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Abstract The advent of blockchain brings a wide horizon of opportunities to the
world. The first such example, Bitcoin, strongly advocates a principle of total open-
ness, which is reflected in the fact that all transactions are public and the history of
each account can easily be reconstructed. Although an account cannot immediately
be linked to a real-world identity, this does not grant strong guarantees of anonymity,
and such a feature of Bitcoin and similar blockchains prevents it from reaching wide
acceptance for financial use-cases, where users often desire strong confidentiality
of their balances and financial history. As a consequence, there has recently been a
growing interest in privacy-enhancing technologies that ensure public permission-
less blockchains can keep the details of transactions private according to particular
use cases. One of the most promising technologies in this area is Zero-Knowledge
Proofs, and in particular zk-SNARKs, due to their very short proofs and verifica-
tion times. This makes them well suited to be used as transaction data, hiding all
the private details at the same time they guarantee the integrity and accuracy of the
transaction, and to be verified on-chain by a smart contract. This paper is an introduc-
tory presentation of this topic, what advantages zk-SNARKs bring to the blockchain
ecosystem and how they can be tailored to specific applications.
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1 Introduction and Paper Layout

Since the introduction of Bitcoin in 2009 [28], Distributed-Ledger Technology
(DLT), more often known as blockchain, has steadily grown and been recognized as
a new tool with potentially revolutionary use-cases. Some of them will be mainly
technical, and will harness the strong guarantees of distributed consensus and the
maintenance of a single source of truth shared by many independent (collaborative,
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or possibly competing) parties; but others may be rooted on innovative ways of think-
ing social and economical relationships, such as the intrinsic value of money, whom
we must trust to manage its creation and whether users should be allowed to transfer
it outside any controls of central authorities.

One of the radical innovations ofBitcoinwas the total openness of its ledger. There
may be different reasons for this, for example a desire to remove all trust necessary
in central authorities, who may be viewed as potentially corruptible entities bent on
limiting individual freedoms; or instead a belief in total transparency as a virtue of
advanced societies, where those who have nothing to hide should not fear scrutiny; or
it may even have been a simple decision to solve a hard technical problem, Byzantine
Agreement (see [25]), in a network with millions of participants.

Whatever the case, such absolute transparency is not always desired, especially
if Bitcoin is intended as a replacement for fiat currencies as a means of exchange.
Typical users value their privacy in this domain, and would rather prefer to keep
their transactions history private. This is why it is commonly advised to use each
Bitcoin address only once,1 to avoid linking transactions to one same identity. A
better way is to use privacy-enhanced blockchains, either where confidentiality has
been designed in by default (for example ZCash,2 Monero,3 Grin,4 Beam,5 Dash6)
or when it has been added a posteriori by some other mechanism. See for example
Zether [11], Mimblewimble [24, 30] or Coinjoin [17].

Zero-Knowledge Proofs (ZKP) are among the most popular technologies, and
have turned from a quite specialized cryptographic technique into an everyday term
for blockchain developers. This paper introduces the notion of ZKP for audiences
without knowledge of cryptography (Sect. 2). It explores the notion of zk-SNARKs
and compares them to recent alternatives, framing them in the context of blockchain
(Sect. 4). In Sect. 3, I compare a few variants, with the focus on zk-SNARKs. The rest
of the paper goes into more technical details, explaining how zk-SNARKs achieve
their flexibility (Sect. 5) and referencing tools currently available to implement them
(Sect. 6).

2 Zero-Knowledge Proofs

Zero-Knowledge Proofs were introduced in 1985 byGoldwasser,Micali and Rackoff
[21]. These are a cryptographic technique in which two parties, the Prover and the
Verifier, participate in a protocol. Following normal naming in the literature, I will
call the Prover Peggy, and the Verifier Victor. Peggy andVictor both know a predicate

1See for example the recommendations in https://bitcoin.org/en/protect-your-privacy.
2https://z.cash.
3https://www.getmonero.org/.
4https://grin-tech.org/.
5https://www.beam.mw/.
6https://www.dash.org/.
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S and a public instance x . The aim of the protocol is for Peggy to prove to Victor
that S(x) is a true statement without revealing anything else about why that is true.
An example might be a statement about a specific graph G: “The graph G is 3-
colourable”. If this is true about G, Peggy can prove that is so, without revealing
why it is so. That means Victor will not be able to learn any valid 3-colouring of G
from Peggy’s proof.

