

Iarm,act
#

Iarm,react 
#

+-
V�

Voltage
feedforwardVgabc

x ÷ 

V

Vff

marm

tot→arm

leg→arm

1/3

1/6

P #

Q #

tot→leg

scalar signal
3-comp. signal
6-comp signal

:
:
:

:
diagonal block
non-diagonal block

:

Color legend :

Fig. 3 Block diagram of the proposed control law
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As explained in the colour legend, all the white blocks have a diagonal behaviour,
meaning that a given output does only depend on the input(s) which share the same
index. For instance, the arm current controller first2 output Vf b[1] depends freely on
I [1] and I #[1], but not on I [2] or I #[2]. For the stack voltage controller, the same
principle applies excepted that the reference is common to all the six arms.

The non-diagonal (grey) blocks behaviour is detailed in (13) and (14). The Q-to-I
block is obtained by replacing cos(·) by sin(·) in (14).

Vff = [
E
2 − Vga,

E
2 + Vga,

E
2 − Vgb,

E
2 + Vgb,

E
2 − Vgc,

E
2 + Vgc

]T (13)

I #
arm,act = 2

V̂g

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

+Pac,arm[1] × cos(θPLL − 0π/3)

−Pac,arm[2] × cos(θPLL − 0π/3)

+Pac,arm[3] × cos(θPLL − 2π/3)

−Pac,arm[4] × cos(θPLL − 2π/3)

+Pac,arm[5] × cos(θPLL − 4π/3)

−Pac,arm[6] × cos(θPLL − 4π/3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(14)

To validate the proposed control law, simulations based on a three-phase MMC
average model have been made with Matlab/Simulink. Its parameters, correspond-
ing to Fig. 2, are summarized in Table 1

The power references have a rise time of 100 ms,3 and an amplitude of ±700 MW
and ±300 MVAR. Both controllers of each control system are polynomial, linear
controllers. The global simulation results are shown in Fig. 4, with a zoom on a
steady-state condition (P = 700 MW, Q = 0 MVAR) in Fig. 5. In general two slow
active and reactive power controllers are used for HVDC-VSC control, but they
are not shown here since they would hide the proposed, inner control dynamics.
These results exhibit both good transient and steady-state performance, with good
dynamics, little or no overshoot and low harmonic distortion.

Table 1 Simulation
parameters

Parameter Value Parameter Value

E 640 kV L1 50 mH

V̂g 250 kV R1 1 �

Sn 1 GVA C2 25µF

fn 50 Hz R2 1 M�

2The β[i] notation here refers to the i-st component of the vector β.
310PU/s is considered as very fast from a power transmission point of view, and corresponds to the
fastest response that may be required in real HVDC point-to-point applications.
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Fig. 4 Simulation results: global overview
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5 Conclusion

The control of the MMC is known as a challenging task, leading to an important
work of both academic and industrial actors. While most of the contributions in this
field involve a common formalism, using sums and differences of the normal state
variables, it has been shown that this practice was indeed increasing the system
complexity, introducing coupling between state and control variables, leading to
hard to interpret phenomena. After the computation of the non-linear model of the
MMC, it has been analysed and the independence of arms has been proved. Based
on this concept, a purely independent control based on arm-modularity with few
parameters and straightforward tuning was proposed, and its validity was shown in
simulation. Moreover, this control law lends itself well to distributed control, and to
MMC-type converters with an arbitrary number of phases, for example, for HVDC
DC/DC [9] applications.

The study of the consequence of the HVDC link configuration (monopolar/bipo-
lar) and the station transformer coupling is considered as a perspective, such as the
design of different controllers for increased performance.
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