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Abstract. Extracting knowledge from digital images largely depends
on how well the mining algorithms can focus on specific regions of the
image. In multimodality image analysis, especially in multi-layer diagnos-
tic images, identification of regions of interest is pivotal and this is mostly
done through image segmentation. Reliable medical image analysis for
error-free diagnosis requires efficient and accurate image segmentation
mechanisms. With the advent of advanced machine learning methods,
such as deep learning (DL), in intelligent diagnostics, the requirement
of efficient and accurate image segmentation becomes crucial. Targeting
the beginners, this paper starts with an overview of Convolutional Neu-
ral Network, the most widely used DL technique and its application to
segment brain regions from Magnetic Resonance Imaging. It then pro-
vides a quantitative analysis of the reviewed techniques as well as a rich
discussion on their performance. Towards the end, few open challenges
are identified and promising future works related to medical image seg-
mentation using DL are indicated.

Keywords: Machine learning · Brain imaging · Neuroimaging ·
Segmentation · Deep learning · MRI

1 Introduction

Medical diagnosis, disease detection, treatment and response of treatment are key
features and strategies in clinical medicine. Accurate diagnosis and early disease
detection can assist doctors to ensure appropriate treatment for patients. Reli-
able analysis of medical images acquired from various imaging techniques (such
as X-ray, Computed Tomography (CT), Magnetic Resonance Imaging (MRI),
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Positron Emission Tomography (PET), Optical Coherence Tomography (OCT),
Endoscopy) plays an important role in diagnostic medicine. Such analysis pro-
vides clear understanding of the disease localisation which then leads to appro-
priate treatment followed by monitoring of treatment response in patients.

Image segmentation – a (semi)-automatic detection of boundaries in an image
– is a mandatory steps of image analysis pipeline. The high degree of variability
in medical images make the segmentation laborious which assists to achieve
further insights in the extracted image boundary.

This work presents a survey on Application of Convolutional Neural Network
(CNN) in segmenting brain regions from MRI.

The organization of this paper is as follows: Sect. 2 describes the basic of CNN
architecture, Sect. 3 discusses its application in medical image segmentation,
Sect. 4 presents its performance evaluation and Sect. 5 lists some open challenges
and probable research opportunities.

2 The Convolutional Neural Network

In general, deep learning (DL) architectures learn deep features from data in
hierarchical and composite ways. This is achieved through multiple levels of
abstraction where higher levels of abstraction are built on the top of lower levels
and the lowest ones are the original input data [22] (Fig. 1).

This paper focuses only on CNN due to its wide acceptance as the most
popular architecture for image analysis. CNN is a fully trainable biologically
inspired version of multi-layer perceptron composed of alternating convolution
and pooling layers followed by a fully connected layer at the end. Usually, CNN
requires a large amount of data as the number of parameters and node needed to
be trained is relatively high [22]. Some widely used CNN configurations include
AlexNet, VGGNet and GoogLeNet. In CNN, an input image is convolved with
kernels (klj), biases (blj) are added and a new feature map (xl

j) is generated, such

that, xl
j = f

(∑
i∈Mj

xl−1
i ∗ klij + blj

)
. Unlike traditional ML approaches, CNNs

learn and optimise best sets of convolution kernels. Incorporating such kernels
with appropriate pooling operation extracts relevant features for a given task
(e.g., classification, segmentation or recognition). CNNs are used in segmentation
by classifying each pixel individually and presenting it with patches extracted
around the particular pixel.

Fully Convolutional Network (FCN)– a variant of CNN– can generate a like-
lihood map instead of single pixel. FCN based segmentation network contains
two paths: downsampling path (for semantic information) and upsamping path
(for spatial information). In addition, skip connections are used to fully get the
fine-grained spatial information [44].

U-Net is inspired from FCN which consists of contracting and expanding
paths to capture the contextual and localisation information respectively. The
segmentation map generated by U-Net contains only the pixels, so the full con-
text is available in the input image [35].
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Fig. 1. Architecture of CNN

Dual pathway architecture is generated by coupling another identical con-
volutional pathway. for handling multi-class problem and processing multiple
sources/multi-scale information from channels in input layers. The parallel path-
ways extract features independently from multiple channels [16,26].

