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Abstract. Reconstructing the locations and extents of cortical activi-
ties accurately from EEG signals plays an important role in neuroscience
research and clinical surgeries. However, due to the ill-posed nature of
EEG source imaging problem, there exist no unique solutions for the
measured EEG signals. Additionally, evoked EEG is inevitably contam-
inated by strong background activities and outliers caused by ocular or
head movements during recordings. To handle these outliers and recon-
struct extended brain sources, in this paper, we have proposed a robust
EEG source imaging method, namely L1-norm Residual Variation Sparse
Source Imaging (L1R-VSSI). L1R-VSSI employs the L1-loss for the resid-
ual error to alleviate the outliers. Additionally, the L1-norm constraint in
the variation domain of sources is implemented to achieve globally sparse
and locally smooth solutions. The solutions of L1R-VSSI is obtained
by the alternating direction method of multipliers (ADMM) algorithm.
Results on both simulated and experimental EEG data sets show that
L1R-VSSI can effectively alleviate the influences from the outliers dur-
ing the recording procedure. L1R-VSSI also achieves better performance
than traditional L2-norm based methods (e.g., wMNE, LORETA) and
sparse constraint methods in the original domain (e.g., SBL) and in the
variation domain (e.g., VB-SCCD).

Keywords: EEG inverse problem · Variation sparseness · Outliers ·
ADMM

1 Introduction

Electroencephalogram (EEG) are widely used techniques in cognitive neuro-
science and clinical surgeries due to their non-invasiveness and high temporal
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resolution. The task to reconstruct the corresponding cortical neural activities
from EEG signals on the scalp surface is termed as EEG source imaging. Using
EEG source imaging, we can estimate the extents and locations of brain active
regions, which provide important auxiliary information for neuroscience research
and medical treatments.

To reconstruct brain activities, the distributed source model divides the cere-
bral cortex into several triangular grids, each of which represents a dipole source
[8]. The amplitude of each diploe source can be calculated by solving a linear
inverse problem. However, the number of the candidate dipole sources largely
outnumbered that of EEG sensors. Hence, the linear inverse problem is highly
ill-posed, i.e., there are infinite source solutions to satisfy EEG signals. To obtain
a unique solution, appropriate regularization operator is needed to narrow the
solution space [8,9,16].

Typical EEG source imaging methods employ the L2-norm regularizer, such
as the weighted minimum norm estimate (wMNE) [4] and the low-resolution
electromagnetic tomography (LORETA) [11]. However, the estimations of L2-
norm based methods are overly diffused and spread widely [8]. To improve the
spatial resolution, sparse constrained methods based on Lp-norm (0 < p ≤ 1)
regularizer [1] and sparse Bayesian learning (SBL) [15] framework are developed.
However, the solutions of conventional sparse constrained methods are too sparse
and provide little information about source extents. To estimate the locations
and extents of brain activities, several studies have proposed to implement sparse
constraint on the transformed domains, such as the variation, wavelet and Lapla-
cian domains [3,5,10,16], which can provide more information about the source
extents than the sparse constraints in the original source domains.

Most of the aforementioned methods assume that the measurement noise
satisfies Gaussian distribution and employ the L2-norm to measure the residual
error. Nevertheless, the EEG signals are inevitably contaminated by the strong
background activities and outliers caused by ocular or head movements during
recording procedure. The L2-norm may not be suitable to represent these out-
liers. To handle these outliers in the EEG signals and estimate the extended
cortical activities, as in [1], we propose a robust EEG source imaging method,
namely L1-norm Residual Variation Sparse Source Imaging (L1R-VSSI). L1R-
VSSI employs the L1-norm to measure the residual error. In addition, to estimate
the locations and extents of sources, L1R-VSSI attains sparseness of sources
on the variation domain by incorporating the L1-norm constraint. The cortical
sources of L1R-VSSI are efficiently obtained by the alternating direction method
of multipliers (ADMM) algorithm [2].

