
Chapter 11
A Numerical Approach for Variable
Order Fractional Equations

Fatma Ayaz and İrem Bektaş Güner

11.1 Introduction

Since the last two or three decades, fractional calculus has become valuable tool
in many branches of science and engineering. However, its history goes back
to eighteenth century. Many scientists, including famous mathematicians such as
Fourier (1822), Abel (1823–1826), Liouville (1822–1837), Riemann (1847), have
contributed significant works for development of fractional calculus. There are
many possible generalizations of dnf (x)

dxn , where n is not an integer, but the most
important of these are the Riemann–Liouville and Caputo derivatives. The first of
these appeared earlier than the others and was developed in works of Abel, Riemann,
and Liouville in the first half of the nineteenth century. The mathematical theory of
this derivative has been well established so far, but it has disadvantage that leads to
difficulties especially for initial and boundary values, since in real world problems,
these conditions cannot be described by fractional derivatives. Thus, the latter
one, the Caputo derivative was derived by Caputo to eliminate the difficulties in
identifying initial and boundary conditions. Both derivatives are very well known in
the theory of fractional differential equations and the definitions of these derivatives
will be given in the following section.

It has been proved that many physical processes can be well defined and modelled
by fractional order differential equations. Moreover, fractional analysis provides
many benefits for identifying and best modelling the physical systems which are
suggested by scientists. Therefore, fractional order derivatives are much more
suitable than the ordinary derivatives (see references [1–4]). For instance, it is not
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Faculty of Science, Gazi University, Ankara, Turkey
e-mail: fayaz@gazi.edu.tr

© Springer Nature Switzerland AG 2020
J. A. T. Machado et al. (eds.), Numerical Solutions of Realistic Nonlinear Phenomena,
Nonlinear Systems and Complexity 31, https://doi.org/10.1007/978-3-030-37141-8_11

195

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37141-8_11&domain=pdf
mailto:fayaz@gazi.edu.tr
https://doi.org/10.1007/978-3-030-37141-8_11


196 F. Ayaz and İ. B. Güner

easy to explain abnormal diffusion behaviours by integer order differential equations
since these processes appear abnormally with respect to time and space variables
and it requires fractional models.

There are many application areas where these mathematical models are used and
some of them can be listed here as physics, chemistry, biology, economics, control
theory, signal and image processing, blood flow phenomenon, aerodynamics, fitting
of experimental data, etc. Usually these models have complex nature; therefore,
analytical solutions can only be obtained for certain classes of equations. Many
numerical and approximate methods have been developed to solve these kinds
of equations so far. Some of these methods are given as follows: finite differ-
ence approximation methods [5–10], fractional linear multistep methods [11–13],
quadrature method [14–19], adomian decomposition method [20–22], variational
iteration method [22, 23], differential transform method [24], Laplace perturbation
method [25, 26], homotopy analysis method [27], etc. On the other hand, existing
pure numerical techniques have usually first order convergency. However, it is well
known that raising the order of convergency is a factor that increases the power of
the method [28].

Nowadays, there are further developments in the analysis of fractional order
differential equations and some studies are dealt with variable order fractional
derivatives [29]. Thus, the need to develop more reliable methods in parallel with
the developments in this field is inevitable.

The aim of this work is to use a second order convergent method to the variable
fractional order multi-term differential equations similar to the work in [30] and to
obtain reliable results. In the next section, second order convergent method will be
mentioned and the theory of the method will be dealt with. Sections 11.3 and 11.4
are applications of the method for adding extra y(t) and y′′(t) terms to the single-
term equation. The last section is the conclusion.