In dilated CNN (Di-CNN), the weights of convolutional layers are sparsely
distributed over a large receptive field. It is an effective architecture to achieve
large receptive field with limited number of convolutional layers without sub-
sampling layers [27,29].

3 CNN in Segmenting MRI

DL, in particular, CNN-based segmentation of MRI has brought significant
change to clinical studies towards accurate, efficient and safe evaluation [23].
MRI–a noninvasive imaging–provides detailed functional and anatomical infor-
mation of soft tissues, bones and organs in any arbitrary plane. The automatic
segmentation of MRI is a key step in delineating the contour and any unusual
anatomical structure or interior region.

A significant number of studies related to segmentation of MRI using CNN
and its variant have been reported in the literature. Moeskops et al. introduced
CNN based tissue regions segmentation from brain MRI. CNN combines multiple
patches and different sized kernels to learn multi-scale features by estimating
both intensity and spatial characteristics [25]. Brebisson et al. applied CNN for
anatomical brain segmentation [3]. The authors have benchmarked it against
multi-atlas methods of 2012 MICCAI challenge.

Moeskops et al. and Milletari et al. introduced adversarial training with
DiCNN [27] and Hough CNN [24] for brain MRI segmentation. Moeskops et al.
also employed single trained CNN for multiple segmentation tasks including a
number of tissues in MR brain images, the pectoral muscle in MR breast images,
and the coronary arteries in cardiac CTA, etc. [26].

The accurate segmentation of brain into white matter (WM), gray matter
(GM) and cerebrospinal fluid (CSF) is an open challenges. Nguyen et al. used
Gaussian mixture model (GMM) with CNN to segment brain MRI into WM, GM
and CSF [30]. Moeskops et al. applied dilated CNN to segment isointense infant
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brain into WM, GM and CSF [29]. The dilated triplanar network is combined
with an un-dilated 3D CNN. 3D FCN is also used for WM, GM and CSF segmen-
tation in isointense infant brain MR [44]. Multi-scale deep supervision is applied
to reduce gradient vanishing problem. Xu et al. combined three FCNs fusing with
predicted probability map for small WM segmentation [42]. WM hyperintensi-
ties (WMH) are signal abnormalities in the white matter, and Ghafoorian et al.
trained a CNN with non-uniformly sampled patches for WMH segmentation [9].
The authors also proposed a CNN-based approach in [10] for WMH segmenta-
tion combining the anatomical location information with network. WMH has
some features similar to features of lesions and difficult to distinguish. Guer-
rero et al. developed a FCN architecture to simultaneously segment WMH and
stroke lesions. The convolutional architecture used residual element to mitigate
model complexity and improve optimization speed [11]. Moeskops et al. applied
CNN to segment brain tissues and WMH at the same time [28]. Rachmadi et al.
segmented WMH by combining the location information and global spatial infor-
mation with CNN in the convolution level [34].

Choi et al. proposed a CNN-based approach for segmenting very small region
such as striatum [5]. Instead of using the whole input image to segment such a
small region, the authors employed two CNNs, known as local and global. The
global CNN determined probable locations of striatum and the local CNN to
predict the accurate labels of striatum voxels.

Shakeri et al. proposed a FCN based approach for the segmentation of fron-
tostriatal sub-cortical structures in MR images [37]. The output of the segmen-
tation approach was improved by feeding it as input to Markov Random Field
(MRF). Kushibar et al. developed another sub-cortical brain structure segmenta-
tion approach by combining convolutional and spatial features [18]. It employed
a 2.5D CNN model and the combination of spatial features was inspired from
this work [10]. 3D FCN is also employed to segment sub-cortical brain region in
MRI [8]. This method avoided over fitting by generating a deep network combin-
ing small convolution kernels. He et al. segmented left and right caudate nucleus
along with left and right hippocampus from brain MRI using 3D FCN and 3D
U-Net [13]. Here, affine invariant spatial information is learnt from FCN and
used in 3D U-net. Another 3D CNN, called DeepNAT, was proposed in [40].
Bao et al. applied multi-scale structured CNN (MS-CNN) to segment several
sub-cortical structures from MRI. They used dynamic random walker (DRW) as
post-processing [1].

