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Preface

The International Conference on Applied Mathematics in Engineering (ICAME’18)
was successfully held in the period of 27–29 June 2018 in Burhaniye, Turkey. The
conference provided an ideal academic platform for researchers to present the latest
research and evolving findings of applied mathematics on engineering, physics,
chemistry, biology and statistics. During the conference,

• Three plenary lectures (by Prof. Dr. Albert Luo, Prof. Dr. J. A. Tenreiro Machado
and Prof. Dr. Jordan Hristov under the chairship of Prof. Dr. Dumitru Baleanu)

• Three invited talks (by Prof. Dr. Carla Pinto, Prof. Dr. Mehmet Kemal Leblebi-
cioglu and Prof. Dr. Ekrem Savas)

• A total of 224 oral presentations (in eight parallel sessions)

have been successfully presented by participants from 15 different countries, i.e.
Algeria, Argentina, Bulgaria, Libya, Germany, India, Morocco, Nigeria, Portugal,
Saudi Arabia, South Africa, Turkey, the United Arab Emirates, the United Kingdom
and the United States of America.

The members of the organizing committee were Ramazan Yaman (Turkey), J.
A. Tenreiro Machado (Portugal), Necati Ozdemir (Turkey) and Dumitru Baleanu
(Romania, Turkey).

We would like to thank all the members of the Scientific Committee for their
valuable contribution forming the scientific face of the conference, as well as for
their help in reviewing the contributed papers. We are also grateful to the staff
involved in the local organization.

This work organized in two volumes publishes a selection of extended papers
presented at ICAME’18 after a rigorous peer-reviewing process. The first volume
of the book Numerical Solutions of Realistic Nonlinear Phenomena contains 12
high-quality contributions.

This collection covers new aspects of numerical methods in applied mathematics,
engineering, and health sciences. It provides recent theoretical developments and
new techniques based on optimization theory, partial differential equations (PDEs),
mathematical modelling and fractional calculus that can be used to model and
understand complex behaviour in natural phenomena. Specific topics covered in
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vi Preface

detail include new numerical methods for nonlinear PDEs, global optimization,
unconstrained optimization, detection of HIV-1 protease, modelling with new
fractional operators, analysis of biological models and stochastic modelling.

We thank all the referees and other colleagues who helped in preparing this book
for publication. Finally, our special thanks are due to Albert Luo and Michael Luby
from Springer for their continuous help and work in connection with this book.

Porto, Portugal J. A. Tenreiro Machado
Balıkesir, Turkey Necati Özdemir
Ankara, Turkey Dumitru Baleanu
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Chapter 1
Monotone Iterative Technique for
Non-autonomous Semilinear Differential
Equations with Non-instantaneous
Impulses

Arshi Meraj and Dwijendra Narain Pandey

1.1 Introduction

To describe abrupt changes, for example, harvesting, natural disasters and shocks,
the differential equations having instantaneous impulses are used. The theory of
instantaneous impulsive equations has various applications in mechanics, control,
electrical engineering, medical and biological fields. One may see [1, 3, 7, 22, 23]
for more details.

In pharmacotherapy, certain dynamics of evolution process could not be
explained by the models having instantaneous impulses. For example, the
introduction of the drugs in bloodstream and its absorption to the body are
continuous and gradual process, the above situations can be interpreted as impulsive
actions which start abruptly and stay active on a finite time interval. Hernández [17]
initially considered Cauchy problems of first order non-instantaneous impulsive
evolution equations. Fractional non-instantaneous impulsive differential system is
considered by Kumar et al. [21] to establish the existence and uniqueness of mild
solutions. Chen et al. [10] investigated the mild solutions for first order evolution
equations having non-instantaneous impulses using noncompact semigroup. Kumar
et al. [20] derived a set of sufficient conditions for the existence and uniqueness of
mild solutions to a fractional integro-differential equation with non-instantaneous
impulses.

Monotone iterative technique (in short MIT) is a useful method for the study
of existence and uniqueness of mild solutions. In MIT, we construct monotone
sequences of approximate solutions converging to extremal mild solutions. This
technique is first used by Du [13] to find extremal mild solutions for a differential
equation. The results are extended for nonlocal differential equations by Chen [8].

A. Meraj (�) · D. N. Pandey
Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
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2 A. Meraj and D. N. Pandey

Further the technique is used for an impulsive integro-differential equation by Chen
and Mu [9]. Mu [25] first applied the MIT for fractional evolution equations. Mu
and Li [27] generalized the results for impulsive fractional differential equations
by using MIT. Later on, the result has been extended for nonlocal condition by
Mu [26]. Kamaljeet [18] and Renu [6] applied MIT for fractional differential
equations having finite and infinite delay, respectively. Evolution equations having
non-instantaneous impulses are studied by Chen et al. [32] via MIT. In [24], authors
first applied MIT for non-autonomous differential system.

Non-autonomous nonlocal integro-differential equations are studied by Yan [30]
with the help of evolution system, Schauder and Banach fixed point theorems. Non-
autonomous differential system having deviated arguments is considered by Haloi
et al. [15] to study the existence and asymptotic stability via analytic semigroup
and Banach contraction theorem. In [5], authors generalized the results of [15]
for instantaneous impulsive non-autonomous differential equations having iterated
deviated arguments.

In literature, no work yet available for non-autonomous differential system
having non-instantaneous impulses by using MIT. Inspired by this, we consider the
following non-autonomous system having non-instantaneous impulsive condition in
a partially ordered Banach space X:

x′(t)+ A(t)x(t) = F (t, x(t)), t ∈ ∪mi=0(si, ti+1],
x(t) = γi(t, x(t)), t ∈ ∪mi=1(ti , si],
x(0) = x0, (1.1)

where {A(t) : t ∈ J = [0, b]} is a family of linear closed operators. The
nonlinear function F : J × X → X and non-instantaneous impulsive functions
γi : (ti , si] × X → X, i = 1, 2, . . . , m are suitable functions,
0 < t1 < t2 < . . . < tm < tm+1 := b, s0 := 0 and si ∈ (ti , ti+1) for each
i = 1, 2, . . . , m and x0 ∈ X.

The article is arranged as follows: Section 1.2 is related with some basic
theory. The existence and uniqueness of extremal mild solutions for the system
(1.1), nonlocal problem and integro-differential system corresponding to (1.1) are
established in Sects. 1.3, 1.4 and 1.5. In last section, we present an example in the
favour of our results.

1.2 Preliminaries

Suppose that (X, ‖ · ‖,≤) is a partially ordered Banach space, C (J,X) denotes
the space of all continuous maps from J to X, endowed with supremum norm.
Consider PC (J,X) = {x : J → X : x is continuous at t �= tk, x(tk−) =
x(tk) and x(tk+) exists for all k = 1, 2, . . . .m}, endowed with supremum norm,
P = {y ∈ X : y ≥ 0} (0 is the zero element of X) denotes the positive cone of X.
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The positive cone is known as normal if we have a real number N > 0 satisfying
0 ≤ x1 ≤ x2 ⇒ ‖x1‖ ≤ N ‖x2‖, for all x1, x2 ∈ X, the least value of N is
named as normal constant. For u, w ∈ PC (J,X) with u ≤ w, we will use the
notation [u,w] := {y ∈ PC (J,X) : u ≤ y ≤ w} for an interval in PC (J,X),
while [u(t), w(t)] := {z ∈ X : u(t) ≤ z ≤ w(t)}(t ∈ J ) for an interval in
X, L p(J,X)(1 ≤ p < ∞) denotes the Banach space with norm ‖x‖L p(J,X) =
(
∫ b

0 ‖x(t)‖pdt)
1
p .

First, we recall the definition and some basic properties of evolution system. We
refer [14] and [28] for more details.

Definition 1.1 ([28]) Evolution system is a two parameter family of bounded linear
operators S (t1, t2), 0 ≤ t2 ≤ t1 ≤ b on a Banach space X satisfying:

1. S (s, s) = I ( the identity operator).
2. S (t1, t2)S (t2, t3) = S (t1, t3) for 0 ≤ t3 ≤ t2 ≤ t1 ≤ b.

3. (t1, t2)→ S (t1, t2) is strongly continuous for 0 ≤ t2 ≤ t1 ≤ b.

The following assumptions are imposed on the family of linear operators {A(t) :
t ∈ J } on X:

(A1) A(t) is closed densely defined operator, the domain of A(t) does not depend
on t .

(A2) For Re(ϑ) ≤ 0, t ∈ J , the resolvent of A(t) exists and satisfies ‖R(ϑ; t)‖ ≤
ς
|ϑ |+1 , for some positive constant ς .

(A3) For some positive constants K and ρ ∈ (0, 1], we have

‖[A(τ1)− A(τ2)]A−1(τ3)‖ ≤ K|τ1 − τ2|ρ, for anyτ1, τ2, τ3 ∈ J.

Theorem 1.1 ([28]) Suppose that the assumptions (A1)-(A3) hold, then −A(t)
generates a unique evolution system {S (t1, t2) : 0 ≤ t2 ≤ t1 ≤ b}, which
satisfies:

(i) For some positive constant M , we have ‖S (t1, t2)‖ ≤M , 0 ≤ t2 ≤ t1 ≤ b.
(ii) For 0 ≤ t2 < t1 ≤ b, the derivative ∂S (t1,t2)

∂t1
exists in strong operator topology,

is strongly continuous, and belongs to B(X) (set of all bounded linear operators
on X). Moreover,

∂S (t1, t2)

∂t1
+ A(t1)S (t1, t2) = 0, 0 ≤ t2 < t1 ≤ b.

Proposition 1.1 ([30]) The family of operators {S (t1, t2), t2 < t1} is continuous
in t1 uniformly for t2 with respect to operator norm.

Definition 1.2 The evolution system S (t, s) is named as positive if it maps positive
cone to the positive cone.

Theorem 1.2 ([28]) If F satisfies uniform Hölder continuity on J with exponent
α ∈ (0, 1] and the assumptions (A1)–(A3) hold, then the unique solution for the
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following linear problem

x′(t)+ A(t)x(t) = F (t), 0 < t ≤ b,

x(0) = x0 ∈ X (1.2)

is given by

x(t) = S (t, 0)x0 +
∫ t

0
S (t, η)F (η)dη. (1.3)

Definition 1.3 A mild solution to the problem (1.1) is a function x ∈ PC (J,X)
satisfying

x(t) =

⎧
⎪⎨

⎪⎩

S (t, 0)x0 +
∫ t

0 S (t, η)F (η, x(η))dη, t ∈ [0, t1],
γi(t, x(t)), t ∈ ∪mi=1(ti , si ],
S (t, si )γi(si , x(si ))+

∫ t
si

S (t, η)F (η, x(η))dη, t ∈ ∪mi=1(si , ti+1].
(1.4)

Definition 1.4 A lower mild solution for the system (1.1) is ω0 ∈ PC (J,X)

satisfying

ω0(t) ≤

⎧
⎪⎨

⎪⎩

S (t, 0)x0 +
∫ t

0 S (t, η)F (η, ω0(η))dη, t ∈ [0, t1],
γi(t, ω0(t)), t ∈ ∪mi=1(ti , si ],
S (t, si )γi (si , ω0(si ))+

∫ t
si

S (t, η)F (η, ω0(η))dη, t ∈ ∪mi=1(si , ti+1].
(1.5)

If the inequalities of (1.5) are opposite, solution is named as upper mild solution.

Now, let us recall the definition and some properties of Kuratowski measure of
noncompactness.

Definition 1.5 Let M(Y) be a family of bounded subsets of a Banach space Y , then
the nonnegative function μ on M(Y) defined as:

μ(D) = inf{ε > 0 : D ⊂ ∪nj=1Dj, diam (Dj ) < ε (j = 1, 2, . . . , n ∈ N)},

is called Kuratowski measure of noncompactness.

Lemma 1.1 ([11]) Let X1 and X2 be complete norm spaces and G,H ⊂ X1 are
bounded, then we have:

(i) G is precompact if and only if μ(G) = 0.
(ii) μ(G ∪H) = max{μ(G),μ(H)}.

(iii) μ(G+H) ≤ μ(G)+ μ(H).

(iv) If f : dom(f ) ⊂ X1 → X2 is Lipschitz continuous with Lipschitz constant C,
then μ(f (S)) ≤ Cμ(S), S ⊂ dom(f ) is bounded.
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Lemma 1.2 ([2]) Let G ⊂ C (J, Y ), where Y is a complete norm space, and
G(t) = {f (t) : f ∈ G}(t ∈ J ). If G is equicontinuous and bounded in C (J, Y ),
then μ(G(t)) is continuous on J and μ(G) = max

t∈J μ(G(t)).

Lemma 1.3 ([16]) Let {fn} ⊂ C (J,X) is a bounded sequence whereX is complete
norm space, then μ({fn(t)} ∈ L 1(J,X), and

μ

({∫ t

0
fn(η)dη

}∞

n=1

)

≤ 2
∫ t

0
μ({fn(η)}∞n=1)dη.

Lemma 1.4 ([31]) Let c ≥ 0, β > 0, y(t) and z(t) are locally integrable
nonnegative functions on 0 ≤ t < T < +∞, such that

z(t) ≤ y(t)+ c

∫ t

0
(t − s)β−1z(s)ds,

then

z(t) ≤ y(t)+
∫ t

0

[ ∞∑

n=1

(cΓ (β))n

Γ (nβ)
(t − s)nβ−1y(s)

]

ds, 0 ≤ t < T .

1.3 Main Results

In this section, first we will discuss the existence of extremal mild solutions for
(1.1), then the uniqueness will be discussed. Define Q :PC (J,X)→PC (J,X)

in the following way:

Qx(t) =

⎧
⎪⎨

⎪⎩

S (t, 0)x0 +
∫ t

0 S (t, η)F (η, x(η))dη, t ∈ [0, t1],
γi(t, x(t)), t ∈ ∪mi=1(ti , si ],
S (t, si )γi(si , x(si ))+

∫ t
si

S (t, η)F (η, x(η))dη, t ∈ ∪mi=1(si , ti+1].
(1.6)

Note that Q is a well-defined map. We are interested to prove that the operator Q
has a fixed point. Now, we state the assumptions required to prove the existence of
extremal mild solutions:

(H0) X is a partially ordered Banach space with positive normal cone P , x0 ∈ X,
and −A(t) generates a positive evolution system S (t, s) (0 ≤ s ≤ t ≤ b) on
X.

(H1) The function F : ∪mi=0[si, ti+1] ×X→ X is continuous, and satisfies

F (t, y1) ≤ F (t, y2),

for y1, y2 ∈ X and ω0(t) ≤ y1 ≤ y2 ≤ ν0(t).
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(H2) The function γi : ∪mi=1(ti , si] ×X→ X is continuous, and satisfies

γi(t, y1) ≤ γi(t, y2),

for y1, y2 ∈ X and ω0(t) ≤ y1 ≤ y2 ≤ ν0(t).
(H3) For all t ∈ ∪mi=0[si, ti+1], and {yn} ⊂ [ω0(t), ν0(t)] a monotone increasing or

decreasing sequences, we have

μ({F (t, yn)}) ≤ L (μ({yn})),

for some constant L > 0.
(H4) There is a constant Li > 0 such that for all t ∈ (ti , si], i = 1, 2, . . . , m,

and {yn} ⊂ [ω0(t), ν0(t)] a monotone increasing or decreasing sequences, we
have

μ({γi(t, yn)}) ≤ Liμ({yn}).

Theorem 1.3 If the assumptions (A1)–(A3), (H0)–(H4) are satisfied, and
ω0, ν0 ∈PC (J,X) with ω0 ≤ ν0 are lower and upper mild solutions, respectively,
for system (1.1). Then, there exist extremal mild solutions in the interval [ω0, ν0],
for the system (1.1), provided that max

i=1,2,...,m
{Li} < 1.

Proof Let us denote I = [ω0, ν0]. For any x ∈ I and � ∈ [si, ti+1]; i = 0, 1, 2,
. . . , m, (H1) implies

F (�, ω0(�)) ≤ F (�, x(�)) ≤ F (�, ν0(�)).

Now, using the normality of P we have a constant c > 0, such that

‖F (�, x(�))‖ ≤ c, x ∈ I. (1.7)

For convenience, the proof is divided into following steps:

Step I. In this step, we will show the continuity of the map Q on I . Consider a
sequence {xn} in I such that xn → x ∈ I . The continuity of F implies that
F (�, xn(�)) → F (�, x(�)) for � ∈ [si, ti+1]; i = 0, 1, 2, . . . , m, similarly
γi(�, xn(�)) → γi(�, x(�)) for � ∈ (ti , si]; i = 1, 2, . . . , m and from (1.7) we
get that ‖F (�, xn(�)) − F (�, x(�))‖ ≤ 2c. Combining these with Lebesgue
dominated convergence theorem, we estimate the followings.
For t ∈ [0, t1],

‖Qxn(t)−Qx(t)‖ ≤ M

∫ t

0
‖F (�, xn(�))−F (�, x(�))‖d�

→ 0 as n→∞.
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For t ∈ (ti , si], i = 1, 2, . . . , m, we get

‖Qxn(t)−Qx(t)‖ = ‖γi(t, xn(t))− γi(t, x(t))‖
→ 0 as n→∞.

If t ∈ (si, ti+1]; i = 1, 2, . . . , m,

‖Qxn(t)−Qx(t)‖ ≤ M ‖γi(si, xn(si))− γi(si, x(si))‖

+M

∫ t

si

‖F (�, xn(�))−F (�, x(�))‖d�

→ 0 as n→∞.

Thus Q is continuous map on I .
Step II. The map Q : I → I is monotone increasing. Let x1, x2 ∈ I, x1 ≤ x2.

Using the positivity of S (t, s) and the hypotheses (H1), (H2), it is easy to see
that Qx1 ≤ Qx2, which means Q is increasing operator. By Definition 1.4, we
get ω0 ≤ Qω0. In the same way, we have Qν0 ≤ ν0. Let u ∈ I, so we have
ω0 ≤ Qω0 ≤ Qu ≤ Qν0 ≤ ν0, that means Qu ∈ I . Therefore, Q : I → I is
monotone increasing.

Step III. We prove that Q has a fixed point. Consider the following sequences

ωn = Qωn−1 and νn = Qνn−1, n ∈ N, (1.8)

monotonicity of Q implies

ω0 ≤ ω1 ≤ · · ·ωn ≤ · · · ≤ νn ≤ · · · ≤ ν1 ≤ ν0. (1.9)

Let S = {ωn} and S0 = {ωn−1}. Then S0 = S ∪ {ω0} and μ(S0(t)) =
μ(S(t)), t ∈ J. From (1.9), it is clear that S and S0 are bounded. Observe that
μ(S (t, 0)(x0)) = 0, for {x0} is compact set and S (t, 0) is bounded. Suppose

Φ(t) := μ(S(t)), t ∈ J. (1.10)

By the definition of measure of noncompactness, we have Φ(t) ≥ 0. For t ∈
[0, t1], from Lemma 1.1, Lemma 1.3, assumption (H3), (1.6) and (1.8), we get

Φ(t) = μ(QS0(t))

= μ

(

S (t, 0)x0 +
∫ t

0
S (t, η)F (η, ωn−1(η))dη

)

≤ μ(S (t, 0)x0)+ 2M

∫ t

0
μ

(

F (η, ωn−1(η))

)

dη
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≤ 2ML

∫ t

0
μ({ωn−1(η)})dη

≤ 2ML

∫ t

0
μ(S0(η))dη = 2ML

∫ t

0
μ(S(η))dη

Φ(t) ≤ 2ML

∫ t

0
Φ(η)dη.

The above inequality combined with Lemma 1.4 imply that Φ(t) ≡ 0 on [0, t1].
For t ∈ (ti , si]; i = 1, 2, . . . , m, by using assumption (H4)

Φ(t) = μ(QS0(t))

= μ({γi(t, ωn−1(t))})
≤ Liμ(ωn−1(t)) = Liμ(S(t)) = LiΦ(t).

Since Li < 1, therefore Φ(t) ≡ 0 for all t ∈ (ti , si], i = 1, 2, . . . , m. Observe
that S(si) = {ωn(si)} which is a monotone bounded sequence in X, therefore
convergent for all i = 1, 2, . . . , m. Thus μ(S(si)) = 0 for all i = 1, 2, . . . , m.
Now, if t ∈ (si, ti+1]; i = 1, 2, . . . , m, from Lemma 1.1, Lemma 1.3 and
assumptions (H3), (H4)

Φ(t) = μ(QS0(t))

= μ

(

S (t, si)γi(si, ωn−1(si))+
∫ t

si

S (t, η)F (η, ωn−1(η))dη

)

≤Mμ({γi(si, ωn−1(si))})+ 2M

∫ t

si

μ

(

F (η, ωn−1(η))

)

dη

≤MLiμ(ωn−1(si))+ 2ML

∫ t

si

μ({ωn−1(η)})dη

=MLiμ(S(si))+ 2ML

∫ t

si

Φ(η)dη

Φ(t) ≤ 2ML

∫ t

si

Φ(η)dη.

The above inequality combined with Lemma 1.4 imply that Φ(t) ≡ 0 on
(si, ti+1]; i = 1, 2, . . . , m. The above discussion concludes that μ({ωn(t)}) = 0
for every t ∈ J , this implies that the sequence {ωn(t)} is precompact in X for
each t ∈ J . Hence, we have a convergent subsequence of {ωn(t)}, combining this
with (1.9) it is easy to observe that {ωn(t)} itself is convergent in X. We denote
lim
n→∞ωn(t) = ω∗(t), t ∈ J. By (1.6) and (1.8), we obtain that
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ωn(t) = Qωn−1(t) =

⎧
⎪⎪⎨

⎪⎪⎩

S (t, 0)x0 +
∫ t

0 S (t, η)F (η, ωn−1(η))dη, t ∈ [0, t1],
γi(t, ωn−1(t)), t ∈ ∪mi=1(ti , si ],
S (t, si )γi(si , ωn−1(si ))+

∫ t
si

S (t, η)F (η, ωn−1(η))dη,

t ∈ ∪mi=1(si , ti+1].

Taking n → ∞ and applying Lebesgue dominated convergence theorem, we
have

ω∗(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S (t, 0)x0 +
∫ t

0 S (t, η)F (η, ω∗(η))dη, t ∈ [0, t1],
γi(t, ω

∗(t)), t ∈ ∪mi=1(ti , si],
S (t, si)γi(si, ω

∗(si))+
∫ t
si

S (t, η)F (η, ω∗(η))dη,
t ∈ ∪mi=1(si, ti+1].

So, ω∗ = Qω∗ and ω∗ ∈ PC (J,X). It proves that ω∗ is a mild solution for
the system (1.1). Similarly, there is ν∗ ∈ PC (J,X) satisfying ν∗ = Qν∗.
Now we show ω∗, ν∗ are extremal mild solutions. Let x ∈ I and x = Qx,
then ω1 = Qω0 ≤ Qx = x ≤ Qν0 = ν1, by induction method, we obtain
ωn ≤ x ≤ νn. Hence ω0 ≤ ω∗ ≤ x ≤ ν∗ ≤ ν0 as n→ ∞, that means minimal
and maximal mild solutions are ω∗ and ν∗, respectively, for (1.1) in [ω0, ν0].

��
To prove uniqueness, we need some more assumptions mentioned as below:

(H5) We have a constant M1 > 0 such that

F (t, y2)−F (t, y1) ≤M1(y2 − y1),

where y1, y2 ∈ X with ω0(t) ≤ y1 ≤ y2 ≤ ν0(t), t ∈ ∪mi=0[si, ti+1].
(H6) There exist constants Ni > 0 such that

γi(t, y2)− γi(t, y1) ≤ Ni (y2 − y1),

for t ∈ (ti , si]; i = 1, 2, . . . , m, and y1, y2 ∈ X with ω0(t) ≤ y1 ≤ y2 ≤
ν0(t).

Let us denote N ∗ = max
i=1,2,...,m

{Ni}.
Theorem 1.4 Suppose that the assumptions (H0), (H1), (H2), (H5), (H6), (A1)–
(A3) hold and ω0, ν0 ∈ PC (J,X) with ω0 ≤ ν0 are lower and upper mild
solutions, respectively, for the system (1.1). Then, there exists a unique mild solution
for the system (1.1) in [ω0, ν0], provided that Λ1 :=MN (N ∗ +M1b) < 1.

Proof Let {yn} ⊂ [ω0(t), ν0(t)] be increasing monotone sequence. For
t ∈ ∪mi=0[si, ti+1] and n,m ∈ N (n > m), the assumptions (H1) and (H5)
imply
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0 ≤ F (t, yn)−F (t, ym) ≤M1(yn − ym).

Since the positive cone is normal, therefore

‖F (t, yn)−F (t, ym)‖ ≤ N M1‖(yn − ym)‖.

Using Lemma 1.1, it yields

μ({F (t, yn)}) ≤ N M1μ({yn}).

Hence the assumption (H3) holds. Similarly, by (H2), (H6) and Lemma 1.1 we
have

μ({γi(t, yn)}) ≤ N Niμ({yn}),

for each t ∈ (ti , si]; i = 1, 2, . . . , m. This means assumption (H4) satisfies, and
we can apply Theorem 1.3. Therefore, there exist minimal mild solution ω∗ and
maximal mild solutions ν∗ for the system (1.1) in [ω0, ν0].

For t ∈ [0, t1], by using (1.6), (H5)

0 ≤ ν∗(t)− ω∗(t) = Qν∗(t)−Qω∗(t)

=
∫ t

0
S (t, η)

[

F (η, ν∗(η))−F (η, ω∗(η))
]

dη

≤M1

∫ t

0
S (t, η)

(

ν∗(η)− ω∗(η)
)

dη.

Therefore, normality of cone implies

‖ν∗ − ω∗‖ ≤ N

∥
∥
∥
∥M1

∫ t

0
S (t, η)

(

ν∗(η)− ω∗(η)
)

dη

∥
∥
∥
∥

≤ N MM1b‖ν∗ − ω∗‖. (1.11)

If t ∈ (ti , si], i = 1, 2, . . . , m, assumption (H6) and (1.6) yield

0 ≤ ν∗(t)− ω∗(t) = Qν∗(t)−Qω∗(t)

= γi(t, ν
∗(t))− γi(t, ω

∗(t))

≤ Ni (ν
∗(t)− ω∗(t)).

Therefore, normality of cone implies

‖ν∗ − ω∗‖ ≤ N Ni‖ν∗ − ω∗‖
≤ N N ∗‖ν∗ − ω∗‖. (1.12)
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Similarly, if t ∈ (si, ti+1]; i = 1, 2, . . . , m, by (1.6), (H5) and (H6) we obtain

0 ≤ ν∗(t)− ω∗(t) = Qν∗(t)−Qω∗(t)

= S (t, si)

(

γi(si, ν
∗(si))− γi(si, ω

∗(si))
)

+
∫ t

si

S (t, η)

(

F (η, ν∗(η))−F (η, ω∗(η))
)

dη

≤ Ni

[

S (t, si)(ν
∗(si)− ω∗(si))

]

+M1

∫ t

si

S (t, η)(ν∗(η)− ω∗(η))dη.

The normality condition yields

‖ν∗ − ω∗‖ ≤MN (Ni +M1b)‖ν∗ − ω∗‖
≤MN (N ∗ +M1b)‖ν∗ − ω∗‖. (1.13)

The inequalities (1.11), (1.12) and (1.13) yield

‖ν∗ − ω∗‖ ≤ Λ1‖ν∗ − ω∗‖.

Since Λ1 < 1, so ‖ν∗ − ω∗‖ = 0, that means ν∗(t) = ω∗(t) on J . Thus, the
uniqueness of the mild solution for (1.1) in [ω0, ν0] is proved. ��

1.4 Nonlocal Problem

The generalization of classical initial condition is known as nonlocal condition, it
produces better results in the application of physical problems. The nonlocal Cauchy
problem was first studied by Byszewski [4]. The nonlocal condition is used to
describe the diffusion phenomenon of gas in a transparent tube by Deng [12]. In
this section, we will discuss about extremal mild solutions for the non-autonomous
non-instantaneous impulsive differential equations with nonlocal condition given as
below:

x′(t)+A (t)x(t) = F (t, x(t)), t ∈ ∪mi=0(si, ti+1],
x(t) = γi(t, x(t)), t ∈ ∪mi=1(ti , si],
x(0) = x0 + G (x). (1.14)



12 A. Meraj and D. N. Pandey

Definition 1.6 A function x ∈ PC (J,X) satisfying the following integral
equation

x(t) =

⎧
⎪⎨

⎪⎩

S (t, 0)(x0 + G (x))+ ∫ t0 S (t, η)F (η, x(η))dη, 0 ≤ t ≤ t1,

γi(t, x(t)), t ∈ ∪mi=1(ti , si ],
S (t, si )γi(si , x(si ))+

∫ t
si

S (t, η)F (η, x(η))dη, t ∈ ∪mi=1(si , ti+1],

is named as mild solution of the problem (1.14).

Definition 1.7 ω0 ∈PC (J,X) satisfying the following

ω0(t) ≤

⎧
⎪⎨

⎪⎩

S (t, 0)(x0 + G (ω0))+
∫ t

0 S (t, η)F (η, ω0(η))dη, 0 ≤ t ≤ t1,

γi (t, ω0(t)), t ∈ ∪mi=1(ti , si ],
S (t, si )γi (si , ω0(si ))+

∫ t
si

S (t, η)F (η, ω0(η))dη, t ∈ ∪mi=1(si , ti+1],
(1.15)

is named as lower mild solution for the system (1.14). If the inequalities of (1.15)
are opposite, solution is named as upper mild solution.

To prove the existence and uniqueness of extremal mild solutions of nonlocal
problem (1.14), we need following conditions on nonlocal function:

(H7) G is X-valued continuous increasing compact function defined on
PC (J,X).

(H8) G satisfies

G (y)− G (x) ≤ Lg(y − x), for x, y ∈ I with x ≤ y,

for some constant Lg > 0.

Let us define the operator Q on PC (J,X) as following:

Qx(t) =

⎧
⎪⎪⎨

⎪⎪⎩

S (t, 0)(x0 + G (x))+ ∫ t0 S (t, η)F (η, x(η))dη, 0 ≤ t ≤ t1,

γi(t, x(t)), t ∈ ∪mi=1(ti , si ],
S (t, si )γi(si , x(si ))+

∫ t
si

S (t, η)F (η, x(η))dη, t ∈ ∪mi=1(si , ti+1].
(1.16)

Theorem 1.5 If the assumptions (A1)–(A3), (H0)–(H4) and (H7) are satisfied,
and ω0, ν0 ∈ PC (J,X) with ω0 ≤ ν0 are lower and upper mild solutions,
respectively, for the system (1.14). Then, there exist extremal mild solutions for the
problem (1.14) in the interval [ω0, ν0], provided that max

i=1,2,...,m
{Li} < 1.

Proof We can check easily that Q : I → I is continuous and increasing. Consider
the following sequences

ωn = Qωn−1 and νn = Qνn−1, n ∈ N, (1.17)

monotonicity of Q implies

ω0 ≤ ω1 ≤ · · ·ωn ≤ · · · ≤ νn ≤ · · · ≤ ν1 ≤ ν0. (1.18)
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Let S = {ωn} and S0 = {ωn−1}. Then S0 = S ∪ {ω0} and μ(S0(t)) = μ(S(t)),
t ∈ J. From (1.18), it is clear that S and S0 are bounded. Observe that
μ(S (t, 0)(x0)) = 0, μ(S (t, 0)G (ωn−1)) = 0 for {x0} is compact set, G is
compact map and S (t, 0) is bounded. Suppose

Φ(t) := μ(S(t)), t ∈ J. (1.19)

For t ∈ [0, t1], from Lemma 1.1, Lemma 1.3, assumption (H3), (1.16) and (1.17),
we get

Φ(t) = μ(QS0(t))

= μ

(

S (t, 0)(x0 + G (ωn−1))+
∫ t

0
S (t, η)F (η, ωn−1(η))dη

)

≤ μ(S (t, 0)x0)+ μ(S (t, 0)G (ωn−1))+ 2M

∫ t

0
μ

(

F (η, ωn−1(η))

)

dη

≤ 2ML

∫ t

0
μ({ωn−1(η)})dη

≤ 2ML

∫ t

0
μ(S0(η))dη = 2ML

∫ t

0
μ(S(η))dη

Φ(t) ≤ 2ML

∫ t

0
Φ(η)dη.

Combining the above inequality with Lemma 1.4 imply that Φ(t) ≡ 0 on [0, t1].
Proceeding in the same way as the proof of Theorem 1.3, we obtain

Φ(t) ≡ 0, t ∈ ∪mi=1(ti , si].
Φ(t) ≡ 0, t ∈ ∪mi=1(si, ti+1](si, ti+1].

By the above discussion, we conclude that μ({ωn(t)}) = 0 for every t ∈ J , this
implies that the sequence {ωn(t)} is precompact in X for each t ∈ J . Therefore,
it has a convergent subsequence, combining this with (1.18) yield that {ωn(t)} is
convergent in X. Denote lim

n→∞ωn(t) = ω∗(t), t ∈ J. By (1.16) and (1.17), we

obtain that

ωn(t) = Qωn−1(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S (t, 0)(x0 + Gωn−1)+
∫ t

0 S (t, η)F (η, ωn−1(η))dη,

0 ≤ t ≤ t1,

γi(t, ωn−1(t)), t ∈ ∪mi=1(ti , si],
S (t, si)γi(si, ωn−1(si))+

∫ t
si

S (t, η)F (η, ωn−1(η))dη,

t ∈ ∪mi=1(si, ti+1].
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Taking n→∞ and applying Lebesgue dominated convergence theorem, we have

ω∗(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S (t, 0)(x0 + Gω∗)+ ∫ t0 S (t, η)F (η, ω∗(η))dη, 0 ≤ t ≤ t1,

γi(t, ω
∗(t)), t ∈ ∪mi=1(ti , si],

S (t, si)γi(si, ω
∗(si))+

∫ t
si

S (t, η)F (η, ω∗(η))dη,
t ∈ ∪mi=1(si, ti+1].

So, ω∗ = Qω∗ and ω∗ ∈ PC (J,X), which imply that ω∗ is a mild solution
of (1.14). Similarly, we have ν∗ ∈ PC (J,X) and ν∗ = Qν∗. Now we
show ω∗, ν∗ are extremal mild solutions. Let x ∈ I and x = Qx, then
ω1 = Qω0 ≤ Qx = x ≤ Qν0 = ν1, applying the method of induction
ωn ≤ x ≤ νn, hence ω0 ≤ ω∗ ≤ x ≤ ν∗ ≤ ν0. It means that minimal and
maximal mild solutions are ω∗ and ν∗ for (1.14) in [ω0, ν0]. ��
Theorem 1.6 If the assumptions (H0)–(H2), (H5)–(H8), (A1)–(A3) hold and
ω0, ν0 ∈PC (J,X) with ω0 ≤ ν0 are lower and upper mild solutions, respectively,
to the system (1.14). Then, the system (1.14) has a unique mild solution in [ω0, ν0],
provided that

Λ2 := max

{

MN (Lg +M1b), MN (N ∗ +M1b)

}

< 1.

Proof We can easily see that (H3) and (H4) hold, as it is done in the proof of
Theorem 1.4. Now, applying Theorem 1.5, we get that the system (1.14) has minimal
mild solution ω∗ and maximal mild solutions ν∗ in [ω0, ν0].

For t ∈ [0, t1], by using (1.16), (H5) and (H8), we estimate

0 ≤ ν∗(t)− ω∗(t) = Qν∗(t)−Qω∗(t)

= S (t, 0)(G (ν∗)− G (ω∗))+
∫ t

0
S (t, η)

[

F (η, ν∗(η))−F (η, ω∗(η))
]

dη

≤ LgS (t, 0)(ν∗ − ω∗)+M1

∫ t

0
S (t, η)

(

ν∗(η)− ω∗(η)
)

dη.

Therefore, normality of cone implies

‖ν∗ − ω∗‖ ≤ N M

[

Lg +M1b

]

‖ν∗ − ω∗‖. (1.20)

Also, we have

‖ν∗ − ω∗‖ ≤ N N ∗‖ν∗ − ω∗‖, t ∈ ∪mi=1(ti , si], (1.21)

and

‖ν∗ − ω∗‖ ≤MN (N ∗ +M1b)‖ν∗ − ω∗‖, t ∈ ∪mi=1(si, ti+1]. (1.22)
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The inequalities (1.20), (1.21) and (1.22) yield

‖ν∗ − ω∗‖ ≤ Λ2‖ν∗ − ω∗‖.

Since Λ2 < 1, so ‖ν∗ − ω∗‖ = 0, which means ν∗(t) = ω∗(t), on J . Thus, the
uniqueness of mild solution for (1.14) in [ω0, ν0] is proved. ��

1.5 Integro-Differential Equations

This section is concerned with non-autonomous integro-differential equations with
non-instantaneous impulsive conditions:

x′(t)+A (t)x(t) = F

(

t, x(t),

∫ t

0
k(t, s)x(s)ds

)

, t ∈ ∪mi=0(si, ti+1],

x(t) = γi(t, x(t)), t ∈ ∪mi=1(ti , si],
x(0) = x0, (1.23)

k ∈ C (D,R+) with D := {(τ, s) : 0 ≤ s ≤ τ ≤ b}. For our convenience we denote
K x(t) := ∫ t0 k(t, s)x(s)ds, and K∗ := sup

(t,s)∈D
k(t, s).

Definition 1.8 A function x ∈ PC (J,X) is said to be a mild solution of the
problem (1.23) if it satisfies

x(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S (t, 0)x0 +
∫ t

0 S (t, η)F (η, x(η),K x(η))dη,

0 ≤ t ≤ t1,

γi(t, x(t)), t ∈ ∪mi=1(ti , si],
S (t, si)γi(si, x(si))+

∫ t
si

S (t, η)F (η, x(η),K x(η))dη,

t ∈ ∪mi=1(si, ti+1].

Definition 1.9 ω0 ∈PC (J,X) satisfying

ω0(t) ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S (t, 0)x0 +
∫ t

0 S (t, η)F (η, ω0(η),K ω0(η))dη,

t ∈ [0, t1],
γi(t, ω0(t)), t ∈ ∪mi=1(ti , si],
S (t, si)γi(si , ω0(si))+

∫ t
si

S (t, η)F (η, ω0(η),K ω0(η))dη,

t ∈ ∪mi=1(si, ti+1],

(1.24)

is named as lower mild solution for the system (1.23). If the inequalities of (1.24)
are opposite, solution is named as upper mild solution.
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Let Q :PC (J,X)→PC (J,X) as following:

Qx(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S (t, 0)x0 +
∫ t

0 S (t, η)F (η, x(η),K x(η))dη,

t ∈ [0, t1],
γi(t, x(t)), t ∈ ∪mi=1(ti , si],
S (t, si)γi(si, x(si))+

∫ t
si

S (t, η)F (η, x(η),K x(η))dη,

t ∈ ∪mi=1(si, ti+1].

(1.25)

Now, we state some more assumptions required to prove the existence of extremal
mild solutions for the system (1.23):

(B1) The function F is continuous on ∪mi=0[si, ti+1]×X×X. For y1, y2 ∈ X with
ω0(t) ≤ y1 ≤ y2 ≤ ν0(t) and K ω0(t) ≤ x1 ≤ x2 ≤ K ν0(t), we assumed

F (t, y1, x1) ≤ F (t, y2, x2).

(B2) For all t ∈ ∪mi=0[si, ti+1] and monotone increasing or decreasing sequences
{yn} ⊂ [ω0(t), ν0(t)], {xn} ⊂ [K ω0(t),K ν0(t)], we have

μ({F (t, yn, xn)}) ≤ L (μ({yn})+ μ({xn})),

for some constant L > 0.

Theorem 1.7 If the assumptions (A1)–(A3) and (B1), (B2), (H0), (H2), (H4)
are satisfied, and ω0, ν0 ∈ PC (J,X) with ω0 ≤ ν0 are lower and upper mild
solutions, respectively, for (1.23). Then, extremal mild solutions exist for the system
(1.23) in the interval [ω0, ν0], provided that max

i=1,2,...,m
{Li} < 1.

Proof Easily, we can check that Q : I → I is continuous and increasing. Consider
the following sequences

ωn = Qωn−1 and νn = Qνn−1, n ∈ N, (1.26)

monotonicity of Q implies

ω0 ≤ ω1 ≤ · · ·ωn ≤ · · · ≤ νn ≤ · · · ≤ ν1 ≤ ν0. (1.27)

Let S = {ωn} and S0 = {ωn−1}. Then S0 = S∪{ω0} and μ(S0(t)) = μ(S(t)), t ∈ J.
From (1.27), it is clear that S and S0 are bounded. Observe that μ(S (t, 0)(x0)) = 0,
for {x0} is compact set and S (t, 0) is bounded. Suppose

Φ(t) := μ(S(t)), t ∈ J. (1.28)

With the help of Lemma 1.3, notice that

μ

(

{K ωn−1(η)}
)

= μ

(∫ η

0
k(η, s)ωn−1(s)ds

)
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≤ K∗μ
(∫ η

0
ωn−1(s)ds

)

≤ 2K∗
∫ η

0
μ(ωn−1(s))ds

≤ 2K∗
∫ η

0
μ(S0(s))ds = 2K∗

∫ η

0
μ(S(s))ds

≤ 2K∗
∫ η

0
Φ(s)ds,

therefore

∫ t

0
μ

(

{K ωn−1(η)}
)

dη ≤ 2bK∗
∫ t

0
Φ(η)dη. (1.29)

For t ∈ [0, t1], from Lemma 1.1, Lemma 1.3, assumption (B2), (1.25), (1.26) and
(1.29), we get

Φ(t) = μ(QS0(t))

= μ

(

S (t, 0)x0 +
∫ t

0
S (t, η)F (η, ωn−1(η),K ωn−1(η))dη

)

≤ μ(S (t, 0)x0)+ 2M

∫ t

0
μ

(

F (η, ωn−1(η),K ωn−1(η))

)

dη

≤ 2ML

∫ t

0

[

μ({ωn−1(η)})+ μ({K ωn−1(η)})
]

dη

≤ 2ML

[ ∫ t

0
μ(S(η))dη + 2bK∗

∫ t

0
Φ(η)dη

]

≤ 2ML

[ ∫ t

0
Φ(η)dη + 2bK∗

∫ t

0
Φ(η)dη

]

≤ 2ML (1+ 2bK∗)
∫ t

0
Φ(η)dη.

Combining the above inequality with Lemma 1.4, we conclude that Φ(t) ≡ 0
for all t ∈ [0, t1]. Also Φ(t) ≡ 0 for all t ∈ (ti , si], i = 1, 2, . . . , m, the proof
is same as it is done in Theorem 1.3. Observe that S(si) = {ωn(si)} which is a
monotone bounded sequence in X, therefore convergent for all i = 1, 2, . . . , m.
Thus μ(S(si)) = 0 for all i = 1, 2, . . . , m. Now, for t ∈ (si, ti=1]; i = 1, 2, . . . , m,
from Lemma 1.1, Lemma 1.3, (B2), (H4) and (1.29), we obtain
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Φ(t) = μ(QS0(t))

= μ

(

S (t, si)γi(si, ωn−1(si))+
∫ t

si

S (t, η)F (η, ωn−1(η),K ωn−1(η))dη

)

≤Mμ({γi(si, ωn−1(si))})+ 2M

∫ t

si

μ

(

F (η, ωn−1(η),K ωn−1(η))

)

dη

≤MLiμ(ωn−1(si))+ 2ML

∫ t

si

[

μ({ωn−1(η)})+ μ({K ωn−1(η)})
]

dη

=MLiμ(S(si))+ 2ML

[ ∫ t

si

μ(S(η))dη + 2bK∗
∫ t

si

Φ(η)dη

]

Φ(t) ≤ 2ML

[ ∫ t

si

Φ(η)dη + 2bK∗
∫ t

si

Φ(η)dη

]

≤ 2ML (1+ 2bK∗)
∫ t

si

Φ(η)dη.

Combining the above inequality with Lemma 1.4, we conclude that Φ(t) ≡ 0
for all t ∈ (si, ti=1], i = 1, 2, . . . , m. The above discussion concludes that
μ({ωn(t)}) = 0 for every t ∈ J , this implies that the sequence {ωn(t)} is precompact
in X for all t ∈ J . So, {ωn(t)} has a convergent subsequence, combining this with
(1.27) yields that {ωn(t)} is convergent in X. Denote lim

n→∞ωn(t) = ω∗(t), t ∈ J.

By (1.25) and (1.26), we obtain that

ωn(t) = Qωn−1(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S (t, 0)x0 +
∫ t

0 S (t, η)F (η, ωn−1(η),K ωn−1(η))dη,

0 ≤ t ≤ t1,

γi(t, ωn−1(t)), t ∈ ∪mi=1(ti , si ],
S (t, si )γi(si , ωn−1(si ))+∫ t
si

S (t, η)F (η, ωn−1(η),K ωn−1(η))dη, t ∈ ∪mi=1(si , ti+1].

Taking n→∞ and applying Lebesgue dominated convergence theorem

ω∗(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S (t, 0)x0 +
∫ t

0 S (t, η)F (η, ω∗(η),K ω∗(η))dη,
0 ≤ t ≤ t1,

γi(t, ω
∗(t)), t ∈ ∪mi=1(ti , si],

S (t, si)γi(si, ω
∗(si))+

∫ t
si

S (t, η)F (η, ω∗(η),K ω∗(η))dη,
t ∈ ∪mi=1(si, ti+1].

So, ω∗ ∈ PC (J,X) and ω∗ = Qω∗, which yield that a mild solution for (1.23)
is ω∗. Similarly, we obtain ν∗ ∈ PC (J,X) and ν∗ = Qν∗. Now we show
ω∗, ν∗ are extremal mild solutions. Let x ∈ I and x = Qx, then ω1 = Qω0 ≤
Qx = x ≤ Qν0 = ν1, by the method of induction ωn ≤ x ≤ νn, hence
ω0 ≤ ω∗ ≤ x ≤ ν∗ ≤ ν0, which means minimal and maximal mild solutions
for (1.23) are ω∗ and ν∗ in [ω0, ν0]. ��
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To prove the uniqueness, we need one more assumption mentioned as following:

(B3) We have a constant M1 > 0 such that, for t ∈ ∪mi=0[si, ti+1]

F (t, y2, x2)−F (t, y1, x1) ≤M1[(y2 − y1)+ (x2 − x1)],

where y1, y2 ∈ X with ω0(t) ≤ y1 ≤ y2 ≤ ν0(t) and K ω0(t) ≤ x1 ≤ x2 ≤
K ν0(t).

Theorem 1.8 If the assumptions (H0), (B1), (H2), (B3), (H6), (A1)–(A3) hold
and ω0, ν0 ∈ PC (J,X) with ω0 ≤ ν0 are lower and upper mild solutions,
respectively, for (1.23). Then, the system (1.23) has a unique mild solution in

[ω0, ν0], provided that Λ3 :=MN

[

N ∗ +M1b(1+ bK∗)
]

< 1.

Proof Let {yn} ⊂ [ω0(t), ν0(t)] and {xn} ⊂ [K ω0(t),K ν0(t)] be increasing
monotone sequences. For t ∈ ∪mi=0[si, ti+1] and n,m ∈ N (n > m), the assumptions
(B1) and (B3) yield

0 ≤ F (t, yn, xn)−F (t, ym, xm) ≤M1[(yn − ym)+ (xn − xm)].

Since the positive cone is normal, therefore

‖F (t, yn, xn)−F (t, ym, xm)‖ ≤ N M1‖(yn − ym)+ (xn − xm)‖. (1.30)

So, Lemma 1.1 implies

μ({F (t, yn, xn)}) ≤ N M1(μ({yn})+ μ({xn})).

Hence the assumption (B2) holds. Similarly, by (H2), (H6) and Lemma 1.1 we
have

μ({γi(t, yn)}) ≤ N Niμ({yn}),

for each t ∈ (ti , si]; i = 1, 2, . . . , m. This means assumption (H4) holds. Therefore,
by Theorem 1.7 there exist minimal and maximal mild solutions ω∗ ν∗ in [ω0, ν0]
for the problem (1.23).