The remaining of the paper is organized as follows. In Sect. 2, we present
details of the proposed EEG source imaging algorithm. In Sect. 3, the simulation
design and evaluation metrics are presented. Section 4 presents the results on
simulated and real EEG data, followed by a brief conclusion in Sect. 5.
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2 Methods

2.1 Background

The relationship between the EEG recordings and cortical sources can be
expressed as [8]

b = Ls + ε (1)

where b ∈ R
db×1 is EEG recording, s ∈ R

ds×1 is the unknown source vector.
L ∈ R

db×ds is the lead-field matrix that describes how a unit source of a certain
candidate location is related to the EEG measurements. db and ds denote the
number of sensors and candidate sources respectively. ε denotes the measurement
noise vector.

To estimate the extents and locations of sources, as in [5,10], we assume that
the sources are sparse in the variation domain. Each element in the variation
domain is the difference of amplitudes between two adjacent dipole sources.
When the amplitudes of sources are uniform, the non-zero vales of the variation
sources are largely expected to occur on the boundaries between the active and
inactive areas. Hence, we can estimate the sparseness on the variation domain
to obtain the extents and locations of cortical activities. To obtain the variation
sources, a variation operator V ∈ R

P×ds is defined as [5,10]

V =

⎡
⎢⎢⎢⎣

v11 v12 · · · v1ds

v21 v22 · · · v2ds

...
...

. . .
...

vP1 vP2 · · · vPds

⎤
⎥⎥⎥⎦

{
vpi = 1, vpj = −1, i < j; if source i, j share edge p

vpi = 0; otherwise

(2)

where P denotes the number of edges of triangular grids, which are defined by
the source model. The pth row of V corresponds to edge p. For each row of
V , only two elements corresponding to the two dipoles that share edge p are
non-zero (i.e., 1, −1). The pth row of the variation sources u = V s ∈ R

P×1, up ,
indicates the difference of dipoles that share the pth edge.

2.2 L1R-VSSI: L1-norm Residual Variation Sparse Source Imaging

Usually, the EEG measurement noise ε is assumed to satisfy Gaussian distri-
bution. And the fitting error is measured by the L2-norm for most EEG source
imaging methods. However, the EEG signals are inevitably influenced by the
artifacts induced by the head movement or eye blinks. The L2-norm for the fit-
ting error will exaggerates the effect of these outliers. To handle these outliers or
artifacts in EEG, our proposed EEG source imaging method, L1R-VSSI, employs
the L1-norm to measure the fitting error. Combining the variation sparse con-
straint, the solution of L1R-VSSI is obtained as

ŝ = arg min
s

‖Ls − b‖1 + λ‖V s‖1 (3)
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where λ > 0 is the regularization parameter. In this work, the ADMM algorithm
is employed to solve formulation (3).

We first rewrite Eq. (3) as

ŝ = arg min
s

‖e‖1 + λ‖u‖1
s.t., e = Ls − b,u = V s (4)

Then the augmented Lagrangian function of the constrained optimization
problem (4) is

L(s,e,u,y,z) = ‖e‖1 + λ‖u‖1 + y�(Ls − b − e) +
ρ1
2

‖Ls − b − e‖22
+ z�(V s − u) +

ρ2
2

‖V s − u‖22
(5)

where ρ1 > 0 and ρ2 > 0 are penalty parameters, y ∈ R
db×1 and z ∈ R

P×1

are the Lagrangian multipliers. Since L is separable with respect the variables
(s,e,u), we can obtain (s,e,u) with three subproblems.

