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Increasing the Effects of Auxiliary
Function by Multiple Extrema in Global
Optimization
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7.1 Introduction

Many real-life problems have been formulated as optimization problems. They have
been applied in many branches of real-life such as finance, portfolio selection,
medical science, data mining, etc. [1–4]. Global optimization constitutes one
important part of the theory of optimization. It has many application areas in
engineering such as electrical power distribution and design of space trajectories
[5, 6]. Global optimization is a very active research area because of the problems
becoming more and more complicated from year to year due to increasing number
of variables and structure of the problems (non-smoothness). Up to now, many new
theories and algorithms have been presented to solve global optimization problems
[7, 8]. There exist two different type of methods which are based on local searches
(Monotonic Basin Hopping, Hill Climbing Methods, etc. [9, 10]) and not based on
local searches (Branch and Bound, DIRECT, etc. [11, 12]). We consider the methods
based on local searches. For local search based methods the major difficulties for
global optimization are listed below:

a. When finding any local minimizer by using a local solver, how to escape from
this current local minimizer.

b. How to ignore the local minimizers of which their values are greater than the
value of current minimizer and find a lower minimizer of the objective function.

c. How to evaluate the convergence to the global minimizer, and determine the
stopping criteria.
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In different point of view, global optimization approaches can be classified
into three main classes: stochastic methods, heuristic methods, and deterministic
methods.

Stochastic methods are quite simple, very efficient in black box problems and
robust with respect to the increment of dimension of the problem but some of the
stochastic methods can find only a local solution instead of the global one. The
very well-known stochastic approaches are Random Search and Adaptive Search,
Markovian Algorithms, etc. [13, 14]. The population algorithms are included in
stochastic methods but we handle them in the heuristic methods.

The heuristic methods are based on the simulation of the biological, physical,
or chemical processes. These methods are easy applicable and they converge the
solution rapidly. However, they can give different results if they are run again. The
very well-known methods are Genetic Algorithm [15], Simulated Annealing Algo-
rithm [16–18], Particle Swarm Optimization [19, 20], and Artificial Bee Colony
Algorithm [21, 22]. In recent years, the hybridizations of the heuristic global
optimization algorithms have come into prominence [23–27].

The convergence to the solution is guaranteed in deterministic approaches. This
is the outstanding property of the deterministic approaches. However, these methods
converge the solution quite slowly [28]. There exist important methods such as
Branch and Bound algorithms [11], Covering methods [12], Space Filling Curve
methods [29, 30], and other methods [31, 32].

Auxiliary function approach is one of the most important one among the methods
on global optimization. These methods are developed according to deterministic
search strategies by constructing an auxiliary function to escape from the current
local minimizer to a better one, among such methods are Tunneling Method [33],
Filled Function Method (FFM) [34–36], and Global Descent Method [37].

The first auxiliary function method was introduced by Levy and Montalvo
[33]. Cetin et al. developed the tunneling algorithm to resolve constrained global
optimization problems [38]. However, many important studies related to tunneling
algorithms have been published in [39–41].

Among other methods, FFM can be considered an effective approach to solve
different global optimization problems, so it seems to have several features over
others, for example, it is more simple to find a better local minimizer sequentially
compared to other methods. The FFM was presented for the first time by Ge [34, 35]
and improved in [42–44]. Many valuable studies have been presented in order to
make filled function applicable for different type of problems such as non-smooth
problems [45, 46], constrained optimization problems [47], system of nonlinear
equations [48], etc. [49, 50]. Recently, the next generation of filled function or
auxiliary function approaches have been developed [51–55].

The FFM presents a good idea for solving global optimization problems. In
general, the filled function mechanism is described as follows:

1. Choose any random point for starting and use a convenient local optimization
method to find a local minimizer of the objective function.
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2. Construct a filled function based on the current minimizer of the objective
function, and use any point in the proximity of this current minimizer to minimize
the filled function. Finally, a local minimizer of the filled function is obtained.
This minimizer is in a basin of better solution of objective function.

3. The minimizer of filled function which obtained in step 2 is used as a starting
point to find the minimizer of the objective function.