For t ∈ [0, t1], by using (1.25) and (B3)

0 ≤ ν∗(t)− ω∗(t) = Qν∗(t)−Qω∗(t)

=
∫ t

0
S (t, η)[F (η, ν∗(η),K ν∗(η))−F (η, ω∗(η),K ω∗(η))]dη

≤M1

∫ t

0
S (t, η)

[

(ν∗(η)− ω∗(η))+ (K ν∗(η)−K ω∗(η))
]

dη.
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Since the positive cone is normal, therefore

‖ν∗ − ω∗‖ ≤ N MM1b

(

‖ν∗ − ω∗‖ + ‖K ν∗ −K ω∗‖
)

≤ N MM1b(1+ bK∗)‖ν∗ − ω∗‖. (1.31)

Also, we get

‖ν∗ − ω∗‖ ≤ N N ∗‖ν∗ − ω∗‖, t ∈ ∪mi=1(ti , si]. (1.32)

If t ∈ (si, ti+1]; i = 1, 2, . . . , m, by (1.25), (B3) and (H6), we obtain

0 ≤ ν∗(t)− ω∗(t) = Qν∗(t)−Qω∗(t)

= S (t, si)

(

γi(si, ν
∗(si))− γi(si, ω

∗(si))
)

+
∫ t

si

S (t, η)

(

F (η, ν∗(η),K ν∗(η))−F (η, ω∗(η),K ω∗(η))
)

dη

≤ Ni

[

S (t, si)(ν
∗(si)− ω∗(si))

]

+M1

∫ t

si

S (t, si)

[

(ν∗(η)− ω∗(η))+ (K ν∗(η)−K ω∗(η))
]

dη.

Using the normality condition

‖ν∗ − ω∗‖ ≤MN

[

N ∗ +M1b(1+ bK∗)
]

‖ν∗ − ω∗‖. (1.33)

The inequalities (1.31), (1.32) and (1.33) yield

‖ν∗ − ω∗‖ ≤ Λ3‖ν∗ − ω∗‖.

Since Λ3 < 1, so ‖ν∗ − ω∗‖ = 0, that means ν∗(t) = ω∗(t) on J . Thus, the
uniqueness of mild solution for (1.23) is proved in [ω0, ν0]. ��
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1.6 Example

We consider the following partial differential equation to illustrate our results:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x′(t, y)+ a(t, y) ∂2

∂y2 x(t, y) = e−t
49+et x(t, y)+

∫ t
0

1
50e
−sx(s, y)ds,

y ∈ [0, π ], t ∈ (0, 1
3 ] ∪ ( 1

2 , 1],
x(t, 0) = 0, x(t, π) = 0 t ∈ J = [0, 1],
x(t, y) = L1e

−(t− 1
3 )x(t, y), y ∈ (0, π), t ∈ ( 1

3 ,
1
2 ],

x(0, y) = |x(t,y)|
7+|x(t,y)| + x0(y), y ∈ [0, π ],

(1.34)

with X = L 2([0, π ] × [0, 1], R), x0(y) ∈ X, 0 < L1 < 1 be a constant, a(t, y) is
continuous function and uniform Hölder continuous in t . Define

A(t)x(t, y) = a(t, y)
∂2

∂y2
x(t, y), (1.35)

on the domain

D(A) = {x ∈ X : x, ∂x
∂y

are absolutely continuous,
∂2x

∂y2 ∈ X, x(0) = x(π) = 0}.

The conditions (A1)–(A3) are satisfied and −A(t) generates a positive evolution
system S (t, s) on X (see [28]). We have b = t2 = 1, t0 = s0 = 0, t1 = 1

3 , s1 = 1
2 .

Put

x(t)(y) = x(t, y), t ∈ [0, 1], y ∈ [0, π ],

F (t, x(t),K x(t))(y) = e−t

49+ et
x(t, y)+

∫ t

0

1

50
e−sx(s, y)ds,

(K x(t))(y) =
∫ t

0

1

50
e−sx(s, y)ds,

γ1(t, x(t))(y) = L1e
−(t− 1

3 )x(t, y),

(G x(t))(y) = |x(t, y)|
7+ |x(t, y)| . (1.36)

The system (1.34) can be transformed into the abstract form (1.23) with nonlocal
condition. Now, assume that x0(y) ≥ 0 for y ∈ [0, π ], and there exists a function
v(t, y) ≥ 0 satisfying

v′(t, y)+ A(t)v(t, y) ≥ F (t, v(t, y),K v(t, y)), t ∈
(

0,
1

3

]

∪
(

1

2
, 1

]

, y ∈ [0, π],

v(t, 0) = v(t, π) = 0, t ∈ J,
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v(t, y) ≥ L1e
−(t− 1

3 )v(t, y), y ∈ (0, π), t ∈
(

1

3
,

1

2

]

,

v(0, y) ≥ G (v(y))+ x0(y), y ∈ [0, π].

From the above assumptions, we have ω0 = 0 and ν0 = v(t, y) are lower and upper
solutions to the system (1.34), which are also lower and upper mild solutions for
the problem (1.34). By (1.36), easily we can verify that (B1), (H2) and (H7) hold.
Suppose {xn} ⊂ [ω0(t), ν0(t)] be a monotone increasing sequence. For n ≤ m

‖F (t, xm,K xm)−F (t, xn,K xn)‖ ≤ 1

50
(‖xm − xn‖ + ‖K xm −K xn‖), hence

μ({F (t, xn,K xn)}) ≤ 1

50

(

μ({xn})+ μ(K xn)

)

.

Similarly

μ({γ1(t, xn)}) ≤ L1μ({xn}).

Therefore, assumptions (B2), (H4) are satisfied. So, by Theorem 1.5 and Theo-
rem 1.7, we conclude that the minimal and maximal mild solutions for (1.34) exist
between the lower solution and upper solutions i.e. in [0, v].
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Chapter 2
An Extrapolated Crank Nicholson
VMS-POD Method for Darcy Brinkman
Equations

Fatma G. Eroglu and Songul Kaya Merdan

2.1 Introduction

Double diffusive is of great importance in many applications such as oceanography,
geology, biology and chemical processes. Although tremendous development of
computing power is available, solving Darcy Brinkman equations accurately and
efficiently remains a challenge for the computational fluid dynamics community.

The dimensionless form of governing equations of Darcy Brinkman system
reads: for the velocity u : [0, τ ] ×Ω → R

d , the pressure p : [0, τ ] ×Ω → R, the
temperature T : [0, τ ] ×Ω → R and the concentration C : [0, τ ] ×Ω → R,

ut − 2ν∇ · Du+ (u · ∇)u+Da−1u+ ∇p = (βT T + βCC)g in (0, τ ] ×Ω,

∇ · u = 0 in (0, τ ] ×Ω,

u = 0 in (0, τ ] × ∂Ω,

Tt + u · ∇T = γΔT in (0, τ ] × ∂Ω,

Ct + u · ∇C = DcΔC in (0, τ ] × ∂Ω.

(2.1)

Here, Ω ⊂ R
d , d ∈ {2, 3} is a confined porous enclosure domain with polygonal

boundary ∂Ω . Let ΓN be a regular open subset of the boundary and ΓD = ∂Ω \ΓN .
In addition, in (2.1), the kinematic viscosity is ν > 0, the velocity deformation
tensor is Du = (∇u + ∇uT )/2 , the Darcy number is Da, the mass diffusivity is
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Dc > 0, the thermal diffusivity is γ > 0, and the gravitational acceleration vector
is g, the end time is τ , the thermal and solutal expansion coefficients are βT and βC ,
respectively. The system (2.1) is also equipped with the following initial velocity,
temperature, and concentration u0, C0, T0 and suitable boundary conditions.

u(0, x) = u0, T (0, x) = T0, C(0, x) = C0 in Ω,

T ,C = ζ on ΓD,
∂T

∂n
= 0,

∂C

∂n
= 0 on ΓN.

(2.2)

The dimensionless parameters are given as the Schmidt number Sc, the Prandtl
number Pr , the buoyancy ratio N , the thermal and solutal Grashof numbers GrT
and GrC , respectively.

When heat and mass diffuse at various rates, it leads to a complicated fluid
motion which is known as double diffusive convection. The detailed derivation of
the system (2.1) can be found in [20] and the physical mechanism of double diffusive
effects was studied in several works, e.g., [25, 26]. The double diffusive convection
was also studied numerically in different flow configurations [3, 5, 10, 14, 15, 19].
The simulation of the system (2.1) by direct numerical simulation (DNS) can be
very expensive, and sometimes is not possible due to the wide range of scales.
Furthermore, the use of full order methods leads to large algebraic systems and
high computational time. These difficulties can be reduced with the emergence of
model order reduction method.

The most commonly used reduced order model is the proper orthogonal decom-
position (POD). The basic idea of the POD is to use only the most energetic basis
functions instead of using billions of basis functions to approximate the solution.
This method has been found to be highly efficient for many different types of flow
problems. In particular, recent works of [22, 23] with POD have shown that the
approach can work well on multiphysics flow problems such as the Boussinesq
system for fluids driven by a single potential, and also for magnetohydrodynamics
flow [21]. The extension of POD methodology to flows governed by the system (2.1)
has been considered in [7, 8].

Despite the widespread use of POD, as mentioned in [11], POD can behave
poorly without some stabilization. In particular, the work of [7] reveals that as
Rayleigh number increases, convection cells emerge, then the system (2.1) becomes
unstable. In this report, we treat the numerical instability of a POD Galerkin method
of [7] with the variational multiscale (VMS) method introduced in [13, 16]. Recent
works [11, 12] show the efficiency of the VMS-POD in many multiphysics problems
such as convection–diffusion–reaction equations and Navier–Stokes equations. For
this purpose, we develop the results in [7] by adding a projection-based VMS
method to POD method for the velocity, temperature and concentration. The
finite element method is considered for space variables and Crank Nicholson time
discretization method is considered for time variables. In addition, to obtain a fully
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linear system at each time level, the nonlinear terms are treated with the extrapolated
Crank Nicholson method of Baker’s [2].

This work is organized as follows. The weak formulation of Darcy Brinkman
system is presented in Sect. 2.2. The basic idea of the POD method and the VMS
method is given in Sect. 2.3. The numerical analysis of the VMS-POD method is
presented in Sect. 2.4. Numerical experiments are shown in Sect. 2.5 to verify the
analytical results and conclusions are given in Sect. 2.6.

2.2 Full Order Model for Darcy Brinkman System

In this study, we consider the standard notations for Sobolev spaces Wk,p(Ω) and
Lebesgue spaces Lp(Ω), ∀p ∈ [1,∞], k ∈ R c.f. [1]. The norm in (Wk,2(Ω))d =
(Hk(Ω))d is denoted by ‖ · ‖k . The Lp(Ω) norms, for p �= 2 is given by ‖ · ‖Lp .
If p = 2, the L2(Ω) space is equipped with the inner product (·, ·) and the norm
‖ · ‖, respectively. The discrete norms, for wn ∈ Hp(Ω), n = 0, 1, 2, ...,M are
denoted by

|||w|||∞,p := max
0≤n≤M ‖w

n‖p |||w|||m,p :=
(

Δt

M∑

n=0

‖wn‖mp
)1/m

.

The continuous velocity, pressure space and the divergence free spaces are

X := (H1
0(Ω))d, Q := L2

0(Ω), V := {v ∈ X : (∇ · v, q) = 0, ∀q ∈ Q},

and, the continuous temperature and concentration are

W := {S ∈ H 1(Ω) : S = 0 on ΓD}, Ψ := {Φ ∈ H 1(Ω) : Φ = 0 on ΓD},

The weak formulation of (2.1) reads: Find u : (0, τ ] → X, p : (0, τ ] → Q,
T : [0, τ ] → W and C : [0, τ ] → Ψ satisfying for all (v, q, S,Φ) ∈ (X,Q,W,Ψ ).

(ut , v)+ 2ν(Du,Dv)+ b1(u, u, v)+ (Da−1u, v)− (p,∇ · v) = βT (gT , v)

+βC(gC, v), (2.3)

(Tt , S)+ b2(u, T , S)+ γ (∇T ,∇S) = 0, (2.4)

(Ct ,Φ)+ b3(u, C,Φ)+Dc(∇C,∇Φ) = 0, (2.5)

where bi(w1, w2, w3) = 1
2 (((w1 · ∇)w2, w3)− ((w1 · ∇)w3, w2)), ∀i = 1, 2, 3

defines the skew-symmetric forms of the convective terms for each variables.
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The following bounds are used in the error analysis.

Lemma 2.1 The trilinear skew-symmetric forms satisfy the following bounds

bi(u, v, v) = 0,

bi(u, v,w) ≤ K
√‖u‖‖∇u‖‖∇v‖‖∇w‖,

bi(u, v,w) ≤ K‖∇u‖‖∇v‖‖∇w‖,

for generic constant K = K(Ω).

Proof See, e.g., [9, 17] for a proof.

Lemma 2.2 Let w(t, x) be a function and tn/2 = tn+1+tn
2 . Then, for all

w,wt ,wtt , wttt ∈ C0(0, τ, L2(Ω)) and for all t∗ ∈ (t0, τ ) , the following
inequalities hold:

∥
∥
∥
∥
w(tn+1)+ w(tn)

Δt

∥
∥
∥
∥ ≤ K‖wt(t

∗)‖, (2.6)

∥
∥
∥
∥
w(tn+1)+ w(tn)

2
− w(tn/2)

∥
∥
∥
∥ ≤ KΔt2‖wtt (t

∗)‖, (2.7)

∥
∥
∥
∥

3w(tn)

2
− w(tn−1)

2
− w(tn/2)

∥
∥
∥
∥ ≤ KΔt2‖wtt (t

∗)‖, (2.8)

∥
∥
∥
∥
w(tn+1)+ w(tn)

Δt
− wt(t

n/2)

∥
∥
∥
∥ ≤ KΔt2‖wttt (t

∗)‖. (2.9)

Here, w(x, tn) is denoted by w(tn).

Proof This can be proved by using Taylor series expansion of w(t, x).

Let τh be a triangulation of Ω and Xh ⊂ X, Qh ⊂ Q, Wh ⊂ W and Ψh ⊂ Ψ

be conforming finite element spaces. It is assumed that the pair (Xh,Qh) provides
the discrete inf-sup condition, see [9]. For simplicity, it is also be assumed that the
finite element spaces Xh, Wh, Ψh are composed of piecewise polynomials of degree
at most m and Qh is composed of piecewise polynomials of degree at most m − 1.
In addition, we assume that the spaces satisfy standard interpolation estimates. We
define the discretely divergence free space Vh for (Xh,Qh):

Vh = {vh ∈ Xh : (∇ · vh, qh) = 0,∀qh ∈ Qh}. (2.10)

The inf-sup condition implies that the space Vh is a closed subspace of Xh and
the formulation above involving Xh and Qh is equivalent to the following Vh

formulation: Hence, the variational formulation of (2.3) reads as: Find uh : [0, τ ] →
Vh, Th : [0, τ ] → Wh, Ch : [0, τ ] → Ψh satisfying



2 An Extrapolated Crank Nicholson VMS-POD Method for Darcy Brinkman 29

(uh,t , vh)+ 2ν(Duh,Dvh)+ b1(uh, uh, vh)+ (Da−1uh, vh) = βT (gTh, vh)
+βC(gCh, vh),

(Th,t , Sh)+ b2(uh, Th, Sh)+ γ (∇Th,∇Sh) = 0,
(Ch,t , Φh)+ b3(uh, Ch,Φh)+Dc(∇Ch,∇Φh) = 0,

(2.11)

for all (vh, Sh,Φh) ∈ (Vh,Wh,ψh).

2.3 Reduced Order Modelling with POD

We consider the snapshots {u(·, ti)}M1
i=1, {T (·, ti )}M2

i=1, {C(·, ti)}M3
i=1 at different M1,

M2, M3 instances—for the velocity, temperature and concentration, respectively.
These snapshots come from DNS obtained by finite element spatial discretization.
The main purpose of the POD is to find low dimensional bases for velocity,
temperature, concentration by solving the minimization problems of

arg min
ψ1,ψ2,...,ψr1

1

M1

M1∑

k=1

∥
∥
∥
∥
∥

u(·, tk)−
r1∑

i=1

(u(·, tk),ψ i (·))ψ i (·)
∥
∥
∥
∥
∥

2

,

subject to (ψ i ,ψj ) = δij , (2.12)

arg min
φ1,φ2,...,φr2

1

M2

M2∑

k=1

∥
∥
∥
∥
∥
T (·, tk)−

r2∑

i=1

(T (·, tk), φi(·))φi(·)
∥
∥
∥
∥
∥

2

,

subject to (φi ,φj ) = δij , (2.13)

arg min
η1,η2,...,ηr1

1

M3

M3∑

k=1

∥
∥
∥
∥
∥
C(·, tk)−

r3∑

i=1

(C(·, tk), ηi(·))ηi(·)
∥
∥
∥
∥
∥

2

,

subject to (ηi, ηj ) = δij , (2.14)

for all 1 ≤ i, j ≤ rs such that rs << Ns , ∀s = 1, 2, 3. The discretization of
the problem (2.12)–(2.14) leads to large eigenvalue problems. The method of [24]
allows that eigenvalue problems are transformed into much smaller and traceable
problems. When the eigenvalue problem is solved, the POD basis functions are
calculated as

ψk(·) =
1√
λk

M1∑

i=1

(vk)iu(·, ti ), 1 ≤ k ≤ r1, (2.15)
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φk(·) = 1√
μk

M2∑

i=1

(Sk)iT (·, ti), 1 ≤ k ≤ r2, (2.16)

ηk(·) = 1√
γk

M3∑

i=1

(Φk)iC(·, ti), 1 ≤ k ≤ r3, (2.17)

where λk , μk , ξk denote the eigenvalues of the snapshots correlation matrices and
(vk)i , (Sk)i and (Φk)i denote the ith components of the eigenvectors vk , Sk , Φk .
Since all eigenvalues are sorted in descending order, the basis functions {ψk}r1

k=1,
{φk}r2

k=1 and {ηk}r3
k=1 correspond to the first r1, r2 and r3 largest eigenvalues,

respectively. Let Xr , Wr and Ψr be the POD spaces spanned by POD basis functions:

Xr = span{ψk}r1
k=1, Wr = span{φk}r2

k=1, Ψr = span{ηk}r3
k=1.

Then the POD solutions of (2.11) are constructed by writing

ur (t, x) =
r1∑

k=1

ak(t)ψk(x), Tr(t, x) =
r2∑

k=1

bk(t)φk(x), Cr(t, x) =
r3∑

k=1

ck(t)ηk(x),

where {ak(t)}r1
k=1, {bk(t)}r2

k=1, {ck(t)}r3
k=1 sought time varying coefficients repre-

senting the POD Galerkin trajectories. The L2 projection operators, which we will
use in error analysis, are given as

Pu,r : L2 → Xr , PT,r : L2 → Wr, PC,r : L2 → Ψr,

which are defined by

(u− Pu,ru, vr ) = 0, (T − PT,rT , Sr) = 0, (C − PC,rC, ζr ) = 0, (2.18)

for all (vr , Sr , ζr ) ∈ (Xr ,Wr, Ψr). We now state the L2 projection (2.18) error
estimations in general. For a detailed derivation of them, the reader is referred to
[6, 12].

Lemma 2.3 Let w ∈ L∞(0, k;Hm+1(Ω)) be fulfilled and its L2 projection Pw,r :
L2 → Xw

r , where Xw
r is the POD space. Let ‖ · ‖2 be matrix 2-norm. For any

wn ∈ H 1
0 (Ω) the following inequalities are provided:

1

M

M∑

n=0

‖wn − Pw,rw
n‖2 ≤ K

(
h2m+2 +

d∑

i=rw+1

λw

)
, (2.19)

1

M

M∑

n=0

‖∇(wn − Pw,rw
n)‖2 ≤ K

(
h2m + ‖Sw,r‖2h2m+2 + ε2

w

)
, (2.20)
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where (Sw,r )i,j =
∫

Ω

∇ψw
j · ∇ψw

i is the POD stiffness matrices, εw =
√

d∑

i=rw+1
‖ψw

i ‖21λwi is the POD contribution, {ψw
i }rwi=1 are the POD basis functions

and {λwi }rwi=1 are the corresponding eigenvalues.

We now assume that the similar estimations in Lemma 2.3 are held also for the
single term, which is logical and valid.

Assumption 1 We assume that the following estimations are held:

‖wn − w̃n‖2 ≤ K
(
h2m+2 +

d∑

i=rw+1

λw

)
, (2.21)

‖∇(wn − w̃n)‖2 ≤ K
(
h2m + ‖Sw,r‖2h

2m+2 + ε2
w

)
. (2.22)

The POD formulation of the Darcy Brinkman double diffusion system for selected
u0 ∈ (L2(Ω))d , T0, C0 ∈ L2(Ω), g ∈ L∞(0, k;Lp(Ω)): Find ur : [0, τ ] →
Xr , Tr : [0, τ ] → Wr, Cr : [0, τ ] → Ψr satisfying

(ur,t , vr )+ 2ν(Dur ,Dvr )+ b1(ur ,ur , vr )+ (Da−1ur , vr ) = βT (gTr , vr )
+βC(gCr, vr ),

(Tr,t , Sr )+ b2(ur , Tr , Sr )+ γ (∇Tr ,∇Sr ) = 0,
(Cr,t , Φr )+ b3(ur , Cr ,Φr)+Dc(∇Cr,∇Φr) = 0,

(2.23)

for every (vr , Sr ,Φr),∈ (Xr ,Wr, Ψr). Although POD is a widely used successful
reduced order model, it is not effective enough in case of high Reynolds number
[6, 11, 12]. In such a case, we use the VMS method to eliminate the oscillation
and stabilize the convective terms. In other words, we add artificial diffusions to the
smaller R1, R2, R3 velocity, temperature, concentration modes affecting only small
scales. Thus, the following spaces are required for the construction of the VMS
method. For R1 < r1, R2 < r2 and R3 < r3

XR = span{ψk}R1
k=1,

WR = span{φk}R2
k=1,

ΨR = span{ηk}R3
k=1.

and

LR,u = ∇XR := {∇ψk}R1
k=1,

LR,T = ∇WR := {∇φk}R2
k=1,

LR,C = ∇ΨR := {∇ηk}R3
k=1,



32 F. G. Eroglu and S. K. Merdan

where R1, R2 and R3 are the VMS modes numbers. According to VMS framework,
the following relation holds:

XR ⊂ Xr ⊂ Vh ⊂ X.

We note that similar relations are also satisfied for the temperature and concentration
spaces. The L2 projection operators Pu,R : L2 → LR,u, PT,R : L2 →
LR,T , PC,R : L2 → LR,C are defined by

(u− Pu,Ru, vR) = 0,
(T − PT,RT , SR) = 0,
(C − PC,RC, ζR) = 0,

(2.24)

for all (vR, SR, ζR) ∈ (LR,u,LR,T ,LR,C). Thus, the VMS-POD solution of (2.1)
based on the Crank Nicholson time discretization becomes: Find ur : [0, τ ] →
Xr , Tr : [0, τ ] → Wr, Cr : [0, τ ] → Ψr

(
un+1
r − unr
Δt

, vr

)

+ 2ν(Dun/2
r ,Dvr )+ b1(X (unr ),un/2

r , vr )

+α1

(
(I − Pu,R)Dun/2

r , (I − Pu,R)Dvr
)
+Da−1(un/2

r , vr )

= βT (gT
n/2
r , vr )+ βC(gC

n/2
r , vr ), (2.25)

(
T n+1
r − T n

r

Δt
, Sr

)

+ γ (∇T n/2
r ,∇Sr)+ b2(X (unr ), T

n/2
r , Sr )

+α2

(
(I − PT,R)∇T n/2

r , (I − PT,R)∇Sr
)
= 0, (2.26)

(
Cn+1
r − Cn

r

Δt
, ςr

)

+Dc(∇Cn/2
r ,∇ςr)+ b3(X (unr ), C

n/2
r , ςr )

+α3

(
(I − PC,R)∇Cn/2

r , (I − PC,R)∇ςr
)
= 0, (2.27)

for all (vr , Sr ,Φr),∈ (Xr ,Wr, Ψr) where Pu,R , PT,R and PC,R are the L2

projections into (XR,WR,ΨR) and

un/2
r = un+1

r + unr
2

, T
n/2
r = T n+1

r + T n
r

2
,

C
n/2
r = Cn+1

r + Cn
r

2
, X (unr ) =

3

2
unr −

1

2
un−1
r .
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Note that, since linear extrapolations are utilized for each fluid variables in (2.25)–
(2.27), the solution of the system needs one linear system per time.

2.4 Error Estimates

In this section, we perform the numerical analysis for the solutions of (2.25)–(2.27).
We first perform the stability analysis.

Lemma 2.4 The VMS-POD approximation (2.25)–(2.27) is unconditionally stable
in the following sense: for any Δt > 0, one has

‖uMr ‖ + 4νΔt
M−1∑

n=0

‖Dun/2
r ‖2 + 2Da−1Δt

M−1∑

n=0

‖un/2
r ‖2

+2α1Δt

M−1∑

n=0

‖(I − Pu,R)Dun/2
r ‖2

≤ ‖u0
r‖2 +K‖g‖2∞(β2

T ν
−1γ−1‖T 0

r ‖2 + β2
CDaD−1

c ‖C0
r ‖2), (2.28)

‖T M
r ‖2 + 2γΔt

M−1∑

n=0

‖∇T n/2
r ‖ + 2α2Δt

M−1∑

n=0

‖(I − PT,R)∇T n/2
r ‖2

≤ ‖T 0
r ‖2, (2.29)

‖CM
r ‖2 + 2DcΔt

M−1∑

n=0

‖∇Cn/2
r ‖ + 2α3Δt

M−1∑

n=0

‖(I − PC,R)∇Cn/2
r ‖2

≤ ‖C0
r ‖2. (2.30)

Proof Setting Sr = T
n/2
r = T n+1

r + T n
r

2
in (2.26), and using the skew symmetry,

and summing from n = 0 to M − 1 gives

‖T M
r ‖2 + 2γΔt

∑M−1
n=0 ‖∇T n/2

r ‖
+2α2Δt

∑M−1
n=0 ‖(I − PT,R)∇T n/2

r ‖2 ≤ ‖T 0
r ‖2. (2.31)

In a similar manner, choosing ςr = C
n/2
r in (2.27) yields

‖CM
r ‖2 + 2DcΔt

∑M−1
n=0 ‖∇Cn/2

r ‖
+2α3Δt

∑M−1
n=0 ‖(I − PC,R)∇Cn/2

r ‖2 ≤ ‖C0
r ‖2. (2.32)
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Letting vr = un/2
r and utilizing Lemma 2.1 in (2.25), we get

‖un+1
r ‖ + 4νΔt‖Dun/2

r ‖2 + 2α1Δt‖(I − Pu,R)Dun/2
r ‖2

+2Da−1Δt‖un/2
r ‖2 = ‖unr ‖2 + 2βT Δt(gT

n/2
r ,un/2

r )

+2βCΔt(gC
n/2
r ,un/2

r ). (2.33)

Performing Cauchy–Schwarz and Young’s inequalities, and summing from n = 0
to M − 1, we have

‖uMr ‖ + 4νΔt
M−1∑

n=0

‖Dun/2
r ‖2 + 2α1Δt

M−1∑

n=0

‖(I − Pu,R)Dun/2
r ‖2

+2Da−1Δt

M−1∑

n=0

‖un/2
r ‖2 ≤ ‖u0

r‖2

+K‖g‖2∞
(

β2
T ν
−1Δt

M−1∑

n=0

‖∇T n/2
r ‖ + β2

CDaΔt

M−1∑

n=0

‖∇Cn/2
r ‖2

)

. (2.34)

Substituting (2.31) and (2.32) in (2.34) produces the stated result (2.28).

Now, we consider the error analysis of VMS-POD.

Theorem 2.1 (Error Estimation) Let regularity assumptions u, T , C ∈ L∞(0,
τ ;Hm+1), p ∈ L∞(0, τ ;Hm) hold. Then, for a sufficiently small Δt , the error
satisfies

‖uM − uMr ‖2 + ‖T M − T M
r ‖2 + ‖CM − CM

r ‖2

≤ K

(

1+ h2m + (Δt)4 + (1+ ‖Su,r‖2 + ‖Su,R‖2

+‖ST,r‖2 + ‖ST,R‖2 + ‖SC,r‖2 + ‖SC,R‖2)h2m+2

+
d∑

i=r1+1

(‖ψ i‖21 + 1)λi +
d∑

i=r2+1

(‖φi‖21 + 1)μi +
d∑

i=r3+1

(‖ηi‖21 + 1)ξi

+
d∑

i=R1+1

‖ψ i‖21λi +
d∑

i=R2+1

‖φi‖21μi +
d∑

i=R3+1

‖ηi‖21ξi
)

. (2.35)
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Proof At time tn/2, subtracting from (2.3), (2.4), (2.5) to (2.25), (2.26), (2.27) at
time tn/2, respectively, we get

(

un/2
t − un+1

r − unr
Δt

, vr

)

+ 2ν(D(un/2 − un/2
r ),Dvr )+ b1(un/2,un/2, vr )

−b1(X (unr ),un/2
r , vr )+ (Da−1(un/2 − un/2

r ), vr )− (pn+1,∇ · vr )
+α1

(
(I − Pu,R)D(un/2 − un/2

r ), (I − Pu,R)Dvr
)

= βT (g(T n/2 − T
n/2
r ), vr )+ βC(g(Cn/2 − C

n/2
r ), vr )

+α1

(
(I − Pu,R)Dun/2, (I − Pu,R)Dvr

)
, (2.36)

(

T
n/2
t − T n+1

r − T n
r

Δt
, Sr

)

+ γ (∇(T n/2 − T
n/2
r ),∇Sr)+ b2(un/2, T n/2, Sr )

−b2(X (unr ), T
n/2
r , Sr )+ α2

(
(I − PT,R)∇(T n/2 − T

n/2
r ), (I − PT,R)∇Sr

)

= α2

(
(I − PT,R)∇T n/2, (I − PT,R)∇Sr

)
, (2.37)

(

C
n/2
t − Cn+1

r − Cn
r

Δt
,Φr

)

+Dc(∇(Cn/2 − C
n/2
r ),∇Φr)+ b3(un/2, Cn/2, Φr)

−b3(X (unr ), C
n/2
r , Φr)+ α3

(
(I − PC,R)∇(Cn/2 − C

n/2
r ), (I − PC,R)∇ςr

)

= α3

(
(I − PC,R)∇Cn/2, (I − PC,R)∇ςr

)
. (2.38)

for all (vr , Sr ,Φr) ∈ (Xr ,Wr, Ψr). We use the following notations for the
decomposition of the errors.

ηnu := un − ũn, φn
u,r := unr − ũn,

ηnT = T n − T̃ n, φnT ,r := T n
r − T̃ n,

ηnC = Cn − C̃n, φnC,r := Cn
r − C̃n,

(2.39)

where ũn, T̃ n, C̃n are L2 projections of un, T n, Cn in Xr , Wr , Ψr at time tn,
respectively. Hence the errors can be denoted by

enu,r = ηnu − φn
u,r , enT ,r := ηnT − φnT,r , enC,r := ηnC − φnC,r . (2.40)
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We first derive the error estimation for the temperature. To do that, the error equation
for the temperature is rewritten as

(
T (tn+1)− T (tn)

Δt
− T n+1

r − T n
r

Δt
, Sr

)

+ γ (∇(T (tn/2)− T
n/2
r ),∇Sr)

+b2(u(tn/2), T (tn/2), Sr )− b2(X (unr ), T
n/2
r , Sr )

+α2

(
(I − PT,R)∇(T (tn/2)− T

n/2
r ), (I − PT,R)∇Sr

)

+
(

Tt (t
n/2)− T (tn+1)− T (tn)

Δt
, Sr

)

= α2

(
(I − PT,R)∇T (tn/2), (I − PT,R)∇Sr

)
. (2.41)

Adding and subtracting terms

γ

(

∇
(
T (tn+1)+ T (tn)

Δt

)

,∇Sr
)

+ α2

(
(I − PT,R)∇

(
T (tn+1)+ T (tn)

Δt

)

,

(I − PT,R)∇Sr
)

to (2.41) and utilizing (2.39) and setting Sr = φ
n/2
T ,r in (2.41) gives

(
φn+1
T ,r − φnT,r

Δt
, φn+1

T ,r

)

+ γ ‖∇φn/2
T ,r ‖2 + α2‖(I − PT,R)∇φn/2

T ,r ‖2

≤
∣
∣
∣
∣
∣

(
ηn+1
T − ηnT

Δt
, φn+1

T ,r

)∣∣
∣
∣
∣
+ γ |(∇ηn/2

T ,∇φn/2
T ,r )|

+γ
∣
∣
∣
∣

(

∇
(
T (tn+1)+ T (tn)

Δt
− T (tn/2)

)

,∇φn/2
T ,r

)∣
∣
∣
∣

2

+|b2(u(tn/2), T (tn/2), φ
n/2
T ,r )− b2(X (unr ), T

n/2
r , φ

n/2
T ,r )|

+α2

∣
∣
∣
(
(I − PT,R)∇ηn/2

T , (I − PT,R)∇φn/2
T ,r

)∣
∣
∣

+
∣
∣
∣
∣

(
T (tn+1)− T (tn)

Δt
− Tt (t

n/2)

)

, φ
n/2
T ,r )

∣
∣
∣
∣

+α2

∣
∣
∣
(
(I − PT,R)∇T (tn/2), (I − PT,R)∇Sr

)∣
∣
∣

+α2

∣
∣
∣
∣

(
(I − PT,R)∇

(
T (tn+1)+ T (tn)

Δt
− T (tn/2)

)

, (I − PT,R)∇Sr
)∣∣
∣
∣ . (2.42)
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Using the fact that (ηn+1
T , φn+1

T ,r ) = 0, and (ηnT , φ
n+1
T ,r ) = 0 from the definition of L2

projection in (2.42), we get

1

2Δt
‖φn+1

T ,r ‖2 + γ ‖∇φn/2
T ,r ‖2 + α2‖(I − PT,R)∇φn/2

T ,r ‖2

≤ 1

2Δt
‖φnT,r‖ + γ |(∇ηn/2

T ,∇φn/2
T ,r )| + γ

∣
∣
∣
∣

(

∇
(
T (tn+1)+ T (tn)

Δt
− T (tn/2)

)

,∇φn/2
T ,r

)∣∣
∣
∣

2

+
∣
∣
∣b2(u(tn/2), T (tn/2), φ

n/2
T ,r )− b2(X (unr ), T

n/2
r , φ

n/2
T ,r )

∣
∣
∣

+α2

∣
∣
∣
(
(I − PT,R)∇ηn/2

T , (I − PT,R)∇φn/2
T ,r

)∣
∣
∣

+α2

∣
∣
∣
(
(I − PT,R)∇T (tn/2), (I − PT,R)∇φn/2

T ,r

)∣∣
∣

+α2

∣
∣
∣
∣

(
(I − PT,R)∇( T (t

n+1)+ T (tn)

Δt
− T (tn/2)), (I − PT,R)∇φn/2

T ,r

)∣∣
∣
∣

+
∣
∣
∣
∣

(
T (tn+1)− T (tn)

Δt
− Tt (t

n/2)

)

, φ
n/2
T ,r

∣
∣
∣
∣ . (2.43)

Adding and subtracting terms

b2

(

u(tn/2)+X (unr )+X (u(tn)),
T (tn+1)+ T (tn)

2
, φ

n/2
T ,r

)

to the nonlinear terms in (2.43) leads to

b2(u(tn/2), T (tn/2), φ
n/2
T ,r )− b2(X (unr ), T

n/2
r , φ

n/2
T ,r )

= b2(X (unr ), ηT
n/2, φ

n/2
T ,r )− b2(X (unr ), φ

n/2
T ,r , φ

n/2
T ,r )

+b2

(

X (enu,r ),
T (tn+1)+ T (tn)

2
, φ

n/2
T ,r

)

+b2

(

u(tn/2),
T (tn+1)+ T (tn)

2
− Tn/2, φ

n/2
T ,r

)

+b2

(

u(tn/2)−X (u(tn)),
T (tn+1)+ T (tn)

2
, φ

n/2
T ,r

)

+b2

(

u(tn/2), T (tn/2)− T (tn+1)+ T (tn)

2
, φ

n/2
T ,r

)

.

Note that b2(un/2, φn+1
T ,r , φ

n+1
T ,r ) = 0. Using Cauchy–Schwarz and Young’s inequal-

ities, we obtain
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1

2Δt
‖φn+1

T ,r ‖2 + γ ‖∇φn/2
T ,r ‖2 + α2‖(I − PT,R)∇φn/2

T ,r ‖2 ≤
1

2Δt
‖φnT,r‖2

+γ |(∇ηT n/2,∇φn/2
T ,r )| + γ

∣
∣
∣
∣

(

∇
(
T (tn+1)+ T (tn)

Δt
− T (tn/2)

)

,∇φn/2
T ,r

)∣∣
∣
∣

2

+|b2(X (unr ), ηT
n/2, φ

n/2
T ,r )| +

∣
∣
∣
∣b2

(

X (enu,r ),
T (tn+1)+ T (tn)

2
, φ

n/2
T ,r

)∣∣
∣
∣

+
∣
∣
∣
∣b2

(

u(tn/2),
T (tn+1)+ T (tn)

2
− Tn/2, φ

n/2
T ,r

)∣∣
∣
∣

+
∣
∣
∣
∣b2

(

u(tn/2)−X (u(tn)),
T (tn+1)+ T (tn)

2
, φ

n/2
T ,r

)∣∣
∣
∣

+
∣
∣
∣
∣b2

(

u(tn/2), T (tn/2)− T (tn+1)+ T (tn)

2
, φ

n/2
T ,r

)∣
∣
∣
∣

+α2|
(
(I − PT,R)∇ηn/2

T , (I − PT,R)∇φn/2
T ,r

)
|

+α2|
(
(I − PT,R)∇T (tn/2), (I − PT,R)∇φn/2

T ,r

)
|

+α2

∣
∣
∣
∣

(
(I − PT,R)∇

(
T (tn+1)+ T (tn)

Δt
− T (tn/2)

)

, (I − PT,R)∇φn/2
T ,r

)∣∣
∣
∣

+|(T (t
n+1)− T (tn)

Δt
− Tt (t

n/2), φ
n/2
T ,r )|. (2.44)

Next, we bound the second and third terms on the right-hand side of (2.44), by using
Lemma 2.2, Cauchy–Schwarz, Young’s and Poincaré’s inequalities:

γ |(∇ηT n/2,∇φn/2
T ,r )| ≤ Kγ ‖∇ηT n/2‖2 + γ

6
‖∇φn/2

T ,r ‖2, (2.45)

γ

∣
∣
∣
∣

(

∇
(
T (tn+1)+ T (tn)

Δt
− T (tn/2)

)

,∇φn/2
T ,r

)∣∣
∣
∣

2

≤ KγΔt4‖∇Ttt (t∗)‖2

+γ
6
‖∇φn/2

T ,r ‖2. (2.46)

The first nonlinear term on right-hand side of (2.44) can be rearranged by adding
and subtracting the term b2(X (u(tn)), ηT n/2, φ

n/2
T ,r ) as

b2(X (unr ), ηT
n/2, φ

n/2
T ,r ) ≤ |b2(X (ηnu), ηT

n/2, φ
n/2
T ,r )|+|b2(X (φu,r ), ηT

n/2, φ
n/2
T ,r )|

+|b2(X (u(tn)), ηT n/2, φ
n/2
T ,r )|. (2.47)
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To bound the terms on the right-hand side of (2.47), we use Lemma 2.1 and Young’s
inequality:

|b2(X (ηnu), ηT
n/2, φ

n/2
T ,r )| ≤ Kγ−1(‖Dηnu‖2 + ‖Dηn−1

u ‖2)‖∇ηn/2
T ‖2

+γ
6
‖∇φn/2

T ,r ‖2,

|b2(X (φu,r ), ηT
n/2, φ

n/2
T ,r )| ≤ Kγ−1h−1(‖φnu,r‖2 + ‖φn−1

u,r ‖2)‖∇ηn/2
T ‖2

+γ
6
‖∇φn/2

T ,r ‖2,

|b2(X (u(tn)), ηT n/2, φ
n/2
T ,r )| ≤ Kγ−1(‖Du(tn)‖2 + ‖Du(tn−1)‖2)‖∇ηn/2

T ‖2

+γ
6
‖∇φn/2

T ,r ‖2.

Using similar techniques for the other red nonlinear terms on the right-hand side of
(2.44), we get
∣
∣
∣
∣b2(X (enu),

T (tn+1)+ T (tn)

2
, φ

n/2
T ,r )

∣
∣
∣
∣

≤ Kγ−1(‖Dηnu‖2

+‖Dηn−1
u ‖2 + h−1(‖φnu,r‖2 + ‖φn−1

u,r )‖2)
∥
∥
∥
∥∇

(
T (tn+1)+ T (tn)

2

)∥
∥
∥
∥

2

+γ
6
‖∇(φn/2

T ,r )‖2,

∣
∣
∣
∣b2

(

u(tn/2),
T (tn+1)+ T (tn)

2
− T (tn/2), φ

n/2
T ,r

)∣∣
∣
∣

≤ Kγ−1Δt4‖D(u(tn/2))‖2‖∇Ttt (t∗)‖2 + γ

6
‖∇φn/2

T ,r ‖2,

∣
∣
∣
∣b2

(

X (u(tn))− u(tn/2),
T (tn+1)+ T (tn)

2
, φ

n/2
T ,r

)∣
∣
∣
∣

≤ Kγ−1‖∇(X (u(tn))− u(tn/2))‖2
∥
∥
∥
∥∇

(
T (tn+1)+ T (tn)

2

)∥∥
∥
∥

2

+ γ

6
‖∇φn/2

T ,r ‖2,

∣
∣
∣
∣b2

(

u(tn/2),
T (tn+1)+ T (tn)

2
− T (tn/2), φ

n/2
T ,r

)∣∣
∣
∣

≤ Kγ−1Δt4‖∇u(tn/2)‖2‖∇Ttt (t∗)‖2 + γ

6
‖∇φn/2

T ,r ‖2. (2.48)
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The ninth, tenth and eleventh terms of (2.44) can be bounded by using the fact that
‖(I − PT,R)∇w‖2 ≤ ‖∇w‖2:

α2

∣
∣
∣
∣

(
(I − PT,R)∇

(
T (tn+1)+ T (tn)

Δt
− T (tn/2)

)

, (I − PT,R)∇φn/2
T ,r

)∣∣
∣
∣

+α2

∣
∣
∣
(
(I − PT,R)∇ηn/2

T , (I − PT,R)∇φn/2
T ,r

)∣
∣
∣

+α2

∣
∣
∣
(
(I − PT,R)∇T n/2, (I − PT,R)∇φn/2

T ,r

)∣∣
∣

≤ α2‖∇ηn/2
T ‖2 + α2‖(I − PT,R)∇T n/2‖2 + α2Δt

4‖(I − PT,R)∇Ttt‖2

+α2

2
‖(I − PT,R)∇φn/2

T ,r ‖2 . (2.49)

For the last term on the right-hand side of (2.44), we apply Cauchy–Schwarz,
Poincaré’s, Young’s inequalities and Lemma 2.2 as

(
T (tn+1)−T (tn)

Δt
−Tt (tn/2), φ

n/2
T ,r

)

≤ Kγ−1Δt4‖Tttt (t∗)‖2+γ
6
‖∇φn/2

T ,r ‖2. (2.50)

Inserting (2.45)–(2.50) in (2.44), multiplying by 2Δt and summing over the time
steps produces

‖φMT,r‖2 + γΔt

M−1∑

n=0

‖∇φn/2
T ,r ‖2 + α2Δt

M−1∑

n=0

‖(I − PT,R)∇φn/2
T ,r ‖2 ≤ ‖φ0

T ,r‖2

+KΔt

(

(γ + α2)

M−1∑

n=0

‖∇ηT n/2‖2 + γ−1h−1
M−1∑

n=0

(‖φnu,r‖2 + ‖φn−1
u,r ‖2)‖∇ηn/2

T ‖2

+γ−1
M−1∑

n=0

(1+ ‖Dηnu‖2 + ‖Dηn−1
u ‖2)‖∇ηn/2

T ‖2 + γ−1
(
‖Dηnu‖2 + ‖Dηn−1

u ‖2

+h−1(‖φnu,r‖2 + ‖φn−1
u,r )‖2

)
+Δt4

(
(γ + γ−1‖D(u(tn/2))‖2)‖∇Ttt (t∗)‖2

+γ−1‖Tttt (t∗)‖2 + α2‖(I − PT,R)∇Ttt (t∗)‖2
)
+ α2‖(I − PT,R)∇T (tn/2)‖2

)

. (2.51)

Using Lemma 2.3, Lemma 2.4, Assumption 1 and regularity assumptions in (2.51)
results in

‖φMT,r‖2 + γΔt

M−1∑

n=0

‖∇φn/2
T ,r ‖2 + α2Δt

M−1∑

n=0

‖(I − PT,R)∇φn/2
T ,r ‖2

≤ ‖φ0
T ,r‖2 +K

(

h2m + (‖ST,r‖2 + ‖ST,R‖2)h2m+2 + ε2
T ,r + ε2

T ,R
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+(1+ h2m + ‖Su,r‖2h
2m+2 + ε2

u,r )(h
2m + ‖ST,r‖2h2m+2 + ε2

T ,r )

+(Δt)4 + γ−1h−1
M−1∑

n=0

(‖φnu,r‖2 + ‖φn−1
u,r ‖2)‖∇ηn/2

T ‖2
)

. (2.52)

Similarly, the error estimation for the concentration is given by

‖φMC,r‖2 +DcΔt

M−1∑

n=0

‖∇φn/2
C,r ‖2 + α3Δt

M−1∑

n=0

‖(I − PC,R)∇φn/2
C,r ‖2

≤ ‖φ0
C,r‖2 +K

(
h2m + (‖SC,r‖2 + ‖SC,R‖2)h2m+2 + ε2

C,r + ε2
C,R

+(1+ h2m + ‖Su,r‖2h2m+2 + ε2
u,r )(h

2m + ‖SC,r‖2h2m+2 + ε2
C,r )

+(Δt)4 +D−1
c h−1

M−1∑

n=0

(‖φnu,r‖2 + ‖φn−1
u,r ‖2)‖∇ηn/2

C ‖2
)
. (2.53)

To obtain an estimation for the velocity we use similar arguments as above. Thus,
in a similar manner, for the velocity, we add and subtract terms:

2ν

(

D

(
u(tn+1)+ u(tn)

2

)

,Dvr

)

+
(

Da−1
(

u(tn+1)+ u(tn)
2

)

, vr

)

−
(
p(tn+1)+ p(tn)

2
,∇ · vr

)

+α1

(
(I − Pu,R)D

(
u(tn+1)+ u(tn)

2

)

, (I − Pu,R)Dvr
)

−βT
(

g
(
T (tn+1)+ T (tn)

2

)

, vr

)

− βC

(

g
(
C(tn+1)+ C(tn)

2

)

, vr

)

b1

(

u(tn/2)+X (ur n)+X (u(tn)),
u(tn+1)+ u(tn)

2
, vr

)

to (2.36). Letting vr = φ
n/2
u,r in (2.25), and applying the polarization identity gives

1

2Δt
‖φn+1

u,r ‖2 −
1

2Δt
‖φnu,r‖2 +

1

2Δt
‖φn+1

u,r − φnu,r‖2 + 2ν‖Dφ
n/2
u,r ‖2

+α1‖(I − Pu,R)Dφ
n/2
u,r ‖2 +Da−1‖φn/2

u,r ‖2

≤ |βT (g(ηn/2
T

),φ
n/2
u,r )| + |βC(g(ηn/2

C
),φ

n/2
u,r )| + |βT (g(φn/2

T ,r
),φ

n/2
u,r )|

+|βC(g(φn/2
C,r

),φ
n/2
u,r )| +

∣
∣
∣
∣
∣
βT

(

g

(
T (tn+1)+ T (tn)

2
− T n/2

)

,φ
n/2
u,r

)∣∣
∣
∣
∣
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+
∣
∣
∣
∣
∣
βC

(

g

(
C(tn+1)+ C(tn)

2
− Cn/2

)

,φ
n/2
u,r

)∣∣
∣
∣
∣
+
∣
∣
∣
∣
∣

(
ηn+1
u − ηnu

Δt
,φ

n/2
u,r

)∣∣
∣
∣
∣

+2ν|(Dηu
n/2,Dφ

n/2
u,r )| + 2ν

∣
∣
∣
∣
∣

(

D

(
u(tn+1)+ u(tn)

2

)

− Du(tn/2),Dφ
n/2
u,r

)∣∣
∣
∣
∣

+Da−1|(ηu
n/2,φ

n/2
u,r )| +Da−1

∣
∣
∣
∣
∣

(
(

u(tn+1)+ u(tn)
2

)

− u(tn/2),φ
n/2
u,r

)
∣
∣
∣
∣
∣

+α1

∣
∣
∣
(
(I − Pu,R)∇ηn/2

u , (I − Pu,R)Dφ
n/2
u,r

)∣∣
∣

+α1

∣
∣
∣
(
(I − Pu,R)Du(tn/2), (I − Pu,R)Dφ

n/2
u,r

)∣∣
∣

+α1

∣
∣
∣
∣
∣

(
(I − Pu,R)D

(
u(tn+1)+ u(tn)

2
− u(tn/2), (I − Pu,R)Dφ

n/2
u,r

)∣∣
∣
∣
∣

+|b1(X (unr ), ηu
n/2, φ

n/2
u,r )| +

∣
∣
∣
∣
∣
b1(

(

X (ηnu),
u(tn+1)+ u(tn)

2
, φ

n/2
u,r

)∣∣
∣
∣
∣

+
∣
∣
∣b1

((
X (φnu,r ),

u(tn+1)+ u(tn)
2

, φ
n/2
u,r

)∣∣
∣

+
∣
∣
∣b1

(
u(tn/2),

u(tn+1)+ u(tn)
2

− u(tn/2), φ
n/2
u,r

)∣∣
∣

+
∣
∣
∣b1

(
(X (u(tn))− u(tn/2),

u(tn+1)+ u(tn)
2

, φ
n/2
u,r

)∣∣
∣

+
∣
∣
∣
(p(tn+1)+ p(tn)

2
− p(tn/2),∇ · φn/2

u,r

)∣∣
∣

+
∣
∣
∣
(p(tn+1)+ p(tn)

2
− qh,∇ · φn/2

u,r

)∣∣
∣+
∣
∣
∣
(un+1 − un

Δt
− un+1

t ,φ
n/2
u,r

)∣∣
∣. (2.54)

Note that

(
ηn+1
u − ηnu
Δt

,φ
n/2
u,r

)

= 0 due to the definition of the L2 projection. Each

of the terms in (2.54) can be bounded in a similar manner. Thus, one gets

|βT (g(ηn/2
T

),φ
n/2
u,r )| + |βC(g(ηn/2

C
),φ

n/2
u,r )| + |βT (g(φn/2

T ,r
),φ

n/2
u,r )|

+|βC(g(φn/2
C,r

),φ
n/2
u,r )| +

∣
∣
∣βT

(
g
(T (tn+1)+ T (tn)

2
− T (tn/2)

)
,φ

n/2
u,r

)∣∣
∣

+|βC(g(C(t
n+1)+ C(tn)

2
− C(tn/2)),φ

n/2
u,r )|

≤ Kν−1‖g‖2∞
(
β2
T (‖ηn/2

T
‖2 + ‖φn/2

T ,r
‖2 +Δt4‖Ttt (·, t̃)‖2)

+β2
C(‖ηn/2

C
‖2 + ‖φn/2

C,r
‖2 +Δt4‖Ctt (t∗)‖2)

)
+ ν

10
‖Dφ

n/2
u,r ‖2, (2.55)
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2ν|(Dη
n/2
u ,Dφ

n/2
u,r )| + 2ν

∣
∣
∣
(
D

(u(tn+1)+ u(tn)
2

)
− Du(tn/2),Dφ

n/2
u,r

)∣∣
∣

≤ Kν
(
‖Dη

n/2
u ‖2 +Δt4‖Dut t (·, t̃)‖2

)
+ ν

10
‖Dφ

n/2
u,r ‖2, (2.56)

Da−1|(ηn/2
u ,φ

n/2
u,r )| +Da−1|

(
(

u(tn+1)+ u(tn)
2

)− u(tn/2),φ
n/2
u,r

)
|

≤ KDa−1
(
‖ηn/2

u ‖2 +Δt4‖ut t (t∗)‖2
)
+ Da−1

2
‖φn/2

u,r ‖2, (2.57)

|(p(t
n+1)+ p(tn)

2
− p(tn/2),∇ · φn/2

u,r )| + |(p(t
n+1)+ p(tn)

2
− qh,∇ · φn/2

u,r )|

≤ Kν−1(Δt4
∥
∥ptt (t

∗)
∥
∥2 +

∥
∥
∥
∥
∥
p(tn+1)+ p(tn)

2
− qh

∥
∥
∥
∥
∥

2

)+ ν

10

∥
∥
∥Dφ

n/2
u,r

∥
∥
∥

2
, (2.58)

|(un+1
t − un+1 − un

Δt
,φ

n/2
u,r )| ≤ Kν−1Δt4‖ut t t (t∗)‖2 + ν

10

∥
∥
∥Dφ

n/2
u,r

∥
∥
∥

2
, (2.59)

α1|
(
(I − Pu,R)D(

u(tn+1)+ u(tn)
2

− u(tn/2)), (I − Pu,R)Dφ
n/2
u,r

)
|

+α1|
(
(I − Pu,R)∇ηn/2

u , (I − Pu,R)Dφ
n/2
u,r

)
|

+α1|
(
(I − Pu,R)Du(tn/2), (I − Pu,R)Dφ

n/2
u,r

)
|

≤ Kα1

(
Δt4‖(I − Pu,R)Dut t (t∗)‖2 + ‖∇ηn/2

u ‖2 + ‖(I − Pu,R)Du(tn/2)‖2
)

+α1

2
‖(I − Pu,R)Dφ

n/2
u,r ‖2. (2.60)

The first nonlinear term in (2.61) is organized as

|b1(X (unr ), ηu
n/2, φ

n/2
u,r )| ≤ |b1(X (u(tn)), ηu

n/2, φ
n/2
u,r )|

+|b1(X (ηnu), ηu
n/2, φ

n/2
u,r )| + |b1(X (φnu,r ), ηu

n/2, φ
n/2
u,r )|. (2.61)

The terms on the right-hand side of (2.61) are bounded as before:

|b1(X (u(tn)), ηu
n/2, φ

n/2
u,r )|

≤ Kν−1(‖Du(tn)‖2 + ‖Du(tn−1)‖2)‖Dηu
n/2‖2 + ν

10
‖Dφ

n/2
u,r ‖2,

|b1(X (ηnu), ηu
n/2, φ

n/2
u,r )|
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≤ Kν−1(‖Dηnu‖2 + ‖Dηn−1
u ‖2)‖Dηu

n/2‖2 + ν

10
‖Dφ

n/2
u,r ‖2,

|b1(X (φnu,r ), ηu
n/2, φ

n/2
u,r )|,

≤ Kν−1h−1(‖φnu,r‖2 + ‖φn−1
u,r )‖2)‖Dηu

n/2‖2 + ν

10
‖Dφ

n/2
u,r ‖2.