ŝ(k+1) = arg min
s

L
(
s,e(k),u(k),y(k),z(k)

)

=
(
ρ1L

�L + ρ2V
�V

)−1[
ρ1L

�
(
b + e(k)

)

+ ρ2V
�u(k) − L�y(k) − V �z(k)

]
(6)

ê(k+1) = arg min
e

L
(
s(k+1),e,u(k),y(k),z(k)

)

= S 1
ρ1

(
Ls(k+1) − b +

1
ρ1

y(k)

)
(7)

û(k+1) = arg min
u

L
(
s(k+1),e(k+1),u,y(k),z(k)

)

= S λ
ρ2

(
V s(k+1) +

1
ρ2

z(k)

)
(8)

where Sκ(a) is

Sκ(a) =

⎧
⎪⎨
⎪⎩

a − κ, a > κ

0, |a| < κ

a + κ, a < −κ

(9)

The Lagrangian multipliers y, z are updated using the dual ascent method
[2]

ŷ(k+1) = y(k) + ρ1
(
Ls(k+1) − b − e(k+1)

)
(10)

ẑ(k+1) = z(k) + ρ2
(
V s(k+1) − u(k+1)

)
(11)

where x(k) is the value of x at kth iteration.
In summary, to obtain the source estimations, L1R-VSSI alternatively

updates the variables (s,e,u) and the Lagrangian multipliers (y,z), until the
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relative change of s reaches a user-specified tolerance (e.g., 10−4). Through our
simulations, e,u,y,z are all initialized to 0. The penalty parameters ρ1, ρ2 are
determined by cross-validation [14]. For the simulation experiment of ds = 6002,
db = 62, P = 17977, it reaches convergence after approximately 200 iterations,
which takes about 2 min.

3 Simulation Design and Evaluation Metrics

To test the performance of L1R-VSSI, a series of Monte-Carlo numerical simula-
tions were set up to compare L1R-VSSI and four imaging methods: two widely
used L2-norm based methods, i.e., wMNE [4] and LORETA [11], and sparse con-
straint methods in the original domain (SBL [15]) and in the variation domain
(variation-based sparse cortical current density (VB-SCCD) [5]). Additionally,
L1R-VSSI was also applied to one real clinical EEG data.

3.1 Simulation Design

In the numerical simulations, a three-shell head model is obtained using Brain-
storm [13]. There are 6002 triangle grids evenly distributed on the cortical sur-
face, each of which is a dipole source. The dipole orientation is fixed to be normal
to the cortical surface. The lead-field matrix L was constructed using Brainstorm
with the sensor configuration of the 64-channel Neuroscan Quik-cap system (two
channels are not EEG electrodes, hence, L ∈ R

62×6002).
A triangle grid is randomly selected as a seed point. The adjacent triangles are

gradually added to form an extended source. After multiplying the source vector
with the lead-field matrix, the cortical activities are transformed into EEG elec-
trode recordings. To simulate the actual EEG signals, both Gaussian noise and
outliers are added to the EEG electrode recordings. The noise level is described
by signal-to-noise ratio (SNR), which is defined as SNR = 10 log10

[
σ2(Ls)
σ2(ε)

]
.

where Ls is raw EEG data without noise and ε is mixture measurement noise
(Gaussian and outliers). σ2(x) is the variance of x.

As in [1], the mixture measurement noise is defined as

ε =
ε1

σ(ε1)

[
10(−

SNR
20 )

]
σ(Ls) (12)

where ε1 denote the outliers and σ is the standard deviation.
To generate the mixture noise, we first generate the outliers ε1 ∈ R

db×1,
where each element of ε1 obeys Gaussian distribution N (μ+10σ2, σ2) [1]. μ and
σ2 are the mean and variance of the true EEG Ls across all channels at the
single time slice, respectively. Then, given a specified SNR, the mixture noise is
generated by Eq. (12) and added to the true EEG recordings Ls.