Surely the number of minimizers is reduced by repeating Step 2 and 3. Finally, the
global minimizer of objective function is found.

Some of the existing filled functions have been constructed to have a surface
somewhat like a surface of the objective function in the lower basin (when f (x) ≥
f (x∗

1 ), x∗
1 is a current minimizer of the objective function) of the better solution,

this situation has drawbacks; it needs more time and function evaluations.
In this study, in order to eliminate the drawbacks in some of previous filled

functions we proposed a new filled function. This new proposal is based on putting
many stationary points in lower basins, in fact, the filled function does not need to
go down in the lower basin, it only needs to obtain any stationary point in the lower
basin which can be used as a starting point for minimizing the objective function to
get a lower minimizer. This idea helps to reduce the time and function evaluations
which are very important for such methods.

This study is organized as follows: In Sect. 7.2, we give some preliminary
information. In Sect. 7.3, we propose a new filled function with its properties.
In Sect. 7.4, we introduce the filled function algorithm. In Sect. 7.5, we perform
a numerical test and present the results obtained from the new method. Finally,
Sect. 7.6 consists of conclusions.

7.2 Preliminaries

We consider a class of unconstrained global optimization problems as the following:

(P ) min
x∈Rn

f (x), (7.1)

where f (x) : Rn −→ R is continuously differentiable function.
We assume that the function f (x) is globally convex, which means f (x) → +∞

as ‖x‖ → +∞. It means that there exist a closed, bounded, and box-shaped domain
Ω = [lb, ub] = {x : lb ≤ x ≤ ub, lb, ub ∈ R

n} that contains all the local
minimizers of f (x). Moreover, the number of different values of local minimizers
of the function f (x) is finite.

Additionally, basic concepts and symbols used in this study are given as
follows:

k : the number of local minimizers of f (x),
x∗
k : the current local minimizer of f (x),
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x∗ : the global minimizer of f (x),
B∗

k : the basin of f (x) at the local minimizer x∗
k .

We indicate the following definitions:

Definition 7.1 ([34]) Let Ω ⊂ Rn. A point x∗ ∈ Ω is a global minimizer of
objective function f (x) if f (x∗) ≤ f (x) for all x ∈ Ω ,

Definition 7.2 ([34]) Let x∗
k is a local minimizer of the objective function f (x).

The set of points B∗
k ⊂ Ω is called a basin of f (x) at the point x∗

k if any local solver
starting from any point in B∗

k finds the local minimizer x∗
k .

Definition 7.3 ([34]) The auxiliary function F(x, x∗
k ) is called a filled function of

the objective function f (x) at a local minimizer x∗
k if the function F(x, x∗

k ) has the
following properties:

• x∗
k is a local maximizer of the function F(x, x∗

k ),
• F(x, x∗

k ) has no stationary points in A1 = {x ∈ Ω|f (x) ≥ f (x∗
k ), x 
= x∗

k },
• if x∗

k is not a global minimizer of the function f (x), then the function F(x, x∗
k )

has a stationary point in the region A2 = {x|f (x) < f (x∗
k ), x ∈ Ω}.

7.2.1 Overview of the Filled Functions

In 1987 Ge and Qin proposed a first filled function (we call it as G-function) [34]
with two parameters to solve the problem (P) at an isolated local minimizer x∗

k that
is defined by

G(x, x∗
k , r, ρ) = −(ρ2 ln[r + f (x)] + ‖x − x∗

k ‖2), (7.2)

and, in 1990 Ge introduced another filled function (P-function) [35] which has the
following form:

P(x, x∗
k , r, ρ) = 1

r + f (x)
+ exp

(
− ‖x − x∗

k ‖2

ρ2

)
, (7.3)

where r and ρ are parameters which need to be chosen conveniently. Generally, the
G-function and P-function of the objective function f (x) at the current minimizer
x∗
k must satisfy the Definition 3.