Similarly, the remaining nonlinear terms can be bounded as

∣
∣
∣b1

((
X (ηnu),

u(tn+1)+ u(tn)
2

, φ
n/2
u,r

)∣∣
∣+

∣
∣
∣b1

((
X (φnu,r ),

u(tn+1)+ u(tn)
2

, φ
n/2
u,r

)∣∣
∣

≤ Kν−1
(
‖Dηnu‖2 + ‖Dηn−1

u ‖2 + h−1(‖φnu,r‖2 + ‖φn−1
u,r ‖2)

)∥∥
∥D
(u(tn+1)+ u(tn)

2

)∥∥
∥

2

+ ν

10
‖Dφ

n/2
u,r ‖2,

|b1(u(t
n/2),

u(tn+1)+ u(tn)
2

− u(tn/2), φ
n/2
u,r )|

≤ Kν−1Δt4‖Du(tn/2)‖2‖Dut t (t∗)‖2 + ν

10
‖Dφ

n/2
u,r ‖2,

b1((X (u(tn))− u(tn/2),
u(tn+1)+ u(tn)

2
, φ

n/2
u,r )|

≤ Kν−1‖D(X (u(tn))− u(tn/2))‖2
∥
∥
∥D
(u(tn+1)+ u(tn)

2

)∥∥
∥

2 + ν

10
‖Dφ

n/2
u,r ‖2. (2.62)

We now insert (2.55)–(2.62) into (2.54) and use regularity assumptions to get

1

2Δt
‖φn+1

u,r ‖2 −
1

2Δt
‖φn

u,r‖2 +
1

2Δt
‖φn+1

u,r − φn
u,r‖2

+ν‖Dφ
n/2
u,r ‖2 + Da−1

2
‖φn/2

u,r ‖2 + α1

2
‖(I − Pu,R)Dφ

n/2
u,r ‖2

≤ K
(
ν−1‖g‖2∞(β2

T ‖φn/2
T ,r ‖2 + β2

C‖φn/2
C,r ‖2)+ ‖ηn/2

T ‖2 + ‖ηn/2
C ‖2

+‖ηu
n/2‖2 + ‖Dηu

n/2‖2(1+ ‖Dηnu‖2 + ‖Dηn−1
u ‖2)

+ν−1h−1
(
‖Dηu

n/2‖2 +
∥
∥
∥D
(u(tn+1)+ u(tn)

2

)∥∥
∥

2
)(‖φn

u,r‖2 + ‖φn−1
u,r ‖2)

+α1‖(I − Pu,R)Du(tn/2)‖2 + ‖p(t
n+1)+ p(tn)

2
− qh‖2

+ν−1‖g‖2∞Δt4
(
β2
T ‖Ttt (·, t̃)‖2 + β2

C‖Ctt (t
∗)‖2

)

+(ν + ν−1‖Du(tn/2)‖2)Δt4‖Dut t (·, t̃)‖2 +Da−1Δt4‖ut t (t∗)‖2
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+ν−1Δt4
∥
∥ptt (t

∗)
∥
∥2 + ν−1Δt4‖ut t t (t∗)‖2

+Δt4α1‖(I − Pu,R)Dut t (t∗)‖2
)
. (2.63)

Dropping the third term on the left-hand side of (2.63) and summing over the time
steps and multiplying by 2Δt gives

‖φM
u,r‖2 +Δt

M−1∑

n=0

(
2ν‖Dφ

n/2
u,r ‖2 +Da−1‖φn/2

u,r ‖2 + α1‖(I − Pu,R)Dφ
n/2
u,r ‖2

)

≤ ‖φ0
u,r‖2 +KΔt

(

ν−1‖g‖2∞
M−1∑

n=0

(β2
T ‖φn/2

T ,r ‖2 + β2
C‖φn/2

C,r ‖2)

+
M−1∑

n=0

(‖ηn/2
T ‖2 + ‖ηn/2

C ‖2 + ‖ηu
n/2‖2)

+
M−1∑

n=0

‖Dηu
n/2‖2(1+ ‖Dηnu‖2 + ‖Dηn−1

u ‖2)

+ν−1h−1
M−1∑

n=0

(∥∥
∥Dηu

n/2‖2 + ‖D
(u(tn+1)+ u(tn)

2

)∥∥
∥

2)
(‖φn

u,r‖2 + ‖φn−1
u,r ‖2)

+α1

M−1∑

n=0

‖(I − Pu,R)Du(tn/2)‖2 +
M−1∑

n=0

∥
∥
∥
p(tn+1)+ p(tn)

2
− qh

∥
∥
∥

2

+Δt4
(
ν−1‖g‖2∞

M−1∑

n=0

(
β2
T ‖Ttt (·, t̃)‖2 + β2

C‖Ctt (t
∗)‖2)

+
M−1∑

n=0

(ν + ν−1‖Du(tn/2)‖2)‖Dut t (·, t̃)‖2 +Da−1
M−1∑

n=0

‖ut t (t∗)‖2

+ν−1
M−1∑

n=0

∥
∥ptt (t

∗)
∥
∥2+ν−1

M−1∑

n=0

‖ut t t (t∗)‖2+α1

M−1∑

n=0

‖(I − Pu,R)Dut t (t∗)‖2
))

.

Using Lemma 2.3, Lemma 2.4 and Assumption 1 in (2.64) and applying regularity
assumptions leads to
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‖φM
u,r‖2 +Δt

M−1∑

n=0

(2ν‖Dφ
n/2
u,r ‖2 +Da−1‖φn/2

u,r ‖2)

+α1

M−1∑

n=0

‖(I − Pu,R)Dφ
n/2
u,r ‖2

≤ ‖φ0
u,r‖2 +K

(

ν−1β2
T ‖g‖2∞Δt

M−1∑

n=0

‖φn/2
T ,r ‖2 + ν−1β2

C‖g‖2∞Δt
M−1∑

n=0

‖φn/2
C,r ‖2

+h2m + (1+ ‖Su,r‖2 + ‖Su,R‖2)h2m+2 + ε2
u,r + ε2

u,R +
d∑

i=r1+1

λi +
d∑

i=r2+1

μi

+
d∑

i=r3+1

ξi + (Δt)4 + (h2m + (‖Su,r‖2 + ‖Su,R‖2)h2m+2 + ε2
u,r )

2

+ν−1h−1
(
h2m + ‖Su,r‖h2m+2 + εu,r + ‖Du‖2∞

)M−1∑

n=0

(‖φn
u,r‖2)

)

. (2.64)

Finally, we add (2.52), (2.53) and (2.64) to get

‖φM
u,r‖2 + ‖φMT,r‖2 + ‖φMC,r‖2 +

M−1∑

n=0

(
2νΔt‖Dφ

n/2
u,r ‖2 +Da−1Δt‖φn/2

u,r ‖2
)

+γΔt
M−1∑

n=0

‖∇φn/2
T ,r ‖2 +DcΔt

M−1∑

n=0

‖∇φn/2
C,r ‖2 + α1‖(I − Pu,R)Dφ

n/2
u,r ‖2

+α2Δt

M−1∑

n=0

‖(I − PT,R)∇φn/2
T ,r ‖2 + α3Δt

M−1∑

n=0

‖(I − PC,R)∇φn/2
C,r ‖2

≤ ‖u0
r − ũ0‖2 + ‖T 0

r − T̃ 0‖2 + ‖C0
r − C̃0‖2 +K

(

ν−1β2
T ‖g‖2∞Δt

M−1∑

n=0

‖φn/2
T ,r ‖2

+ν−1β2
C‖g‖2∞Δt

M−1∑

n=0

‖φn+1
C,r ‖2+h2m+(‖Su,r‖2+‖Su,R‖2+‖ST,r‖2+‖ST,R‖2

+‖SC,r‖2+‖SC,R‖2)h2m+2+ε2
u,r + ε2

u,R+ε2
T ,r+ε2

T ,R+ε2
C,r+ε2

C,R + (Δt)4

+(h2m+‖Su,r‖2h2m+2+ε2
u,r )×

(
h2m+(‖Su,r‖2+‖ST,r‖2 + ‖SC,r‖2)h

2m+2
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+ε2
u,r + ε2

T ,r + ε2
C,r

)+
d∑

i=r1+1

λi +
d∑

i=r2+1

μi +
d∑

i=r3+1

ξi

+
(
(ν−1 + γ−1 +D−1

c )h2m−1 + (‖Su,r‖ + ‖ST,r‖ + ‖SC,r‖)h2m+1

+ν−1h−1εu,r + γ−1h−1εT ,r +D−1
c h−1εC,r + ‖Du‖2∞

)M−1∑

n=0

‖φn
u,r‖2

)

.

We remark that the application of the discrete Gronwall inequality requires an
assumption on the time step size. The final error estimation can be obtained by using
the assumption (u0

r , T
0
r , C

0
r ) = (ũ0, T̃ 0, C̃0), the triangle inequality and (2.21)–

(2.22).

2.5 Numerical Experiments

This section presents the numerical experiments for the linearly extrapolated
schemes described by (2.25)–(2.27). First of all, we aim to illustrate theoretical error
estimate (2.35) numerically and then show that our solution is more accurate than
the POD solution.

2.5.1 Problem Description

In our numerical tests, we use the mathematical model given in [4, 8, 18]. The
following boundary conditions are used in numerical experiments:

u = 0 on ∂Ω,

T = 0, C = 0 for x = 0,

T = 1, C = 1 for x = 1,

∇T · n = 0, ∇C · n = 0 for y = 0, y = 2.

The parameters are chosen as Δt = 1.5625e − 05, r = 12, N = 0.8, Le = 2,

ν = 1, Pr = 1, βT = −Ra
Pr

, βC = Ra ·N
Pr

, g = e2, γ = 1

Pr
, Dc = 1

Le · Pr .

Time domain is [0, 1] and the initial conditions are taken zero. In the computations
of the snapshots, we use finite element spatial discretization, Crank Nicholson
temporal discretization with Ra = 104 and Δt = 0.00025 with 30 × 60 uniform
triangulation. Thus, the total degrees of freedom is 59,255 for Taylor-Hood elements
and piecewise quadratics for both temperature and concentration.
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2.5.2 Test 1: Convergence Rates with Respect to Δt and R

To measure the efficiency of the method, we compute the rates of convergence with
respect to error sources. First, we illustrate error estimate (2.35) in Table 2.1 by
scaling the error with respect to Δt . For this test, we use

Ru = 18, RT = RC = 4, (νT )vel = 2, (νT )temp = (νT )conc = 1,

where Ru, RT , RC and (νT )vel, (νT )temp, (νT )conc denote VMS modes numbers
and artificial viscosities for the velocity, the temperature and the concentration. The
rates in Table 2.1 are approximately 2 which is consistent with the Crank Nicholson
time discretization method. We also scale the error with respect to VMS cutoff R.
We fix the artificial viscosities as α1 = 2, α2 = 1

8 , α3 = 1
8 . The VMS contribution

for each variable is given by

εu,R =

√√
√
√
√

d∑

j=R+1

‖ψj‖2
1λj , εT ,R =

√√
√
√
√

d∑

j=R+1

‖φj‖2
1μj , εC,R =

√√
√
√
√

d∑

j=R+1

‖ηj‖2
1ξj .

The results of this test are given in Table 2.2. This table shows that the rate of
convergence of ‖u− ur‖L2(H 1), ‖T − Tr‖L2(H 1), ‖C−Cr‖L2(H 1) with respect to R

is close to the theoretical value of 0.5 predicted by (2.35).

Table 2.1 Convergence of the VMS-POD for varying Δt

r R Δt ‖T − Tr‖L2(H 1) Rate ‖C − Cr‖L2(H 1) Rate

20 4 0.002 38.2096 – 68.4042 –

20 4 0.0005 4.9725 1.47 9.4995 1.42

20 4 0.000125 0.1680 2.44 0.2502 2.62

r R Δt ‖u− ur‖L2(H 1) Rate

20 18 0.001 1.9257e3 –

20 18 0.0005 1.8132e2 3.40

20 18 0.000125 4.1218 2.72

Table 2.2 Convergence of the VMS-POD for varying R

r R εu ‖u− ur‖L2(H 1) Rate εT ‖T − Tr‖L2(H 1) Rate

12 4 21.8237 0.63196 – 1.5694 0.01427 –

12 6 8.8818 0.22636 1.14 0.4319 0.00823 0.42

12 8 4.4168 0.13008 0.79 0.1842 0.00416 0.80

r R εC ‖C − Cr‖L2(H 1) Rate

12 4 1.5529 0.02991 –

12 6 0.6768 0.01468 0.85

12 8 0.3858 0.00927 0.81
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2.5.3 Test 2: Comparison of POD Solution and VMS-POD
Solution

In this test, we investigate the impact of the VMS method. We choose α1 = α2 =
α3 = 10−3, and R = 5. Figures 2.1, 2.2, 2.3 illustrate the decreasing behaviours
of L2 errors for each variable. It is clear from these figures that the VMS method

Fig. 2.1 L2 errors for
velocity of stabilized and
unstabilized solution

Fig. 2.2 L2 errors for
temperature of stabilized and
unstabilized solution

Fig. 2.3 L2 errors for
concentration of stabilized
and unstabilized solution
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improves the behaviour of the POD method. Hence, the VMS-POD model gives
more accurate results than the POD model.

2.6 Conclusion

We propose an extrapolated VMS-POD method for Darcy Brinkman scheme.
The algorithm (2.25)–(2.27) includes projection based VMS stabilization in POD
for each fluid variable and treats the nonlinearity with the Crank Nicholson
extrapolations. The numerical analysis of the proposed algorithm is performed.
In addition, theoretical results are confirmed numerically and the efficiency of the
algorithm (2.25)–(2.27) is presented.
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Chapter 3
Comparison of Exact and Numerical
Solutions for the Sharma–Tasso–Olver
Equation

Doğan Kaya, Asıf Yokuş, and Uğur Demiroğlu

3.1 Introduction

In this study, we implemented to find the exact solutions of STO equation [1–6] by
using an aBTM [7–10] with the help of computer programming. In this application
we establish the exact solutions of the STO equation

ut + 3u2
x + 3u2ux + 3uuxx + uxxx = 0 (3.1)

where u = u(x, t) is a real function for all x, t ∈ R. In literature, the STO equation
has been studied in many applications by many physicists and mathematicians. Yan
considered Eq. (3.1) by using the transformation of Cole–Hopf method [9]. Lian and
Lou [2] have been implementing to get exact solutions of this equation by using the
symmetry reduction scheme. Several papers of Eq. (3.1) are also published in the
means of treating analytically by the various types of hyperbolic method (such as
tanh and sech) and some ansatz consisting of hyperbolic and exponential functions
in [11–13].

Nonlinear model of the equations for both mathematicians and physicists are
very important to construct explicit and numerical solutions schemes. Because
of the importance, in recent years, remarkable progress has been made in the

D. Kaya
Department of Mathematics, Istanbul Commerce University, Istanbul, Turkey
e-mail: dogank@ticaret.edu.tr

A. Yokuş (�)
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establishment of the solutions for nonlinear either ordinary or partial differential
equations (in short ODE or PDE) [8, 9]. It is very important to say that directly
obtaining the solution of the nonlinear equation is physically meaningful because
these types of solutions are keeping the actual physical characters [14]. There are
many studies to create exact and numerical solutions for nonlinear PDEs [15–17].
To get the exact solution, some transformations are needed, such as Miura, Darboux,
Cole–Hopf, the inverse scattering, and the Bäcklund transformation. The other
commonly used methods are given as: tanh method, sine-cosine method, Painleve
method, homogeneous balance method (HB), similarity reduction method, and so
on [8, 9, 13]. On the other hand, some of the numerical methods [18–22] for the
nonlinear PDE have been investigated such as the finite element method, Galerkin
method, collocation methods with quadratic B-splines, an explicit multistep method,
finite difference methods, Fourier Leap-Frog method, and some group of semi-
analytic methods such as HAM, ADM, HPM, and so on [10].

3.2 Analysis of the Exact Solution Method

Now we will briefly give a description of the aBTM [7–10], for a given nonlinear
PDE

Ψ (u, ut , ux, uxx, . . .) = 0. (3.2)

We get the homogenous balance (HB) of Eq. (3.1) in the form

u = ∂αx ∂
β
t f [w]+ v, (3.3)

where w = w(x, t), u = u(x, t), and v = v(x, t) are undetermined functions and
α, β are positive integers determined by balancing the highest derivative term with
the nonlinear terms in Eq. (3.1) (see [7–10] for details). However, we find that the
constants α, β should not be restricted to positive integers. Substituting Eq. (3.3)
into Eq. (3.1) yields a set of algebraic equations for f ′, f ′′, . . ., then all coefficients
of these set are equal to zero. After the algebraic equation system is solved, we find
the transformed form of Eq. (3.1); then by the solution of this transformed form we
have the solutions of Eq. (3.1).

3.3 An Application of the Exact Solution Method

Let us consider Eq. (3.1). According to the idea of improved HB [7–10], we seek
for Bäcklund transformation of Eq. (3.1). And according to the balancing principle
by using Eq. (3.3) we have α = 1 and β = 0. Therefore, we may choose
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u = ∂xf [w]+ v = f ′wx + v, (3.4)

where f = f (w) and w = w(x, t) are undetermined functions, and u = u(x, t)
and v = v(x, t) are two solutions of Eq. (3.1). Substituting Eq. (3.4) into Eq. (3.1),
we obtain

(
3f ′2f ′′ + 3f ′′2 + 3f ′f ′′′ + f (4)

)
w4
x +

(
3f ′3 + 15f ′f ′′ + 6f ′′′

)
w2
xwxx

+ (3vf ′′′ + 6vf ′f ′′
)
w3
x + (f ′′wxt + 3v2f ′′w2

x + 6f ′′vxw2
x + 9vf ′′wxwxx

+ 3f ′′w2
xx + 4f ′′wxwxxx + 6vf ′2wxwxx + 3f ′2w2

xx + 3f ′2wxwxxx + 3f ′2vxw2
x)

+
(
f ′wxt + 3f ′vxxwx + 3v2f ′wxxx + 6vf ′vxwx

)

+
(
vt + 3v2

x + 3v2vx + 3vvxx + vxxx

)
= 0.

(3.5)

Setting the coefficients of w4
x in Eq. (3.5) to zero, we obtain following differential

equation:

3f ′2f ′′ + 3f ′′2 + 3f ′f ′′′ + f (4) = 0, (3.6)

which have solutions as in the following cases.

3.3.1 Case 1

If

f = 2 lnw, (3.7)

then by from Eq. (3.7) it holds that

f ′ f ′′ = −f ′′′, f ′2 = −2f ′′, f ′3 = 2f ′′′. (3.8)

By using nonlinear Eq. (3.8), Eq. (3.5) can be rewritten as the sum of some terms
with f ′, f ′′, . . ., equating the coefficients to zero yields

(−3vw3
x − 3w2

xwxx)f
′′′ = 0,

(wtwx + 3v2w2
x − 3vwxwxx − 3w2

xx − 2wxwxxx)f
′′ = 0,

(6vvxwx + wxt + 3wxvxx + 3v2wxx + 6vxwxx + 3vwxxx + wxxxx)f
′ = 0,

(vt + 3v2
x + 3v2vx + 3vvxx + vxxx) = 0.

(3.9)

From the system Eq. (3.9) v can be taken as an arbitrary constant so that some of
the terms are vanished. The coefficient of the derivative of f for the new system of
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Eq. (3.10) will be

−3w2
x(vwx + wxx) = 0,

wtwx + 3v2w2
x − 3vwxwxx − 3w2

xx − 2wxwxxx = 0,

∂x(wt + 3v2wx + 3vwxx + wxxx) = 0.

(3.10)

In Eq. (3.9), the first equation vwx +wxx is a linear PDE and so this equation has a
type of solution as

w = a0 + a1 exp[b(x − ct)], (3.11)

where a0, a1, b, and c are arbitrary constants (Fig. 3.1). Substituting the excepted
solution Eq. (3.11) into the set of Eq. (3.9), a set of nonlinear algebraic equations is
obtained.

b + v = 0,

b2 − c + 3bv + 3v2 = 0,

5b2 + c + 3bv − 3v2 = 0.

(3.12)

From the equation system Eq. (3.12), we obtain

b = −√c, v = √c and b = √c, v = −√c. (3.13)

By means of computer program, substituting b in Eq. (3.13) into Eq. (3.11) and
solution Eq. (3.11) into Eq. (3.7) we can find the wave solutions of Eq. (3.1). This
solution is as following:

u1 (x, t) = −
√
c + a1

√
c
(
cosh

[
c3/2t −√cx]− sinh

[
c3/2t −√cx])

a0 + a1 cosh
[
c3/2t −√cx]− a1 sinh

[
c3/2t −√cx] , (3.14)

u2 (x, t) =
√
c − a1

√
c
(
cosh

[
c3/2t −√cx]+ sinh

[
c3/2t −√cx])

a0 + a1 cosh
[
c3/2t −√cx]+ a1 sinh

[
c3/2t −√cx] . (3.15)

3.3.2 Case 2

If

f = lnw, (3.16)
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Fig. 3.1 Exact solution u1(x, t) of Eq. (3.14) by substituting the values c = 4, a0 = 1, a1 = 1,
−3 ≤ x ≤ 3, −3 ≤ t ≤ 3, and t = 0.00001 for the 2D graphic for an aBTM application

then by from Eq. (3.16) it holds that

f ′ f ′′ = −1

2
f ′′′, f ′2 = −f ′′, f ′3 = 1

2
f ′′′. (3.17)

Equation (3.5) can be rewritten as the sum of some terms with f ′, f ′′, . . . equating
the coefficients to zero yields

(wtwx + 3v2w2
x + 3vxw

2
x + 3vwxwxx + wxwxxx)f

′′ = 0,

(6vvxwx + wxt + 3vxxwx + 3v2wxx + 6vxwxx + 3vwxxx + wxxxx)f
′ = 0,

(
vt + 3v2

x + 3v2vx + 3vvxx + vxxx

)
= 0.

(3.18)

From the system Eq. (3.18) v can be taken as an arbitrary constant and where the
third equation of the system Eq. (3.18) gives wt + 3v2wx + 3vwxx + wxxx = 0,
which is a linear PDE and so this equation has a solution as

w = a0 + a1 exp[b(x − ct)], (3.19)

where a0, a1, b, and c are arbitrary constants (Fig. 3.2). Substituting Eq. (3.19) into
the set of Eq. (3.10), a set of nonlinear algebraic equations yields

b2 − c + 3bv + 3v2 = 0. (3.20)

From the algebraic Eq. (3.20) we obtain

b = 1

2

(
−3v +

√
4c − 3v2

)
and b = 1

2

(
−3v −

√
4c − 3v2

)
. (3.21)

By means of Mathematica, substituting Eq. (3.21) into Eq. (3.19) and Eq. (3.19) into
Eq. (3.4) we have the following kink-type solutions of Eq. (3.10):
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Fig. 3.2 Exact solution u1(x, t) of Eq. (3.22) by substituting the values c = 4, a0 = 1, a1 = 1,
v = 1, −3 ≤ x ≤ 3, −3 ≤ t ≤ 3, and t = 0.00001 for the 2D graphic for an aBTM application

u1 (x, t) = v +
a1

(
−3v −

√
4c − 3v2

)
⎡

⎣
cosh

[
1
2

(
−3v −

√
4c − 3v2

)
(−ct + x)

]

+ sinh
[

1
2

(
−3v −

√
4c − 3v2

)
(−ct + x)

]

⎤

⎦

2

⎡

⎣
a0 + a1 cosh

[
1
2

(
−3v −

√
4c − 3v2

)
(−ct + x)

]

+a1 sinh
[

1
2

(
−3v −

√
4c − 3v2

)
(−ct + x)

]

⎤

⎦

,

(3.22)

u2 (x, t) = v +
a1

(
−3v +

√
4c − 3v2

)
⎡

⎣
cosh

[
1
2

(
−3v +

√
4c − 3v2

)
(−ct + x)

]

+ sinh
[

1
2

(
−3v +

√
4c − 3v2

)
(−ct + x)

]

⎤

⎦

2

⎡

⎣
a0 + a1 cosh

[
1
2

(
−3v +

√
4c − 3v2

)
(−ct + x)

]

+a1 sinh
[

1
2

(
−3v +

√
4c − 3v2

)
(−ct + x)

]

⎤

⎦

.

(3.23)

3.4 Analysis of Finite Difference Method

The following notations are needed to express some for using numerical FDM:

1. A corresponding choice of the time and spatial steps Δt and Δx, respectively,
2. The coordinates of mesh points are given as xi = a + iΔx and tj = jΔt ,

i; j = 0, 1, 2, . . . , N;M where N = b−a
Δx

and M = T
Δt

, respectively.
3. The solution of the given function u(x, t) can be written their grid points as

u(xi, tj ) ∼= ui,j which are represent the numerical results of the values of u(x, t)
at the points of (xi, tj ).
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We have the difference operators as [18]

Htui,j = ui,j+1 − ui,j , (3.24)

Hxui,j = ui+1,j − ui,j , (3.25)

Hxxui,j = ui+1,j − 2ui,j + ui−1,j , (3.26)

Hxxxui,j = ui+2,j − 2ui+1,j + 2ui−1,j − ui−2,j . (3.27)

Therefore corresponding terms of the derivatives of the given equation will be
replaced with the discrete operators for FDM as following:

∂u

∂t

∣
∣
∣
∣
i,j

= Htui,j

Δt
+O(Δt), (3.28)

∂u

∂x

∣
∣
∣
∣
i,j

= Hxui,j

Δx
+O(Δx), (3.29)

∂2u

∂x2

∣
∣
∣
∣
i,j

= Hxxui,j

(Δx)2 +O(Δx2), (3.30)

∂3u

∂x3

∣
∣
∣
∣
i,j

= Hxxxui,j

2 (Δx)3
+O(Δx2), (3.31)

initial values ui,0 = u0(xi).

3.4.1 Truncation Error and Stability Analysis

In this part of the section, an investigation of the stability and error analysis of the
FDE will be given. With the classical definition of the stability, if there is a small
change in the initial condition, then this change would not cause a large error in the
final numerical results.

Theorem 3.1 If the truncation of the finite difference formula of error to the STO
equation is E, then lim

Δx→0
Δt→0

E = 0.

Proof Substituting Eqs. (3.28)–(3.31) into Eq. (3.1) gives

(
Htui,j

Δt
+O(Δt)

)

+ 3

(
Hxui,j

Δx
+O(Δx)

)2
+ 3u2

i,j

(
Hxui,j

Δx
+O(Δx)

)

+ 3ui,j

(
Hxxui,j

(Δx)2
+O(Δx2)

)

+ Hxxxui,j

2 (Δx)3
+O(Δx2) = 0.

(3.32)
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We could rewrite Eq. (3.32) in a suitable way; final formulation could be arranged
in the following form:

(
Htui,j

Δt

)

+ 3

(
Hxui,j

Δx

)2
+ 3u2

i,j

(
Hxui,j

Δx

)

+ 3ui,j

(
Hxxui,j

(Δx)2

)

+ Hxxxui,j

2 (Δx)3

+O(Δx2)+O(Δt)+ 3 (O(Δx))2 + 6
Hxui,j

Δx
O(Δx)+ 3u2

i,jO(Δx)

+ 3ui,jO(Δx2) = 0.
(3.33)

If we expand the truncation error, we get below equation

E = O(Δx2)+O(Δt)+3 (O(Δx))2+6
Hxui,j

Δx
O(Δx)+3u2

i,jO(Δx)+3ui,jO(Δx2), (3.34)

after the expanding and separating Eq. (3.32) will get the indexed of Eq. (3.1),

(
Htui,j

Δt

)

+ 3

(
Hxui,j

Δx

)2

+ 3u2
i,j

(
Hxui,j

Δx

)

+ 3ui,j

(
Hxxui,j

(Δx)2

)

+ Hxxxui,j

2 (Δx)3 = 0. (3.35)

If we substitute the equalities Eqs. (3.24)–(3.27) into Eq. (3.35) and then do some
algebraic manipulations, the following equality will be constructed:

ui+1,j = 1

6Δx
√
Δt

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

√
Δt
(
1− 3Δxui,j

(−2+Δxui,j
))

−

⎡

⎢
⎢
⎢
⎢
⎣

Δt + 6ΔtΔxui−2,j − 12ΔtΔxui−1,j
(
1+ 3Δxui,j

)

+3Δx

⎛

⎜
⎜
⎝

22ΔtΔxu2
i,j
+ 3Δt (Δx)3 u4

i,j

+4ui,j
(
Δt + (Δx)3 − 3ΔtΔxui,j+1

)

−2
(

2 (Δx)3 ui,j+1 +Δtui+2,j

)

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎦

1
2

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

.

(3.36)

By using Eq. (3.36), we can write numerical solution Û as Û = ui+1,j . Moreover,

E transaction error could be written E =
∣
∣
∣U − Û

∣
∣
∣, where U is found exact and Û

is a corresponding numerical solution. Obviously, using Eq. (3.33) we can conclude
that if Δx and Δt are taking as small as necessary E error will be very small. As
result of this, limit of E would be written

lim
Δx→0
Δt→0

E = 0. (3.37)

Now, if Δt and Δx are taken as small as close to zero ε > 0, then above equality
will be written |E| < ε. From this expression, we could say that FDM is stable.

Theorem 3.2 The FDM for the STO equation is linear stable.

Proof We consider the von Neumann’s stability of the FDM for the STO equation
[22]. Let

ui,j = u(iΔx, jΔt) = u(p, q) = εqeIξ p, ξ ∈ [−π, π ] , (3.38)
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where p = iΔx, q = jΔt , and I = √−1. Here, we examine the stability of the
numerical scheme with STO equation with strong nonlinearity by using the Fourier–
von Neumann stability analysis. To carry out this analysis, we linearize the nonlinear
terms 3u2

x , 3u2ux , and 3uux by taking û1 = 3ux , û2 = 3u2 and û3 = 3u as local
constants. Therefore, the nonlinear terms 3u2

x , 3u2ux , and 3uuxx in the equation
were changed to û1ux , û2ux , and û3uxx , respectively,

ut + û1ux + û2ux + û3uxx + uxxx = 0. (3.39)

Inserting Eqs. (3.28)–(3.31) into Eq. (3.39) yields

ξ = X − iY, (3.40)

where

X = 1

((Δx)2 + (Δt)û3)

⎛

⎜
⎜
⎝

(Δx)2 + (Δx)(Δt)û1 + (Δx)(Δt)û2 + 2(Δt)û3

− (Δx)(Δt)û1 cos(φ)− (Δx)(Δt)û2 cos(φ)

− (Δt)û3 cos(φ)

⎞

⎟
⎟
⎠ (3.41)

and

Y = (Δt) sin(φ)

(Δx)((Δx)2 + (Δt)û3)

(
−2+ (Δx)2û1 + (Δx)2û2 − (Δx)û3 + 2 cos(φ)

)
. (3.42)

By the Fourier stability, for a given numerical scheme to be stable, |ξ | ≤ 1 and
|ξ |2 = X2 + Y 2 must be satisfied. The stability of the numerical scheme depends
on choosing the values of (Δx) and (Δt) to be very small.

3.4.2 L2 and L∞ Error Norms

For the considered model Eq. (3.1) of the approximate numerical solutions is also
calculated with the help of the Mathematica programming environments. In order to
conclude that how the explicit and corresponding approximate results are how much
close to each, we use error norms similarly defined in reference [18] as

L2 =
∥
∥
∥uexact − unumeric

∥
∥
∥

2
=

√√
√
√
√h

N∑

j=0

∣
∣
∣uexactj − unumericj

∣
∣
∣
2

and

L∞ =
∥
∥
∥uexact − unumeric

∥
∥
∥∞ = Max

j

∣
∣
∣uexactj − unumericj

∣
∣
∣.
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Table 3.1 Exact and corresponding numerical solutions of Eq. (3.1) and its absolute errors with
Δx = 0.00001 and 0 ≤ x ≤ 1

xi tj NumericalSolution ExactSolution Error

0.00000 0.00001 −0.9999899998369807 −1.0000399999999785 0.000050000162997831940

0.00001 0.00001 −0.9999799998295793 −1.0000299999999909 0.000050000170411568234

0.00002 0.00001 −0.9999699998295847 −1.0000199999999975 0.000050000170412789480

0.00003 0.00001 −0.9999599998406973 −1.0000099999999996 0.000050000159302343580

0.00004 0.00001 −0.9999499998296136 −1.0000000000000000 0.000050000170386366170

0.00005 0.00001 −0.9999399998333433 −0.9999900000000002 0.000050000166656904990

0.00006 0.00001 −0.9999299998333838 −0.9999800000000028 0.000050000166618935360

3.5 Implementation of the FDEs

Here, the presentation of the numerical results have been obtained by using the
following data: c = 4, a0 = 1, a1 = 1, 0 < x < 1, and 0 < t < 1 for Eq. (3.14),
the initial conditions are

u0(x) = u1(x, 0) = −2+ 2 (cosh [2x]+ sinh [2x])

1+ cosh [2x]+ sinh [2x]
= −1+ tanh [x] (3.43)

and using the above suppositions, the explicit solution of Eq. (3.1) will be written as

u1(x, t) = −2+ 2 cosh [8t − 2x]

1+ cosh [8t − 2x]− sinh [8t − 2x]

− 2 sinh [8t − 2x]

1+ cosh [8t − 2x]− sinh [8t − 2x]

= − 2

1+ cosh [8t − 2x]− sinh [8t − 2x]
.

(3.44)

According to the finite forward difference method, inserting the values
(Δx) = (Δt) = 0.0000001 into Eq. (3.14), yields the following:

ui+1,j = 4.166× 10−12

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3.999× 1015 + 2.4× 1011ui,j − 1.2× 106u2
i,j

− 1.732

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

5.333× 1030 + 3.1999× 1026ui−2,j

− 6.399× 1026ui−1,j + 6.4× 1026ui,j

− 1.92× 1022ui−1,j ui,j + 3.52× 1022u2
i,j

+ 4.8× 1011u4
i,j − 6.4× 1016ui,j+1

− 1.92× 1022ui,j ui,j+1 − 3.199× 1026ui+2,j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

1
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We compare exact and numerical solutions in Tables 3.1 and 3.2.
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Table 3.2 L2 and L∞ error norm when 0 ≤ Δx ≤ 1 and 0 ≤ Δt ≤ 1

Δx = Δt L2 L∞
0.05000 0.2033790000 0.2531790000

0.01000 0.0395503000 0.0501589000

0.00500 0.0196868000 0.0250407000

0.00100 0.0039227400 0.0050016600

0.00010 0.0001574410 0.0005000170

0.00001 0.0000157575 0.0000500002
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Fig. 3.3 A comparison for exact and corresponding numerical solutions of Eq. (3.1)

The L2 and L∞ error norm is shown in Table 3.2.
We could conclude that explicit and corresponding approximate solutions are in
good agreement which are illustrated above numerical results are Tables 3.1 and
3.2.

Figures 3.3, 3.4 shows that the exact and corresponding numerical solutions
of Eq. (3.1) are very close results which desired result. Because, our considered
numerical method is stable and truncation error due to very much the choice of
the Δx and Δt . This conclusion of the behavior of the exact and corresponding
approximate solutions can be seen in the following depicted graph for the special
value of Δx = 0.00001.
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Fig. 3.4 The behavior of the exact and corresponding approximate solutions for absolute error of
Eq. (3.1)

3.6 Conclusions

In this paper, we present aBT method which is applied to integrable STO equation.
Using this transformation method it is easy to see that the nonlinear PDE such as
STO equations transforming to linear PDEs. Thus we can obtain two traveling wave
solutions of this equation. We present the plotting 2D and 3D surfaces to these
obtained solutions. This method of application is also easy to build programming
based on algebraic programming. Here important to point out that if the taken
equation is not integrable (e.g., Painleve integrable, C-integrable, S-integrable, Lax
integrable, and Liouville integrable, etc.) this algorithm of method is not working.
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Chapter 4
A Linear B-Spline Approximation for a
Class of Nonlinear Time and Space
Fractional Partial Differential Equations

Behrouz Parsa Moghaddam, José António Tenreiro Machado,
and Arman Dabiri

4.1 Introduction

Recent studies have shown that fractional partial differential equations (FPDEs) are
superior to model anomalous diffusion processes [2, 3, 12, 16, 26, 33]. Following
these ideas, the fractional Kolmogorov–Petrovskii–Piskunov, Newell–Whitehead–
Segel, FitzHugh–Nagumo, and Fisher equations were proposed for the diffusion
equation with a nonlinear source term. FPDEs emerge in a wide variety of appli-
cations like electromagnetic, acoustics, electrochemistry, cosmology, and material
science [18, 23, 25, 27, 29]. Numerical solution algorithms for solving FPDEs are
still at their early stage of development. Nonetheless, FPDEs received considerable
attention during the past years and we can find the approximated solution of space-
fractional diffusion equations using finite difference methods [15, 17, 21, 32, 33],
finite element methods [7, 8, 24, 28, 30, 31], and spectral [1] methods.

In this chapter, FPDEs are solved using different numerical methods. As for
any numerical algorithm, it is crucial to study the effects of the round-off error
on the sensitivity of the algorithms. Spline functions overcome this issue, as they
are commonly used to construct stable numerical methods. For this purpose, we
employ a linear B-spline interpolation for the spatial discretization and an upwind
finite difference method for the time discretization.
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The outline of this chapter is as follows. In Sect. 4.2, the space-fractional
integral and time-fractional derivative operators are discretized. In Sect. 4.3, two
unconditionally stable methods for solving a class of space- and time-FPDEs
with one space variable are presented. The error analysis and the stability of the
numerical methods are also discussed. In Sect. 4.4, the efficiency and accuracy
of the present approaches are examined for several special cases of the fractional
KPP equation with the initial-boundary value conditions. Finally, Sect. 4.5 draws
the main conclusions.

4.2 Discretization of the Fractional Operators

In this section, a brief review on the fractional-order operators is given. Moreover,
a technique for the discretization of the space-fractional integral and time-fractional
derivative operators is also presented.

Several types of fractional-order integral and derivative operators have been
proposed based on different concepts [14].

Definition 4.2.1 The fractional-order integration operator in the sense of Riemann–
Liouville is defined by

J α
0,t u(x, t) :=

1

Γ (α)

∫ t

0
(t − ζ )α−1u(x, ζ )dζ , α > 0, (4.1)

where ζ is an auxiliary variable belonging to the interval (0, t) and Γ (·) is the
gamma function. Moreover, for a smooth function u(x, t), we have [4]

J α
0,t u

(α)
t (x, t) = u(x, t)+

n−1∑

j=0

tj

j !u
(j)
t (x, 0), (4.2)

where n− 1 < α ≤ n, n ∈ N.

Definition 4.2.2 Let us consider n − 1 < α < n, n ∈ N, a function u(x, t) that
is n − 1 times continuously differentiable with respect to t and u

(n)
t (x, t) that is at

least once integrable. Then, the fractional-order derivative operator in the sense of
Caputo is defined by

u
(α)
t (x, t) := 1

Γ (n− α)

∫ t

0

u
(n)
t (x, ζ )

(t − ζ )α+1−n dζ. (4.3)

Proposition 4.2.1 Suppose that u(x, t)∈C2(Ω), Ω = (0, L) × (0, T ) ⊆ R
2, and

let us define the space and time grid points by

xi = i hx, i = 0, 1, . . . , N, (4.4a)
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tk = k ht , k = 0, 1, . . . ,M, (4.4b)

where hx = L
N

and ht = T
M

. Then, an approximation of the α-order spatial integral
of u(x, t) at the space point x = xm is

J α
0,xmu(x, tn) =

m∑

k=0

hαx

Γ (2+ α)
am,ku(xk, tn)+ E1(xm, tn), (4.5)

so that

am,k =
⎧
⎨

⎩

mα(α + 1−m)+ (m− 1)α+1, k = 0
(m− k − 1)α+1 + (m− k + 1)α+1 − 2(m− k)α+1, 1 ≤ k ≤ m− 1
1, k = m

,

(4.6)

and the �∞-norm of the approximation error E1(xm, tn) is bounded as

‖E1(xm, tn)‖∞ ≤ mαh2+α
x

Γ (α + 1)

∥
∥
∥u(2)x (xm, tn)

∥
∥
∥∞ . (4.7)

Proof We build the piecewise linear interpolant of u(x, t) in the spatial space x

upon the interpolate of the given function on each sub-interval [xk, , xk+1] with the
first-degree polynomial:

u(x, t) ≈ sm(x, t) =
m−1∑

k=0

(
x − xk+1

xk − xk+1
u(xk, t)+ x − xk

xk+1 − xk
u(xk+1, t)

)

. (4.8)

Then, the substitution of the piecewise linear interpolant (4.8) into (4.1) yields

J α
0,xmu(x, tn) ≈J α

0,xmsm(x, tn)

= 1

Γ (α)

m−1∑

k=0

{∫ xk+1

xk

(xm − ζ )α−1sm(ζ, tn)dζ

}

= 1

Γ (α)

m−1∑

k=0

(∫ xk+1

xk

(xm − ζ )α−1 ζ − xk+1

xk − xk+1
dζ

)

u(xk, tn)

+ 1

Γ (α)

m−1∑

k=0

(∫ xk+1

xk

(xm−ζ )α−1 ζ−xk
xk+1−xk dζ

)

u(xk+1, tn). (4.9)

Finally, the integral in the summation of (4.9) can be calculated explicitly knowing
that xk = k hx . This obtains the coefficients (4.6) and completes the proof.
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Proposition 4.2.2 Let u(x, t) ∈ C2(Ω) and 0 < α ≤ 1. Then, the α-order
temporal derivative of u(x, t) at x = xm is approximated by

u
(α)
t (xm, t) =

n∑

k=0

h1−α
t

Γ (3− α)
bk,nδu(xm, tk)+ E2(xm, tn), (4.10)

and the corresponding error E2(xm, tn) at tn is bounded by

‖E2(xm, tn)‖∞ ≤ 2h2−α
t

Γ (2− α)

∥
∥
∥u(2)t (xm, tn)

∥
∥
∥∞ , (4.11)

where δu(x, tk) is the central differential operator and

bk,n =
⎧
⎨

⎩

(n− 1)2−α − n1−α(n− 2+ α), k = 0
(n− k + 1)2−α − 2(n− k)2−α + (n− k − 1)2−α, 1 ≤ k ≤ n− 1
1, k = n

.

(4.12)

Proof The proof is similar to that of Proposition 4.2.1 by using the central finite
difference approximation for the time-fractional derivative.

4.3 Numerical Approach for the FPDE

In this section, we consider a class of the space- and time-FPDEs.

