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1 Introduction

The Minimal Model Program (MMP) predicts that every projective pair with mild
singularities is birationally built out of three classes of pairs: those whose log
canonical classes are ample, numerically trivial or anti-ample.

More precisely, let (X,�) be a log canonical pair. Then there should exist
a birational contraction ϕ : (X,�) ��� (Xmin,�min) together with a fibration
f : (Xmin,�min) → Xcan so that KXmin + �min ∼Q f ∗A, for a suitable ample
Q-divisor A on Xcan. Note that the Iitaka dimension of KX + � restricted to a
general fibre of the composed map f ◦ ϕ is zero.

It is a natural and important question to determine whether singularities of the
MMP are preserved in this process. The singularities of (Xmin,�min) are the same
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as those of (X,�). On the other hand, it remains an open problem whether there
exists a boundary divisor �can on Xcan such that (Xcan,�can) is log canonical and
KXmin +�min ∼Q f ∗(Xcan +�can); in other words, whether singularities of (X,�)

descend to the canonical model Xcan.
When the singularities of (X,�) are klt, it is known by a work of Ambro

and Kawamata that such a divisor exists; this result has already had numerous
consequences in birational geometry. However, the proof is not constructive: more
precisely, one loses control of the coefficients of � at the last step. It is desirable
that the singularities of (Xcan,�can) reflect in a canonical way the singularities of
(X,�).

In general, with notation as above, it is known that

A ∼Q KXcan + BXcan + MXcan,

where BXcan —the discriminant—is closely related to the singularities of f , and
the divisor MXcan —the moduli divisor—conjecturally carries information on the
birational variation of the fibres of f . A formula of this form is called the canonical
bundle formula.

This paper is an attempt to give an account of all the known results on the
canonical bundle formula, and to serve as a guide to those wishing to study this
important subject.

2 Lc-Trivial Fibrations

We work over C. We denote by ≡, ∼ and ∼Q the numerical, linear and Q-linear
equivalence of divisors respectively.

For a Weil Q-divisor D = ∑
diDi , for a real number r we denote D≤r :=∑

di≤r diDi . If f : X → Y is a proper surjective morphism between normal
varieties and D is a Weil R-divisor on X, then Dv and Dh denote the vertical and the
horizontal part of D with respect to f . In this setup, we say that D is f -exceptional
if codimY Supp f (D) ≥ 2.

In this section we introduce the main topic of this survey—lc-trivial fibrations.
In this section we define them and give some examples which will accompany us
through the paper.

We first need to introduce singularities of pairs. This is by now a standard topic
in higher dimensional birational geometry, and good references are [27] and [26].

A pair (X,�) consists of a normal variety X and a Weil Q-divisor � such that
KX + � is Q-Cartier. A pair (X,�) is log smooth if X is smooth and the support of
� is a simple normal crossings divisor.

A log resolution of a pair (X,�) is a birational morphism f : Y → X such that
the exceptional locus Exc(f ) is a divisor and the pair

(
Y, Supp(f −1∗ � + Exc(f )

)
is

log smooth.
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If (X,�) be a pair and if π : Y → X is a birational morphism with Y normal,
we can write

KY ∼Q π∗(KX + �) +
∑

a(Ei,X,�) · Ei,

where Ei ⊆ Y are distinct prime divisors and the numbers a(Ei,X,�) ∈ Q are
called discrepancies. The order of vanishing at the generic point of each Ei defines
a geometric valuation on C(X). The pair (X,�) is klt, respectively log canonical,
if a(E,X,�) > −1, respectively a(E,X,�) ≥ −1, for every geometric valuation
E over X.

Much of what we say in this paper can be generalised to pairs (X,�), where �

is allowed to have real coefficients. We stick to rational divisors mostly for reasons
of clarity and simplicity.

2.1 Definition and First Examples

The objects for which we can write a canonical bundle formula are called lc-trivial
fibrations.

Definition 2.1 Let (X,�) be a pair. A morphism f : (X,�) → Y to a normal
projective variety Y is a klt-trivial, respectively lc-trivial, fibration if:

(a) f is a surjective morphism with connected fibres,
(b) (X,�) has klt, respectively log canonical, singularities over the generic point

of Y ,
(c) there exists a Q-Cartier Q-divisor D on Y such that

KX + � ∼Q f ∗D,

(d) there exists a log resolution π ′ : X′ → X of (X,�) such that, if E is the set of
all geometric valuations over X which are defined by a prime divisor E on X′
such that a(E,X,�) > −1, and if we denote �′ = ∑

E∈E
a(E,X,�) · E, then

rk(f ◦ π ′)∗OX′(��′) = 1.

Terminology 2.2 In [2], klt-trivial fibrations as in Definition 2.1 are called lc-trivial
fibrations.