Many important studies are developed the FFM to solve multi-modal global opti-
mization problems. These studies can be classified into two categories depending on
the number of adjustable parameters.
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7.2.2 Filled Functions with Two-Parameter

In [56], Wu et al. offer a filled function with two parameters to decrease the
computational cost and overcome several disadvantages of filled functions which
has the following form:

Hq,r,x∗
k
(x) = q(exp

(
−‖x − x∗

k ‖2

q

)
gr(f (x)−f (x∗

k ))+fr(f (x)−f (x∗
k )), (7.4)

where q, r > 0 are adjustable parameters and fr, gr are continuously differentiable
functions.

In 2009, Zhang et al. [57] introduced a new definition for the filled function,
which rectifies several drawbacks of the classic definition. A new filled function
with two parameters defined by

P(x, x∗
k , r, a) = ϕ(r + f (x)) − a(‖x − x∗

k ‖2), (7.5)

where a > 0, r are parameters and the function ϕ(t) is continuously differentiable.
Wei et al. [58] offer a new filled function which is not sensitive to parameters. This
function has two parameters and has the following formula:

P(x, x∗
k ) = 1

(1 + ‖x − x∗
k ‖2)

g(f (x) − f (x∗
k )), (7.6)

and

g(t) =
{

0, t ≥ 0,

r arctan(tρ), t < 0,

where r > 0, ρ > 1 are parameters.

7.2.3 Filled Functions with One Parameter

According to general opinion, the existence of more than one adjustable parameter
in the same filled function makes the control difficult. So, the first filled function
which has only one parameter is the function Q. This function proposed in (1987)
by Ge and Qin and has the following formula:

Q(x, a) = −(f (x) − f (x∗
k )) exp(a‖x − x∗

k ‖2). (7.7)

The function Q has one adjustable parameter a, if this parameter becomes large
and large, quickly increasing value of exponential function negatively affects
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the computational results [34]. In order to tackle this drawback, H-function was
introduced by Liu in [36] that is given by

H(x, a) = 1

ln(1 + f (x) − f (x∗
k ))

− a‖x − x∗
k ‖2. (7.8)

The function H keeps the feature of the function Q with only one adjustable
parameter but without exponential function. Shang et al. introduced a filled function
with one adjustable parameter in the following:

Fq(x, x∗
k ) = 1

(1 + ‖x − x∗
k ‖)ϕq(f (x) − f (x∗

k ) + q), (7.9)

and

ϕq(t) =
{

exp(− q3

t
), t 
= 0,

0, t = 0,

so, q is a parameter subject to certain conditions [59]. Zhang and Xu constructed a
filled function to solve non-smooth constrained global optimization problems [60].
This function constructed to overcome several drawbacks of the previous filled
functions, and it has one parameter as follows:

P(x, x∗
k , q) = exp(‖x − x∗

k ‖) ln(1 + q(max{0, f (x) − f (x∗
k ) + r}

+
m∑

i=1

max{0, gi(x)})),

where q > 0 is the parameter, gi(x) > 0 are constrained conditions, and r is
prefixed constant.

In 2013, Wei and Wang proposed a new filled function for problem (P ) with
one adjustable parameter and it does not sensitive to this parameter [61]. The filled
function has the following formula:

P(x, x∗
k ) = −‖x − x∗

k ‖2g(f (x) − f (x∗
k )), (7.10)

where

g(t) =
{

π
2 , t ≥ 0,

r arctan(t2) + π
2 , t < 0,

and r is an adjustable parameter as large as possible, used as the weight parameter.
Wang et al. constructed a filled function for both smooth and non-smooth

constrained problems in 2014 [62]. The constructed filled function is defined by
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P(x, x∗
k , q) = − 1

q
[f (x) − f (x∗

k ) + max{0, gi(x)}))]2 − arg(1 + ‖x − x∗
k ‖2)

+q[min(0, max(f (x) − f (x∗
k )gi(x), i ∈ I ))]3.

The filled function at above has only one adjustable parameter which is controlled
during the process. A new definition and a new filled function is given in 2016 by
Yuan et al. [63]. This filled function has one parameter, given by

F(x, x∗
k , q) = V (‖x − x∗

k ‖)Wq(f (x) − f (x∗
k )), (7.11)

where q > 0 is an adjustable parameter, V (t) : R → R and Wq(t) : R → R are
continuously differentiable under some properties.