Pereira et al. proposed CNN-based method for segmentation of glioma from
MRI. The authors stacked small convolution kernel to generate deeper CNN
[33]. Hussain et al. applied CNN for glioma segmentation [15]. The architecture
introduced two phase training method for data imbalance problem.

Glioblastoma is a highly malignant grade IV glioma. Yi et al. applied 3D
CNN for glioblastoma segmentation. The first layer of the CNN was pre-defined
with Difference-of-Gaussian (DoG) filters to learn 3D tumor MRI data [43].

Hoseini et al. [14] and Havaei et al. [12] applied CNN for brain tumor seg-
mentation from MRI. Zhao et al. integrated FCN and conditional random field
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(CRF) for tumor segmentation [46]. In [38], 3-FCNs are combined for tumor
segmentation. Zhuge et al. applied holistically-nested network (HNN), an exten-
sion of CNN for high grade glioma (HGG) segmentation [48]. Deep supervision is
performed in HNN through an additional weighted-fusion output layer (Table 1).

Table 1. Overview of papers using deep learning in MRI

Segmented region Deep learning algorithm

Anatomical brain region CNN [3]

Stratium CNN [5]

Isointense infant brain Di-CNN [29], CNN [25,45], FCN [17,31,32], 3D
FCN [7,44]

WM, GM and CSF CNN [30], 3D-FCN [6], FCN [42]

WMH CNN [9,10,34]

WMH and stroke lesion FCN [11]

WMH and brain tissue CNN [28]

Sub-cortical brain structure FCN [8,37],[1,18],3D {FCN,U-Net} [21], 3D
CNN [40]

Brain tumor CNN [12,14,33], FCN, CRF [38,46], 3D-CNN
[43], OM-Net [47], H-CNN [48], DCNN [15],
DRFCN, LS [20],

Brain lesion 3D CNN, CRF [16]

Brain H-CNN [24], Di-CNN [27]

NPC CNN [41]

Meningioma DLM [19]

MS Lesion CNN [2], CEN [4], C3CNN [39], FCN [36]

Kamnitsas et al. applied a dual pathway, 3D CNN with 3D fully connected
CRF to segment brain/Ischemic stroke lesion [16]. Wang and Zu et al. applied
CNN to segment Nasopharyngeal Cancer(NPC) and achieved performance sim-
ilar to manual segmentation [41]. Laukamp et al. proposed a multiparametric
deep-learning model (DLM) for detection and segmentation of meningiomas from
MR images [19].

Le et al. combined recurrent FCN with level set (LS) method to develop
a novel end-to-end approach (Deep Recurrent Level Set (DRLS)) [20]. Zhang
et al. applied CNN to segment brain tissue in isointense stage [45]. The multiple
intermediate layers of CNN are incorporated with multimodal brain information
collected from T1/T2 and fractional anisotropy images as input feature maps.
Isointense infant brain image segmentation is expanded and improved by Nie
et al. using FCN [32]. The authors trained a separate network for each image and
combined the outputs with higher network layers [32]. It optimizes the weights
and biases for each modality corresponding to kernel size. FCN is also applied
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for infant brain segmentation in [17] and [31]. Dolz et al. proposed a densly
connected 3D FCN in [7] for multimodal isointense brain segmentation. Dense
connectivity exists between MR T1 and T2 in 3D context.

Multiple sclerosis (MS) is a chronic disease that causes scarred tissues (called
lesions) being developed in brain/spinal cord. MRI scans show the symptoms of
MS lesion as black holes. Brosch et al. proposed a novel approach for MS lesion
segmentation [4] based on CEN and U-net. Valverde et al. [39] and Birenbaum
et al. [2] proposed CNN based MS lesion segmentation. The first layer predicts
the possible lesion areas and the second layer reduces the number of misclassified
candidate pixels. Roy et al. applied FCN for MS lesion segmentation [36]. This is
the first multi-view CNN segmentation approach in MRI that uses longitudinal
information along with other features.

