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Abstract Graph clustering, also often referred to as network community detection,
is the process of assigning common labels to vertices that are densely connected to
each other but sparsely connected to the rest of the graph. There are many different
approaches to clustering in the literature. However, in this article, we formulate the
clustering problem as a combinatorial optimization problem. Our main contribution
is a novel problem formulation that maximizes intra-cluster density, a statistically
meaningful quantity. It requires the number of clusters, a softbound on cluster size
and a penalty coefficient as parameter inputs. More importantly, it is designed to pre-
vent common degeneracies, like the so-called “mega-clusters”. We end with some
suggestions on numerical solution techniques and note that an ensemble-like opti-
mization routine seems promising.

1 Introduction

Graph clustering is the process of grouping of vertices into densely connected subsets
of vertices that have sparse connections to other subsets of vertices. These subsets
are referred to as clusters. The process of assigning cluster labels to vertices, group-
ing them into clusters, is referred to as graph clustering (or network community
detection).

Note on vocabulary: Although there are subtle differences between the concepts of graph clustering
and network community detection, in this document we use the two interchangeably.
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Fig. 1 Good clustering

Fig. 2 Bad clustering

The definition of graph clusters (or network communities) remains a matter of
debate in the literature (e.g., [10, 25]). However, most authors agree that a cluster
can be described as a dense subgraph within a sparse graph (e.g., [8, 22, 23, 28], we
quote these authors, but their definition is very common throughout the literature).

In Fig. 1, we see properly labeled (clustered) vertices. On either side of the dotted
line, we observe densely connected vertices and very sparse (only one edge) connec-
tions between each cluster (C1 and C2). On the other hand, in Fig. 2, we observe two
cliques connected to each other by only a single edge being labeled as all belonging
to the same cluster. Clearly, in this example, labeling each triangle as belonging to a
separate cluster would be more reasonable.

It is also important to draw a distinction between clusters and cliques (e.g., “the
clique problem” or “maximal clique problem” [27]), since clusters may or may not
be cliques. In fact, according to Fortunato and Hric [10], clusters typically are not
cliques.

In this article, we formulate the clustering problem as a mean intra-cluster den-
sity maximization problem. While most authors who have used optimization-based
approaches maximize modularity, wemaximize a statistically meaningful and robust
quantity. Modularity is known to be fragile and problematic in many ways and has
been shown to be less responsive to graph structure than mean intra-cluster density
(e.g., [9, 17]). To the best of our knowledge, this formulation is novel and has not
been used in the past.
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2 Previous Work

A complete review of the very rich graph clustering literature is beyond the scope
of this article. However, we note many authors have approached graph clustering
using various techniques. There exist many competing formulations and solution
techniques in the literature. The main ones are

• Spectral (e.g., [16]),
• Markov (e.g., [5]), and
• Optimization.

– Modularity maximization (e.g., [1, 10, 18]),
– Other objective functions (e.g., [6, 7, 15]).

While there are many competing approaches to clustering, Fortunato and Hric claim
that determining which is the best clustering technique under all circumstances is
not a clear-cut case [10] and that most algorithms cannot adapt to every dataset and
consistently provide superior clusterings.

It is also important to note that spectral methods are very costly and do not
scale well at all. Spectral clustering methods require eigendecomposition of the
graph’s Laplacian, a projection into a metric space and the application of a k-means
algorithm. This difficulty with scaling has also been noted by Schaeffer, in her review
[25]. While there are techniques that allow us to take advantage of sparsity and the
partial computation of eigenvalues, the combined costs of such an approach make
it prohibitive for large graphs. Even in more recent work, where authors claim their
algorithms are “faster and more accurate” than legacy techniques in this area, they
still require onerous computations (e.g., [13]). Finally, it should also be noted that
Fortunato and Hric describe spectral methods as inaccurate in the case of sparse
graphs [10] and that clusterable graphs are typically sparse.