7.3 A New Filled Function Method and Its Properties

We offer a new filled function at a local minimizer x∗
k with two parameters to solve

the problem (P ) as follows:

F(x, x∗
k ) = 1

α + ‖x − x∗
k ‖2

h(f (x) − f (x∗
k )),

where

h(t) =
{

1, t ≥ 0,

sin
(
μt + π

2

)
, t < 0,

and 0 < α ≤ 1 and μ > 1 are parameters.
The new idea in this filled function is to put many stationary points in the lower

basin A2 = {x|f (x) < f (x∗
k ), x ∈ Ω}. In fact, the filled function does not need

to go down in the lower basin, only it needs to obtain any stationary point in A2,
which can be used as an initial for minimizing objective function to obtain a lower
minimizer.

The above idea has many advantages, for example, it helps to reduce the time and
evaluation which are very important in cases like this. Furthermore, the parameter
μ is used to increase or decrease the number of stationary points in the interval A2,
therefore we have to choose μ carefully, because if it is small there is a possibility
that we may lose some of the lower minimizers at which the value of the function
is close to the value at the first minimizer (see Figs. 7.1 and 7.2). The parameter
0 < α ≤ 1 in the term 1

α+‖x−x∗
k ‖2 is used to control the hat and it is easy to modify.

The following theorems references that the function F(x, x∗
k ) is a filled function by

Definition 7.1.



132 A. Sahiner et al.

1.0

x

y

0.5

0.0

-0.5 F (x,x*
1)

f (x)

m =5

x*
1

-1.0

1.0

x

y

0.5

0.0

-0.5 F (x,x*
1)

f (x)

m =10

x*
1

-1.0

1.0

x

y

0.5

0.0

-0.5 F (x,x*1)

f (x)

m =30

x*
1

-1.0

1.0

x

y

0.5

0.0

-0.5 F (x,x*
1)

f (x)

m =20

x*
1

-1.0

Fig. 7.1 Some different values of the parameter μ and their effect on the function F(x, x∗
k )

Fig. 7.2 The graph of F(x, x∗
k ) in two dimensions
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Theorem 7.1 Assume that x∗
k is a local minimizer of the function f (x), and

F(x, x∗
k ) is defined by the Definition 3, then x∗

k is a strict local maximizer of
F(x, x∗

k ).

Proof Since x∗
k is a local minimizer of f (x), then there exists neighborhood

N(x∗
k , ε) ⊂ A1 of x∗

k for some ε > 0 such that f (x) ≥ f (x∗
k ) for all x ∈ N(x∗

k , ε)

and x 
= x∗
k , 0 < α ≤ 1.

F(x, x∗
k )

F (x∗
k , x∗

k )
= α + ‖x∗

k − x∗
k ‖2

α + ‖x − x∗
k ‖2

= α

α + ‖x − x∗
k ‖2

< 1.

That means x∗
k is a strict local maximizer of F(x, x∗

k ).

Theorem 7.2 Assume that x∗
k is a local minimizer of f (x), and x is any point in

the set A1, then x is not stationary point of F(x, x∗
k ) for any 0 < α ≤ 1.

Proof We have x ∈ A1, f (x) ≥ f (x∗
k ) and x 
= x∗

k . Then F(x, x∗
k ) = 1

α+‖x−x∗
k ‖2 ,

and ∇F(x, x∗
k ) = −2

x−x∗
k

(α+‖x−x∗
k ‖2)2 
= 0, for each 0 < α ≤ 1. This implies the

function F(x, x∗
k ) has no stationary point in the set A1.

Theorem 7.3 Assume that L = min |f (x∗
i ) − f (x∗

j )|, i, j = 1, 2, . . . , m, f (x∗
i ) 
=

f (x∗
j ) and x∗

k is a local minimizer of f (x) but not global, then there exists a point
x′ ∈ A2 such that the point x′ is a stationary point of the function F(x, x∗

k ) when
μ = π

2L
for each 0 < α ≤ 1.

