
Multiple Eisenstein Series
and q-Analogues of Multiple
Zeta Values

Henrik Bachmann

Abstract This work is an example driven overview article of recent works on the
connection of multiple zeta values, modular forms and q-analogues of multiple zeta
values given by multiple Eisenstein series.

Keywords Multiple zeta values · q-analogues of multiple zeta values · Multiple
Eisenstein series · Modular forms

1 Introduction

We study a specific connection of multiple zeta values and modular forms given
by multiple Eisenstein series. This work is an example driven overview article and
summary of the results obtained in the works [3, 6, 7, 9].

Multiple zeta values are real numbers that are natural generalizations of the
Riemann zeta values. These are defined for integers s1 ≥ 2 and s2, . . . , sl ≥ 1 by

ζ(s1, . . . , sl) :=
∑

n1>n2>···>nl>0

1

ns11 . . . nsll
.

Such real numbers were already studied by Euler in the l = 2 case in the 18th
century. Because of its occurrence in various fields of mathematics and theoretical
physics these real numbers had a comeback in themathematical and physical research
community in the late 1990s due to works by several people such as D. Broadhurst,
F. Brown, P. Deligne, H. Furusho, A. Goncharov,M. Hoffman,M. Kaneko, D. Zagier
et al.. Denote the Q-vector space of all multiple zeta values of weight k by

Z k := 〈
ζ(s1, . . . , sl)

∣∣ s1 + · · · + sl = k and l > 0
〉
Q
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and writeZ for the space of all multiple zeta values. One of the main interests is to
understand the Q-linear relations between these numbers. The first one is given by
ζ(2, 1) = ζ(3) and there are several different ways to prove this relation [11]. Using
the representation of multiple zeta values as an ordered sum, their product can be
written as a linear combination of multiple zeta values of the same weight, i.e. the
space Z has the structure of a Q-algebra. For example it is

ζ(2) · ζ(3) = ζ(2, 3) + ζ(3, 2) + ζ(5) , (1)

ζ(3) · ζ(2, 1) = ζ(3, 2, 1) + ζ(2, 3, 1) + ζ(2, 1, 3) + ζ(5, 1) + ζ(2, 4) . (2)

This way to express the product, which will be studied in Section 1 in more detail,
is called the stuffle product (also named harmonic product). Besides this, a repre-
sentation of multiple zeta values as iterated integrals yields another way to express
the product of two multiple zeta values, which is called the shuffle product. For the
above examples, this is given by

ζ(2) · ζ(3) = ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1) , (3)

ζ(3) · ζ(2, 1) =ζ(2, 1, 3) + ζ(2, 2, 2) + 2ζ(2, 3, 1) + 2ζ(3, 1, 2)

+ 5ζ(3, 2, 1) + 9ζ(4, 1, 1) .
(4)

Since (1) and (3) are two different expressions for the product ζ(2) · ζ(3) we obtain
the linear relation ζ(5) = 2ζ(3, 2) + 6ζ(4, 1). These relations are called the double
shuffle relations.Conjecturally allQ-linear relations betweenmultiple zeta values can
be provenbyusing an extendedversion of these types of relations [24].Often relations
between multiple zeta values are not proven by using double shuffle relations, since
there are easier ways to prove them in some cases. The relation ζ(4) = ζ(2, 1, 1) for
example, has an easy proof using the iterated integral expressions for multiple zeta
values. A famous result by Euler is, that every even zeta value ζ(2k) is a rational
multiple of π2k and in particular we have, for example,

ζ(2)2 = 5

2
ζ(4) , ζ(4)2 = 7

6
ζ(8) , ζ(6)2 = 715

691
ζ(12) . (5)

The relations (5) can also be proven with the double shuffle relations, but for general
k there is no explicit proof of Eulers relations using only double shuffle relations so
far.

Since the double shuffle relations just give relations in a fixed weight it is conjec-
tured that the space Z is a direct sum of the Z k , i.e. there are no relations between
multiple zeta values with different weight.

Surprisingly there are several connections of these numbers to modular forms
for the full modular group. Recall, modular forms are holomorphic functions in the
complex upper half-plane fulfilling certain functional equations. One of the most
famous connection is the Broadhurst-Kreimer conjecture.
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Conjecture 1 (Broadhurst-Kreimer conjecture [15]) The generating series of for
the dimension dimQ

(
Z k,l

)
of weight k multiple zeta values of length l modulo lower

lengths can be written as

∑

k≥0
l≥0

dimQ

(
Z k,l

)
XkY l = 1 + E(X)Y

1 − O(X)Y + S(X)Y 2 − S(X)Y 4
,

where

E(X) = X2

1 − X2
, O(X) = X3

1 − X2
, S(X) = X12

(1 − X4)(1 − X6)
.

The connection to modular forms arises here, since

S(X) =
∑

k≥0

dim Sk(SL2(Z))Xk

is the generating function of the dimensions of cusp forms for the full modular group.
In the formula of the Broadhurst-Kreimer conjecture one can see, that cusp forms
give rise to relations between double zeta values, i.e. multiple zeta values in the
length l = 2 case. For example in weight 12, the first weight where non-trivial cusp
forms exist, there is the following famous relation

5197

691
ζ(12) = 168ζ(5, 7) + 150ζ(7, 5) + 28ζ(9, 3) . (6)

Even though we are not focused on this conjecture, the concept of obtaining rela-
tions of multiple zeta values by cusp forms also appears in our context of multiple
Eisenstein series and q-analogues of multiple zeta values. It is known that every
modular form for the full modular group can be written as a polynomial in classical
Eisenstein series. These are for even k > 0 given by

Gk(τ ) = 1

2

∑

(m,n)∈Z2

(m,n)�=(0,0)

1

(mτ + n)k
= ζ(k) + (−2πi)k

(k − 1)!
∞∑

n=1

σk−1(n)qn ,

where τ ∈ H is an element in the upper half-plane, q = exp(2πiτ ) and σk(n) =∑
d|n dk denotes the classical divisor-sum. In [19] the authors introduced a direct

connection of modular forms to double zeta values following ideas of Don Zagier
introduced in [37]. They defined double Eisenstein series Gs1,s2 ∈ C[[q]] which are
a length two generalization of classical Eisenstein series and which are given by a
double sum over ordered lattice points. These functions have a Fourier expansion
given by sums of products ofmultiple zeta values and certain q-series with the double
zeta value ζ(s1, s2) as their constant term. In [2] the author treated the multiple cases
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and calculated the Fourier expansion of multiple Eisenstein series Gs1,...,sl ∈ C[[q]].
The result of [2] was that the Fourier expansion of multiple Eisenstein series is again
a Z -linear combination of multiple zeta values and the q-series gt1,...,tm ∈ C[[q]]
defined by gt1,...,tm (τ ) := (−2πi)t1+···+tm [t1, . . . , tm] with q = e2πiτ and

[t1, . . . , tm] :=
∑

u1>···>um>0
v1,...,vm>0

vt1−1
1 . . . vtm−1

m

(t1 − 1)! . . . (tm − 1)! · qu1v1+···+umvm .

Theorem 2 ([2]) For s1, . . . , sl ≥ 2 the Gs1,...,sl can be written as aZ -linear com-
bination of the above functions gt1,...,tm .

For example:

G3,2,2(τ ) = ζ(3, 2, 2) +
(
54

5
ζ(2, 3) + 51

5
ζ(3, 2)

)
g2(τ ) + 16

3
ζ(2, 2)g3(τ )

+ 3ζ(3)g2,2(τ ) + 4ζ(2)g3,2(τ ) + g3,2,2(τ ) .

The starting point of the thesis [4] was the fact that there are more multiple
zeta values than multiple Eisenstein series, since ζ(s1, . . . , sl) exists for all s1 ≥
2, s2, . . . , sl ≥ 1 and the Gs1,...,sl just exists when all s j ≥ 2. The main objective was
to answer the following question.

Question 1 What is a “good” definition of a “regularized”multipleEisenstein series,
such that for each multiple zeta value ζ(s1, . . . , sl) with s1 > 1, s2, . . . , sl ≥ 1 there
is a q-series

Greg
s1,...,sl = ζ(s1, . . . , sl) +

∑

n>0

anq
n ∈ C[[q]]

with this multiple zeta value as the constant term in its Fourier expansion and which
equals the multiple Eisenstein series in the cases s1, . . . , sl ≥ 2?

By “good” we mean that these regularized multiple Eisenstein series should have
the same, or at least as close as possible, algebraic structure similar to multiple zeta
values. Our answer to this question was approached in several steps which will be
described in the following (i)–(iii). First (i) the algebraic structure of the functions
g was studied. During this investigation it turned out, that these objects, or more
precisely the q-series [s1, . . . , sl ] are very interesting objects in their own rights.
It turned out that in order to understand their algebraic structure it was necessary
to study a more general class of q-series, called bi-brackets in (ii). The results on
bi-brackets and brackets then were used, together with a beautiful connection of the
multiple Eisenstein series to the coproduct structure of formal iterated integrals, to
answer the above question in (iii).

(i)To answerQuestion1 the algebraic structure of the functions g ormoreprecisely
the algebraic structure of the q-series [s1, . . . , sl] was studied in [6]. It turned out
that these q-series, whose coefficients are given by weighted sums over partitions
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of n, are, independently to their appearance in the Fourier expansion of multiple
Eisenstein series, very interesting objects.Wewill denote theQ-vector space spanned
by all these brackets and 1 byMD . Since we also include the rational numbers, the
normalized Eisenstein series G̃k(τ ) := (−2πi)−kGk(τ ) are contained in MD . For
example we have

G̃2 = − 1

24
+ [2] , G̃4 = 1

1440
+ [4] , G̃6 = − 1

60480
+ [6] .

The algebraic structure of the space MD was studied in [6] and one of the main
result was the following

Theorem 3 ([6]) The Q-vector space spanned by all brackets equipped with the
usual multiplication of formal q-series is a Q-algebra, with the algebra of modular
forms with rational coefficients as a subalgebra.

In fact, the product fulfills a quasi-shuffle product and the notion of quasi-shuffle
products will be made precise in Sect. 4.1. Roughly speaking, this means that the
product of two brackets can be expressed as a linear combination of brackets similar
to the stuffle product (1), (2) of multiple zeta values. For example we will see that

[2] · [3] = [3, 2] + [2, 3] + [5] − 1

12
[3] ,

[3] · [2, 1] = [3, 2, 1] + [2, 3, 1] + [2, 1, 3] + [5, 1] + [2, 4]
+ 1

12
[2, 2] − 1

2
[2, 3] − 1

12
[3, 1] ,

i.e. up to the lower weight term − 1
12 [3] and 1

12 [2, 2] − 1
2 [2, 3] − 1

12 [3, 1] this looks
exactly like (1) and (2). One might ask if there is also something which corresponds
to the shuffle product (3) of multiple zeta values. It turned out that for the lowest
length case, this has to do with the differential operator d = q d

dq . In [6] it was shown
that

[2] · [3] = [2, 3] + 3[3, 2] + 6[4, 1] − 3[4] + d[3] , (7)

which, again up to the term −3[4] + d[3], looks exactly like the shuffle product (3)
of multiple zeta values. In particular it follows that d[3] is again in the space MD
and in general it was shown that

Theorem 4 ([6]) The operator d = q d
dq is a derivation on MD .

(ii) Equation (7) abovewas themotivation to study a larger class of q-series, which
will be called bi-brackets. While the quasi-shuffle product of brackets also exists in
higher length, the second expression for the product, corresponding to the shuffle
product, does not appear in higher length if one just allows derivatives as “error
terms”. The bi-brackets can be seen as a generalization of the derivative of brackets.
For s1, . . . , sl ≥ 1, r1, . . . , rl ≥ 0 we define these bi-brackets by
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[
s1, . . . , sl
r1, . . . , rl

]
:=

∑

u1>···>ul>0
v1,...,vl>0

ur11
r1! . . .

urll
rl ! · vs1−1

1 . . . vsl−1
l

(s1 − 1)! . . . (sl − 1)! · qu1v1+···+ul vl .

In the case r1 = · · · = rl = 0 these are just ordinary brackets. The products of these
seemingly larger class of q-series have two representations similar to the stuffle
and shuffle product of multiple zeta values in arbitrary length. For our example, the
analogue of the shuffle product (4) for brackets can now be expressed as

[3] · [2, 1] = [2, 1, 3] + [2, 2, 2] + 2[2, 3, 1] + 2[3, 1, 2] + 5[3, 2, 1] + 9[4, 1, 1]
+
[
2, 3

0, 1

]
+ 2

[
3, 2

0, 1

]
+ 3

[
4, 1

1, 0

]
− [2, 3] − 2[3, 2] − 6[4, 1] .

Wewill see in Sect. 5.2 that these double shuffle structure can be described, using the
so called partition relation, in a nice combinatorial way. This gives a large family of
linear relations between bi-brackets. In fact numerical calculations show, that there
are so many relations, that we have the following surprising conjecture.

Conjecture 5 ([3]) Every bi-bracket can be written in terms of brackets, i.e.

MD = BD .

Using the algebraic structure of the space of bi-brackets we now review the defini-
tion of shuffle brackets [s1, . . . , sl ]� and stuffle [s1, . . . , sl]∗ version of the ordinary
brackets as certain linear combination of bi-brackets as introduced in [3]. These
objects fulfill the same shuffle and stuffle products as multiple zeta values respec-
tively. Both constructions use the theory of quasi-shuffle algebras first developed
by Hoffman in [21] and later generalized in [22]. We summarize the results in the
following Theorem.