Remark 2.3 We make a few comments on the condition (d) in Definition 2.1. For
simplicity, assume that the pair (X,�) is klt. Note that then

�′ ∼Q KX′ − π ′∗(KX + �).
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The divisor ��′ is effective on the generic fibre of the morphism f ◦π ′ by (b), hence
rk(f ◦ π ′)∗OX′(��′) ≥ 1. Therefore, the point of (d) is the opposite inequality.

The most important case to keep in mind is that when the divisor � is effective
on the generic fibre: indeed, in that case the divisor ��′ is an effective exceptional
divisor on the generic fibre of f ◦ π ′, and the condition (d) is immediate. However,
in order to be able to study lc-trivial fibrations by applying basic operations of
birational geometry in Sect. 2.2, it is crucial to allow divisors � with negative
coefficients.

One more thing to notice is that if (d) holds for a log resolution π ′, then it holds
on any log resolution π ′′ : X′′ → X which factors through π ′. Indeed, define the
divisor �′′ on X′′ analogously as in Definition 2.1, and let θ : X′′ → X′ be the
induced morphism. Since X′ and X′′ are smooth, there exists an integral effective
divisor E such that KX′′ ∼ θ∗KX′ + E. Thus,

f∗π ′′∗OX′′(��′′) = f∗π ′′∗OX′′(�θ∗�′ + E) = f∗π ′′∗OX′′(�θ∗�′ + E)

⊆ f∗π ′′∗OX′′(θ∗��′ + E) = f∗π ′∗OX′(��′),

where we used that �θ∗�′ ≤ θ∗��′. Therefore, rk(f ◦ π ′′)∗OX′′(��′′) = 1.
In general, one can show that (d) is independent of the choice of the resolution

by using [14, Lemma 2.7].

Now we can formulate the canonical bundle formula associated to an lc-trivial
fibration.

Definition 2.4 Let f : (X,�) → Y be an lc-trivial fibration such that KX + � ∼Q

f ∗D for some Q-Cartier Q-divisor D on Y . If P ⊆ Y is a prime divisor, the log
canonical threshold of f ∗P with respect to (X,�) is

γP = sup{t ∈ R | (X,� + tf ∗P) is log canonical over the generic point of P }.

The condition that (X,� + tf ∗P) is log canonical over the generic point of P

means that for every geometric valuation E over X which surjects onto P , we have
a(E,X,� + tf ∗P) ≥ −1. The discriminant of f is

BY = ∑
P (1 − γP )P .

Fix ϕ ∈ C(X) and the smallest positive integer r such that KX+�+ 1
r

div ϕ = f ∗D.
Then there exists a unique Weil Q-divisor MY , the moduli part of f , such that

KX + � + 1
r

div ϕ = f ∗(KY + BY + MY ).

This formula is the canonical bundle formula associated to f .

Remark 2.5 The definition of the discriminant as above first appeared in [23,
Theorem 2]. The discriminant is a Weil Q-divisor on Y , and it is effective if �
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is effective. We notice that the discriminant is defined as an actual divisor, while the
moduli part is defined only up to Q-linear equivalence: it depends on the choice of
D. Further, if G is a Q-divisor on Y , then f : (X,� + f ∗G) → Y is an lc-trivial
fibration with discriminant BY + G and moduli divisor MY .

Note that if we are interested in proving properties of the moduli divisor of an
lc-trivial fibrations as above, we may always assume that the pair (X,�) is log
canonical by [12, Remark 3.6], although we may not assume that � is effective.

Example 2.6 Assume that X is smooth, that � = 0, that Y is a curve, that f −1(P )

is smooth and that f ∗P = mf −1(P ) is a multiple fibre. Then γP = 1
m

.

Example 2.7 This example is historically the first example of a canonical bundle
formula. Let f : X → C be an elliptic fibration, that is, X is a smooth surface, C

is a smooth curve and a general fibre of f is a smooth elliptic curve. We assume
furthermore that f is relatively minimal: there are no (−1)-curves contained in
the fibres of f . Kodaira in [24, Theorem 6.2] classified the singular fibres of f .
Kodaira’s canonical bundle formula reads as

KX ∼ f ∗(KC + BC + MC),

where BC is defined in terms of the classification of the singular fibres and by [24,
32] we have 12MC = j∗OP1(1), with j : C → P1 being the j -invariant. For a
detailed account on Kodaira’s canonical bundle formula see [4, Chapter V, §7–§13].

Example 2.8 Let X = P1 × P1 and let D be a reduced divisor of bidegree (d, k)

with d ≥ 2. Let � = 2
d
D and let f : (X,�) → P1 be the projection onto the second

factor. Then f is an lc-trivial fibration. Indeed, KX + � has bidegree (−2,−2) +
2
d
(d, k) = (0,−2 + 2k

d
) and therefore is the pullback of a divisor from P1.