11.2 Problem Definition and Integration Method for
Variable Order Fractional Differential Equations

In this section, we first consider the following single-term initial value problem with
fractional derivative, where α(t) is a function of time. Therefore, we can write the
problem as

{
CD

α(t)
0,t y(t) = f (t), 0 ≤ t ≤ T ,

y(0) = 0,
(11.1)

where f (t) is a continuous function of t for a given interval. If y(0) = μ, then
by using the transformation v(t) = y(t) − μ, we get y(0) = 0. In Eq. (11.1),
α(t) denotes the order of variable fractional Caputo derivative, namely CD, and this
derivative is defined as,
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CD
α(t)
0,t y(t) = 1

Γ (1 − α(t))

∫ t

0
(t − s)−α(t)y

′
(s)ds. (11.2)

We also recall the variable fractional order Riemann–Liouville derivative, RLD as

RLD
α(t)
0,t y(t) = 1

Γ (1 − α(t))

d

dt

∫ t

0
(t − s)−α(t)y(s)ds. (11.3)

Consequently, by the following lemma, we see the relation between the Riemann–
Liouville and the Caputo derivatives.

Lemma 11.1 If y(t) ∈ C[0,∞) then, similar to the constant order fractional
operators, the relation between variable order Caputo and Riemann–Liouville
fractional derivatives is

CD
α(t)
0,t y(t) =RL D

α(t)
0,t [y(t) − y(0)]. (11.4)

In Eq. (11.1), since the initial condition is y(0) = 0, this follows that

CD
α(t)
0,t y(t) = RLD

α(t)
0,t y(t). (11.5)

Consequently, for convenience, the Caputo derivative is replaced by Riemann–
Liouville derivative in Eq. (11.1). To obtain a numerical approach to the Riemann–
Liouville variable order fractional derivative by a second order convergent method,
we first call the shifted Grünwald approximation of a function y(t)

A α(t)
τ,p y(t) = 1

τα(t)

∞∑
k=0

g
α(t)
k y(t − (k − p)τ), (11.6)

where, for k ≥ 0 ,

g
α(t)
k = (−1)k

(
α(t)

k

)
.

Now, the second order convergent method for Riemann–Liouville variable order
derivative is defined as by the following theorem (see [30]).

Theorem 11.1 Let y(t) ∈ L1(R) and its Riemann–Liouville derivative be

RLD
α(t)+2
−∞,t y(t). For ∀tk ∈ R, the Fourier transform of this derivative in L1(R)

is [10]

Dα(t)
τ,p,qy(t) = α(t) − 2q

2(p − q)
A α(t)

τ,p y(t) + 2p − α(t)

2(p − q)
A α(t)

τ,q y(t). (11.7)
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Therefore,

Dα(tk)
τ,p,qy(t) =RL D

α(tk)−∞,t y(t) + O(τ 2), (11.8)

where p and q are integers and p �= q.

Proof From the definition of A α(t)
τ,p y(t) as in Eq. (11.6), we write

Dα(tk)
τ,p,qy(t) = α(tk) − 2q

2(p − q)

1

τα(tk)

∞∑
k=0

g
α(tk)
k y(t − (k − p)τ)

+ 2p − α(tk)

2(p − q)

1

τα(tk)

∞∑
k=0

g
α(tk)
k y(t − (k − q)τ). (11.9)

If the Fourier transform is applied to both sides of Eq. (11.9), the following
expression is obtained

F
{
D

α(tk)
τ,p,qy(t);w

}
= 1

τα(tk)

∞∑
k=0

g
α(tk)
k

[
α(tk) − 2q

2(p − q)
e−iw(k−p)τ

+2p − α(tk)

2(p − q)
e−iw(k−q)τ

]
F (w)

= 1

τα(tk)

[
α(tk) − 2q

2(p − q)
(1 − e−iwτ )α(tk)eiwτp

+2p − α(tk)

2(p − q)
(1 − e−iwτ )α(tk)eiwτq

]
F (w) (11.10)

= (iw)α(tk)

[
α(tk) − 2q

2(p − q)
Wp(iwτ) + 2p − α(tk)

2(p − q)
Wq(iwτ)

]
F (w),

where F (w) is the Fourier transform of y(t) and we writing

Wr(z) =
(

1 − e−z

z

)α(tk)

erz

= 1 +
(

r − α(tk)

2

)
z + O(z2), r = p, q, (11.11)

denoting,

ĝ {w, τ } = F
{
Dα(tk)

τ,p,qy;w
}

− F
{

RLD
α(tk)−∞,t y;w

}
and by using Eqs.(11.10)–(11.11) and we have



11 A Numerical Approach for Variable Order Fractional Equations 199

∣∣∣Dα(tk)
τ,p,qy(t) − RLD

α(tk)−∞,t y(t)

∣∣∣ = |g| ≤ 1

2π

∫
R

|ĝ(w, τ)|dw ≤ C‖(iw)α(tk)+2F(w)‖L1τ
2

= O(τ2).