As for Markov-based techniques, they require simulating a random walk over
the graph (i.e., matrix multiplications), as well as multiple element-wise and row
operations.WhileMarkov clustering does not require the number of clusters as input,
it relies on costly operations. Also, as highlighted by Fortunato and Hric, algorithms
that do not require the number of clusters as an input parameter have been found to
be less accurate than those that do require it [10].

On the other hand, optimization-based approaches lend themselves very well to
approximate solution techniques, which carry a lower computational cost. Indeed,
because of the NP-hardness of the problem [8, 25], solving these and other types of
combinatorial optimization problems is often successfully done via (meta-)heuristic
solution techniques (e.g., [21]), which explore subsets of the solution space. In the
specific case of graph clustering, many authors have made use of meta-heuristic opti-
mization techniques (e.g., [1, 14, 18, 26]), in order to find approximate solutions
and overcome the NP-hard nature of the problem. Additionally, meta-heuristic opti-
mization techniques are easily parallelizable and well suited to implementation on
high-performance computing platforms.
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3 Problem Formulation

Using the almost universally accepted definition that a cluster is a dense subgraph
within a sparser graph, we formulate an optimization problem that assigns cluster
labels to nodes in a manner that yields a high mean intra-cluster density. Our goal
is to assign cluster labels so that the mean intra-cluster density is higher than the
graph’s global density.

Recall, (sub)graph density is defined as the ratio of the total number of edges or
sum of edge weights (|Ei |) over the maximum possible number of edges in a given
(sub)graph, given the number of vertices (ni ):

κi = |Ei |
0.5 × ni (ni − 1)

In the case of an unweighted graph, the quantity κi represents the empirical estimate
of the probability that two vertices are connected. In the case of a weighted graph,
it represents the mean edge weight. This definition of density and its interpretations
apply to graphs without multiple edges or self-loops.

We assert that a graph whose vertices have been well clustered (labeled) will
display a mean intra-cluster density, a quantity we call K̄intra [17], that is higher
than the graph’s global density. This assertion was initially presented and detailed in
Miasnikof et al. [17]. Mathematically, we assert that, for a properly clustered graph
with |C | clusters, the following inequality should hold:

K̄intra = 1

|C |
|C |∑

i=1

κi > K = |E |
0.5 × N (N − 1)

where

N =
|C |∑

i=1

ni

κi = |Eii |
0.5 × ni (ni − 1)

In the equations above, |E | is the total number (weight) of edges on the graph and
N is the total number of vertices. Similarly, we compute κi for each cluster, where
|Eii | is the total number (weight) of edges connecting two vertices in cluster “i” and
ni is the number of vertices in that same cluster.

For example, in Fig. 3, we show an example of a well-labeled graph. The graph’s
global density is K = 0.43, while the mean intra-cluster density (assuming only two
clusters) is K̄intra = 1

2 (κ1 + κ2) = 1
2 (0.83 + 1) = 0.915. Here, our earlier assertion

regarding the inequality K < K̄intra clearly holds and can also be easily visualized
in this small example.
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Fig. 3 Global and
intra-cluster densities

3.1 Optimization Problem: Mean Intra-Cluster Density
Maximization

We opt for an objective function inspired by the quadratic maximization formulation
presented byFan andPardalos [6],whichwemodify slightly. These authorsmaximize
the following objective function:

maximize
xi,k ,x j,k

{
z = ∑

i, j,k wi, j xi,k x j,k

}
(1)

(xi,k ∈ {0, 1}, wi, j ∈ R+, ∀i, j ∈ V, ∀k ∈ C)

In this function, xi,k is an indicator variable that is equal to 1 if vertex i is assigned
to cluster “k” and wi, j is the weight of the edge connecting vertices i and j . The
summation iterates over every vertex(i)-vertex(j)-cluster(k) triplet, given a vertex set
V and a set of clusters C .