A stronger notion of Zero-Knowledge Proof is the Zero-Knowledge Proof of
Knowledge (ZK-POK). With such a proof, Peggy can convince Victor not only of the
truth of S(x) but also that Peggy knows a witness that demonstrates it. Typically, this
means Peggy knows why or how the statement can be true, and this knowledge is
represented by some private witnessw known to Peggy but not to Victor. In this case,
both Peggy and Victor know another predicate, a relation R such that S(x) is true
if and only if R(x, w) is true as well. Continuing the example above, in a ZK-POK
Peggy convinces Victor not only that S(x) is true, but also that she knows w such
that R(x, w) = 1.

2.1 Zero-Knowledge and NP

The class of predicates that can be proven in Zero-Knowledge is well defined: it
coincides with the class NP, under the mild assumption that encryption functions
exist. This class is made up of exactly those languages which can be verified in
polynomial time, that is:

Definition 1 Language L is in NP if there is a relationship RL(x, w) that runs in
time polynomial on the size of its input x and can verify membership in the language:
if x belongs in the language, then there is a witness w related to x . If x is not in the
language, then there is no witness that can be related to it. Formally,

∀x ∈ L , ∃ w s.t. RL(x, w) = 1

∀x /∈ L , ∀ w RL(x, w) = 0.

This result was proved in [20].
An example of such a language is the non-primality of integers. Define the lan-

guage NONPRIMES to be composed of all integers which are not prime. The rela-
tionship for this language is

RNON PRIMES(x, s) = x mod s == 0 ∧
s �= x ∧ s �= 1,

and for each member x , we can provide a witness by showing a non-trivial factor
of x .
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2.2 Interactive and Non-interactive Proofs of Knowledge

The original Zero-Knowledge proofs were all examples of interactive proofs, where
Peggy and Victor send messages to each other until Victor is satisfied. At each step,
Victor sends a random query to Peggy that she can only answer successfully with
some low probability in case the statement is false or she does not actually know a
proof. If at any point Peggy is unable to successfully answer the query, then Victor
knows she is cheating and rejects the proof. By repeating this questioning enough
times, Victor reduces the probability that Peggy succeeds. For example, if Peggy’s
chance of success to any query is 1

2 , then the probability of succeeding ten times in

a row is only
(
1
2

)10 = 1
210 . Therefore, by issuing just 10 questions, Victor can have a

very good assurance that Peggy is not lying.
There is a general approach to make a proof of knowledge non-interactive, called

the Fiat-Shamir heuristic [16], as long as Victor’s randomness is public to all parties.
This is called a heuristic because it provides security in the random-oracle model
only, that is, assuming that the hash function behaves as a good random function.
By using this technique, Peggy can simulate the random queries Victor would pose
her by replacing them with a hash of the previous message in the protocol. The first
message is usually sent by Peggy, committing to a blinded version of her private
input in order to guarantee that Victor does not learn anything about it (and maintain
the Zero-Knowledge property), but also ensuring she cannot fool Victor by using a
different value. Using this heuristic, Peggy can compute all of “Victor’s messages”,
which she then can send in a single transcript of the whole session. Victor’s work
then reduces to verifying this single transcript and output whether he thinks that is a
correct proof.

A different way tomake a proof non-interactive is the use of a CommonReference
String (CRS), proposed in [10] and expanded in [9]. This model differs from the Fiat-
Shamir heuristic in that it uses true randomness, and not a simulation thereof. This is
created in a setup phase and given to all participants. Somemeasure of trust is needed
in this phase, as all participants must be assured that the string has been honestly
generated and is correctly shared by all parties.