This completes the proof [30].

11.2.1 Numerical Method

To solve Eq. (11.1) numerically, we discretize the time domain, t ∈ [0, T ] by
τ = T

N
, where N is an integer and α(tk) = αk denotes the varying order

fractional derivative with tk = kτ, k = 0, 1, 2, 3 . . . , N . Moreover, choosing
(p, q) = (0,−1), then by using Eq. (11.9) we have

α(t) − 2q

2(p − q)
= 2 + α(t)

2

and

2p − α(t)

2(p − q)
= −α(t)

2
.

Now, the second order convergent method can be given as follows [30]:

{
τ−αk

∑k
j=0 w

αk

j yk−j = f (tk), 1 ≤ k ≤ N

y0 = 0 ,
(11.12)

where, if k = 0, then w
αk

0 = (
2+αk

2 )g
αk

0 ,

otherwise, w
αk

j = (
2+αk

2 )g
αk

j − (
αk

2 )g
αk

j−1, k ≥ 1 and g
αk

j = (−1)j
(

αk

n

)
.

11.2.2 Stability Criteria of the Method

This part deals with the stability of the method and the following lemma holds.

Lemma 11.2 Being αk ∈ (0, 1), then the coefficients, w
αk

j in Eq. (11.12) satisfy the
following properties:

{
w

αk

0 = 2+αk

2 , w
αk

j < 0, j ≥ 1∑∞
j=0 w

αk

j = 0, −∑k
j=1 w

αk

j < w
αk

0 , k ≥ 1.
(11.13)
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Theorem 11.2 Let y(t) ∈ C[0,∞) denotes exact and {yk|k = 0, 1, 2, 3 . . . N}
numerical solution of Eq. (11.1) respectively, then the following inequality holds:

|yk| ≤ 5

(1 − αmin)2αmin
kαminταmin max

1≤m≤k
|f (tm)|. (11.14)

Proof According to the Lemma 11.2, we know that

w
αk

0 = 2 + αk

2
, w

αk

j < 0, j ≥ 1.

Hence, by arranging Eq. (11.12), we have

w
αk

0 yk =
k−1∑
j=1

(−w
αk

j )yk−j + ταkf (tk), 1 ≤ k ≤ N. (11.15)

For k = 1, we can write

|y1| = |wα1
0 |−1τα1 |f (t1)| ≤ 5

(1 − αmin)2αmin
ταmin |f (t1)|.

Now, we have to show that Eq. (11.14) is also valid for j = 1, 2, 3, . . . , k−1. Hence,
taking the absolute value of Eq. (11.15) and writing Eq. (11.14) into this inequality
then we obtain

w
αk
0 |yk | ≤

[ k−1∑
j=1

(−w
αk
j

)|yk−j | + ταk |f (tk)|
]

≤
k−1∑
j=1

(−w
αk
j

)
5

(1 − (αmin)2αmin (k − j)αminταmin
max

1≤m≤k−j
|f (tm)| + ταmin |f (tk)|

≤
[ k−1∑

j=1

(−w
αk
j

)
5

(1 − αmin)2αmin
kαmin + 1

]
ταmin max

1≤m≤k
|f (tm)| (11.16)

≤
{[

w
αk
0 − 1 − αmin

5

(
2αmin

kαmin

)]
5

(1 − αmin)
2αmin + 1

}
ταmin max

1≤m≤k
|f (tm)|

= 5w
αk
0

(1 − αmin)2αmin
kαminταmin max

1≤m≤k
|f (tm)|.

Therefore, we get

|yk| ≤ 5

(1 − αmin)2αmin
kαminταmin max

1≤m≤k
|f (tm)|.