In the numerical Monte-Carlo experiments, the performance of the proposed
method are verified in two cases: (1) One extended source with different extents
(i.e., 0.8, 4, 8, 12, 18 cm2); (2) EEG signals with different SNRs (i.e., 0, 5, 10,
15 dB). For each case, 100 simulation experiments were conducted to ensure that
the simulated extended sources could cover most areas of the brain.
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3.2 Evaluation Metrics

The performance of imaging algorithms are evaluated by four evaluation metrics.
(1) The area under the receiver operating characteristic (ROC) curve (AUC),
which assesses the sensitivity and specificity of imaging algorithms [7]; (2) Spatial
dispersion (SD), which depicts that the level of the spatial dispersion of recon-
structed source [3]; (3) Distance of localization error (DLE), which describes the
location error of the estimated source activities [16]; (4) Relative mean square
error (RMSE), which estimates the amplitudes accuracy of the reconstructed
sources [9]. Larger AUC, smaller SD, DLE and RMSE values indicate that the
method has better performance. The detailed computation of these metrics can
refer to the supplementary document in [10]. To image the estimated sources,
the absolute value of the recovered sources at specified time points are shown,
thresholded by the Otsu’s method [7,10].

4 Results

4.1 Results for Various Extents

Figure 1 shows performance metrics under different extents. As the source extents
increases, the AUC values of wMNE, SBL, VB-SCCD, L1R-VSSI gradually
decrease. In contrast, LORETA’s AUC value increases, indicating the poten-
tial of LORETA to estimate large extents’ sources. The SD, DLE, RMSE values
of wMNE, LORETA, VB-SCCD and L1R-VSSI gradually reduced, but L1R-
VSSI get the smallest values, which means that L1R-VSSI have more accurate
reconstructed solutions, smaller spatial dispersion and location errors. Due to
the sparse constraint of SBL, although it gets the smallest SD, DLE values, its
overly focal results also lead to a gradually increasing RMSE value. Comprehen-
sively comparing the results of four evaluation metrics, the L1R-VSSI method
shows better performance than the other four methods under different source
extents.

Figure 2 depicts the imaging maps of reconstructed sources under different
extents. The first column in Fig. 2 shows the simulated extended sources, and the
remaining columns show the reconstructed sources estimated by the five imaging
methods respectively. From the Fig. 2, we can see that SBL can reconstruct the
focal sources perfectly. However, for large extents’ sources, it can only accurately
locate the center of the sources, but the estimated extents are overly focused. In
contrast, the solutions of wMNE and LORETA are too blurred compared to the
simulated sources. Because the addition of variation operator, the blurriness of
the imaging results of VB-SCCD solution is greatly reduced and more sensitive to
the extents of the simulated sources. Nevertheless, compared to VB-SCCD, L1R-
VSSI approach’s recovered solutions have more precise description for extents
and strengths. This is because the use of L1-loss of the residual error reduces
the influence of artificial noise. Combining the results of Figs. 1 and 2, L1R-VSSI
performs better than wMNE, LORETA, SBL and VB-SCCD.
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Fig. 1. Evaluation metrics of different source extents. The data is the results of 100
Monte Carlo simulations and is described as Mean ± SEM (SEM: standard error of
mean). The SNR is 5 dB.
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L1R-VSSI VB-SCCD LORETA wMNE SBL Ground Truth

Fig. 2. Imaging results for different extents of extended sources. Source activity maps
show the absolute value of the extended sources’ activities. The threshold is deter-
mined using Otsu’s method. The SNR is 5 dB. Some sources are circled for illustration
purposes.
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4.2 Results for Different SNRs

Figure 3 shows the performance evaluation metrics under different SNRs (0, 5,
10, 15 dB). All algorithms are significantly affected by the noise level. As the SNR
increases, these algorithms’ AUC value gradually increases, and the RMSE, SD,
and DLE value decrease. Under comprehensive comparison, L1R-VSSI has a
larger AUC value, smaller SD, RMSE, DLE value, so the performance is better
than other approaches.
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Fig. 3. Evaluation metrics of various SNRs. The data is the results of 100 Monte Carlo
simulations and is described as Mean ± SEM (SEM: standard error of mean). The
extents of source is about 8 cm2.

