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Abstract We study a class of q-analogues of multiple zeta values given by certain
formal q-series with rational coefficients. After introducing a notion of weight and
depth for these q-analogues ofmultiple zeta values we present dimension conjectures
for the spaces of their weight- and depth-graded parts, which have a similar shape as
the conjectures of Zagier and Broadhurst-Kreimer for multiple zeta values.
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1 Introduction

Multiple zeta values are real numbers appearing in various areas of mathematics
and theoretical physics. By a q-analogue of these numbers one usually understands
q-series, which degenerate to multiple zeta values as q → 1. The algebraic structure
of several models of q-analogues has been the subject of recent research (see [28]
for an overview). Besides a conjecture of Okounkov in [17] for the dimension of the
weight-graded spaces for a specific such model, no conjectures for the dimensions
of the spaces of any of these q-analogues in a given weight and depth have occurred
in the literature. The purpose of this work is to introduce a space of q-series which
contains a lot of these models and to present conjectures on the dimensions of their
weight- and depth-graded parts. For natural numbers s1 ≥ 2, s2, . . . , sl ≥ 1 define
the multiple zeta value (MZV)
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ζ(s1, . . . , sl) =
∑

n1>···>nl>0

1

ns11 . . . nsll
.

By s1 + · · · + sl we denote its weight, by l its depth and we write Z for the Q-
vector space spanned by all MZVs. It is a well-known fact that the space Z is a
Q-algebra and that there are two different ways, known as the stuffle and shuffle
product formulas respectively, to express the product of two MZVs as a Q-linear
combination of MZVs. These two ways of writing the product give a large family
of Q-linear relations between MZVs in a fixed weight, known as the double shuffle
relations.Conjecturally all relations betweenMZVs follow from this typeof relations.
In particular it is conjectured that the algebra Z is graded by the weight. Let Zk

denote the Q-vector space spanned by the MZVs of weight k, then there is the
following famous dimension conjecture due to Zagier:

Conjecture 1 (Zagier [26])We have the following generating series

∑

k≥0

dimQ (Zk) x
k = 1

1 − x2 − x3
.

A stronger version of this conjecture was later proposed by Hoffman [13], which
states that the ζ(s1, . . . , sl) with s j ∈ {2, 3} form a basis of Z . So far it is only
known, due to a result of Brown [7], that these MZVs span the spaceZ . Conjecture
1 has a refinement byBroadhurst andKreimerwho proposed the following conjecture
on the dimension of the weight- and depth-graded parts.

Conjecture 2 (Broadhurst-Kreimer [6]) The generating series of the dimensions of
the weight- and depth-graded parts of multiple zeta values is given by

∑

k,l≥0

dimQ

(
grDl Zk

)
xk yl = 1 + E2(x)y

1 − O3(x)y + S(x)y2 − S(x)y4
,

where

E2(x) = x2

1 − x2
, O3(x) = x3

1 − x2
, S(x) = x12

(1 − x4)(1 − x6)
.

Observe thatE2(x) (resp.O3(x)) is the generating series of the number of even (resp.
odd) zeta values and S(x) is the generating series for the dimensions of cusp forms
for SL2(Z). Furthermore, by setting y = 1 on the right-hand side of the Broadhurst-
Kreimer conjecture one obtains precisely the right-hand side in the Zagier conjecture.
We are interested in conjectures similar to the above in the context of q-analogues of
multiple zeta values. There are various different models of q-analogues for multiple
zeta values. For most of these models the algebraic setup, i.e. analogues of the stuffle
and the shuffle product, is well understood (See for example [3, 9, 20, 21, 28]).
The problem of understanding the dimension of the weight-graded spaces has been
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considered in [3, 4, 9, 17, 20, 21, 28]. On the other hand possible analogues of the
Broadhurst-Kreimer conjecture for these q-analogues have not been proposed yet.

Now we will define the q-analogues of multiple zeta values we consider in this
paper. For s1, . . . , sl ≥ 1 and polynomials Q1(t) ∈ tQ[t] and Q2(t) . . . , Ql(t) ∈
Q[t] we define

ζq(s1, . . . , sl; Q1, . . . , Ql) =
∑

n1>···>nl>0

Q1(qn1) . . . Ql(qnl )

(1 − qn1)s1 · · · (1 − qnl )sl
. (1)

This series can be seen as a q-analogue1 of ζ(s1, . . . , sl), since we have for s1 > 1

lim
q→1

(1 − q)s1+···+sl ζq(s1, . . . , sl; Q1, . . . , Ql) = Q1(1) . . . Ql(1) · ζ(s1, . . . , sl) .

Weonly consider the casewhere deg(Q j ) ≤ s j and consider the followingQ-algebra:

Zq :=
〈
ζq(s1, . . . , sl; Q1, . . . , Ql)

∣∣ l ≥ 0, s1, . . . , sl ≥ 1, deg(Q j ) ≤ s j
〉

Q
.

Contrary to the case of MZVs, the number s1 + · · · + sl does not give a good notion
of weight for the ζq , since for example ζq(s; Q) = ζq(s + 1, Q · (1 − t)). Also the
number l will not be used to define the depth. Instead we will consider a class of
q-series which also span the space Zq and use these series to define a weight and a
depth filtration onZq . For s1, . . . , sl ≥ 1, r1, . . . , rl ≥ 0 these q-series are given by

[
s1, . . . , sl
r1, . . . , rl

]
:=

∑

u1>···>ul>0
v1,...,vl>0

ur11
r1! . . .

urll
rl ! · v

s1−1
1 . . . v

sl−1
l

(s1 − 1)! . . . (sl − 1)! · qu1v1+···+ulvl ∈ Q[[q]] .

(2)

We refer to these q-series as bi-brackets of depth l and weight s1 + · · · + sl + r1 +
· · · + rl . They were introduced by the first author in [1] and their algebraic structure
is well-understood and described in the papers [1–3, 31]. The bi-brackets have a
natural connection to quasi-modular forms (for SL2(Z)), since for even k the Fourier
expansion of the classical Eisenstein series Gk of weight k is given by

[k
0

]
plus

an appropriate constant term. In particular the space of quasi-modular forms with
rational coefficients, which is given byQ[G2,G4,G6], is a sub-algebra of the space
Zq .