Theorem 6 ([3])

(i) The spaceBD spanned by all bi-brackets
[s1,...,sl
r1,...,rl

]
forms a Q-algebra with the

space of (quasi-)modular forms and the spaceMD of brackets as subalgebras.
There are two ways to express the product of two bi-brackets which correspond
to the stuffle and shuffle product of multiple zeta values.

(ii) There are two subalgebrasMD� ⊂ BD andMD∗ ⊂ MD spanned by ele-
ments [s1, . . . , sl]� and [s1, . . . , sl ]∗ which fulfill the shuffle and stuffle prod-
ucts, respectively, and which are in the length one case given by the bracket
[s1].

For example, similarly to the relation between multiple zeta values above we have

[2, 3]∗ + [3, 2]∗ + [5] = [2] · [3] = [2, 3]� + 3[3, 2]� + 6[4, 1]� .
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(iii) A particular reason for studying the [s1, . . . , sl]� is due to their use in the
regularization of multiple Eisenstein series, i.e. they are needed in the answer of the
original Question1. This was implicitly done in [9] by proving an explicit connection
of the Fourier expansion of multiple Eisenstein series to the coproduct on formal iter-
ated integrals introduced by Goncharov in [20]. This connection was already known
to the authors of [19] in the length two case. Without knowing this connection it
was then rediscovered independently by the authors of [9] during a research stay
of the second author at the DFG Research training Group 1670 at the University of
Hamburg in 2014. The result of this research stay was the work [9], in which the
authors used this connection to give a definition of the shuffle regularized multiple
Eisenstein series. Later, the present author combined the result of [9] and the alge-
braic structure of bi-brackets to give a more explicit definition of shuffle regularized
multiple Eisenstein series using bi-brackets in [3].

Formal iterated integrals are symbols I (a0; a1, . . . , an; an+1)with a j ∈ {0, 1} that
fulfill identities like real iterated integrals. We will write I (3, 2) for I (1; 00101; 0)
and we will see that the elements of the form I (s1, . . . , sl), obtained in the same
way as I (3, 2), form a basis of the space of formal iterated integrals in which we
are interested. The space of these integrals has a Hopf algebra structure with the
multiplication given by the shuffle product and the coproduct Δ given by an explicit
formula which we will review in Sect. 6.1. For example it is

Δ(I (3, 2)) = 1 ⊗ I (3, 2) + 3I (2) ⊗ I (3) + 2I (3) ⊗ I (2) + I (3, 2) ⊗ 1 .

Compare this with the Fourier expansion of the double Eisenstein series G3,2

G3,2(τ ) = ζ(3, 2) + 3g2(τ )ζ(3) + 2g3(τ )ζ(2) + g3,2(τ ) .

Since Δ(I (s1, . . . , sl)) exists for all s1, . . . , sl ≥ 1 this comparison suggested a def-
inition of shuffle regularized multiple Eisenstein series G�s1,...,sl by sending the first
component of the coproduct of I (s1, . . . , sl) to a (−2πi)-multiple of the shuffle
bracket and the second component to shuffle regularized multiple zeta values. In [9]
it was proven that this construction gives back the original multiple Eisenstein series
in the cases s1, . . . , sl ≥ 2. Together with the results on the shuffle brackets in [3]
we obtain the following

Theorem 7 ([3, 9]) For all s1, . . . , sl ≥ 1 there exist shuffle regularized multiple
Eisenstein series G�s1,...,sl ∈ C[[q]] with the following properties:

(i) They are holomorphic functions on the upper half-plane (by setting
q = exp(2πiτ )) having a Fourier expansion with the shuffle regularized mul-
tiple zeta values as the constant term.

(ii) They fulfill the shuffle product.
(iii) They can be written as a linear combination of multiple zeta values, powers of

(−2πi) and shuffle brackets [. . . ]� ∈ BD .
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(iv) For integers s1, . . . , sl ≥ 2 they equal the multiple Eisenstein series

G�s1,...,sl (τ ) = Gs1,...,sl (τ )

and therefore they fulfill the stuffle product in these cases.

We now study the Q-algebra spanned by the G� and its relation to multiple zeta
values. Theorem7 (iv) gives a subset of the double shuffle relations between the G�,
since the stuffle product is just fulfilled for the case s1, . . . , sl ≥ 2. A natural question
is, if they also fulfill the stuffle product when some indices s j are equal to 1. For
some cases this was proven in [3]. For example it was shown, that

G�2 · G�2,1 = G�2,1,2 + 2G�2,2,1 + G�2,3 + G�4,1 . (8)

The method to prove this was to introduce stuffle regularized multiple Eisenstein
series G∗

s1,...,sl , which fulfill by construction the stuffle product and which equal the
classical multiple Eisenstein series in the s1, . . . , sl ≥ 2 cases. Since both G∗ and
G� can be written in terms of multiple zeta values and bi-brackets it was possible to
compare these two regularization. Itwas shown that allG� appearing in (31) equal the
G∗ ones, from which this equation followed. In contrast to the shuffle regularized
multiple Eisenstein series the stuffle regularized ones could not be defined for all
s1, . . . , sl ≥ 1, but we have the following results:

Theorem 8 ([3])For all s1, . . . , sl ≥ 1 and M ≥ 1 there exists G∗,M
s1,...,sl ∈ C[[q]]with

the following properties

(i) They are holomorphic functions on the upper half-plane (by setting
q = exp(2πiτ )) having a Fourier expansion with the stuffle regularized multi-
ple zeta values as the constant term.

(ii) They fulfill the stuffle product.
(iii) In the case where the limit G∗

s1,...,sl := limM→∞ G∗,M
s1,...,sl exists, the functions

G∗
s1,...,sl are a linear combination of multiple zeta values, powers of (−2πi)

and bi-brackets.
(iv) For s1, . . . , sl ≥ 2 the G∗

s1,...,sl exist and equal the classical multiple Eisenstein
series

Gs1,...,sl (τ ) = G∗
s1,...,sl (τ ) .

It is still an open question which extended double shuffle relations of multiple zeta
values are also fulfilled for the G�. Or equivalently, under what circumstances the
product of two G� can be expressed using the stuffle product formula. Clearly there
are some double shuffle relations which can’t be fulfilled by multiple Eisenstein
series. For example not all of the Euler relations (5) are fulfilled since G2

2 is not a
multiple of G4 as G2 is not modular and G2

6 is not a multiple of G12 as there are cusp
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forms in weight 12. In Sect. 6.3 we will explain this failure in terms of the double
shuffle relations which are fulfilled by multiple Eisenstein series.

After the discussion above, we believe that Question1 got a satisfying answer
given by the regularized multiple Eisenstein series G� and G∗. To go back from
multiple Eisenstein series to multiple zeta values one can consider the projection to
the constant term. But there is another direct connection of brackets, and therefore
also of the subalgebra of modular forms, to multiple zeta values. The brackets can be
seen as a q-analogue of multiple zeta values. A q-analogue of multiple zeta values is
said to be a q-series which gives back multiple zeta values in the case q → 1. Define
for k ∈ N the map Zk : Q[[q]] → R ∪ {∞} by

Zk( f ) = lim
q→1

(1 − q)k f (q) .

Proposition 9 ([6, Proposition 6.4])For s1 ≥ 2 and s2, . . . , sl ≥ 1 the map Zk sends
a bracket to the corresponding multiple zeta value, i.e.

Zk ([s1, . . . , sl]) =
{

ζ(s1, . . . , sl) , s1 + · · · + sl = k,
0 , s1 + · · · + sl < k .

Since every relation of multiple zeta values in a given weight k is, by Proposition9,
in the kernel of the map Zk , this kernel was studied in [6] with the following result.

Theorem 10 ([6, Theorem 1.13])

(i) For any f ∈ MD which can be written as a linear combination of brackets
with weight ≤ k − 2 we have d f ∈ ker Zk.

(ii) Any cusp form for SL2(Z) of weight k is in the kernel of Zk.

Wegive an example for Theorem10 (ii): Using the theory of brackets (Corollary4.13)
we can prove for the cusp form Δ = q

∏
n>0 (1 − qn)24 ∈ S12(SL2(Z)) the repre-

sentation

− 1

26 · 5 · 691Δ = 168[5, 7] + 150[7, 5] + 28[9, 3]

+ 1

1408
[2] − 83

14400
[4] + 187

6048
[6] − 7

120
[8] − 5197

691
[12] . (9)

Letting Z12 act on both sides of (9) one obtains a new proof for the relation (6), i.e.,

5197

691
ζ(12) = 168ζ(5, 7) + 150ζ(7, 5) + 28ζ(9, 3) .

Another reason for studying the enlargement of the brackets given by the bi-brackets
is the following: In weight 4 one has the following relation of multiple zeta values
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ζ(4) = ζ(2, 1, 1), i.e. it is [4] − [2, 1, 1] ∈ ker Z4. But this element can’t be written
as a linear combination of cusp forms, lower weight brackets or derivatives. But one
can show, by using the double shuffle relations of bi-brackets, that

[4] − [2, 1, 1] = 1

2
(d[1] + d[2]) − 1

3
[2] − [3] +

[
2, 1

1, 0

]
(10)

and
[2,1
1,0

] ∈ ker Z4. Todescribe the kernel of themap Zk was in fact our firstmotivation
to study the bi-brackets. Equation (10) is also an example for the above mentioned
Conjecture5, since it shows that the bi-bracket

[2,1
1,0

]
can be written as brackets and

therefore is an element inMD .

2 Outlook and Related Work

In the following paragraphs (a)–(g) we want to mention some related works and give
an outlook to open questions.

(a) There are still a lot of open questions concerning multiple Eisenstein series
as well as the space of (bi-)brackets. After the above mentioned works [3, 6, 9] we
now have a good definition of regularized multiple Eisenstein series given by the
G�. For the structure of the space spanned by these series there are still several open
questions.

(i) What exactly is the failure of the stuffle product for the G� and when does it
hold?

(ii) Forwhich indices s1, . . . , sl ∈ N dowe haveG�s1,...,sr (τ ) = G∗
s1,...,sr (τ )? Is there

an explicit connection between these two regularizations similar to the regu-
larized multiple zeta values given by the map ρ in [24]?

(iii) What is the dimension of the space of (shuffle) regularised multiple Eisenstein
series? Is there an explicit basis similar to theHoffmanbasis ofmultiple zeta val-
ues (Which is given by all multiple zeta values ζ(s1, . . . , sl) with s j ∈ {2, 3})?

(iv) Which linear combinations of multiple Eisenstein series are modular forms for
SL2(Z)? Is there an explicit way to describe the modular defect?

(v) Is the space of multiple Eisenstein series closed under the derivative
d = q d

dq ? Meanwhile this question was also already addressed in [5].
(vi) What is the kernel of the projection to the constant term? Does it consist of

more than derivatives and cusp forms?
(vii) Is there a general theory behind the connection of the Fourier expansion of

multiple Eisenstein series and the Goncharov coproduct? Can we equip the
space of multiple Eisenstein series with a coproduct structure in an useful
way?

Especially the last questions seems to be interesting since the connection to the
coproduct of formal iterated integrals is quite mysterious and it seems that there
might be a geometric interpretation for this connection.
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(b) Several q-analogues of multiple zeta values were studied in recent years.
The first works on this area are [14, 28, 31, 38]. Possible double shuffle structures
are discussed for example in [18, 32, 33, 39], where the last one gives also a nice
overview of various different q-analogue models. Often these q-analogues have a
product structure similar to the stuffle product of multiple zeta values. To obtain
something which corresponds to the shuffle product one usually needs to modify the
space and add extra elements (like derivatives) or consider index sets (s1, . . . , sr )
with s j ∈ Z or s j ≥ 0. The picture is similar for bi-brackets, where we consider
double indices

[s1,...,sl
r1,...,rl

]
to obtain an analogue for both products in a very natural way.

This gives a lot of linear relations similar to the double shuffle relations. Numerical
experiments suggest, that every bi-bracket can be written as a linear combination
of brackets and therefore (conjecturally) every relation of bi-brackets gives rise to
relations between multiple zeta values by applying the map Zk .

(c) In the case of multiple zeta values one way to give upper bounds for the
dimension is to study the double shuffle space [24, 25]. Similarly, one can study the
partition shuffle space

PS(k − l, l) = {
f ∈ Q[X1, .., Xl , Y1, .., Yl ]

∣∣ deg f = k − l, f
∣∣
P − f = f

∣∣
Sh j

= 0 ∀ j
}
,

for bi-brackets, where |P is the involution given by the partition relation (see Sect. 5.1,
(23)) and |Sh j is given by the sum of all shuffles of type j similar to the one in [25].
Counting the number of these polynomials it is possible to give upper bounds for
the dimensions of the space of bi-brackets. This approach therefore enabled us to
prove the conjecture MD = BD up to weight 7 in a current work in progress
[8]. Therefore, considering the space PS(k − l, l) in more detail might be crucial to
understand the structure of bi-brackets.

(d) In this work we were interested in modular forms for the full modular group
and therefore studied the level 1 case. In [26] the authors studied double Eisenstein
series and double zeta values of level 2. They also derive the Fourier expansion of
these series which involves similar calculation as in the level 1 case. One result is,
that they derive the dimension of the space of double Eisenstein series and give also
an upper bound for the dimension of double zeta values of level 2, which involves
the dimension of the spaces of cusp forms of level 2. Beside the work on Level 2
double Eisenstein series there are also work for level N double Eisenstein series of
Yuan and Zhao in [34]. Later these authors also considered a level N version of the
brackets in [35].

(e) At the end of [26] the authors give a proof for an upper bound of the dimension
of double zeta values in even weight.Wewant to recall this result, since the presented
results in the presentworkmight be able to use these ideas for higher lengths.Consider
the space spanned by all normalized double Eisenstein series (−2πi)−r−sGr,s(τ ) in
even weight k = r + s. Denote by πi the projection of this space to the imaginary
part. Using the Fourier expansion of double Eisenstein series the authors can write
down the matrix representation of πi explicitly. Together with well known results on
period polynomials they obtain
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dimQ〈ζ(r, k − r) | 2 ≤ r ≤ k − 1〉Q ≤ k

2
− 1 − dim Sk .