4.3.1 Space-FPDE

Consider the following space-FPDE with the solution u(x, t)∈C2(Ω), Ω =
(0, L)× (0, T ) ⊆ R

2,

u(α)x (x, t) = u
(1)
t (x, t)+ f (t, x, u(x, t)), (4.13)

subject to the initial and boundary conditions

u(x, 0) = q(x), (4.14a)

u
(j)
x (0, t) = pj (t), j = 0, 1, . . . , n− 1, (4.14b)

where n− 1 < α ≤ n, n ∈ N.
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We assume that pj (t) and q(x) are smooth functions, and the nonlinear source
term f (t, x, u) satisfies the Lipschitz condition with the Lipschitz constant lf > 0:

|f (t, x, u)− f (t, x,w)|≤lf |u− w|. (4.15)

In addition, let unm denote the numerical solution of (4.13) at the grid point (xm, tn)
with the mesh step sizes hx and ht .

According to Definition 4.2.1, the integral form of the initial boundary value
problem (4.13) is

u(x, t) =
n−1∑

j=0

xj

j ! u
(j)
x (0, t)+J α

0,x

(
u
(1)
t (x, t)+ f (t, x, u(x, t))

)
, (4.16)

with solution at the point (xm, tn) given by

u(xm, tn) =
n−1∑

j=0

x
j
m

j ! u
(j)
x (0, tn)+J α

0,xm

(
u
(1)
t (x, tn)+ f (tn, x, u(x, tn))

)
.

(4.17)

The fractional integral is approximated using Proposition 4.2.1 and the
formula (4.5):

u(xm, tn) ≈ unm =
n−1∑

j=0

x
j
m

j ! u
(j)
x (0, tn)

+
m∑

k=0

hαx

Γ (α + 2)
am,k

(
u
(1)
t (xk, tn)+f (xk, tn, unk)

)
+O

(
h2+α
x

)
, (4.18)

where the coefficients am,k are given in (4.12).
The temporal derivative u

(1)
t (xk, tn) can be obtained by the upwind finite

difference approximation in the t-direction:

u
(1)
t (xk, tn) = unk − un−1

k

ht
+ O(ht ). (4.19)

Therefore, it yields

unm =
n−1∑

j=0

x
j
m

j ! u
(j)
x (0, tn)

+
m∑

k=0

hαx

Γ (α + 2)
am,k

(
unk − un−1

k

ht
+f (tn, xk, unk)

)

+O
(
hαxht+h2+α

x

)
. (4.20)
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The explicit spline finite difference algorithm is obtained by neglecting
O
(
hαxht + h2+α

x

)
:

unm =
n−1∑

j=0

x
j
m

j ! u
(j)
x (0, tn)+ hαx

Γ (α + 2)

(
unm − un−1

m

ht
+ f (tn, xm, u

n
m)

)

+
m−1∑

k=0

hαx

Γ (α + 2)
am,k

(
unk − un−1

k

ht
+ f (tn, xk, u

n
k)

)

. (4.21)

We often employ an iteration procedure to obtain unknown variable unm in (4.21)
as the function f is usually nonlinear and unm exists in the both sides of the
equation (4.21). Moreover, we substitute a predicted value unm into the right-hand
side of (4.21) to achieve a better approximation. For this purpose, let punm be the
predicted solution obtained by the Adams–Bashforth method [5] as

punm =
n−1∑

j=0

x
j
m

j ! u
(j)
x (0, tn)

+
m−1∑

k=0

hαx

Γ (α + 1)
cm,k

(
unk − un−1

k

ht
+ f (tn, xk, u

n
k)

)

, (4.22)

where

cm,k = (m− k)α − (m− k − 1)α. (4.23)

Replacing punm in the right-hand side of (4.21) by (4.22) gives

unm =
�α�−1∑

j=0

x
j
m

j ! u
(j)
x (0, tn)+ hαx

Γ (α + 2)

(
punm − un−1

m

ht
+ f (tn, xm,

punm)

)

+
m−1∑

k=0

hαx

Γ (α + 2)
am,k

(
unk − un−1

k

ht
+ f (tn, xk, u

n
k)

)

. (4.24)

Theorem 4.3.1 Suppose that Re(α) > 0 and consider the functions u(x, t) and
u
(α)
x (x, t)∈C2(Ω). If the function f (t, x, u) holds the Lipschitz condition with

respect to the second variable, then the error of the scheme (4.22)–(4.24) satisfies

‖u(xj , ti)− uij‖∞ ≤ C
(
hαxht + h2+α

x

)
, (4.25)

where C is a constant independent of ht and hx .
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Proof The inequality (4.25) holds for j = i = 0 as the initial and boundary
conditions are given. Now, we shall prove that the inequality (4.25) also holds for
j = m and i = n, when it is held for j = 0, 1, . . . , m− 1 and i = 0, 1, . . . , n− 1.

Firstly, we observe the error of predicted value punm. Subtracting (4.22)
from (4.17) yields

∣
∣u(xm, tn)− punm

∣
∣ =

∣
∣
∣
∣

[
J α

0,x

(
u
(1)
t (x, t)+ f (t, x, u(x, t))

) ]

(xm,tn)

−
m−1∑

k=0

hαx

Γ (α + 1)
cm,k

(
u
(1)
t (xk, tn)+ f (tn, xk, u

n
k)
) ∣∣
∣
∣.

Using (4.13), we have

∣
∣u(xm, tn)− punm

∣
∣ ≤

∣
∣
∣
∣

[
J α

0,xu
(α)
x (x, t)

]

(xm,tn)

−
m−1∑

k=0

hαx

Γ (α + 1)
cm,k[u(α)x (x, t)](xm,tn)

∣
∣
∣
∣

+
m−1∑

k=0

hαx

Γ (α + 1)
cm,k

(∣∣u(1)t (xk, tn)− (u
(1)
t )nk

∣
∣

+ ∣∣f (tn, xk, u(xk, tn))− f (tn, xk, u
n
k)
∣
∣),

and by applying the Lipschitz condition (4.15) and
∑m−1

k=0 cm,k = mα , we get

∣
∣u(xm, tn)−punm

∣
∣ ≤ c1m

αh2+α
x +c2hth

α
x+c3lf

∣
∣u(xk, tn)−unk

∣
∣≤C

(
h2+α
x +hthαx

)
.

Then, we obtain the error of the corrected value.
From (4.17) and (4.24), we finally have

|u(xm, tn)− unm| =
∣
∣
∣
∣

[
J α

0,x

(
u
(1)
t (x, t)+ f (t, x, u(x, t))

) ]

(xm,tn)

− hαx

Γ (α + 2)

(
punm − un−1

m

ht
+ f (tn, xm,

punm)

)

−
m−1∑

k=0

hαx

Γ (α + 2)
am,k

(
unk − un−1

k

ht
+ f (tn, xk, u

n
k)

) ∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
[J α

0,xu
(α)
x (x, t)](xm,tn) −

m−1∑

k=0

hαx

Γ (α + 2)
am,k[u(α)x (x, t)](xm,tn)

∣
∣
∣
∣
∣
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+
m−1∑

k=0

hαx

Γ (α + 2)
am,k

[∣
∣u(1)t (xk, tn)− (u

(1)
t )nk |

+|f (tn, xk, u(xk, tn))− f (tn, xk, u
n
k)
∣
∣
]

+ hαx

Γ (α + 2)

[∣
∣u(1)t (xm, tn)− p(u

(1)
t )nm| + |f (tn, xm, u(xm, tn))

−f (tn, xm, punm)
∣
∣]

≤ c4m
αh2+α

x + c5hth
α
x + c6m

αlf h
2+α
x + c7hth

α
x + c8m

αlf h
2+α
x

≤ C(h2+α
x + hth

α
x ).

Theorem 4.3.2 Let unm and wn
m be the numerical solutions of (4.21) at the point

(xm, tn) and that the boundary conditions are given by u
(j)
x (0, tn) and w

(j)

0 (tn),
respectively. In addition, assume that

|uij − wi
j | ≤ κ‖u0 − w0‖∞ (4.26)

for j = 0, 1, . . . , m− 1 and i = 0, 1, . . . , n− 1.
If there exists positive κ , independent of ht and h, such that

‖unm − wn
m‖∞ ≤ κ‖u0 − w0‖∞, (4.27)

for any m and n, then the new scheme (4.22)–(4.24) is unconditionally stable.

Proof We prove the inequality also holds for j = m and i = n.
According to the expression of (4.20), we get

|unm − wn
m| =

∣
∣
∣
∣

�α�−1∑

k=0

xkm

k! u
(k)
0 (tn)+ hαx

Γ (α + 2)

(
punm − un−1

m

ht
+ f (tn, xm,

punm)

)

+
m−1∑

k=0

hαx

Γ (α + 2)
am,k

(
unk − un−1

k

ht
+ f (tn, xk, u

n
k)

)

−
�α�−1∑

k=0

xkm

k! w
(k)
0 (tn)+ hαx

Γ (α + 2)

(
pwn

m − wn−1
m

ht
− f (tn, xm,

pwn
m)

)

+
m−1∑

k=0

hαx

Γ (α + 2)
am,k

(
wn
k − wn−1

k

ht
+ f (tn, xk, w

n
k )

) ∣
∣
∣
∣

≤
�α�−1∑

k=0

xkm

k!
∣
∣
∣
∣u

(k)
0 (tn)− w

(k)
0 (tn)

∣
∣
∣
∣
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+
m−1∑

k=0

hαx

Γ (α + 2)
am,k

(
∣
∣u

n
k − un−1

k

ht
− wn

k − wn−1
k

ht

∣
∣+ ∣∣f (tn, xk, unk)

−f (tn, xk, wn
k )
∣
∣
)

+ hαx

Γ (α + 2)

(∣
∣
punm − un−1

m

ht
−

pwn
m − wn−1

m

ht

∣
∣+ ∣∣f (tn, xm, punm)

−f (tn, xm, pwn
m)
∣
∣)

≤ κ1‖u0 − w0‖∞ + κ2

(

max
0<k<m−1

|unk − wn
k |

+ max
0<k<m−1

|un−1
k − wn−1

k |)+ lf max
0<k<m−1

|unk − wn
k |
)

+κ3

(

max
0<k<m−1

|punk − pwn
k | + max

0<k<m−1
|un−1

k − wn−1
k |)

+lf max
0<k<m−1

|punk −p wn
k |
)

and, therefore, using (4.26), we obtain

|unm − wn
m| ≤ κ‖u0 − w0‖∞.

This expression means that proposed scheme is unconditionally stable with respect
to the initial conditions.

4.3.2 Time-FPDE

Consider the following time-FPDE with the solution u(x, t)∈C2(Ω), Ω = (0, L)×
(0, T ) ⊆ R

2,

u
(α)
t (x, t) = u(2)x (x, t)+ f (t, x, u(x, t)), 0 < α ≤ 1, (4.28)

subject to the initial condition

u(x, 0) = g(x), x ∈ (0, L), (4.29)

and boundary conditions

u(0, t) = h(t), u(L, t) = q(t), t ∈ (0, T ), (4.30)
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where g(x), h(t), and q(t) are assumed to be smooth functions and the nonlinear
source term f (x, t, u) satisfies the Lipschitz condition (4.15).

Using the finite difference approximation, the second-order derivative u(2)x (x, t)

is approximated at (xm, tn) as

u(2)x (xm, tn) ≈ u(xm+1, tn)− 2u(xm, tn)+ u(xm−1, tn)

h2
x

+ O(h2
x). (4.31)

The approximate solution of (4.28)–(4.30) is obtained by discretizing the time-
fractional derivative using Proposition 4.2.2 as

n∑

k=0

h1−α
t

Γ (3− α)
bk,nu

(1)
t (xm, tn) = u(xm+1, tn)− 2u(xm, tn)+ u(xm−1, tn)

h2
x

+f (xm, tn, u(xm, tn))+O

(

h2
t+h2

x+
(
ht

hx

)2
)

. (4.32)

Following the idea of the Du Fort–Frankel scheme [6], unm is replaced by its average

in time
un+1
m + un−1

m

2
resulting in

n∑

k=0

h
1−αk
t bk,n

Γ (3− αk)

(uk−1
m − uk+1

m

2ht

)
= unm+1 − un+1

m − un−1
m + unm−1

h2
x

+f (xm, tn, unm).
(4.33)

Rearranging the terms in (4.33), the three-level explicit spline finite difference
method is obtained as

un+1
m = 2ϑ

wn + 2ϑ
(unm+1 + unm−1)+

wn − 2ϑ

wn + 2ϑ
un−1
m

+
n−1∑

k=0

wk,n

wn + 2ϑ
(uk−1

m − uk+1
m )+ 2ht

wn + 2ϑ
f (xm, tn, u

n
m), (4.34)

where wk,n = h1−α
t bk,n

Γ (3− α)
, wn = h1−α

t

Γ (3− α)
and ϑ = ht

h2
x

.

This scheme is conditionally consistent, because the truncation error term

O
(
h2
t

h2
x

)
in the local truncation error O

(

h2
t + h2

x +
(
ht

hx

)2
)

of (4.32) leads to the

consistency condition when Δx → 0, i.e., Δt
Δx
→ 0.

Let the round-off error be

E n
m = Un

m − unm, (4.35)
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where Un
m is an approximate solution of (4.34) for n = 0, 1, . . . , N and m =

0, 1, . . . ,M . Then, the round-off error satisfies the following equation using the
discretized (4.34):

E n+1
m = 2ϑ

wn+2ϑ
(E n

m+1+E n
m−1)+

wn − 2ϑ

wn + 2ϑ
E n−1
m +

n−1∑

k=0

wk,n

wn + 2ϑ
(E k−1

m −E k+1
m )

+ 2ht
wn + 2ϑ

(f (xm, tn, U
n
m)− f (xm, tn, u

n
m)), (4.36)

such that

E n
0 = E n

M = 0, n = 0, 1, . . . , N. (4.37)

Theorem 4.3.3 The explicit approximation (4.34) with the initial and boundary
conditions

{
u0
m = g(mhx), m = 0, 1, . . . ,M

un0 = h(nht ), unM = q(nht ), n = 0, 1, . . . , N
(4.38)

is unconditionally stable and

‖E n‖∞ ≤ β‖E 0‖∞, (4.39)

for n = 0, 1, . . . , N, where ‖E n‖∞ = max
0≤m≤M |E

n
m|, and β is a positive number

independent of n, hx , and ht .

Proof The inequality (4.39) holds for n = 0 as the initial and boundary conditions
are feasible. We shall prove that the inequality (4.39) holds for n = r + 1 as it
is assumed to be held for n = 0, 1, . . . , r . Using (4.36) for n = 0, 1, . . . , r and
m = 0, 1, . . . ,M , we can write

|E r+1
m | ≤ 2ϑ

wr + 2ϑ
(|E r

m+1| + |E r
m−1|)+

wr − 2ϑ

wr + 2ϑ
|E r−1

m |

+
r−1∑

k=0

wk,r

wr + 2ϑ
(|E k−1

m | + |E k+1
m |)+ 2lf ht

wr + 2ϑ
|E r

m|

≤ 2ϑ

wr + 2ϑ
‖E r‖∞ + wr − 2ϑ

wr + 2ϑ
‖E r−1‖∞

+
r−1∑

k=0

2wk,r

wr + 2ϑ
(‖E k−1‖∞)+ 2lf ht

wr + 2ϑ
‖E r‖∞, (4.40)
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where l is the Lipschitz constant. Considering
r−1∑

k=0

wk,r < 1 [19], it results

|E r+1
m | ≤

(
4ϑ

wr + 2ϑ
+ wr − 2ϑ

wr + 2ϑ
+ 2lf ht

wr + 2ϑ

)

‖E r‖∞ + β1‖E 0‖∞

≤
(

1+ 2lf ht
wr + 2ϑ

)

‖E r‖∞ + β1‖E 0‖∞ ≤ (1+ lf ht )‖E r‖∞ + β1‖E 0‖∞, (4.41)

or

‖E r+1‖∞ ≤
(

1+ lf ht

)r+1

‖E 0‖∞ + β1‖E 0‖∞ ≤ e(r+1)lf ht ‖E 0‖∞ + β1‖E 0‖∞

≤ etr+1lf ‖E 0‖∞ + β1‖E 0‖∞ ≤ eT lf ‖E 0‖∞ + β1‖E 0‖∞
= (β1 + β2)‖E 0‖∞ = β‖E 0‖∞,

where β = β1 + β2. Therefore, for any arbitrary initial rounding error E 0, we have
a positive β independent from n, ht , and hx , such that

‖E n‖∞ ≤ β‖E 0‖∞. (4.42)

This completes the proof and shows that the proposed scheme is stable.

4.4 Applications

In this section, the stability and efficiency of the proposed method are illustrated
in four special cases of the nonlinear space and time-fractional KPPE including
the Newell–Whitehead, FitzHugh–Nagumo, Burgers–Huxley, and Chafee–Infante
equations. The algorithms are encoded in Maple. The fractional KPPE is defined as

u(α)x (x, t) = u
(β)
t (x, t)+ au3(x, t)+ bu2(x, t)+ cu(x, t)+ g(x, t), (4.43)

where 1 < α ≤ 2, 0 < β ≤ 1 and a, b, c ∈ R are constants.
We analyze the computational accuracy in the perspective of the maximum of the

absolute error (MAE). If the exact solution is available, then the MAE is defined as

‖EM,N‖∞ = max
1≤n≤N−1,1≤m≤M−1

| u(xm, tn)− N
Munm|, (4.44)

else it is defined as

‖EM,N‖†∞ = max
1≤n≤N−1,1≤m≤M−1

| 2N
2Munm − N

Munm|, (4.45)
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where N
Munm is the approximate solution of u(x, t) at (xm, tn) with N and M numbers

of interior time and space mesh points, respectively. Furthermore, the experimental
convergence order (ECO) is estimated by

p(·) = log h1(·)
h2(·)

‖E1‖∞
‖E2‖∞ , (4.46)

where ‖Ei‖∞ denotes the MAE for the step hi(·), i = {1, 2}.
Example 4.4.1 The space-fractional Newell–Whitehead–Segel equation has been
applied to different problems such as Rayleigh–Benard convection, Faraday insta-
bility, nonlinear optics, chemical reactions, and biological systems [13]. It is given
by (4.43) when β = 1, a = 1, b = 0, c = −1, and

g(x, t) = et

Γ (3− α)

(
2 x2−α + x3e2 tΓ (3− α) (1− x)3

)
. (4.47)

Let us choose the initial and boundary conditions as

⎧
⎨

⎩

u(x, 0) = x2 − x, 0 ≤ x ≤ 1
u(0, t) = 0, 0 ≤ t ≤ 1
u
(1)
x (0, t) = −et , 0 ≤ t ≤ 1

. (4.48)

The exact solution is u(x, t) = et
(
x2 − x

)
.

Figure 4.1a and b shows the numerical solution of Example 4.4.1 obtained by the
proposed method when α = 1.75 and hx = ht = 1

32 . Figure 4.1a shows the obtained
solution in the temporal and spatial domains. Figure 4.1b shows the exact solution
along the approximated solution for different values of t = {0.25, 0.5, 0.75, 1}.
Table 4.1 shows the MAEs and ECOs for different values of α and step sizes in order
to analyze the performance of the proposed scheme. The results show that increasing
α increases both the MAEs and ECOs, but they are reduced when increasing the
step sizes.

Example 4.4.2 The space-fractional FitzHugh–Nagumo equation is a reaction–
diffusion equation describing the propagation of electrical signals in nerve axons
and other biological tissues [10, 11, 22]. It is given by (4.43) when β = 1, a = 1,
b = −3, c = 2, and

g(x, t) = ext
(
erf (
√
xt)t

3
2 − e2xt + 3ext − x − 2

)
. (4.49)

Let us choose the initial and boundary conditions as

⎧
⎨

⎩

u(x, 0) = 1, 0 ≤ x ≤ 1
u(0, t) = 1, 0 ≤ t ≤ 1
u
(1)
x (0, t) = t, 0 ≤ t ≤ 1

, (4.50)
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Fig. 4.1 The numerical solution of Example 4.4.1 with step size hx = ht = 1
32 and α = 1.75.

(a) The numerical solution of u(x, t). (b) The exact (blue line) and approximated (black circle)
solutions of u(x, t) when t = {0.25, 0.5, 0.75, 1}

Table 4.1 Comparison of the MAEs and ECOs of Example 4.4.1 for different values of α and
step sizes hx and ht

α = 1.25 α = 1.50 α = 1.75

hx = ht ‖E ‖∞ px = pt ‖E ‖∞ px = pt ‖E ‖∞ px = pt
1

32 9.05× 10−4 − 3.57× 10−3 − 1.09× 10−2 −
1

64 2.76× 10−4 1.713 1.26× 10−3 1.503 4.50× 10−3 1.276
1

128 8.46× 10−5 1.706 4.48× 10−4 1.491 1.88× 10−3 1.259

and hence the exact solution is u(x, t) = ext for α = 3
2 .

Figure 4.2 depicts the exact and approximate solutions of Example (4.4.2) for
various values of t = {0.25, 0.5, 0.75, 1} when hx = ht = 1

32 and α = 3
2 . Similar to

the previous example, Table 4.2 shows that increasing α increases both the MAEs
and ECOs, but they are reduced by increasing the step sizes. It is also shown that
the obtained numerical approximations are in a good agreement with the analytical
solutions.

Example 4.4.3 Consider a time-fractional diffusion equation as (4.43) when α = 2,

a = b = c = 0 and g(x, t) = − 3
√
π

4Γ (2.5−α) t
1.5−βx4(x − 1). The analytical solution

is nonsmooth at t = 0 and is given by u(x, t) = x4(x − 1)t1.5 when the initial and
boundary conditions are [9, 20].

{
u(x, 0) = 0, 0 ≤ x ≤ 1
u(0, t) = u(1, t) = 0, 0 ≤ t ≤ 1

. (4.51)

Let the convergence orders in time and space be denoted by pt and px ,
respectively, so that we have px = 2pt for ht = h2

x . The numerical solution
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Fig. 4.2 The approximate solution of Example 4.4.2 when hx = ht = 1
32 and α = 3

2 . (a) The
plot of u(x, t) versus (x, t). (b) The exact (blue line) and approximated (black circle) solutions of
u(x, t) for t = {0.25, 0.5, 0.75, 1}

Table 4.2 Comparison of the MAEs and ECOs of Example 4.4.2 for different values of α, hx ,
and ht

α = 1.25 α = 1.50 α = 1.75

hx = ht ‖E ‖†∞ px = pt ‖E ‖∞ px = pt ‖E ‖†∞ px = pt
1

32 1.42× 10−3 − 2.81× 10−2 − 6.78× 10−4 −
1

64 4.49× 10−4 1.661 9.86× 10−3 1.512 3.44× 10−4 0.979
1

128 1.43× 10−4 1.650 3.48× 10−3 1.501 1.76× 10−4 0.966

of Example 4.4.3 is obtained for different values of β and step sizes. Figure 4.3a
shows the approximation solution of Example 4.4.3 when β = 0.75 and hx = 1

16 .
Figure 4.3b shows the exact and numerical solutions for different values of t =
{0.25, 0.5, 0.75, 1}. In addition, Table 4.3 lists the MAEs and ECOs for different
values of α and step sizes, revealing that the obtained approximations are in a good
agreement with the analytical solutions.

Example 4.4.4 The FitzHugh–Nagumo equation is a reaction–diffusion equation
describing the propagation of electrical signals in nerve axons and other biological
tissues [10, 11, 20, 22]. This equation is given by (4.43) when α = 2, a = 1, b =
− 5

2 , c = 2
3 , and g(x, t) = 0. The exact solution is u(x, t) =

(

1+ e
−√2

2 (x+ 3
√

2
2 t)

)−1

when β = 1 and the initial and boundary conditions are
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Fig. 4.3 Solution of example 4.4.3 with hx = 1
16 and ht = h2

x and β = 0.75. (a) Plot of the
approximate solution. (b) Exact solution (line) and approximate solution (points)

Table 4.3 Comparison of MAEs and ECOs of Example 4.4.3 for different values of β and time
step sizes hx when px = 2pt

β = 0.25 β = 0.50 β = 0.75

hx ‖Eht=h2
x
‖†∞ px ‖Eht=h2

x
‖†∞ px ‖Eht=h2

x
‖†∞ px

1
8 3.59× 10−3 − 3.44× 10−3 − 3.40× 10−3 −
1

16 8.82× 10−4 2.025 8.74× 10−4 1.977 8.62× 10−4 1.980
1

32 2.23× 10−4 1.984 2.19× 10−4 1.997 2.16× 10−4 1.997

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(x, 0) =
(

1+ e0.5
√

2x
)−1

, 0 ≤ x ≤ 1

u(0, t) =
(

1+ e
1
6 t
)−1

, 0 ≤ t ≤ 1

u(1, t) =
(

1+ e

√
2

2 L+ 1
6 t

)−1

, 0 ≤ t ≤ 1

. (4.52)

Figure 4.4a illustrates the numerical solution by means of the proposed method
when β = 0.75, and Fig. 4.4b shows the numerical solution for different values of
t = {0.25, 0.5, 0.75, 1} when hx = 1

16 . Similar to the previous examples, Table 4.4
includes the MAEs and ECOs of Example 4.4.4.

4.5 Conclusion

In this chapter, two stable numerical methods were introduced to solve nonlinear
space and time-fractional partial differential equations. The discretization of the
time-fractional integral and the space-fractional derivative were accomplished using
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Fig. 4.4 The solution of Example 4.4.4 when hx = 1
16 , ht = h2

x , and β = 0.75. (a) Plot of the
approximate solution. (b) The approximate solution for t = {0.25, 0.5, 0.75, 1}

Table 4.4 Comparison of the MAEs and ECOs of Example 4.4.4 for different values of β and
hx when px = 2pt

β = 0.25 β = 0.50 β = 0.75

hx ‖Eht=h2
x
‖†∞ px ‖Eht=h2

x
‖†∞ px ‖Eht=h2

x
‖†∞ px

1
8 8.29× 10−3 − 2.41× 10−4 − 1.13× 10−5 −
1

16 1.87× 10−3 2.148 5.23× 10−5 2.204 2.65× 10−6 2.092
1

32 0.39× 10−3 2.261 7.39× 10−6 2.823 6.05× 10−7 2.130

a linear B-spline approximation. It was shown that the proposed methods are uncon-
ditionally stable. The advantages of the proposed algorithms were shown in four
practical examples. It was shown that the suggested schemes are computationally
efficient and the obtained solutions converge to the analytic solution.
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Chapter 5
Escaping from Current Minimizer by
Using an Auxiliary Function Smoothed
by Bezier Curves

Ahmet Sahiner, Idris A. Masoud Abdulhamid, and Nurullah Yilmaz

5.1 Introduction

The resolution of decision-making problems requires in the scientific field a
quantification that directs the decision-making process to the optimal outcome.
Numerous decisional problems that are encountered in the physical, chemical, eco-
nomic, engineering, and other fields are often modeled as problems of optimization
of a real function, which may, for example, represent the performance or cost of a
system under certain conditions [1, 2]. This function is called as objective function
which is generally non-linear and often subject to constraints which guarantee the
acceptability of the solution being identified. The global optimization, in particular,
has the following objectives:

• the analysis of non-linear decision models with multiple optimal solutions,
• the design and study of efficient resolution algorithms being able to identify the

best overall solution.

From a mathematical perspective, the general problem of global optimization
consists of identifying the global minimizer of a function f : Λ → R with
Λ ⊂ Rn [3]. The global optimization problem is indicated as follows:

f (x∗) = min{f (x) : x ∈ Λ}. (5.1)
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Solving the global optimization problem means identifying the best of all solutions,
and avoiding remaining trapped in a non-global local minimizer. The classes of
problems to be solved in the context of optimization, both local and global, are
varied and very different from each other [4]. These range from the problems of
combinatorial optimization to quadratic programming, from concave minimization
to convex differential programming and, from min-max problems to Lipschitz opti-
mization. As a consequence, the proposed approaches for solving these problems
are very varied. A very general strategy could be suitable in all cases, on the other
hand, strictly specialized methods are applicable only for the class of problems for
which they were designed.

Efficient algorithms that solve local optimization problems have been proposed
for a long time ago: the steepest descent method, for example, dates back to
Cauchy. However, these methods are not able to identify the global optimum of
f , therefore, it becomes necessary to introduce appropriate global strategies that
provide guarantees of convergence to the solution and perhaps exploit the efficiency
of local strategies. The first algorithm for the resolution of the global optimization
problem date back to the first half of the twentieth century [5, 6]. In the seventies,
the first heuristic strategies were proposed, attempting, albeit with little success, to
extend convergent algorithms in the one-dimensional case to higher dimensions.
The first works on global optimization are attributable to Dixon and Szego [7].
Since then, there have been dozens of books and hundreds of articles on the subject
published in numerous scientific journals. It should be noted that the proposed
optimization methods, as numerical procedures, are generally not able to identify
the exact solution of the problem, but only a numerical approximation of the global
minimizer points, as well as the global minimizer itself. Depending on whether they
use probabilistic elements, the methods developed for the resolution of the global
optimization problem can be broadly divided into two large classes [8]:

• deterministic methods,
• stochastic methods.

Typically, all methods of the Branch and Bound [9], covering methods [10], space
filling curves based methods [11, 12] belong to the class of deterministic methods,
the same class also includes some methods that use perturbations of the objective
function, such as the tunneling method and the filled function method (see, e.g., [13–
41]). These methods provide an absolute guarantee of success but require restrictive
assumptions about the function.

Stochastic methods generally require weaker hypotheses than the former and
ensure probabilistic convergence to the global optimum. This class includes,
for example, the two-phase methods, the random search methods, the simulated
annealing methods, and the random direction methods [42–45]. There are in the
literature methods based on stochastic procedures that, under particular conditions,
are competitive from an empirical perspective but that do not provide guarantees of
convergence. These methods, called heuristics, include all those approaches that
simulate the processes of the biological evolution of a system, such as natural
selection and apply them to populations of points which are recombined sequentially
until the optimal solution is generated. Among these, we mention the evolutionary
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methods and genetic algorithms [46, 47]. The main difficulties in solving the global
optimization problem are linked to the fact that the structure of the function to be
minimized is often not known, so the number and distribution of the minimizer are
not known. Moreover, as the size increases, the number of local minimizers also
generally increases, with a consequent reduction in the attraction region of every
minimizer and therefore the probability of identifying the global optimum decreases
[48, 49]. The problems to be overcome in the application of stochastic methods
based on local searches are as the following:

• avoid finding the same minimizers,
• have an efficient stopping criterion.

Our attention will focus exclusively on solving the global optimization problem in
case the objective function f is continuous and the set Λ is a compact on R

n.
The remainder of this article is prepared as follows: Sect. 5.2 introduces the

important basic concepts and assumptions. Section 5.3 is devoted to describing
the proposed new auxiliary function in detail with a literature review of the filled
function method. The experiments on the performance of the offered algorithm are
shown in Sect. 5.4. Finally, the conclusion of this article is outlined in Sect. 5.5.

5.2 Basic Concepts and Assumptions

Throughout the chapter, the symbol k represents the number of local minimizers,
x∗k represents the current local minimizer, and x∗ represents the global minimizer
of f (x). Moreover, B∗k represents the basin of f (x) at the local minimizer x∗k .

Let f : Rn → R be a real-valued function defined on some set Λ ⊂ R. A
point x∗k ∈ Λ is a local minimizer of f over Λ if there exists ε > 0 such that
f (x) ≥ f (x∗k ) for all x ∈ Λ and ‖x−x∗k ‖ < ε. A point x∗ ∈ Λ is a global minimizer
of f if f (x) ≥ f (x∗) for all x ∈ Λ. If we replace “≥” with “>” at above, then we
define a strict local minimizer and a strict global minimizer, respectively.

Definition 5.1 ([17]) A basin of f (x) at an isolated minimizer x∗k is a connected
domain B(x∗k ) which contains x∗k and in which starting from any point the steepest
descent trajectory of f (x) converges to x∗k . but outside which the steepest descent
trajectory of f (x) does not converge to x∗k . A hill of f (x) at x∗k is the basin of−f (x)
at its minimizer x∗k , if x∗k is a maximizer of f (x).

Definition 5.2 ([17]) The direction d ∈ R
n is said to be a descent direction for

f : Rn→ R at x ∈ R
n, if there exists ε > 0 such that for all α ∈ (0, ε]

f (x + αdk) < f (x).

The definition of the filled function was first presented by Ge in [17]. The definition
of the filled function is designed for various varieties. In this paper, we bring the
following definition forward:
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Definition 5.3 ([17]) A continuously differentiable function H(x) is said to be a
filled function of f (x) at x∗k , if it satisfies the following properties:

(i) x∗k is a strict local maximum point of H(x, x∗k ),
(ii) H(x, x∗k ) has no stationary point in the set Λ1,

(iii) If x∗k is not a global minimizer of f (x), then there exists a point x′ such that it
is a local minimizer of H(x, x∗k ) on Λ2.

In order to facilitate discussions, we assume that the following assumptions hold at
the rest of this paper:

Assumption 1. The function f is Lipschitz continuous;
Assumption 2. The function f : Rn → R provides f (x) → +∞ as ‖x‖ →
+∞; and

Assumption 3. The number of minimizers can be infinite, but the number of
different function values at the minimizers is finite.

5.2.1 Bezier Curves

Bezier curve was developed by the French engineer Pierre Bezier (1910–1999) in
1962 for use in the design of Renault automobile bodies. Pierre Bezier then went on
to develop the UNISURF CAD/CAM system. The Bezier curve is defined in terms
of the locations of n+ 1 points. These points are called data or control points. They
form the vertices of what is called the control or Bezier characteristic polygon.

In general, a Bezier curve section can be fitted to any number of control points.
The number of control points to be approximated determines the degree of the
Bezier curve. For n+ 1 control points, the Bezier curve is defined by the following
polynomial of degree n:

P(u) =
n∑

j=0

Qj,n(u)Pj ,

where 0 ≤ t ≤ 1 and P(u) is any point on the curve and Pj is a control point,
Qj,n(u) are the Bernstein polynomials. The Bernstein polynomial serves as the
blending or basis function for the Bezier curve and is given by

Qj,n(u) = C(n, j)uj (1− u)n−j ,

where C(n, j) is the binomial coefficient

C(n, j) = n!
j !(n− j)! .
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A very useful property of a Bezier curve is that it always passes through the first and
last control points. If we substitute u = 0 and 1, the boundary conditions at the two
end points are

P(0) = P0, P (1) = P3.

The curve is tangent to the first and last segments of the characteristic polygon, the
first derivatives when there are 4 control points (n = 3) are given by

P ′(u) = −3(1−u)2P0+(3(1−u)2−6u(1−u))P1+(6u(1−u)−3u2)P2+3u2P3.

Therefore the tangent vectors at the starting and ending points are

P ′(0) = 3(P1 − P0),

P ′(1) = 3(P3 − P2).

Similarly, it can be shown that the second derivative at P0 is determined by P0,
P1 and P2 or in general, the r-th derivative at an endpoint is determined by its r
neighboring vertices.

5.3 The Auxiliary Function Method

5.3.1 Literature Review of the Filled Function

In 1983, Ren Pu Ge conferred the concept of the filled function method [4]. His
idea was to construct an auxiliary function at the current minimizer point x∗k so that
it would become a strict maximizer of that auxiliary function and its basin B∗k be a
part of a hill of the auxiliary function [5].

Ge particularly purposed the filled function of f at a local minimizer x∗k on Λ as
follows:

FF(x, x∗k , β, τ ) =
1

β + f (x)
exp

(

−‖x − x∗k ‖2
τ 2

)

, (5.2)

where β and τ must be chosen properly. In 1987, Ge [17] developed the filled
function (5.2) such that rewritten as:

˜FF(x, x∗k , β, τ ) =
1

β + f (x)
exp

(

−‖x − x∗k ‖
τ 2

)

. (5.3)
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In the same period of time, Qin and Ge [17] introduced a series of filled functions
that led to a great leap in the optimization field:

FF1(x, x
∗
k , β, τ ) = −τ 2 ln[β + f (x)] − ‖x − x∗k ‖2, (5.4)

FF2(x, x
∗
k , β, τ ) = −τ 2 ln[β + f (x)] − ‖x − x∗k ‖, (5.5)

Q1(x, x
∗
k , a) = [f (x∗k )− f (x)] exp (a‖x − x∗k ‖2), (5.6)

Q2(x, x
∗
k , a) = [f (x∗k )− f (x)] exp (a‖x − x∗k ‖), (5.7)

E1(x, x
∗
k , a) = 2a[f (x∗k )− f (x)](x − x∗k )− ∇f (x), (5.8)

E2(x, x
∗
k , a) = a[f (x∗k )− f (x)] (x − x∗k )

‖x − x∗k ‖
− ∇f (x). (5.9)

In 1999, Wu [41] postulated that the filled functions (5.8) and (5.9) failed to exist
for the general objective function f (x) and for x ∈ R

2. Moreover, it is obvious
that (5.6) and (5.7), nevertheless, result from the related numerical problem, Wu
proposed the following filled functions:

U(x, x∗k , ρ) = [f (x∗k )− f (x)](‖x − x∗k ‖2 + 1)ρ, (5.10)

U(x, x∗k , ρ) = −[f (x)− f (x∗k )](‖x − x∗k ‖ + 1)ρ, (5.11)

where ρ > 0 is a sufficiently large natural number. In 1992, Sheng and Wang [24]
proposed the following filled function:

K(x, x∗k , β, τ ) = ln

(
1

β + f (x)
+ 1

)

exp

(

−‖x − x∗k ‖
τ 2

)

. (5.12)

This was another variant of (5.2). In fact, the majority of filled functions proposed
in 2000 were simply varied or generalizations of (5.2) and (5.6). In 1994, Zuang [6]
generalized (5.2) and proposed the following filled function:

D1(x, x
∗
1 , β, τ ) = H(β + f (x)) exp

(

−‖x − x∗k ‖
τ 2

)

, (5.13)

where H is a twice continuously differentiable, strictly decreasing function which
satisfies [H ′(λ)]2 ≤ H(λ)H ′′)(λ), for all λ > 0. In 2001, Xu et al. [20] developed
the filled function at (5.11) and produced the next two filled functions:

D2(x, x
∗
k , β, a) = ζ(β + f (x)) exp [aη(‖x − x∗k ‖α)], (5.14)

D3(x, x
∗
k , a) = −ψ([f (x)− f (x∗k )]) exp (aη(‖x − x∗k ‖α)), (5.15)
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where α > 0 and a satisfy some conditions and the functions ζ , η and ψ as well as
the parameter β.

Lately, Xu et al. [20] qualified their filled function (5.15) and suggested the
following filled function:

D4(x, x
∗
k , a) = −φ(f (x)− f (x∗k ))− aϕ(‖x − x∗k ‖α), α(> 0) ∈ Z, (5.16)

where the function φ and ϕ satisfy some conditions. Another modification of (5.6)
was inferred via Kong [19] in 2000, thus

P(x, x∗k , a) = − ln[f (x)− f (x∗k )+ 1] exp (a‖x − x∗k ‖2), (5.17)

where a > 0 is sufficiently large.
Recently, several researchers have persisted in introducing a number of auxiliary

functions, some of which can be classified as filled functions. In 2012, Sahiner A.,
and Gökkaya, H. constructed a filled function for non-smooth global optimiza-
tion [21]. In 2017, Sahiner et al. introduced a new methodology for modeling the
given data and finding the global optimum value of the model function [22]. In 2018,
Sahiner, A., and Shehab, S. introduced a new global optimization technique based
on the directional search for unconstrained optimization problem [23].

5.3.2 A New Auxiliary Function and Its Properties

In order to find a global minimizer of the objective function f , the main subject
of the auxiliary function method is to obtain the lowest minimizer of f or verify
whether the concerned local minimizer is a global minimizer of f . This gradually
relies on the execution of the auxiliary function.

In this section, we introduce a new auxiliary function for the problem (5.1) at the
current local minimizer x∗k , for that, we first suggest the function:

H(x, x∗k ) = min{f (x), f (x∗k )}.

The function H(x, x∗k ) is eliminating the local minimizers which are worse than the
best one obtained so far. By using this function, we can decrease the number of local
minimizers, which will be extremely essential to the optimization algorithms. It is
evident that for ∀x ∈ Λ, the function H(x, x∗k ) has the two properties:

1. H(x, x∗k ) = f (x∗k ) if f (x) ≥ f (x∗k ),
2. H(x, x∗k ) = f (x) if f (x) < f (x∗k ).

The function H(x, x∗k ) can be rewritten by using a multiplication with a piecewise
function DUk

(t) as the following:

H(x, x∗k ) = f (x∗k )+ (f (x)− f (x∗k ))DUk
(t), (5.18)
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where Uk = {x ∈ R
n : f (x) < f (x∗k )} and DUk

(t) : Rn→ R can be defined as:

DUk
(t) =

{
1, t ≥ 0
|t3/2|, t < 0.

(5.19)

To make the function H(x, x∗k ) smooth, it is sufficient to make DUk
(t) smooth, for

this, the continuously differentiable functions η1(t, β) and η2(t, β) were created by
omitting the parameter u from the Bernstein basis polynomials as follows:

η1(t, β) =

⎛

⎜
⎜
⎜
⎝

2
(

3β− 6
5

)2

9
(
β− 3

10

)2 −2

y1
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+ 1
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,

and

η2(t, β) =
(
y4 − 3

4y4
+ 1

2

)2 (
3

2y4
− 2y4 + 2

)
,

where

y1 =

⎛

⎜
⎜
⎝

(3β − 6
5 )

3

27(β − 3
10 )

3
− t
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3

27
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⎞
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,

y2 =
(

3β − 6
5

)(
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)

6
(
β − 3
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y3 =
(
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) 1
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.

Figure 5.1 shows the behavior of the functions η1(t, β) and η2(t, β).
The function H(x, x∗k ) after smoothed DUk

(t) becomes

H̃ (x, x∗k ) = f (x∗k )+ (f (x)− f (x∗k ))D̃Uk
(t, β), (5.20)

where D̃Uk
(t) is a smooth function that can be defined as the following form based

on η1 and η2:
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Fig. 5.1 Curves with blue color represent the behavior of the functions η1(t, β) and η2(t, β).
Together they offer the smooth version of DUk

(t) (with the red color) after being smoothed using
Bezier curves

D̃Uk
(t, β) =

⎧
⎪⎪⎨

⎪⎪⎩

1, t > 0,
η1(t, β), 0 ≥ t > −β,
η2(t, β), −β ≥ t > −0.5− β,

1, t ≤ −0.5− β,

(5.21)

where t = f (x)− f (x∗k ) and β > 0.

Lemma 5.1 Suppose that x∗k is a local minimizer of f (x), we have

lim
β→0

H̃ (x, x∗k , β) = H(x, x∗k ).

During the elimination process by the function H(x, x∗k ), there will be a lot of lost
information that because of the flatland as a result of eliminating the local minimizer
higher than the best one obtained so far. This causes the inability to move from
the current local minimizer to a better one which requires appending an additional
function ψ(ρ) to the auxiliary function H̃ (x, x∗k , β). Examples of the function ψ(ρ)
in the literature, ψ(ρ) = 1

ρm
, (m > 1); ψ(ρ) = 1

ln(1+ρ) ; ψ(ρ) = 1
arctan(ρ) ; and

ψ(ρ) = exp(ρ). Therefore, we added exp

(
−‖x−x∗k ‖2

τ

)

as a term of H̃ (x, x∗k , β).

Thus, H̃ (x, x∗k , β) in its final form become as follows:

H̃ (x, x∗k , β, τ ) = f (x∗k )+ (f (x)− f (x∗k ))D̃Uk
(t, β)+ exp

(
−‖x − x∗k ‖2

τ

)

.

(5.22)

Based on what has been explained above, the auxiliary function H̃ (x, x∗k , β, τ ) can
be redefined as follows:
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Definition 5.4 H̃ (x, x∗k , β, τ ) is called a filled function if it achieves

1. H̃ (x, x∗k , β, τ ) has at least one local minimizer x∗k ,
2. H̃ (x, x∗k , β, τ ) has no stationary point in the set

Λ1 = {x : f (x∗k ) ≤ f (x), x ∈ Λ/{x∗k }},

3. H̃ (x, x∗k , β, τ ) has a minimizer in the set:

Λ2 = {x : f (x∗k ) > f (x), x ∈ Λ},

if x∗k is not a global minimizer of f (x).

Theorem 5.1 Suppose that x∗k is the current local minimizer of f (x), then x∗k is the
local maximizer of H̃ (x, x∗k , β, τ ).

Proof Since x∗k is the current local minimizer of f (x), then there exists a neighbor-
hood ξ = Q(x∗k , σ ) of x∗k and σ > 0 such that f (x) ≥ f (x∗k ) for all x ∈ ξ and
x �= x∗k , then

H̃ (x, x∗k , β, τ )
H̃ (x∗k , x∗k , β, τ )

=
f (x∗k )+ exp

(
−‖x−x∗k ‖2

τ

)

f (x∗k )+ 1
< 1.

Therefore, we have

H̃ (x, x∗k , β, τ ) < H̃ (x∗k , x∗k , β, τ ).

Thus, x∗k is a local maximizer of H̃ (x, x∗k , β, τ ).

Theorem 5.2 Suppose that f is continuously differentiable function. If x∗k is a local
minimizer of f , then H̃ (x, x∗k , β, τ ) has no stationary point for x ∈ Λ1.

Proof In the case of t = f (x)− f (x∗k ) > β, we have

H̃ (x, x∗k , β, τ ) = f (x∗k )+ exp

(
−‖x − x∗k ‖2

τ

)

.

For any x satisfying f (x) ≥ f (x∗k ), and x �= x∗k we have

∇H̃γ (x, x∗k , β, τ ) = −2
(x − x∗k )

τ
exp

(
−‖x − x∗k ‖2

τ

)

.

Therefore, ∇H̃ (x, x∗k , β, τ ) �= 0. Consequently, H̃ (x, x∗k , β, τ ) cannot have a
stationary point for x ∈ Λ1.
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Theorem 5.3 Suppose that x∗k is a local minimizer of f (x), but not a global
minimizer. Then there exists a point x̂ ∈ Λ2, such that x̂ is a local minimizer of
H̃ (x, x∗k , β, τ ).

Proof First of all, we will prove that the function H̃ (x, x∗k , β, τ ) contains a local
minimizer point. For this, assume that f has a local minimizer point x∗k+1 lower
than x∗k . Then, we achieve that the subset Γ = {x : f (x∗k ) ≥ f (x), x ∈ Λ} is not
empty, and because of the continuity and boundedness of f , the subset Γ is closed.
Then H̃ (x, x∗k , β, τ ) has a local minimizer on Γ .

Now, suppose that x∗k+1 is a local minimizer point of f lower than x∗k , and x̂ is

the local minimizer of H̃ (x, x∗k , β, τ ), then the gradient of H̃ (x, x∗1 , β, τ ) is equal
to zero. Therefore,

exp

(
−‖x − x∗k ‖2

τ

)

+ f (x̂) = 0

accordingly, − exp

(
−‖x−x∗k ‖2

τ 2

)

= f (x̂). Thus, we can write

(x̂ − x∗k )∇f (x̂) = (x̂ − x∗k )
(

− exp

(
−‖x − x∗k ‖2

τ

))

> 0.

Since both vectors (x∗k+1 − x∗k ) and (x̂ − x∗k ) are almost equal for a small value for
the real parameter a and ‖x∗k+1 − x∗k ‖ ≤ ‖x̂ − x∗k ‖, we can understand that they are

in the same direction. This confirms that (x̂ − x∗k )(− exp (
−‖x−x∗k ‖2

τ
)) > 0.

Algorithm

Step 0. Let k = 0, τ = 0.5, β = 0.5 , ε = 0.001 and select an initial point x0 ∈ Λ.
Step 1. Let M be the number of directions dk for k = 1, 2, 3, . . . ..,M .
Step 2. Construct the one-dimensional function Y (θ) = f (x0 + θdk).
Step 3. 1. From any starting point θ0, find a local minimizer θjk for Y (θ) and select

λ = −1.
2. Construct the auxiliary function H̃θ (θ, θ

j
k , β, τ ) at θjk .

3. Beginning from θ0 = θ
j
k + λε, find the minimizer θH of H̃θ (θ, θ

j
k , β, τ ).

4. If θH ∈ Λ, go to (5.5); otherwise go to (5.7).
5. Beginning from θH , minimize Y (θ) to find θj+1

k lower than θjk and go to (5.6).

6. If θj+1
k ∈ Λ, put θjk = θ

j+1
k and go to (5.2).

7. If λ = 1, stop and put θ∗k = θ
j
k ; otherwise, take λ = 1 and go to (5.3).

Step 4. Using x̂k = x0 + θ∗k dk , calculate x̂k .
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Step 5. Using x̂k as the initial point, find x∗ of the function f (x).
Step 6. If k < M , let k = k + 1; create a new search direction dk+1, and go back

to Step 2; otherwise, go to Step 7.
Step 7. Select the global minimizer of f (x) which is determined by

f (x∗) = min{f (x∗k )}Mk=1.