As we will see in Theorem 1 the bi-brackets span the spaceZq and therefore we
can define a weight and a depth filtration by using the notion of weight and depth
of bi-brackets. We point out the fact that Zq is not graded by the weight, i.e. the
weight graded spaces grWk Zq are in general not isomorphic to the Q-vector spaces

1These type of series are often calledmodified q-analogues of multiple zeta values, since one needs
to multiply by (1 − q)s1+···+sl before taking the limit q → 1.
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spanned by bi-brackets of weight k. In analogy to the Zagier and Broadhurst-Kreimer
conjecture we conjecture the following.

Conjecture 3 (i) The dimension of the weight graded parts of Zq is given by

∑

k≥0

dimQ

(
grWk Zq

)
xk = 1

1 − x − x2 − x3 + x6 + x7 + x8 + x9
.

(ii) The dimension of the weight and depth graded parts of Zq is given by

∑

k,l≥0

dimQ

(
grW,D

k,l Zq

)
xk yl = 1 + D(x)E2(x)y + D(x)S(x)y2

1 − a1(x) y + a2(x) y2 − a3(x) y3 − a4(x) y4 + a5(x) y5
,

where D(x) = 1/(1 − x2), O1(x) = x/(1 − x2) and E2(x),S(x) are as in
Conjecture 2 and

a1(x) = D(x) O1(x) , a2(x) = D(x)
∑

k≥1

dimQ(Mk(SL2(Z))2 xk ,

a3(x) = a5(x) = O1(x) S(x) , a4(x) = D(x)
∑

k≥1

dimQ(Sk(SL2(Z))2 xk .

Here Mk(SL2(Z)) and Sk(SL2(Z)) denote the spaces of modular forms and
cusp forms for SL2(Z) of weight k.

Note that setting y = 1 in (ii) implies (i). This holds because of the formula

∑

k≥0

dimQ(Mk(SL2(Z))2 xk = 1 + x12

(1 − x4)(1 − x6)(1 − x12)
,

which is straightforward to prove.2

In the Broadhurst-Kreimer conjecture the numerator 1 + E2(x)y can be inter-
preted as the generating series of dimQ grW,D

k,l Q[ζ(2)], i.e.
∑

k,l≥0

dimQ grW,D
k,l (Q[ζ(2)]) xk yl = 1 + E2(x)y .

As we will see in Proposition 1 the numerator in Conjecture 3 (ii) is essentially the
generating series for the weight- and depth-graded dimensions of the quasi-modular
forms, since D(x)E2(x) counts the number of Eisenstein series and their deriva-
tives and D(x)S(x) corresponds to the number of cusp forms and their derivatives.

2Recall the series expansion 1
(1−x)2

= 1 + 2x + 3x2 + 4x3 + . . . and 1
(1−x)2

1+x
1−x = 1 + 4x +

9x2 + 16x3 + . . . . Now, since we have
∑

k≥0 dimQ(Mk(SL2(Z)) xk = 1
(1−x4)(1−x6)

= (1 + x4 +
x6 + x8 + x10 + x14) 1

(1−x12)2
, the claim follows by replacing x by x12 in the second series expan-

sion.
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Therefore it is reasonable to expect that

∑

k,l≥0

dimQ grW,D
k,l (Q[G2,G4,G6]) xk yl

?= 1 + D(x)E2(x)y + D(x)S(x)y2 .

In some sense the quasi-modular forms in the context of q-analogues of multiple
zeta values play the role of the even single zeta values (see also [11, 29]).

For k ≤ 15 we determined, by calculating a large number of coefficients, lower
bounds for dimQ

(
grWk Zq

)
, which equal the expected dimensions in Conjecture 3

(i). Furthermore, Conjecture 3 (i) actually holds for k ≤ 7 by Theorem 2 below.
For the refined Conjecture 3 (ii) our computer experiments provide us with lower
bounds, which again equal the expected dimensions, in the range given by Table4 on
page 18.

2 q-analogues of MZVs and Bi-Brackets

Usually a function f (q) is called a q-analogue of multiple zeta value, if lim
q→1

f (q) is a

multiple zeta value. There are various differentmodels ofq-analogues in the literature
(See [28] for a nice overview). One of the first models was studied by Bradley [5]
and Zhao [27] independently. This model is given for s1 ≥ 2, s2, . . . sl ≥ 1 by the
q-series

∑

n1>···>nl>0

q(s1−1)n1 . . . q(sl−1)nl

{n1}s1q · · · {nl}slq , (3)

with {n}q = 1−qn

1−q being the usual q-integer. Taking the limit q → 1 in above sum
one obtains ζ(s1, . . . , sl). For a cleaner description of the algebraic structure and
(in our case) a connection to modular forms it is convenient to consider a modified
version of (3) by removing the factor (1 − q)s1+···+sl , i.e. to consider the series

ζBZ
q (s1, . . . , sl) =

∑

n1>···>nl>0

q(s1−1)n1 . . . q(sl−1)nl

(1 − qn1)s1 · · · (1 − qnl )sl
, (4)

which then satisfies lim
q→1

(1 − q)s1+···+sl ζq(s1, . . . , sl) = ζ(s1, . . . , sl).

In a greater generality we will consider, for s1, . . . , sl ≥ 1 and polynomials
Q1(t) ∈ tQ[t] and Q2(t) . . . , Ql(t) ∈ Q[t], sums of the form

ζq(s1, . . . , sl; Q1, . . . , Ql) =
∑

n1>···>nl>0

Q1(qn1) . . . Ql(qnl )

(1 − qn1)s1 · · · (1 − qnl )sl
. (5)
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The condition Q1(t) ∈ tQ[t] ensures that this is an element inQ[[q]]. In contrast to
(4) we also allow s1 = 1 in our setup, i.e., we also include q-analogues of the non-
convergent multiple zeta values. In the case s1 > 1 we can (by the same arguments as
in [4] Proposition 6.4) again take the limit q → 1 aftermultiplying by (1 − q)s1+···+sl ,
which gives

lim
q→1

(1 − q)s1+···+sl ζq(s1, . . . , sl; Q1, . . . , Ql) = Q1(1) . . . Ql(1) · ζ(s1, . . . , sl) .