Due to the Broadhurst-Kreimer Conjecture1 it is conjectured that this is actually an
equality. The key fact here is, that it is possible to write down an explicit basis of
the imaginary part and the matrix representation of πi . To also obtain upper bounds
for the dimensions of multiple zeta values in higher lengths, one might try to use
the exact same method as in the length two case. The imaginary part of the (again
normalized with the factor (−2πi)−k) multiple Eisenstein series is more complicated
since it involves the functions g in different length, where it is known that they are not
linearly independent anymore. But the algebraic structure of the g or more precisely
of the brackets [..] are subject of the current work. It is quite possible that the results
on the brackets enable one to study the projection of the imaginary part of multiple
Eisenstein series to obtain upper bounds for the Broadhurst-Kreimer conjecture.

(f) The multiple Eisenstein series and the bi-brackets itself also have connections
to counting problems in enumerative geometry:

(i) In [1, 30] the author studies q-series Ak(a) ∈ Q[[q]] which arises in counting
certain types of hyperelliptic curves. One of the results is, that the Ak(q) are
contained in the ring of quasi-modular forms. The connection to the brackets
is given by the fact that Ak(q) = [2, . . . , 2︸ ︷︷ ︸

k

]. The results of [1] can also be

obtained by using an explicit calculation of the Fourier expansion of G2,...,2.
(ii) In [27, 29] the authors connect certain q-analogues of multiple zeta values to

Hilbert schemes of points on surfaces. These q-analogues are just particular
linear combinations of brackets as explained in [7] and Sect. 7.2.

(iii) The coefficients of bi-brackets also occur naturally when counting flat surfaces
[40], i.e. certain covers of the torus.

(g) There also exists different “multiple”-versions of classical Eisenstein series.
One of them is treated in [10], where the authors discuss the series defined by

G2p1,...,2pr (τ ) =
∑

m∈Z

∑

n1∈Z
(m,n1)�=(0,0)

· · ·
∑

nr ∈Z
(m,nr )�=(0,0)

r∏

j=1

1

(m + n jτ )2p j

for r ∈ N≥2 and p1, . . . , pr ∈ N and prove (Theorem 2) that for r ∈ N≥2 and
p1, . . . , pr ∈ N,

τ 2(p1+···+pr )G2p1,...,2pr (τ ) ∈ Q
[
τ 2, π2, G2(τ ), G4(τ ), G6(τ )

]
.

The methods used to prove these statements are similar to the methods used in
the calculation of the Fourier expansion of multiple Eisenstein series. But besides
this there does not seem to be a direct connection to the multiple Eisenstein series
presented here.
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3 Multiple Eisenstein Series

In this section we are going to introduce multiple zeta values and present the multiple
Eisenstein series and their Fourier expansion. Especially the construction of the
Fourier expansion of multiple Eisenstein series in Sect. 3.2 was rewritten for this
survey. It will be a shortened version of the construction given in [2] using results by
Bouillot obtained in [12]. This section is not part of the works [6, 7, 9]. Before we
discuss multiple Eisenstein series, we give a short review of multiple zeta values and
their algebraic structure given by the stuffle and shuffle product. In order to describe
these two products we will use quasi-shuffle algebras, introduced by Hofmann in
[21], which will also be needed later when we deal with the generating series of
multiple divisor-sums (brackets) and their generalizations given by the bi-brackets.

3.1 Multiple Zeta Values and Quasi-shuffle Algebras

Multiple zeta values are natural generalizations of the Riemann zeta values that are
defined1 for integers s1 > 1 and si ≥ 1 for i > 1 by

ζ(s1, . . . , sl) :=
∑

n1>n2>···>nl>0

1

ns11 . . . nsll
.

We denote the Q-vector space of all multiple zeta values of weight k by

Z k := 〈
ζ(s1, . . . , sl)

∣∣ s1 + · · · + sl = k and l > 0
〉
Q
.

It is well known that the product of two multiple zeta values can be written as a linear
combination of multiple zeta values of the same weight by using the stuffle or shuffle
relations (See for example [24, 42]). Thus they generate a Q-algebra Z . There are
several connections of these numbers to modular forms for the full modular group.
In the smallest length the stuffle product reads

ζ(s1) · ζ(s2) =
∑

n1>0

1

ns11

∑

n2>0

1

ns22

=
∑

n1>n2>0

1

ns11 n
s2
2

+
∑

n2>n1>0

1

ns11 n
s2
2

+
∑

n1=n2>0

1

ns1+s2
1

= ζ(s1, s2) + ζ(s2, s1) + ζ(s1 + s2) .

1Some authors use the opposite convention 0 < n1 < · · · < nl in the definition of multiple zeta
values. This is in particular the case for the work [9], where this opposite convention is used for
multiple zeta values and multiple Eisenstein series.
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For length 1 times length 2 the same argument gives

ζ(s1) · ζ(s2, s3) = ζ(s1, s2, s3) + ζ(s2, s1, s3) + ζ(s2, s3, s1)

+ ζ(s1 + s2, s3) + ζ(s2, s1 + s3) .

The second expression for the product, the shuffle product, comes from the iterated
integral expression of multiple zeta values. For example it is

ζ(2, 3) =
∫

1>t1>···>t5>0

dt1
t1

· dt2
1 − t2︸ ︷︷ ︸
2

· dt3
t3

· dt4
t4

· dt5
1 − t5︸ ︷︷ ︸

3

.

Multiplying two of these integrals one obtains again a linear combination of multiple
zeta values as for example

ζ(2) · ζ(3) = ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1) .

More generally the smallest length case is given by

ζ(s1) · ζ(s2) =
∑

a+b=s1+s2
a>1

((
a − 1

s1 − 1

)
+
(
a − 1

s2 − 1

))
ζ(a, b) . (11)

To describe these two product structures precisely we will use the language of quasi-
shuffle algebras as introduced in [21, 22].

Definition 3.1 Let A (the alphabet) be a countable set of letters, QA the Q-vector
space generated by these letters and Q〈A〉 the noncommutative polynomial algebra
over Q generated by words with letters in A. For a commutative and associative
product� onQA, a, b ∈ A andw, v ∈ Q〈A〉we define onQ〈A〉 recursively a product
by 1 � w = w � 1 = w and

aw � bv := a(w � bv) + b(aw � v) + (a � b)(w � v) . (12)

By a result of Hoffman [22, Theroem 2.1] (Q〈A〉,�) is a commutative Q-algebra
which is called a quasi-shuffle algebra.

To describe the stuffle and the shuffle product for multiple zeta values we need
to deal with two different alphabets Axy and Az . The first alphabet is given by
Axy := {x, y} and we setH = Q〈Axy〉 andH1 = 1 · Q + Hy, with 1 being the empty
word. It is easy to see thatH1 is generated by the elements z j = x j−1ywith j ∈ N, i.e.
H1 = Q〈Az〉 with the second alphabet Az := {z1, z2, . . . }. Additionally, we define
H0 = 1Q + xHy.
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(i) OnH1 we have the following quasi-shuffle product with respect to the alphabet
Az , called the stuffle product. We denote it by ∗ and define it as the quasi-shuffle
product with z j � zi = z j+i . For a, b ∈ N and w, v ∈ H1 we therefore have:

zaw ∗ zbv = za(w ∗ zbv) + zb(zaw ∗ v) + za+b(w ∗ v) .

By (H1, ∗) we denote the corresponding Q-algebra.
(ii) On the alphabet Axy we define the shuffle product as the quasi-shuffle product

with � ≡ 0, and by (H1,�) we denote the corresponding Q-algebra.

It is easy to check that H0 is closed under both products ∗ and � and therefore we
have also the two algebras (H0, ∗) and (H0,�).

By the definition of multiple zeta values as an ordered sum and by the iterated
integral expression one obtains algebra homomorphisms Z : (H0, ∗) → Z and Z :
(H0,�) → Z by sending w = zs1 . . . zsl to ζ(w) = ζ(s1, . . . , sl), since the words in
H0 correspond exactly to the indices for which the multiple zeta values are defined.
It is a well known fact, that these algebra homomorphisms can be extended to H1:

Proposition 3.2 ([24, Proposition 1]) There exist algebra homomorphisms

Z∗ : (H1, ∗) −→ Z and Z� : (H1,�) −→ Z ,

which are uniquely determined by Z∗(w) = Z�(w) = ζ(w) for w ∈ H0 and by their
images on the word z1, which we set 0 here, i.e. Z∗(z1) = Z�(z1) = 0.

3.2 Multiple Eisenstein Series and the Calculation of Their
Fourier Expansion

The Riemann zeta values appear as the constant term in the Fourier expansion of
classical Eisenstein series. These series are defined for τ ∈ H by

Gk(τ ) = 1

2

∑

(m,n)∈Z2

(m,n)�=(0,0)

1

(mτ + n)k
. (13)

where k > 2 is the called the weight. Splitting the summation into the parts m = 0
and m ∈ Z\0 we obtain for even k

Gk(τ ) = 1

2

∑

n �=0

1

nk
+

∞∑

m=1

(
∑

n∈Z

1

(mτ + n)k

)
.
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To calculate the Fourier expansion of the sum on the right, one uses the well known
Lipschitz summation formula (q = e2πiτ )

∑

d∈Z

1

(τ + d)k
= (−2πi)k

(k − 1)!
∞∑

m=1

mk−1qm , (14)

which is valid for k > 1. With (14) we obtain

Gk(τ ) = ζ(k) + (−2πi)k

(k − 1)!
∞∑

m=1

∞∑

n=1

nk−1qmn = ζ(k) + (−2πi)k

(k − 1)!
∞∑

n=1

σk−1(n)qn ,

(15)

where σk(n) = ∑
d|n dk denote the divisor-sum. Formula (15) also makes sense for

odd k but does not give a modular form, since there are no non trivial modular forms
of odd weight. The sum in (13) vanishes for odd k, therefore instead of summing
over the whole lattice, we restrict the summation to the positive lattice points, with
positivity coming from an order on the lattice Zτ + Z. This in turn will also enable
us to give an multiple version of the Eisenstein series in an obvious way.

Let Λτ = Zτ + Z be a lattice with τ ∈ H := {x + iy ∈ C | y > 0}. An order �
on Λτ is defined by setting (see [19])

λ1 � λ2 :⇔ λ1 − λ2 ∈ P

for λ1,λ2 ∈ Λτ and the following set P , which we call the set of positive lattice
points

P := {lτ + m ∈ Λτ | l > 0 ∨ (l = 0 ∧ m > 0)} = U ∪ R

l

m R

U

The set P for the case τ = i .

Definition 3.3 For s1 ≥ 3, s2, . . . , sl ≥ 2 the multiple Eisenstein series is defined
by
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Gs1,...,sl (τ ) :=
∑

λ1�···�λl�0
λi∈Λτ

1

λs1
1 . . . λsl

l

.

With k = s1 + · · · + sl we denote the weight and with l its length.

It is easy to see that these are holomorphic functions in the upper half-plane and that
they fulfill the stuffle product, i.e. for example

G3(τ ) · G4(τ ) = G4,3(τ ) + G3,4(τ ) + G7(τ ) .

By definition it is Gs1,...,sl (τ + 1) = Gs1,...,sl (τ ), i.e. there exists a Fourier expansion
of Gs1,...,sl in q = e2πiτ . To write down the Fourier expansion of multiple Eisenstein
series we need to introduce the following q-series which will be studied in detail in
Sect. 4.1. For s1, . . . , sl ≥ 1 we define

[s1, . . . , sl ] :=
∑

u1>···>ul>0
v1,...,vl>0

vs1−1
1 . . . vsl−1

l

(s1 − 1)! . . . (sl − 1)! · qu1v1+···+ul vl ∈ Q[[q]] .

andwrite gs1,...,sl (τ ) := (−2πi)s1+···+sl [s1, . . . , sl ], which is an holomorphic function
in the upper half-plane by setting q = e2πiτ .

Theorem 3.4 ([2], Fourier expansion) For s1 ≥ 3, s2, . . . , sl ≥ 2 the Gs1,...,sl (τ ) can
be written as a Z -linear combination of the functions g. More precisely there are
rational numbers λr, j ∈ Q, for r = (r1, . . . , rl) and 1 ≤ j ≤ l − 1, such that (with
k = s1 + · · · + sl )

Gs1,...,sl (τ ) = ζ(s1, . . . , sl) +
∑

1≤ j≤l−1
r1+···+rl=k

λr, j · ζ(r1, . . . , r j ) · gr j+1,...,rl (τ ) + gs1,...,sl (τ ) .

Even though the proof of this statement is the main result of [2] we will give a
shortened version of it in the following.

The condition s1 ≥ 3 is necessary for the absolute convergence of the sum. Nev-
ertheless we can also allow the case s1 = 2 by using the Eisenstein summation as
it was done in [9] Definition 2.1. This corresponds to the usual way of defining the
quasi-modular form G2 in length one. Since the construction of the Fourier expan-
sion described below uses exactly this Eisenstein summation the Theorem3.4 is also
valid for s1 ≥ 2.

For example the triple Eisenstein series G3,2,2 can be written as

G3,2,2(τ ) = ζ(3, 2, 2) +
(
54

5
ζ(2, 3) + 51

5
ζ(3, 2)

)
g2(τ ) + 16

3
ζ(2, 2)g3(τ )

+ 3ζ(3)g2,2(τ ) + 4ζ(2)g3,2(τ ) + g3,2,2(τ ) .
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To derive the Fourier expansion we introduce the following functions, that can be
seen as a multiple version of the term

∑
n∈Z

1
(x+n)k

appearing in the calculation of
the Fourier expansion of classical Eisenstein series.