A special instance of non-interactive proofs of knowledge is known as zk-
SNARKs. In fact, they’re not proofs, but rather arguments of knowledge. A proof of
knowledge guarantees that a malicious prover cannot prove any false statement. On
the other hand, an argument of knowledge only gives such guarantees with respect
to computationally bounded provers. The defining properties of zk-SNARKs is that
they are succinct, that is, the proofs are very small (in fact, of constant size, no
matter the complexity of the proof statement) and the verification is very fast. But
they are constructed in the common reference string model, which has the drawback
of requiring a trusted setup phase. zk-SNARKs were first defined in [8], initiating
a very fruitful line of research. Practical zk-SNARKs based on Arithmetic Circuits
and Quadratic Arithmetic Programs were introduced in [19].

Other more recent variants of Zero-knowledge non-interactive constructions are
bulletproofs [12] and zk-STARKs [4]. Bulletproofs are especially suited to a specific
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Fig. 1 Comparison between zk-SNARKs, zk-STARKs and bulletproofs

kind of proofs, demonstrating that the secret value falls within a certain range, but
they can also be used for general NP circuits. zk-STARKs, on the other hand, are
generic constructions and have a number of advantages, but the technology is still
not mature enough to be usable in practice.

3 Why zk-SNARKs?

In practice, Bulletproofs, zk-SNARKs, and zk-STARKs are all interesting technolo-
gies to use. In this section, I compare them according to some relevant parameters
and discuss why at the moment zk-SNARKs seem to be the most popular choice for
use with blockchain technologies. These can be divided in two groups: performance
and security. It will be noted that zk-STARKs are the preferred choice in terms of
security, where they beat or equal the other two options. On the contrary, zk-SNARKs
excel in performance when compared with the others, and zk-STARKs in particular
are still eminently not practical due to their large proof sizes. As a consequence, zk-
SNARKs are the preferred general-use choice at the moment, but can be overtaken
by zk-STARKs if ongoing research can make themmore effective. Bulletproofs hold
the middle ground. They are more secure than zk-SNARKs and notably don’t require
a trusted setup. At the same time, they can also be performant for simple circuits,
and gain from not requiring pairing technology. Still their proofs and verification
size grow with the complexity of the proof statement. A summary of these aspects
follows below (Fig. 1).

3.1 Performance

Proof Size The big advantage of zk-SNARKs is the proof size, that is always a
constant independently of the circuit’s complexity. On the other hand, the size of a
bulletproof grows logarithmically with the size of the circuit. For simple statements,
this is short enough to be practical, but no technology can currently beat zk-SNARKs
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in the general case. zk-STARKs are particularly bad, generating proofs in the order of
tens or hundreds of kB while zk-SNARKs generate proofs in the hundreds of bytes.
Verification TimeVerification time is directly related to the proof size and the number
of public inputs. zk-SNARKs are again very efficient in this respect, with the time
growing linearly with the number of public inputs. However, the most expensive
operations are a constant number of elliptic-curve pairings, that may still dominate
if the public inputs are few. Expect a proof to be verified in a few milliseconds.
Bulletproofs in turn can be verified in time proportional to their proof size, which is
fast for simple circuits. zk-STARKs also have fast verification, but still not as fast as
zk-SNARKs.

The zk-STARK whitepaper claims zk-STARKs verify in a constant time, while
zk-SNARKs’s time would grow linearly. However, they include the setup time in this
(which does not exists for zk-STARKs). They also show a comparisonwhen the setup
is not included, which shows zk-SNARKs about 10 times faster than zk-STARKs.

I believe they make an unfair comparison. This is because the SNARK setup
is performed only once per circuit, whereas a single proof can be verified several
times. These are clearly two separate processes, and their time should not be brought
together as if the setup would be needed every time we make a verification, as that
is plainly not the case. Therefore, the valid comparison for me shows zk-SNARKs
are faster than zk-STARKs.
Key Size zk-STARKs and Bulletproofs get the upper hand here as neither require any
keys, whereas zk-SNARKs do. In particular, proving keys can be extremely large
for complex circuits (in the order of megabytes of even gigabytes, depending on the
circuit complexity), since they essentially encode the whole computation.