Almost all models of q-analogues in the literature are given by sums of the form (5).
In the following we always set ζq(s1, . . . , sl; Q1, . . . , Ql) = 1 for the case l = 0.
We will consider the following spaces spanned by the series (5) of a particular kind

Zq =
〈
ζq(s1, . . . , sl; Q1, . . . , Ql)

∣∣ l ≥ 0, s1, . . . , sl ≥ 1, deg(Q j ) ≤ s j
〉

Q
,

where as before we always assume Q1(t) ∈ tQ[t] and Q2(t) . . . , Ql(t) ∈ Q[t]. As
we will see below Zq is the space in which we are interested the most. For d ≥
0 we define the subspace Zq,d =

〈
ζq(s1, . . . , sl; Q1, . . . , Ql) ∈ Zq

∣∣ deg(Q j ) ≤
s j − d

〉

Q
. So in particular we have Zq = Zq,0 and Zq,d+1 ⊂ Zq,d . We also restrict

to the case in which all polynomials Q j (not just Q1) have no constant terms and
therefore are elements in tQ[t]. The resulting space is denoted by

Z ◦
q =

〈
ζq(s1, . . . , sl; Q1, . . . , Ql) ∈ Zq

∣∣ Q1, . . . , Ql ∈ tQ[t]
〉

Q
.

For the spaces Z ◦
q,d given by Z ◦

q ∩ Zq,d it holds Z ◦
q = Z ◦

q,0 and Z ◦
q,d+1 ⊂ Z ◦

q,d .
Notice that all of these spaces are closed under multiplication. In depth one for
example we have

ζq (s1; Q1) · ζq (s2; Q2) = ζq (s1, s2; Q1, Q2) + ζq (s2, s1; Q2, Q1) + ζq (s1 + s2; Q1 · Q2) ,

and clearly deg Q1 · Q2 ≤ s1 + s2 − d if deg Q j ≤ s j − d for j = 1, 2.
In [28] Zhao considers for s1, . . . , sl , d1, . . . , dl ∈ Z the series

zd1,...,dlq (s1, . . . , sl) =
∑

n1>···>nl>0

qn1d1 . . . qnldl

(1 − qn1)s1 · · · (1 − qnl )sl
, (6)

which gives an even more general setup than our ζq . Especially these series can be
seen as natural generators of the spaces Zq,d and Z ◦

q,d by choosing the appropriate
conditions on the d j . We will now give a short overview of different q-analogues of
multiple zeta values, which can be written in terms of the ζq and relate them to the
spaces Zq,d and Z ◦

q,d .
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(i) The space spanned by the Bradley-Zhao model ζBZ
q = ζq(s1, . . . , sl; t s1−1, . . . ,

t sl−1), defined in (4), is given by3

Zq,1 = 〈
ζBZ
q (s1, . . . , sl) | l ≥ 0 , s1 ≥ 2, s2, . . . , sl ≥ 1

〉
Q .

(ii) Another interesting case is the Schlesinger-Zudilin model. These q-analogues
are for s1 ≥ 1, s2, . . . , sl ≥ 0 defined by

ζ SZ
q (s1, . . . , sl) =

∑

n1>···>nl>0

qn1s1 . . . qnl sl

(1 − qn1)s1 · · · (1 − qnl )sl

= ζq(s1, . . . , sl; t s1 , . . . , t s j ) .

(7)

The space spanned by these series is, using the same argument as in (i), given
by

Zq = 〈
ζ SZ
q (s1, . . . , sl)

∣∣ l ≥ 0, s1 ≥ 1, s2, . . . , sl ≥ 0
〉
Q

.

Originally defined by Schlesinger [18] and Zudilin [30] for the cases s1 ≥
2, s2, . . . , sl ≥ 1, it was observed in [20] and further discussed in [9] that the
algebraic setup for this model, especially the shuffle product analogue, can be
described nicely by allowing s1 ≥ 1, s2, . . . , sl ≥ 0. Restricting to s1, . . . , sl ≥
1 we get the subspace

Z ◦
q = 〈

ζ SZ
q (s1, . . . , sl)

∣∣ l ≥ 0, s1, . . . , sl ≥ 1
〉
Q

.

(iii) In [22] Ohno, Okuda and Zudilin define for s1, . . . , sl ∈ Z the series

ζOOZ
q (s1, . . . , sl) =

∑

n1>···>nl>0

qn1

(1 − qn1)s1 · · · (1 − qnl )sl
. (8)

In the case s1, . . . , sl ≥ 1 these can be written as ζq(s1, . . . , sl; t, 1, . . . , 1) ∈
Zq , but the space spanned by (8) for s1, . . . , s j ≥ 1 is a priori not given by one
of the Zq,d or Z ◦

q,d .
(iv) For s1, . . . , sl ≥ 2 Okounkov chooses the following polynomials in [17]

QO
j (t) =

{
t
s j
2 s j = 2, 4, 6, . . .

t
s j−1

2 (1 + t) s j = 3, 5, 7, . . . .

3This follows easily from the fact that t j−1(1 − t)s− j with j = 1, . . . , s (resp. j = 2, . . . , s) forms
a basis of {Q ∈ Q[t] | deg Q ≤ s − 1} (resp. {Q ∈ tQ[t] | deg Q ≤ s − 1}).
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and defines Z(s1, . . . , sl) = ζq(s1, . . . , sl; QO
1 , . . . , QO

l ). With the same argu-
ments as before (see also the proof of Theorem 1 (iii)) the span of these series
is given by

Z ◦
q,1 = 〈

Z(s1, . . . , sl)
∣∣ l ≥ 0, s1, . . . , sl ≥ 2

〉
Q

.