Definition 3.5 For s1, . . . , sl ≥ 2 we define the multitangent function of length l by

Ψs1,...,sl (x) =
∑

n1>···>nl
ni∈Z

1

(x + n1)s1 . . . (x + nl)sl
.

In the case l = 1 we also refer to these as monotangent function.

These functions were introduced and studied in detail in [12]. One of the main results
there, which is crucial for the calculation of the Fourier expansion presented here, is
the following theorem which reduces the multitangent functions into monotangent
functions.

Theorem 3.6 ([12, Theroem 3], Reduction of multitangent into monotangent func-
tions) For s1, . . . , sl ≥ 2 and k = s1 + · · · + sl the multitangent function can be
written as a Z -linear combination of monotangent functions, more precisely there
are ck,h ∈ Z k−h such that

Ψs1,...,sl (x) =
k∑

h=2

ck−hΨh(x) .

Proof An explicit formula for the coefficients ck is given in Theorem 3 in [12]. The
proof uses partial fraction and a non trivial relation between multiple zeta values to
argue that the sum starts at h = 2. For example in length two it is

Ψ3,2(x) =
∑

m1>m2

1

(x + m1)
3(x + m2)

2

=
∑

m1>m2

(
1

(m1 − m2)
2(x + m1)

3 + 2

(m1 − m2)
3(x + m1)

2 + 3

(m1 − m2)
4(x + m1)

)

+
∑

m1>m2

(
1

(m1 − m2)
3(x + m2)

2 − 3

(m1 − m2)
4(x + m2)

)

= 3ζ(3)Ψ2(x) + ζ(2)Ψ3(x) .

(16)

The connection between the functions g and the monotangent functions is given
by the following

Proposition 3.7 For s1, . . . , sr ≥ 2 the functions g can be written as an ordered
sum of monotangent functions

gs1,...,sl (τ ) =
∑

m1>···>ml>0

Ψs1(m1τ ) . . . Ψsr (mrτ ) .
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Proof This follows directly from the Lipschitz formula (14) and the definition of
the functions g.

Preparation for the Proof of Theorem3.4: We will now recall the construction of
the Fourier expansion ofmultiple Eisenstein series introduced in [2], in order to prove
Theorem3.4. To calculate the Fourier expansion we rewrite the multiple Eisenstein
series as

Gs1,...,sl (τ ) =
∑

λ1�···�λl�0

1

λs1
1 . . . λsl

l

=
∑

(λ1,...,λl )∈Pl

1

(λ1 + · · · + λl)s1(λ2 + · · · + λl)s2 . . . λsl
l

.

Wedecompose the set of tuples of positive lattice points Pl into the 2l distinct subsets
A1 × · · · × Al ⊂ Pl with Ai ∈ {R,U } and write

GA1...Al
s1,...,sl (τ ) :=

∑

(λ1,...,λl )∈A1×···×Al

1

(λ1 + · · · + λl )s1 (λ2 + · · · + λl)s2 . . .λsl
l

this gives the decomposition

Gs1,...,sl =
∑

A1,...,Al∈{R,U }
GA1...Al

s1,...,sl .

In the following we identify the A1 . . . Al with words in the alphabet {R,U }. In
length l = 1 we have Gk(τ ) = GR

k (τ ) + GU
k (τ ) and

GR
k (τ ) =

∑

m1=0
n1>0

1

(0τ + n1)k
= ζ(k) ,

GU
k (τ ) =

∑

m1>0
n1∈Z

1

(m1τ + n1)k
=

∑

m1>0

Ψk(m1τ ) ,

where Ψk is the monotangent function given by

Ψk(x) =
∑

n∈Z

1

(x + n)k
.

To calculate the Fourier expansion of GU
k one uses the Lipschitz formula (14). In

general the GUl

s1,...,sl can be written as
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GUl

s1,...,sl (τ ) =
∑

m1>···>ml>0
n1,...,nl∈Z

1

(m1τ + n1)s1 . . . (mlτ + nl)sl

=
∑

m1>···>ml>0

Ψs1(m1τ ) . . . Ψsl (mlτ )

= (−2πi)s1+···+sl

(s1 − 1)! . . . (sl − 1)!
∑

m1>···>ml>0
d1,...,dl>0

ds1−1
1 . . . dsl−1

l qm1d1+···+mldl

= gs1,...,sl (τ ) .

The other special case GRl

s1,...,sl can also be written down explicitly:

GRl

s1,...,sl (τ ) =
∑

m1=···=ml=0
n1>···>nl>0

1

(0τ + n1)s1 . . . (0τ + nl)sl
= ζ(s1, . . . , sl) .

In length 2 we have Gs1,s2 = GRR
s1,s2 + GUR

s1,s2 + GRU
s1,s2 + GUU

s1,s2 and

GUR
s1,s2 =

∑

m1>0,m2=0
n1∈Z,n2>0

1

(m1τ + n1)s1(0τ + n2)s1

=
∑

m1>0

Ψs1(m1τ )
∑

n2>0

1

ns22
= gs1(τ )ζ(s2) ,

GRU
s1,s2(τ ) =

∑

m1=0,m2>0
n1>n2
ni∈Z

1

(m1τ + n1)s1(m1τ + n2)s2
=
∑

m>0

Ψs1,s2(mτ ).

In the case GUR we saw that we could write it as GU multiplied with a zeta value.
In general, having a word w of length l ending in the letter R, i.e. there is a word w′
ending in U with w = w′Rr and 1 ≤ r ≤ l we can write

Gw
s1,...,sl (τ ) = Gw′

s1,...,sl−r
(τ ) · ζ(sl−r+1, . . . , sl) .

Example: GRUURR
3,4,5,6,7 = GRUU

3,4,5 · ζ(6, 7)
Hence one can concentrate on the words ending in U when calculating the Fourier
expansion of a multiple Eisenstein series. Let w be a word ending in U then there
are integers r1, . . . , r j ≥ 0 with w = Rr1URr2U . . . Rr jU . With this one can write

Gw
s1,...,sl (τ ) =

∑

m1>···>m j>0

Ψs1,...,sr1+1(m1τ ) · Ψsr1+2,...(m2τ ) . . . Ψsl−r j ,...,sl
(m jτ ) .
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Example: w = RU RRU

GRURRU
s1,...,sl =

∑

m1>m2>0

Ψs1,s2(m1τ )Ψs3,s4,s5(m2τ )

m

n
λ5

λ4 λ3

λ2

λ1

A summand of GRURRU
s1,...,sl .

Proof of Theorem3.4: For s1, . . . , sl ≥ 2 the Fourier expansion of the multiple
Eisenstein series Gs1,...,sl can be computed in the following way

(i) Split up the summation into 2l distinct parts Gw
s1,...,sl where w are a words in

{R,U }.
(ii) For w being a word ending in R one can write Gw

s1,...,sl as G
w′
s1,... · ζ(. . . , sl)with

a word w′ ending in U .
(iii) For w being a word ending in U one can write Gw

s1,...,sl as

Gw
s1,...,sl (τ ) =

∑

m1>···>ml>0

Ψs1,...(m1τ ) . . . Ψ...,sl (mlτ ) .

(iv) Using the Theorem3.6 we can write the multitangent functions in (iii) as a
Z -linear combination of monotangents. We therefore just haveZ -linear com-
binations with sums of the form∑

m1>···>m j>0

Ψk1 (m1τ ) . . . Ψk j (m j τ ) = gk1,...,k j (τ ) = (−2πi)k1+···+k j [k1, . . . , k j ] .

�
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An explicit formula for the Fourier expansion of the multiple Eisenstein series
for arbitrary length can be found in [9] Proposition2.4. (with a reversed order of
indices). Here we just give the Fourier expansion for the length 2 and 3. For this we
define for n1, n2, k > 0 the numbers Ck

n1,n2 by

Ck
n1,n2 = (−1)n2

(
k − 1

n2 − 1

)
+ (−1)k−n1

(
k − 1

n1 − 1

)
.

Proposition 3.8 (i) ([2, 9, 19, Formula (52)]) For s1, s2 ≥ 2 the Fourier expan-
sion of the double Eisenstein series is given by

Gs1,s2(τ ) = ζ(s1, s2) + ζ(s2)gs1(τ ) +
∑

k1+k2=s1+s2
k1,k2≥2

Ck2
s1,s2ζ(k2)gk1(τ ) + gs1,s2(τ ) .

(ii) ([2, 9]) For s1, s2, s3 ≥ 2 and k = s1 + s2 + s3 the Fourier expansion of the
triple Eisenstein series can be written as

Gs1,s2,s3(τ ) = ζ(s1, s2, s3) + ζ(s2, s3)gs1(τ ) + ζ(s3)gs1,s2(τ ) + gs1,s2,s3(τ )

+ ζ(s3)
∑

k1+k2=s1+s2

Ck1
s1,s2ζ(k1)gk2(τ )

+
∑

k1+k2=s1+s2

Ck2
s1,s2ζ(k2)gk1,s3(τ ) +

∑

k1+k2=s2+s3

Ck2
s2,s3ζ(k2)gs1,k1(τ )

+
∑

k1+k2+k3=k

(−1)s2+s3

(
k2 − 1

s2 − 1

)(
k3 − 1

s3 − 1

)
ζ(k3, k2)gk1(τ )

+
∑

k1+k2+k3=k

(−1)s1+s2+k2+k3

(
k2 − 1

k3 − 1

)(
k3 − 1

s2 − 1

)
ζ(k3, k2)gk1(τ )

+ (−1)s1+s3
∑

k1+k2+k3=k

(−1)k2
(
k2 − 1

s1 − 1

)(
k3 − 1

s3 − 1

)
ζ(k3)ζ(k2)gk1(τ ) ,

where in the sums we sum over all ki ≥ 2.

Wefinish this section with a closer look at the stuffle product of two Eisenstein series.
Since the product of multiple Eisenstein series can be written in terms of the stuffle
product it is G2 · G3 = G2,3 + G3,2 + G5. On the other hand we have

G2 · G3 = (ζ(2) + g2) (ζ(3) + g3) = ζ(2)ζ(3) + ζ(3)g2 + ζ(2)g3 + g2 · g3 .

and by Proposition3.8 it is



Multiple Eisenstein Series and q-Analogues of Multiple Zeta Values 195

G2,3 = ζ(2, 3) − 2ζ(3)g2 + ζ(2)g3 + g2,3 ,

G3,2 = ζ(3, 2) + 3ζ(3)g2 + ζ(2)g3 + g3,2 .

In conclusion, we obtain a relation for the product of the g’s namely g2 · g3 = g3,2 +
g2,3 + g5 + 2ζ(2)g3 and dividing out (−2πi)5 we get

[2] · [3] = [3, 2] + [2, 3] + [5] − 1

12
[3] .

We conclude that a product of the q-series [s1, . . . , sl] ∈ Q[[q]] has an expression
similar to the stuffle product and that conversely, a product structure on these q-series
could be used, together with the Fourier expansion, to explain the stuffle product for
multiple Eisenstein series.

One might now ask, if the multiple Eisenstein series also “fulfill” the shuffle
product. As we saw above the shuffle product of ζ(2) and ζ(3) reads

ζ(2) · ζ(3) = ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1) (17)

and since there is no definition of G4,1 this question does not make sense when
replacing ζ by G in (17). We will see that the understanding of the product structure
of the brackets, explained in the next two sections, togetherwith theFourier expansion
of multiple Eisenstein series will help to answer this question. This will be done by
introducing shuffle regularized multiple Eisenstein series G� in Sect. 6.2. There we
will see that we can replace the ζ in (17) by G� and that the G� are given by the
original G, for the cases in which they are defined.

4 Multiple Divisor-Sums and Their Generating Functions

The classical divisor-sums σr (n) = ∑
d|n dr have a long history in number theory.

They are well-known examples for multiplicative functions and appear in the Fourier
expansion of Eisenstein series. This section is devoted to a larger class of functions,
that can be seen as a multiple version of the divisor-sums and are therefore called
multiple divisor-sums. For natural numbers r1, . . . , rl ≥ 0 they are defined by

σr1,...,rl (n) =
∑

u1v1+···+ul vl=n
u1>···>ul>0

vr11 . . . vrll . (18)

Even though the definition of these arithmetic functions is not complicated and
somehow canonical, the author could not find any results on these functions before
he started studying them in his master thesis [2]. As mentioned in the introduction,
the motivation to study them was due to their appearance in the Fourier expansion
of multiple Eisenstein series, but as it turned out later in [6], they are very nice and
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interesting objects in their own rights. Similar to multiple zeta values they fulfill a
lot of relations. For example it is

1

2
σ2(n) = σ1,0(n) − 1

2
σ1(n) + nσ0(n) . (19)

Having objects of this type it is natural to consider their generating functions, which
we denote by

[s1, . . . , sl] := 1

(s1 − 1)! . . . (sl − 1)!
∑

n>0

σs1−1,...,sl−1(n)qn

and which are, just for the sake of short notations, called brackets. The factorial
factors and the “shift” of −1 are natural if one thinks about the Fourier expansion of
Eisenstein series. With this notation the relation (19) reads as

[3] = [2, 1] − 1

2
[2] + q

d

dq
[1] , (20)

which can be seen as a counterpart of the relation ζ(3) = ζ(2, 1) between multiple
zeta values.2

In this section, we want to focus on the algebraic structure of the space spanned
by all brackets, which we will denote byMD . This algebraic structure was studied
in [6]. We will see that the space MD has the structure of a Q-algebra and that the
product of two brackets can be expressed in terms of brackets in a way that looks
similar to the stuffle product of multiple zeta values. The operator d = q d

dq which
appears in (20) plays an important role in the theory of (quasi-)modular forms. We
will see that the spaceMD is closed under this operator and that this gives a second
way of expressing the product of two brackets in length one similarly to the shuffle
product of multiple zeta values. This second product expression in higher length will
be discussed in Sect. 5.