In our modified formulation, we maximize K̄intra and also add a penalty func-
tion, P(M), that penalizes very large or very small clusters and prevents degenerate
solutions:

maximize
xi,k ,x j,k

{ |C |∑

k=1

|Ek,k |
0.5 × nk(nk − 1)

− λPk(M)

}
(2)

where

nk =
∑

j

x j,k (num vertices in cluster ‘k’) (3)

|Ek,k | =
∑

i, j

wi, j xi,k x j,k (sum edges in cluster ‘k’) (4)

Pk(M) = max{0, nk − M} (5)

OR,

Pk(M) = (nk − M)2 (6)
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M is a parameter input specifying a softbound for reasonable cluster sizes. It is
determined by judgement and domain expertise. Similarly, λ is a penalty coefficient
which is also determined through domain expertise. Our penalty function is a type
of (L1 or L2) regularization [11]. It favors clusters with fewer than M vertices in the
first case (Eq. 5) and clusters with roughly M vertices in the second case (Eq. 6), but
keeps larger and smaller sized clusters within the feasible set.

Putting it all together,

maximize
xi,k ,x j,k

⎧
⎨

⎩

|C |∑

k=1

⎡

⎣
∑

i, j

(
wi, j xi,k x j,k

0.5 × nk(nk − 1)
− λPk(M)

)⎤

⎦

⎫
⎬

⎭ (7)

Ourmodelmaximizes themeanprobability of connection/edgeweightwithin clusters
(mean density). In the case of unweighted graphs, itmaximizes the similarity between
our clusters and cliques, on average (and cliques are arguably very strong clusters). It
also avoids mega-clusters, the tendency displayed by many clustering techniques to
create extremely large uninformative clusters and degenerately small clusters as well.
The numerator in the fractions corresponds to the quantity “z” in Eq. 1. Dividing our
numerator by the denominator yields a measure of connection density within each
cluster. The denominator also acts as a natural form of cardinality constraint, limiting
the number of vertices assigned to each cluster. The penalty function also enforces a
soft upper bound on cluster cardinality, in the case of Eq. 5 or a soft cardinality upper
and lower bound in the case of Eq. 6. Naturally, we also add constraints forcing each
vertex to belong to exactly one cluster.

As mentioned previously, our formulation does not require cardinality constraints
for the number of vertices in each cluster, as in the Fan and Pardalos formulation [6].
Together the denominators and penalty function in the inner summation ensure our
cluster sizes remain reasonable and faithful to the graph’s structure. We do, however,
impose a set of constraints that ensure all vertices are assigned to exactly one cluster:

|C |∑

k=1

xi,k = 1 ∀i ∈ V (V is the set of all vertices) (8)

3.2 Overcoming Common Degeneracies

Our formulation is designed to avoid two common degeneracies observed in graph
clustering, the appearance of uninformative mega-clusters and “garbage collector
clusters”. These degeneracies are especially frequent and exacerbated when clus-
tering is conducted using optimization-based approaches that maximize a sum of
non-negative terms.
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3.2.1 Mega-Clusters

When attempting to cluster vertices, it is not uncommon for an algorithm to group
all nodes together into only one or a few very large clusters, leaving the vast major-
ity of clusters very sparsely populated. This is particularly true in the case of an
optimization-based approach that maximizes modularity, a widely used clustering
quality measure originally introduced by Newman and Girvan in 2004 [19] (Mod-
ularity maximization is by far the most common optimization-based approach to
clustering.)

This grouping of vertices into a few very large clusters is due to a well-known
and documented degeneracy of modularity, known as resolution limit. Fortunato and
Bathélemy [9] describe how any clustering quality function that is defined as a sum
of quality measures (scores) of individual clusters, as is the case with modularity,
suffers from this limit. The authors describe how terms from smaller clusters are
dominated by terms from larger clusters. Because the smaller clusters’ contribution
to the sum is dominated by the larger clusters, the final result is also dominated,
which leads to the resolution limit.