Although the space Zq seems to be much larger than the space Z ◦
q , we expect

that they both coincide (Conjecture 5 (B2) below) and therefore every ζ SZ
q should

be expressible as a linear combination of ζ SZ
q (s1, . . . , sl) with s1, . . . , sl ≥ 1. In [9]

(Theorem 5.5) such an expression for ζOOZ
q in terms of ζ SZ

q is given, which in turn
can be seen as a special case of that conjecture.

Remark 1 As seen in the example above, the polynomials Q j often depend just on s j .
For these types of q-analogues one can also define subspaces ofZq in the following
way: Suppose that {Qs}s≥1 is a family of polynomials, where for all s1, s2 ≥ 1 there
exists numbers λ

s1,s2
j ∈ Q with j ≥ 1 and λ

s1,s2
j = 0 for almost all j , such that

Qs1(t) · Qs2(t) =
∞∑

j=1

λ
s1,s2
j Q j (t)(1 − t)s1+s j− j .

Then the space spanned by all ζq(s1, . . . , sl; Qs1 , . . . , Qsl ) is a sub-algebra of Zq .
This also gives an example of a so called quasi-shuffle algebra as described in [14].
For this one can define for a, b ≥ 1 the product za 
 zb = ∑∞

j=1 λ
a,b
j z j with the same

notation as used in the first section of [14]. This was for example done in [4] for the
space Z ◦

q .

2.1 Bi-Brackets as q-Analogues of MZVs

In this section we will consider the q-series from the introduction in more detail and
explain their connection to q-analogues of multiple zeta values in the section before.

Definition 1 (i) For s1, . . . , sl ≥ 1, r1, . . . , rl ≥ 0 we define the following q-
series

[
s1, . . . , sl
r1, . . . , rl

]
:=

∑

u1>···>ul>0
v1,...,vl>0

ur11
r1! . . .

urll
rl ! · v

s1−1
1 . . . v

sl−1
l

(s1 − 1)! . . . (sl − 1)! · qu1v1+···+ulvl ∈ Q[[q]] .

We refer to these q-series as bi-brackets of depth l and of weight s1 + · · · +
sl + r1 + · · · + rl .

(ii) For r1 = · · · = rl = 0 we write

[s1, . . . , sl] :=
[
s1, . . . , sl
0, . . . , 0

]
.

http://dx.doi.org/10.1007/978-3-030-37031-2_5
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The series [s1, . . . , sl], which we call brackets, were introduced and studied
in [4].

The bi-brackets also have an alternative form, which we will use now. For this
recall that the Eulerian polynomials (cf. [10, (3.2)]) are defined by

t Ps−1(t)

(1 − t)s
=

∞∑

d=1

ds−1td .

For s > 1 the polynomials t Ps−1(t) have degree s − 1 and in the case s = 1 we have
t P0(t) = t . By definition of the bi-brackets it is then clear that

[
s1, . . . , sl
r1, . . . , rl

]
=

∑

n1>···>nl>0

l∏

j=1

(
n
r j
j

r j ! · qn j Ps j−1(qn j )

(s j − 1)! · (1 − qn j )s j

)
. (9)

We will now see that the spaces spanned4 by the bi-brackets and brackets are
exactly given by the spaces Zq and Z ◦

q respectively.

Theorem 1 The following equalities hold

(i) Zq =
〈[s1, . . . , sl
r1, . . . , rl

] ∣∣ l ≥ 0, s1, . . . , sl ≥ 1, r1, . . . , rl ≥ 0
〉

Q
.

(ii) Z ◦
q = 〈[s1, . . . , sl ] | l ≥ 0 , s1, . . . , sl ≥ 1

〉
Q .

(iii) Z ◦
q,1 = 〈[s1, . . . , sl] | l ≥ 0 , s1, . . . , sl ≥ 2

〉
Q .

Proof Since for all s ≥ 1 we have Ps−1(1) �= 0 the polynomials t Pj−1(t)(1 − t)s− j

with j = 1, . . . , s form a basis of the space {Q ∈ tQ[t] | deg Q ≤ s}. In particular
for every polynomial Q in this space there exist coefficients α j ∈ Q with

Q(t)

(1 − t)s
=

s∑

j=1

α j
t Pj−1(t)

(1 − t) j
, (10)

fromwhich the statement (ii) follows. Also (iii) follows, since for d = 1 the condition
Q j (t) ∈ tQ[t] and deg Q j ≤ s j − 1 implies s j ≥ 2 for all j = 1, . . . , l. One can also
see that

〈[s1, . . . , sl ] | l ≥ 0 , s1, . . . , sl ≥ 2
〉
Q = 〈

ζBZ
q (s1, . . . , sl) | l ≥ 0 , s1, . . . , sl ≥ 2

〉
Q .

To prove (i) we will first show the inclusion ’⊆’ , i.e. that every ζq(s1, . . . , sl;
Q1, . . . , Ql) can be written in terms of bi-brackets. For this we need to see what
happens if one of the Q2, . . . , Ql has a constant term. Without loss of generality we
can, by the proof of (ii), focus on the cases Qi (t) = 1 for a 2 ≤ i ≤ l . Since for all
s ≥ 1 we have

4In the articles [1, 2, 4] these spaces were denoted BD and MD .
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1

(1 − t)s
= 1 +

s∑

m=1

t

(1 − t)m
,

we can write

∑

n1>···>nl>0

l∏

j=1

Q j (qn j )

(1 − qn j )s j
=

∑

n1>···>nl>0

l∏

j=1
j �=i

Q j (qn j )

(1 − qn j )s j
+

∑

n1>···>nl>0
1≤m≤si

qni

(1 − qni )m

l∏

j=1
j �=i

Q j (qn j )

(1 − qn j )s j
.

For the the second sum on the right-hand side we can again use (10). For the first
sum we obtain (by setting nl+1 = 0)

∑

n1>···>nl>0

l∏

j=1
j �=i

Q j (q
n j )

(1 − qn j )
s j

=
∑

n1>···>ni−1>ni+1>···>nl>0

(ni−1 − ni+1 − 1)
l∏

j=1
j �=i

Q j (q
n j )

(1 − qn j )
s j

.