4.1 Brackets

Definition 4.1 For any integers s1, . . . , sl > 0 we define the generating function for
the multiple divisor sum σs1−1,...,sl−1 by the formal power series

2Further, one can prove the relation ζ(3) = ζ(2, 1) between multiple zeta values by multiplying
both sides in (20) with (1 − q)3 and then take the limit q → 1. We will discuss this in Sect. 7.
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[s1, . . . , sl ] := 1

(s1 − 1)! . . . (sl − 1)!
∑

n>0

σs1−1,...,sl−1(n)qn

=
∑

u1>···>ul>0
v1,...,vl>0

vs1−1
1 . . . vsl−1

l

(s1 − 1)! . . . (sl − 1)! · qu1v1+···+ul vl ∈ Q[[q]] .

In the first section, we saw that these series, by setting q = exp(2πiτ ), appear in
the Fourier expansion of the multiple Eisenstein series but in this section we just
view them as formal power series. We refer to these generating functions of multiple
divisor sums as brackets and define the vector space MD to be the Q vector space
generated by 1 ∈ Q[[q]] and all brackets [s1, . . . , sl ]. It is important to notice that we
also include the constants in the space MD .

Example 4.2 We give a few examples:

[2] = q + 3q2 + 4q3 + 7q4 + 6q5 + 12q6 + 8q7 + 15q8 + · · · ,

[4, 2] = 1

6

(
q3 + 3q4 + 15q5 + 27q6 + 78q7 + 135q8 + · · · ) ,

[4, 4, 4] = 1

216

(
q6 + 9q7 + 45q8 + 190q9 + 642q10 + 1899q11 + · · · ) ,

[3, 1, 3, 1] = 1

4

(
q10 + 2q11 + 8q12 + 16q13 + 43q14 + 70q15 + · · · ) ,

[1, 2, 3, 4, 5] = 1

288

(
q15 + 17q16 + 107q17 + 512q18 + 1985q19 + · · · ) .

Notice that the first non vanishing coefficient of qn in [s1, . . . , sl] appears at
n = l(l+1)

2 , because it belongs to the “smallest” possible partition

l · 1 + (l − 1) · 1 + · · · + 1 · 1 = n ,

i.e. u j = j and v j = 1 for 1 ≤ j ≤ l. The number k = s1 + · · · + sl is called the
weight of [s1, . . . , sl ] and l denotes the length.

We want to show that the brackets are closed under multiplication by proving that
their product structure is an example for a quasi-shuffle product. To do this we first
introduce some notations and quote some results which are needed for this.

Recall that for s, z ∈ C, |z| < 1 the polylogarithm Lis(z) of weight s is given by
Lis(z) = ∑

n>0
zn

ns . For s ∈ N the Li−s(z) are rational functions in z with a pole in
z = 1. More precisely for |z| < 1 they can be written as

Li−s(z) =
∑

n>0

nszn = zPs(z)

(1 − z)s+1

where Ps(z) is the s-th Eulerian polynomial. Such a polynomial is given by
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Ps(X) =
s−1∑

n=0

As,n X
n ,

where the Eulerian numbers As,n are defined by

As,n =
n∑

i=0

(−1)i
(
s + 1

i

)
(n + 1 − i)s .

For our purpose we write

L̃i1−s(z) := Li1−s(z)

(s − 1)! .

Lemma 4.3 ([6, Lemma 2.5]) For s1, . . . , sl ∈ N we have

[s1, . . . , sl ] =
∑

n1>···>nl>0

L̃i1−s1

(
qn1

)
. . . L̃i1−sl

(
qnl

)

= 1

(s1 − 1)! . . . (sl − 1)!
∑

n1>···>nl>0

l∏

j=1

qn j Ps j−1 (qn j )

(1 − qn j )s j
.

Remark 4.4 (i) The second expression in terms of Eulerian Polynomials will be
important for the interpretation of these series as q-analogues of multiple zeta
values in Sect. 7.

(ii) This representation is also used for a fast implementation of these q-series in
Pari GP. By doing so, the authors in [6] were able to give various results on the
dimensions of the (weight and length filtered) spaces of MD . These results
can be found in Sect. 5 of [6].

The product of [s1] and [s2] can thus be written as

[s1] · [s2] =
⎛

⎝
∑

n1>n2>0

+
∑

n2>n1>0

⎞

⎠ L̃i1−s1

(
qn1

)
L̃i1−s2

(
qn

) +
∑

n1=n2>0

L̃i1−s1

(
qn1

)
L̃i1−s2

(
qn1

)

= [s1, s2] + [s2, s1] +
∑

n>0

L̃i1−s1

(
qn

)
L̃i1−s2

(
qn

)
.

In order to prove that this product is an element of MD the product L̃i1−s1 (qn)

L̃i1−s2 (qn)must be a rational linear combination of L̃i1− j (qn)with 1 ≤ j ≤ s1 + s2.
We therefore need the following

Lemma 4.5 For a, b ∈ N we have

L̃i1−a(z) · L̃i1−b(z) =
a∑

j=1

λ
j
a,bL̃i1− j (z) +

b∑

j=1

λ
j
b,aL̃i1− j (z) + L̃i1−(a+b)(z) ,
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where the coefficient λ j
a,b ∈ Q for 1 ≤ j ≤ a is given by

λ
j
a,b = (−1)b−1

(
a + b − j − 1

a − j

)
Ba+b− j

(a + b − j)! ,

with Bk being the k-th Bernoulli number.3

Proof We prove this by using the generating function

L(X) :=
∑

k>0

L̃i1−k(z)X
k−1 =

∑

k>0

∑

n>0

nk−1zn

(k − 1)! X
k−1 =

∑

n>0

enX zn = eX z

1 − eX z
.

With this one can see by direct calculation that

L(X) · L(Y ) = 1

eX−Y − 1
L(X) + 1

eY−X − 1
L(Y ) .

By the definition of the Bernoulli numbers

X

eX − 1
=
∑

n≥0

Bn

n! X
n

this can be written as

L(X) · L(Y ) =
∑

n>0

Bn
n! (X − Y )n−1L(X) +

∑

n>0

Bn
n! (Y − X)n−1L(Y ) + L(X) − L(Y )

X − Y
.

The statement then follows by calculating the coefficient of Xa−1Y b−1 in this equa-
tion.

Now we are able to interpret the product structure of brackets as an example for
a quasi-shuffle product. We equip H1 with a third product, beside the stuffle product
∗ and the shuffle product�. This product will be denoted �, since it can be seen as
a “bracket version” of the stuffle product ∗. For a, b ∈ N and w, v ∈ H1 we define
recursively the product

zaw � zbv = za(w � zbv) + zb(zaw � v) + za+b(w � v) +
a∑

j=1

λ
j
a,bz j (w � v)

+
b∑

j=1

λ
j
b,az j (w � v) ,

3For convenience we recall that the Bernoulli numbers Bk are defined by X
eX−1

=: ∑k≥0
Bk
k! X

k .
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where the coefficients λ
j
a,b ∈ Q are the same as in Lemma4.5. We equip MD with

the usual multiplication of formal q-series and obtain the following:

Theorem 4.6 ([6, Prop 2.10]) For the linear map [ . ] : (H1,�) −→ (MD, ·)
defined on the generators w = zs1 . . . zsl by [w] := [s1, . . . , sl] we have

[w � v] = [w] · [v]

and therefore MD is a Q-algebra and [ . ] an algebra homomorphism.

Example 4.7 The first products of brackets are given by

[1] · [1] = 2[1, 1] + [2] − [1] ,
[1] · [2] = [1, 2] + [2, 1] + [3] − 1

2
[2] ,

[1] · [2, 1] = [1, 2, 1] + 2[2, 1, 1] − 3

2
[2, 1] + [2, 2] + [3, 1] ,

[2] · [3] = [3, 2] + [2, 3] + [5] − 1

12
[3] ,

[3] · [2, 1] = [3, 2, 1] + [2, 3, 1] + [2, 1, 3] + [5, 1] + [2, 4] + 1

12
[2, 2] − 1

2
[2, 3] − 1

12
[3, 1] .

We end this section by some notations which are needed for the rest of this paper.

Definition 4.8 On MD we have the increasing filtration FilW• given by the weight
and the increasing filtration FilL• given by the length. For a subset A ⊂ MD we
write4

FilWk (A) := 〈[s1, . . . , sl] ∈ A
∣∣ l ≥ 0 , s1 + · · · + sl ≤ k

〉
Q

,

FilLl (A) := 〈[s1, . . . , sr ] ∈ A
∣∣ 0 ≤ r ≤ l

〉
Q

.

If we consider the length and weight filtration at the same time, we use the short
notation FilW,L

k,l := FilWk FilLl .

Remark 4.9 As it can be seen by Theorem4.6, the multiplication of two brackets
respects these filtrations, i.e.

FilW,L
k1,l1

(MD) · FilW,L
k2,l2

(MD) ⊂ FilW,L
k1+k2,l1+l2

(MD).

4.2 Derivatives and Subalgebras

In this section we want to give an overview of interesting subalgebras of the space
MD and discuss the differential structure with respect to the differential d = q d

dq .
One of the main results in [6] is the following

4We set [s1, . . . , sl ] = 1 for l = 0.
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Theorem 4.10 ([6, Theroem 1.7]) The operator d = q d
dq is a derivation on MD ,

it maps FilW,L
k,l (MD) to FilW,L

k+2,l+1(MD).

The proof of Theorem4.10 uses generating functions of the brackets. It gives explicit
formulas for the derivatives d[s1, . . . , sl ] for all l which we omit here, since they are
complicated. For example we have

d[2, 1, 1] = −1

6
[2, 1, 1] + 1

2
[2, 1, 2] − [2, 1, 2, 1] + [2, 1, 3] + 3

2
[2, 2, 1]

− 2 [2, 2, 1, 1] + [2, 3, 1] + 6[3, 1, 1] − 8[3, 1, 1, 1] + [4, 1, 1].

In the following we give a list of subalgebras and review the results on whether they
are also closed under d or not.

(i) (quasi-)modular forms: Next to the connection to modular forms due to their
appearance in the Fourier expansion of multiple Eisenstein series, the brackets have
a direct connection to quasi-modular forms for SL2(Z) with rational coefficients. In
the case l = 1 we get the divisor sums σk−1(n) = ∑

d|n dk−1 and

[k] = 1

(k − 1)!
∑

n>0

σk−1(n)qn .

These simple brackets appear in the Fourier expansion of classical Eisenstein series
with rational coefficients G̃k(τ ) := (−2πi)−kGk(τ ) since we also included the ratio-
nal numbers inMD . For example we have

G̃2 = − 1

24
+ [2] , G̃4 = 1

1440
+ [4] , G̃6 = − 1

60480
+ [6] .

Denote byMQ(SL2(Z)) = Q[G4,G6] and M̃Q(SL2(Z)) = Q[G2,G4,G6] the alge-
bras of modular forms and quasi-modular forms with rational coefficients.

It is a well-known fact that the space M̃Q(SL2(Z)) is closed under the operator
d = q d

dq .
(ii) Admissible brackets: We define the set of all admissible brackets qMZ as

the span of all brackets [s1, . . . , sl ] with s1 > 1 and 1. This space is a subalgebra
of MD [6, Theorem 2.13] and every bracket can be written as a polynomial in the
bracket [1] with coefficients in qMZ :

Theorem 4.11 ([6, Theorem 2.14, Proposition 3.14])

(i) We have MD = qMZ [ [1] ].
(ii) The algebraMD is a polynomial ring over qMZ with indeterminate [1], i.e.

MD is isomorphic to qMZ [ T ] by sending [1] to T .
(iii) The space qMZ is closed under d.

The elements in qMZ are the ones, where the corresponding multiple zeta values
exist. It will be reviewed in more detail in Sect. 7, when we consider the brackets as
q-analogues of multiple zeta values.
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(iii) Even brackets and brackets with no 1’s: Denote by MD even the space
spanned by 1 and all [s1, . . . , sl] with s j even for all 0 ≤ j ≤ l and by MD � the
space spanned by 1 and all [s1, . . . , sl ] with s j > 1. Both spacesMD even andMD �

are subalgebras ofMD [6, Proposition 2.15]. It is expected, that the spaceMD even

is not closed under d, since numerical calculation suggest, that for example d[4, 2] /∈
MD even. Whether the space MD � is closed under this operator is an open and
interesting question. In [7] it is shown, that this is actually equivalent to one part of
Conjecture 1 in [27] given by Okounkov.

To summarize, we have the following inclusion of Q-algebras

MQ(SL2(Z)) M̃Q(SL2(Z)) MD ev MD# qMZ MD

d

d

d?

d?
d d

The dashed arrows indicate the conjectured behavior of the map d, whereas the other
arrows are all known to be correct.

Though in length l = 1 we derive not just one but several expressions for d[s]
given by the following Proposition.

Proposition 4.12 ([6, Proposition 3.3]) For s1, s2 with s1 + s2 > 2 and s = s1 +
s2 − 2 we have the following expression for d[s]:
(

s

s1 − 1

)
d[s]
s

= [s1] · [s2] +
(

s

s1 − 1

)
[s + 1] −

∑

a+b=s+2

((
a − 1

s1 − 1

)
+
(
a − 1

s2 − 1

))
[a, b] .