2.2 Base Change Property

In this subsection we investigate how canonical bundle formulas behave under base
change. This will help improve the properties of the moduli part of a canonical
bundle formula, at least on a sufficiently high birational model.

If f : (X,�) → Y is a klt-trivial fibration (respectively lc-trivial), and if we
consider a base change diagram

(X (X) τ

f f

Y
ρ

Y,

(1)
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where ρ is a proper generically finite morphism, X′ is the normalisation of the fibre
product and �′ is defined so that we have

KX′ + �′ = τ ∗(KX + �),

then f ′ : (X′,�′) → Y ′ is also a klt-trivial (respectively lc-trivial) fibration. In the
rest of the paper, we implicitly refer to this klt-trivial fibration when writing MY ′
and BY ′ for the moduli part and discriminant.

If ρ is birational, then ρ∗MY ′ = MY and ρ∗BY ′ = BY ; in other words, these
collections of divisors form b-divisors, see for instance [2, Section 1.2].

The following is the base change property of canonical bundle formulas.

Theorem 2.9 Let f : (X,�) → Y be an lc-trivial fibration. Then there exists a
proper birational morphism Y ′ → Y such that for every proper birational morphism
π : Y ′′ → Y ′ we have:

(i) KY ′ + BY ′ is a Q-Cartier divisor and KY ′′ + BY ′′ = π∗(KY ′ + BY ′),
(ii) MY ′ is a nef Q-Cartier divisor and MY ′′ = π∗MY ′ .

The first version of Theorem 2.9 is [23, Theorem 2], which essentially shows the
nefness of the moduli part; this is also the point of the proof where the condition (d)
in Definition 2.1 is used. Theorem 2.9 has been proved in this form for klt-trivial
fibrations by Ambro [2, Theorem 0.2]. For lc-trivial fibrations, it was proved by
Kollár [25, Theorem 8.3.7] and [18, Theorem 3.6], with an alternative proof in [11].

In the context of the previous theorem, we say that MY ′ descends to Y ′, and we
call any such Y ′, where additionally BY ′ has simple normal crossings support, an
Ambro model for f .

We give a brief sketch of the proof of the nefness of the moduli divisor in the
previous theorem; very good references are [2, Lemma 5.2] and especially [25,
Theorem 8.5.1 and §8.10], where many more details are given. By the proof of [25,
Theorem 8.5.1], it suffices to show the claim after making a suitable generically
finite base change and taking the cyclic cover of X associated to r

√
ϕ. The base

change as in (1) that we are aiming for is a composition of a log resolution with
a Kawamata cover such that, on an open subset of U ′ ⊆ Y ′ whose complement
has codimension at least 2 in Y ′, the local systems Rif ′∗CX′ |U ′ have unipotent
monodromies; this is the content of [25, 8.10.7–8.10.10]. We may also assume that
MY ′ is a Cartier divisor. If f is a klt-trivial fibration, then by [25, Theorem 8.5.1]
the line bundle OY ′(MY ′) is a quotient of the locally free sheaf f ′∗ωX′/Y ′ . Then
one applies [22, Theorem 5], which asserts that f ′∗ωX′/Y ′ is the canonical extension
of the bottom piece of the Hodge filtration of Rdim X−dim Y f ′∗CX′ |U ′ , and hence its
quotients are nef by the same result. A similar statement holds also for lc-trivial
fibrations.

Recently, a stronger statement was shown in [17, Theorem 1.1]. The result shows
that [22, Theorem 5] can be improved to show that not only any quotient of f ′∗ωX′/Y ′
is nef, but moreover, it carries a singular metric whose Lelong numbers are all zero.
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This is much stronger than being nef, as it implies, in particular, that the multiplier
ideal associated to this metric is trivial.

We summarise this in the following result.

Theorem 2.10 Let f : (X,�) → Y be a klt-trivial fibration. Then there exists a
proper birational morphism Y ′ → Y such that for every proper birational morphism
π : Y ′′ → Y ′ we have:

(i) KY ′ + BY ′ is a Q-Cartier divisor and KY ′′ + BY ′′ = π∗(KY ′ + BY ′),
(ii) MY ′ is a Q-Cartier divisor carrying a singular metric whose all Lelong

numbers are zero, and MY ′′ = π∗MY ′ .

The proof of part (ii) of the theorem is the same as the sketch of the proof of
Theorem 2.9(ii) above, since a Q-divisor carries a singular metric whose all Lelong
numbers are zero if and only if its pullback by a proper surjective map carries a
singular metric whose all Lelong numbers are zero by [7, Corollary 4].