As a result, by mathematical induction, Eq. (11.14) is valid for all 1 ≤ k ≤ N (See
[30]).
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Theorem 11.3 Let y(t) ∈ C[0,∞) denote the exact solution and {y(tk)|k =
0, 1, 2, 3 . . . N} define the values of y at tk . Let us also denote the numerical solution
of Eq. (11.1) by {yk|k = 0, 1, 2, 3 . . . N} at particular points tk . Therefore, absolute
error in each step is denoted by ek = y(tk) − yk, k = 0, 1, . . . N . Hence, the
following relation holds:

|ek| ≤ 5c

(1 − αmin)2αmin
T αminτ 2,

where c is a positive constant independent from τ .

Proof The proof of the theorem is given as in [30]. The error of Eq. (11.12) is

{
τ−αk

∑k
j=0 w

αk

j ek−j = Rk, 1 ≤ k ≤ N,

e0 = 0.
(11.17)

This requires that |Rk| ≤ cτ 2. Then, by using Theorem 11.1 and Theorem 11.2, we
write

|ek| ≤ 5c

(1 − αmin)2αmin
kαminταmin max

1≤m≤k
|Rm|

≤ 5c

(1 − αmin)2αmin
T αminτ 2.

This completes the proof.

11.2.3 Numerical Example

So far, a second order convergent method has been considered for approximating
the Riemann– Liouville derivative, where the maximum error and the order of the
convergency are obtained from the following formulas:

E∞(τ ) = max
0≤k≤N

|y(tk) − yk|,

order∞(τ ) = log2

(
E∞(2τ)

E∞(τ )

)
.

To see the efficiency of the method the following example has been considered
here. All numerical calculations have been done within MATLAB (R2015b).
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Example 11.1 Assuming that 0 < α(t) < 1 and T = 1. Now, we can solve the
following initial value problem [30]:

CD
α(t)
0,t y(t) = 3t1−α(t)

Γ (2 − α(t))
+ 2t2−α(t)

Γ (3 − α(t))
, 0 ≤ t ≤ T (11.18)

y(0) = 0. (11.19)

The exact solution of the problem is known as y(t) = 3t + t2 and two different
values of α(t) will be considered here:

Case 1: α(t) = 1
2 t ,

Case 2: α(t) = sin(t).

Consequently, by using the following numerical scheme:

τ−αk

k∑
j=0

w
αk

j yk−j = f (tk), 1 ≤ k ≤ N,

and taking y0 = 0, numerical results are obtained. These results have been shown
by tables. Tables 11.1 and 11.3 show the difference between exact and numerical
solutions of the problem for τ = 1

16 and τ = 1
32 . In Table 11.1, the first case

α(t) = 1
2 t has been used. Moreover, in Table 11.3, the second case, α(t) =

sin(t) was applied. Tables 11.2 and 11.4 denote the maximum error and order of
convergency results for α(t) = 1

2 and α(t) = sin(t), respectively. Figure 11.1
shows both numerical and exact solutions in the same plot. It is clear that analytical
and numerical solutions overlap.

11.3 Multi-term Variable Order Fractional Equations

In this section we will apply the second order convergent method to a new class of
variable fractional order differential equations. With additional terms, we will have
multi-term variable fractional order differential equation. First, we will apply y(t)

term to Eq. (11.1). Hence, the following initial value problem, Eq. (11.20), will be
considered here: {

CD
α(t)
0,t y(t) + ay(t) = f (t), 0 ≤ t ≤ T

y(0) = 0.
(11.20)

For convenience, taking a = 1 and each tk is in the discretized time domain, the
following numerical scheme holds:
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Table 11.1 The difference between the numerical and exact values of Example 11.1 for T = 1
and α(t) = 1