If you compare this formula with the shuffle product of multiple zeta values (11) in
the length one times length one case you notice that Proposition4.12 basically states
that the brackets fulfill the shuffle product up to the term

( s
s1−1

) d[s]
s − ( s

s1−1

)[s + 1].
We end this section by using these formulas to prove the following identity

Proposition 4.13 The unique normalized cusp form Δ in weight 12 can be written
as

− 1

26 · 5 · 691Δ = 168[5, 7] + 150[7, 5] + 28[9, 3]

+ 1

1408
[2] − 83

14400
[4] + 187

6048
[6] − 7

120
[8] − 5197

691
[12] .

Proof With the Eisenstein series G̃6 and G̃12 given by

G̃6 = (−2πi)−6ζ(6) + [6] = − 1

60480
+ [6] ,

G̃12 = (−2πi)−12ζ(12) + [12] = 691

2615348736000
+ [12] ,
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the cusp form Δ can be written as Δ = −3316800G2
6 + 3432000G12. Using quasi-

shuffle product of brackets one can derive

Δ = 3455

198
[2] − 691

6
[4] + 6910

21
[6] + 115200[12] − 6633600[6, 6] .

and therefore

− 1

26 · 5 · 691Δ = 30[6, 6] − 1

12672
[2] + 1

1920
[4] − 1

672
[6] − 360

691
[12] .

(21)

Using Proposition4.12 for (s1, s2) = (4, 8), (5, 7), (6, 6) we get the following three
expressions for d[10]

d[10] = − 1

3
[5, 7] − 5

6
[6, 6] − 5

3
[7, 5] − 35

12
[8, 4] − 16

3
[9, 3] − 10[10, 2] − 20[11, 1]

− 1

4790016
[2] + 1

403200
[4] − 1

36288
[6] + 1

8640
[8] + 10[11] + 1

12
[12] ,

d[10] = − 5

21
[6, 6] − 5

7
[7, 5] − 2[8, 4] − 14

3
[9, 3] − 10[10, 2] − 20[11, 1]

+ 1

4790016
[2] − 1

604800
[4] + 1

127008
[6] + 10[11] + 1

21
[12] ,

d[10] = − 10

21
[7, 5] − 5

3
[8, 4] − 40

9
[9, 3] − 10[10, 2] − 20[11, 1]

− 1

4790016
[2] + 1

725760
[4] − 1

381024
[6] + 10[11] + 5

126
[12] .

Summing them up as 0 = −504 d[10] + 1890 d[10] − 1386 d[10] we get

0 =168[5, 7] − 30[6, 6] + 150[7, 5] + 28[9, 3]
+ 5

6336
[2] − 181

28800
[4] + 7

216
[6] − 7

120
[8] − 7[12] (22)

Combining (22) and (21), in order to eliminate the occurrence of [6, 6], we obtain
the desired identity.

5 Bi-Brackets and a Second Product Expression
for Brackets

In the previous section we have seen that the spaceMD of brackets has the structure
of a Q-algebra and that there is an explicit formula to express the product of two
brackets as a linear combination of brackets similarly to the stuffle product ofmultiple
zeta values. In this section we want to present a larger class of q-series, called
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bi-brackets. The quasi-shuffle product of brackets extend to this larger class and
therefore the space of bi-brackets is also a Q-algebra. The beautiful feature of bi-
brackets is, that there is a relation, which we call partition relation, which enables
one to express the product of two bi-brackets in a second different way. These two
product expressions then give a large class of linear relations, similar to the double
shuffle relations of multiple zeta values. A variation of the bi-brackets were also
studied in [41]. Later, the bi-brackets will be used to define regularized multiple
Eisenstein series in Sect. 6. All results in this section were studied and introduced
in [3].

5.1 Bi-Brackets and Their Generating Series

As motivated in the introduction of this section we want to study the following
q-series:

Definition 5.1 For r1, . . . , rl ≥ 0, s1, . . . , sl > 0 and we define the following q-
series

[
s1, . . . , sl
r1, . . . , rl

]
:=

∑

u1>···>ul>0
v1,...,vl>0

ur11
r1! . . .

urll
rl ! · vs1−1

1 . . . vsl−1
l

(s1 − 1)! . . . (sl − 1)! · qu1v1+···+ul vl ∈ Q[[q]]

which we call bi-brackets of weight r1 + · · · + rk + s1 + · · · + sl , upper weight s1 +
· · · + sl , lower weight r1 + · · · + rl and length l. By BD we denote the Q-vector
space spanned by all bi-brackets and 1.

The factorial factors in the definition of bi-brackets will become natural when
considering generating functions of bi-brackets and the connection to multiple zeta
values.

For r1 = · · · = rl = 0 the bi-brackets are just the brackets

[
s1, . . . , sl
0, . . . , 0

]
= [s1, . . . , sl ]

as defined in Sect. 4. Similarly to the Definition4.8 of the filtration for the spaceBD
we write for a subset A ∈ BD

FilWk (A) := 〈[s1, . . . , sl
r1, . . . , rl

]
∈ A

∣∣ 0 ≤ l ≤ k , s1 + · · · + sl ≤ k
〉
Q

FilDk (A) := 〈[s1, . . . , sl
r1, . . . , rl

]
∈ A

∣∣ 0 ≤ l ≤ k , r1 + · · · + rl ≤ k
〉
Q

FilLl (A) := 〈[s1, . . . , st
r1, . . . , rt

]
∈ A

∣∣ t ≤ l
〉
Q

.
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and again if we consider the length and weight filtration at the same time we use the
short notation FilW,L

k,l := FilWk FilLl and similar for the other filtrations.

Proposition 5.2 ([3, Proposition 4.2]) Let d := q d
dq , then we have

d

[
s1, . . . , sl
r1, . . . , rl

]
=

l∑

j=1

(
s j (r j + 1)

[
s1 , . . . , s j−1 , s j + 1 , s j+1, . . . , sl
r1 , . . . , r j−1 , r j + 1 , r j+1 , . . . , rl

])

and therefore d
(
FilW,D,L

k,d,l (BD)
)

⊂ FilW,D,L
k+1,d+1,l(BD).

Proof This is an easy consequence of the definition of bi-brackets and the fact that
d
∑

n>0 anq
n = ∑

n>0 nanq
n .

Proposition5.2 suggests that the bi-brackets can be somehow viewed as partial
derivatives of the brackets with total differential d.

In the following we now want to discuss the algebra structure of the space BD .
For this we extend the quasi-shuffle product� ofH1 to a larger space of words. Since
we have double indices we replace the alphabet Az = {z1, z2, . . . } by Abi

z := {zs,r |
s ≥ 1 , r ≥ 0}.

We consider on QAbi
z the commutative and associative product

zs1,r1 � zs2,r2 =
(
r1 + r2

r1

) s1∑

j=1

λ j
s1,s2 z j,r1+r2 +

(
r1 + r2

r1

) s2∑

j=1

λ j
s2,s1 z j,r1+r2

+
(
r1 + r2

r1

)
zs1+s2,r1+r2

and on Q〈Abi
z 〉 the commutative and associative quasi-shuffle product

zs1,r1w � zs2,r2v = zs1,r1(w � zs2,r2v) + zs2,r2(zs1,r1w � v) + (zs1,r1 � zs2,r2)(w � v) ,

where the the numbers λ
j
a,b ∈ Q for 1 ≤ j ≤ a are the same as before, i.e.

λ
j
a,b = (−1)b−1

(
a + b − j − 1

a − j

)
Ba+b− j

(a + b − j)! .

Theorem 5.3 ([3, Theroem 3.6]) The map
[
.
] : (Q〈Abi

z 〉,�) → (BD, ·) given by

w = zs1,r1 . . . zsl ,rl �−→ [w] =
[
s1, . . . , sl
r1, . . . , rl

]

fulfills [w � v] = [w] · [v] and therefore BD is a Q-algebra.
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Definition 5.4 For the generating function of the bi-brackets we write

∣∣∣∣
X1, . . . , Xl

Y1, . . . ,Yl

∣∣∣∣ :=
∑

s1,...,sl>0
r1,...,rl>0

[
s1 , . . . , sl

r1 − 1 , . . . , rl − 1

]
Xs1−1
1 . . . Xsl−1

l · Y r1−1
1 . . . Y rl−1

l .

These are elements in the ringBDgen = lim−→ j
BD[[X1, . . . , X j ,Y1, . . . ,Y j ]] of all

generating series of bi-brackets.

To derive relations between bi-brackets we will prove functional equations for their
generating functions. The key fact for this is that there are two different ways of
expressing these given by the following Theorem.

Theorem 5.5 ([3, Theroem 2.3]) For n ∈ N set

En(X) := enX and Ln(X) := eXqn

1 − eXqn
∈ Q[[q, X ]] .

Then for all l ≥ 1 we have the following two different expressions for the generating
functions:

∣∣∣∣
X1, . . . , Xl

Y1, . . . ,Yl

∣∣∣∣ =
∑

u1>···>ul>0

l∏

j=1

Eu j (Y j )Lu j (X j )

=
∑

u1>···>ul>0

l∏

j=1

Eu j (Xl+1− j − Xl+2− j )Lu j (Y1 + · · · + Yl− j+1)

(with Xl+1 := 0). In particular the partition relations5 holds:

∣∣∣∣
X1, . . . , Xl

Y1, . . . ,Yl

∣∣∣∣
P=
∣∣∣∣
Y1 + · · · + Yl , . . . ,Y1 + Y2,Y1
Xl , Xl−1 − Xl, . . . , X1 − X2

∣∣∣∣ . (23)

Remark 5.6 A nice combinatorial explanation for the partition relation (23) is the
following: By a partition of a natural number nwith l parts we denote a representation
of n as a sum of l distinct natural numbers, i.e. 15 = 4 + 4 + 3 + 2 + 1 + 1 is a
partition of 15 with the 4 parts given by 4, 3, 2, 1. We identify such a partition with a
tuple (u, v) ∈ Nl × Nl where the u j ’s are the l distinct numbers in the partition and
the v j ’s count their appearance in the sum. The above partition of 15 is therefore given
by the tuple (u, v) = ((4, 3, 2, 1), (2, 1, 1, 2)). By Pl(n) we denote all partitions of
n with l parts and hence we set

Pl(n) := {
(u, v) ∈ Nl × Nl | n = u1v1 + · · · + ulvl and u1 > · · · > ul > 0

}

5The bi-brackets and their generating series also give examples of what is called a bimould by
Ecalle in [16]. In his language the partition relation (23) states that the bimould of generating series
of bi-brackets is swap invariant.
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((4,3,2,1),(2,1,1,2)) = −−−−−−−−−−→ = ((6,4,3,2),(1,1,1,1))

Fig. 1 The conjugation of the partition 15 = 4 + 4 + 3 + 2 + 1 + 1 is given by
ρ(((4, 3, 2, 1), (2, 1, 1, 2))) = ((6, 4, 3, 2), (1, 1, 1, 1)) which can be seen by reflection the
corresponding Young diagram at the main diagonal

On the set Pl(n) one has an involution given by the conjugation ρ of partitions which
can be obtained by reflecting the corresponding Young diagram across the main
diagonal (Fig. 1).

On the set Pl(n) the conjugation ρ is explicitly given by ρ((u, v)) = (u′, v′)where
u′
j = v1 + · · · + vl− j+1 and v′

j = ul− j+1 − ul− j+2 with ul+1 := 0, i.e.

ρ :
(
u1, . . . , ul
v1, . . . , vl

)
�−→

(
v1 + · · · + vl , . . . , v1 + v2, v1
ul , ul−1 − ul, . . . , u1 − u2

)
. (24)

By the definition of the bi-brackets its clear that with the above notation they can be
written as

[
s1, . . . , sl
r1, . . . , rl

]
:= 1

r1!(s1 − 1)! . . . rl !(sl − 1)!
∑

n>0

⎛

⎝
∑

(u,v)∈Pl (n)

ur11 v
s1−1
1 . . . urll v

sl−1
l

⎞

⎠ qn .

The coefficients are given by a sum over all elements in Pl(n) and therefore it is
invariant under the action of ρ. As an example, consider [2, 2] and apply ρ to the
sum. Then we obtain

[2, 2] =
∑

n>0

⎛

⎝
∑

(u,v)∈P2(n)

v1 · v2
⎞

⎠ qn =
∑

n>0

⎛

⎝
∑

ρ((u,v))=(u′,v′)∈P2(n)

u′
2 · (u′

1 − u′
2)

⎞

⎠ qn

=
∑

n>0

⎛

⎝
∑

(u′,v′)∈P2(n)

u′
2 · u′

1

⎞

⎠ qn −
∑

n>0

⎛

⎝
∑

(u′,v′)∈P2(n)

u′2
2

⎞

⎠ qn =
[
1, 1

1, 1

]
− 2

[
1, 1

0, 2

]
.

(25)

This is exactly the relation one obtains by using the partition relation.

Corollary 5.7 ([3, Corollary 2.5]) (Partition relation in length one and two) For
r, r1, r2 ≥ 0 and s, s1, s2 > 0 we have the following relations in length one and two
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[
s

r

]
=
[
r + 1

s − 1

]
,

[
s1, s2
r1, r2

]
=

∑

0≤ j≤r1
0≤k≤s2−1

(−1)k
(
s1 − 1 + k

k

)(
r2 + j

j

)[
r2 + j + 1 , r1 − j + 1

s2 − 1 − k , s1 − 1 + k

]
.

Remark 5.8 (i) If we replace in the generating series in Definition5.4 the
bi-brackets by the corresponding bi-words in and enforce the partition rela-
tion (23) for this power series, we obtain an involution

P : Q〈Abi
z 〉 → Q〈Abi

z 〉 .

By Corollary5.7 it is for example P(zs,r ) = zr+1,s−1. This will be needed to
describe the second product structure in the next section.