2.3 Inversion of Adjunction

In order to appreciate the following result and to see why base change property
is important, let us go back to the construction of the canonical bundle formula.
Recall that the discriminant divisor was constructed in terms of local log canonical
thresholds, that is, log canonical thresholds over the generic point of a prime divisor;
in particular, with notation from Definition 2.4, for some prime divisor P on Y , the
pair (X,� + γP f ∗P) does not have to be globally log canonical. However, the
following inversion of adjunction [2, Theorem 3.1] states that this is precisely what
happens on an Ambro model.

Theorem 2.11 Let f : (X,�) → Y be an lc-trivial fibration, and assume that
Y is an Ambro model for f . Then (Y, BY ) has klt, respectively log canonical,
singularities in a neighbourhood of a point y ∈ Y if and only if (X,�) has klt,
respectively log canonical, singularities in a neighbourhood of f −1(y).

Note that Theorem 2.11 is stated for klt-trivial fibrations in [2], but the proof
extends verbatim to the lc-trivial case by using Theorem 2.9.

We finish this subsection with the following nice result [3, Proposition 3.1] which
we will apply in the proof of Theorem 2.16 below.

Theorem 2.12 Let f : (X,�) → Y be a klt-trivial fibration, and assume that Y is
an Ambro model for f . Then for every base change by a proper generically finite
morphism w : W → Y we have KW + BW ∼Q w∗(KY + BY ) and MW ∼Q w∗MY .
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2.4 Coefficients of the Moduli Divisor

Often in applications one needs to bound the denominators of MY . For instance,
such bounds were used in [10, Theorem 1.2].

Theorem 2.13 For each nonnegative integer b there exists an integer N depending
on b such that the following holds.

Let f : (X,�) → Y be a klt-trivial fibration with a general fibre F , and let
r be the smallest positive integer such that r(KF + �|F ) ∼ 0. Let E → F be
the associated r-th cyclic cover and let E be a resolution of singularities of E. If
dim H dim E(E,C) = b, then the divisor NMY is integral.

The result was proved in [19, Theorem 3.1] when � = 0, but the same proof
works for klt-trivial fibrations [10, Theorem 5.1].

A more refined result holds when a general fibre is a rational curve, [9,
Theorem 1.6(2)].

Theorem 2.14 Fix a positive integer r . For a prime number q set s(q) = max{s |
qs ≤ 2r} and define

N =
∏

q prime

qs(q).

(a) Let f : (X,�) → Y be an lc-trivial fibration whose general fibre F is a
rational curve, and assume that r is the smallest positive integer such that
r(KF + �|F ) ∼ 0. Then the divisor NMY is integral.

(b) Assume r is odd. Then there exists an lc-trivial fibration f : (X,�) → Y such
that if v is the smallest integer for which the divisor vMY is integral, then v =
N/r .

2.5 Goodness of Moduli Divisors

Now we come to the central topic of this survey, already announced in the
introduction: the descent of singularities. Since we already know the nefness of the
moduli divisor by Theorem 2.9, if it were additionally big, then this would allow to
conclude in many cases. Bigness is too much to ask; however, the following result
of Ambro [3, Theorem 3.3 and Proposition 4.4] turns out to be almost as good.
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Theorem 2.15 Let f : (X,�) → Y be a klt-trivial fibration between normal
projective varieties such that � is effective over the generic point of Y . Then there
exists a diagram

f

(X+ +)

f+

Y W
τ ρ

Y+

such that:

(i) f + : (X+,�+) → Y+ is a klt-trivial fibration,
(ii) τ is generically finite and surjective, and ρ is surjective,

(iii) if MY and MY+ are the moduli divisors of f and f + respectively, then MY+ is
big and, after possibly a birational base change, we have τ ∗MY = ρ∗MY+ ,

(iv) there exists a non-empty open set U ⊆ W and an isomorphism

×Y U (X+ +) ×Y+ U

U,

(v) if there exists an isomorphism

� : (X,�) ×Y U → (F,�F ) × U

over a non-empty open subset U ⊆ Y , then � extends to an isomorphism over

Y 0 = Y \ (
Supp BY ∪ Sing(Y ) ∪ f (Supp �≤0

v )
)
.

Note that in (v) one does not need that � is effective on the generic fibre of f .
For us, the most important part of this result is (iii). Its immediate consequence

is the descent of klt singularities [3, Theorem 0.2].

Theorem 2.16 Let (X,�) be a projective klt pair with � effective, and let f : X →
Y be a surjective morphism to a normal projective variety such that KX + � ∼Q

f ∗D for some Q-Cartier Q-divisor D on Y . Then there exists an effective Q-divisor
�Y on Y such that the pair (Y,�Y ) is klt and

KX + � ∼Q f ∗(KY + �Y ).
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Proof We use the notation from Theorem 2.15, which clearly applies in our
situation. We have the base change diagram

W )
w

fW f

W
τ

Y.