Repeating this for all 2 ≤ i ≤ l with Qi (t) = 1 we obtain sums of the form (9) from
which we deduce ‘⊆’.

Now to prove ‘⊇’ we first define for m ≥ 0 the polynomials pm(n) by p0(n) = 1
and

pm(n) =
∑

n>N1>···>Nm>0

1 =
(
n − 1

m

)
. (11)

The pm(n) is a polynomial in n of degreem and therefore we can always find cm(r) ∈
Q with nr = ∑r

m=0 cm(r) pm(n). The idea is now to replace n
r j
j in the definition of

the bi-brackets by
∑r j

m j=0 cm j (r j ) pm j (n j ) and then use (11) to get sums which can
be written in terms of the ζq . We illustrate this in the depth two case from which the
general case becomes clear. We have with κ = (s1 − 1)!(s2 − 1)!r1!r2!

κ ·
[
s1, s2
r1, r2

]
=

∑

n1>n2>0

nr11 q
n1 Ps1−1(qn1 )

(1 − qn1 )s1
nr22 q

n2 Ps2−1(qn2 )

(1 − qn2 )s2

=
∑

0≤m2≤r2

cm2 (r2)
∑

n1>n2>N1>···>Nm2>0

nr11 q
n1 Ps1−1(qn1 )

(1 − qn1 )s1
qn2 Ps2−1(qn2 )

(1 − qn2 )s2

=
∑

0≤m1≤r1
0≤m2≤r2

cm1 (r1)cm2 (r2)
∑

n1>n2>N1>···>Nm2>0
n1>N ′

1>···>N ′
m1

>0

qn1 Ps1−1(qn1 )

(1 − qn1 )s1
qn2 Ps2−1(qn2 )

(1 − qn2 )s2
.

Now considering all the possible shuffles, and possible equalities of the N and the
N ′ it is clear that this sum can be written as a linear combination of ζq by interpreting
appearing 1 as (1 − qN )(1 − qN )−1. For general depth l the idea is the same and
therefore we obtain ’⊇’ from which (i) follows.
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As an example of how to write a bi-bracket in terms of ζq , we give the following.

[
1, 1

0, 1

]
=

∑

n1>n2>0

qn1

(1 − qn1)

n2qn2

(1 − qn2)

=
∑

n1>n2>0

qn1

(1 − qn1)

qn2

(1 − qn2)
+

∑

n1>n2>n3>0

qn1

(1 − qn1)

qn2

(1 − qn2)

1 − qn3

(1 − qn3)

= ζq(1, 1; t, t) + ζq(1, 1, 1; t, t, 1 − t) .

(12)

2.2 Bi-Brackets and Quasi-modular Forms

We now define the weight and the depth filtration for the space Zq by writing for a
subset A ⊆ Zq

FilWk (A) := 〈[s1, . . . , sl
r1, . . . , rl

]
∈ A

∣∣ 0 ≤ l ≤ k , s1 + · · · + sl + r1 + · · · + rl ≤ k
〉
Q

FilDl (A) := 〈[s1, . . . , st
r1, . . . , rt

]
∈ A

∣∣ t ≤ l
〉
Q

.

If we consider the depth and weight filtration at the same time we use the short nota-
tion FilW,D

k,l := FilWk FilDl and similar for the other filtrations. The associated graded

spaces will be denoted by grWk and grW,D
k,l

Remark 2 (i) We point to the fact that the filtration by depth coming from bi-
brackets is different from the naive notion of depth for the ζq(s1, . . . , sl),
given as the number of variables si . For example, as indicated by (12), the
ζq(1, 1, 1; t, t, 1 − t) is an element in FilD2 (Zq).

(ii) As seen before the Schlesinger-Zudilin model ζ SZ
q (s1, . . . , sl), defined in (7)

for s1 ≥ 1, s2, . . . , sl ≥ 0, span the space Zq and therefore we also obtain a
depth and weight filtration for these series. By the proof of Theorem 1 we see
that ζ SZ

q (s1, . . . , sl) ∈ FilW,D
K ,L (Zq) with K = s1 + · · · + sl + z and L = l + z,

where z = #{ j | s j = 0} is the number of s j which are zero.

For several reasons one should consider these filtrations to be the natural ones.
First of all the multiplication inZq respects the depth as well as the weight grading.
Secondly, on Zq we have the derivation given by q d

dq , which increases the weight
by 2 and keeps the depth, since we obtain directly from the definition that

q
d

dq

[
s1, . . . , sl
r1, . . . , rl

]
=

l∑

j=1

(
s j (r j + 1)

[
s1 , . . . , s j−1 , s j + 1 , s j+1, . . . , sl
r1 , . . . , r j−1 , r j + 1 , r j+1 , . . . , rl

])
.



248 H. Bachmann and U. Kühn

Thirdly, the classical Eisenstein series are contained in Z ◦
q ⊂ Zq . For example we

have

G2 = − 1

24
+ [2] , G4 = 1

1440
+ [4] , G6 = − 1

60480
+ [6] ,

since in depth one we have for k > 0

[k] =
∑

u>0
v>0

vk−1

(k − 1)!q
uv = 1

(k − 1)!
∑

n>0

∑

d|n
dk−1qn = 1

(k − 1)!
∑

n>0

σk−1(n)qn .

The space of quasi-modular forms for SL2(Z)with rational coefficients is given by
M̃(SL2(Z))Q = Q[G2,G4,G6] (see [16]) and therefore it is a sub-algebra ofZ ◦

q and
Zq . It is graded by the weight, in the classical sense, and obviously M̃k(SL2(Z))Q ⊂
FilWk (Zq). The derivation q d

dq increases the weight by 2, i.e.

q
d

dq
: M̃k(SL2(Z))Q → M̃k+2(SL2(Z))Q.