(ii) In [41] the author introduces multiple q-zeta brackets Z
[s1,...,sr
r1,...,rl

]
, which can be

written in terms of bi-brackets and vice versa. For these objects the partition
relation has the nice form

Z

[
s1, . . . , sr
r1, . . . , rl

]
= Z

[
rl, . . . , r1
sl, . . . , s1

]
,

which can be interpreted in terms of duality. This is also used in [41] to describe
the second product structure for theZ. Similarly in [17] the authors use a duality
by Zhao [39] to describe a second product structure for another model of
q-analogues.

5.2 Double Shuffle Relations for Bi-Brackets

The partition relation together with the quasi-shuffle product can be used to obtain
a second expression for the product of two bi-brackets. Before giving the general
explanation this second product expression we illustrate it in two examples.

Example 5.9 (i) We want to given a second product expression for the product
[2] · [3]. By the partition relation we know that [2] = [1

1

]
, [3] = [1

2

]
and using

the quasi-shuffle product we have

[
1

1

]
·
[
1

2

]
=
[
1, 1

1, 2

]
+
[
1, 1

2, 1

]
− 3

[
1

3

]
+ 3

[
2

3

]
.

The partition relations for the length two bi-brackets on the right is given by
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[
1, 1

1, 2

]
=
[
3, 2

0, 0

]
+ 3

[
4, 1

0, 0

]
= [3, 2] + 3[4, 1] ,

[
1, 1

2, 1

]
=
[
2, 3

0, 0

]
+ 2

[
3, 2

0, 0

]
+ 3

[
4, 1

0, 0

]
= [2, 3] + 2[3, 2] + 3[4, 1] .

Combining all of this we obtain

[
2

0

]
·
[
3

0

]
=
[
1

1

]
·
[
1

2

]

=
[
1, 1

1, 2

]
+
[
1, 1

2, 1

]
− 3

[
1

3

]
+ 3

[
2

3

]

= [2, 3] + 3[3, 2] + 6[4, 1] + 3

[
4

1

]
− 3[4] .

Compare this to the shuffle product of multiple zeta values

ζ(2)ζ(3) = ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1) .

Since d[3] = 3
[4
1

]
this example exactly coincides with the formula in Proposi-

tion4.12 for the derivative d[k].
(ii) In higher length, expressing the product of two bi-brackets in a similar way as

in i) becomes interesting, since then the extra terms can’t be expressed with the
operator d anymore. Doing the same calculation for the product [3] · [2, 1], i.e.
using the partition relation, the quasi-shuffle product and again the partition
relation we obtain

[3] · [2, 1] =
[
1

2

]
·
[
1, 1

0, 1

]

=
[
1, 1, 1

2, 0, 1

]
+
[
1, 1, 1

0, 2, 1

]
+
[
1, 1, 1

0, 1, 2

]
+ 3

[
1, 2

0, 3

]
+
[
2, 1

2, 1

]
− 3

[
1, 1

0, 3

]
−
[
1, 1

2, 1

]

= [2, 1, 3] + [2, 2, 2] + 2[2, 3, 1] + 2[3, 1, 2] + 5[3, 2, 1] + 9[4, 1, 1]
+
[
2, 3

0, 1

]
+ 2

[
3, 2

0, 1

]
+ 3

[
4, 1

1, 0

]
− [2, 3] − 2[3, 2] − 6[4, 1] .

This product can be seen as the analogue of the shuffle product

ζ(3) · ζ(2, 1) = ζ(2, 1, 3) + ζ(2, 2, 2) + 2ζ(2, 3, 1) + 2ζ(3, 1, 2) + 5ζ(3, 2, 1) + 9ζ(4, 1, 1) .

Here the bi-brackets, which are not given as brackets, can not be written in terms of
the operator d in an obvious way.

This works for arbitrary lengths and yields a natural way to obtain the second product
expression for bi-brackets. To be more precise, denote by P : Q〈Abi

z 〉 → Q〈Abi
z 〉 the

involution defined in Remark i. Using this convention the second product expression
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for bi-brackets canbewritten inQ〈Abi
z 〉 for twowordsu, v ∈ Q〈Abi

z 〉 as P (P(u) � P(v)),
i.e. the two product expressions of bi-brackets which correspond to the stuffle and
shuffle product of multiple zeta values are given by

[u] · [v] = [u � v] , [u] · [v] = [P (P(u) � P(v))] . (26)

In contrast to multiple zeta values these two product expression are the same for
some cases, as one can check for the example [1] · [1, 1]. In the smallest length case,
we have the following explicit formulas for the two products expressions.

Proposition 5.10 ([2, Proposition 3.3]) For s1, s2 > 0 and r1, r2 ≥ 0 we have the
following two expressions for the product of two bi-brackets of length one:

(i) (“Stuffle product analogue for bi-brackets”)

[
s1
r1

]
·
[
s2
r2

]
=
[
s1, s2
r1, r2

]
+
[
s2, s1
r2, r1

]
+
(
r1 + r2

r1

)[
s1 + s2
r1 + r2

]

+
(
r1 + r2

r1

) s1∑

j=1

(−1)s2−1Bs1+s2− j

(s1 + s2 − j)!
(
s1 + s2 − j − 1

s1 − j

)[
j

r1 + r2

]

+
(
r1 + r2

r1

) s2∑

j=1

(−1)s1−1Bs1+s2− j

(s1 + s2 − j)!
(
s1 + s2 − j − 1

s2 − j

)[
j

r1 + r2

]

(ii) (“Shuffle product analogue for bi-brackets”)

[
s1
r1

]
·
[
s2
r2

]
=

∑

1≤ j≤s1
0≤k≤r2

(
s1 + s2 − j − 1

s1 − j

)(
r1 + r2 − k

r1

)
(−1)r2−k

[
s1 + s2 − j, j

k, r1 + r2 − k

]

+
∑

1≤ j≤s2
0≤k≤r1

(
s1 + s2 − j − 1

s1 − 1

)(
r1 + r2 − k

r1 − k

)
(−1)r1−k

[
s1 + s2 − j, j

k, r1 + r2 − k

]

+
(
s1 + s2 − 2

s1 − 1

)[
s1 + s2 − 1

r1 + r2 + 1

]

+
(
s1 + s2 − 2

s1 − 1

) r1∑

j=0

(−1)r2 Br1+r2− j+1

(r1 + r2 − j + 1)!
(
r1 + r2 − j

r1 − j

)[
s1 + s2 − 1

j

]

+
(
s1 + s2 − 2

s1 − 1

) r2∑

j=0

(−1)r1 Br1+r2− j+1

(r1 + r2 − j + 1)!
(
r1 + r2 − j

r2 − j

)[
s1 + s2 − 1

j

]

Having these two expressions for the product of bi-brackets we obtain a large
family of linear relations between them. Computer experiments suggest that actually
every bi-bracket can be written in terms of brackets and that motivates the following
surprising conjecture.
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Conjecture 5.11 The algebra BD of bi-brackets is a subalgebra of MD and in
particular we have

FilW,D,L
k,d,l (BD) ⊂ FilW,L

k+d,l+d(MD) .

The results towards this conjecture, beside the computer experiments which have
been done up to weight 8, are the following

Proposition 5.12 ([3, Proposition 4.4]) For l = 1 the Conjecture5.11 is true.

In [8] it will be shown, that Conjecture5.11 is also true for all length up to weight 7.
For higher weights and lengths there are no general statements. The only general
statement for the length two case is given by the following Proposition.

Proposition 5.13 ([3, Proposition 5.9]) For all s1, s2 ≥ 1 it is

[
s1, s2
1, 0

]
,

[
s1, s2
0, 1

]
∈ FilW,L

s1+s2+1,3(MD)

5.3 The Shuffle Brackets

We now want to define a q-series which is an element in BD and whose products
can be written in terms of the “real” shuffle product of multiple zeta values. For
e1, . . . , el ≥ 1 we generalize the generating function of bi-brackets to the following

∣∣∣∣∣
X1, ... , Xl
Y1, ... , Yl
e1, ... , el

∣∣∣∣∣ =
∑

u1>···>ul>0

l∏

j=1

Eu j (Y j )Lu j (X j )
e j . (27)

In particular for e1 = · · · = el = 1 these are the generating functions of the
bi-brackets. To show that the coefficients of these series are in BD for arbitrary
e j we need to define the differential operator DY

e1,...,el := DY1,e1DY2,e2 . . . DYl ,el with

DYj ,e =
e−1∏

k=1

(
1

k

(
∂

∂Yl− j+1
− ∂

∂Yl− j+2

)
− 1

)
.

where we set ∂
∂Yl+1

= 0.

Lemma 5.14 LetA be an algebra spanned by elements as1,...,sl with s1, . . . , sl ∈ N,
let H(X1, . . . , Xl) = ∑

s j
as1,...,sl X

s1−1
1 . . . Xsl−1

1 be the generating functions of these
elements and define for f ∈ Q[[X1, . . . , Xl ]]

f �(X1, . . . , Xl) = f (X1 + · · · + Xl , X2 + · · · + Xl, . . . , Xl) .

Then the following two statements are equivalent.
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(i) The map (H1,�) → A given by zs1 . . . zs j �→ as1,...,sl is an algebra
homomorphism.

(ii) For all r, s ∈ N it is

H �(X1, . . . , Xr ) · H �(Xr+1, . . . , Xr+s) = H �(X1, . . . , Xr+s)|sh(r+s)
r

,

where sh(r+s)
r = ∑

σ∈�(r,s) σ in the group ring Z[Sr+s] and the symmetric
group Sr acts on Q[[X1, . . . , Xr ]] by ( f

∣∣σ)(X1, . . . , Xr ) = f (Xσ−1(1), . . . ,

Xσ−1(r)) .

Proof This can be proven by induction over l together with Proposition 8 in [23].

Theorem 5.15 ([3, Theroem 5.7]) For s1, . . . , sl ∈ N define [s1, . . . , sl ]� ∈ BD
as the coefficients of the following generating function

H�(X1, . . . , Xl) =
∑

s1,...,sl≥1

[s1, . . . , sl]�Xs1−1
1 . . . Xsl−1

l

:=
∑

1≤m≤l
i1+···+im=l

1

i1! . . . im !D
Y
i1,...,im

∣∣∣∣
X1, Xim+1, Xim−1+im+1, . . . , Xi2+···+im+1

Y1, . . . , Yl

∣∣∣∣∣∣Y=0

.

Then we have the following two statements

i) The [s1, . . . , sl ]� fulfill the shuffle product, i.e.

H �
�

(X1, . . . , Xr ) · H �
�

(Xr+1, . . . , Xr+s) = H �
�

(X1, . . . , Xr+s)|sh(r+s)
r

.

ii) For s1 ≥ 1, s2, . . . , sl ≥ 2 we have [s1, . . . , sl ]� = [s1, . . . , sl ].
For low lengths we obtain the following examples:

Corollary 5.16 It is [s1]� = [s1] and for l = 2, 3, 4 the [s1, . . . , sl ]�are given by6

(i) [s1, s2]� = [s1, s2] + δs2,1 · 1
2

([
s1
1

]
− [s1]

)
,

(ii) [s1, s2, s3]� = [s1, s2, s3] + δs3,1 · 1
2

([
s1, s2
0, 1

]
− [s1, s2]

)

+ δs2,1 · 1
2

([
s1, s3
1, 0

]
−
[
s1, s3
0, 1

]
− [s1, s3]

)

+ δs2·s3,1 · 1
6

([
s1
2

]
− 3

2

[
s1
1

]
+ [s1]

)
,

6Here δa,b denotes the Kronecker delta, i.e δa,b is 1 for a = b and 0 otherwise.
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(iii) [s1, s2, s3, s4]� = [s1, s2, s3, s4] + δs4,1 · 1
2

([
s1, s2, s3
0, 0, 1

]
− [s1, s2, s3]

)

+δs3,1 · 1
2

([
s1, s2, s4
0, 1, 0

]
−
[
s1, s2, s4
0, 0, 1

]
+ [s1, s2, s4]

)

+δs2,1 · 1
2

([
s1, s3, s4
1, 0, 0

]
−
[
s1, s3, s4
0, 1, 0

]
+ [s1, s3, s4]

)

+δs2·s4,1 · 1
4

([
s1, s3
1, 1

]
− 2

[
s1, s3
0, 2

]
−
[
s1, s3
1, 0

]
+ [s1, s3]

)

+δs3·s4,1 · 1
6

([
s1, s2
0, 2

]
− 3

2

[
s1, s2
0, 1

]
+ [s1, s2]

)

+δs2·s3,1 · 1
6

([
s1, s4
0, 2

]
−
[
s1, s4
1, 1

]
+ 3

2

[
s1, s4
0, 1

]
+
[
s1, s4
2, 0

]
− 3

2

[
s1, s4
1, 0

]
+ [s1, s4]

)

+δs2·s3·s4,1 · 1

24

([
s1
3

]
− 2

[
s1
2

]
+ 11

6

[
s1
1

]
− [s1]

)
.

Proof This follows by calculating the coefficients of the seriesG� in Theorem5.15.

The shuffle brackets will be used to define shuffle regularized multiple Eisenstein
series in the next section.

6 Regularizations of Multiple Eisenstein Series

This section is devoted to Question1 in the introduction, which was to find a regular-
ization of the multiple Eisenstein series. We want to present two type of regulariza-
tion: The shuffle regularized multiple Eisenstein series [3, 9] and stuffle regularized
multiple Eisenstein series [3].

The definition of shuffle regularized multiple Eisenstein series uses a beautiful
connection of the Fourier expansion of multiple Eisenstein series and the coproduct
of formal iterated integrals. The other regularization, the stuffle regularized multiple
Eisenstein series uses the construction of the Fourier expansion ofmultiple Eisenstein
series together with a result on regularization of multitangent functions by Bouillot
[12].