We may additionally assume that τ factors through an Ambro model π : Y ′ → Y of
f , and denote by σ : W → Y ′ the induced morphism. By replacing W by a suitable
log resolution, by an easy argument with the Stein factorisation of σ together with
Theorem 2.12 we may assume that W is an Ambro model of fW .

Now, τ ∗D ∼Q KW + BW + MW , and by the inversion of adjunction,
Theorem 2.11, the pair (W,BW) is klt. Since the divisor MY+ is nef and big, by
using a version of Kodaira’s trick [27, Proposition 2.61] together with Bertini’s
theorem, we may find an effective Q-divisor EW on W such that MW ∼Q EW

and such that the pair (W,BW + EW) is klt.
By Theorem 2.12 we have KW + BW ∼Q σ ∗(KY ′ + BY ′) and MW ∼Q σ ∗MY ′ .

Hence, if we denote EY ′ = 1
deg σ

σ∗E, we have MY ′ ∼Q EY ′ and

KW + BW + E ∼Q σ ∗(KY ′ + BY ′ + EY ′).

Then the pair (Y ′, BY ′ + EY ′) is klt by [27, Proposition 5.20]. Setting

�Y = π∗(BY ′ + EY ′) = BY + π∗E,

we have KY + �Y ∼Q D, and (Y,�Y ) is a klt pair. Since � is effective, the divisor
BY is effective, thus �Y is effective. ��

Finally, we mention that Theorem 2.15(i)–(iii) was generalised to lc-trivial
fibrations where � ≥ 0 and (X,�) is log canonical in [18, Lemma 1.1]. The proof
involves running a careful MMP in order to reduce to a situation where one has a
klt-trivial fibration.

Example 2.17 Theorem 2.15(iv) does not hold for lc-trivial fibrations. For instance,
let X = P1 × P1, let f be the second projection, let δ be the diagonal and set
� = δ+ 1

2 {0}×P1+ 1
2 {∞}×P1. Then f : (X,�) → P1 is an lc-trivial fibration with

discriminant supported on {0}∪{∞}. By considering log resolutions, one calculates
that the discriminant is equal to 1

2 0 + 1
2∞, hence the moduli divisor is torsion.

Indeed, we have

KX + � ∼Q f ∗(KP1 + 1
2 0 + 1

2∞ + MP1

)
,

but the divisor KX + � has bi-degree (0,−1).
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However, f is not birational to a product. Indeed, it induces a family of rational
curves with 4 marked points parametrised by P1: for t ∈ P1, set p1(t) = 0, p2(t) =
1, p3(t) = p4(t) = t . This family of marked curves is not trivial, therefore the
fibration cannot be locally a product.

3 B-Semiampleness Conjectures

We saw above in Theorem 2.16 that klt singularities descend along a klt-trivial
fibration. However, even if one had the full analogue of Theorem 2.15 in the log
canonical setting one could not follow the same strategy to show that log canonical
singularities descend. Moreover, one sees that the use of Kodaira’s trick in the proof
of Theorem 2.16 obliterated the connection of the coefficients of the divisor �Y to
that of the divisor �. In order to remedy the situation, something more is needed.

The main conjecture on the canonical bundle formula predicts something much
stronger: that the moduli part is semiample on an Ambro model of the fibration. We
discuss it in this section.

There are two versions of the conjecture; the stronger one was proposed in [31,
Conjecture 7.13.3]. We start with the stronger, effective version.

Effective B-Semiampleness Conjecture Fix positive integers d and r . Then there
exists an integer m depending only on d and r , such that for any lc-trivial fibration
f : (X,B) → Y with the generic fibre F , if dim F = d and r is the smallest positive
integer such that r(KF + B|F ) ∼ 0, there exists an Ambro model Y ′ of f such that
mMY ′ is base point free.

More generally, any conjecture as above, in which m depends on some invari-
ants of the generic fibre of the fibration, goes under the name of effective b-
semiampleness.

In the original statement [31, Conjecture 7.13.3], the constant m depended on
dim X and r . The main result of [10] is that it suffices to show the Effective
B-Semiampleness Conjecture in the case where Y is a curve. This led to the
formulation of the Effective B-Semiampleness Conjecture above.

The conjecture is widely open. We list below the cases where it is known. They
all make use of some notion of moduli space for the fibres.

Theorem 3.1 The Effective B-Semiampleness Conjecture holds in the following
cases:

(1) if general fibres are elliptic curves by [24, 32]; we have m = 12;
(2) if general fibres are rational curves [31, Theorem 8.1];
(3) if general fibres are K3 surfaces or abelian varieties of dimension d by [13,

Theorem 1.2]; then we have m = 19k, respectively m = k(d + 1), where k

is a weight associated to the Baily-Borel-Satake compactification of the period
domain.
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In the weaker version of the conjecture we lose control on the constant m.