5.4 Numerical Experiments

In this section, we present some examples to test the numerical experiments to
illustrate the efficiency of the algorithm. MATLAB was used to code the algorithm,
and the directional method was used to find the local minimum points for the test
problems. From the experimental results, it appears that the algorithm works well
and did not prove any important performance variations. The stopping criterion for
the algorithm was ‖∇f ‖ ≤ 10−4. The test functions for the numerical experiments
were obtained from [5, 8, 22–24] as presented below:

Problem 1 (Two-Dimensional Function) This two-dimensional function appears
in article [5]. It is defined as

min
x∈Rn

f (x) = (1− 2x2 + c sin(4πx2)− x1)
2 + (x2 + 0.5 sin(2πx1))

2,

the problem has several local minimizer and many global minima with f (x∗) = 0
in the domain [0, 10] × [−10, 0]. We began from the initial point x0 = (1.5, 1.5)
for c = 0.2 , x0 = (2.4, 2.4) for c = 0.05, and from x0 = (−1.3,−1.3) for c = 0.5
and we used a directional search method to minimize the objective function f . The
problem has three local minimizer, one of which is the global minimizer at x∗ =
(0, 0) with f (x∗) = 0. The proposed filled function method achieved recognizing
the global minimizer. The time to reach the global minimizer was 0.763825 seconds.
The problem was tested for c = 0.2, 0.05, and 0.5, respectively. The detailed results
are listed in Tables 5.1, 5.2, and 5.3.

Problem 2 (Three-Hump Camel Function)

min
x∈Rn

f (x) = 2x2
1 − 1.05x4

1 +
x6

1

6
+ x1x2 + x2

2 ,

the global minimizer is x∗ = (0, 0) with f (x∗) = 0. Table 5.4 lists the numerical
results obtained for Problem 2.
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Table 5.1 Results obtained for Problem 1 with c = 0.2

k xk f (xk) x∗1 f (x∗1 )

1

(
1.5000

1.5000

)

14.5000

(
−1.6756

0.9180

)

0.6688

2

(
1.1000

1.1000

)

5.1010

(
1.0175

0.0548

)

2.4568× 10−14

3

(
0.7000

0.7000

)

2.3471

(
0.4091

0.2703

)

6.7978× 10−14

4

(
0.3000

0.3000

)

0.0311

(
0.4091

0.2703

)

1.3487× 10−15

Table 5.2 Results obtained for Problem 1 with c = 0.05

k xk f (xk) x∗1 f (x∗1 )

1

(
−1.3000

−1.3000

)

24.9786

(
−0.7300

0.7934

)

0.1022

2

(
−1.4000

−1.4000

)

28.7603

(
0.1487

0.4021

)

1.332× 10−13

Table 5.3 Results obtained for Problem 1 with c = 0.5

k xk f (xk) x∗1 f (x∗1 )

1

(
2.4000

2.4000

)

48.9984

(
−2.7229

1.3765

)

1.0019

2

(
1.9000

1.9000

)

31.5993

(
1.0568

0.1746

)

2.6366× 10−13

3

(
1.4000

1.4000

)

14.7330

(
−2.7229

1.3765

)

1.0019

4

(
0.9000

0.9000

)

6.1583

(
1.0000

0.0000

)

1.9637× 10−14

5

(
0.4000

0.4000

)

0.4676

(
0.1026

0.3005

)

2.7425× 10−15

Problem 3 (Six-Hump Back Camel Function)

min
x∈Rn

f (x) = 4x2
1 − 2.1x4

1 +
1

3
x6

1 − x1x2 − 4x2
2 + 4x4

2 ,

the global minimizer is one of the points (0.089842, 0.71266) or (−0.089842,
−0.71266) with f (x∗) = −1.031628 in the domain [−3, 3] × [−3, 3]. Table 5.5
lists the numerical results obtained for Problem 3.
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Table 5.4 Results obtained for Problem 2

k xk f (xk) x∗1 f (x∗1 )

1

(
−0.3000

−0.3000

)

0.1716

(
−0.1190

−0.5363

)

× 10−06 2.5215× 10−13

2

(
−0.5000

−0.5000

)

0.4370

(
−0.0279

−0.5301

)

× 10−07 2.6774× 10−15

3

(
−0.7000

−0.7000

)

0.7475

(
0.2619

−0.0793

)

× 10−07 1.2266× 10−15

4

(
−0.9000

−0.9000

)

1.0197

(
−0.0139

−0.2612

)

× 10−06 6.4964× 10−14

Table 5.5 Results obtained for Problem 3

k xk f (xk) x∗1 f (x∗1 )

1

(
−0.5000

−0.5000

)

-0.1260

(
−0.0898

−0.7127

)

−1.0316

Table 5.6 Results obtained for Problem 4

k xk f (xk) x∗1 f (x∗1 )

1

(
−0.9000

−0.9000

)

1.2970

(
−0.0579

−0.2486

)

× 10−07 7.5233× 10−16

2

(
−1.1000

−1.1000

)

2.1901

(
−2.0000

0.0000

)

9.6088× 10−15

Problem 4 (Treccani Function)

min
x∈Rn

f (x) = x4
1 + 4x3

1 + 4x2
1 + x2

2 ,

it is clear that the global minimizers are (−2, 0) and (0, 0) with f (x∗) = 0 in
the domain [−3, 3] × [−3, 3]. Table 5.6 lists the numerical results obtained for
Problem 4.

Problem 5 (Goldstein and Price Function)

min
x∈Rn

f (x) = g(x)h(x),

where

g(x) = 1+ (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2),
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Table 5.7 Results obtained for Problem 5

k xk f (xk) x∗1 f (x∗1 )

1

(
−1.5000

−1.5000

)

1.1186× 1004

(
0.0000

−1.0000

)

3.0000

Table 5.8 Results obtained for Problem 6

k xk f (xk) x∗1 f (x∗1 )

1

(
−4.3000

−4.3000

)

716.4200

(
1.0000

3.0000

)

1.4771× 10−13

Table 5.9 Results obtained for Problem 7

k xk f (xk) x∗1 f (x∗1 )

1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−34.2000

−34.2000

−34.2000

−34.2000

−34.2000

−34.2000

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1.5860× 1003

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

6.0000

10.0000

12.0000

12.0000

10.0000

6.0000

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−50.000

and

h(x) = 30+ (2x1 − 3x2)
2(18− 32x1 + 12x2

1 − 48x2 − 36x1x2 + 27x2
2).

The global minimizer is (0,−1) with f (x∗) = 3 in the domain [−3, 3] × [−3, 3].
Table 5.7 lists the numerical results obtained for Problem 5.

Problem 6 (Booth Function)

min
x∈Rn

f (x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2,

the global minimizer is (1, 3) with f (x∗) = 0 in the domain [−10, 10]× [−10, 10].
Table 5.8 lists the numerical results obtained for Problem 6.

Problem 7 (Trid Function)

min
x∈Rn

f (x) =
n∑

i=1

(xi − 1)2 −
n∑

i=2

xixi−1,

the global minimizer is at f (x∗) = −50 in the domain [−n2, n2]n. Table 5.9 lists
the numerical results obtained for Problem 7.
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Table 5.10 Results obtained for Problem 8

k xk f (xk) x∗1 f (x∗1 )

1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2.2000

−2.2000

−2.2000

−2.2000

−2.2000

−2.2000

−2.2000

−2.2000

−2.2000

−2.2000

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1.2181

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−0.0316

0.0032

−0.0127

−0.0127

−0.0316

0.0032

−0.0127

−0.0127

−2.2000

−2.2000

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

3.8940× 10−6

2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2.4000

−2.4000

−2.4000

−2.4000

−2.4000

−2.4000

−2.4000

−2.4000

−2.4000

−2.4000

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1.4603

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−0.0242

0.0024

−0.0075

−0.0075

−0.0242

0.0024

−0.0075

−0.0075

−2.4000

−2.4000

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1.7654× 10−06

Problem 8 (Powell Function)

minx∈Rn

∑n/4
i=1

[
(x4i−3 + 10x4i−2)

2 + 5(x4i−1 − x4i )
2 + (x4i−2 − 2x4i−1)

4

+10(x4i−3 − x4i )
2
]
,

the global minimizer is (0, . . . , 0) with f (x∗) = 0 in the domain [−4, 5]n.
Table 5.10 lists the numerical results obtained for Problem 8.

Problem 9 (Rastrigin Function)

min
x∈Rn

f (x) = 10n+
n∑

i=1

(x2
i − 10 cos(2πxi)),

the global minimizer is (0, .., 0) with f (x∗) = 0 in the domain [−5.12, 5.12].
Table 5.11 lists the numerical results obtained for Problem 9.
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Table 5.11 Results obtained for Problem 9

k xk f (xk) x∗1 f (x∗1 )

1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−0.5200

−0.5200

−0.5200

−0.5200

−0.5200

−0.5200

−0.5200

−0.5200

−0.5200

−0.5200

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

201.9155

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−0.9950

−0.9950

−0.9950

−0.9950

−0.9950

−0.9950

−0.9950

−0.9950

−0.9950

−0.9950

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

9.9496

2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−0.0200

−0.0200

−0.0200

−0.0200

−0.0200

−0.0200

−0.0200

−0.0200

−0.0200

−0.0200

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

0.7925

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−0.6942

−0.6942

−0.6906

−0.6942

−0.6942

−0.6942

−0.6942

−0.6942

−0.6942

−0.6942

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

× 10−8 1.2790× 10−13

5.5 Conclusion

In this paper, we introduced a new algorithm which has the ability to convert
the objective function into a one-dimensional function using an auxiliary function
smoothed with the assistance of Bezier curves, followed by finding the global
minimizer of the given objective function. MATLAB program has been used to
obtain the numerical results to verify the effectiveness and efficiency of the proposed
method. Since the functions obtained by using the Bernstein polynomial are often
extremely long and complicated especially in the case of higher numbers of control
points, we applied the MUPAD program to improve and simplify those equations.
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Chapter 6
A Modified Laguerre Matrix Approach
for Burgers–Fisher Type Nonlinear
Equations

Burcu Gürbüz and Mehmet Sezer

6.1 Introduction

Nonlinear partial differential equations play an important role in the study of
nonlinear physical phenomena [5–15, 17–22, 24–29]. Especially, Burgers-Fisher
and related equations play a major role in various field of science such as
biology, chemistry, economics, applied mathematics, physics, engineering, and so
on. Burgers–Fisher equation is an important model of fluid dynamics which is of
high importance for describing different mechanisms such as convection effect,
diffusion transport or interaction between the reaction mechanisms [9].

Specifically, Burgers–Fisher equation considers the effects of nonlinear advec-
tion, linear diffusion and nonlinear logistic reaction which describes a nonlinear
parabolic mathematical model of various phenomena [23, 41]. This type of equation
is a highly nonlinear equation which describes the combination of reaction,
convection and diffusion mechanisms [34]. This equation is called as Burgers–
Fisher since it combines the properties of convective phenomenon from Burgers
equation and diffusion transport as well as reactions related to the characteristics
from Fisher equation [2]. In this regard Burgers equation is useful since it models
the convective and diffusive terms in the physical applications such as a fluid
flow nature in which either shocks or viscous dissipation. It can be used as a
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model for any nonlinear wave propagation problem subject to dissipation [15, 17–
22, 24–30]. It was particularly stressed by Burgers (1948) as being the simplest
one to combine typical nonlinearity with typical heat diffusion. Accordingly, it is
usually referred to as Burgers equation [7]. Burgers equation is used to demonstrate
various computational algorithms for convection-dominated flows [40]. Fisher
equation was proposed by Fisher in 1937 which is another very important nonlinear
diffusion equation [36]. The Fisher equation is evolution equation that describes the
propagation of a virile mutant in an infinitely long habitat [14]. It also represents a
model equation for the evolution of a neutron population in a nuclear reactor [8] and
a prototype model for a spreading flame [26–33, 35–37].

The study of Burgers–Fisher type nonlinear equations have been considered by
many authors for conceptual understanding of physical flows and testing various
numerical methods [9]. Mickens gave a nonstandard finite difference scheme for
the Burgers–Fisher equation [28], A. Van Niekerk and F. D. Van Niekerk applied
Galerkin methods to the nonlinear Burgers equation and obtained implicit and
explicit algorithms using different higher order rational basis functions [35], Zhu
and Kang introduced the cubic B-spline quasi-interpolation for the generalized
Burgers–Fisher equation [46], Al-Rozbayani and Al-Hayalie investigated numerical
solution of Burgers–Fisher equation in one dimension using finite differences
methods [2], Ismail, Raslan and Rabboh gave Adomian decomposition method
for Burgers–Huxley and Burgers–Fisher equations [25]. Also, Ismail and Rabboh
presented a restrictive Padé approximation for the solution of the generalized Fisher
and Burgers–Fisher equations [24], Babolian and Saeidian [4], Wazwaz gave the
analytic approaches for Burgers, Fisher and Huxley equations [39], Chen presented
a finite difference method for Burgers–Fisher equation [10], Kheiri introduced an

application of the G
′

G
-expansion method for the Burgers, Fisher and Burgers–Fisher

equations [26], Zhang presented exact finite difference scheme and nonstandard
finite difference scheme for Burgers and Burgers–Fisher equations [45]. Further,
Rashidi gave explicit analytical solutions of the generalized Burgers and Burgers–
Fisher equations by homotopy perturbation method [31].

In this work, we introduce a numerical scheme to solve Burgers–Fisher type
nonlinear equations using the modified Laguerre matrix method. Firstly, equations
and given conditions with respect to the collocation points are reduced to a system
of algebraic equations with Laguerre coefficients by putting them in the matrix
forms. To obtain the modified Laguerre polynomial solution of Burgers–Fisher
equations, we use the truncated Laguerre series. After considering the approximate
solutions we have the error analysis in order to show the accuracy and to have better
approximation, then the results are demonstrated by tables and figures.

The present study proceeds as follows: in Sect. 6.2, model description is
presented with details. In Sect. 6.3, we introduce the novel method used to solve the
Burgers–Fisher type nonlinear equations in one dimension. Error analysis is given
in Sect. 6.4. In the next Sect. 6.5, we apply a computerized approach for finding the
numerical solutions of the Burgers, Fisher and Burgers–Fisher equations. Finally,
some discussions and conclusions are given in Sect. 6.6.



6 A Modified Laguerre Matrix Approach for Burgers–Fisher Type Nonlinear. . . 109

6.2 The Model

In this section, we introduce the model description of the Burgers–Fisher type
nonlinear equations. We deal with the different versions of the Burgers–Fisher
type nonlinear equations: singular perturbed generalized Burgers–Fisher equation,
Burgers–Fisher equation, Burgers equation and Fisher equation, respectively.

6.2.1 Singular Perturbed Generalized Burgers–Fisher
Equation

Singular perturbed problems occur frequently in various branches of applied science
and engineering; for example, fluid dynamics, aero dynamics, oceanography,
quantum mechanics, chemical reactor theory, reaction-diffusion processes, radiating
flows, etc. [33].

Here, we consider the time dependent singularly perturbed generalized Burgers–
Fisher initial-boundary value problem given by

ut + αuδux = εuxx + βu(1− uδ), 0 ≤ a ≤ x ≤ b, t ≥ 0, (6.1)

with initial condition

u(x, 0) = φ(x), x ∈ Ω = (0 ≤ x ≤ b) (6.2)

and boundary conditions as

u(0, t) = f (t), t ≥ 0

u(l, t) = g(t), t ≥ 0
(6.3)

over a domain D = Ω×T = (0 ≤ x ≤ b)×t ≥ 0, where α, β and δ are parameters
such that α, β ≥ 0, δ > 0 and ε is the singular perturbation parameter (0 < ε � 1).

6.2.2 Burgers–Fisher Equation

The Burgers–Fisher equation has a wide range of applications in plasma physics,
fluid dynamics, capillary-gravity waves, nonlinear optics and chemical physics [11].
The Burgers–Fisher equation can be described by Eq. (6.1) for δ = 1. In this case,
u represents travelling wave phenomena, uxx corresponds to diffusion term, ε is
the diffusion coefficient, α, β and ε are parameters satisfying α, β ≥ 0, ε > 0
and 0 < ε ≤ 1. Keeping other parameters fixed, when ε → 0, Eq. (6.1) becomes
singularly perturbed problem [33]. Here, in particular, we consider Eq. (6.1) for
δ = 1 and ε = 1. Then Eq. (6.1) reduces to the Burgers–Fisher equation:

ut + αuux = uxx + βu(1− u), 0 ≤ a ≤ x ≤ b, t ≥ 0. (6.4)
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6.2.3 Burgers Equation

Burger, in 1948, placed Burgers equation as significant model of one-dimensional
turbulence which defines nonlinear acoustics waves in gases. Moreover, it describes
the spread of sound wave and heat exchange in the medium with viscidity. Besides,
Burgers equation with variable coefficient describes the cylinder and spherical wave
in these questions such as overfall, traffic flow model and so on [11, 12, 14, 15, 17–
22, 24–33]. The Burgers equation is a particular case of Eq. (6.1) for δ = 1, ε = 1
and β = 0, i.e.,

ut + αuux = uxx, 0 ≤ a ≤ x ≤ b, t ≥ 0. (6.5)

6.2.4 Fisher Equation

Fisher, in 1937, proposed in his paper the Fisher equation which describes spatial
spread of an advantageous allele [33]. Besides having δ = 1 and ε = 1 in Eq. (6.1),
we also have α = 0. Then we reduce Eq. (6.1) to the Fisher equation, i.e.,

ut = uxx + βu(1− u), 0 ≤ a ≤ x ≤ b, t ≥ 0. (6.6)

6.3 The Method

In this work, the modified Laguerre matrix-collocation method is presented and
applied on singular perturbed generalized Burgers–Fisher equation, Burgers–Fisher
equation, Burgers equation and Fisher equation, respectively. The method is based
on truncated Laguerre series

u(x, t) =
N∑

n=0

N∑

m=0

an,mLn,m(x, t), (6.7)

Ln,m(x, t) = Ln(x)Lm(t), 0 ≤ a ≤ x, t ≤ b <∞,

where an, n = 0, 1, . . . , N are unknown coefficients to be found and Ln(x) and
Lm(t) are the Laguerre polynomials [1–5, 7–12]. We define Laguerre polynomi-
als as

Ln(x) =
n∑

k=0

(−1)k

k!
(
n

k

)

xk, Lm(t) =
m∑

k=0

(−1)k

k!
(
n

k

)

tk. (6.8)
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and the collocation points are defined by

xi = l

N
i, tj = T

N
j, i, j = 0, 1, 2, . . . , N. (6.9)

Now, let us define the matrix form of Eq. (6.1) by using the matrix form of the
solution function (6.7)

[u(x, t)] = L(x)L(t)A, (6.10)

where

L(x) = [L0(x) L1(x) · · · LN(x)
]
,

L(t) =

⎡

⎢
⎢
⎢
⎣

L(t) 0 · · · 0
0 L(t) · · · 0
...

...
. . .

...

0 0 · · · L(t)

⎤

⎥
⎥
⎥
⎦
,

A = [a00 a01 · · · a0N · · · aN0 aN1 · · · aNN

]T
.

Then we use the relation (6.8) and we define matrix forms of L(x) and L(t) as
[19–21].

L(x) = X(x)H

L(t) = X(t)H, (6.11)

where

X(x) = [1 x1 · · · xN ] , X(t) = [1 t1 · · · tN ] ,

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(−1)0

0!
(

0
0

)
(−1)0

0!
(

1
0

)
(−1)0

0!
(

2
0

)

· · · (−1)0

0!
(
N

0

)

0 (−1)1

1!
(

1
1

)
(−1)1

1!
(

2
1

)

· · · (−1)1

1!
(
N

1

)

0 0 (−1)2

2!
(

2
2

)

· · · (−1)2

2!
(
N

2

)

...
...

. . .
...

...

0 0 0 · · · (−1)N

N !
(
N

N

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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X(t) = diag
[

X(t) X(t) · · · X(t)
]
,

H = diag
[

H H · · · H
]
.

We also show the relation between the matrix X(x) and its derivatives as

X′(x) = X(x)B,

X′′(x) = X(x)B2,

where

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 · · · 0
0 0 2 · · · 0
...
...
...
. . .

...

0 0 0 · · · N
0 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦
.

Also, by using the matrix relations

L(x) = X(x)H ⇒ X(x) = L(x)H−1

L′(x) = X′(x)H = X(x)BH, (6.12)

we have

L′(x) = L(x)C

L
′
(t) = L(t)C, (6.13)

where

C = H−1BH =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 −1 −1 · · · −1
0 0 −1 · · · −1
...

...
...

. . .
...

0 0 0 · · · −1
0 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦
;

C = diag[CC . . .C].
We also have the following equations by using (6.11)–(6.13):

L′′(x) = L′(x)C = L(x)C2

L
′′
(t) = L

′
(t)C = L(t)C

2
. (6.14)



6 A Modified Laguerre Matrix Approach for Burgers–Fisher Type Nonlinear. . . 113

Therefore, from the relations (6.10)–(6.14):

[u(x, t)] = L(x)L(t)A

[ux(x, t)] = L′(x)L(t)A = L(x)CL(t)A (6.15)

[uxx(x, t)] = L′′(x)L(t)A = L(x)C2L(t)A (6.16)

[ut (x, t)] = L(x)L
′
(t)A = L(x)L(t)CA. (6.17)

On the other hand, we also have

[u2(x, t)] = L(x)L(t)L(x)L(t)A (6.18)

[u3(x, t)] = L(x)L(t)L(x)L(t)L(x)L(t)A, (6.19)

where

Ai =
[
ai0 ai1 · · · aiN

]T
, i = 0, 1, . . . , N,

A = [A0 A1 · · · AN

]T

= [ a00 · · · a0N a10 · · · a1N · · · aN0 · · · aNN

]T
,

Ai =
[
ai0A ai1A · · · aiNA

]T
, i = 0, 1, . . . , N,

A = [A0 A1 · · · AN

]T
,

Ai =
[
ai0A ai1A · · · aiNA

]T
, i = 0, 1, . . . , N,

A =
[

A0 A1 · · · AN

]T
.

Furthermore,

[ux(x, t)u(x, t)] = L(x) mathbfCL(t)L(x)L(t)A (6.20)

[ux(x, t)u2(x, t)] = L(x)CL(t)L(x)L(t)L(x)L(t)A. (6.21)

Now, we organize Eq. (6.1) as

ut + αuxu
δ − εuxx − βu+ βuδ+1 = 0, 0 ≤ a ≤ x ≤ b, t ≥ 0. (6.22)
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Then we replace the matrix relations (6.10), (6.16) and (6.17)–(6.21) into
Eq. (6.22) for δ = 2 and we have

{L(x)L(t)C−εL(x)C2L(t)− βL(x)L(t)}A

+{αL(x)CL(t)L(x)L(t)L(x)L(t)

+βL(x)L(t)L(x)L(t)L(x)L(t)}A = [0].

(6.23)

For δ = 1, we obtain

{L(x)L(t)C−εL(x)C2L(t)− βL(x)L(t)}A

+{αL(x)CL(t)L(x)L(t)+ βL(x)L(t)L(x)L(t)}A = [0].
(6.24)

From (6.23) and (6.24), concisely, we have

W(x, t)A+W∗(x, t)A = [0], (6.25)

W(x, t)A+W∗∗(x, t)A = [0]. (6.26)

Similarly, we use the procedure for initial and boundary conditions in (6.2)–(6.3)
for i, j = 0, 1, . . . , N :

[u(x, 0)] = L(x)L(0)A = [φ(x)] = λ

[u(0, t)] = L(0)L(t)A = [f (t)] = μ

[u(l, t)] = L(l)L(t)A = [g(t)] = γ.

(6.27)

Now, we consider the collocation points in Eq. (6.9) and replace in Eq. (6.25)
and in Eq. (6.26):

W(xi, tj )A+W∗(xi, tj )A = 0,

W(xi, tj )A+W∗∗(xi, tj )A = 0.

Briefly, the fundamental matrix equations can be defined as

WA+W∗A = 0 �⇒ [W;W∗ : 0], (6.28)

WA+W∗∗A = 0 �⇒ [W;W∗∗ : 0]. (6.29)

Also, we use the collocation points in Eq. (6.9) and replace in Eq. (6.27):
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[u(xi, 0)] = L(xi)L(0)A = [φ(xi)] = λi

[u(0, tj )] = L(0)L(tj )A = [f (tj )] = μj

[u(l, tj )] = L(l)L(tj )A = [g(tj )] = γj

(6.30)

or in the short form:

UA = [λ]; [U : λ],
VA = [μ]; [V : μ],
ZA = [γ ]; [Z : γ ].

Then we organize the augmented matrix in the new form by removing the last
rows of (6.28) and (6.29). So, we get

[ W̃; W̃∗ : 0̃],
[ W̃; W̃∗∗ : 0̃].

Lately, the augmented matrix form systems are solved by Gaussian elimination.
Then the unknown Laguerre coefficients are computed [22]. Thus, the approximate
solutions, u(x, t), 0 ≤ a ≤ x ≤ b, t ≥ 0, for the singular perturbed generalized
Burgers–Fisher and Burgers–Fisher equations are found in the truncated Laguerre
series form as following:

u(x, t) ∼= uN(x, t) =
N∑

n=0

N∑

m=0

an,mLn,m(x, t). (6.31)

In a similar way, we can generalize the method by having δ = 1, 2, . . . , n. Also,
in order to find the approximate solution of Burgers equation for δ = 1, ε = 1 and
β = 0, Eq. (6.5), we repeat the process. Correspondingly, the approximate solution
of the Fisher equation, Eq. (6.6), can be found by following the same procedure for
δ = 1 and ε = 1.

6.4 Error Analysis

In this section, the error estimation for the Laguerre polynomial solution (6.7) is
given which shows the accuracy of the method. We define error function x = xζ , t =
tη ∈ [l, 0] × [0, T ], ζ, η = 0, 1, . . .
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EN(xp, tq) = | u(xp, tq)− (uN)t (xp, tq)− α(uN)
δ(xp, tq)(uN)x(xp, tq)

+ ε(uN)xx(xp, tq)+ β(uN)(xp, tq)(1− (uN)
δ(xp, tq)) |∼= 0,

where EN(xp, tq) ≤ 10(−kζη) = 10(−k), (k is a positive integer) is prescribed, then
the truncation limit N increased until difference EN(xp, tq) at each of the points
becomes smaller than the prescribed 10(−k). Furthermore, we measure errors with
respect to different type of error norms which are defined as follows:

1. For L2;EN(xp, tq) = (
∑n

i=1(ei)
2)1/2

2. For L∞;EN(xp, tq) = Max(ei), 0 ≤ i ≤ n

3. For RMS;EN(xp, tq) =
√
∑n+1

i=1 (ei )
2

n+1 ,

where RMS is the Root-Mean-Square of errors and ei = u(xi, τ ) − ǔ(xi, τ ); also
u is the exact and ǔ is the approximate solutions of the problem. Also, τ and t are
arbitrary time variables in [0, T ] [1].

6.4.1 Residual Error Estimation

Here, we consider the Burgers–Fisher equation to show its residual error estimation
technique based on modified Laguerre collocation method [18]. We consider
Eq. (6.1) related to operator L and we have

L[u(x, t)] = ut + αuδux − εuxx − βu(1− uδ) = 0, 0 ≤ a ≤ x ≤ b, t ≥ 0.

Then, we define the residual function of the modified Laguerre collocation
method as

RN(x, t) = L[uN(x, t)],
where uN(x, t) is the approximate solution obtained by modified Laguerre colloca-
tion method with conditions (6.2)–(6.3). Hence, this satisfies the problem

(uN)t + α(uN)
δ(uN)x − ε(uN)xx − β(uN)(1−(uN)δ) = RN(x, t),

0 ≤a ≤ x ≤ b, t ≥ 0,

with the conditions

uN(x, 0) = φ(x), x ∈ Ω = (0 ≤ x ≤ b)

uN(0, t) = f (t), t ≥ 0

uN(l, t) = g(t), t ≥ 0.
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We have defined the error function as eN = u(x, t) − uN(x, t) with the
homogenous conditions

L[eN(x, t)] = L[u(x, t)] − L[uN(x, t)] = −RN(x, t)

then the error problem can be defined as

(eN)t + α(eN)
δ(eN)x − ε(eN)xx − β(eN)(1− (eN)

δ) = −RN(x, t),

0 ≤ a ≤ x ≤ b, t ≥ 0.

eN (x, 0) = 0, x ∈ Ω = (0 ≤ x ≤ b)

eN(0, t) = 0, t ≥ 0

eN(l, t) = 0, t ≥ 0.

By solving this problem with the introduced technique, we find the approxima-
tion to eN(x, t) by

eN,M(x, t) ∼=
N∑

n=0

N∑

m=0

a∗n,mLn,m(x, t), M > N.

Also, we have the improved Laguerre polynomial solution as

u∗N,M(x, t) = uN(x, t)+ eN,M(x, t).

Thereby, the corrected error function is

e∗N,M(x, t) = eN(x, t)− eN,M(x, t) = u(x, t)− uN,M(x, t)

where eN,M(x, t) is the estimated error function [43].

Algorithm

• Step 0. Input data: β(t) and α(t). Determine the initial and boundary conditions.
• Step 1. Set N where N.
• Step 2. Construct the indicated matrices.
• Step 3. Define the collocation points xi = l

N
i, tj = T

N
j, i, j = 0, 1, 2, . . . , N .

• Step 4. Compute [W;W∗ : 0].
• Step 5. Compute UA = [λ]; [U : λ], VA = [μ]; [V : μ], ZA = [γ ]; [Z : γ ].
• Step 6. Construct the augmented matrix [W̃; W̃∗ : 0̃]
• Step 7. Solve the system by Gaussian elimination method. Print A.
• Step 8. Replace the elements am,n from Step 7 in the truncated Laguerre series

form.
• Step 9. Output data: the approximate solution uN(x, t).
• Step 10. Construct u(x, t) is the exact solution of (1).
• Step 11. Stop when |ei | ≤ 10−k where k ∈ Z

+. Otherwise, increase N and return
to Step 1 [16, 21].
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6.5 Numerical Results

In this section, we introduce numerical examples to show the accuracy of the
method.

Example 6.1 Firstly, we consider the generalized singularly perturbed Burgers–
Fisher equation in Eq. (6.1) for δ = 1 and also for the specific parameter values
of α = 0.01, β = 0.01 together with the initial condition [33]

u(x, 0) = 1

2
+ 1

2
tanh(θ1, x), 0 ≤ x ≤ 1

and boundary conditions

u(0, t) = 1

2
+ 1

2
tanh(0− θ1θ2t), t ≥ 0

u(1, t) = 1

2
+ 1

2
tanh(θ1 − θ1θ2t), t ≥ 0

and the analytic solution is given by

u(x, t) = 1

2
+ 1

2
tanh(θ1x − θ1θ2t),

where θ1 = − α
4ε and θ2 = α

2 + 2εβ
α

[45]. Also, ε = 1 has been chosen and we may
see the difference between exact and approximate solutions for N = 4 and N = 6 in
Figs. 6.1, 6.2 and 6.3, respectively. In Table 6.1. the maximum absolute errors of the
present method and the other methods such as variational iteration method (VIM),
lattice Boltzmann method (LBM) and Adomian decomposition method (ADM) have
been shown for α = β = 0.01, ε = 1, t = 1 and x = 0.1, 0.5 and 0.9.

Example 6.2 Now, we consider the Burgers–Fisher equation in Eq. (6.4) for the
specific parameter values of α = −1, β = −1 together with the initial condition

u(x, 0) = 1

2
+ 1

2
tanh

(−x
4

)
, 0 ≤ x, t ≤ 1

is given. Also, the exact solution of the problem is u(x, t) = 1
2 + 1

2 tanh
(
x
4 + 5t

8

)

[32, 33, 35–38]. In Table 6.2, the comparison has been given between absolute error
functions E2 and E4 and the estimated absolute errors for E2,4 and E4,6.

Example 6.3 We simulate Burgers Equation in Eq. (6.5) with the initial-boundary
value problem [45], for α = 1, β = 1
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Exact Solution
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Fig. 6.1 Exact solution for Example 6.1
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Fig. 6.2 Approximate solution of N = 4 for Example 6.1

u(x, 0) = 1

1+ exp( x2 )
, 0 ≤ x ≤ 1

u(0, t) = 1

1+ exp(−t4 )
, 0 ≤ t
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N=6
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Fig. 6.3 Approximate solution of N = 6 for Example 6.1

Table 6.1 Comparison of the maximum absolute errors of Example 1 [33]

t x Present scheme LBM VIM ADM

0.1 2.007× 10−6 1.080× 10−4 1.780× 10−8 1.780× 10−8

1 0.5 5.180× 10−9 0.325× 10−4 5.290× 10−9 5.290× 10−9

0.9 4.999× 10−8 1.730× 10−4 7.280× 10−9 7.280× 10−9

Table 6.2 Comparison of the actual and estimated absolute errors for N = 2 and 4 and M = 4
and 6 of Example 6.2

x t E2 E2,4 E4 E4,6

0.0 0.0 1.027× 10−3 1.001× 10−3 4.501× 10−5 1.030× 10−6

0.1 0.1 1.865× 10−3 2.352× 10−4 4.602× 10−5 1.905× 10−6

0.2 0.2 3.095× 10−3 7.697× 10−4 9.493× 10−6 3.662× 10−6

0.3 0.3 6.208× 10−4 5.862× 10−4 7.288× 10−6 4.335× 10−6

0.4 0.4 3.644× 10−4 3.732× 10−4 5.162× 10−6 3.702× 10−6

0.5 0.5 1.159× 10−4 1.029× 10−4 5.200× 10−6 2.906× 10−6

0.6 0.6 4.380× 10−4 5.905× 10−4 4.338× 10−6 2.025× 10−6

0.7 0.7 4.653× 10−5 5.050× 10−5 3.451× 10−7 2.771× 10−7

0.8 0.8 6.849× 10−5 3.037× 10−5 7.050× 10−7 1.906× 10−7

0.9 0.9 7.605× 10−4 8.402× 10−5 6.009× 10−6 5.082× 10−7

1.0 1.0 3.032× 10−4 1.130× 10−5 4.011× 10−6 6.005× 10−7
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Table 6.3 L2, L∞ and RMS

errors for N = 3 and t = 0.2
of Example 6.3

x L2 L∞ RMS

1 0.7560× 10−5 0.5247× 10−4 0.1000× 10−6

2 0.1164× 10−5 0.3791× 10−4 0.1502× 10−5

3 0.1550× 10−4 0.5467× 10−3 0.6855× 10−4

4 0.8259× 10−3 0.7795× 10−3 0.1752× 10−3

5 0.4643× 10−4 0.5467× 10−2 0.2916× 10−5

Table 6.4 CPU times for
N = 2 and N = 4 of
Example 6.3

Wall clock time (s)

N = 2 N = 4

195.288 353.98

u(1, t) = 1

1+ exp( 1
2 − t

4 )
, 0 ≤ t.

In Table 6.3, error comparison between the norms L2, L∞ and Root-Mean-
Square RMS have been demonstrated for N = 3 and t = 0.2. Moreover, a central
processing unit (CPU) has been shown on the Table 6.4.

6.6 Concluding Remarks

In this study, a modified Laguerre matrix-collocation method has been introduced
to solve Burgers–Fisher type nonlinear equations under the initial and boundary
conditions. An error estimation has been implemented by using the residual function
to improve the numerical solutions. This improvement has been shown on tables.
Approximate solutions have been obtained with different truncation limits, N and
M values. The implementations of the results can be seen from figures and tables.
As we can see the execution on tables and figures, the errors decrease when N and
M are increased.

Furthermore, comparison of the numerical results between the present tech-
nique and existed methods has been done. Meanwhile, applicability, efficiency
and reliability of the present method have been proved by illustrative examples.
A remarkable advantage of the method is that the approximate solutions are
computed very comfortably by using a well-known symbolic software such as
Matlab, Maple and Mathematica. Additionally, the calculation has been explained
by the algorithm and a table has been given to show CPU running time for the
computer programmes [17–22, 24–33, 35–44].

Consequently, in this study, such easily convenient and improved technique has
been analysed. The method can also be applied on many other real-world problems,
though some modifications are required [47].
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Chapter 7
Increasing the Effects of Auxiliary
Function by Multiple Extrema in Global
Optimization

Ahmet Sahiner, Shehab A. Ibrahem, and Nurullah Yilmaz

7.1 Introduction

Many real-life problems have been formulated as optimization problems. They have
been applied in many branches of real-life such as finance, portfolio selection,
medical science, data mining, etc. [1–4]. Global optimization constitutes one
important part of the theory of optimization. It has many application areas in
engineering such as electrical power distribution and design of space trajectories
[5, 6]. Global optimization is a very active research area because of the problems
becoming more and more complicated from year to year due to increasing number
of variables and structure of the problems (non-smoothness). Up to now, many new
theories and algorithms have been presented to solve global optimization problems
[7, 8]. There exist two different type of methods which are based on local searches
(Monotonic Basin Hopping, Hill Climbing Methods, etc. [9, 10]) and not based on
local searches (Branch and Bound, DIRECT, etc. [11, 12]). We consider the methods
based on local searches. For local search based methods the major difficulties for
global optimization are listed below:

a. When finding any local minimizer by using a local solver, how to escape from
this current local minimizer.

b. How to ignore the local minimizers of which their values are greater than the
value of current minimizer and find a lower minimizer of the objective function.

c. How to evaluate the convergence to the global minimizer, and determine the
stopping criteria.
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In different point of view, global optimization approaches can be classified
into three main classes: stochastic methods, heuristic methods, and deterministic
methods.

Stochastic methods are quite simple, very efficient in black box problems and
robust with respect to the increment of dimension of the problem but some of the
stochastic methods can find only a local solution instead of the global one. The
very well-known stochastic approaches are Random Search and Adaptive Search,
Markovian Algorithms, etc. [13, 14]. The population algorithms are included in
stochastic methods but we handle them in the heuristic methods.

The heuristic methods are based on the simulation of the biological, physical,
or chemical processes. These methods are easy applicable and they converge the
solution rapidly. However, they can give different results if they are run again. The
very well-known methods are Genetic Algorithm [15], Simulated Annealing Algo-
rithm [16–18], Particle Swarm Optimization [19, 20], and Artificial Bee Colony
Algorithm [21, 22]. In recent years, the hybridizations of the heuristic global
optimization algorithms have come into prominence [23–27].

The convergence to the solution is guaranteed in deterministic approaches. This
is the outstanding property of the deterministic approaches. However, these methods
converge the solution quite slowly [28]. There exist important methods such as
Branch and Bound algorithms [11], Covering methods [12], Space Filling Curve
methods [29, 30], and other methods [31, 32].

Auxiliary function approach is one of the most important one among the methods
on global optimization. These methods are developed according to deterministic
search strategies by constructing an auxiliary function to escape from the current
local minimizer to a better one, among such methods are Tunneling Method [33],
Filled Function Method (FFM) [34–36], and Global Descent Method [37].

The first auxiliary function method was introduced by Levy and Montalvo
[33]. Cetin et al. developed the tunneling algorithm to resolve constrained global
optimization problems [38]. However, many important studies related to tunneling
algorithms have been published in [39–41].

Among other methods, FFM can be considered an effective approach to solve
different global optimization problems, so it seems to have several features over
others, for example, it is more simple to find a better local minimizer sequentially
compared to other methods. The FFM was presented for the first time by Ge [34, 35]
and improved in [42–44]. Many valuable studies have been presented in order to
make filled function applicable for different type of problems such as non-smooth
problems [45, 46], constrained optimization problems [47], system of nonlinear
equations [48], etc. [49, 50]. Recently, the next generation of filled function or
auxiliary function approaches have been developed [51–55].

The FFM presents a good idea for solving global optimization problems. In
general, the filled function mechanism is described as follows:

1. Choose any random point for starting and use a convenient local optimization
method to find a local minimizer of the objective function.
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2. Construct a filled function based on the current minimizer of the objective
function, and use any point in the proximity of this current minimizer to minimize
the filled function. Finally, a local minimizer of the filled function is obtained.
This minimizer is in a basin of better solution of objective function.

3. The minimizer of filled function which obtained in step 2 is used as a starting
point to find the minimizer of the objective function.

Surely the number of minimizers is reduced by repeating Step 2 and 3. Finally, the
global minimizer of objective function is found.

Some of the existing filled functions have been constructed to have a surface
somewhat like a surface of the objective function in the lower basin (when f (x) ≥
f (x∗1 ), x∗1 is a current minimizer of the objective function) of the better solution,
this situation has drawbacks; it needs more time and function evaluations.

In this study, in order to eliminate the drawbacks in some of previous filled
functions we proposed a new filled function. This new proposal is based on putting
many stationary points in lower basins, in fact, the filled function does not need to
go down in the lower basin, it only needs to obtain any stationary point in the lower
basin which can be used as a starting point for minimizing the objective function to
get a lower minimizer. This idea helps to reduce the time and function evaluations
which are very important for such methods.

This study is organized as follows: In Sect. 7.2, we give some preliminary
information. In Sect. 7.3, we propose a new filled function with its properties.
In Sect. 7.4, we introduce the filled function algorithm. In Sect. 7.5, we perform
a numerical test and present the results obtained from the new method. Finally,
Sect. 7.6 consists of conclusions.

7.2 Preliminaries

We consider a class of unconstrained global optimization problems as the following:

(P ) min
x∈Rn

f (x), (7.1)

where f (x) : Rn −→ R is continuously differentiable function.
We assume that the function f (x) is globally convex, which means f (x)→+∞

as ‖x‖ → +∞. It means that there exist a closed, bounded, and box-shaped domain
Ω = [lb, ub] = {x : lb ≤ x ≤ ub, lb, ub ∈ R

n} that contains all the local
minimizers of f (x). Moreover, the number of different values of local minimizers
of the function f (x) is finite.

Additionally, basic concepts and symbols used in this study are given as
follows:

k : the number of local minimizers of f (x),
x∗k : the current local minimizer of f (x),
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x∗ : the global minimizer of f (x),
B∗k : the basin of f (x) at the local minimizer x∗k .

We indicate the following definitions:

Definition 7.1 ([34]) Let Ω ⊂ Rn. A point x∗ ∈ Ω is a global minimizer of
objective function f (x) if f (x∗) ≤ f (x) for all x ∈ Ω ,

Definition 7.2 ([34]) Let x∗k is a local minimizer of the objective function f (x).
The set of points B∗k ⊂ Ω is called a basin of f (x) at the point x∗k if any local solver
starting from any point in B∗k finds the local minimizer x∗k .

Definition 7.3 ([34]) The auxiliary function F(x, x∗k ) is called a filled function of
the objective function f (x) at a local minimizer x∗k if the function F(x, x∗k ) has the
following properties:

• x∗k is a local maximizer of the function F(x, x∗k ),
• F(x, x∗k ) has no stationary points in A1 = {x ∈ Ω|f (x) ≥ f (x∗k ), x �= x∗k },
• if x∗k is not a global minimizer of the function f (x), then the function F(x, x∗k )

has a stationary point in the region A2 = {x|f (x) < f (x∗k ), x ∈ Ω}.

7.2.1 Overview of the Filled Functions

In 1987 Ge and Qin proposed a first filled function (we call it as G-function) [34]
with two parameters to solve the problem (P) at an isolated local minimizer x∗k that
is defined by

G(x, x∗k , r, ρ) = −(ρ2 ln[r + f (x)] + ‖x − x∗k ‖2), (7.2)

and, in 1990 Ge introduced another filled function (P-function) [35] which has the
following form:

P(x, x∗k , r, ρ) =
1

r + f (x)
+ exp

(
− ‖x − x∗k ‖2

ρ2

)
, (7.3)

where r and ρ are parameters which need to be chosen conveniently. Generally, the
G-function and P-function of the objective function f (x) at the current minimizer
x∗k must satisfy the Definition 3.

Many important studies are developed the FFM to solve multi-modal global opti-
mization problems. These studies can be classified into two categories depending on
the number of adjustable parameters.
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7.2.2 Filled Functions with Two-Parameter

In [56], Wu et al. offer a filled function with two parameters to decrease the
computational cost and overcome several disadvantages of filled functions which
has the following form:

Hq,r,x∗k (x) = q(exp
(
−‖x − x∗k ‖2

q

)
gr(f (x)−f (x∗k ))+fr(f (x)−f (x∗k )), (7.4)

where q, r > 0 are adjustable parameters and fr, gr are continuously differentiable
functions.

In 2009, Zhang et al. [57] introduced a new definition for the filled function,
which rectifies several drawbacks of the classic definition. A new filled function
with two parameters defined by

P(x, x∗k , r, a) = ϕ(r + f (x))− a(‖x − x∗k ‖2), (7.5)

where a > 0, r are parameters and the function ϕ(t) is continuously differentiable.
Wei et al. [58] offer a new filled function which is not sensitive to parameters. This
function has two parameters and has the following formula:

P(x, x∗k ) =
1

(1+ ‖x − x∗k ‖2)
g(f (x)− f (x∗k )), (7.6)

and

g(t) =
{

0, t ≥ 0,
r arctan(tρ), t < 0,

where r > 0, ρ > 1 are parameters.

7.2.3 Filled Functions with One Parameter

According to general opinion, the existence of more than one adjustable parameter
in the same filled function makes the control difficult. So, the first filled function
which has only one parameter is the function Q. This function proposed in (1987)
by Ge and Qin and has the following formula:

Q(x, a) = −(f (x)− f (x∗k )) exp(a‖x − x∗k ‖2). (7.7)

The function Q has one adjustable parameter a, if this parameter becomes large
and large, quickly increasing value of exponential function negatively affects
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the computational results [34]. In order to tackle this drawback, H-function was
introduced by Liu in [36] that is given by

H(x, a) = 1

ln(1+ f (x)− f (x∗k ))
− a‖x − x∗k ‖2. (7.8)

The function H keeps the feature of the function Q with only one adjustable
parameter but without exponential function. Shang et al. introduced a filled function
with one adjustable parameter in the following:

Fq(x, x
∗
k ) =

1

(1+ ‖x − x∗k ‖)
ϕq(f (x)− f (x∗k )+ q), (7.9)

and

ϕq(t) =
{

exp(− q3

t
), t �= 0,

0, t = 0,

so, q is a parameter subject to certain conditions [59]. Zhang and Xu constructed a
filled function to solve non-smooth constrained global optimization problems [60].
This function constructed to overcome several drawbacks of the previous filled
functions, and it has one parameter as follows:

P(x, x∗k , q) = exp(‖x − x∗k ‖) ln(1+ q(max{0, f (x)− f (x∗k )+ r}

+
m∑

i=1

max{0, gi(x)})),

where q > 0 is the parameter, gi(x) > 0 are constrained conditions, and r is
prefixed constant.

In 2013, Wei and Wang proposed a new filled function for problem (P ) with
one adjustable parameter and it does not sensitive to this parameter [61]. The filled
function has the following formula:

P(x, x∗k ) = −‖x − x∗k ‖2g(f (x)− f (x∗k )), (7.10)

where

g(t) =
{

π
2 , t ≥ 0,

r arctan(t2)+ π
2 , t < 0,

and r is an adjustable parameter as large as possible, used as the weight parameter.
Wang et al. constructed a filled function for both smooth and non-smooth

constrained problems in 2014 [62]. The constructed filled function is defined by
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P(x, x∗k , q) = −
1

q
[f (x)− f (x∗k )+max{0, gi(x)}))]2 − arg(1+ ‖x − x∗k ‖2)

+q[min(0,max(f (x)− f (x∗k )gi(x), i ∈ I ))]3.

The filled function at above has only one adjustable parameter which is controlled
during the process. A new definition and a new filled function is given in 2016 by
Yuan et al. [63]. This filled function has one parameter, given by

F(x, x∗k , q) = V (‖x − x∗k ‖)Wq(f (x)− f (x∗k )), (7.11)

where q > 0 is an adjustable parameter, V (t) : R → R and Wq(t) : R → R are
continuously differentiable under some properties.

7.3 A New Filled Function Method and Its Properties

We offer a new filled function at a local minimizer x∗k with two parameters to solve
the problem (P ) as follows:

F(x, x∗k ) =
1

α + ‖x − x∗k ‖2
h(f (x)− f (x∗k )),

where

h(t) =
{

1, t ≥ 0,

sin
(
μt + π

2

)
, t < 0,

and 0 < α ≤ 1 and μ > 1 are parameters.
The new idea in this filled function is to put many stationary points in the lower

basin A2 = {x|f (x) < f (x∗k ), x ∈ Ω}. In fact, the filled function does not need
to go down in the lower basin, only it needs to obtain any stationary point in A2,
which can be used as an initial for minimizing objective function to obtain a lower
minimizer.