Proof Since the current local minimizer x∗
k is not global minimizer of f (x), then

there exists second minimizer x∗
k+1 ∈ A2 such that f (x∗

k+1) < f (x∗
k ).

For any point y ∈ A1 we have F(y, x∗
k ) > 0, so by the continuity of f (x), and if

μ = π
2L

we obtain F(x∗
k+1, x

∗
k ) < 0. Then, by the theorem of intermediate value of

continuous function, there exist a point lying between the points y and x∗
k+1 on the

part [y, x∗
k+1], the value of the filled function at this point is equal to 0.

Assuming that z is the nearest point to x∗
k+1 with F(z, x∗

k ) = 0, then, we obtain
the part [z, x∗

k+1]. That means z ∈ ∂A2 and z is in the borders of the set B∗
k+1

which is a closed region. By the continuity of the function F(x, x∗
k ), there exist

a point x′ ∈ B∗
k+1 such that it is a local minimizer of the function F(x, x∗

k ) and
F(x′, x∗

k ) < 0, since the function F(x, x∗
k ) is continuously differentiable, we obtain

∇F(x′, x∗
k ) = 0.

7.4 The Algorithm

According to the information of the previous sections, we proposed a new filled
function algorithm as follows:
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1 Set k = 1, ε = 10−2, choose Uμ = 30 an upper bound of μ and give μ = 5;
N the number of different directions di for i = 1, 2, 3, . . . , N , choose an initial
point xint ∈ Ω , and give 0 < α ≤ 1, where n is the dimension of the problem.

2 Minimize f (x) using xint as a starting point to find local minimizer x∗
k .

3 Construct filled function at x∗
k

F (x, x∗
k ) = 1

α + ‖x − x∗
k ‖2

h(f (x) − f (x∗
k ))

and set i = 1.

4 If i ≤ N , set x = x∗
k + εdi and go to step (5); otherwise go to step (6).

5 Start from x to find a minimizer xF of F(x, x∗
k ), if xF ∈ Ω then set xint = xF ,

k = k + 1 and go to step (2); otherwise i = i + 1, go to step (4).
6 If μ ≤ Uμ, then μ = μ + 5 and go to step (2); otherwise take x∗

k as a global
minimizer of f (x) and stop the algorithm.

The set of different directions di are as the following: let θ1, . . . , θJ ∈ [0, 2π ]
and ϑ1, . . . , ϑJ ∈ [−π

2 , π
2 ], are uniformly distributed. If n = 2Q, the components

of d
j
i = (y

j

1 , y
j

2 , . . . , y
j

2Q) is calculated as

y
j

2l−1 =
√

2√
n

cos(θj )

y
j

2l =
√

2√
n

sin(θj ),

for l = 1 ∼ Q. If n = 2Q + 1, the components of d
j
l = (y

j

1 , y
j

2 , . . . , y
j

2Q+1) is
calculated as

y
j

1 =
√

2√
n

cos(ϑj ) cos(θj )

y
j

2 =
√

2√
n

cos(ϑj ) sin(θj )

y
j

3 =
√

2√
n

sin(ϑj )

y
j

2l =
√

2√
n

cos(θj )

y
j

2l+1 =
√

2√
n

sin(θj )

for l = 2 ∼ Q [64].
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7.5 Numerical Results

In this section, we perform the numerical test of our algorithm on test problems
which are stated as follows:

Problem 5.1–5.3 (Two-Dimensional Function)

min f (x) = [1 − 2x2 + c sin(4πx2) − x1]2 + [x2 − 0.5 sin(2πx1)]2,

for x1, x2 ∈ [−3, 3], where c = 0.05, 0.2, 0.5.