B-Semiampleness Conjecture Let f : (X,B) → Y be an lc-trivial fibration. Then
there exists an Ambro model Y ′ of f such that MY ′ is semiample.

More is known about this conjecture than about its effective version above,
although the progress has been limited to the cases where either the bases Y or the
fibres of f are low dimensional. We summarise the situation for low dimensional
fibres in the following result.

Theorem 3.2 Apart from the cases listed in Theorem 3.1, the B-Semiampleness
Conjecture holds in the following cases:

(1) if the fibres are surfaces of Kodaira dimension 0 by [13, Lemma 4.1 and
Corollary 6.4] and [29, Part I, (5.15.9)(ii)];

(2) if f is a klt-trivial fibration and the generic fibre is a uniruled surface not
isomorphic to P2 by [8, Theorem 1.7].

The B-Semiampleness Conjecture holds for another important family of fibra-
tions:

Theorem 3.3 Let f : (X,�) → Y be an lc-trivial fibration, and assume that the
moduli part MY descends to Y . If MY ≡ 0, then MY ∼Q 0.

In particular, if dim Y = 1, then MY is semiample.

Theorem 3.3 is [3, Theorem 3.5] for klt-trivial fibrations and [10, Theorem 1.3]
for lc-trivial fibrations. Theorem 1.2 in [10] states that Effective B-Semiampleness
Conjecture is true for klt-trivial fibrations with numerically trivial moduli part.

Another partial result is [5, Theorem 3.2]. They prove that a small perturbation
of the moduli part in a specific direction is semiample, under some effectivity
hypotheses for KY + BY .

3.1 Restrictions to Divisors

As we saw in the previous subsection, the progress on the B-Semiampleness
Conjecture has been concentrated on the cases of either the low dimension of the
base Y or the low dimension of the generic fibre of the fibration f .

In [12, Theorem A] we obtained the following result towards the conjecture
valid in every dimension. Note that the phrase the B-semiampleness Conjecture in
dimension n means that we consider the conjecture in the case when the dimension
of the base Y is n.

Theorem 3.4 Assume the B-Semiampleness Conjecture in dimension n − 1.
Let (X,�) be a log canonical pair and let f : (X,�) → Y be an lc-trivial

fibration to an n-dimensional variety Y , where the divisor � is effective over the
generic point of Y . Assume that Y is an Ambro model for f .
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Then for every birational model π : Y ′ → Y and for every prime divisor T on
Y ′ with the normalisation T ν and the induced morphism ν : T ν → Y ′, the divisor
ν∗π∗MY is semiample on T ν .

As a corollary, combining with Theorem 3.3, we obtain that the restriction of the
moduli part to every prime divisor on every sufficiently high birational model of Y

is semiample if Y is a surface.
We comment on the proof of Theorem 3.4, as it will be useful in the following

subsection. We first apply a base change to Y and modify (X,�) by blowing up
suitably, but we try to remember (X,�) along the proof. We then run a suitable
relative MMP over Y , which contracts many “bad” components of � (in particular,
those with negative coefficients); as a result, we obtain a new lc-trivial fibration
g : (W,�W) → Y with �W ≥ 0 and with the same moduli divisor MY . Choosing
a minimal log canonical centre S of (W,�W) which surjects onto T , we obtain an
induced klt-trivial fibration g|S : (S,�S) → T ′, where T ′ is obtained from the Stein
factorisation of the morphism S → T . Then we first show that MY |T ′ is almost MT ′ .
Even though at this step we may not deduce equality between these two divisors, we
can control their difference in a very precise manner. After a suitable further blowup
of Y , we can force this difference to disappear and we conclude by induction on the
dimension.

3.2 Reduction Result

As we mentioned above, in the setup of lc-trivial fibrations f : (X,�) → Y one
does not assume that � is effective. Furthermore, often it is much more difficult to
work with lc-trivial fibrations than with klt-trivial fibrations.

In [12] the B-Semiampleness Conjecture is reduced to the following conjecture
with much weaker hypotheses.

Conjecture 3.5 Let (X,�) be a log canonical pair and let f : (X,�) → Y be a
klt-trivial fibration to an n-dimensional variety Y . If Y is an Ambro model of f and
if the moduli divisor MY is big, then MY is semiample.

We show in [12, Theorem E]:

Theorem 3.6 Assume Conjecture 3.5 in dimensions at most n. Then the B-
Semiampleness Conjecture holds in dimension n.