The above idea has many advantages, for example, it helps to reduce the time and
evaluation which are very important in cases like this. Furthermore, the parameter
μ is used to increase or decrease the number of stationary points in the interval A2,
therefore we have to choose μ carefully, because if it is small there is a possibility
that we may lose some of the lower minimizers at which the value of the function
is close to the value at the first minimizer (see Figs. 7.1 and 7.2). The parameter
0 < α ≤ 1 in the term 1

α+‖x−x∗k ‖2
is used to control the hat and it is easy to modify.

The following theorems references that the function F(x, x∗k ) is a filled function by
Definition 7.1.
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Fig. 7.1 Some different values of the parameter μ and their effect on the function F(x, x∗k )

Fig. 7.2 The graph of F(x, x∗k ) in two dimensions
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Theorem 7.1 Assume that x∗k is a local minimizer of the function f (x), and
F(x, x∗k ) is defined by the Definition 3, then x∗k is a strict local maximizer of
F(x, x∗k ).

Proof Since x∗k is a local minimizer of f (x), then there exists neighborhood
N(x∗k , ε) ⊂ A1 of x∗k for some ε > 0 such that f (x) ≥ f (x∗k ) for all x ∈ N(x∗k , ε)
and x �= x∗k , 0 < α ≤ 1.

F(x, x∗k )
F (x∗k , x∗k )

= α + ‖x∗k − x∗k ‖2
α + ‖x − x∗k ‖2

= α

α + ‖x − x∗k ‖2
< 1.

That means x∗k is a strict local maximizer of F(x, x∗k ).

Theorem 7.2 Assume that x∗k is a local minimizer of f (x), and x is any point in
the set A1, then x is not stationary point of F(x, x∗k ) for any 0 < α ≤ 1.

Proof We have x ∈ A1, f (x) ≥ f (x∗k ) and x �= x∗k . Then F(x, x∗k ) = 1
α+‖x−x∗k ‖2

,

and ∇F(x, x∗k ) = −2
x−x∗k

(α+‖x−x∗k ‖2)2
�= 0, for each 0 < α ≤ 1. This implies the

function F(x, x∗k ) has no stationary point in the set A1.

Theorem 7.3 Assume that L = min |f (x∗i )− f (x∗j )|, i, j = 1, 2, . . . , m, f (x∗i ) �=
f (x∗j ) and x∗k is a local minimizer of f (x) but not global, then there exists a point
x′ ∈ A2 such that the point x′ is a stationary point of the function F(x, x∗k ) when
μ = π

2L for each 0 < α ≤ 1.

Proof Since the current local minimizer x∗k is not global minimizer of f (x), then
there exists second minimizer x∗k+1 ∈ A2 such that f (x∗k+1) < f (x∗k ).

For any point y ∈ A1 we have F(y, x∗k ) > 0, so by the continuity of f (x), and if
μ = π

2L we obtain F(x∗k+1, x
∗
k ) < 0. Then, by the theorem of intermediate value of

continuous function, there exist a point lying between the points y and x∗k+1 on the
part [y, x∗k+1], the value of the filled function at this point is equal to 0.

Assuming that z is the nearest point to x∗k+1 with F(z, x∗k ) = 0, then, we obtain
the part [z, x∗k+1]. That means z ∈ ∂A2 and z is in the borders of the set B∗k+1
which is a closed region. By the continuity of the function F(x, x∗k ), there exist
a point x′ ∈ B∗k+1 such that it is a local minimizer of the function F(x, x∗k ) and
F(x′, x∗k ) < 0, since the function F(x, x∗k ) is continuously differentiable, we obtain

∇F(x′, x∗k ) = 0.

7.4 The Algorithm

According to the information of the previous sections, we proposed a new filled
function algorithm as follows:
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1 Set k = 1, ε = 10−2, choose Uμ = 30 an upper bound of μ and give μ = 5;
N the number of different directions di for i = 1, 2, 3, . . . , N , choose an initial
point xint ∈ Ω , and give 0 < α ≤ 1, where n is the dimension of the problem.

2 Minimize f (x) using xint as a starting point to find local minimizer x∗k .
3 Construct filled function at x∗k

F (x, x∗k ) =
1

α + ‖x − x∗k ‖2
h(f (x)− f (x∗k ))

and set i = 1.
4 If i ≤ N , set x = x∗k + εdi and go to step (5); otherwise go to step (6).
5 Start from x to find a minimizer xF of F(x, x∗k ), if xF ∈ Ω then set xint = xF ,
k = k + 1 and go to step (2); otherwise i = i + 1, go to step (4).

6 If μ ≤ Uμ, then μ = μ + 5 and go to step (2); otherwise take x∗k as a global
minimizer of f (x) and stop the algorithm.

The set of different directions di are as the following: let θ1, . . . , θJ ∈ [0, 2π ]
and ϑ1, . . . , ϑJ ∈ [−π

2 ,
π
2 ], are uniformly distributed. If n = 2Q, the components

of dji = (y
j

1 , y
j

2 , . . . , y
j

2Q) is calculated as

y
j

2l−1 =
√

2√
n

cos(θj )

y
j

2l =
√

2√
n

sin(θj ),

for l = 1 ∼ Q. If n = 2Q + 1, the components of djl = (y
j

1 , y
j

2 , . . . , y
j

2Q+1) is
calculated as

y
j

1 =
√

2√
n

cos(ϑj ) cos(θj )

y
j

2 =
√

2√
n

cos(ϑj ) sin(θj )

y
j

3 =
√

2√
n

sin(ϑj )

y
j

2l =
√

2√
n

cos(θj )

y
j

2l+1 =
√

2√
n

sin(θj )

for l = 2 ∼ Q [64].
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7.5 Numerical Results

In this section, we perform the numerical test of our algorithm on test problems
which are stated as follows:

Problem 5.1–5.3 (Two-Dimensional Function)

min f (x) = [1− 2x2 + c sin(4πx2)− x1]2 + [x2 − 0.5 sin(2πx1)]2,

for x1, x2 ∈ [−3, 3], where c = 0.05, 0.2, 0.5.

Problem 5.4 (Three-Hump Back Camel Function)

min f (x) = 2x2
1 − 1.05x4

1 +
1

6
x6

1 − x1x2 + x2
2 ,

for x1, x2 ∈ [−3, 3].
Problem 5.5 (Six-Hump Back Camel Function)

min f (x) = 4x2
1 − 2.1x4

1 +
1

3
x6

1 − x1x2 − 4x4
2 + 4x4

2 ,

for x1, x2 ∈ [−3, 3].
Problem 5.6 (Treccani Function)

min f (x) = x4
1 + 4x3

1 + 4x2
1 + x2

2 ,

for x1, x2 ∈ [−3, 3].
Problem 5.7 (Goldstein and Price Function)

min f (x) = g1(x)g2(x),

where

g1(x) = 1+ (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2),

and

g2(x) = 30+ (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2),

for x1, x2 ∈ [−3, 3].
Problem 5.8 (Shubert Function)

min f (x) =
{ 5∑

i=1

i cos[(i + 1)x1 + i]
}{ 5∑

i=1

i cos[(i + 1)x2 + i]
}

,

s. t. x1, x2 ∈ [−10, 10].
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Problem 5.9 (Rastrigin Function)

min f (x) = 20+
2∑

i=1

[

x2
i − 10 cos(2πxi)

]

,

for x1, x2 ∈ [−5.12, 5.12].
Problem 5.10 (Branin Function)

min f (x) =
(
x2 − 5.1

4π2 x
2
1 +

5

π
x1 − 6

)2 + 10
(

1− 1

8π

)
cos(x1)+ 10,

for x1 ∈ [−5, 10], x2 ∈ [0, 15].
Problems 5.11, 5.12, 5.13 (Shekel Function)

min f (x) = −
m∑

i=1

[ 4∑

j=1

(xj − ai,j )
2 + bi

]−1

,

where m = 5, 7, 10, bi is an m-dimensional vector, and ai,j is a 4×m-dimensional
matrix where

bi = 0.1.
[
1 2 2 4 4 6 3 7 5 5

]
,

ai,j =

⎡

⎢
⎢
⎣

4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6
4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.0 1.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6

⎤

⎥
⎥
⎦,

and xj ∈ [0, 10], j = 1, .., 4.

Problems 5.14–5.21 (n-Dimensional Function)

min f (x) = π

n
[10 sin2 πx1 + g(x)+ (xn − 1)2],

where g(x) = ∑n−1
i=1

[

(xi − 1)2(1 + 10 sin2 πxi+1)

]

and xi ∈ [−10, 10], i =
1, 2, . . . , n.

Problems 5.21–5.29 (Levy Function)

min f (x) = sin2(πw1)+
n−1∑

i=1

(wi − 1)2
[

1+ 10 sin2(πwi + 1)

]

+(wn − 1)2
[

1+ sin2(2πwn)

]

,
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Table 7.1 The list of test problems

Function No. Dimension n Function name Optimum value Region

5.1 2 Two-dimensional
function c = 0.05

0 [−3, 3]2

5.2 2 Two-dimensional
function c = 0.2

0 [−3, 3]2

5.3 2 Two-dimensional
function c = 0.5

0 [−3, 3]2

5.4 2 Three-hump back
camel function

0 [−3, 3]2

5.5 2 Six-hump back
camel function

−1.0316 [−3, 3]2

5.6 2 Treccani function 0 [−3, 3]2
5.7 2 Goldstein and Price

function
3.0000 [−3, 3]2

5.8 2 Shubert function −186.73091 [−10, 10]2
5.9 2 Rastrigin function −2.0000 [−3, 3]2
5.10 2 (RC)Branin

function
0.3979 [−5, 10] ×

[10, 15]
5.11 4 (S4,5)Shekel

function
−10.1532 [0, 10]

5.12 4 (S4,7)Shekel
function

−10.4029 [0, 10]

5.13 4 (S4,10)Shekel
function

−10.5364 [0, 10]

5.14–5.17 2,3,5,7 n-dimensional
function

0 [−10, 10]2

5.18–5.21 10,20,30,50 n-dimensional
function

0 [−10, 10]2

5.22–5.25 2,3,5,7 (L5)Levy function 0 [−10, 10]2
5.26–5.29 10,20,30,50 (L7)Levy function 0 [−10, 10]2

where

wi = 1+ xi − 1

4
, f or all i = 1, . . . , n

for xi ∈ [−10, 10], i = 1, 2, . . . , n.

We rearrange the above problems and the list of test problems are presented
in Table 7.1. The algorithm is implemented 10 times starting from the different
points independently for each problem on a PC with Matlab R2016a. The “fminunc”
function of Matlab is used as a local solver. The used symbols are the following:

• No.: the number of the problem,
• n: the dimension,
• itr-mean: the mean iteration number of the 10 runs,
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Table 7.2 The numerical results of our algorithm on the list of problems

No. n. itr-mean f-mean f-best f-eval time S-R

5.1 2 1.2000 6.5805e − 12 5.7244e − 16 201 0.0427 9/10

5.2 2 1.0000 2.6536e − 13 1.2548e − 14 315 0.0383 10/10

5.3 2 1.5000 1.4803e − 13 5.7321e − 15 288 0.0498 8/10

5.4 2 1.0000 4.1081e − 14 2.2390e − 16 306 0.0254 10/10

5.5 2 2.4000 −1.0316 −1.0316 132 0.0236 10/10

5.6 2 1.0000 1.1315e − 11 5.1253e − 16 240 0.0246 10/10

5.7 2 2.1000 3.0000 3.0000 414 0.0503 8/10

5.8 2 11.3000 −186.7309 −186.7309 591 0.1045 10/10

5.9 2 7.2000 3.6948e − 14 0 246 0.0273 10/10

5.10 2 1.0000 0.3979 0.3979 243 0.0165 10/10

5.11 4 1.0000 −10.1532 −10.1532 1140 0.0614 7/10

5.12 4 3.3000 −10.4029 −10.40294 850 0.1028 9/10

5.13 4 4.1000 10.5321 −10.5321 925 0.0680 8/10

5.14 2 4.3000 2.5282e − 13 1.5241e − 15 150 0.0167 10/10

5.15 3 7.0000 6.2081e − 09 7.0745e − 15 2100 0.1873 10/10

5.16 5 9.6000 6.5445e − 09 2.9883e − 13 3420 0.2170 8/10

5.17 7 5.2000 4.1802e − 09 3.3935e − 11 5816 0.3027 8/10

5.18 10 10.1000 4.0625e − 10 7.1453e − 12 3850 0.1741 8/10

5.19 20 8.1000 1.8112e − 10 3.3503e − 13 6363 0.2280 7/10

5.20 30 5.0000 9.3934e − 11 2.7690e − 14 9517 0.2957 9/10

5.21 50 18.30000 .4131e − 12 1.8754e − 15 27846 0.8174 8/10

5.22 2 3.2000 2.9301e − 13 2.6872e − 17 510 0.0577 10/10

5.23 3 6.2000 1.3768e − 13 4.6587e − 16 1825 0.1407 9/10

5.24 5 7.4000 1.2471e − 12 8.6884e − 14 1422 0.0994 8/10

5.25 7 7.0000 1.3095e − 11 6.9033e − 16 1936 0.1151 8/10

5.26 10 8.0000 3.6191e − 12 5.2026e − 14 4169 0.2106 6/10

5.27 20 6.7000 2.0352e − 12 4.5555e − 15 7056 0.3026 6/10

5.28 30 14.7000 .8459e − 12 7.1327e − 16 13391 0.6136 10/10

5.29 50 10.4000 9.9071e − 12 9.8943e − 15 48450 1.1783 9/10

• f-eval: the total number of function evaluations,
• time: the mean of the aggregate running time in 10 runs (second),
• f-mean: the mean of the function values in 10 runs,
• f-best: the best function value in 10 runs,
• S-R: the success rate among 10 implementation with different starting points.

The results of the algorithm is presented in Table 7.2. This table consists of seven
column; (No) number of the problem, (n) dimension of the problem, (itr-mean)
mean value of total iteration number, (f-mean) mean value of the function values,
(f-best) the best value of the function values, (f-eval) mean value of the function
evaluations and (S-R) success rates of ten trails uniform initial points. As shown in
this table our algorithm is tested on 29 problems with different dimensions up to
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Table 7.3 The comparison of our algorithm with algorithm in [65]

Our method The method in [65]

No. n. f-best f-eval S-R f-best f-eval S-R

5.1 2 5.7244e − 16 201 9/10 2.66630e − 15 214 8/10

5.2 2 1.2548e − 14 315 10/10 3.4336e − 16 290.6250 8/10

5.3 2 5.7321e − 15 288 8/10 4.7243e − 16 414.2857 8/10

5.4 2 2.2390e − 16 306 10/10 2.8802e − 16 411 10/10

5.5 2 −1.0316 132 10/10 −1.0316 234 10/10

5.6 2 5.1253e − 16 240 10/10 1.6477e − 15 216.5000 10/10

5.7 2 3.0000 414 8/10 3.0000 487.8889 9/10

5.8 2 −186.7309 591 10/10 −186.7309 813.5000 10/10

5.9 2 0 246 10/10 −2.0000 501 10/10

5.10 2 0.3979 243 10/10 0.3979 222.3000 10/10

5.11 4 −10.1532 1140 7/10 −10.1532 1001 9/10

5.12 4 −10.4029 850 9/10 −10.4029 1365.1000 8/10

5.13 4 −10.5321 925 8/10 −10.5321 1412 7/10

5.14 2 1.5241e − 15 150 10/10 9.4192e − 15 743 8/10

5.15 3 7.0745e − 15 2100 10/10 5.6998e − 15 3027 10/10

5.16 5 2.9883e − 13 3420 8/10 3.7007e − 15 4999 10/10

5.17 7 3.3935e − 11 5816 8/10 1.3790e − 14 8171 8/10

5.18 10 7.1453e − 12 3850 8/10 3.0992e − 14 8895 9/10

5.19 20 3.3503e − 13 6363 7/10 3.0016e − 13 18242 7/10

5.20 30 2.7690e − 14 9517 9/10 1.7361e − 12 43232 6/10

5.21 50 1.8754e − 15 27846 8/10 9.8531e − 13 83243 6/10

50 dimensions, each problem is tested on ten different initial points. Our algorithm
reaches 10/10 success rate for almost 40% of the all test problems. At least 6/10
success rate is obtained considering all of the test problems as stated in column
(S-R). By using our algorithm %94 success rate is obtained considering the total
number of trials. Moreover, the f-mean and f-best values in Table 7.2 are very close
to original function values which are given in Table 7.1.

The comparison of our algorithm with the method in [65] are summarized in
Table 7.3.

In general, it can be seen from Table 7.3 the results of the algorithm presented in
this paper obtain an advantage in several places especially in the columns dedicated
to function evaluations and success rates compared to the results of the algorithm
in [65]. Both of the methods (our method and the method in [65]) are sufficiently
successful in terms of “f-best” values. Our method complete the global optimization
process with lower function evaluation values than the method in [65] for the
85% of the all test problems. By using our algorithm, 88% successful trial is
obtained considering the total number of the trial used in comparison and at least
7/10 success rate is obtained for each of the test problems used in comparison.
86% successful trial is obtained considering the total number of trials used in
comparison and at least 7/10 success rate is obtained for each of the test problems in
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comparison, by using the algorithm in [65]. Moreover, our method is more effective
than the method in [65] in terms of “f-eval” and “S-R” on the 10 and more than
10 dimensional test problems. Thus, the introduced algorithm in this paper is more
efficient than the algorithm introduced in [65].

7.6 Conclusions

In this chapter, a new filled function for unconstrained global optimization is
presented and the useful properties are introduced. The proposed filled function
contains two parameters which can be easily adjusted in the minimization process.
The corresponding filled function algorithm is constructed. Furthermore, it has been
performed on numerical experiment in order to demonstrate the effectiveness of the
presented algorithm. It can be seen from the computational results that the present
method is promising.

This new algorithm is an effective approach to solve multi-modal global opti-
mization problems. In the minimizing process, our methods save time in finding
the lower minimizer and it is guaranteed that upper minimizers are not taken into
account in all of the minimization process independently from the parameters. These
two important properties make our method advantageous among the other methods.

For future work, the applications of global optimization algorithms can be
applied to many real-life problems such as data mining, chemical process, aerospace
industries, etc.
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Chapter 8
A New Approach for the Solution
of the Generalized Abel Integral
Equation

Tahir Cosgun, Murat Sari, and Hande Uslu

8.1 Introduction

Singular integral equations are examples of the topics included in the applied
fields before the theory. Abel tried to answer one of the well-known problems of
mechanics in the opposite direction [1, 2]. Instead of computing the required time
for a particle that slides on a given trajectory, Abel posed the question: For given
two points A and B in the plane, can we find the trajectories, combining the points A
and B, that requires the same amount of time? This problem is called as tautochrone
problem and has a deserved reputation in both mathematics and mechanics. The
name tautochrone combining two words tauto (same) and chrono (time) comes from
Latin. The mathematical formulation of this problem is as follows:

Suppose that a particle with mass m slides downward through a frictionless
surface, i.e., the only force acting on the mass m is the gravitational force. See
Fig. 8.1 for a pictorial explanation. Assume the rate of change of the arc with respect
to the height is

ds

dy
= f (y). (8.1)

Considering the conservation of energy, the change in the potential must be equal
to the change in the kinetic energy
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Fig. 8.1 The particle with
mass m slides through a
frictionless path from point B
to point A under the influence
of gravity

B(a, b)

C(x,y)

A(0,0)

b

m

mgb −mgy = 1

2
mv2. (8.2)

Canceling m’s and solving the last equation for v, we can obtain

v = √2g(b − y). (8.3)

Now, using the chain rule we can also observe that

ds

dy
= ds

dt
/
dy

dt
= vdt

dy
. (8.4)

Hence, using Eqs. (8.1) and (8.3), and rearranging the terms one can deduce the
following equalities

dt = f (y)
v

dy (8.5)

= f (y)√
2g(b−y)dy. (8.6)

Integrating both sides of Eq. (8.6) from 0 to b, one of the well-known integral
equations can be obtained as

T (b) =
∫ b

0

f (y)√
2g(b − y)

dy. (8.7)

Notice that, in Eq. (8.7), T (b) is a given time, and the only unknown is the
trajectory f (y) under the integral sign. With an appropriate change of variables
Eq. (8.7) can be transformed into a more familiar form

f (x) =
∫ x

0

u(t)√
x − t

dt. (8.8)

To solve this equation, a more generalized version of this equation was solved by
Abel:
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f (x) =
∫ x

0

u(t)

(x − t)α
dt, (8.9)

where α ∈ (0, 1). Throughout this study, we will deal with this form of the problem
which is known as the generalized Abel integral equation. In the literature, this
equation is sometimes called the generalized Volterra integral equation of the first
kind [3]. It is also strictly connected with fractional integrals.

In the literature, there are various techniques to solve Eq. (8.9). For example,
a spectral iterative method [4], an operational matrix method [5], an operational
method via Jacobi polynomials [6], a numerical solution via product trapezoidal
method [7], a solution by using the normalized Bernstein polynomials [8], and
a method based on regularization [9] have been proposed to solve Eq. (8.9). Being
not limited to the mentioned methods, there are also other techniques proposed in
the literature to solve the problem [10–15].

The main reason for focusing so much attention of researchers on this topic is
application facilities. In fact, both Volterra and Fredholm integral equations of the
first kinds are firmly connected to inverse problems. In the solution procedures of
inverse problems scientifically important models are tried to be obtained through
the physical observation of scattered data. It is hard or sometimes even impossible
to determine this kind of models directly. In this respect, X-ray radiography [16],
plasma spectroscopy [17], radar ranging [18], atomic scattering [19], electron
emission [20], seismology [21], and microscopy [22] could be given as some
application areas where the Abel integral equations are utilized.

8.2 Derivations and Main Results

In the present solution procedure, we want to replace the singular kernel of Eq. (8.9)

K(x, t) := 1

(x − t)α
, 0 < α < 1 (8.10)

with a series expansion via the generalized binomial theorem. Therefore, first of all,
we want to remind the generalized binomial theorem.

Theorem 8.1 For any x, y ∈ R

(x + y)r =
∞∑

k=0

(
r

k

)

xkyr−k, (8.11)

where r is an arbitrary real number, converges absolutely for |x/y| < 1.

Proof Proof can be found in [23, 24].
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As a remark, let us emphasize the definition of the generalized binomial
coefficients:

(
r

k

)

:= r(r − 1) . . . (r − k + 1)

k! . (8.12)

Now, being equipped with the generalized binomial theorem we can make the
following observations:

1

(x − t)α
=
∞∑

k=0

(−α
k

)

(−t)k(x)−α−k. (8.13)

Note that this series converges absolutely for |t/x| < 1. After the approximation
to the kernel, we need to assume the analyticity of the source function f (x), i.e., it
possesses a Taylor series expansion:

f (x) =
∞∑

k=0

fkx
k, (8.14)

and we suppose the unknown function u(x) has the form

u(x) = xα−1
∞∑

m=0

umx
m, (8.15)

where fk’s and um’s are just the coefficients in their series expansions. Hence, the
problem reduces to find um’s. Now, plugging Eqs. (8.13)–(8.15) into Eq. (8.9) we
can obtain

∞∑

k=0

fkx
k =

∫ x

0

( ∞∑

k=0

(−α
k

)

(−t)k(x)−α−k
)( ∞∑

m=0

umt
m+α−1

)

dt. (8.16)

If we take two generic terms from the series in the right-hand side of Eq. (8.16)
and integrate their multiplication over the interval (0, x), we can obtain the
following:

∫ x

0

(−α
k

)

(−t)k(x)−α−kumtm+α−1dt =
(−α

k

)

(−1)k(x)−α−kum
∫ x

0
tk+m+α−1dt

=
(−α

k

)

(−1)k(x)−α−kum
xk+m+α

k +m+ α

=
(−α
k

)
(−1)kumxm

k +m+ α
.
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Notice that the remaining term includes only xm. Therefore, instead of multiply-
ing just two terms from two different series, since the power of x is independent of
k’s in the above calculation, we can multiply the general term umt

m+α−1 with the
series expansion of the kernel and then integrating we can obtain

∞∑

m=0

fmx
m =

∞∑

m=0

um

( ∞∑

k=0

(−α
k

)
(−1)k

k +m+ α

)

xm

=
∞∑

m=0

umΓ (1− α)Γ (m+ α + 1)

(α +m)Γ (m+ 1)
xm.

Here, Γ represents the usual gamma function. Thus, by considering the same
powers of x in the last equation we can find the coefficients in the series expansion
of u(x) as

um = fm(α +m)Γ (m+ 1)

Γ (1− α)Γ (m+ α + 1)
. (8.17)

As a result, we can obtain the desired solution of the generalized Abel integral
equation as

u(x) = 1

Γ (1− α)

∞∑

m=0

fm(α +m)Γ (m+ 1)

Γ (m+ α + 1)
xm+α−1. (8.18)

8.3 Illustrative Examples

Example 8.1 Consider the generalized Abel integral equation

xn =
∫ x

0

1

(x − t)α
u(t)dt, (8.19)

where n is a given integer.

Solution 8.1 The solution of the given equation can be obtained analytically as

u(x) = (α + n)Γ (n+ 1)

Γ (1− α)Γ (n+ α + 1)
xn+α−1.

��
From Example 8.1, we can deduce that whenever the given source function f (x)

is a polynomial of finite degree, the unknown solution u(x) can be determined
analytically.
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Example 8.2 Consider the generalized Abel integral equation

sin(x) =
∫ x

0

1

(x − t)α
u(t)dt. (8.20)

Solution 8.2 The solution can be obtained by

u(x) =
∞∑

n=0

(−1)n(α + 2n+ 1)Γ (2n+ 2)

(2n+ 1)!Γ (1− α)Γ (2n+ 2+ α)
x2n+α.

��
Example 8.3 Consider the generalized Abel integral equation

ex =
∫ x

0

1

(x − t)α
u(t)dt. (8.21)

Solution 8.3 Then, the solution can be obtained by

u(x) =
∞∑

n=0

(α + n)Γ (n+ 1)

n!Γ (1− α)Γ (n+ α + 1)
xn+α−1.

��
In Examples 8.2 and 8.3, the given source functions are obviously analytical

functions and can be expanded into Taylor series. This was one of the assumptions in
Sect. 8.2. The method presented in this study has a major advantage when f (x) is an
analytical function. On the other hand, this kind of assumptions may be considered
as a drawback for the proposed method. For example, if n is not a natural number
in the first example, of course, it is possible because of Stone–Weierstrass theorem,
but it will be a cumbersome task to approximate f (x) with a polynomial.

8.4 Conclusions

To reach a solution to an equation in different ways or via different solution
procedures is an important task for scientists. Actually, it is not a task only, but
also a pleasure. In this study, we have obtained the solution of the generalized
Abel integral equation via a numerical solution process, and we have obtained the
same results with Abel. We hope that this study will stimulate enthusiasts to use the
generalized Binomial theorem when they are solving singular integral equations or
treating fractional integrals numerically.
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Chapter 9
NPSOG: A New Hybrid Method for
Unconstrained Differentiable
Optimization

Halima Lakhbab

9.1 Introduction

Optimization is essentially the art, science, and mathematics of choosing the best
among a given set of finite or infinite alternatives.

To use optimization, we must first identify some objective, a quantitative measure
of the performance of the system under study. The objective depends on certain
characteristics of the system, called variables or unknowns. We must also identify
constraints for the given problem. This step is known as modeling.

Once the model has been formulated, an optimization algorithm can be used
to find its solution. The effectiveness of the results of the application of any
optimization algorithm is largely a function of the degree to which the model
represents the system studied. The choice of an optimization algorithm is also an
important task; it may determine whether the problem is solved rapidly or slowly
and, indeed, whether the solution is found at all.

So, the goal of optimization is, for a given problem formalized as an objective
function f : D −→ E, to find the element of D which gives the best solution in E.

The space D can be called the search space, the problem space, or the function’s
domain. The element x ∈ D may be named a vector, a solution, a variable, or
possibly a point in D.

In this work, we will consider nonlinear continuous unconstrained optimization
problems, in which D = R

n, E = R, and f is a nonlinear differentiable function.
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The unconstrained minimization problem

min
x∈Rn

f (x)

has different iterative methods to solve it: If xk denotes the current iterate, and if it is
not a good estimator of the solution x∗, a better one, xk+1 = xk − αkgk is required.
Here gk is the gradient vector of f at xk and the scalar αk is the step length.

Our main contribution in this chapter is to develop a novel hybrid approach based
on a nonmonotone spectral gradient method and particle swarm optimization.

Nonmonotone spectral gradient (NSG) techniques are considered for uncon-
strained optimization of differentiable functions. They combine a nonmonotone
steplength strategy that is based on the Grippo–Lampariello–Lucidi nonmonotone
line search [14] with the spectral gradient choice of steplength [3]. This method
requires few storage locations and inexpensive computations. Furthermore the
nonmonotone line search assures the global convergence.

The fact that this method has good local search characteristics motivates us to
combine it with particle swarm optimization to approach the global minimum.

Traditionally a hybrid PSO carries out first a certain number of iteration and then
an iterative method (Gradient type methods or another metaheuristic) is applied to
refine the approximations. On the contrary, in our new hybrid approach, in every
iteration of PSO, and under specific condition given by the notion of loudness
parameter, we perform an exploitation step by NSG method.

The remainder of this chapter is organized as follows: In Sect. 9.2 we introduce
new gradient-based method, considered for the minimization of differentiable func-
tions. This method combines two recently developed ingredients in optimization:
the nonmonotone line search schemes and a spectral steplength. At first, we present
the “Barzilai–Borwein method” [3], known also by spectral gradient method, this
method consists essentially of a gradient descent method, where the choice of
the step size along the antigradient direction is potentially derived from a two-
point approximation to the secant equation underlying the quasi-Newton method.
Then, we introduce the nonmonotone line search technique [14]; in such technique,
some growth in the function value is permitted. The nonmonotone schemes can
avoid being trapped in local minima, which improve the likelihood of finding a
global optimum, and can also accelerate the convergence process. The third method
presented in this section is the nonmonotone spectral gradient (NSG) method, which
is a variant of “Global Barzilai–Borwein method” [23], such method combines the
two previous methods (a nonmonotone line search strategy with the Barzilai and
Borwein method). In Sect. 9.3 a review of the classical particle swarm optimization
is provided. Detail description of the new hybrid method is presented in Sect. 9.4. In
Sect. 9.5 numerical experiences are presented in the solution of some test problems.
The chapter is concluded in Sect. 9.6.
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9.2 Nonmonotone Spectral Gradient Method

9.2.1 Iterative Search Method and Step Size

It is well known that any solution of the unconstrained minimization problem

min
x∈Rn

f (x) (9.1)

where f : Rn −→ R is a continuously differentiable function solves the nonlinear
equations problem:

find x" ∈ R
n such that ∇f (x") = 0 (9.2)

The methods proposed to solve it are usually iterative procedures: if xk denotes the
current iterate, and if it is not a good estimator of x", a better one, xk+1 = xk+αkdk
is required. Here dk is a search direction and αk > 0 is a steplength.

The search direction dk is usually required to satisfy the descent condition

gTk dk < 0 (9.3)

The descent direction can be obtained by different methods, such as steepest descent
method, Newton method, and quasi-Newton method. After the descent direction dk
is fixed, we need to choose a steplength αk which will ensure a sufficient decrease
of f .

In the line search methods, we compute a steplength that decides how far xk
should move along the direction dk . The steplength can be determined either exactly
or inexactly. In the exact line search method, we find αk such that the objective
function f in the direction dk is minimized, i.e.,

f (xk + αkdk) = min
α>0

f (xk + αdk) (9.4)

Generally, this method is too expensive and ineffective; hence, it has been practically
abandoned. Therefore the inexact line search methods are preferable. This class of
methods can be divided into two classes:

• The monotone line search method: In this method (Armijo, Goldstein, Wolfe,
and others) [2, 13, 26], one generates a limited number of trial steplength until it
finds one that provides a sufficient decrease of the objective function. The Armijo
rule, known also by the backtracking line search, is a good example of such line
searches [2].

• The nonmonotone line search methods: In such technique, some growth in
the function value is permitted, which gives rise to the term nonmonotone.
Nonmonotone scheme can improve the likelihood of finding a global optimum,
and can also accelerate the convergence process in cases where a monotone
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scheme is forced to creep along the bottom of a narrow curved valley. The
original nonmonotone line search strategy is proposed in [14].

9.2.2 Nonmonotone Spectral Gradient Methods

In 1988, Barzilai and Borwein [3] presented a new choice of step size for the
gradient method for solving unconstrained minimization problems. Their method
aimed to accelerate the convergence of the steepest descent method. The Barzilai–
Borwein method, referred to (BB) algorithm, requires few storage locations and
inexpensive computations. Therefore, several researchers have paid attention to it
and have proposed some variants to solve large-scale unconstrained minimization
problems. The convergence for quadratics was established by Raydan [22], and a
global scheme was discussed more recently for nonquadratic functions [23] that
uses a variant of the nonmonotone line search of Grippo, Lampariello, and Lucidi
[14]. Other developments in BB algorithm can be found in [5, 10, 29].

9.2.2.1 The Barzilai–Borwein Method

The gradient iteration form

xk+1 = xk − αkgk (9.5)

can be written as

xk+1 = xk − Akgk (9.6)

Where Ak = αkI . In order to make the matrix Ak have quasi-Newton property, we
compute αk such that

min ‖sk−1 − Akyk−1‖ (9.7)

This yields that

αk =
sTk−1yk−1

yTk−1yk−1
(9.8)

By symmetry, we may minimize ‖A−1
k sk−1 − yk−1‖ with respect to αk and get

αk =
sTk−1sk−1

sTk−1yk−1
(9.9)
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Taking these ideas into account, the Barzilai–Borwein gradient algorithm which
is known also as the spectral gradient (SG) algorithm is established in the following
algorithm:

Algorithm (The Barzilai–Borwein Gradient Method [3, 22])

Step 0. x0 ∈ R
n, α0 ∈ R, let k = 0.

Step 1. If ‖g(xk)‖ = 0, stop, declaring that xk is stationary.
Step 2. Let dk = −gk
Step 3. Compute αk by (9.8) or (9.9)
Step 4. Set xk+1 = xk + αkdk .
Step 5. Let k = k + 1, return to Step 1.

The most important features of the previous algorithm are [23]:

• In this method no matrix computations and no line searches are required.
• Every iteration requires two inner products, one scalar–vector multiplication, two

vector additions, and only one gradient evaluation.
• It is a gradient method which uses information of the two previous iterates.

It makes a difference with the steepest descent method, which uses only
information of the previous iterate.

• It satisfies the weak secant equation: sTk Ak+1sk = sTk yk.

• The scalar αk+1 is a Rayleigh quotient of the matrix

∫ 1

0
∇2f (xk + tsk)dt

Barzilai and Borwein [3] proved that the above algorithm is R-superlinearly
convergent for the quadratic case. However, Fletcher [11] argued that, in general,
only R-linear convergence should be expected. Later, Raydan [22] established
global convergence for the strictly convex quadratic case.

In the general nonquadratic case, a globalization strategy based on nonmonotone
line search is suitable to Barzilai–Borwein gradient method [23].

9.2.2.2 The Nonmonotone Line Search Method

One possibility among several to ensure sufficient decrease of the objective function
is the Armijo condition [2]:

f (xk + αkdk) ≤ f (xk)+ αkγ d
T
k gk (9.10)

for some γ ∈ (0, 1). The Armijo backtracking rule chooses the integer hk minimal,
such that (9.10) is satisfied for αk = aβhk , where a > 0, β ∈ (0, 1).

The Armijo line search requires the function value to decrease monotonically
at each iteration. As a result, it may cause the sequence of iterations following the
bottom of a curved narrow valley, which commonly occurs in difficult nonlinear
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problems. To overcome this difficulty, a credible alternative is to allow an occasional
increase in the objective function at each iteration. In 1986, Grippo, Lampariello,
and Lucidi [14] proposed a nonmonotone generalization of the Armijo condition
(9.10) for Newton’s method, which was used in several subsequent papers and led
to new nonmonotone algorithms.

In the nonmonotone line search, we will enforce a much weaker condition of the
form

f (xk + αkdk) ≤ max
0≤j≤min{k,M} f (xk−j )+ αkγ d

T
k gk (9.11)

where M is a nonnegative integer and γ is a small positive number.

9.2.2.3 Nonmonotone Spectral Gradient (NSG) Algorithm

The condition (9.11) allows the objective function to increase at some iterations and
still guarantees global convergence. This feature fits nicely with the nonmonotone
behavior of the Barzilai and Borwein gradient method.

In [23], Raydan combined the Grippo–Lampariello–Lucidi nonmonotone line
search [14] with the spectral gradient choice of steplength [3] to propose global
Barzilai and Borwein (GBB) algorithm. This method requires only a few stor-
age locations and inexpensive computations. Furthermore the global convergence
method is guaranteed by using a nonmonotone line search strategy. The NSG
algorithm [21], which is a variant of GBB algorithm [23], is presented in the
following:

Algorithm (Nonmonotone Spectral Gradient)
Let k = 0.

Step 1. Detect whether the current point is stationary
If ‖g(xk)‖ = 0, stop, declaring that xk is stationary.

Step 2. Backtracking
Step 2.1 Compute dk = −αkgk . Set λ = 1.
Step 2.2 Set x̃ = xk + λdk .
Step 2.3 If

f (x̃) ≤ max
0≤j≤min{k,M} f (xk−j )+ γ λ〈dk, gk〉 (9.12)

then set λk = λ, x̃k = x̃ and go to Step 3,
else, define λnew ∈ [σ1, σ2λ]. Set λ = λnew and go to Step 2.2.

Step 3. Compute bk = 〈sk, yk〉.
If bk ≤ 0, set αk+1 = αmax, else, compute ak = 〈sk, sk〉 and αk+1 =
min{αmax,max{αmin, ak/bk}}. Step 4. Let k = k + 1, return to Step 1.
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Remark 9.1

1. The computation of λnew uses one-dimensional quadratic interpolation [5, 6].
2. The (NSG) algorithm cannot cycle indefinitely between Step 2.2 and Step 2.3,

since λ〈dk, gk〉 = −λαk‖gk‖2 < 0 and γ < 1, for sufficiently small value of λ
the condition (9.12) is well defined.

9.3 Particle Swarm Optimization (PSO)

9.3.1 Metaheuristic Methods

In metaheuristic methods, one optimizes a problem by iteratively trying to improve
a candidate solution with regard to a given measure of quality. Metaheuristics
mainly invoke exploration and exploitation search procedures in order to diversify
the search all over the search space and intensify the search in some promising
areas. The advantage of metaheuristic methods is that they make few or no
assumptions about the problem being optimized (no need for accurate guess values,
derivatives, linearity, or a closed form) and can search very large spaces of candidate
solutions. The disadvantage is that they give no exact solution (although by careful
implementation, the results can be reproduced up to a given precision).

Some of the most popular metaheuristics are:

• The evolutionary algorithms, including: evolutionary strategies and genetic
algorithms [15]

• simulated annealing [18],
• ant colonies algorithms [9],
• particle swarm optimization [16],
• tabu search [12].

The research is very active and it is impossible to produce an exhaustive list of
different metaheuristic methods.

There are different ways to classify and describe metaheuristic algorithms.
Depending on the characteristics selected to differentiate among them, several
classifications are possible, each of them being the result of a specific viewpoint.
A distinction can be made between single-individual methods and population-based
methods. Algorithms working on single solutions are called trajectory methods
and encompass local search-based metaheuristics, like tabu search and simulated
annealing. They all share the property of describing a trajectory in the search space
during the search process. Population-based metaheuristics, on the contrary, perform
search processes which describe the evolution of a set of points in the search space.
Evolutionary algorithms and particles swarm optimization are good examples of
population-based algorithms.
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9.3.2 Swarm Intelligence

Swarm intelligence (SI), which is an artificial intelligence (AI) discipline, is
concerned with the design of intelligent multi-agent systems by taking inspiration
from the collective behavior of social insects such as ants, termites, bees, and wasps,
as well as from other animal societies such as flocks of birds or schools of fish.

Optimization techniques inspired by swarm intelligence have become increas-
ingly popular during the last decade. The advantage of these approaches over
traditional techniques is their robustness and flexibility. These properties make
swarm intelligence a successful design paradigm for algorithms that deal with
increasingly complex problems.

9.3.3 PSO as a Member of Swarm Intelligence

Particle swarm optimization (PSO) was introduced in 1995 by James Kennedy
(social psychologist) and Russell Eberhart (electrical engineer) to simulate the
natural swarming behavior of birds as they search for food [16].

The philosophy of PSO is based on the evolutionary cultural model, which
states that in social environments individuals have two learning sources: individual
learning and cultural transmission. Individual learning is an important feature in
static and homogeneous environments because one individual can learn many things
about the environment from a single interaction with it. However, if the environment
is dynamic or heterogeneous, then that individual needs many interactions with the
environment before it gets to know it. Because a single individual might not get
enough chances to interact with such environment, cultural transmission (meaning
learning from the experiences of others) becomes a requisite, too. In fact, individuals
that have more chances to succeed in achieving their goals are the ones that combine
both learning sources, thus increasing their gain in knowledge.

9.3.4 PSO Basic Algorithm

Suppose the following scenario: a swarm of birds is randomly searching food in an
area. There is only one piece of food in the area being searched. All the birds do
not know where the food is. But they know how far the food is in each iteration. So
what is the best strategy to find the food? The effective one is to follow the bird,
which is nearest to the food. PSO learned from the scenario and used it to solve the
optimization problems. In PSO, each single solution is a “bird” in the search space.
We call it “particle.” All of particles have fitness values, which are evaluated by
the fitness function to be optimized, and have velocities, which direct the flying of
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the particles. The particles fly through the problem space by following the current
optimum particles.

Let n be the dimension of the search space and Ps the number of particles
in the swarm, then xi = (xi1, xi2, . . . , xin) denotes the position of the particle
i ∈ (1, 2, . . . , P s) of the swarm, and pi = (pi1, pi2, . . . , pin) denotes the best
position it has ever visited. The index of the best particle in the population (the
one which has visited the global best position) is represented by the symbol g. At
each iteration k in the simulation, the velocity of the ith particle, represented as
vi = (vi1, vi2, . . . , vin), is updated using the following equation:

vk+1
ij = vkij + c1r1(p

k
ij − xkij )+ c2r2(p

k
gj − xkij ) (9.13)

where c1 and c2 are the acceleration constants, r1 and r2 are random numbers
uniformly distributed in the interval [0, 1].

Each of the three terms of the velocity update equation (9.13) have different roles
in the PSO method.

The first term vki is responsible for keeping the particle moving in the same
direction.

The second term c1r1(p
k
ij − xkij ), called the cognitive component, acts as the

particle’s memory, causing it to tend to return to the regions of the search space in
which it has experienced high individual fitness. The cognitive coefficient c1 affects
the size of the step the particle takes toward its individual best candidate solution
pk
i .

The third term c2r2(p
k
gj − xkij ), called the social component, causes the particle

to move to the best region the swarm has found so far. The social coefficient c2
represents the size of the step, the particle takes toward the global best candidate
solution pk

g , the swarm has found up until that point.
Once the velocity for each particle is calculated, each particle’s position is

updated by applying the new velocity to the particle’s previous position

xk+1
i = xki + vk+1

i (9.14)

This process is repeated until some stopping condition is met. Some common
stopping conditions include: a preset number of iterations of the PSO algorithm, a
number of iterations since the last update of the global best candidate solution, or a
predefined target fitness value. Pseudocode for a PSO is shown below:

PSO Algorithm

1. Create the initial swarm: Random positions and velocities;
2. Evaluate the fitness of each particle;
3. while k ≤ Kmax

4. for each particle i = 1, . . . , P s
5. Update particle i according to equations (9.13) and (9.14);
6. if f (xi) < f (pi) then
7. pi = xi ;
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8. if f (xi) < f (pg) then
9. pg = xi

10. end if
11. end if
12. end for
13. end while

9.3.5 Modification to the Basic Algorithm

Like many other metaheuristics, the PSO algorithm frequently faces the problem of
being trapped in local optima. Balancing the global exploration (diversification) and
local exploitation (intensification) abilities of PSO is therefore very important.

9.3.5.1 Velocity Bounds

Large velocities can cause particles to leave the defined boundary constraints of the
problem, which not only results in wasted effort due to discarded solution, but may
also cause the swarm to diverge rather than converge. To counter this problem the
particle’s velocity can be constricted to stay in a fixed range, by defining a maximum
velocity value Vmax and applying the following rule after every velocity updating:

vij ∈ [−Vmax, Vmax] (9.15)

9.3.5.2 Inertia Weight

Motivated by the desire to provide balance between exploration and exploitation
process and reduce the importance of Vmax, Shi and Eberhart came up with
what they called PSO with inertia [24]. The inertia weight is multiplied by the
previous velocity in the standard velocity equation. The following modification of
the velocity update was proposed:

vk+1
ij = ωvkij + c1r1(p

k
ij − xkij )+ c2r2(p

k
gj − xkij ) (9.16)

The inertia weight determines the contribution rate of a particle’s previous
velocity to its velocity at the current time step. A large inertia weight facilitates
a global search while a small inertia weight facilitates a local search. Therefore, the
inertia weight must be adjusted for a better exploration–exploitation trade-off.

The performance of PSO has been greatly improved through experimental study,
by introducing a linearly decreasing inertia weight into the original version of PSO
[25, 27]. The linearly decreasing inertia weight ω decreases from (ωmax) to (ωmin )
according to the following equation:
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ωk = ωmax − (ωmax − ωmin)× k

Kmax

(9.17)

where Kmax is the maximum number of iterations, and k is the current iteration.
Many other variations of inertia weight strategy have been proposed in the

literature, a review of such variations is given chronologically in [4].

9.3.5.3 Constriction Factor

Another method for controlling the behavior of the particle swarm is the introduc-
tion of a constriction factor. Such a method was first proposed by Clerc and Kennedy
in [8]. Velocities are constricted, with the following change in the velocity update:

vk+1
ij = χ(vkij + φ1r1(p

k
ij − xkij )+ φ2r2(p

k
gj − xkij )) (9.18)

where

χ = 2

|φ − 2+√φ2 − 4φ| , φ = φ1 + φ2 > 4 (9.19)

The value of φ is commonly set to 4.1 and the constant multiplier χ is
approximately 0.7298.

By using the constriction coefficient, the amplitude of the particle’s oscillation
decreases, resulting in its convergence over time.

Note that a PSO with constriction is algebraically equivalent to a PSO with
inertia. Indeed, (9.16) and (9.18) can be transformed into one another via the
mapping χ ↔ ω, c1 ↔ χφ1, and c2 ↔ χφ2.

9.3.6 Neighborhood Topologies

In the original PSO, two different kinds of neighborhoods were defined for PSO:

• In the gbest swarm, all the particles are neighbors of each other; thus, the position
of the best overall particle in the swarm is used in the social term of the velocity
update equation. It is assumed that gbest swarms converge fast, as all the particles
are attracted simultaneously to the best part of the search space. However, if the
global optimum is not close to the best particle, it may be impossible to the swarm
to explore other areas; this means that the swarm can be trapped in local optima.

• In the lbest swarm, only a specific number of particles (neighbor count) can affect
the velocity of a given particle. The swarm will converge slower but can locate
the global optimum with a greater chance.

In [17] a systematic review of alternative “social” neighborhood topologies was
investigated.
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9.4 The Proposed Hybrid Approach

This section describes the new method for the unconstrained minimization problem.
The best characteristics of PSO (strong global search ability), are combined

with the good local search characteristics of the NSG, to develop a novel hybrid
algorithm; the proposed algorithm is called NPSOG. The NPSOG method is used
to find the global optimum.

Traditionally a hybrid PSO carries out first a certain number of iteration, and
then an iterative method (gradient type methods or another metaheuristic) is applied
to refine the approximations. On the contrary, in our new hybrid approach,1 in
every iteration of PSO, we perform a local search, by NSG method, around pg ,
if two conditions are satisfied. First, the new solution xki has to produce an objective
value lower than the old one (for the minimization problems). Second, a randomly
generated number has to be lower than the current corresponding loudness.

rand < Ai & f (xki ) < f (xk−1
i ) (9.20)

These conditions were also suggested in [7].
Note that the loudness parameter2 Ai decreases as the particle gets closer to

optimum.
The following algorithm is a formal description of the NPSOG method

NPSOG Algorithm

1. Create the initial swarm: Random positions and velocities;
2. Evaluate the fitness of each particle;
3. while k ≤ Kmax

4. for each particle i = 1, . . . , P s
5. Update particle i according to equations (9.13) and (9.14);
6. if f (xi) < f (pi) then
7. pi = xi ;
8. if f (xi) < f (pg) then
9. pg = xi

10. end if
11. if (rand < Ai & f (xki ) < f (xk−1

i )) then
12. Local search, by NSG method, around pg;
13. Update pg and reduce Ai

14. end if
15. end if
16. end for
17. end while

1The idea of this work was inspired by [19, 20].
2The loudness parameter was introduced for the first time by Yang in his famous article about bat
algorithm [28].
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9.5 Simulation Results

In this section, we study the numerical behavior of the implementations in Scilab
5.5.2, obtained for a set of standard test problems, by means of the algorithms
NPSOG, PSO, and CPSOG. Here CPSOG algorithm is a classical hybridization
between PSO and NSG in which the PSO carries out first a certain number of
iterations, and then the NSG method is applied to refine the approximations.