Problem 5.4 (Three-Hump Back Camel Function)

min f (x) = 2x2
1 − 1.05x4

1 + 1

6
x6

1 − x1x2 + x2
2 ,

for x1, x2 ∈ [−3, 3].
Problem 5.5 (Six-Hump Back Camel Function)

min f (x) = 4x2
1 − 2.1x4

1 + 1

3
x6

1 − x1x2 − 4x4
2 + 4x4

2 ,

for x1, x2 ∈ [−3, 3].
Problem 5.6 (Treccani Function)

min f (x) = x4
1 + 4x3

1 + 4x2
1 + x2

2 ,

for x1, x2 ∈ [−3, 3].
Problem 5.7 (Goldstein and Price Function)

min f (x) = g1(x)g2(x),

where

g1(x) = 1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2),

and

g2(x) = 30 + (2x1 − 3x2)
2(18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2),

for x1, x2 ∈ [−3, 3].
Problem 5.8 (Shubert Function)

min f (x) =
{ 5∑

i=1

i cos[(i + 1)x1 + i]
}{ 5∑

i=1

i cos[(i + 1)x2 + i]
}
,

s. t. x1, x2 ∈ [−10, 10].
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Problem 5.9 (Rastrigin Function)

min f (x) = 20 +
2∑

i=1

[
x2
i − 10 cos(2πxi)

]
,

for x1, x2 ∈ [−5.12, 5.12].
Problem 5.10 (Branin Function)

min f (x) =
(
x2 − 5.1

4π2 x2
1 + 5

π
x1 − 6

)2 + 10
(

1 − 1

8π

)
cos(x1) + 10,

for x1 ∈ [−5, 10], x2 ∈ [0, 15].
Problems 5.11, 5.12, 5.13 (Shekel Function)

min f (x) = −
m∑

i=1

[ 4∑
j=1

(xj − ai,j )
2 + bi

]−1

,

where m = 5, 7, 10, bi is an m-dimensional vector, and ai,j is a 4 × m-dimensional
matrix where

bi = 0.1.
[
1 2 2 4 4 6 3 7 5 5

]
,

ai,j =

⎡
⎢⎢⎣

4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6
4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6

⎤
⎥⎥⎦,

and xj ∈ [0, 10], j = 1, .., 4.

Problems 5.14–5.21 (n-Dimensional Function)

min f (x) = π

n
[10 sin2 πx1 + g(x) + (xn − 1)2],

where g(x) = ∑n−1
i=1

[
(xi − 1)2(1 + 10 sin2 πxi+1)

]
and xi ∈ [−10, 10], i =

1, 2, . . . , n.

Problems 5.21–5.29 (Levy Function)

min f (x) = sin2(πw1) +
n−1∑
i=1

(wi − 1)2
[

1 + 10 sin2(πwi + 1)

]

+(wn − 1)2
[

1 + sin2(2πwn)

]
,
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Table 7.1 The list of test problems

Function No. Dimension n Function name Optimum value Region

5.1 2 Two-dimensional
function c = 0.05

0 [−3, 3]2

5.2 2 Two-dimensional
function c = 0.2

0 [−3, 3]2

5.3 2 Two-dimensional
function c = 0.5

0 [−3, 3]2

5.4 2 Three-hump back
camel function

0 [−3, 3]2

5.5 2 Six-hump back
camel function

−1.0316 [−3, 3]2

5.6 2 Treccani function 0 [−3, 3]2

5.7 2 Goldstein and Price
function

3.0000 [−3, 3]2

5.8 2 Shubert function −186.73091 [−10, 10]2

5.9 2 Rastrigin function −2.0000 [−3, 3]2

5.10 2 (RC)Branin
function

0.3979 [−5, 10] ×
[10, 15]

5.11 4 (S4,5)Shekel
function

−10.1532 [0, 10]

5.12 4 (S4,7)Shekel
function

−10.4029 [0, 10]

5.13 4 (S4,10)Shekel
function

−10.5364 [0, 10]

5.14–5.17 2,3,5,7 n-dimensional
function

0 [−10, 10]2

5.18–5.21 10,20,30,50 n-dimensional
function

0 [−10, 10]2

5.22–5.25 2,3,5,7 (L5)Levy function 0 [−10, 10]2

5.26–5.29 10,20,30,50 (L7)Levy function 0 [−10, 10]2

where

wi = 1 + xi − 1

4
, f or all i = 1, . . . , n

for xi ∈ [−10, 10], i = 1, 2, . . . , n.