The proof is similar to the proof of Theorem 3.4 sketched above.
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3.3 Generalisation

In the papers [16, 20] the authors consider slc-trivial fibrations. Those are com-
pletely analogous to lc-trivial fibrations, the difference being that the ambient space
X is not irreducible, but the pair (X,�) is slc on the generic fibre of the fibration;
such a setup appears occasionally in inductive proofs. The precise statement is [16,
Definition 4.1].

Then one can define, as in the case of lc-trivial fibrations, the moduli divisor and
the discriminant. Then [16, Theorem 1.2] proves the analogue of Theorem 2.9 for
slc-trivial fibrations, and [20, Theorem 1.3] shows the analogue of Theorem 3.3 in
this context.

4 Parabolic Fibrations

Finally, in this section we discuss a more general situation than that of lc-trivial
fibrations.

Let g : (X,�) → Z be a surjective morphism, where (X,�) is a klt projective
pair and Z is a projective variety. Assume that g∗OX

(
m(KX + �)

) �= 0 for some
positive integer m, and consider the relative Iitaka fibration f : X ��� Y associated
to KX + �. Possibly by blowing up further, one may assume that (X,�) is log
smooth and that f is a morphism. Then if F is a general fibre of f , we have
κ
(
F, (KX + �)|F

) = 0, however KX + � is not necessarily a pullback from Y .
One still wonders if there is a canonical bundle formula for the map f .

The resulting formula is the canonical bundle formula of Fujino and Mori [19].
We first need a definition, which is justified from the setup above.

Definition 4.1 A parabolic fibration is a fibration f : (X,�) → Y , where (X,�)

is a projective klt pair, Y is a smooth projective variety and if F is the generic fibre
of f , then κ

(
F, (KX + �)|F

) = 0.

The following is [19, Section 4], the canonical bundle formula of Fujino and
Mori.

Theorem 4.2 Let f : (X,�) → Y be a parabolic fibration, where � is effective.
Then there is a commutative diagram

X
τ

f

X

f

Y
τ

Y,

where τ and τ ′ are birational, X′ and Y ′ are smooth, and f ′ has connected fibres,
such that the following holds.
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There exist effective Q-divisors B+ and B− on X′ without common components,
a Q-divisor �′ ≥ 0 on X′ and Q-divisors BY ′ and MY ′ on Y such that

KX′ + �′ + B− ∼Q f ′∗(KY ′ + BY ′ + MY ′) + B+,

with the following properties:

(i) the pair (X′,�′) is klt and log smooth, and there exists an effective exceptional
divisor E on X′ such that

KX′ + �′ ∼Q τ ′∗(KX + �) + E,

(ii) f ′∗OX′(�nB+�) � OY ′ for all n ∈ N,
(iii) B− is f ′-exceptional and τ ′-exceptional,
(iv) the induced map f ′ : (X′,�′ + B− − B+) → Y ′ is a klt-trivial fibration, and

BY ′ and MY ′ are the corresponding discriminant and moduli divisors,
(v) the pair (Y ′, BY ′) is klt, BY ′ ≥ 0 and MY ′ is nef,

(vi) for every n ∈ N sufficiently divisible we have

H 0(X, n(KX +�)
) � H 0(X′, n(KX′ +�′)

) � H 0(Y ′, n(KY ′ +BY ′ +MY ′)
)
.

There are several non-trivial parts of this formula which do not follow from
considerations in the previous sections: the existence of divisors B+ and B− with
the properties (ii) and (iii) above, as well as the fact that BY ′ is effective.

Part (vi) follows immediately from (i), (ii) and (iii). We sketch how (iv) follows
from (i), (ii) and (iii), following [1, Lemma 4.2]. Let F ′ be a general fibre of f ′,
and we define the divisor �′ with respect to f ′ : (X′,�′ + B− − B+) → Y ′ as in
Definition 2.1(d). We may assume that �′ = −�′ − B− + B+, and B−|F ′ = 0 by
(iii).

We have (KX′ + �′ + B− − B+)|F ′ ∼Q 0 by construction and κ
(
F ′, (KX′ +

�′)|F ′
) = 0 by (i), hence

κ(F ′, B+|F ′) = κ
(
F ′, (B+ − B−)|F ′

) = 0.

Since there exists a positive integer b such that �B+|F ′ ≤ bB+|F ′ , this implies
κ
(
F ′, �B+|F ′

) = 0. Therefore,

κ
(
F ′, ��′|F ′

) = κ
(
F ′, �−�′ − B− + B+|F ′

)

≤ κ
(
F ′, �−�′|F ′ + �−B−|F ′ + �B+|F ′

)

≤ κ
(
F ′, �B+|F ′

) = 0.