3.2 Security

Trusted Setup zk-SNARKs are constructed in the Common Reference String Model.
This means they require a setup phase which creates a Common Reference String
(CRS) made up of a proving key and a verification key that can be then distributed to
appropriate users. This setup is highly sensitive. As part of the key generation, some
randomness is created that must be destroyed at the end of the setup. Otherwise, an
attacker who learns of this would be able to create false proofs. This is a difficult
problem when the CRS has to be generated for use in a large network of untrusted
participants.

In comparison, Bulletproofs and zk-STARKs do not require such a setup, which
gives them an important advantage.
Hardness Assumptions Proofs of security usually depend on some hardness assump-
tion: they reduce any possible attack (within a certain model) to breaking a known
problem that is considered to be very hard. The weaker an assumption is, the more
likely it is thought to be true and the less things it requires, the stronger the proof
of security is. zk-SNARKs require very strong assumptions of number-theoretical
nature, namely the relatively recent and still insufficiently understood Knowledge-
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of-Exponent Assumption [3]. Bulletproofs are also based on a number-theoretical
assumption, the hardness of the discrete logarithm, but this is a standard assumption
and much weaker than that needed for zk-SNARKs. zk-STARKs require the weakest
assumptions of all three, merely the existence of a collision-resistant hash function.
Post-Quantum Resistance Both zk-SNARKs and Bulletproofs require number-
theoretical assumptions of a nature that will be easily broken in case quantum-
computers become practical. On the other hand, zk-STARKs’ assumption is not
number-theoretical and is currently not known to be broken by quantum-computers.
Therefore, zk-STARKs are considered to be post-quantum resistant, whereas the
other two types of construction are not.

3.3 Existing Snarks

Although the literature in zk-SNARKs is quite extensive, only a few of them have
been implemented in practical cryptographic tools. The most popular ones are
[6, 22], due to their proofs of constant size and verification time linear only in
the input. Both are based on the same QAP front-end. The former is an update of
the original [29], and has been available for a longer time. Although an attack was
found on its definition this year [18], this has been fixed and the scheme is considered
secure again. The Groth scheme is currently the most efficient one available, with
shorter proofs. There is another alternative, [23], that has a proof as short as [22],
but gives stronger guarantees, since it is actually a signature of knowledge and not
just a proof of knowledge. It is, however, less efficient in both proof generation and
verification.

Other earlier constructions can be found in [2, 5, 15, 19, 29].

4 Use in Blockchains

zk-SNARKs are particularly well suited towork in blockchains for twomain reasons.
First, they are non-interactive, which means verification can happen independently
from the prover. This allows several verifiers to check the proof without collaboration
and at their convenience. Secondly, the proof is concise, which means it can be
conveniently given to a smart-contract without incurring a heavy gas cost andmaking
the verification fast as well. But the main reason they are interesting is because of
the functionality they bring, which is crucial for blockchain use-cases: privacy and
scalability.

The case for privacy has already been argued at the beginning of this paper: I
believe it is crucial for high mass-adoption in use cases where users require privacy,
be it for their financial or commercial data. zk-SNARKs provide the ability to hide all
of these from the public. It is possible to make the blockchain store only summaries
of masked versions of a state, and enforce the consistency of updates by Zero-
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Knowledge proofs. As an example, consider the case of a transaction in the UTXO
model: this will include a list of all input notes, which together represent the money
spent; and a list of output notes, which represent the money sent to the recipient(s).
In Bitcoin, these notes are represented in the clear, but a private alternative could
send just the hashes of these notes. This would totally obfuscate the balances spent
and received and would even make possible the creation and destruction of value. In
order to enforce consistency, we can add a Zero-Knowledge proof that the sum of
inputs and outputs is the same (or differs only by the network fees) without revealing
them. This is the approach taken by ZCash [31].

Privacy in this way immediately gives rise to scalability improvements. Since
a single transaction can now be summarized by a short state update and a short
proof, and because this proof can be automatically verified, then we can also do a
single proof that validates other proofs. Instead of submitting a zero-knowledge proof
for each transaction, we can effectively bundle a group of them, providing proofs
for each, and then add a single proof that checks all of them. Only this proof is
submitted to the chain, together with an update of state that reflects all of the verified
transactions. An example of a project that is exploring this approach is CODA (see
[27]), which builds on the academic work of [7].