2 t . The calculations have been performed for both N = 16, N = 32

τ = 1
16 τ = 1

32
Numerical value Exact value Numerical value Exact value

0.190969333717 0.191406250000 0.094615423638 0.094726562500

0.390168425750 0.390625000000 0.191289608582 0.191406250000

0.597204270428 0.597656250000 0.289922357608 0.290039062500

0.812056502729 0.812500000000 0.390509189828 0.390625000000

1.034722151963 1.035156250000 0.493049429619 0.493164062500

1.265200437577 1.265625000000 0.597542896551 0.597656250000

1.503491075175 1.503906250000 0.703989525702 0.704101562500

1.749593937717 1.750000000000 0.812389288867 0.812500000000

2.003508960064 2.003906250000 0.922742172037 0.922851562500

2.265236105578 2.265625000000 1.035048167506 1.035156250000

2.534775352514 2.535156250000 1.149307270671 1.149414062500

2.812126687793 2.812500000000 1.265519478597 1.265625000000

3.097290103864 3.097656250000 1.383684789304 1.383789062500

3.390265596989 3.390625000000 1.503803201392 1.503906250000

3.691053166230 3.691406250000 1.625874713838 1.625976562500

3.999652812814 4.000000000000 1.749899325873 1.750000000000

1.875877036904 1.875976562500

2.003807846471 2.003906250000

2.133691754215 2.133789062500

2.265528759855 2.265625000000

2.399318863176 2.399414062500

2.535062064016 2.535156250000

2.672758362260 2.672851562500

2.812407757834 2,812500000000

2.954010250700 2.954101562500

3.097565840850 3.097656250000

3.243074528307 3.243164062500

3.390536313121 3.390625000000

3.539951195366 3.540039062500

3.691319175139 3.691406250000

3.844640252556 3.844726562500

3.999914427756 4.000000000000

{
τ−αk

∑k
j=0 w

αk

j yk−j = f (tk) − y(tk), 1 ≤ k ≤ N,

y0 = 0.
(11.21)

Therefore, the following theorem is valid.

Theorem 11.4 Let y(t) ∈ C[0,∞) denote the exact solution and {y(tk)|k =
0, 1, 2, 3 . . . N} define the values of y at tk . Let us also denote the numerical
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Table 11.2 Maximum error
and order of convergency
results for different values of
τ in Example 11.1, where
T = 1 and α(t) = 1

2 t

τ E∞(τ ) order∞(τ )

1
4 6.585728e − 03

1
8 1.754860e − 03 1.9079

1
16 4.565743e − 04 1.9424

1
32 1.167049e − 04 1.9679

1
64 2.967417e − 05 1.9755

0.5
0.5

1

1

1.5

1.5

2

2

2.5

2.5

3

3

3.5

3.5

4

4

4.5

4.5

Numerical Value
Exact Value

Fig. 11.1 Comparison of the numerical and exact solutions of y(t) of Example 11.1, where T = 1
, α(t) = 1

2 t

solution of Eq. (11.1) by {yk|k = 0, 1, 2, 3 . . . N} at particular points tk . Therefore,
maximum error in each step is denoted by ek = y(tk) − yk, k = 0, 1, . . . N . Hence,
the following relation holds:

|ek| ≤ 5c

(1 − αmin)2αmin
T αminτ 2,

where c is a positive constant independent from τ .

Proof By using Eq. (11.12), the proof of this theorem can be performed easily same
as the proof of Theorem 11.3.

Following example denotes that the second order convergent method is still valid
for multi-term variable fractional order differential equations.
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Table 11.3 Comparison of the numerical and exact solutions of y(t) at particular point tk in
Example 11.1, where T = 1, α(t) = sin(t). The calculations have been performed for both
N = 16, N = 32