4 Performance Evaluation

Three well-known measures, the accuracy, dice coefficient, F1 score, were used
to find the performance of a network architecture.

In brain tissue segmentation, the combination of FCN and DiCNN with
adversarial training achieved superior dice score (DS) of 0.92 which outperforms
other methods [27]. A multi-scale 3-layer CNN [25] outperformed multivariate
MRF method (0.827 vs. 0.737). A multi-scale 4-layer CNN with weight shar-
ing and location information achieved competitive DS of 0.791 [10]. Consecutive
application of CNN-DNN with GMM achieved better performance than kNN
(0.86 vs. 0.73) [30]. A CNN trained with non-uniform sampled patches outper-
formed a similar CNN with uniformly sampled patches (0.78 vs. 0.73) [9]. The
uResNet architecture, containing 8-residual layers, 3-deconvolutional layers and
a convolutional layer performed better than Lesion prediction algorithm (0.695
vs. 0.647) [11]. A 9-layer CNN architecture acquired DS of 0.67 [28], whereas
another CNN using GSI achieved DS of 0.54 [34]. However, the latter one out-
performed DBM which achieved only 0.33. The performance of FCN architec-
tures were analysed in [42], where 3-FCNs outperformed 1-FCN (0.78 vs. 0.7). In
segmenting striatum, two CNNs, local and global CNN outperformed FreeSurfer
on OASIS dataset (0.893 ± 0.017 vs. 0.786 ± 0.015) and achieved competitive
score on IBSR dataset (0.826 ± 0.038 vs. 0.827 ± 0.022) [5]. A 5-layer FCN and
CRF was applied on IBSR dataset to segment the 3D T1-weighted MR images
into thalamus, caudate, putamen and pallidum (DS: Proposed: 0.87 vs Bayesian:
0.85) [37].

The 3D FCN outperformed 2D FCN by achieving 0.92 validated on both
ABIDE and IBSR dataset [8]. While segmenting caudate nucleus and hip-
pocampus, FCN guided with shape learning network outperformed 3D U-Net on
LPBA40 dataset (0.80175 vs. 0.779) [13]. CNN based methods reported outper-
formed the atlas-based methods (CNN:0.869 vs. LF-MA:0.867; 3D CNN: 0.906
vs. MA:0.904) on MICCAI 2012 and IBSR 18 datasets. MS-CNN based app-
roach outperformed majority voting (MV) and patch-based label fusion (PBL)
on IBSR dataset (MS-CNN: 0.807, MV: 0.658, PBL: 0.760) and LPBA40 dataset
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(MS-CNN: 0.843, MV: 0.764, PBL: 0.843). The performance improved on both
datasets when MS-CNN was followed by DRW (MS-CNN+DRW: 0.822 vs MS-
CNN: 0.807 on IBSR dataset), (MS-CNN+DRW: 0.850 vs MS-CNN: 0.843 on
LPBA40 dataset) [1] (Fig. 2).
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Fig. 2. Performance comparison of Various CNN based DL techniques when applied
to Brain MRI in: tissue, subcortical structure, tumor and infant brain segmentation.