This shows part (d) of Definition 2.1, and the rest is easy.
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In order to apply the previous result, we recall that for a log canonical pair
(X,�), the ring

R(X,KX + �) =
⊕

n∈N
H 0(X, �n(KX + �)�)

is the canonical ring of (X,�). We also recall that for a graded ring R = ⊕

n∈N
Rn,

the d-th Veronese subring of R is defined as R(d) := ⊕

n∈N
Rdn.

An immediate consequence of Theorem 4.2 is the following result [19, Theo-
rem 5.2], which has widespread use in the Minimal Model Program. It often allows
to pass from a pair (X,�) with κ(X,KX + �) ≥ 0 to a pair (X′,�′) on which
KX′ + �′ is big.

Theorem 4.3 Let (X,�) be a projective klt pair with κ(KX + �) = � ≥ 0. Then
there exist an �-dimensional klt pair (X′,�′) with κ(X′,KX′ +�′) = � and positive
integers d and d ′ such that

R(X,KX + �)(d) � R(X′,KX′ + �′)(d ′).

The proof follows immediately from Theorem 4.2(vi), by combining it with the
proof of Theorem 2.16; see also the proof of Theorem 4.4 below.

Assume now that (X,�) has simple normal crossings and let �+ and �− be
effective divisors without common components such that � = �+ − �−. Then if
κ
(
F, (KX +�+)|F

) = 0 for a general fibre F of f , and if there exists a good model
of (F,�+|F ), then it was shown in [15, Theorem 3.13] that the moduli b-divisor
is b-nef and good in the sense of [3, Definition 3.2]; this is an application of MMP
techniques from [18] and [3, Theorem 3.3].

We finish the paper with the following result, which can sometimes be used in
order to avoid running a Minimal Model Program; for instance, compare the proofs
of [21, Lemma 4.4] and [28, Theorem 5.3]. Note that ν(X,L) denotes the numerical
dimension of a divisor L on a projective variety X, see for instance [28, §2.2] for
basic properties and related references.

Theorem 4.4 Let (X,�) be a projective klt pair and let f : (X,�) → Y be a
parabolic fibration such that ν

(
F, (KX + �)|F

) = 0 for a general fibre F of f .
Then there exists a commutative diagram

X
π

f

X

f

Y
π

Y,
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where X′ and Y ′ are smooth, f ′ has connected fibres, π and π ′ are birational, and
such that, if we write

KX′ + �′ ∼Q π ′∗(KX + �) + E′,

where �′ and E′ have no common components, then:

(i) we have

KX′ + �′ + B− ∼Q f ′∗(KY ′ + �Y ′) + B+,

where the pair (Y ′,�Y ′) is klt, and the divisors B+ and B− are effective and
have no common components,

(ii) B− is π ′-exceptional and f ′-exceptional,
(iii) we have f ′∗OX′(��B+�) � OY ′ for all positive integers �.

Moreover, if KX + � is pseudoeffective, then KY ′ + �Y ′ is pseudoeffective.

Proof By [6, Corollaire 3.4] and [30, Corollary V.4.9] we have

κ
(
F, (KX + �)|F

) = ν
(
F, (KX + �)|F

) = 0. (2)

By Theorem 4.2 there exists a diagram as in the theorem such that (ii) and (iii) hold,
as well as

KX′ + �′ + B− ∼Q f ′∗(KY ′ + BY ′ + MY ′) + B+,

where (Y ′, BY ′) is klt and MY ′ is the moduli part of the associated klt-trivial fibration
f ′ : (X′,�′ + B− − B+) → Y ′. Then analogously as in the proof of Theorem 2.16
one shows that there exists an effective Q-divisor �Y ′ ∼Q BY ′ + MY ′ such that the
pair (Y ′,�Y ′) is klt, which gives (i).

Finally, if F ′ is a general fibre of f ′, we have ν
(
F ′, (KX′ + �′)|F ′

) = 0 by (2)
and by [28, Lemma 2.3]. Therefore, there exists a good model of (F ′,�′|F ′) by
[6, Corollaire 3.4] and [30, Corollary V.4.9], hence (KX′ + �′)|F ′ is geometrically
abundant in the sense of [30, Definition V.2.23]. Then by [30, Lemma V.2.27] for
an ample divisor A on Y ′ and for any positive rational number ε, the divisor KX′ +
�′ + εf ′∗A is geometrically abundant. In particular, κ(X′,KX′ + �′ + εf ′∗A) ≥ 0,
and hence by (i) and by (iii) we have

κ
(
Y ′,KY ′ + �Y ′ + εA) = κ

(
X′, f ′∗(KY ′ + �Y ′ + εA) + B+)

= κ(X′,KX′ + �′ + B− + εf ′∗A) ≥ 0.

Since this holds for any positive rational number ε, we conclude that KY ′ + �Y ′ is
pseudoeffective, as desired. ��
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