Our formulation has two features that prevent this domination of large clusters.
First, the K̄intra portion of our objective function contains a denominator which is
proportional to the number of vertices. The resulting ratio ensures independence
between the score of each cluster and its number of vertices. Second, our formulation
imposes a penalty to the scores of very small or very large clusters, which may even
assign a negative score to such clusters.

3.2.2 Garbage Collector Clusters

The garbage collector cluster is a special case of a mega-cluster. When maximizing
a sum of unweighted cluster-level quality measurements (nonnegative numbers), an
algorithm can return a solution which contains a few very small but very strong very
dense clusters with very-high-quality scores and include all remaining vertices in one
or a few very large cluster with a very low score. The risk of this pitfall is exacerbated
in the case of K̄intra, since all cluster scores are weighted equally, regardless of size.
For example, in a graph with three clusters, a clustering algorithm could return two
clusters each containing only two connected vertices and lump all remaining vertices
in one large poorly connected cluster. In such a case, the aggregate score would be
high, because two of the three clusters would have a very high score.

To prevent this situation, many formulations impose cardinality constraints on
the clusters (e.g., [6]). We impose a penalty which can potentially assign a negative
score to an unreasonably small or large cluster with low density.
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4 Numerical Experiments

Numerical implementation is still work in progress and is beyond the scope of this
article. We are still in the process of implementing the methods discussed here. We
have, however, very early-stage experimental results and find our experiences with
an ensemble-like routine to be of interest.

As mentioned previously, the clustering problem is NP-hard. Solving it for a
graph of even just moderate size is impossible to do exactly. For this reason, we
employ meta-heuristic optimization techniques. When it is hard or impossible to
obtain analytical solutions to an optimization problem, there exists a vast array of
global optimization search techniques to approximate a globally optimal solution.
While each of these techniques has its own specificities, they all explore the feasible
set of a problem in some systematic manner.

In our experiments, we use a greedy algorithm and simulated annealing, both
separately and in combination, to optimize the L1 regularized version of our objective
function. We experiment with a greedy algorithm alone, simulated annealing alone,
and an ensemble-like routine which uses the best solution yielded by the greedy
algorithm as a starting point for simulated annealing.

We deliberately keep graph sizes small to obtain a proof of concept, but do explore
sensitivity to graph size (number of edges and vertices). We are still pursuing our
experiments on larger graphs, refining our algorithms, and implementing them on
high-performance parallel computing platforms, but find the results yielded by our
ensemble-like routine worthy of mention.

4.1 Meta-Heuristic Techniques

As mentioned earlier, we use a greedy algorithm, simulated annealing and an
ensemble-like routine which combines both techniques. Details about each tech-
nique are provided in the following sections.

4.1.1 Simulated Annealing

Simulated annealing [2, 3, 24] is a well-known meta-heuristic optimization tech-
nique. It does not systematically apply a greedy logic to determine a move from
the current solution to the next one. In simulated annealing, we search the feasible
set by moving from a current solution to a new one according to the following set
of search rules. If the new solution in our search improves the objective function,
then the move is automatically accepted. In the case where the new solution does
not improve the objective function, it is accepted if a random draw is lower than
an evolving probability of acceptance. This acceptance procedure allows simulated
annealing to break out of local optima.
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In our implementation, we begin with a simulated annealing algorithm with a
random starting point, as is common practice. We also use the best solution returned
by our greedy algorithm as a starting point. Finally, using both starting points, we
experiment with 1 million and 5 million runs, to examine sensitivity to the number
of search iterations.

4.1.2 Greedy Algorithm

We apply a greedy algorithm to vertices sorted in depth-first order. Our decision to
sort vertices in a depth-first order is motivated by the work of Creusefond et al. [4]
who used a lexicographic depth-first ordering (LexDFS) to detect clusters. While we
did not use LexDFS but used a plain depth-first traversal to order vertices instead, we
did notice better results than when we greedily assigned vertices in random order.
The steps in our algorithm are detailed below:

• INPUT:

– Graph: “G”,
– Number of clusters: “k”,
– Percent of nodes to be randomly assigned: “pRand”, and
– Number of repeated runs: “R”.