We rearrange the above problems and the list of test problems are presented
in Table 7.1. The algorithm is implemented 10 times starting from the different
points independently for each problem on a PC with Matlab R2016a. The “fminunc”
function of Matlab is used as a local solver. The used symbols are the following:

• No.: the number of the problem,
• n: the dimension,
• itr-mean: the mean iteration number of the 10 runs,
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Table 7.2 The numerical results of our algorithm on the list of problems

No. n. itr-mean f-mean f-best f-eval time S-R

5.1 2 1.2000 6.5805e − 12 5.7244e − 16 201 0.0427 9/10

5.2 2 1.0000 2.6536e − 13 1.2548e − 14 315 0.0383 10/10

5.3 2 1.5000 1.4803e − 13 5.7321e − 15 288 0.0498 8/10

5.4 2 1.0000 4.1081e − 14 2.2390e − 16 306 0.0254 10/10

5.5 2 2.4000 −1.0316 −1.0316 132 0.0236 10/10

5.6 2 1.0000 1.1315e − 11 5.1253e − 16 240 0.0246 10/10

5.7 2 2.1000 3.0000 3.0000 414 0.0503 8/10

5.8 2 11.3000 −186.7309 −186.7309 591 0.1045 10/10

5.9 2 7.2000 3.6948e − 14 0 246 0.0273 10/10

5.10 2 1.0000 0.3979 0.3979 243 0.0165 10/10

5.11 4 1.0000 −10.1532 −10.1532 1140 0.0614 7/10

5.12 4 3.3000 −10.4029 −10.40294 850 0.1028 9/10

5.13 4 4.1000 10.5321 −10.5321 925 0.0680 8/10

5.14 2 4.3000 2.5282e − 13 1.5241e − 15 150 0.0167 10/10

5.15 3 7.0000 6.2081e − 09 7.0745e − 15 2100 0.1873 10/10

5.16 5 9.6000 6.5445e − 09 2.9883e − 13 3420 0.2170 8/10

5.17 7 5.2000 4.1802e − 09 3.3935e − 11 5816 0.3027 8/10

5.18 10 10.1000 4.0625e − 10 7.1453e − 12 3850 0.1741 8/10

5.19 20 8.1000 1.8112e − 10 3.3503e − 13 6363 0.2280 7/10

5.20 30 5.0000 9.3934e − 11 2.7690e − 14 9517 0.2957 9/10

5.21 50 18.30000 .4131e − 12 1.8754e − 15 27846 0.8174 8/10

5.22 2 3.2000 2.9301e − 13 2.6872e − 17 510 0.0577 10/10

5.23 3 6.2000 1.3768e − 13 4.6587e − 16 1825 0.1407 9/10

5.24 5 7.4000 1.2471e − 12 8.6884e − 14 1422 0.0994 8/10

5.25 7 7.0000 1.3095e − 11 6.9033e − 16 1936 0.1151 8/10

5.26 10 8.0000 3.6191e − 12 5.2026e − 14 4169 0.2106 6/10

5.27 20 6.7000 2.0352e − 12 4.5555e − 15 7056 0.3026 6/10

5.28 30 14.7000 .8459e − 12 7.1327e − 16 13391 0.6136 10/10

5.29 50 10.4000 9.9071e − 12 9.8943e − 15 48450 1.1783 9/10

• f-eval: the total number of function evaluations,
• time: the mean of the aggregate running time in 10 runs (second),
• f-mean: the mean of the function values in 10 runs,
• f-best: the best function value in 10 runs,
• S-R: the success rate among 10 implementation with different starting points.