The space of quasi-modular forms has the decomposition

M̃k(SL2(Z))Q = 〈
Gk , q

d

dq
Gk−2, . . . ,

(
q
d

dq

)k/2−1
G2

〉
Q

⊕
k/2⊕

i=0

(
q
d

dq

)i
Sk−2i (SL2(Z))Q ,

(13)

which follows from [16] Proposition 1 together with the fact that q d
dq respects the

decomposition Mk(SL2(Z))Q = GkQ ⊕ Sk(SL2(Z))Q.

Proposition 1 Set M̃(x, t) = 1 + D(x)E2(x) t + D(x)S(x) t2, then the generating
series for the weight- and depth-graded dimensions of M̃(SL2(Z))Q ⊂ Zq satisfies
the coefficient-wise inequality

∑

k,l≥0

dimQ grW,D
k,l (M̃(SL2(Z))Q)xktl ≤ M̃(x, t) . (14)

Proof The Eisenstein series and their derivatives are in the depth one subspaces. For
the space of cusp forms of weight k we have

Sk(SL2(Z))Q ⊂ 〈
Gk−aGa |a = 0, . . . , k/2

〉
Q

⊂ FilW,D
k,2 (Zq).

This consequence of a result of Rankin was observed by Zagier in [25, p. 146].
Finally since q d

dq does not alter the depth we get the claim by the decomposition
(13).

The expected equality in Proposition 1 would hold if the brackets [2, 4, 6] and
the odd brackets [1, 3],.. together with all of their derivatives were algebraically
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independent, but by now only partial results for linear independence are available
[24, 29].

Conjecture 4 We have a decomposition of Q-algebras

Zq
∼= M̃(SL2(Z))Q ⊗ A .

This decomposition is respected by the operator q d
dq . MoreoverA is a free polyno-

mial algebra that is bi-graded with respect to weight and depth compatible with those
ofZq . In particular it equals the graded dual of the universal enveloping algebra of
a bi-graded Lie algebra.5

This decomposition of algebras should be seen as an analogue of [11, Conjecture
1.1. b)] in our context. The conjecture above implies the weaker claim, that the
algebra Zq is isomorphic to a free polynomial algebra graded by the weight. It also
implies that in Proposition 1 the equality holds.

Remark 3 In [17] Okounkov gives the following conjecture for the dimension of the
weight-graded parts of Z ◦

q,1.

∑

k≥0

dimQ

(
grWk Z ◦

q,1

)
xk

?= 1

1 − x2 − x3 − x4 − x5 + x8 + x9 + x10 + x11 + x12
.

(15)

We expect that the decomposition of Conjecture 4 induces also a decomposition for
Z ◦

q,1. Indeed, keeping the previous notation, this is compatible with the factorization

1

1 − x2 − . . . − x5 + x8 + . . . + x12
= M̃(x, 1)

1

1 − D(x)O3(x) + 2D(x)S(x)
.

Our Conjecture 3 (i) for Zq yields with E4(x) = x4/(1 − x2)

1

1 − x − x2 − x3 + x6 + . . . + x9
= M̃(x, 1)

1

1 − D(x)O1(x) + D(x)
(
E4(x) + 2S(x)

) .

Thus we may think of the Lie algebra behind Zq compared to that behind Z ◦
q,1 as

having additional generators induced by the derivatives of a generator in weight 1
and having additional relations being counted by the number of Eisenstein series for
SL2(Z) and their derivatives.

5Some authors prefer to denote this as the symmetric algebra of a Lie algebra.
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3 Computational Evidences for the Conjectures

In this section we want to describe how to implement the bi-brackets to obtain the
numerical results, which were used to obtain Conjecture 3 in the introduction and
further conjectures stated below. A similar method to perform such calculations has
been communicated to us by Don Zagier.

Using (9) we define for a fixed N ∈ N an approximate version of bi-brackets by

[
s1, . . . , sl
r1, . . . , rl

]

N

:=
∑

N≥n1>···>nl>0

l∏

j=1

(
n
r j
j

r j ! · qn j Ps j−1(qn j )

(s j − 1)! · (1 − qn j )s j

)
∈ Q[[q]]. (16)

Observe that
[s1,...,sl
r1,...,rl

]
N

= 0 for N < l. It is clear that at least the first N coefficients
of these approximate versions are identical to the bi-brackets, i.e.

[
s1, . . . , sl
r1, . . . , rl

]

N

≡
[
s1, . . . , sl
r1, . . . , rl

]
mod qN+1.

To calculate the first N coefficients of the bi-brackets we use the following recur-
sive formula for these approximate versions.

Lemma 1 For all s1, . . . , sl , r1, . . . , rl and N ≥ l we have

[
s1, . . . , sl
r1, . . . , rl

]

N

=
[
s1, . . . , sl
r1, . . . , rl

]

N−1

+ Nr1

r1!
qN Ps1−1(qN )

(s1 − 1)! · (1 − qN )
s1

[
s2, . . . , sl
r2, . . . , rl

]

N−1

,

where we set
[s2,...,sl
r2,...,rl

]
N−1

= 1 for l = 1.

Proof This follows by splitting up the summation N ≥ n1 > · · · > nl > 0 into the
parts where N > n1 and N = n1 to get the first and the second term respectively.

We implemented an algorithm based on Lemma 1 in parallel PARI/GP [23]. On a
computer with 32 cores it takes several hours to obtain each of the following Tables1
and 2:

In fact for these tables we calculated approximated bi-brackets with coefficients
modulo some large prime and determined the dimension they span at least. Exper-
imentally the choice of a sufficiently large prime does not alter these dimensions.6

We have similar tables for various subspaces like the positive bi-brackets

Z +
q = 〈[s1, . . . , sl

r1, . . . , rl

]
∈ Zq

∣∣ l ≥ 0, s1 > r1, . . . , sl > rl
〉
Q

6More precisely, we checked this for a few primes between k and 10007.
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Table 1 lower bounds filnumk,l (Zq ) for dimQ FilW,D
k,l (Zq ) with depth ≤ 14

k\l 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 0 0 0 0 0 0 0 0 0 0 0 0 0