τ = 1
16 τ = 1

32
Numerical value Exact value Numerical value Exact value

0.190458811746 0.191406250000 0.094495229084 0.094726562500

0.389552027574 0.390625000000 0.191152917929 0.191406250000

0.596522633108 0.597656250000 0.289776299993 0.290039062500

0.811321611175 0.812500000000 0.390355236098 0.390625000000

1.033941750135 1.035156250000 0,492888269766 0.493164062500

1.264381028701 1.265625000000 0.597375029086 0.597656250000

1.502638440292 1.503906250000 0.703815383037 0.704101562500

1.748713235941 1.750000000000 0.812209273587 0.812500000000

2.002604749102 2.003906250000 0.922556668864 0.922851562500

2.264312355507 2,265625000000 1.034857547135 1.035156250000

2.533835469305 2.535156250000 1.149111890582 1.149414062500

2.811173548221 2.812500000000 1.265319682707 1.265625000000

3.096326099295 3.097656250000 1.383480907242 1.383789062500

3.389292682744 3.390625000000 1.503595547725 1.503906250000

3.690072913517 3.691406250000 1.625663587402 1.625976562500

3.998666460891 4.000000000000 1.749685009261 1.750000000000

1.875659796152 1.875976562500

2.003587930921 2.003906250000

2.133469396549 2.133789062500

2.265304176291 2.265625000000

2.399092253795 2.399414062500

2.534833613201 2.535156250000

2.672528239233 2.672851562500

2.812176117265 2.812500000000

2.953777233375 2.954101562500

3.097331574386 3.097656250000

3.242839127892 3.243164062500

3.390299882272 3.390625000000

3.539713826696 3.540039062500

3.691080951124 3.691406250000

3.844401246297 3.844726562500

3.999674703724 4.000000000000
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Table 11.4 Absolute errors
and order of convergency for
different values of τ in
Example 11.1, where T = 1
and α(t) = sin(t)

τ E∞(τ ) order∞(τ )

1
4 2.470109e − 02

1
8 5.602080e − 03 2.1513

1
16 1.333539e − 03 2.0707

1
32 3.253162e − 04 2.0353

1
64 8.032494e − 05 2.0179

Table 11.5 Maximum error
and order of convergency
results for different values of
τ in Example 11.2, where
T = 1 and α(t) = 1

2

τ E∞(τ ) order∞(τ )

1
4 9.201325e − 03

1
8 2.623652e − 03 1.81026

1
16 7.261612e − 04 1.85321

1
32 1.960721e − 04 1.88890

1
64 5.190739e − 05 1.91737

Example 11.2 In Eq. (11.20), assuming that f (t) = t2 + 2
Γ ( 5

2 )
t

3
2 and T = 1, then,

the exact solution of the problem is known as y(t) = t2. But this solution is known
for only α(t) = 1

2 . To compare numerical results with exact ones, only α = 1
2

case has been considered here. Numerical calculations have been performed for
different values of τ , and a code is written in MATLAB (R2015b). The following
table, Table 11.5, lists maximum error and the order of convergency for different
values of τ and Table 11.6 compares the numerical and exact solutions for τ = 1

16
and τ = 1

32 .

11.4 Addition of y′′(t) Term to Variable Order Fractional
Differential Equations

In this section, by using the second order convergent method which is given by
Eq. (11.12), we will develop a hybrid method for wider classes of differential
equations. By adding y(t) and y′′(t) terms to Eq. (11.1), then we will have multi-
term fractional differential equations. To solve the multi-term fractional equation,
we approximate the second order derivative with the central differences and the
fractional derivative term is evaluated as it is given in Eq. (11.12). Therefore, we
will consider the following initial value problem:
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Table 11.6 The difference between numerical and exact values of Example 11.1 for T = 1 and
α(t) = sin(t). The calculations have been performed for both N = 16, N = 32

τ = 1
16 τ = 1

32
Numerical value Exact value Numerical value Exact value

0.004569025 0.003906250 0.001150760 0.000976562

0.016351161 0.015625000 0.004102322 0.003906250

0.035851178 0.035156250 0.008980809 0.008789062

0.063157151 0.062500000 0.015809364 0.015625000

0.098281108 0.097656250 0.024591676 0.024414062

0.141222933 0.140625000 0.035328044 0.035156250

0.191981309 0.191406250 0.048018296 0.047851562

0.250555215 0.250000000 0.062662261 0.062500000

0.316943955 0.316406250 0.079259815 0.079101562

0.391147053 0.390625000 0.097810869 0.097656250

0.473164167 0.472656250 0.118315358 0.118164062

0.562995042 0.562500000 0.140773233 0.140625000

0.660639483 0,660156250 0,165184459 0.165039062

0.766097340 0.765625000 0.191549003 0.191406250

0.879368490 0.878906250 0.219866843 0.219726562

1.000452834 1.000000000 0.250137959 0.250000000

0.282362334 0.282226562

0.316539954 0.316406250

0.352670807 0.352539062

0.390754883 0.390625000

0.430792174 0.430664062

0.472782672 0.472656250

0.516726370 0.516601562

0.562623262 0.562500000

0.610473343 0.610351562

0.660276608 0.660156250

0.712033054 0.711914062

0.765742676 0.765625000

0.821405470 0.821289062

0.879021435 0.878906250

0.938590567 0.938476562

1.000112863 1.000000000
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⎧⎪⎨
⎪⎩