• OUTPUT:

– Vertex-cluster assignments
– Steps:
· Randomly assign �pRand × num vertices� uniformly to each cluster;
· Sort remaining vertices using depth-first ordering with a random starting
point;

· While remaining vertices list is not empty:

– Assign vertex to cluster where objective function improves the most;
– Steps:
· Record objective function value;
· Repeat ‘R’ times and select best run;
· Return best vertex-cluster assignments.

4.1.3 Ensemble-Like Learning Routine

Here,we are guided by thework ofOvelgönne andGeyer-Schulz [20],who combined
weak clustering algorithms to obtain better results. Our routine consists of using the
best solution obtained by a greedy algorithm that was run for 50,000 iterations as
a starting point for our simulated annealing algorithm. We use this seeded starting
point, instead of using a random starting point.
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4.2 Preliminary Results

We conduct numerical experiments on two different synthetic graphs of varying
sizes. These graphs were generated using the stochastic block model [12]. Each
graph’s characteristics are reported in Table1. We record the best objective function
values (best solutions) returned by each algorithm in (Table2). We then compare
them among themselves, to the synthetic graphs’ known features, and the graphs’
global density.

While our initial results are still a distance away from the synthetic graph’s fig-
ures, the clusters identified by the combined greedy-simulated annealing routine fit
our definition of a good cluster, since the mean intra-cluster density is greater than
the graph’s global density, in both experiments (0.46 > 0.38 and 0.59 > 0.34). Our
initial results do indicate that the ensemble-like optimization routinewhich combines
a greedy step and simulated annealing yields better results than simulated annealing
alone. We find that beginning with a seeded starting point consisting of the solution
obtained with just 50,000 iterations of a greedy algorithm significantly improves the
results returned by simulated annealing alone.

Our ensemble approach yields better results than running simulated annealing for
millions of additional iterations. Increasing the number of iterations of the simulated
annealing algorithm does not improve the outcome, while using a seeded starting
point does. These results suggest the choice of starting point is critical and that our
objective function seems to have multiple local optima. This lack of improvement
indicates the presence of a local optimum and outlines the need for an algorithm that
will explore the solution set more widely.

Table 1 Test graph characteristics

Graph 1 Graph 2

Number of vertices (|V |) 38 104

Number of edges (|E |) 236 2,036

K (global graph wide density) 0.34 0.38

K̄intra 0.87 0.88

Number of clusters (|C |) 4 4

Size of solution set ∼ 1022 ∼ 1062

Table 2 Best objective function values

Graph 1 Graph 2

Simulated annealing (106 runs) 0.28 0.30

Simulated annealing (5 × 106 runs) 0.28 0.30

Greedy (50,000 runs) 0.52 0.37

Simulated annealing w/ Greedy (106 runs) 0.59 0.46

Simulated annealing w/ Greedy (5 × 106 runs) 0.59 0.46



Graph Clustering Via Intra-Cluster Density Maximization 47

5 Conclusion and Future Work

We have formulated the graph clustering problem as a combinatorial optimization
problem, using a novel formulation that maximizes mean intra-cluster density. Our
objective function penalizes unreasonably sized clusters, which eliminates the need
for cluster-size constraints used in other formulations in the literature. While numer-
ical implementation remains work in progress, we do note that an ensemble-like
approach which combines a greedy first pass with simulated annealing yields far
better results than simulated annealing alone, regardless of the number of iterations.

Future work will involve testing on a wider array of graphs, exploring the use of
other meta-heuristic solution techniques and implementation on parallelized high-
performance computing platforms. Specific focus will be placed on starting point
and escaping local optima.
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