2 3 4 0 0 0 0 0 0 0 0 0 0 0 0

3 5 7 8 0 0 0 0 0 0 0 0 0 0 0

4 7 12 14 15 0 0 0 0 0 0 0 0 0 0

5 10 19 25 27 28 0 0 0 0 0 0 0 0 0

6 13 30 41 48 50 51 0 0 0 0 0 0 0 0

7 17 44 68 81 89 91 92 0 0 0 0 0 0 0

8 21 65 106 138 153 162 164 165 0 0 0 0 0 0

9 26 90 167 223 264 281 291 293 294 0 0 0 0 0

10 31 126 249 366 439 490 509 520 522 523 0 0 0 0

11 37 167 376 571 738 830 892 913 925 927 928 0 0 0

12 43 222 537 905 1190 1418 1531 1605 1628 1641 1643 1644 0 0

13 50 285 778 1364 1948 2344 2645 2781 2868 2893 2907 2909 2910 0

14 57 368 1075 2090 3051 3923 4453 4840 5001 5102 5129 5144 5146 5147

or the space of 123-brackets given by

〈[s1, . . . , sl ]
∣∣ l ≥ 0, s1, . . . , sl ∈ {1, 2, 3} 〉

Q
⊂ Z ◦

q

and for sub-algebras like Z ◦
q or Z ◦

q,1. This lead us to the following conjectures

Conjecture 5 (B1) Every bi-bracket equals a linear combination of positive bi-
brackets

(B1*) More precisely, the space of positive bi-brackets Z +
q satisfies

FilW,L
w,l (Z +

q ) = FilW,L
w,l (Zq) .

(B2) Every bi-bracket equals a linear combination of brackets, i.e. Z ◦
q = Zq .

(B3) Every bracket equals a linear combination of 123-brackets.

Although our experiments support conjectures (B1) and (B3), we were not able to
prove the weaker claims that the positive bi-brackets respectively the 123-brackets
generate sub-algebras ofZq . In [1] the conjecture (B2) was stated the first time and
therein examples which complement those in [9] (Theorem 5.5) were given.

Theorem 2 For all weights k ≤ 7 the coefficients on both sides of Conjecture 3 (i)
coincide and the Conjectures 5 (B1), (B2) and (B3) hold for these weights.

We will give a proof of this theorem at the end of this section.

http://dx.doi.org/10.1007/978-3-030-37031-2_5
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The Conjecture 3 is based on the assumption that the above lower bounds were
the actual dimensions. In other words, for the quantities

grnumk,l = filnumk,l (Zq) − filnumk,l−1(Zq) − filnumk−1,l(Zq) + filnumk−1,l−1(Zq)

we expect the equalities grnumk,l = dimQ grW,D
k,l (Zq). Now we check if the generating

series of the weight- and depth-graded parts of Zq can be of the shape implied
by the conjectures. For example, if we assume that there is a decomposition Zq

∼=
M̃(SL2(Z)) ⊗ A , where the algebraA is a free polynomial algebra, then there must
hold an equation of the form

∑

k,l≥0

dimQ(grk,l(Zq)) x
k yl = M̃(x, y) ·

∏

k,l≥1

1

(1 − xk yl)gk,l
,

where the gk,l equal the number of generators ofA in weight k and depth l. Solving
such an equation with with grnumk,l on the left-hand side, give us numerical gnumk,l and
within the range of our experiments (See Table3 on page 18) these are positive and
satisfy a parity pattern.

If we assume that there is a decomposition Zq
∼= M̃(SL2(Z)) ⊗ A , where the

algebra A is the graded dual to the universal enveloping algebra of a bi-graded Lie
algebra, then there must hold an equation of the form

∑

k,l≥0

dimQ(grW,D
k,l (Zq)) x

k yl = M̃(x, y) · 1

1 − ∑
k,l≥1 bk,l x

k yl

with bk,l ∈ Z. Solving such an equation with with grnumk,l (Zq) on the left-hand side,
give us numerical bnumk,l . Within the range of our experiments (See Table4 on page
18) these are as expected in Conjecture 3 (ii).

Whereas it is known that the numbers from Zagier’s conjecture give upper bound
for the dimensions in question, the knowledge about the Broadhurst-Kreimer con-
jecture is very little. The only known results are the following:

Theorem 3 (Euler, Ihara-Kaneko-Zagier, Goncharov, Ihara-Ochiai) For 1 ≤ l ≤ 3
the numbers gk,l of generators for Z of weight k and depth l are not bigger than
implied by the Broadhurst-Kreimer conjecture.

The proof of this result for l = 1 is a trivial consequence of Euler’s formula
for even zeta values. For l = 2, 3 one can bound the number of generators by the
dimension of the so called double shuffle spaces, see e.g. [11, 12, 15] .

We now want to use a similar technique to obtain upper bounds of the number of
algebra generators for bi-brackets.
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Table 3 Evidence for A being a free polynomial algebra

grnumk\l 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0 0 0 0 0 0

3 2 1 1 0 0 0 0 0 0 0 0 0 0 0

4 2 3 1 1 0 0 0 0 0 0 0 0 0 0

5 3 4 4 1 1 0 0 0 0 0 0 0 0 0

6 3 8 5 5 1 1 0 0 0 0 0 0 0 0

7 4 10 13 6 6 1 1 0 0 0 0 0 0 0

8 4 17 17 19 7 7 1 1 0 0 0 0 0 0

9 5 20 36 24 26 8 8 1 1 0 0 0 0 0

10 5 31 46 61 32 34 9 9 1 1 0 0 0 0

11 6 35 86 78 94 41 43 10 10 1 1 0 0 0

12 6 49 106 173 118 136 51 53 11 11 1 1 0 0

13 7 56 178 218 299 168 188 62 64 12 12 1 1 0

14 7 76 214 429 377 476 229 251 74 76 13 13 1 1

gnumk\l 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 2 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 1 0 0 0 0 0 0 0 0 0 0 0 0