5 QAP-Based Snarks

QAP-based zk-SNARKs have become popular for practical use-cases because of
their flexibility. Once the predicate statement is codified in terms of an arithmetic
circuit, a zk-SNARK can automatically be built by appropriate tools that turn the
circuit into a QAP and then use that to setup the system. The implementer’s job is
mostly focused on specifying the R1CS that defines the problem, which can be done
more or less trivially once the circuit is defined (the non-trivial aspect is that there
may be thousands of gates and wires in the circuit).

Compare, for example, with Σ−protocols, which can still be used for a large
variety of proofs but where the designer has to be much more careful in deciding
the content of each message. Some results show how we can mix and match basic
protocols to prove more complex statements (see for example [1, 13, 14, 26]), but as
far as I know there is not a simple compact way to encode an arbitrary NP statement
into a single proof.

For that reason, in this section I focus on the progression from arithmetic circuits
to QAPs, explaining how these effectively encode the whole computation and so
make the proof convincing.
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5.1 Arithmetic Circuits

Circuits have long been used as a computationmodel. A circuit is composed of wires,
which carry values, and gates, which perform an operation on their input values and
return one or more outputs. In complexity theory, it is common to consider logical
circuits, where the value of each wire is either 0 or 1, and gates perform logical
operations like AND,OR, NOT and their variants. For zk-SNARKs, we use instead
arithmetic circuits. The only difference to logical circuits is the operations computed
by their gates and the values that each wire can represent.

The gates of a circuit must be organized in a directed acyclic graph, so that
computation always flows in a single direction from inputs to outputs. Unlike a pro-
gramming language, circuits do not have loops or functions where the computation
can return multiple times to the same place: computations are flattened and laid out
in a way that each gate is evaluated only once and the wires, once set, never change
value. Analogously to simple electric circuits, where you can determine the voltage
and current of every wire once you turn the power on, you can ‘instantaneously’
determine the value of all wires, including the output, of a logical circuit once you
set the input values.

QAP-Based Snarks are based on pairings over elliptic curves, which are ultimately
used to encode all the steps of the computation. The arithmetic circuit used for a zk-
SNARK is tied to the specific finite field underlying the elliptic curve used, and
so each wire can represent a single field element. The circuit is the verifier of a
computation, and so returns a binary value. For a valid proof, the circuit should
return 1 if the private input (the witness) provided by the prover matches the public
input known to both parties.

Gates can perform modular addition and multiplication. Note that the modulus
used is the order of the curve, and not that of the field. This is because of how the
circuit is encoded to produce the zk-SNARK: the values of each wire are multiplied
with curve points combined in several linear combinations. In other words, they are
the scalars resulting from a series of multiplications in the elliptic curve’s group.
Therefore, they will never be larger than the curve’s order.

Figure2 demonstrates a simple arithmetic circuit, and how the computation pro-
ceeds from the input wires to produce values to the outputs. With this circuit, the
prover demonstrates knowledge of two private values, a and b, that satisfy a certain
relationship with a public input, n, namely a2 + ab − b = n.

Each wire is thus assigned a single value, and the list of all these assignments
constitutes an instance of the circuit’s computation, which corresponds to a single
input. Conventionally, in an assignment public wires are listed first, followed by pri-
vate inputs and then the internal wires corresponding to intermediate computations.
Circuit outputs are always public. The whole is preceded by a constant 1 that is added
to enable constant values. The example in the figure corresponds to the following
assignment, with one public input, one (public) output, two private inputs and four
internal wires:

[1, 9, 1, 2, 5, 4, 10, 14, 14]. (1)
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Fig. 2 A simple arithmetic circuit proving knowledge of a, b such that a2 + ab − b = n

If we give a different input to the circuit, say a = 4, b = 3, n = 10, the result will
be a failing computation, and the full assignment will be

[1, 10, 0, 4, 3, 16, 12, 28, 13].