NSG Parameters
γ = 10−4, αmin = 10−30, αmax = 1030, σ1 = 0.1, σ2 = 0.9, M = 5, the
maximum number of iteration is Nmax = 100, and α0 = 1/‖∇f (x0)‖∞, where x0
is the initial guess.

PSO Parameters

1. Population size = 100.
2. Maximum number of iterations Kmax = 100.
3. Acceleration constants c1 = c2 = 1.7.
4. The linearly decreasing method is adopted for the inertia weight, with (ωmax =

1.4 ωmin = 0.4)
5. fitness function = the objective function.

The Loudness Parameter
The loudness parameter was updated as follows [7]:

Ai = A0 − A∞
1−Kmax

(k −Kmax)+ A∞ (9.21)

where the index 0 and∞ stand for the initial and final values, respectively (A0 =
0.9, A∞ = 0.6).

Below, we list the test functions solved by the algorithms. These test functions
have different features, with known global optima [1].

1. Extended Powell singular quartic function

f1 =
n/4∑

i=1
[(x4i−1 + 10x4i−2)

2 + 5(x4i−1 − x4i )
2 + (x4i−2 + 2x4i−1)

4 + (x4i−3 +
10x4i )

4],
xi ∈ [−100, 100], f1(x

") = 0.
2. Goldstein-Price’s function

f2 = [1+ (x1+ x2+ 1)2(19− 14x1+ 3x2
1 − 14x2+ 6x1x2+ 3x2

2)][30+ (2x1−
3x2)

2(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)],
xi ∈ [−2, 2], f2(x

") = 3.
3. Shubert function

f3 =
5∑

j=1
j cos((j + 1)x1 + j)

5∑

j=1
j cos((j + 1)x2 + j),

xi ∈ [−50, 50], f3(x
") = −186.7309
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Fig. 9.1 Flow chart of the NPSOG algorithm



9 NPSOG: A New Hybrid Method for Unconstrained Differentiable Optimization 167

4. Rastrigin function
f4 = x2

1 + x2
2 − 10 cos(2πx1)− 10 cos(2πx2)+ 20

xi ∈ [−2, 2], f4(x
") = 0.

5. Function f5
f5 = sin2(x2

1 + x2
2)+ x2

1 + x2
2 ,

xi ∈ [−50, 50], f5(x
") = 0.

In the following tables we report the smallest value in the objective function
reached by the algorithms for 10 runs, the average of minimums and the standard
deviation3 (SD).

Note that the Standard Deviation is defined by

SD =
√√
√
√ 1

N

N∑

i=1

(ei − e")2

where e" is the optimal solution, ei is the solution from the ith run, and N is the
number of runs.

9.6 Conclusion

The numerical results of Tables 9.1, 9.2, 9.3 show that, in general, the smallest value
in the objective function, the average of minimums and the standard deviation given
by NPSOG are significantly smaller than those given by CPSOG.

Note that the results given by the two hybrid approach and the results NPSOG
and CPSOG are more better than those given by PSO algorithm because of the use
of the local search by NSG method.

Table 9.1 Comparison between the smallest value in the objective functions

F(n)a PSO CPSOG NPSOG

f1(4) 60.31219 0.0000227 6.236e − 10

f1(40) 6.152e + 08 25.423383 3.219e − 12

f1(100) 1.122e + 10 403.40584 7.712e − 11

f2(2) 6.0209915 3 3

f3(2) −182.3714 −182.3714 −182.3714

f4(2) 1.0540639 0 0

f5(2) 0.9867069 4.413e − 20 4.413e − 20
a n is the problem dimension

3The standard deviation is used to indicate the stability of an algorithm, a more stable algorithm
should produce a smaller value of this measurement.
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Table 9.2 Comparison between the average of minimums

F(n) PSO CPSOG NPSOG

f1(4) 487146.39 7.6065385 1.423e − 08

f1(40) 3.179e + 09 2297.8701 0.0000002

f1(100) 1.605e + 10 11346.13 0.0000001

f2(2) 28.689424 11.1 3

f3(2) −113.02962 −154.36692 −186.73091

f4(2) 4.5429155 1.4924381 2.487e − 15

f5(2) 33.649999 3.727e − 12 1.829e − 12

Table 9.3 Comparison between the standard deviations

F(n) PSO CPSOG NPSOG

f1(4) 666877.15 14.679889 1.956e − 08

f1(40) 3.476e + 09 3924.3487 0.0000002

f1(100) 1.622e + 10 13593.779 0.0000002

f2(2) 33.274943 14.788509 5.217e − 14

f3(2) 88.243807 54.743889 0.0000088

f4(2) 4.9680153 1.8074318 5.838e − 15

f5(2) 39.456341 8.285e − 12 5.755e − 12

We conclude that our proposed method seems to be an interesting candidate for
solving unconstrained differentiable optimization.
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Chapter 10
Detection of HIV-1 Protease Cleavage
Sites via Hidden Markov Model and
Physicochemical Properties of Amino
Acids

Elif Doğan Dar, Vilda Purutçuoğlu, and Eda Purutçuoğlu

10.1 Introduction

AIDS(acquired immunodeficiency syndrome) is a disease that weakens the immune
system by reducing the T-cells in the body which fight off infections [28]. In 2017,
around 37 million people globally were living with HIV making 77 million since
the start of the epidemic. Furthermore, approximately 1 million people died from
AIDS-related illnesses in 2017 making a total of 35 million people since the start
of the epidemic [35]. HIV-1 (human immunodeficiency virus-1) is the virus which
causes AIDS gradually [7]. However, HIV-1 protease enzyme is needed for HIV-1
to be active. It cleaves newly synthesized polyproteins of the host cell to create the
mature protein components that a HIV virion requires [15]. Usually, this enzyme
extends to 8 amino acids long octamer sites on the polyprotein to cleave between
the 4th and 5th amino acids [18]. Occasionally, these cleavage sites can also be
heptamers or nonamers. HIV-1 protease inhibitors are good candidates for the AIDS
treatment. Therefore, learning the key and the lock relationship between the enzyme
and cleavage sites are crucial to finding the proper inhibitor key which locks the
enzyme and prohibits it to create new active proteins for the virion. On the other
hand, it is impossible to experimentally test all possible cleavage sites. Because
there are 20 amino acids possible at each position, resulting in 208 = 2.56 × 1010

cleavage sides. Hence, several methods have been used in the literature to predict
the cleavage sites given earlier experimentally checked data.
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In the literature, some well-known approaches are used to predict HIV-1 cleavage
sites including support vector machines(SVMs) [3], artificial neural networks
(ANNs) [2, 33], and different encoding techniques [34], such as orthonormal
encoding (OE) [2, 23]. In addition, the physicochemical properties of amino
acids are being used in many papers. For instance, Jaeger et al. [10] use 4
biophysical properties, namely, hydropathy index, molecular mass, polarity, and
occurrence percentage and Kim et al. [14] suggest a feature subset selection method
using multi-layered perceptron (MLP) learning. Also, some researchers perform a
subset of physicochemical properties from the AAIndex database [24, 34]. For a
comprehensive review on the HIV-1 cleavage site detection, Rögnvaldsson [27] can
be also seen.

Hereby, the present study proposes a hidden Markov model to capture the
sequential nature of the problem. Hidden Markov model (HMM) is a model
which utilizes the sequential relationship of the data unlike many other methods
above. HMM is successfully applied to speech [13], handwriting [12], and gesture
recognition [30] as well as biological applications such as the sequence alignment
[5, 25], gene prediction [20], and the protein modeling [31, 36]. HMM is also
implemented to the HIV-1 cleavage site detection problem [11]. However, in this
model, random starting parameters are given to HMM instead of a guided choice.
In the present study, guided starting parameters using physicochemical properties of
the amino acids from the AAIndex database [22] are proposed inspired by the work
of Zhang et al. [37]. Indeed, the physicochemical properties have been used earlier
in the HIV-1 protease research [24, 34] but not in conjunction with HMM.

Hence, there are 544 features for each amino acid in this database. Since many
machine learning algorithms suffer from the high dimensionality of the feature set,
we implement a clustering based feature selection approach in our analyses [4, 19].
Here, we apply different strategies. Initially, we examine the k-means clustering
and the hierarchical clustering methods based on the correlation measures and then,
we randomly choose a representative from each cluster. Also, we perform the k-
medoids clustering and select medoids as the cluster representatives. Later, we
create hidden states including amino acids using chosen features. On the other side,
since an amino acid can be grouped in multiple ways according to common features,
it can share with groups. Due to this fact, the nature of the problem can be considered
under a fuzzy clustering [1, 8, 17] and in this study, we use these methods too.
Finally, by using the proposed approaches, we show that the states which we create
give better results than earlier states suggested by Zhang et al. [37]. In that paper,
they built a graph using the number of common features that amino acids share and
declare the cliques of this graph as states.

Thus, in the organization of the study, we present HMM and its inference via a
toy dataset in Sect. 10.2. In Sect. 10.3, we represent the application in a real dataset
and discuss the outputs. Lastly, in Sect. 10.4, we conclude the outputs and present
our future work by discussing both its mathematical and social aspects.
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10.2 Hidden Markov Model

The hidden Markov model(HMM) is a special case of the probabilistic graphical
models where entities are represented by nodes and dependencies by edges between
them. In general, the probabilistic graphical models are intractable. However, in
HMMs, most of the dependencies are replaced with independence relations. These
assumptions help to make the problem tractable while keeping the necessary spatial
dependencies. HMM has a sequence of observations and a sequence of states which
produces them. We denote the observation sequence as O = (O1,O2, . . . , OT )

where each observation is an object from the set o = {o1, o2, . . . , oM }. Here,
T represents the length of the observation and state sequences, and M denotes
the number of possible observations. The hidden states which produce these
observations are shown by S = (S1, S2, . . . , ST ) where each state is an object from
a set of states s = {s1, s2, . . . , sN }. Here, N represents the number of possible states.
We also define the following conditional independence assumptions.

• P(Ok|S1, . . . , ST ,O1, . . . , OT ) = P(Ok|Sk) for any 1 ≤ k ≤ T .
• P(Oi,Oj |Si, Sj ) = P(Oi |Si, Sj )P (Oj |Si, Sj ) = P(Oi |Si)P (Oj |Sj ) for 1 ≤

i, j ≤ T .
• P(Sk|S1, . . . , Sk−1) = P(Sk|Sk−1) for any 2 ≤ k ≤ T , i.e., states form a Markov

chain.

Because of these assumptions, the joint probability of the system can be written as

P(O1, . . . , OT , S1, . . . , ST ) = P(O1, . . . , OT |S1, . . . , ST )P (S1, . . . , ST )

= P(O1|S1)P (O2|S2) . . . P (OT |ST )P (S1)P (S2|S1)

P (S3|S2) . . . P (ST |ST−1)

=
⎛

⎝
T∏

i=1

P(Oi |Si)
⎞

⎠P(S1)

⎛

⎝
T∏

i=2

P(Si |Si−1)

⎞

⎠. (10.1)

Therefore, to define an HMM we only need the probabilities below.

• Transition probabilities: aij = P(St = j |St−1 = i) for 1 ≤ i, j ≤ N .
• Emission probabilities: bij = P(Ot = j |St = i) for 1 ≤ i ≤ N and 1 ≤ j ≤ M .
• Initial probabilities: πi = P(S1 = si) for 1 ≤ i ≤ N .

Furthermore, we can write transition and emission probabilities in a matrix form,
say A and B and initial probabilities as a vector Π . Hereby, we denote parameters
for HMM as λ = (A,B,Π). In modeling via HMM, we are interested in basically
solving three problems:

• Finding likelihood of an observation sequence given a HMM with parameters λ,
• Finding the most probable state sequence given the model parameters and the

observation sequence,
• Estimating the model parameters given sequences of states and observations.
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Fig. 10.1 Hidden Markov model; nodes represent hidden states and observations while edges
indicate the dependencies among them

In the following part, we represent each step in detail by using a toy example whose
description is also presented (Fig. 10.1).

10.2.1 Toy Example

For illustrative purposes, we use the following example which is modified from the
Eisner’s paper [6]. Let us say the number of ice creams that a person eats every
day depends on the weather, which will be taken as either cold or hot. Also, let
the number of ice creams she/he eats be from the set {1, 2, 3}. Here, the weather
is the hidden variable where the number of ice creams is observed. Therefore, we
have S = {H,C} and O = {1, 2, 3}. Accordingly, the parameters of the model are
defined as below:

A =
[
P(St = H |St−1 = H) P (St = C|St−1 = H)

P (St = H |St−1 = C) P (St = C|St−1 = C)

]

=
[

0.6 0.3
0.4 0.5

]

,

B =
[
P(Ot = 1|St = H) P (Ot = 2|St = H) P (Ot = 3|St = H)

P (Ot = 1|St = C) P (Ot = 2|St = C) P (Ot = 3|St = C)

]

=
[

0.2 0.4 0.4
0.5 0.4 0.1

]

,

Π =
[
P(S1 = H)

P (S1 = C)

]

=
[

0.8
0.2

]

.

We use this example to elaborate the calculations of the HMM steps.

10.2.2 Calculation of Likelihood

In some problems, we might be interested in finding the likelihood of an observation
sequence given the model parameters while the state sequence is hidden. There are
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three major approaches for this calculation. We firstly describe the most natural
way to solve this problem, which is the naive approach, and continue with faster
counterparts: forward and backward algorithms.

10.2.2.1 Naive Approach

In this computation, we initially find the likelihood given a specific state as shown
earlier and then, we sum over all possible states as below.

P(O|λ) =
∑

S

P (O, S|λ), (10.2)

where λ is the model parameter. In Eq. (10.2) there are NT possible states.
Therefore, when N and T are large, this approach becomes computationally
demanding in the order of O(NT ) to calculate the likelihood. If we apply this on
our toy example, assuming the observations for 3 days to be O = (2, 1, 3), the
likelihood of this observation sequence is found by

P(O = (2, 1, 3)|λ) =
∑

S

P (O = (2, 1, 3), S = (s1, s2, s3)|λ). (10.3)

To find the sum in Eq. (10.3), let us first calculate one specific element in the sum,
such as S = (H,H,C), by using Eq. (10.1). Here, we obtain

P(O = (2, 1, 3), S = (H,H,C)|λ) = P(O1|S1)P (O2|S2)P (O3|S3)P (S1)P (S2|S1)P (S3|S2)

= P(2|H)P (1|H)P (3|C)P (H)P (H |H)P (C|H)

= 0.4× 0.2× 0.1× 0.8× 0.6× 0.3.

We have to repeat this calculation 23 = 8 times for different state sequences. Then,
we need to compute their sum in order to obtain the likelihood. But, in real life
examples, the number of state sequences can be very high. Thereby, another method
which is faster than this naive approach is necessary.

10.2.2.2 Forward Algorithm

The forward algorithm [16] is a dynamic programming example where we break
the problem into subproblems and use the earlier results in a recursion. In this
way, we can solve the inference problem faster than the naive approach. Hereby,
the likelihood of the observation sequence and a specific state at the last position
of the state sequence given model parameters summed over all possible states are
presented as below.
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P(O|λ) = Pλ(O) =
N∑

i=1

P(ST = si,O|λ). (10.4)

Thus, in order to find the term in the summation conditional on the model parameters
λ, we define

αk(Sk) = Pλ(Sk = si,O1, . . . , Ok). (10.5)

The value in the sum is simply equal to αT (si). To be able to find this term in
Eq. (10.5), we can write it recursively via

αk(Sk) =
sN∑

Sk−1=s1

Pλ(Sk, Sk−1,O1, . . . , Ok)

=
sN∑

Sk−1=s1

Pλ(Ok |Sk, Sk−1,O1, . . . , Ok−1)Pλ(Sk |Sk−1,O1, . . . , Ok−1)Pλ(Sk−1,O1, . . . , Ok−1)

=
sN∑

Sk−1=s1

Pλ(Ok |Sk)Pλ(Sk |Sk−1)Pλ(Sk−1,O1, . . . , Ok−1)

=
sN∑

Sk−1=s1

bsk ,ok ask−1,sk αk−1(Sk−1) (10.6)

for 2 ≤ k ≤ T , and for k = 1 we have

α1(S1) = Pλ(S1,O1) = Pλ(S1)Pλ(O1|S1) = Π(S1)bS1,O1 . (10.7)

Here, we recursively find α1(S1),. . . ,αT (ST ) and sum αT (ST ) over all possible
values of ST to get the likelihood of interest. We complete the forward algorithm
with the complexity O(N2T ). For large values of N and T , this complexity is lower
than the complexity of the naive approach. Accordingly, let us see how the algorithm
works on our toy example for O = (2, 1, 3):

α1(S1) = Pλ(S1)Pλ(O1|S1) =
{
Pλ(H)Pλ(2|H) for s1 = H

Pλ(C)Pλ(2|C) for s1 = C
,

α2(S2) =
sN∑

S1=s1

Pλ(O2|S2)Pλ(S2|S1)α1(S1)

= Pλ(1|S2)Pλ(S2|H)α1(H)+ Pλ(1|S2)Pλ(S2|C)α1(C)

=
{
Pλ(1|H)Pλ(H |H)α1(H)+ Pλ(1|H)Pλ(H |C)α1(C) for s2 = H

Pλ(1|C)Pλ(C|H)α1(H)+ Pλ(1|C)Pλ(C|C)α1(C) for s2 = C
,
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α3(S3) =
sN∑

S2=s1

Pλ(O3|S3)Pλ(S3|S2)α2(S2)

= Pλ(3|S3)Pλ(S3|H)α2(H)+ Pλ(3|S3)Pλ(S3|C)α2(C)

=
{
Pλ(3|H)Pλ(H |H)α2(H)+ Pλ(3|H)Pλ(H |C)α2(C) for s3 = H

Pλ(3|C)Pλ(C|H)α2(H)+ Pλ(3|C)Pλ(C|C)α2(C) for s3 = C
.

Thus, finally we can obtain

Pλ(O = (2, 1, 3)) = α3(H)+ α3(C). (10.8)

10.2.2.3 Backward Algorithm

The Backward algorithm [16] is similar to the forward algorithm, except the starting
point of the calculation. Hereby, we find the likelihood by the following expression.

Pλ(O) =
N∑

i=1

Pλ(S1 = si,O)

=
N∑

i=1

Pλ(S1 = si)Pλ(O1|O2, . . . , OT , S1 = si)Pλ(O2, . . . , OT |S1 = si)

=
N∑

i=1

Pλ(S1 = si)Pλ(O1|S1 = si)Pλ(O2, . . . , OT |S1 = si)

=
N∑

i=1

Π(si)bsi ,O1Pλ(O2, . . . , OT |S1 = si). (10.9)

To obtain the solution, we need to obtain the last term in the sum and we compute it
by recursively using the following definition.

βk(Sk) = Pλ(Ok+1, . . . , ON |Sk) (10.10)

=
sN∑

Sk+1=s1
Pλ(Ok+1, . . . , OT , Sk+1|Sk)

=
sN∑

Sk+1=s1
Pλ(Ok+2, . . . , OT |Sk+1, Sk,OK+1)Pλ(Ok+1|Sk+1, Sk)Pλ(Sk+1|Sk)

=
sN∑

Sk+1=s1
Pλ(Ok+2, . . . , OT |Sk+1)Pλ(Ok+1|Sk+1)Pλ(Sk+1|Sk)
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=
sN∑

Sk+1=s1
βk+1(Sk+1)bSk+1,Ok+1aSk,Sk+1 (10.11)

for 1 ≤ k ≤ N−1. For βT (ST ), we cannot use the above definition since it involves
ON+1 which does not exist. So, if we use our recursion formula for k = T − 1,

βT−1(ST−1) =
sN∑

ST=s1

Pλ(OT , ST |ST−1)

=
sN∑

ST=s1

βT (ST )Pλ(OT |ST )Pλ(ST |ST−1). (10.12)

But Pλ(OT , ST |ST−1) can be also written as,

Pλ(OT , ST |ST−1) = Pλ(OT |ST , ST−1)Pλ(ST |ST−1)

= Pλ(OT |ST )Pλ(ST |ST−1). (10.13)

Therefore, for Eq. (10.13) to hold, βT (ST ) = 1. Now by using Eq. (10.1) and the
definition of β, we can get

Pλ(O) =
N∑

i=1

Π(si)bsi ,O1β1(S1 = si). (10.14)

10.2.3 Viterbi Algorithm: Inference of the Most Probable Path

The Viterbi algorithm [16] is a recursive algorithm that is used to find the most
probable sequence, also called path, given the observation sequence and parameters.
In the calculation, after initialization of the state, at each step, we use the earlier
paths which we find. More formally, our aim is to find

S∗ = arg max
S

P (S|O). (10.15)

Note that:
If f (a) ≥ 0 for all a and g(a, b) ≥ 0 for all a, b, we have

max
a,b

f (a)g(a, b) = max
a

{

f (a)max
b

g(a, b)

}

, (10.16)

and we have
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arg max
S

P (S|O) = arg max
S

P (S,O) (10.17)

since P(O) does not contain any element from hidden states. Now let us define the
function μ and the recursion by using Eq. (10.16) as below.

μk(Sk) = max
S1,...,Sk−1

P(S1, . . . , Sk,O1, . . . , Ok)

= max
S1,...,Sk−1

P(Ok |Sk)P (Sk |Sk−1)P (S1, . . . , Sk−1,O1, . . . , Ok−1)

= max
Sk−1

P(Ok |Sk)P (Sk |Sk−1) max
S1,...,Sk−2

P(S1, . . . , Sk−1,O1, . . . , Ok−1)

= max
Sk−1

P(Ok |Sk)P (Sk |Sk−1)μk−1(Sk−1) (10.18)

for 2 ≤ k ≤ T , and by definition μ1(S1) = P(S1,O1) = P(S1)P (O1|S1). So, we
find the sequence of the state which leads to

max
ST

μT (ST ) = max
S1,...,ST

P (S1, . . . , ST ,O1, . . . , OT ). (10.19)

For this purpose, at each iteration we note the most probable state and the path which
satisfy these conditions. We can explain the application of this searching process via
our toy example. Let O = (2, 1, 3), then,

μ1S1 = P(S1)P (O1|S1) =
{
P(H)P (2|H) for s1 = H

P(C)P (2|C) for s1 = C
=
{

0.32 for s1 = H

0.08 for s1 = C
. (10.20)

Since the maximum is achieved when S1 = H , we have arg maxP(S1|O1) = H .
By using Eq. (10.20), we calculate μ as follows.

μ2(S2) = max
S1

P(O2|S2)P (S2|S1)μ1(S1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P(1|H)P (H |H)μ1(H) for s1 = H, s2 = H

P(1|H)P (H |C)μ1(C) for s1 = C, s2 = H

P(1|C)P (C|H)μ1(H) for s1 = H, s2 = C

P(1|C)P (C|C)μ1(C) for s1 = C, s2 = C

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0.0384 for s1 = H, s2 = H

0.0064 for s1 = C, s2 = H

0.0480 for s1 = H, s2 = C

0.0200 for s1 = C, s2 = C

. (10.21)

Therefore, we obtain the most probable paths as S1 = H, S2 = H , and S1 =
H, S2 = C. If we continue the iteration by the same way via Eq. (10.21),
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μ3(S3) = max
S2

P(O3|S3)P (S3|S2)μ2(S2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

P(3|H)P (H |H)μ2(H) for s2 = H, s3 = H

P(3|H)P (H |C)μ2(C) for s2 = C, s3 = H

P(3|C)P (C|H)μ2(H) for s2 = H, s3 = C

P(3|C)P (C|C)μ2(C) for s2 = C, s3 = C

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0.009216 for s1 = H, s2 = H

0.007680 for s1 = C, s2 = H

0.001152 for s1 = H, s2 = C

0.002400 for s1 = C, s2 = C

. (10.22)

Hence, we get the most probable paths as S1 = H, S2 = H, S3 = C and S1 =
H, S2 = H, S3 = H . Finally, by using the results in Eq. (10.22), we reach

max
S3

μ3(S3) = max
S3
{μ3(H), μ3(C)} = max {0.009216, 0.002400} = 0.009216. (10.23)

As a result we conclude that the path, which presents S1 = H, S2 = H, S3 = H , is
the most probable path if the sequence of observations is O = (2, 1, 3).

10.2.4 Baum–Welch Algorithm: Estimating the Model
Parameters

The Baum–Welch forward backward method [5] is an iterative algorithm which
is also a special case of the expectation–maximization approach. Here, we start the
calculation with an initial guess of the parameters and by using data in hand, we aim
to make better estimates for the model parameters λ iteratively until λ converges.
In these computations, we use the following expression for the estimator of the
transition probability between the ith and the j th variables, i.e., states.

âij = Expected number of transitions from i to j

Expected number of transitions from i
. (10.24)

To find these expectations, we apply the following equation.

ξt (i, j) = P(St = i, St+1 = j |O,λ), (10.25)

= P(St = i, St+1 = j,O|λ)
P (O|λ) ,

= αt (St = si)aij bSt+1=sj ,ot+1βt+1(St+1 = sj )
∑N

j=1 αt (St = sj )βt (St = sj )
.
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In Eq. (10.25), we can find the denominator by using only the forward or only
the backward algorithm too. Then, by computing the function ξ , we can write the
estimator for aij as

âij =
∑T−1

t=1 ξt (i, j)
∑T−1

t=1
∑N

k=1 ξt (i, k)
. (10.26)

Similarly, to estimate the emission probability matrix B we can use,

b̂j (ok) =
Expected number of times being in state sj and observing ok

Expected number of times being in state sj
. (10.27)

Accordingly, the meaning of γt is

γt (j) = P(St = j |O, λ) = P(St = j,O|λ)
P (O|λ) = αt (St = sj )βt (St = sj )

∑N
j=1 αt (St = sj )βtSt = sj

. (10.28)

Finally, we can write our estimate for bj as follows.

b̂j (ok) =
∑T

t=1 st Ok=ok γt (j)∑T
t=1 γt (j)

. (10.29)

Also, we can state the estimate of the initial probability π as

π̂i = γ1(i). (10.30)

10.3 Application

10.3.1 Data Description

In our work, we use the HIV-1 protease cleavage 746 dataset [27]. The data contain
the lists of octamers (8 amino acids) and a flag depending on whether the HIV-1
protease will cleave in the central position (between amino acids 4 and 5). There
are 401 cleaved and 345 non-cleaved octamers. We also use the physicochemical
properties of amino acids from the AAIndex database [22]. In this database, there
are 544 properties taken as continuous variables for each amino acid. We discard 14
of them since they contain null values.
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10.3.2 Creation of States

In modeling our data via HMM, there are 8 bit observation sequences where each
observation is from a set of 20 standard amino acids, namely, A, R, N, D, C, Q, E, G,
H, I, L, K, M, F, P, S, T, W, Y, and V. Each observation has a hidden state behind it,
which we form by using physicochemical properties of amino acids. Furthermore,
we accept that if we replace an amino acid of a cleaved sequence with another amino
acid having similar properties, it is more likely that the new sequence will also be
a cleaved sequence. Therefore, we group amino acids according to the similarities
based on physicochemical properties and use that information as their hidden states
in the model.

After discarding features with null values, we have 530 features that can be taken
for the analyses. On the other hand, when a clustering algorithm is used with a
large number of features, typically, it can perform poorly due to outliers or highly
correlated variables. Therefore, in our calculation, we implement some feature
selection methods to decrease the number of features. For this purpose, initially,
we group the features via the same AAIndex data by treating features as instances.
Here, we use the k-means [9], k-medoids [26], and the hierarchical clustering [21]
techniques. In the k-means and the hierarchical clustering approaches, we form a
subset of features by choosing a variable randomly from each cluster. On the other
side, in the k-medoids, we select the cluster medoids as the cluster representatives.
Furthermore, we try different numbers of feature subsets that change from 30
to 60 with an increment of 5 in order to detect the optimal number of subsets.
Additionally, we construct the model without performing any feature selection and
compare it with the models with the feature selection in order to observe the effect
of these clusterings in modeling.

Thereby, by using the underlying subsets of features, we group amino acids
to create the states. Here, we accept that an amino acid can share many different
properties with multiple groups. Thus, we prefer the fuzzy clustering [1], rather
than classical clustering approaches, in our analyses. In this way, an amino acid can
belong to more than one cluster with a membership degree between 0 and 1, and the
sum of the membership degrees adding to 1. Among alternative fuzzy approaches,
we select the most well-known ones, namely, the fuzzy k-means [1], Gustafson and
Kessel-like fuzzy k-means [8], and the fuzzy k-medoids [17]. The fuzzy k-means
is similar to usual the k-means method, where the Gustafson–Kessel-like fuzzy k-
means considers non-spherical clusters too. In the fuzzy k-medoids, the medoids
are being taken as the cluster representatives instead of artificial means. Finally, we
assign amino acids to a state if the membership degree is greater than 0.1.

On the other hand, in our calculations, since there are 20 amino acids to cluster,
the number of clusters cannot be more than 10. Whereas, we see that when the
number of clusters is less than 5, too much information is lost. Therefore, we try and
compare the number of states from 5 to 10 in order to detect the optimal number.
Also, we standardize the features before clustering to avoid any bias caused by the
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Table 10.1 States created by
the fuzzy k-medoids approach
with 9 number of states using
60 features which are
determined via the
hierarchical clustering

States Amino acids

1 R, N, D, C, Q, M, P, W, Y

2 C, I, M, F, P, W, Y

3 R, N, D, C, G, P, S, T, Y

4 A, N, C, G, M, P, S

5 I, L, M, W

6 C, G, I, M, V

7 R, N, K

8 D, E, P

9 N, C, H, W, Y

variance of the features. In Table 10.1, we present 9 states created by the fuzzy
k-medoids method using 60 features chosen by the hierarchical clustering.

10.3.3 Initialization of the EM Algorithm

On the other side, while doing the inference on emission, starting and transition
probabilities, we use the Baum–Welch EM algorithm, which can converge to a local
maximum instead of the global maximum [5]. Therefore, we give a clever starting
point to the algorithm in order to increase the probability of reaching the global
maximum in our calculation. Hence, we use data in hand to make a good prediction
in the following way.

1. Calculation of initial probabilities: To calculate the starting probability of a state,
we count all the sequences in the training data which start with amino acids
that this state includes. Then, for all states, we divide them to the sum of these
counts to turn these counts into probabilities. For example, let us say we have 15
sequences in the training data where 5 of them starting with A, 2 starting with
S, and 8 starting with V. State 3 contains A, therefore, its count is counted by
2; State 4 contains both A and S, therefore, its count is set to 2 + 5; and State
6 contains V, hence, its count equals to 8. Thus, the probability of the first state
being State 3 is found as 2/17, the first state being State 4 is equated to 7/17
and the first state being State 6 is computed as 8/17 while all other values in the
vector Π being 0.

2. Calculation of emission probabilities: To estimate the probability of observing
an amino acid given a state, we apply the following procedure. With the 0.9
probability, we observe one of the amino acids that this state includes, and with
the 0.1 probability, other amino acids that this state does not include. As an
example, State 1 includes 9 amino acids where the probability 0.9 is equally
distributed among them, each having probability 0.9/9, and the rest of the amino
acids has the 0.1 probability equally distributed among them, each having the
probability 0.1/11.

3. Calculation of transition probabilities: We know the corresponding states for each
amino acid of our sequences in the data. For example, Table 10.2 shows the
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corresponding states for amino acids of the sequence AIMALKMR. For example,
as seen in Table 10.2, there are 2 transitions from State 5 to State 5 and there is
a 1 transition from State 5 to State 2 given only the sequence AIMALKMR.
In this way, we count all transitions coming from all sequences in the training
set. Afterwards, for each state, we sum all transitions from this state to all states
including itself and divide counts of all transitions from this state to this number.
Accordingly, we can turn it into a probability distribution. In case of the sum
being 0, the probability of this row is taken equally distributed as 1/N for each
state.

Figures 10.2 and 10.3 show the count matrix and the transition matrix produced
by using only the sequence AIMALKMR.

10.3.4 Modeling the Data via HMM

In our calculation, we initially split cleaved and non-cleaved data into 90% of train-
ing and 10% of the test data. Then, we only use the test data after finding the optimal
model parameters through training. Using initializations for the model parameters,
we apply the Baum–Welch EM algorithm with the 1000 maximum numbers of
iterations, and the convergence criteria for the change of the log-likelihood equal
to 0.001. Furthermore, in all analyses, we conduct the R programming language
and we utilize the aphid R package for the calculation.

Table 10.2 Corresponding states of the amino acids in the sequence AIMALKMR

Sequence A I M A L K M R

States 4 2 1 4 5 7 1 1

5 2 2 3

6 4 4 7

5 5

6 6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

State1 State2 State3 State4 State5 State6 State7 State8 State9
State1 1 0 1 1 0 0 1 0 0
State2 2 1 1 1 1 1 1 0 0
State3 0 0 0 0 0 0 0 0 0
State4 1 1 1 1 2 1 1 0 0
State5 2 1 1 2 1 1 2 0 0
State6 2 1 1 2 1 1 1 0 0
State7 1 1 0 1 1 1 0 0 0
State8 0 0 0 0 0 0 0 0 0
State9 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

Fig. 10.2 Counts of the transitions between states produced from the sequence AIMALKMR
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

State1 State2 State3 State4 State5 State6 State7 State8 State9
State1 1/4 0 1/4 1/4 0 0 1/4 0 0
State2 2/8 1/8 1/8 1/8 1/8 1/8 1/8 0 0
State3 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9
State4 1/8 1/8 1/8 1/8 2/8 1/8 1/8 0 0
State5 2/10 1/10 1/10 2/10 1/10 1/10 2/10 0 0
State6 2/9 1/9 1/9 2/9 1/9 1/9 1/9 0 0
State7 1/5 1/5 0 1/5 1/5 1/5 0 0 0
State8 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9
State9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

Fig. 10.3 Transition matrix produced from the sequence AIMALKMR

Moreover, the optimum values of the hyper-parameters are selected by using the
10-fold cross validation on the training data. The cross validation is used to reduce
the bias stems from the random selection of data. Accordingly, the training data are
divided into 10 folds and 9 of them are used for the training data as well as the last
one is used for the validation data. Finally, we repeat this process 10 times until we
utilize all 10 folds as the validation data.

To classify the sequence as cleaved or non-cleaved, two separate HMMs are
trained on the cleaved and non-cleaved datasets, respectively. We declare these
sequences as cleaved if the likelihood of belonging to cleaved HMM is greater than
the non-cleaved HMM and vice versa. This way, we calculate the false positive
(FP), false negative (FN), true positive (TP), and the true negative (TN) values. To
measure the quality of our classification, we compute the precision(pre), recall (rec),
accuracy (acc), Matthews correlation coefficient (MCC), and the F-measure (F). The
formulas of these measures are also represented as below.

Precision = TP

TP+FP
,

Recall = TP

TP+FN
,

Accuracy = TP+TN

TP+TN+FP+FN
,

MCC = (TP× TN)− (FP× FN)√
(TP+FP)× (TP+FN)× (TN+FP)× (TN+FN)

,

F-measure = 2× Precision× Recall

Precision+Recall
.

Lastly, after deciding the final model, to avoid over optimism caused by the
overfitting, we declare results by using the test data whose final model has not been
seen yet.



186 E. Doğan Dar et al.

10.3.5 Results

In this section, for brevity, we refer to the fuzzy k-means method as fkm,
Gustafson–Kessel-like fuzzy k-means as GKfkm and the fuzzy k-medoids approach
as fkmed.

1. Effect of the number of states when other hyper-parameters are fixed: The
number of states does not have a linear effect on the accuracy values when other
parameters are fixed. Figure 10.4 shows the accuracy as a function of the number
of states and the feature selection methods with the number of features used as
60 (Fig. 10.4a–c) or no features used (Fig. 10.4d). As seen in Fig. 10.4, when
GKfkm is used, the accuracy increases with the number of states except from the
case when the number of states changes from 5 to 6. In that case there is a slight
decrease. On the other hand, there is no common pattern when other techniques
are used. In our analyses, totally, we perform 3 feature selection techniques, 7
different number of features, and 3 state selection techniques, which makes a
total of 3 × 7 × 3 = 63 possible cases. This number becomes 66 when we
include cases when we do not implement any feature selection. Out of these 66
cases, 40 of them give the best accuracy when the number of states is 10, 14 of
them give the best accuracy when the number of states is 9, 5 of them give the
optimal accuracy when the number of states is 8, followed by number of states
5, 6, and 7, respectively. Hence, we conclude that the large numbers of states
produce more accurate results.

2. Effect of the number of features on the accuracy: Figs. 10.5, 10.6, and 10.7 show
the accuracy as a function of the number of features for different feature selection
and state selection methods. As seen in the figures, the effect of the number
of features highly depends on the methods used. Moreover, the change in the
number of features does not have an effect on the accuracy when GKfkm is
applied. Also, fkm is very robust to the changes in the number of features only
when the hierarchical feature selection method is performed. Finally, we observe
that there is no common pattern for the other methods in the analyses.

3. Effect of the feature selection methods on the accuracy: As seen in Fig. 10.8,
when the fkm state selection method is implemented, the k-medoids method
gives the best results almost all the time except a few cases. Whereas, the
hierarchical method gives poor results and this result does not change with the
number of features. The k-means method, however, does not follow a common
pattern, being worse than the k-medoids approach for most of times, but having
higher accuracy for a few cases. As seen in Fig. 10.9, the feature selection
methods are more robust and none of them is particularly better than each
other when the fkmed method is applied. Additionally, the change in the feature
selection method does not have an effect on the accuracy when GKfkm is used.
Only exception is seen when the number of states is 5 in such a way that
the accuracy values for this method do not change within our range for the
number of features, but change when we do not implement any feature selection.
Lastly, when the hierarchical feature selection method is used with the fkm state
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Fig. 10.4 Effect of the number of states on the accuracy values

selection, the number of features affects the accuracy slightly and the accuracy
value is very poor.

4. Effect of the state selection methods on the accuracy: When we compare the state
selection methods, we see that GKfkm is very robust to the number of features
and the feature selection methods, but the accuracy changes when the number of
states change. fkm is also very robust to the changes in the number of features
when the hierarchical feature selection method is performed. As seen in Fig. 10.5,
when the hierarchical feature selection method is applied, fkmed always gives the
best results, GKfkm produces worse results, and fkm shows the worst outcomes.
This is an expected finding since the fkmed method is more robust to outliers in
the data and the GKfkm method captures non-spherical patterns unlike fkm. As
seen in Fig. 10.6, a similar pattern appears when the k-means feature selection is
implemented, except in some cases fkm surpasses fkmed and GKfkm. Moreover,
fkm works more efficiently when it is used with the k-medoids feature selection
method. As seen in Fig. 10.7, in some cases fkm gives better results than fkmed
and on many cases it shows better results than GKfkm. Overall, there are 132
different cases when all other hyper-parameters are fixed except state selection
methods. The fkmed method is the best among state selection methods 118 times
out of 132 cases, followed by fkm which is the best 14 times, and GKfkm is never
the best among other methods.
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Fig. 10.5 Accuracy values for the hierarchical feature selection

5. Effect of the feature selection on the accuracy: When fkm is implemented for the
state selection, only the k-medoids and sometimes the k-means feature selection
give higher accuracy compared to no feature selection. When the GK-fkm state
selection method is used, we observe that there is no difference between the
feature selection and no feature selection findings. On the other hand, when
fkmed is applied as the state selection, using all the dataset without any feature
selection shows either the best or comparable results to the models with the
feature selection approach.

As a results, at the end of the training process, we select the hierarchical feature
selection method with 60 features and the fuzzy k-medoids state selection with 9
numbers of states as the optimal choices for our analyses. The associated states
can be seen in Table 10.1. In the paper of Zhang et al. [37], a method, called the
multiple property grouping, is suggested. We apply this method to our dataset and
compare the results on both the 10-fold cross validation values on the training data
and on the test data. The measures taken for the comparison are smaller on the test
data than the training data since the model does not see the test data throughout the
training process. As presented in Table 10.3, from the outcomes, it is observed that
the proposed model gives better results than the multiple property grouping on both
training and the test data on almost all measures except a slightly smaller value of
the precision on the test data.
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Fig. 10.6 Accuracy values for the k-means feature selection

Table 10.3 Comparison of the proposed model with the multiple property grouping the state
selection method

Model Precision Recall F-score MCC Accuracy

Proposed model training values 0.908 0.945 0.924 0.837 0.917

Multi property model training values 0.886 0.917 0.900 0.777 0.888

Proposed model test values 0.864 0.950 0.905 0.789 0.893

Multi property model test values 0.875 0.875 0.875 0.732 0.867

10.4 Conclusion

In this study, the hidden Markov model (HMM) has been used in order to detect the
lock-and-key relationship in the Chip-seq data. In the application, we have initially
explained the mathematical details of HMM in different stages of the estimation
of the model parameters via the expectation–maximization method. Furthermore,
we have investigated the effect of the clustering approaches in different aspects in
the selection of the observations which are the sequence of amino acids and the
states which are biophysical features of amino acids. In these analyses, we have
conducted various methods from k-means and the hierarchical techniques to fuzzy
methods. Among alternatives, we have chosen the fuzzy k-medoids methods due to
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Fig. 10.7 Accuracy values for the k-medoids feature selection
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Fig. 10.8 Accuracy values for the fuzzy k-means state selection
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Fig. 10.9 Accuracy values for the fuzzy k-medoids state selection

the uncertain nature of the model construction and the higher accuracy of the results
with respect to other approaches. Finally, we have evaluated the performance of
all the suggested methods in different accuracy measures. From the findings, we
have observed that HMM is promising to describe the selected benchmark Chiq-seq
dataset, and the proposal clustering approaches have improved its accuracy based
on accuracy of the estimates.

As the extension of this study in mathematical side, we consider to investigate
the performance of the Bayesian inference in HMM and its more advance structure
where the inference can be also applied via the variational approximation in order
to diagnose AIDS in earlier stage. Because while the structure of Markov model
becomes complex, the estimation of the model parameters cannot be solved via
the sole frequentist approaches or simple iterative algorithms such as the Gibbs
sampling although the complex model can more accurately capture the earlier levels
of this disease and the effect of other risk factors causing AIDS. On the other side,
as the extension of this study, we can consider the effect of AIDS in social side
too. Because this illness has a significant impact on all levels of the society. The
impact is particularly devastating not only for the individual who is infected, but
also for the family and the wider community. The HIV/AIDS social work is changed
fundamentally by the introduction of more effective medications which prolong the
life of people living with this disease. The dominant themes in the related social
work are transformed from loss and grief, to survival and living with the disease.
Hereby, the social welfare policies mandate social workers to build a social capital
in order to manage the impact of HIV and AIDS on communities. At this point,
social workers may help diffuse HIV and AIDS information and showcase positive
role-modeling behaviors, and provide members with material, emotional, and social
supports [29, 32]. By combining these works with statistical modeling, it can be
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possible to clearly show the social effects and the factors of the AIDS disease on the
patient simultaneously.
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Chapter 11
A Numerical Approach for Variable
Order Fractional Equations

Fatma Ayaz and İrem Bektaş Güner

11.1 Introduction

Since the last two or three decades, fractional calculus has become valuable tool
in many branches of science and engineering. However, its history goes back
to eighteenth century. Many scientists, including famous mathematicians such as
Fourier (1822), Abel (1823–1826), Liouville (1822–1837), Riemann (1847), have
contributed significant works for development of fractional calculus. There are
many possible generalizations of dnf (x)

dxn
, where n is not an integer, but the most

important of these are the Riemann–Liouville and Caputo derivatives. The first of
these appeared earlier than the others and was developed in works of Abel, Riemann,
and Liouville in the first half of the nineteenth century. The mathematical theory of
this derivative has been well established so far, but it has disadvantage that leads to
difficulties especially for initial and boundary values, since in real world problems,
these conditions cannot be described by fractional derivatives. Thus, the latter
one, the Caputo derivative was derived by Caputo to eliminate the difficulties in
identifying initial and boundary conditions. Both derivatives are very well known in
the theory of fractional differential equations and the definitions of these derivatives
will be given in the following section.

It has been proved that many physical processes can be well defined and modelled
by fractional order differential equations. Moreover, fractional analysis provides
many benefits for identifying and best modelling the physical systems which are
suggested by scientists. Therefore, fractional order derivatives are much more
suitable than the ordinary derivatives (see references [1–4]). For instance, it is not
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easy to explain abnormal diffusion behaviours by integer order differential equations
since these processes appear abnormally with respect to time and space variables
and it requires fractional models.

There are many application areas where these mathematical models are used and
some of them can be listed here as physics, chemistry, biology, economics, control
theory, signal and image processing, blood flow phenomenon, aerodynamics, fitting
of experimental data, etc. Usually these models have complex nature; therefore,
analytical solutions can only be obtained for certain classes of equations. Many
numerical and approximate methods have been developed to solve these kinds
of equations so far. Some of these methods are given as follows: finite differ-
ence approximation methods [5–10], fractional linear multistep methods [11–13],
quadrature method [14–19], adomian decomposition method [20–22], variational
iteration method [22, 23], differential transform method [24], Laplace perturbation
method [25, 26], homotopy analysis method [27], etc. On the other hand, existing
pure numerical techniques have usually first order convergency. However, it is well
known that raising the order of convergency is a factor that increases the power of
the method [28].

Nowadays, there are further developments in the analysis of fractional order
differential equations and some studies are dealt with variable order fractional
derivatives [29]. Thus, the need to develop more reliable methods in parallel with
the developments in this field is inevitable.

The aim of this work is to use a second order convergent method to the variable
fractional order multi-term differential equations similar to the work in [30] and to
obtain reliable results. In the next section, second order convergent method will be
mentioned and the theory of the method will be dealt with. Sections 11.3 and 11.4
are applications of the method for adding extra y(t) and y′′(t) terms to the single-
term equation. The last section is the conclusion.

11.2 Problem Definition and Integration Method for
Variable Order Fractional Differential Equations

In this section, we first consider the following single-term initial value problem with
fractional derivative, where α(t) is a function of time. Therefore, we can write the
problem as

{
CD

α(t)
0,t y(t) = f (t), 0 ≤ t ≤ T ,

y(0) = 0,
(11.1)

where f (t) is a continuous function of t for a given interval. If y(0) = μ, then
by using the transformation v(t) = y(t) − μ, we get y(0) = 0. In Eq. (11.1),
α(t) denotes the order of variable fractional Caputo derivative, namely CD, and this
derivative is defined as,
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CD
α(t)
0,t y(t) = 1

Γ (1− α(t))

∫ t

0
(t − s)−α(t)y ′(s)ds. (11.2)

We also recall the variable fractional order Riemann–Liouville derivative, RLD as

RLD
α(t)
0,t y(t) =

1

Γ (1− α(t))

d

dt

∫ t

0
(t − s)−α(t)y(s)ds. (11.3)

Consequently, by the following lemma, we see the relation between the Riemann–
Liouville and the Caputo derivatives.

Lemma 11.1 If y(t) ∈ C[0,∞) then, similar to the constant order fractional
operators, the relation between variable order Caputo and Riemann–Liouville
fractional derivatives is

CD
α(t)
0,t y(t) =RL D

α(t)
0,t [y(t)− y(0)]. (11.4)

In Eq. (11.1), since the initial condition is y(0) = 0, this follows that

CD
α(t)
0,t y(t) = RLD

α(t)
0,t y(t). (11.5)

Consequently, for convenience, the Caputo derivative is replaced by Riemann–
Liouville derivative in Eq. (11.1). To obtain a numerical approach to the Riemann–
Liouville variable order fractional derivative by a second order convergent method,
we first call the shifted Grünwald approximation of a function y(t)

A α(t)
τ,p y(t) = 1

τα(t)

∞∑

k=0

g
α(t)
k y(t − (k − p)τ), (11.6)

where, for k ≥ 0 ,

g
α(t)
k = (−1)k

(
α(t)

k

)

.

Now, the second order convergent method for Riemann–Liouville variable order
derivative is defined as by the following theorem (see [30]).

Theorem 11.1 Let y(t) ∈ L1(R) and its Riemann–Liouville derivative be

RLD
α(t)+2
−∞,t y(t). For ∀tk ∈ R, the Fourier transform of this derivative in L1(R)

is [10]

Dα(t)
τ,p,qy(t) =

α(t)− 2q

2(p − q)
A α(t)
τ,p y(t)+ 2p − α(t)

2(p − q)
A α(t)
τ,q y(t). (11.7)
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Therefore,

Dα(tk)
τ,p,qy(t) =RL D

α(tk)−∞,t y(t)+O(τ 2), (11.8)

where p and q are integers and p �= q.