5 3 0 1 0 0 0 0 0 0 0 0 0 0 0

6 0 2 0 1 0 0 0 0 0 0 0 0 0 0

7 4 0 3 0 1 0 0 0 0 0 0 0 0 0

8 0 7 0 3 0 1 0 0 0 0 0 0 0 0

9 5 0 8 0 4 0 1 0 0 0 0 0 0 0

10 0 12 0 11 0 4 0 1 0 0 0 0 0 0

11 6 0 22 0 14 0 5 0 1 0 0 0 0 0

12 0 20 0 31 0 17 0 5 0 1 0 0 0 0

13 7 0 47 0 44 0 21 0 6 0 1 0 0 0

14 0 31 0 81 0 58 0 25 0 6 0 1 0 0

Table 4 Evidence for A being a symmetric algebra of a Lie algebra

l 1 2 3 4 5 6 7 8 9 10 11 12 13 14

k ≤ 63 31 21 19 15 14 14 14 14 14 14 14 14 14
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For the generating function of the bi-brackets we write

∣∣∣∣
X1, . . . , Xl

Y1, . . . ,Yl

∣∣∣∣ :=
∑

s1,...,sl>0
r1,...,rl>0

[
s1 , . . . , sl

r1 − 1 , . . . , rl − 1

]
Xs1−1
1 . . . Xsl−1

l · Y r1−1
1 . . . Y rl−1

l .

As shown in [1] this satisfies the partition relation

∣∣∣∣
X1, . . . , Xl

Y1, . . . ,Yl

∣∣∣∣ =
∣∣∣∣
X1, . . . , Xl

Y1, . . . ,Yl

∣∣∣∣

∣∣∣∣
P

,

with f (X1, . . . , Xl ,Y1, . . . ,Yl)
∣∣
P = f (Y1 + · · · + Yl , . . . ,Y1 + Y2,Y1, Xl , Xl −

Xl−1, . . . , X2 − X1). Up to terms of depth less than l their product is given by

∣∣∣∣
X1, . . . , X j

Y1, . . . ,Y j

∣∣∣∣ ·
∣∣∣∣
X j+1, . . . , Xl

Y j+1, . . . ,Yl

∣∣∣∣ =
∣∣∣∣
X1, . . . , Xl

Y1, . . . ,Yl

∣∣∣∣

∣∣∣∣
Sh j,l

+ . . . ,

where, if � j,l ⊂ �n denotes the shuffles of ordered sets with j and l − j elements,
we have

f (X1, . . . , Xl , Y1, . . . , Yl )
∣∣
Sh j,l

=
∑

σ∈� j,l

f (Xσ−1(1), . . . , Xσ−1(l), Yσ−1(1), . . . , Yσ−1(l)) .

Hence we get modulo products and lower depth bi-brackets

∣∣∣∣
X1, . . . , Xl

Y1, . . . ,Yl

∣∣∣∣ ≡
∑

α

αFα(X1, . . . , Xl ,Y1, . . . ,Yl) ,

where α runs through a vector space basis of the depth l algebra generators of Zq

and Fα is a polynomial in the partition shuffle space, which is defined as follows.

Definition 2 Define for l, k ≥ 0 the partition shuffle space by

PS(k − l, l) = { f ∈ Q[x1, .., xl , y1, .., yl ]| deg f = k − l, f
∣∣
P − f = f

∣∣
Sh j

= 0 ∀ j} .

Using the same argument as in [12] the above discussion leads to the following
upper bounds.

Corollary 1 The number gk,l of generators of weight k and depth l for theQ-algebra
Zq is bounded by

gk,l ≤ dimQ PS(k − l, l).

The bounds obtained via the partition shuffle spaces for the number of generators
in depth 1 and even weights are not optimal, as it is well-known that the ring of
quasi-modular forms is generated in weight 2, 4 and 6. We view this as the analogue
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Table 5 pk,l = dimQ PS(k − l, l)

pl\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1 1 2 1 3 1 4 0 5 0 6 0 7 0 8 0 9

1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9

2 – 0 0 1 0 2 0 8 0 14 0 23 0 38 0 58 0

3 – – 0 0 1 0 3 0 9 0 27 0 62 0 125 0 238

4 – – – 0 0 1 0 3 0 12 0 37 ? ? ? ? ?

5 – – – – 0 0 1 0 4 0 15 ? ? ? ? ? ?

6 – – – – – 0 0 1 ? ? ? ? ? ? ? ? ?

to the fact that Euler’s relation for even zeta values is not seen by the depth 1 double
shuffle spaces as defined in [12].

Proof of Theorem 2 Using the structure of the ring of quasi-modular forms and the
data of Table5 we get the coefficient-wise upper bounds

∑

k≥0

dimQ FilWk (Zq )x
k ≤ 1

1 − x

1

(1 − x2)(1 − x4)(1 − x6)

x

(1 − x2)2
·

∏

k,l≥2

1

(1 − xk)pk,l

≤ 1 + 2 x + 4 x2 + 8 x3 + 15 x4 + 28 x5 + 51 x6 + 92 x7 + 166 x8 + . . .

In addition, since “123-brackets” ⊆ Z ◦
q ⊆ Zq , we get by the data of our tables

1 + 2 x + 4 x2 + 8 x3 + 15 x4 + 28 x5 + 51 x6 + 92 x7 + 165 x8 + . . .

≤
∑

k≥0

dimQ FilWk ("123-brackets")xk ≤
∑

k≥0

dimQ FilWk (Zq)x
k .

The claim of the theorem follows as the lower and upper bounds coincide for
k ≤ 7. �

Remark 4 In contrast to the multiple zeta values we expect that the upper bounds
for the number of generators obtained by the partition shuffle spaces are not optimal
for all l ≥ 2, i.e. we don’t expect equality in Corollary 1. We think that this reflects
the existence of cusp forms as distinguished elements in depth 2, whereas even zeta
values just live in depth 1. By work of Ecalle we know that there is a Lie algebra
structure on the partition shuffle spaces, see, for e.g., [8] or [19]. In forthcoming
work we will study a sub Lie algebra which conjecturally has the algebra A as its
symmetric algebra, which might give another explanation of this effect. Another
optimistic hope is that a coproduct structure onZq , which allows to mimic Brown’s
proof in order to obtain conjecture (B3), exists.
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