5.2 Rank-1 Constraint Systems

An assignment of values to all the wires in the circuit describes a single computation
for a given set of public and private inputs. The next step in the construction of a
zk-SNARK is to produce a set of constraints that assert this computation has been
correctly performed, and that the assignment is internally consistent. In other words,
the constraints check that each non-input wire follows correctly from the application
of a gate operation to the input’s gates. Therefore, we create a rank-1 constraint for
each gate, and call Rank-1 Constraint System (R1CS) to the set of all constraints.
Consequently, if a cheating prover does not know the correct private witness for the
public input and tries to fool the verifier by showing an output that does not follow
from its inputs, then at some point a gate’s output must have been miscalculated and
the corresponding constraint will not be valid.
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Constraints are encoded as a simple multiplicative form:

a × b = c,

where a, b and c are numbers resulting from evaluating linear combinations of wires
(A, B and C), as will be seen below. Given the circuit above, and a well-defined wire
ordering, we can encode the first multiplication gate, which computes a2, by

A = [0, 0, 0, 1, 0, 0, 0, 0, 0] representing the first private input

B = [0, 0, 0, 1, 0, 0, 0, 0, 0] representing the same wire

C = [0, 0, 0, 0, 0, 1, 0, 0, 0] representing the first internal wire.

An addition gate must be represented by adding wires within the same linear
combination. Consequently, the other input linear combinationmust simply represent
1. This is the representation of the first addition gate:

A = [0, 0, 0, 0, 0, 1, 1, 0, 0] representing the addition of two internal wires (2)

B = [1, 0, 0, 0, 0, 0, 0, 0, 0] representing the constant 1 wire

C = [0, 0, 0, 0, 0, 0, 0, 1, 0] representing the third internal wire.

The constraint system may include more constraints than just those implied by
the gates. As an example, equality constraints can be added. An equality constraint
on two wires can be written as a multiplication: one of the inputs is set to 1, and the
other two encode the wires that are being compared.

More complex assertions can be composed in this form. For example, the con-
straint wire 3 can carry only a binary value, which can be described by the equation
w3 · (w3 − 1) = 0 or equivalently w2

3 = w3. Such a constraint would not ordinarily
be represented in the circuit, since it does not have an impact in the computation, but
should be added to the R1CS.

All of the matrices above simply encode an abstract verification. Their concrete
meaning is given by mixing them with a wire-assignment corresponding to a com-

putation. Let such assignment be a vector
→
s . Then, a constraint (A, B,C) is satisfied

for the computation represented by
→
s if and only if

〈A · →
s 〉 × 〈B · →

s 〉 = 〈C · →
s 〉.

For example, taking the constraint in (2) and the assignment in (1), we have

a = 〈[0, 0, 0, 0, 0, 1, 1, 0, 0] · [1, 9, 1, 2, 5, 4, 10, 14, 14]〉 = 14

b = 〈[1, 0, 0, 0, 0, 0, 0, 0, 0] · [1, 9, 1, 2, 5, 4, 10, 14, 14]〉 = 1

c = 〈[0, 0, 0, 0, 0, 0, 0, 1, 0] · [1, 9, 1, 2, 5, 4, 10, 14, 14]〉 = 14.
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Finally, it is worth noting that constraints can be more involved than the simple
examples here, and that coefficients are often larger than 1.

5.3 Polynomial-Encoding

In practical circuits, there can be thousands or millions of wires and constraints, so
that verifying them all individually would be too expensive. Instead, zk-SNARKs
proceed by encoding all the constraints into three polynomial vectors, which allows
for the simultaneous verification of the whole constraint set.

Let n represent the number of wires in an assignment, and k the number of
constraints. Denote these by

C1 = (A1,B1,C1)

· · · · · ·
Ck = (Ak,Bk,Cn)

Let

[A] =
⎡

⎣
A1[1] A1[2] · · · A1[n]

. . .