4.3 Application of Epilepsy EEG Data

To show the practical performance of L1R-VSSI, we further apply the proposed
method to the Brainstorm public epilepsy data1. The average spikes across 58
trials is used to estimate sources, which are presented in Fig. 4(a). We calculate
the lead-field matrix based head model obtained from the head anatomical struc-
ture of the subject. The EEG data was collected from a patient who suffered
from focal epilepsy with focal sensory, dyscognitive and secondarily generalized
seizures since the age of eight years. After the resection of the epileptogenic area,
1 https://neuroimage.usc.edu/brainstorm/DatasetEpilepsy.

https://neuroimage.usc.edu/brainstorm/DatasetEpilepsy
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postoperative investigation showed the patient no epilepsy in 5 years. In [6], it has
located that the patient’s epileptogenic area is left frontal, which was estimated
by invasive EEG. Figure 4(b) shows the imaging results of various algorithms at
the peak time point (i.e., 0 s). Comparing the results in Fig. 4(b) with the anal-
ysis in [6], we can find that these algorithms all locate the epileptogenic area.
However, the epileptogenic area identified by LORETA and wMNE are overly
diffused, even covering many other areas of the brain scalp. Conversely, SBL
can only obtain some point sources in the epileptogenic area. For the variation
sparse constraint based methods, the estimations by L1R-VSSI and VB-SCCD is
well accordant with previous reports [6,12]. However, the solution of L1R-VSSI
shows more clear boundaries than that of VB-SCCD.

L1R-VSSI VB-SCCD SBL

LORETA wMNE-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
-1.5

-1

-0.5

0

0.5

1

1.5

2

A
m

pl
itu

de
(V

)

10-5 Average EEG waveforms

(a)Averaged EEG signals (b)Imaging results of various algorithms

Fig. 4. Application of the public epilepsy data. (a) is averaged EEG signals across 58
trials. (b) is the imaging maps, showing the absolute value of the source activities at
the peak time point. The imaging threshold was determined by Otsu’s method. SBL’s
estimation is circled for illustration purposes.

5 Conclusions

We have proposed a robust EEG source estimation algorithm, L1R-VSSI, which
reconstructs extended sources using L1-loss of the residual error and sparse con-
straints in the variation domains. The solution of L1R-VSSI is efficiently obtained
by ADMM. Numerical results indicate that L1R-VSSI can effectively alleviate
the influence of outliers and achieves better performance (larger AUC value and
smaller SD, DLE, RMSE value) than wMNE, LORETA, SBL and VB-SCCD in
terms of reconstructing extended sources. However, due to page limit, for the
experimental data analysis, we only applied L1R-VSSI to analyze the epilepsy
EEG data from Brainstorm. In our future work, we will also apply the proposed
method to more clinical data to verify the performance, which will promote the
development of neuroscience research and clinical medicine. Additionally, since
the minimization of sources in the variation domain does not limit the global
energy, L1R-VSSI tends to underestimate the amplitude of sources [10,16]. Our
future work will also consider adding regularizers in other transform domains to
improve the accuracy of amplitude.



104 F. Xu et al.

References

1. Bore, J.C., et al.: Sparse EEG source localization using LAPPS: least absolute l-P
(0 < p < 1) penalized solution. IEEE Trans. Biomed. Eng. 66, 1927–1939 (2018)

2. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed opti-
mization and statistical learning via the alternating direction method of multipliers.
Found. Trends R© Mach. Learn. 3(1), 1–122 (2011)

3. Chang, W.T., Nummenmaa, A., Hsieh, J.C., Lin, F.H.: Spatially sparse source
cluster modeling by compressive neuromagnetic tomography. Neuroimage 53(1),
146–160 (2010)

4. Dale, A.M., Sereno, M.I.: Improved localizadon of cortical activity by combining
EEG and MEG with MRI cortical surface reconstruction: a linear approach. J.
Cognit. Neurosci. 5(2), 162–176 (1993)

5. Ding, L.: Reconstructing cortical current density by exploring sparseness in the
transform domain. Phys. Med. Biol. 54(9), 2683–2697 (2009)
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