To segment HGG and LGG, CNN based methods achieved similar
performances comparing with other methods (CNN: 0.88 vs. RW:0.88,
TWOPATHCNN: 0.88 vs. RF: 0.87) both validated on BRATS 2013 challenge
dataset [33], [12]. FCN, trained with image patches and CRF with image slices
have outperformed cascaded CNN evaluated in BRATS 2013, BRATS 2015 and
BRATS 2016 datasets (0.86 vs. 0.84) [46]. HNN outperformed FCN (0.78 vs.
0.61) in HGG tumor segmentation evaluated on 20 data from BRATS 2013
training dataset [48]. Two phase weighted trained CNN model performed better
than anatomy guided RF model (0.86 vs. 0.85) on both BRATS 2013 and 2015
datasets [15]. A 5-layer 3D CNN based approach outperformed other methods to
segment whole, core and active tumor on BRATS 2015 dataset (3D CNN: 0.89,
Appearance and Context Sensitive Features: 0.83, Extremely randomized tree:
0.83) [43]. CNN has significantly outperformed Watershed algorithm for tumor
segmentation on 15 T1-weighted MR images of NPC patients (0.79 vs. 0.6) [41].
In another study, CNN with task-level parallelism outperformed other methods
(CNN: 0.90, LSE-KMC: 0.84). OM-Net [47], a CNN architecture achieved DS
of 0.87 beating U-Net shape inspired architecture (DS: 0.85). But CNN was
unable to score better result in [20] in comparison with DRLS (DRLS: 0.89,
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CNN: 0.88). Three concurrent FCNs, each to train 3 different filtered (Gaus-
sian, Gabor and median) multi-MR images are applied for tumor segmentation
and achieved superior result than Fuzzy C-Means (FCM) (0.8 vs. 0.75) [38].
The performance of a 11-layer DeepMedic architecture with CRF is outper-
formed over RF and an ensemble of three networks to segment Traumatic brain
injuries (RF: 0.511 ± 0.20, RF+CRF: 0.548 ± 0.185, DeepMedic: 0.623 ± 0.164,
DeepMedic+CRF: 0.63 ± 0.163), Brain tumor (Ensemble+CRF: 0.849, Ensem-
ble: 0.845, DeepMedic+CRF: 0.847, DeepMedic: 0.836) Ischemic Stroke lesion
(DeepMedic: 0.64 ± 0.23, DeepMedic+CRF: 0.66 ± 0.24) segmentation [16]. To
segment infant brain images into WM, GM and CSF, CNN has outperformed
RF by combining multi-modality T1, T2 and FA images (0.8503 ± 0.0227 vs.
0.8351 ± 0.252) [45]. In a similar segmentation task, multi-modality FCN also
outperformed RF for WM (0.887 ± 0.021 vs. 0.841 ± 0.027) [31]. FCN outper-
formed U-Net (0.889 vs 0.796) [17]. For more accuracy, 3D FCN with convolution
and concatenate (CC) is applied on T1 and T2 images [31] and it obtained bet-
ter dice value than RF (0.94 ± 0.0075 vs. 0.8765 ± 0.0112). Another 3D FCN
with context information is able to segment WM, GM and CSF from iSeg-2017
dataset superior to 3D FCN without context information (0.922 ± 0.008 vs.
0.916 ± 0.008) [44]. A 7-layer dilated triplanar CNN and 12-layer non-dilated
3D CNN are evaluated in MICCAI grand challenge on 6-month infant brain MRI
segmentation into WM, GM and CSF with dice value 0.894.

5 Limitations and Challenges

Deep learning framework can learn intense features from huge imaging dataset.
However, some challenges and future perspectives are discussed below:

Creating label data requires huge processing which is an open challenge
for designing supervised architecture for image analysis. However the accuracy
can be improved considerably using semantic segmentation which can also be
explored. Inter-organizational collaborations are essential for generating gigantic
volume of label data to eliminate the resource limitation problem.

Training a classifier with a large volume of collected data can biased towards
majority classes and will provide low accuracy.

To handle real time segmentation of big imaging data, distributed as well as
parallel computing infrastructure are required.

6 Conclusion

Automatic segmentation of medical images plays substantial role in computer-
aided medical image analysis pipeline. This paper presents the use of CNN in
image segmentation for diagnosis, disease detection, treatment and response of
treatment from MRI. The performance of different CNN architectures has been
evaluated for MRI taken from various brain tissues and/or regions. The results
show that the CNN and its variant based architectures are popular in medi-
cal image segmentation. At the end, open challenges have been identified and
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research possibilities are outlined which can be utilized to improve the perfor-
mance of DL based medical image analysis.
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