The results of the algorithm is presented in Table 7.2. This table consists of seven
column; (No) number of the problem, (n) dimension of the problem, (itr-mean)
mean value of total iteration number, (f-mean) mean value of the function values,
(f-best) the best value of the function values, (f-eval) mean value of the function
evaluations and (S-R) success rates of ten trails uniform initial points. As shown in
this table our algorithm is tested on 29 problems with different dimensions up to
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Table 7.3 The comparison of our algorithm with algorithm in [65]

Our method The method in [65]

No. n. f-best f-eval S-R f-best f-eval S-R

5.1 2 5.7244e − 16 201 9/10 2.66630e − 15 214 8/10

5.2 2 1.2548e − 14 315 10/10 3.4336e − 16 290.6250 8/10

5.3 2 5.7321e − 15 288 8/10 4.7243e − 16 414.2857 8/10

5.4 2 2.2390e − 16 306 10/10 2.8802e − 16 411 10/10

5.5 2 −1.0316 132 10/10 −1.0316 234 10/10

5.6 2 5.1253e − 16 240 10/10 1.6477e − 15 216.5000 10/10

5.7 2 3.0000 414 8/10 3.0000 487.8889 9/10

5.8 2 −186.7309 591 10/10 −186.7309 813.5000 10/10

5.9 2 0 246 10/10 −2.0000 501 10/10

5.10 2 0.3979 243 10/10 0.3979 222.3000 10/10

5.11 4 −10.1532 1140 7/10 −10.1532 1001 9/10

5.12 4 −10.4029 850 9/10 −10.4029 1365.1000 8/10

5.13 4 −10.5321 925 8/10 −10.5321 1412 7/10

5.14 2 1.5241e − 15 150 10/10 9.4192e − 15 743 8/10

5.15 3 7.0745e − 15 2100 10/10 5.6998e − 15 3027 10/10

5.16 5 2.9883e − 13 3420 8/10 3.7007e − 15 4999 10/10

5.17 7 3.3935e − 11 5816 8/10 1.3790e − 14 8171 8/10

5.18 10 7.1453e − 12 3850 8/10 3.0992e − 14 8895 9/10

5.19 20 3.3503e − 13 6363 7/10 3.0016e − 13 18242 7/10

5.20 30 2.7690e − 14 9517 9/10 1.7361e − 12 43232 6/10

5.21 50 1.8754e − 15 27846 8/10 9.8531e − 13 83243 6/10

50 dimensions, each problem is tested on ten different initial points. Our algorithm
reaches 10/10 success rate for almost 40% of the all test problems. At least 6/10
success rate is obtained considering all of the test problems as stated in column
(S-R). By using our algorithm %94 success rate is obtained considering the total
number of trials. Moreover, the f-mean and f-best values in Table 7.2 are very close
to original function values which are given in Table 7.1.

The comparison of our algorithm with the method in [65] are summarized in
Table 7.3.

In general, it can be seen from Table 7.3 the results of the algorithm presented in
this paper obtain an advantage in several places especially in the columns dedicated
to function evaluations and success rates compared to the results of the algorithm
in [65]. Both of the methods (our method and the method in [65]) are sufficiently
successful in terms of “f-best” values. Our method complete the global optimization
process with lower function evaluation values than the method in [65] for the
85% of the all test problems. By using our algorithm, 88% successful trial is
obtained considering the total number of the trial used in comparison and at least
7/10 success rate is obtained for each of the test problems used in comparison.
86% successful trial is obtained considering the total number of trials used in
comparison and at least 7/10 success rate is obtained for each of the test problems in
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comparison, by using the algorithm in [65]. Moreover, our method is more effective
than the method in [65] in terms of “f-eval” and “S-R” on the 10 and more than
10 dimensional test problems. Thus, the introduced algorithm in this paper is more
efficient than the algorithm introduced in [65].

7.6 Conclusions

In this chapter, a new filled function for unconstrained global optimization is
presented and the useful properties are introduced. The proposed filled function
contains two parameters which can be easily adjusted in the minimization process.
The corresponding filled function algorithm is constructed. Furthermore, it has been
performed on numerical experiment in order to demonstrate the effectiveness of the
presented algorithm. It can be seen from the computational results that the present
method is promising.

This new algorithm is an effective approach to solve multi-modal global opti-
mization problems. In the minimizing process, our methods save time in finding
the lower minimizer and it is guaranteed that upper minimizers are not taken into
account in all of the minimization process independently from the parameters. These
two important properties make our method advantageous among the other methods.

For future work, the applications of global optimization algorithms can be
applied to many real-life problems such as data mining, chemical process, aerospace
industries, etc.
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