Proof From the definition of A α(t)
τ,p y(t) as in Eq. (11.6), we write

Dα(tk)
τ,p,qy(t) =

α(tk)− 2q

2(p − q)

1

τα(tk)

∞∑

k=0

g
α(tk)
k y(t − (k − p)τ)

+ 2p − α(tk)

2(p − q)

1

τα(tk)

∞∑

k=0

g
α(tk)
k y(t − (k − q)τ). (11.9)

If the Fourier transform is applied to both sides of Eq. (11.9), the following
expression is obtained

F
{
D
α(tk)
τ,p,qy(t);w

}
= 1

τα(tk)

∞∑

k=0

g
α(tk)
k

[
α(tk)− 2q

2(p − q)
e−iw(k−p)τ

+2p − α(tk)

2(p − q)
e−iw(k−q)τ

]

F (w)

= 1

τα(tk)

[
α(tk)− 2q

2(p − q)
(1− e−iwτ )α(tk)eiwτp

+2p − α(tk)

2(p − q)
(1− e−iwτ )α(tk)eiwτq

]

F (w) (11.10)

= (iw)α(tk)
[
α(tk)− 2q

2(p − q)
Wp(iwτ)+ 2p − α(tk)

2(p − q)
Wq(iwτ)

]

F (w),

where F (w) is the Fourier transform of y(t) and we writing

Wr(z) =
(

1− e−z

z

)α(tk)
erz

= 1+
(

r − α(tk)

2

)

z+O(z2), r = p, q, (11.11)

denoting,

ĝ {w, τ } = F
{
Dα(tk)
τ,p,qy;w

}
−F

{
RLD

α(tk)−∞,t y;w
}

and by using Eqs.(11.10)–(11.11) and we have
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∣
∣
∣D

α(tk)
τ,p,qy(t)− RLD

α(tk)−∞,t y(t)

∣
∣
∣ = |g| ≤ 1

2π

∫

R

|ĝ(w, τ)|dw ≤ C‖(iw)α(tk)+2F(w)‖L1τ
2

= O(τ2).

This completes the proof [30].

11.2.1 Numerical Method

To solve Eq. (11.1) numerically, we discretize the time domain, t ∈ [0, T ] by
τ = T

N
, where N is an integer and α(tk) = αk denotes the varying order

fractional derivative with tk = kτ, k = 0, 1, 2, 3 . . . , N . Moreover, choosing
(p, q) = (0,−1), then by using Eq. (11.9) we have

α(t)− 2q

2(p − q)
= 2+ α(t)

2

and

2p − α(t)

2(p − q)
= −α(t)

2
.

Now, the second order convergent method can be given as follows [30]:

{
τ−αk

∑k
j=0 w

αk
j yk−j = f (tk), 1 ≤ k ≤ N

y0 = 0 ,
(11.12)

where, if k = 0, then w
αk
0 = (

2+αk
2 )g

αk
0 ,

otherwise, wαk
j = (

2+αk
2 )g

αk
j − (

αk
2 )g

αk
j−1, k ≥ 1 and g

αk
j = (−1)j

(
αk

n

)

.

11.2.2 Stability Criteria of the Method

This part deals with the stability of the method and the following lemma holds.

Lemma 11.2 Being αk ∈ (0, 1), then the coefficients, wαk
j in Eq. (11.12) satisfy the

following properties:

{
w
αk
0 = 2+αk

2 , w
αk
j < 0, j ≥ 1

∑∞
j=0 w

αk
j = 0, −∑k

j=1 w
αk
j < w

αk
0 , k ≥ 1.

(11.13)
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Theorem 11.2 Let y(t) ∈ C[0,∞) denotes exact and {yk|k = 0, 1, 2, 3 . . . N}
numerical solution of Eq. (11.1) respectively, then the following inequality holds:

|yk| ≤ 5

(1− αmin)2αmin
kαminταmin max

1≤m≤k |f (tm)|. (11.14)

Proof According to the Lemma 11.2, we know that

w
αk
0 =

2+ αk

2
, w

αk
j < 0, j ≥ 1.

Hence, by arranging Eq. (11.12), we have

w
αk
0 yk =

k−1∑

j=1

(−wαk
j )yk−j + ταkf (tk), 1 ≤ k ≤ N. (11.15)

For k = 1, we can write

|y1| = |wα1
0 |−1τα1 |f (t1)| ≤ 5

(1− αmin)2αmin
ταmin |f (t1)|.

Now, we have to show that Eq. (11.14) is also valid for j = 1, 2, 3, . . . , k−1. Hence,
taking the absolute value of Eq. (11.15) and writing Eq. (11.14) into this inequality
then we obtain

w
αk
0 |yk | ≤

[ k−1∑

j=1

(−wαk
j
)|yk−j | + ταk |f (tk)|

]

≤
k−1∑

j=1

(−wαk
j
)

5

(1− (αmin)2αmin (k − j)αminταmin
max

1≤m≤k−j |f (tm)| + ταmin |f (tk)|

≤
[ k−1∑

j=1

(−wαk
j
)

5

(1− αmin)2αmin
kαmin + 1

]

ταmin max
1≤m≤k |f (tm)| (11.16)

≤
{[

w
αk
0 −

1− αmin

5

(
2αmin

kαmin

)]
5

(1− αmin)
2αmin + 1

}

ταmin max
1≤m≤k |f (tm)|

= 5w
αk
0

(1− αmin)2αmin
kαminταmin max

1≤m≤k |f (tm)|.

Therefore, we get

|yk| ≤ 5

(1− αmin)2αmin
kαminταmin max

1≤m≤k |f (tm)|.

As a result, by mathematical induction, Eq. (11.14) is valid for all 1 ≤ k ≤ N (See
[30]).
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Theorem 11.3 Let y(t) ∈ C[0,∞) denote the exact solution and {y(tk)|k =
0, 1, 2, 3 . . . N} define the values of y at tk . Let us also denote the numerical solution
of Eq. (11.1) by {yk|k = 0, 1, 2, 3 . . . N} at particular points tk . Therefore, absolute
error in each step is denoted by ek = y(tk) − yk, k = 0, 1, . . . N . Hence, the
following relation holds:

|ek| ≤ 5c

(1− αmin)2αmin
T αminτ 2,

where c is a positive constant independent from τ .

Proof The proof of the theorem is given as in [30]. The error of Eq. (11.12) is

{
τ−αk

∑k
j=0 w

αk
j ek−j = Rk, 1 ≤ k ≤ N,

e0 = 0.
(11.17)

This requires that |Rk| ≤ cτ 2. Then, by using Theorem 11.1 and Theorem 11.2, we
write

|ek| ≤ 5c

(1− αmin)2αmin
kαminταmin max

1≤m≤k |R
m|

≤ 5c

(1− αmin)2αmin
T αminτ 2.

This completes the proof.

11.2.3 Numerical Example

So far, a second order convergent method has been considered for approximating
the Riemann– Liouville derivative, where the maximum error and the order of the
convergency are obtained from the following formulas:

E∞(τ ) = max
0≤k≤N |y(tk)− yk|,

order∞(τ ) = log2

(
E∞(2τ)
E∞(τ )

)

.

To see the efficiency of the method the following example has been considered
here. All numerical calculations have been done within MATLAB (R2015b).
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Example 11.1 Assuming that 0 < α(t) < 1 and T = 1. Now, we can solve the
following initial value problem [30]:

CD
α(t)
0,t y(t) =

3t1−α(t)

Γ (2− α(t))
+ 2t2−α(t)

Γ (3− α(t))
, 0 ≤ t ≤ T (11.18)

y(0) = 0. (11.19)

The exact solution of the problem is known as y(t) = 3t + t2 and two different
values of α(t) will be considered here:

Case 1: α(t) = 1
2 t ,

Case 2: α(t) = sin(t).

Consequently, by using the following numerical scheme:

τ−αk
k∑

j=0

w
αk
j yk−j = f (tk), 1 ≤ k ≤ N,

and taking y0 = 0, numerical results are obtained. These results have been shown
by tables. Tables 11.1 and 11.3 show the difference between exact and numerical
solutions of the problem for τ = 1

16 and τ = 1
32 . In Table 11.1, the first case

α(t) = 1
2 t has been used. Moreover, in Table 11.3, the second case, α(t) =

sin(t) was applied. Tables 11.2 and 11.4 denote the maximum error and order of
convergency results for α(t) = 1

2 and α(t) = sin(t), respectively. Figure 11.1
shows both numerical and exact solutions in the same plot. It is clear that analytical
and numerical solutions overlap.

11.3 Multi-term Variable Order Fractional Equations

In this section we will apply the second order convergent method to a new class of
variable fractional order differential equations. With additional terms, we will have
multi-term variable fractional order differential equation. First, we will apply y(t)

term to Eq. (11.1). Hence, the following initial value problem, Eq. (11.20), will be
considered here:

{
CD

α(t)
0,t y(t)+ ay(t) = f (t), 0 ≤ t ≤ T

y(0) = 0.
(11.20)

For convenience, taking a = 1 and each tk is in the discretized time domain, the
following numerical scheme holds:
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Table 11.1 The difference between the numerical and exact values of Example 11.1 for T = 1
and α(t) = 1

2 t . The calculations have been performed for both N = 16, N = 32

τ = 1
16 τ = 1

32
Numerical value Exact value Numerical value Exact value

0.190969333717 0.191406250000 0.094615423638 0.094726562500

0.390168425750 0.390625000000 0.191289608582 0.191406250000

0.597204270428 0.597656250000 0.289922357608 0.290039062500

0.812056502729 0.812500000000 0.390509189828 0.390625000000

1.034722151963 1.035156250000 0.493049429619 0.493164062500

1.265200437577 1.265625000000 0.597542896551 0.597656250000

1.503491075175 1.503906250000 0.703989525702 0.704101562500

1.749593937717 1.750000000000 0.812389288867 0.812500000000

2.003508960064 2.003906250000 0.922742172037 0.922851562500

2.265236105578 2.265625000000 1.035048167506 1.035156250000

2.534775352514 2.535156250000 1.149307270671 1.149414062500

2.812126687793 2.812500000000 1.265519478597 1.265625000000

3.097290103864 3.097656250000 1.383684789304 1.383789062500

3.390265596989 3.390625000000 1.503803201392 1.503906250000

3.691053166230 3.691406250000 1.625874713838 1.625976562500

3.999652812814 4.000000000000 1.749899325873 1.750000000000

1.875877036904 1.875976562500

2.003807846471 2.003906250000

2.133691754215 2.133789062500

2.265528759855 2.265625000000

2.399318863176 2.399414062500

2.535062064016 2.535156250000

2.672758362260 2.672851562500

2.812407757834 2,812500000000

2.954010250700 2.954101562500

3.097565840850 3.097656250000

3.243074528307 3.243164062500

3.390536313121 3.390625000000

3.539951195366 3.540039062500

3.691319175139 3.691406250000

3.844640252556 3.844726562500

3.999914427756 4.000000000000

{
τ−αk

∑k
j=0 w

αk
j yk−j = f (tk)− y(tk), 1 ≤ k ≤ N,

y0 = 0.
(11.21)

Therefore, the following theorem is valid.

Theorem 11.4 Let y(t) ∈ C[0,∞) denote the exact solution and {y(tk)|k =
0, 1, 2, 3 . . . N} define the values of y at tk . Let us also denote the numerical
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Table 11.2 Maximum error
and order of convergency
results for different values of
τ in Example 11.1, where
T = 1 and α(t) = 1

2 t

τ E∞(τ ) order∞(τ )
1
4 6.585728e − 03

1
8 1.754860e − 03 1.9079

1
16 4.565743e − 04 1.9424

1
32 1.167049e − 04 1.9679

1
64 2.967417e − 05 1.9755

0.5
0.5

1

1

1.5

1.5

2

2

2.5

2.5

3

3

3.5

3.5

4

4

4.5

4.5

Numerical Value
Exact Value

Fig. 11.1 Comparison of the numerical and exact solutions of y(t) of Example 11.1, where T = 1
, α(t) = 1

2 t

solution of Eq. (11.1) by {yk|k = 0, 1, 2, 3 . . . N} at particular points tk . Therefore,
maximum error in each step is denoted by ek = y(tk)− yk, k = 0, 1, . . . N . Hence,
the following relation holds:

|ek| ≤ 5c

(1− αmin)2αmin
T αminτ 2,

where c is a positive constant independent from τ .

Proof By using Eq. (11.12), the proof of this theorem can be performed easily same
as the proof of Theorem 11.3.

Following example denotes that the second order convergent method is still valid
for multi-term variable fractional order differential equations.
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Table 11.3 Comparison of the numerical and exact solutions of y(t) at particular point tk in
Example 11.1, where T = 1, α(t) = sin(t). The calculations have been performed for both
N = 16, N = 32

τ = 1
16 τ = 1

32
Numerical value Exact value Numerical value Exact value

0.190458811746 0.191406250000 0.094495229084 0.094726562500

0.389552027574 0.390625000000 0.191152917929 0.191406250000

0.596522633108 0.597656250000 0.289776299993 0.290039062500

0.811321611175 0.812500000000 0.390355236098 0.390625000000

1.033941750135 1.035156250000 0,492888269766 0.493164062500

1.264381028701 1.265625000000 0.597375029086 0.597656250000

1.502638440292 1.503906250000 0.703815383037 0.704101562500

1.748713235941 1.750000000000 0.812209273587 0.812500000000

2.002604749102 2.003906250000 0.922556668864 0.922851562500

2.264312355507 2,265625000000 1.034857547135 1.035156250000

2.533835469305 2.535156250000 1.149111890582 1.149414062500

2.811173548221 2.812500000000 1.265319682707 1.265625000000

3.096326099295 3.097656250000 1.383480907242 1.383789062500

3.389292682744 3.390625000000 1.503595547725 1.503906250000

3.690072913517 3.691406250000 1.625663587402 1.625976562500

3.998666460891 4.000000000000 1.749685009261 1.750000000000

1.875659796152 1.875976562500

2.003587930921 2.003906250000

2.133469396549 2.133789062500

2.265304176291 2.265625000000

2.399092253795 2.399414062500

2.534833613201 2.535156250000

2.672528239233 2.672851562500

2.812176117265 2.812500000000

2.953777233375 2.954101562500

3.097331574386 3.097656250000

3.242839127892 3.243164062500

3.390299882272 3.390625000000

3.539713826696 3.540039062500

3.691080951124 3.691406250000

3.844401246297 3.844726562500

3.999674703724 4.000000000000
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Table 11.4 Absolute errors
and order of convergency for
different values of τ in
Example 11.1, where T = 1
and α(t) = sin(t)

τ E∞(τ ) order∞(τ )
1
4 2.470109e − 02

1
8 5.602080e − 03 2.1513

1
16 1.333539e − 03 2.0707

1
32 3.253162e − 04 2.0353

1
64 8.032494e − 05 2.0179

Table 11.5 Maximum error
and order of convergency
results for different values of
τ in Example 11.2, where
T = 1 and α(t) = 1

2

τ E∞(τ ) order∞(τ )
1
4 9.201325e − 03

1
8 2.623652e − 03 1.81026

1
16 7.261612e − 04 1.85321

1
32 1.960721e − 04 1.88890

1
64 5.190739e − 05 1.91737

Example 11.2 In Eq. (11.20), assuming that f (t) = t2 + 2
Γ ( 5

2 )
t

3
2 and T = 1, then,

the exact solution of the problem is known as y(t) = t2. But this solution is known
for only α(t) = 1

2 . To compare numerical results with exact ones, only α = 1
2

case has been considered here. Numerical calculations have been performed for
different values of τ , and a code is written in MATLAB (R2015b). The following
table, Table 11.5, lists maximum error and the order of convergency for different
values of τ and Table 11.6 compares the numerical and exact solutions for τ = 1

16
and τ = 1

32 .

11.4 Addition of y′′(t) Term to Variable Order Fractional
Differential Equations

In this section, by using the second order convergent method which is given by
Eq. (11.12), we will develop a hybrid method for wider classes of differential
equations. By adding y(t) and y′′(t) terms to Eq. (11.1), then we will have multi-
term fractional differential equations. To solve the multi-term fractional equation,
we approximate the second order derivative with the central differences and the
fractional derivative term is evaluated as it is given in Eq. (11.12). Therefore, we
will consider the following initial value problem:
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Table 11.6 The difference between numerical and exact values of Example 11.1 for T = 1 and
α(t) = sin(t). The calculations have been performed for both N = 16, N = 32

τ = 1
16 τ = 1

32
Numerical value Exact value Numerical value Exact value

0.004569025 0.003906250 0.001150760 0.000976562

0.016351161 0.015625000 0.004102322 0.003906250

0.035851178 0.035156250 0.008980809 0.008789062

0.063157151 0.062500000 0.015809364 0.015625000

0.098281108 0.097656250 0.024591676 0.024414062

0.141222933 0.140625000 0.035328044 0.035156250

0.191981309 0.191406250 0.048018296 0.047851562

0.250555215 0.250000000 0.062662261 0.062500000

0.316943955 0.316406250 0.079259815 0.079101562

0.391147053 0.390625000 0.097810869 0.097656250

0.473164167 0.472656250 0.118315358 0.118164062

0.562995042 0.562500000 0.140773233 0.140625000

0.660639483 0,660156250 0,165184459 0.165039062

0.766097340 0.765625000 0.191549003 0.191406250

0.879368490 0.878906250 0.219866843 0.219726562

1.000452834 1.000000000 0.250137959 0.250000000

0.282362334 0.282226562

0.316539954 0.316406250

0.352670807 0.352539062

0.390754883 0.390625000

0.430792174 0.430664062

0.472782672 0.472656250

0.516726370 0.516601562

0.562623262 0.562500000

0.610473343 0.610351562

0.660276608 0.660156250

0.712033054 0.711914062

0.765742676 0.765625000

0.821405470 0.821289062

0.879021435 0.878906250

0.938590567 0.938476562

1.000112863 1.000000000
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⎧
⎪⎨

⎪⎩

CD
α(t)
0,t y(t) = f (t)+ a(t)y′′(t)+ b(t)y(t), 0 ≤ t ≤ T ,

y(0) = 0,
y′(0) = 0.

(*)

Therefore, at particular values of tk , Eq. (*) is written as

τ−αk
k∑

j=0

w
αk
j yk−j = f (tk)+ ay′′(tk)+ by(tk). (11.22)

Assuming that a and b are constants and for simplicity, we take their values as 1,−1
respectively. Now recalling central finite difference approximation to the second
order derivative:

f ′′(tk) = f (tk+1)− 2f (tk)+ f (tk−1)

h2 , (11.23)

and substituting this into Eq. (11.22), then the last form of the numerical scheme is
obtained easily. The method will be applied to following example (see[19]).

Example 11.3 Consider the differential equation in Eq. (*) as follows:

Dα(t)y(tk) = y′′(tk)− y(tk)+ f (tk). (11.24)

Since the exact results are known for only α = 1
2 , for comparing the numerical

results with exact ones, we will also use α(t) = 1
2 in the calculations. Substituting

the finite difference approximation to the second order ordinary derivative, then we
have

τ−αk
k∑

j=0

w
αk
j yk−j = y(tk+1)− 2y(tk)+ y(tk−1)

h2 − y(tk)+ f (tk). (11.25)

The exact solution of the problem is known as y(t) = t2, when

f (t) = t2 − 2+ 2

Γ ( 5
2 )
t

3
2 . (11.26)

Hence,

τ−αk
k∑

j=0

w
αk
j yk−j = y(tk+1)− 2y(tk)+ y(tk−1)

h2 − y(tk)+ tk
2 − 2+ 2

Γ ( 5
2 )
tk

3
2 ,

(11.27)

where h = τ . As a result, arranging Eq. (11.27) again, we obtain
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y(tk+1) = h2τ−αk
k∑

j=0

w
αk
j yk−j + 2y(tk)− y(tk−1)

+h2y(tk)− h2[tk2 − 2+ 2

Γ ( 5
2 )
tk

3
2 ]. (11.28)

Table 11.7 Results for
Example 11.3, where T = 1
and α(t) = 1

2 . Comparison of
the numerical and exact
values of y(t) for two
different step size, N = 10
and N = 100, respectively

tk y(tk) = tk
2 N = 10 için yk N = 100 için yk

0.1 0.01 0.010000000 0.010000470

0.2 0.04 0,040000000 0.040000729

0.3 0.09 0.090235468 0.090000693

0.4 0.16 0.160461209 0.160000405

0.5 0.25 0.250691879 0.249999884

0.6 0.36 0.360931289 0.359999132

0.7 0.49 0.491183812 0.489998146

0.8 0.64 0.641454438 0.639996910

0.9 0.81 0.811748730 0.809995404

1.0 1.0 1.002072855 0.999993598

e∞ 0.002072855 0.000006401

Fig. 11.2 For α(t) = 1
2 and N = 100. Comparison of numerical and exact values of y(t) in

Example 11.3
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Table 11.7, shows the exact and numerical values of y(t) at particular points of t
for different step sizes where initial conditions are taken as in Eq. (*). Figure 11.2
illustrates that both exact and numerical results are in good agreement.

11.5 Conclusion

Here, we aimed to solve fractional-variable order differential equations and multi-
term fractional order differential equations. We have used the second order con-
vergent method as in [30]. The method is quite well when it is compared with the
analytical solutions. For finer mesh, one can obtain more reliable results. As a result,
the method can be applied to wider classes of fractional equations, variable order
fractional differential equations.
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Chapter 12
Evolution of Plane Curves via Lie
Symmetry Analysis in the Galilean Plane

Zühal Küçükarslan Yüzbaşı, Ebru Cavlak Aslan, Dumitru Baleanu,
and Mustafa Inc

12.1 Introduction

The symmetry analysis is one of the most important and efficient methods that
can be used to analyze nonlinear differential equations. The theory of symmetry
analysis has a big importance in geometry, mechanics, and physics. Moreover, there
are several studies about Lie symmetry analysis performed for several equations,
[3, 8, 10–12, 20]. Moreover, the problem of evolving curves in the plane is a quite
interesting topic since it can be arranged different subjects on the same theoretical
basis. One of them is a geometrical interpretation of integrable systems. There
have been deep connections between the differential geometry of curve motions
and the integrable systems have been examined in different space [4–6, 16, 18, 19].
Particularly, evolving curves problem has been studied via Lie group analysis or
different aspects [1, 2, 17].

In this work, our aim is to study a general equation of the evolving curves by
flow in the Galilean plane from the point of the symmetry analysis and get exact
solutions of the equation which we obtain from the evolution of plane curve by the
flow.

This manuscript is organized as follows: In Sect. 12.2, the evolution of plane
curve equations by an inelastic and an elastic flow is determined in G2. In Sect. 12.3,
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we get the linear and nonlinear partial differential equations. Then the new classes
of symmetry reductions for these equations are designated and exact solutions are
obtained. Our results show that the symmetry analysis is a very efficient method to
get the solution of these type equations.

12.2 Evolution of Plane Curves by Flow in G2

We consider R2 with the bilinear form

〈λ,μ〉 =
{
λ1μ1, if λ1 �= 0 or μ1 �= 0
λ2μ2, if λ1 = 0 and μ1 = 0

, (12.1)

where λ = (λ1, λ2) and μ = (μ1, μ2) . Then we have the Galilean plane G2.
This is one of the three Cayley–Klein plane geometries with a parabolic measure
of distance. Denote R2 with the bilinear form (12.1), [14, 15].

Let r : I ⊆ R → G2 be a curve in Galilean plane given by r = (s, x(s)), where
s is the arc length on r . Then, we have

T (s) = (1, x′(s)),

N(s) = 1

κ(s)
(0, x′′(s)) = (0, 1),

where κ(s) = x′′(s).
Then the following moving bihedron of r is written as:

T ′(s) = κ(s)N(s), (12.2)

N ′(s) = 0,

where T and N is said to be the tangent and principal normal of r in G2 , [15].
Let us consider a smooth curve in Galilean plane. Suppose that u is the parameter

along r inG2. Let r(u, t) represent the position vector of a point on r at t . The metric
on r is

g(u, t) =
〈
∂r

∂u
,
∂r

∂u

〉

. (12.3)

The arc length along the curve is defined as follows:

s(u, t) =
∫ u√

g(σ, t)dσ,
∂

∂s
= 1√

g

∂

∂u
. (12.4)
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The motion of a point on the curve in G2 is defined by

∂r

∂t
= f1T + f2N, (12.5)

where f1 and f2 are the velocities along the frame T and N, respectively. Also
The motion is called local if {f1, f2} depends only on local values of k and their
derivatives [6].

Lemma 12.1 The expression of the evolution equation for g is written as

.
g = 2g

∂f1

∂s
. (12.6)

Proof By differentiating (12.3) and (12.5) with respect to t and s, respectively, and
since ∂

∂u
, ∂
∂t

commute, then we get

.
g = ∂g

∂t
= 2

〈
∂r

∂u
,
∂

∂t

∂r

∂u

〉

= 2g

〈
∂r

∂s
,
∂

∂s

∂r

∂t

〉

= 2g

〈

T ,
∂f1

∂s
T + f1kN + ∂f2

∂s
N

〉

.
g = 2g

∂f1

∂s
.

Lemma 12.2 The expression of the evolution of the length of the curve has

∂s

∂t
=
∫ u ∂f1

∂s
dσ. (12.7)

Proof From (12.4), we get

∂s

∂t
=
∫ u .

g

2
√
g
dσ. (12.8)

Substituting (12.6) into (12.8), then the lemma holds.

Definition 12.1 A curve is said to be inelastic curve if its length is preserved, i.e.,

∂s

∂t
= 0⇔ .

g = 0. (12.9)

Theorem 12.1 The flow of r is inelastic if and only if f1 is a constant.

Proof ⇒Suppose that the curve flow is inelastic. From (12.8), we get

∂s

∂t
=
∫ u .

g

2
√
g
dσ = 0. (12.10)
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Substituting (12.6) into (12.10), we have

∂f1

∂s
= 0,

this means that f1 is a constant.
⇐Assume that f1 is a constant, then from (12.6), it is easily shown that

.
g = 0,

then ∂s
∂t
= 0. Thus the curve is inelastic.

Theorem 12.2 For the curve flow ∂r
∂t
= f1T + f2N . If r(u, t) be an elastic curve,

then we get

kt = f1ks + f2ss . (12.11)

Proof Let r(u, t) be an elastic curve, that is,
.
g �= 0. By differentiating (12.5) with

respect to u, then we obtain

rtu = √grts = √g ∂

∂s

(∂r

∂t

)

= √g
(∂f1

∂s
T +

(
f1k + ∂f2

∂s

)
N
)
. (12.12)

Since ru = √grs = √gT , by differentiating with respect to t, then we get

rut = √g
( gt

2
√
g
T + Tt

)
. (12.13)

From the condition of

rtu = rut ,

we get

gt

2
√
g
= ∂f1

∂s
, (12.14)

Tt = (f1k + ∂f2

∂s
)N. (12.15)

By differentiating (12.15) with respect to u, we have

Ttu = √g
(∂f1

∂s
k + f1

∂k

∂s
+ ∂2f2

∂s2

)
N. (12.16)
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By differentiating Tu = √gTs = √g(kN) with respect to t, we obtain

Tut = √g
(( gt

2
√
g
k + kt

)
N + kNt

)
). (12.17)

From the condition of

Ttu = Tut

we obtain

kt = f1ks + f2ss .

Corollary 12.1 The flow of r is an inelastic then we also get

kt = f1ks + f2ss ,

such that f1 is a constant.

12.3 Application via Lie symmetry Analysis

In this section, our starting point is to give Lie symmetry analysis for (12.15) with
respect to an inelastic and an elastic flow for special choosing f1 and f2. Many
researchers explain how to consider Lie symmetry analysis in many books, [7, 13].
We will now take into account the one parameter group of point transformations of
the form

s̃ → s + εξ(s, t, k)

t̃ → t + εη(s, t, k)

k̃→ u+ εζ(s, t, k),

where ε is a group parameter. The vector field associated with the above group of
transformations can be given by

V = ξ(s, t, k)
∂

∂s
+ η(s, t, k)

∂

∂t
+ ζ(s, t, k)

∂

∂k
.

Case 12.3.1 For the inelastic flow of curve by taking f1 = 1 and f2 = ks , (12.11)
becomes

kt = ks + ksss . (12.18)
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We can show it considering a well-established procedure that (12.18) admits the
following infinitesimals:

ξ(s, t, k) = 2C2t − C2s + C4,

η(s, t, k) = −3C2t + C3,

ζ(s, t, k) = F(s, t)+ C1k,

where C1, C2, C3, and C4 are arbitrary constants and F(s, t) is an arbitrary function
of s and t . The algebra of Lie point symmetries of the above equation is generated
by five vector fields

V1 = k
∂

∂k
,

V2 = −3t
∂

∂t
+ (2t − s)

∂

∂s
,

V3 = ∂

∂t
, (12.19)

V4 = ∂

∂s
,

V5 = F(s, t)
∂

∂k
.

One may obtain that V1, V2, V3, V4, V5 are closed under the Lie bracket.

In this equation, the infinitesimal generator is V1 + V4 = k
∂

∂k
+ ∂

∂s
. From this

generator, we have k = esf (ρ), ρ = t . So, (12.18) leads to reduced equation

f ′ = 2f (12.20)

which constructs the solution of (12.20) as f = e2tC, where C is an arbitrary
constant.

Case 12.3.2 For the inelastic flow of curve by taking f1 = 1 and f2 = k2

2 , (12.11)
becomes

kt = ks + k2
s + kkss . (12.21)

We can show it considering a well-established procedure that (12.21) admits the
following infinitesimals:

ξ(s, t, k) = C1t + C1s + C2t + C4,

η(s, t, k) = −C2t + C3,

ζ(s, t, k) = (2C1 + C2)k,
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where C1, C2, C3, and C4 are arbitrary constants.

The algebra of Lie point symmetries of the above equation is generated by four
vector fields

V1 = 2k
∂

∂k
+ (t + s)

∂

∂s
,

V2 = −t ∂
∂t
+ t

∂

∂s
+ k

∂

∂k
, (12.22)

V3 = ∂

∂t
,

V4 = ∂

∂s
. (12.23)

One may obtain that V1, V2, V3, V4 are closed under the Lie bracket. Then we can
give the commutation of Lie algebra as follows:

[., .] V1 V2 V3 V4

V1 0 0 −V4 −V4

V2 0 0 V3 − V4 0

V3 V4 −V3 + V4 0 0

V4 V4 0 0 0

For the generator V3 + c1V4 = ∂

∂t
+ c1

∂

∂s
(c1 an arbitrary constant), we have

k = f (ρ), ρ = s − c1t . If we substitute this function into (12.21), we reduce the
following nonlinear ODE:

ff ′′ + f ′2 + f ′(1+ c1) = 0 (12.24)

which creates the solution of (12.24) as f = (−1−c1)ρ+C, where C is an arbitrary
constant.

Case 12.3.3 For the elastic flow of curve by taking f1= k2 and f2 = ks , (12.11)
becomes

kt = k2ks + ksss . (12.25)

We can show it considering a well-established procedure that (12.25) admits the
following infinitesimals:

ξ(s, t, k) = −C1s + C3,

η(s, t, k) = −3C1t + C2,

ζ(s, t, k) = C1k,
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where C1, C2 and C3 are arbitrary constants. The algebra of Lie point symmetries
of the above equation is generated by three vector fields

V1 = −3t
∂

∂t
+ k

∂

∂k
− s

∂

∂s
,

V2 = ∂

∂t
, (12.26)

V3 = ∂

∂s
.

One may obtain that V1, V2, V3 are closed under the Lie bracket. Then we can
give the commutation of Lie algebra as follows:

[., .] V1 V2 V3

V1 0 2V2 V3

V2 −2V2 0 0

V3 −V3 0 0

For the generator V2+c2V3 = ∂

∂t
+c2

∂

∂s
(c2 an arbitrary constant), the invariants

are obtained as k = f (ρ) and η = s − c2t . Equation (12.25) leads to reduced
equation

f ′′′ + f 2f ′ + c2f
′ = 0. (12.27)

Riccati–Bernoulli ODE method will be applied for (12.27).
Suppose that the solution of (12.27) is the solution of Riccati– Bernoulli equation

f ′ = bf + af 2−m + cf m, (12.28)

where a, b, and c are the constants [9]. Then the second and third derivatives
of (12.28) yield

f ′′ = f−1−2m
(
af 2 + cf 2m + bf 1+m) (a(2−m)f 2 + cmf 2m + bf 1+m) .

(12.29)

f ′′′ = f−2−3m(af 2 + cf 2m + bf m+1)(a2(2m2 − 7m+ 6)f 4 + c2m(2m− 1)f 4m

+ ab(m2 − 5m+ 6)f 3+m + (b2 + 2ac)f 2+2m + bcm(m+ 1)f 1+3m). (12.30)

Substituting (12.29) and (12.30) into (12.27), we have

f−2−3m(af 2 + cf 2m + bf m+1)(a2(m− 2)(2m− 3)f 4 + c2m(2m− 1)f 4m
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+ ab(m− 3)(m− 2)f 3+m + bcm(1+m)f 1+3m + f 2+2m(b2 + 2ac+ c2 + f 2)).

(12.31)
Setting m = 0, the above equation is reduced to

(c + f (b + af ))(b2 + 2ac + c2 + f (6ab + f + 6a2f )) = 0. (12.32)

Each coefficient of f i(i = 0, 1, 2, 3, 4) should be equal to zero. We obtain a =
− c2

2c
, b = 0, and c = i

√
3

2
c2.

When m �= 1, a �= 0, and b2 − 4ac > 0, the solution is

f (η) =
(

− b

2a
−
√
b2 − 4ac

2a
tanh

[
(1−m)

√
b2 − 4ac

2
(ρ + C)

]) 1

1−m
.

(12.33)
So, the soliton solution is

f (η) =
(

i
√

3c2 tanh

[√
c2

2
(ρ + C)

])

. (12.34)

Case 12.3.4 For the elastic flow of curve by taking f1 = kss and f2 = kks , (12.11)
becomes

kt = 4kskss + kksss . (12.35)

We can show it considering a well-established procedure that (12.35) admits the
following infinitesimals:

ξ(s, t, k) = C2s + C4,

η(s, t, k) = C1t + C3,

ζ(s, t, k) = −k(C1 − 3C2),

where C1, C2, and C3 are arbitrary constants. The algebra of Lie point symmetries
of the above equation is generated by four vector fields

V1 = t
∂

∂t
− k

∂

∂k
,

V2 = 3k
∂

∂k
+ s

∂

∂s
,

V3 = ∂

∂t
(12.36)

V4 = ∂

∂s
.
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One may obtain that V1, V2, V3, V4 are closed under the Lie bracket. Then we
can give the commutation of Lie algebra as follows:

[., .] V1 V2 V3 V4

V1 0 0 −V3 0

V2 0 0 0 −V4

V3 V3 0 0 0

V4 0 V4 0 0

Firstly, for the generator V1 = t
∂

∂t
− k

∂

∂k
, we have k = f (ρ), ρ = s. If we

substitute this function into (12.35), we reduce the following nonlinear ODE:

1+ 4f ′′ + f ′′′ = 0 (12.37)

which creates the solution of (12.37) as f = − s
2

8
+ 1

16
e−4sC1 + sC2 +C3, where

C1, C2 and C3 are arbitrary constants.

Secondly, for the generator V2 = 3k
∂

∂k
+ s

∂

∂s
, we have k = s3f (ρ), ρ = t . If

we substitute this function into (12.35), we reduce the following nonlinear ODE

f ′ − 78f 2 = 0 (12.38)

which creates the solution of (12.38) as f = 1

−C − 78s
, where C is an arbitrary

constant.

Finally, for the generator V3 + c3V4 = ∂

∂t
+ c3

∂

∂s
, we have k = f (ρ), ρ =

c3t−s. If we substitute this function into (12.35), we reduce the following nonlinear
ODE

c3f
′ + 4f ′f ′′ + ff ′′′ = 0. (12.39)

In a similar way to Case 12.3.3, Riccati–Bernoulli ODE method will be applied
for (12.39). So, the solution is

f (ρ) =
(

1

a(m− 1)(ρ + C)
− a

b

) 1

1−m . (12.40)
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When m = 2, a �= 0, and b2 − 4ac = 0, the solution is

f (ρ) = (a(ρ + C)). (12.41)

12.4 Conclusion

In this paper, we have studied the evolution of plane curve equations in the context
of an inelastic and an elastic flow is determined in G2. Under the different choices in
these equations, we obtained the linear and nonlinear partial differential equations.
Some of the equations acquired are solved via the Lie symmetry analysis. Besides, if
we make an appropriate choice, then we get the Burger’s equation from the evolution
of plane curve equation. We also illustrated Fig. 12.1 in cases of c2 = 0.1, C = 1
and Fig. 12.2 in cases of c2 = 1, C = 0.1 for an evolution of plane curve equation
in Case 12.3.3 (Figs. 12.3 and 12.4).
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Fig. 12.1 The curvature of the curve for c2 = 0.1, C = 1, s ∈ [−10, 10], and t ∈ [−1, 1] in 3D
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Fig. 12.2 The curvature of the curve for c2 = 0.1, C = 1, s ∈ [−10, 10], and t ∈ [−1, 1] in 2D
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Fig. 12.3 The curvature of the curve for c2 = 1, C = 0.1, s ∈ [−10, 10], and t ∈ [−1, 1] in 3D
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Fig. 12.4 The curvature of the curve for c2 = 1, C = 0.1, s ∈ [−10, 10], and t ∈ [−1, 1] in 2D
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19. Yüzbaşı, Z.K., Bektaş, M.: A note on inextensible flows of partially and pseudo null curves in

E4
1 . Prespacetime J. 7(5), 818–827 (2016)
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smooth curve, 213
symmetry analysis, 213

Gaussian elimination, 115
GBB, see Global Barzilai and Borwein (GBB)

method
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Generalized Abel integral equation, 147
Generalized binomial theorem, 147, 148
Generalized Volterra integral equation, 147
Global Barzilai and Borwein (GBB) method,

154, 158
Global optimization

approximation, 88
auxiliary function approach, 126, 128
Barzilai–Borwein method, 154
classes, 88
deterministic approaches, 126
deterministic methods, 88
engineering, 125
extended Powell singular quartic function,

165
FFM (see Filled function method (FFM))
global minimizer, 87
Goldstein-Price’s function, 165
gradient-based method, 154
heuristic methods, 126
hybrid PSO, 154
local searches, 125
modeling, 153
nonmonotone line search technique, 154
non-smooth, 93, 126, 130
NSG (see Nonmonotone spectral gradient

(NSG))
objective function, 128, 153
objectives, 87
PSO (see Particle swarm optimization

(PSO))
Rastrigin function, 167
Shubert function, 165
smoothing techniques, 126
standard deviations, 167
steepest descent method, 88
stochastic methods, 88–89
unconstrained minimization problem, 154

Goldstein and Price function, 100–101
Gradient-based method, 154
Grippo–Lampariello–Lucidi nonmonotone line

search, 158
Gustafson–Kessel-like fuzzy k-means

(GKfkm), 182, 186, 187

H
HB, see Homogeneous balance (HB) method
Heuristic methods, 126
Heuristics, 88
Hidden Markov model (HMM)

AIDS, 191
amino acids, 172, 182
biological applications, 172

Chip-seq data, 191
clustering algorithm, 182
data description, 181
data modeling, 184–186
definition, 174
EM algorithm, 183–184
feature selection methods, 172, 186–188
fkm, 182, 186, 189, 190
fkmed, 182, 183, 186, 187, 189, 191
GKfkm, 182, 186, 187
hierarchical clustering methods, 172, 182
hierarchical feature selection method, 188
HIV/AIDS social work, 191
HIV-1 cleavage site detection problem,

172
k-means, 182
k-means clustering, 172
k-medoids, 182
likelihood calculation

Backward algorithm, 177–178
Baum–Welch algorithm, 180–181
forward algorithm, 175–177
Naive approach, 175
Viterbi algorithm, 178–180

observation sequence, 173, 182
physicochemical properties, 172
probabilistic graphical models, 173
probabilities, 173

HIV-1 cleavage sites
amino acids (see Amino acids)
HMM (see Hidden Markov model (HMM))

HIV-1 protease enzyme, 171
HIV-1 protease inhibitors, 171
HMM, see Hidden Markov model (HMM)
Homogeneous balance (HB) method, 54
Human immunodeficiency virus-1 (HIV-1),

171
Hyperbolic method, 53

I
Impulsive integro-differential equation, 2
Individual learning, 160
Inelastic flow, 217
Inertia weight, 162–163
Infinitesimal generator, 218
Instantaneous impulsive equations, 1
Integro-differential equation, 1, 2, 15–20
Iterative search method, 155

K
Kink-type solutions, 57–58
Kuratowski measure of noncompactness, 4
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L
Laguerre matrix-collocation method

augmented matrix, 115
Burgers–Fisher type nonlinear equations,

109–110
collocation points, 111, 114
error analysis, 115–117
Laguerre polynomials, 110
matrix equations, 114
matrix form, 111–114
truncated Laguerre series, 110–111
L2 and L∞ error norms, 61–63, 120

Lattice Boltzmann method (LBM), 118
LBM, see Lattice Boltzmann method (LBM)
Lebesgue spaces, 27
Lie symmetry analysis

elastic flow, 217, 218, 221
inelastic flow, 217, 218
integrable systems, 213
nonlinear ODE, 222
Riccati–Bernoulli ODE method, 220, 222
vector field, 217, 218

Linearly extrapolated schemes, 47
Line search methods, 155
Lipschitz condition, 71–73
Lower and upper mild solutions, 6–12, 14, 22
L2 projection operators, 30–31

M
MAEs, see Maximum absolute errors (MAEs)
Mathematical models, 196
Matrix equations, 114
Matrix form, 111–115, 173
Maximum absolute errors (MAEs), 78–83,

118, 120
Metaheuristic methods, 159
MIT, see Monotone iterative technique (MIT)
MLP, Multi–layered perceptron (MLP)
Monotone iterative technique (MIT)

differential equation, 1
evolution system, 2–5
fractional evolution equations, 2
impulsive integro-differential equation, 2
integro-differential equations, 15–20
Kuratowski measure of noncompactness,

4
lower and upper mild solutions, 6–12, 14
nonlocal condition, 11–15
partial differential equation, 21
positive cone, 3

Monotone line search method, 155
Multi-layered perceptron (MLP), 172

Multiple property grouping, 188
Multi-term variable order fractional equations,

202–206

N
Navier–Stokes equations, 26
NGS, see Nonmonotone spectral gradient

(NSG)
Non-autonomous system

integro-differential equations
non-instantaneous impulsive conditions,

15–20
nonlocal, 2

non-autonomous non-instantaneous
impulsive differential equations, 11

non-instantaneous impulsive condition, 2
Non-instataneous impulses, 2

first order, 1
integro-differential equation, 1
non-autonomous integro-differential

equations, 15–20
Nonlinear acoustics waves, 110
Nonlinear model, STO equation, 53
Nonlinear partial differential equations, 54, 64,

107, 214, 223
Nonlocal Cauchy problem, 11
Nonlocal condition, 2, 11–15, 21
Nonmonotone, 155
Nonmonotone line search methods, 154–158
Nonmonotone spectral gradient (NSG)

exploitation, 154
GBB, 154, 158
Grippo–Lampariello–Lucidi nonmonotone

line search, 158
iterative search method, 155
nonmonotone line search methods, 157,

158
parameters, 165
step size, 156

Non-smooth optimization, 93, 125, 126, 130
NPSOG method, 153–168
Numerical algorithm, 118
Numerical integration, 196–202

O
Objective functions, 87–89, 167
ODE, see Ordinary differential equations

(ODE)
Ordinary differential equations (ODE), 54

Caputo derivative, 197
Fourier transform, 198
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Ordinary differential equations (ODE) (cont.)
multi-term variable, 202–206
numerical method, 199
numerical techniques, 196
Riemann–Liouville derivative, 197, 201
second order convergent method, 197, 201
stability criteria, method, 199–201
y′′(t) terms, 206–209

P
Painleve method, 54
Partial differential equations (PDEs), 21, 54

linear, 56, 57
nonlinear, 54

Particle swarm optimization (PSO)
“bird”, 160
cognitive component, 161
constriction factor, 162–163
hybrid approach, 164
inertia weight, 162–163
metaheuristic methods, 159
neighborhood topologies, 163
parameters, 165
“particle”, 160, 161
Pseudocode, 161–162
SI, 160
social component, 161
velocity bounds, 162

PDEs, see Partial differential equations (PDEs)
POD, see Proper orthogonal decomposition

(POD)
Population algorithms, 126
Population-based metaheuristics, 159
Positive cone, 3–4, 10, 19, 20
Powell function, 102
Probabilistic graphical models, 173
Proper orthogonal decomposition (POD)

basis functions, 26, 30
Darcy Brinkman double diffusion system,

31
DNS, 29
eigenvalue problem, 29–30
Galerkin method, 26
Galerkin trajectories, 30
methodology, 26
uses, 26
VMS (see Crank Nicholson VMS-POD

method)
vs. VMS-POD method, 49–50

Pseudocode, 161–162
PSO, see Particle swarm optimization (PSO)

R
Random direction methods, 88
Random Search and Adaptive Search,

Markovian Algorithms, 126
Random search methods, 88, 126
Rastrigin function, 102–103, 136, 167
Rate of convergence

varying Δt, 48
varying R, 48

Rayleigh–Benard convection, 79
Real-valued function, 89
Reduced order models

POD, 29–33
Residual error estimation

Laguerre matrix-collocation method,
116–118

Reynolds number, 31
Riccati–Bernoulli ODE method, 220, 222
Riemann–Liouville derivative, 197
Root-mean-square (RMS) errors, 116

S
Search space, 153, 159–161, 163
Second order convergent method, 197, 199,

201
Sharma–Tasso–Olver (STO) equation

aBTM, 53
application, 53
Cole–Hopf method, 53
exact solution method, 54–58
FDEs, 62–64
FDM, 58–62
nonlinear model, 53

Simulated annealing algorithm, 126
Simulated annealing methods, 88
Sine-cosine method, 54
Singular integral equations

Abel integral equations, 147, 149, 150
gamma function, 149
generalized Abel integral equation, 147
generalized binomial theorem, 147, 148
tautochrone problem, 145
techniques, 147
Volterra and Fredholm integral equations,

147
Singular perturbed generalized Burgers–Fisher

equations, 109, 118–112
Six-hump Back Camel function, 99, 100
Skew-symmetric forms, 27–28
Smooth function, 94–95
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Smoothing techniques, 130
auxiliary function methods (see Auxiliary

function methods)
Bezier curves, 95
definition, 94
filled function, 130

Sobolev spaces, 27
Social component, 161
Space filling curve methods, 126
Space-FPDE, 70–75
Space-fractional FitzHugh–Nagumo equation,

79–80
Space-fractional integral operators

discretization, 68
Space-fractional Newell–Whitehead–Segel

equation, 79
Spectral gradient (SG) algorithm, 157
Spline approximation, 67–83
Spline finite difference algorithm, 72
Stability analysis, 33, 59–61
Steepest descent method, 88, 155–157
Stochastic methods, 88–89, 126
STO equation, see Sharma–Tasso–Olver (STO)

equation
Stone–Weierstrass theorem, 150
Swarm intelligence (SI), 160
Symmetry analysis

exact solutions, 214
Galilean plane, 213
nonlinear differential equations, 213

Systems biology, 25, 107, 196

T
Tanh method, 54
Tautochrone problem, 145
Taylor-Hood elements, 47
Taylor series, 28
Test functions, numerical experiments

Booth function, 101
Goldstein and Price function, 100–101
Powell function, 102
Rastrigin function, 102–103
six-hump Back Camel function, 99, 100

three-hump Camel function, 98, 100
Treccani function, 100
Trid function, 101
two-dimensional function, 98, 99

Time-FPDE, 75–78
Time-fractional derivative operators, 68
Time-fractional diffusion equation, 80–81
Trajectory methods, 159
Treccani function, 100
Trid function, 101
Truncation error, 59–61, 116
Tunneling method, 88, 126
Two-dimensional function, 98, 99
Two-phase methods, 88

U
Unconstrained optimization, 93, 127, 140
UNISURF CAD/CAM system, 90

V
Variational formulation, 28–29
Variational iteration method (VIM), 118
Variational multiscale (VMS) method

artificial diffusions, 31
construction, 31
framework, 32
L2 errors

concentration of stabilized and
unstabilized solution, 49

temperature of stabilized and
unstabilized solution, 49

velocity of stabilized and unstabilized
solution, 49

POD (see Crank Nicholson VMS-POD
method)

Velocity bounds, 162
VIM, see Variational iteration method (VIM)
VMS method, see Variational multiscale

(VMS) method
VMS-POD method, see Crank Nicholson

VMS-POD method
Volterra integral equations, 147
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