CD
α(t)
0,t y(t) = f (t) + a(t)y′′(t) + b(t)y(t), 0 ≤ t ≤ T ,

y(0) = 0,

y′(0) = 0.

(*)

Therefore, at particular values of tk , Eq. (*) is written as

τ−αk

k∑
j=0

w
αk

j yk−j = f (tk) + ay′′(tk) + by(tk). (11.22)

Assuming that a and b are constants and for simplicity, we take their values as 1,−1
respectively. Now recalling central finite difference approximation to the second
order derivative:

f ′′(tk) = f (tk+1) − 2f (tk) + f (tk−1)

h2 , (11.23)

and substituting this into Eq. (11.22), then the last form of the numerical scheme is
obtained easily. The method will be applied to following example (see[19]).

Example 11.3 Consider the differential equation in Eq. (*) as follows:

Dα(t)y(tk) = y′′(tk) − y(tk) + f (tk). (11.24)

Since the exact results are known for only α = 1
2 , for comparing the numerical

results with exact ones, we will also use α(t) = 1
2 in the calculations. Substituting

the finite difference approximation to the second order ordinary derivative, then we
have

τ−αk

k∑
j=0

w
αk

j yk−j = y(tk+1) − 2y(tk) + y(tk−1)

h2 − y(tk) + f (tk). (11.25)

The exact solution of the problem is known as y(t) = t2, when

f (t) = t2 − 2 + 2

Γ ( 5
2 )

t
3
2 . (11.26)

Hence,

τ−αk

k∑
j=0

w
αk

j yk−j = y(tk+1) − 2y(tk) + y(tk−1)

h2 − y(tk) + tk
2 − 2 + 2

Γ ( 5
2 )

tk
3
2 ,

(11.27)

where h = τ . As a result, arranging Eq. (11.27) again, we obtain
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y(tk+1) = h2τ−αk

k∑
j=0

w
αk

j yk−j + 2y(tk) − y(tk−1)

+h2y(tk) − h2[tk2 − 2 + 2

Γ ( 5
2 )

tk
3
2 ]. (11.28)

Table 11.7 Results for
Example 11.3, where T = 1
and α(t) = 1

2 . Comparison of
the numerical and exact
values of y(t) for two
different step size, N = 10
and N = 100, respectively

tk y(tk) = tk
2 N = 10 için yk N = 100 için yk

0.1 0.01 0.010000000 0.010000470

0.2 0.04 0,040000000 0.040000729

0.3 0.09 0.090235468 0.090000693

0.4 0.16 0.160461209 0.160000405

0.5 0.25 0.250691879 0.249999884

0.6 0.36 0.360931289 0.359999132

0.7 0.49 0.491183812 0.489998146

0.8 0.64 0.641454438 0.639996910

0.9 0.81 0.811748730 0.809995404

1.0 1.0 1.002072855 0.999993598

e∞ 0.002072855 0.000006401

Fig. 11.2 For α(t) = 1
2 and N = 100. Comparison of numerical and exact values of y(t) in

Example 11.3
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Table 11.7, shows the exact and numerical values of y(t) at particular points of t

for different step sizes where initial conditions are taken as in Eq. (*). Figure 11.2
illustrates that both exact and numerical results are in good agreement.

11.5 Conclusion

Here, we aimed to solve fractional-variable order differential equations and multi-
term fractional order differential equations. We have used the second order con-
vergent method as in [30]. The method is quite well when it is compared with the
analytical solutions. For finer mesh, one can obtain more reliable results. As a result,
the method can be applied to wider classes of fractional equations, variable order
fractional differential equations.
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