Ak[1] Ak[2] · · · Ak[n]

⎤

⎦

be the matrix of all A linear combinations.
We can devise a polynomial vector A with n elements that describes [A]. Each

member Ai of
→
A is a polynomial that encodes the i th column of [A]. We assign

to each constraint C j a fixed scalar value, σ j . The pairs (σ1,A1[i]), . . . , (σk,Ak[i])
represent the i th coordinate of all the constraints as points on a plane. Now define
Ai as a polynomial that passes through these k points, for example as the result of

the Lagrange interpolation. Define analogously
→
B and

→
C for the other linear combi-

nations. Next, we gather the terms of all polynomials evaluated at the coordinate for
constraint j under the following notation:

→
A (σ j ) = [A1(σ j ),A2(σ j ), . . . ,An(σ j )] (3)

and observe that by construction this is

→
A (σ j ) = [A][ j] = A j .

It can now be easily checked that, for an assignment
→
s as above and an arbitrary

constraint C j , with j ∈ {1, . . . , k}, and for all i ∈ {1, . . . , n}:
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〈→
A (σ j ) · →

s 〉 · 〈→
B (σ j ) · →

s 〉 = 〈→
C (σ j ) · →

s 〉 ⇔
〈→
A (σ j ) · →

s 〉 · 〈→
B (σ j ) · →

s 〉 − 〈→
C (σ j ) · →

s 〉 = 0 ⇔
〈A j · →

s 〉 · 〈B j · →
s 〉 − 〈C j · →

s 〉 = 0.

is satisfied if and only if the computation satisfies the j th constraint.
The above expression can be further developed, to show that it represents a simple

polynomial expression of the kind P(σ ) = 0:

P(σ ) =
(

n∑

i=1

Ai (σ ) · si
)

·
(

n∑

i=1

Bi (σ ) · si
)

−
(

n∑

i=1

Ci (σ ) · si
)

= 0 (4)

5.4 Proof Construction

The computation verified by a zk-SNARK should be known by both the Prover and
the Verifier, and therefore the set of constraints and the corresponding polynomial
vector will also be known by both. These set the rules of the computation. Recall

that the proof asserts knowledge of a witness
→
s that passes those constraints. This

section details how the Prover can convince the Verifier of that.
I focus on the polynomial (4) developed in the last section. If the computa-

tion satisfies all constraints, then by construction P(σ ) = 0 at least when σ ∈ S =
{σ1, . . . , σk} and possibly at other points. It is important to notice here that P(σ ) is

defined for a specific witness
→
s and so encodes a specific computation.

By a consequence of the fundamental theorem of algebra,P(σ )must be amultiple
of a polynomial Z(σ ) that vanishes exactly in set S, that is, Z(σ ) = 0 ⇔ σ ∈ S.
This polynomial is defined as:

Z(σ ) = (σ − σ1) · (σ − σ2) · . . . · (σ − σk).

The reverse is also true, that is, ifZ(σ ) evenly divides P(σ ), then P(σ ) must vanish

on set S and so all constraints are satisfied by the witness
→
s . Therefore, to prove the

correctness of a computation, it is enough to demonstrate that P(σ ) is a multiple of
Z(σ ) by showing H(σ ) such that P(σ ) = H(σ ) · Z(σ ).

Notice that the Verifier can computeZ(σ ), and that this determines what a Prover
needs to compute in order to produce a convincing proof. Thus, the whole computa-
tion can be specified in a Quadratic Arithmetic Program composed of

QAP = (
→
A,

→
B,

→
C ,Z). (5)
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The polynomialH(σ ) and the witness
→
s are the heart of the proof. Although the

verifier can not compute P(σ ), because it does not know
→
s , it knows it must follow

from QAP and that this is embedded in the proving and verification keys in a way
that only a valid H will make the proof valid.

This encoding is the basis for QAP-based zk-SNARKs. They share the same
‘front-end’, by encoding the computation into a QAP in the same way. It is in the
subsequent constructions, how that computation is encoded and how the proof is
created, that they differ. That is not in the scope for this paper, and I encourage the
reader to consult the references in Sect. 3.3.

6 Tools

Currently, there are a limited number of tools supporting the development of zk-
SNARK applications. All of those I know focus mainly on QAP-based zk-SNARKs.
These tools can be divided in 2 layers: Domain Specific Languages (DSL) that
allow describing the proof predicate in a high-level language that is easy to learn
and use; and support for the construction of the zk-SNARK algorithms, including
(i) the representation of the statement in some technical intermediate language; (ii)
support for the zk-SNARK specific algorithms (CRS generation, proof creation and
verification); (iii) all the necessary mathematical support, for fast calculation in very
large fields, elliptic curves and bilinear pairings. Most of these use R1CS as the
intermediate language, which is then compiled into a QAP. R1CS is close to the
language of arithmetic circuit satisfiability and therefore is NP-complete. For this
reason, it has become very popular and is used by all the libraries reviewed here.

6.1 Zk-SNARK Support Libraries

The most complete library to the date is also one of the first: libsnark.7 It is written in
C++ and offers wide flexibility. It mainly uses R1CS as the language for representing
the proof predicate, but can support other more efficient (but possibly less flexible)
languages, such asBACS,USCS,TBCS. libsnark offers also different kinds of elliptic
curves, via its dependency libff,8 supporting BN, Edwards and MNT curves. It also
supports different kinds of Snarks, including BCTV14, Groth16 and GM17.

DIZK9 is another library published by SCIPR Labs, and is in some aspects like a
reduced port of libsnark to Java. Instead of relying on external libraries for calculation
of FFT and fast arithmetic, it integrates its own implementations for these tasks, but
in some cases (eg FFT) with a reduced algorithm. DIZK’s main selling point is the

7https://github.com/scipr-lab/libsnark.
8https://github.com/scipr-lab/libff.
9https://github.com/scipr-lab/dizk.

https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libff
https://github.com/scipr-lab/dizk
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support for parallelization to speed up the setup and proof generation. It supports only
2 BN curves, and offers only one kind of zk-SNARK, Groth16, which is QAP-based
and described in the R1CS language.

Snarkjs10 is a library for implementing zk-SNARKs in Javascript. Again it is
limited to only one specific type of curve (BN128), and implements two Snarks, the
original BCTV14 and Groth16. Due to the narrow elliptic curve focus, the library is
smaller and probably easier to understand than either DIZK or libsnark.

Bellman11 is a compact library, being developed for ZCash, that supports the
creation of Groth16 Snarks. It is developed in Rust, and supports only Groth16,
again based on an R1CS representation. Unlike the previous systems, it seems to use
only the BLS12-381 curve, as promoted by ZCash since the Sapling version.

6.2 DSL Tools

Typically, zk-SNARK libraries are difficult to use without a way to encode an arbi-
trary proof predicate. This niche is covered by some dedicated libraries.

ZoKrates12 is a tool written in Rust and C++ that offers a very simple language
to encode arithmetic circuits and R1CS. It interfaces with libsnark and Bellman, and
allows the creation of three types of zk-SNARK: BCTV14, GM17 and since recently
Groth16. It is very actively developed, and a good choice for beginners.

jSnark13/xjSnark14 are a pair of libraries in Java that simplify the specification of
zk-SNARKs at a high-level. Its approach is quite different of ZoKrates, in that the
language is more low-level, centered around the definition of gadgets. But this makes
it more flexible than ZoKrates, since the programmer can fine tune the construction
of the circuit. Despite being written primarily in Java, its default backend is libsnark.

Circom15 is the complement of Snarkjs. Also written in JavaScript, it provides
a language that has similarities to ZoKrates, but in a more C-like way. Its intended
backend is Snarkjs.

Finally, Snarky16 is an OCaml front-end for creating R1CS-based Snarks. It uses
the libsnark backend by default, and differs from the other DSL in that its language
has a functional approach.

10https://github.com/iden3/snarkjs.
11https://github.com/zcash/librustzcash/tree/master/bellman.
12https://github.com/Zokrates/ZoKrates.
13https://github.com/akosba/jsnark.
14https://github.com/akosba/xjsnark.
15https://github.com/iden3/circom.
16https://github.com/o1-labs/snarky.

https://github.com/iden3/snarkjs
https://github.com/zcash/librustzcash/tree/master/bellman
https://github.com/Zokrates/ZoKrates
https://github.com/akosba/jsnark
https://github.com/akosba/xjsnark
https://github.com/iden3/circom
https://github.com/o1-labs/snarky
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