We start by reviewing the definition of formal iterated integrals and the coprod-
uct defined by Goncharov. An explicit example in length two will make the above
mentioned connection of multiple Eisenstein series and this coproduct clear. After
doing this, we give the definition of shuffle and stuffle regularized multiple Eisen-
stein series as presented in [3, 9]. At the end of this section we compare these two
regularizations with a help of a few examples.
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6.1 Formal Iterated Integrals

Following Goncharov (Sect. 2 in [20]) we consider the algebra I generated by the
elements

I(a0; a1, . . . , aN ; aN+1), ai ∈ {0, 1}, N ≥ 0.

together with the following relations

(i) For any a, b ∈ {0, 1} the unit is given by I(a; b) := I(a; ∅; b) = 1.
(ii) The product is given by the shuffle product�

I(a0; a1, . . . , aM ; aM+N+1)I(a0; aM+1, . . . , aM+N ; aM+N+1)

=
∑

σ∈shM,N

I(a0; aσ−1(1), . . . , aσ−1(M+N ); aM+N+1),

where shM,N is the set of σ ∈ SM+N such that σ(1) < · · · < σ(M) and
σ(M + 1) < · · · < σ(M + N ).

(iii) The path composition formula holds: for any N ≥ 0 and ai , x ∈ {0, 1}, one has

I(a0; a1, . . . , aN ; aN+1) =
N∑

k=0

I(a0; a1, . . . , ak; x)I(x; ak+1, . . . , aN ; aN+1).

(iv) For N ≥ 1 and ai , a ∈ {0, 1} it is I(a; a1, . . . , aN ; a) = 0.
(v) The path inversion is satisfied:

I(a0; a1, . . . , aN ; aN+1) = (−1)N I(aN+1; aN , . . . , a1; a0) .

Definition 6.1 (Coproduct) Define the coproduct Δ on I by

Δ(I(a0; a1, . . . , aN ; aN+1)) :=
∑

⎛

⎝I(a0; ai1 , . . . , aik ; aN+1) ⊗
k∏

p=0

I(aip ; aip+1, . . . , aip+1−1; aip+1)

⎞

⎠ ,

where the sum on the right runs over all i0 = 0 < i1 < · · · < ik < ik+1 = N + 1
with 0 ≤ k ≤ N .

Proposition 6.2 ([20, Proposition 2.2]) The triple (I ,�,Δ) is a commutative
graded Hopf algebra over Q.

To calculate Δ(I(a0; a1, . . . , a8; a9)) one sums over all possible diagrams of the
following form (Fig. 2).
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Fig. 2 One diagram for the
calculation of
Δ (I(a0; a1, . . . , a8; a9)). It
gives the term
I (a0; a1, a4, a7; a9) ⊗
I (a0; a1)I (a1; a2, a3; a4)I
(a4; a5, a6; a7)I (a7; a8; a9)

a8

a7

a6

a5a4
a3

a2

a1

a0 a9

I(a
7 ;a

8 ;a
9 )

I(a4 ;a5 ,a6 ;a7)

I(a
1;
a 2
,a 3

;a 4
)

I(
a 0
;a

1
)

For our purpose it will be important to consider the quotient space7

I 1 = I /I(1; 0; 0)I .

Let us denote by
I (a0; a1, . . . , aN ; aN+1)

an image of I(a0; a1, . . . , aN ; aN+1) in I 1. The quotient map I → I 1 induces
a Hopf algebra structure on I 1, but for our application we just need that for any
w1,w2 ∈ I 1, one has Δ(w1 � w2) = Δ(w1) � Δ(w2). The coproduct on I 1

is given by the same formula as before by replacing I with I . For integers n ≥
0, s1, . . . , sr ≥ 1, we set

In(s1, . . . , sr ) := I (1; 0, 0, . . . , 1︸ ︷︷ ︸
s1

, . . . , 0, 0, . . . , 1︸ ︷︷ ︸
sr

, 0, . . . , 0︸ ︷︷ ︸
n

; 0).

In particular, we write8 I (s1, . . . , sr ) to denote I0(s1, . . . , sr ).

Proposition 6.3 ([9, Eqs. (3.5), (3.6) and Proposition 3.5])

(i) We have In(∅) = 0 if n ≥ 1 or 1 if n = 0.
(ii) For integers n ≥ 0, s1, . . . , sr ≥ 1,

In(s1, . . . , sr ) = (−1)n
∗∑( r∏

j=1

(
k j − 1

s j − 1

))
I (k1, . . . , kr ) ,

7If one likes to interpret the integrals as real integrals, then the passage from I to I 1 regularizes
these integrals such that “− log(0) = ∫

1>t>0
dt
t := 0”.

8This notion fits well with the iterated integral expression of multiple zeta values. Recall that

ζ(2, 3) =
∫

1>t1>···>t5>0

dt1
t1

· dt2
1 − t2︸ ︷︷ ︸
2

· dt3
t3

· dt4
t4

· dt5
1 − t5︸ ︷︷ ︸

3

.

This corresponds to I (2, 3) (but is of course not the same since the I are formal symbols).
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where the sum runs over all k1 + · · · + kr = s1 + · · · + sr + n with k1, . . . ,
kr ≥ 1.

(iii) The set {I (s1, . . . , sr ) | r ≥ 0, si ≥ 1} forms a basis of the space I 1.

We give an example for ii): In I 1 it is I (1; 0; 0) = 0 and therefore

0 = I (1; 0; 0)I (1; 0, 1; 0)
= I (1; 0, 0, 1; 0) + I (1; 0, 0, 1; 0) + I (1; 0, 1, 0; 0)
= 2I (3) + I1(2)

which gives I1(2) = −2I (3) = (−1)1
(2
1

)
I (3).

Remark 6.4 Statement (iii) in Proposition6.3 basically states that we can identify
I 1 with H1 by sending I (s1, . . . , sl) to zs1 . . . zsl . In other words we can equip H1

with the coproduct Δ. Instead of working with I we will use this identification in
the next section, when defining the shuffle regularized multiple Eisenstein series.

Example 6.5 In the following we are going to calculate Δ(I (3, 2)) = Δ(I (1; 0, 0,
1, 0, 1; 0)). Therefore we have to determine all possible markings of the diagram

where the corresponding summand in the coproduct does not vanish. For simplicity
we draw ◦ to denote a 0 and • to denote a 1. We will consider the 4 = 22 ways
of marking the two • in the top part of the circle separately. As mentioned in the
introduction, we want to compare the coproduct to the Fourier expansion of multiple
Eisenstein series. Therefore, in this case we also calculate the expansion of G3,2(τ )

using the construction described in Sect. 3.2. Recall that we also had the 4 different
parts GRR

3,2 , G
UR
3,2 , G

RU
3,2 and GUU

3,2 . We will see that the number and positions of the
marked • correspond to the number and positions of the letterU in the wordw ofGw.

(i) Diagrams with no marked •:

Corresponding sum in the coproduct:

I (0; ∅; 1) ⊗ I (1; 0, 0, 1, 0, 1; 0) = 1 ⊗ I (3, 2) .

The part of the Fourier expansion of G3,2 which is associated to this, is the one
with no U “occurring”, i.e. GRR

3,2 (τ ) = ζ(3, 2).
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(ii) Diagrams with the first • marked:

Corresponding sum in the coproduct:

I (1; 0, 0, 1; 0) ⊗ (
I (1; 0) · I (0; 0) · I (0; 1) · I (1; 0, 1; 0)) = I (3) ⊗ I (2) .

The associated part of the Fourier expansion ofG3,2 isGUR
3,2 (τ ) = g3(τ ) · ζ(2).

(iii) Diagrams with the second • marked:

Corresponding sum in the coproduct:

I (1; 0, 1; 0) ⊗ (
I (1; 0, 0, 1; 0) · I (0; 1) · I (1; 0))

+I (1; 0, 1; 0) ⊗ (
I (1; 0) · I (0; 0, 1, 0; 1) · I (1; 0))

+I (1; 0, 0, 1; 0) ⊗ (
I (1; 0) · I (0; 0) · I (0; 1, 0; 1) · I (1; 0))

= I (2) ⊗ I (3) − I (2) ⊗ I1(2) + I (3) ⊗ I (2) ,

whereweused I (0, 0, 1, 0; 1) = −I1(2) and I (0; 1, 0; 1) = (−1)2 I (1; 0, 1; 0)
= I (2). Together with I1(2) = −2I (3) this gives

3I (2) ⊗ I (3) + I (3) ⊗ I (2) .

Also the associated part of the Fourier expansion is the most complicated
one. We had GRU

3,2 (τ ) = ∑
m>0 Ψ3,2(mτ ) and with (16) we derived Ψ3,2(x) =

3Ψ2(x) · ζ(3) + Ψ3(x) · ζ(2), i.e.

GRU
3,2 (τ ) = 3g2(τ ) · ζ(3) + g3(τ ) · ζ(2) .

(iv) Diagrams with both • marked:

Corresponding sum in the coproduct: I (3, 2) ⊗ 1. The associated part of the
Fourier expansion of G3,2 is GUU

3,2 (τ ) = g3,2(τ ).
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Summing all 4 parts together we obtain for the coproduct

Δ(I (3, 2)) = 1 ⊗ I (3, 2) + 3I (2) ⊗ I (3) + 2I (3) ⊗ I (2) + I (3, 2) ⊗ 1

and for the Fourier expansion of G2,3(τ ):

G3,2(τ ) = ζ(3, 2) + 3g2(τ )ζ(3) + 2g3(τ )ζ(2) + g3,2(τ ) .

This shows that the left factors of the terms in the coproduct corresponds to the
functions g and the right factors side to the multiple zeta values. We will use this in
the next section to define shuffle regularized multiple Eisenstein series.

6.2 Shuffle Regularized Multiple Eisenstein Series

In this section we present the definition of shuffle regularized multiple Eisenstein
series as itwas done in [9] togetherwith the simplificationdeveloped in [3].Weuse the
observation of the section before and use the coproductΔ of formal iterated integrals
to define these series. Asmentioned inRemark6.4we can equip the spaceH1 with the
coproduct Δ instead of working with the spaceI 1. Denote byMZB ⊂ C[[q]] the
space of all formal power series inq which can bewritten as aQ-linear combination of
products of multiple zeta values, powers of (−2πi) and bi-brackets. In the following,
we set q = exp(2πiτ ) with τ being an element in the upper half-plane. Since the
coefficient of bi-brackets just have polynomials growth, the elements in MZB
and BD can be viewed as holomorphic functions in the upper half-plane with this
identification.

In analogy to the map Z� : (H1,�) → Z of shuffle regularized multiple zeta
values (Proposition3.2), the map g� : (H1,�) → Q[2πi][[q]] defined on the gener-
ators zt1 . . . ztl by

g�(zt1 . . . ztm ) = g�t1,...,tm (τ ) := (−2πi)t1+···+tm [t1, . . . , tm]� ,

is also an algebra homomorphism by Theorem5.15.
With this notation we can recall the definition of G� from [3] (which is a variant

of the definition in [9], where the authors did not use bi-brackets and the shuffle
bracket).

Definition 6.6 For integers s1, . . . , sl ≥ 1, define the functions G�s1,...,sl (τ ) ∈
MZB, called shuffle regularized multiple Eisenstein series, as

G�s1,...,sl (τ ) := m
(
(g� ⊗ Z�) ◦ Δ

(
zs1 . . . zsl

))
,

where m denotes the multiplication given by m : a ⊗ b �→ a · b and Z� denotes the
map for shuffle regularized multiple zeta values given in Proposition3.2.
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We can view G� as an algebra homomorphism G� : (H1,�) → MZB such that
the following diagram commutes

(H1,�)
Δ ��

G�

��

(H1,�) ⊗ (H1,�)

g�⊗Z�

��
MZB Q[2πi][[q]] ⊗ Zm

��

Theorem 6.7 ([3, Theroem 6.5 ], [9, Theroem 1.1, 1.2]) For all s1, . . . , sl ≥ 1 the
shuffle regularized multiple Eisenstein series G�s1,...,sl have the following properties:

(i) They are holomorphic functions on the upper half-plane having a Fourier
expansion with the shuffle regularized multiple zeta values as the constant
term.

(ii) They fulfill the shuffle product.
(iii) For integers s1, . . . , sl ≥ 2 they equal the multiple Eisenstein series

G�s1,...,sl (τ ) = Gs1,...,sl (τ )

and therefore they fulfill the stuffle product in these cases.

Parts (i) and (ii) in this theorem follow directly by definition. The important part here
is (iii), which states that the connection of the Fourier expansion and the coproduct, as
illustrated in Example6.5, holds in general. It also proves that the shuffle regularized
multiple Eisenstein series fulfill the stuffle product in many cases. Though the exact
failure of the stuffle product of these series is unknown so far.

6.3 Stuffle Regularized Multiple Eisenstein Series

Motivated by the calculation of the Fourier expansion of multiple Eisenstein series
described in Sect. 3.2 we consider the following construction.

Construction 6.8 Given a Q-algebra (A, ·) and a family of homomorphism

{w �→ fw(m)}m∈N

from (H1, ∗) to (A, ·), we define for w ∈ H1 and M ∈ N

Fw(M) :=
∑

1≤k≤l(w)
w1...wk=w

M>m1>···>mk>0

fw1(m1) . . . fwk (mk) ∈ A ,

where l(w) denotes the length of the word w and w1 . . .wk = w is a decomposition
of w into k words in H1.
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Proposition 6.9 ([3, Proposition 6.8]) For all M ∈ N the assignment w �→ Fw(M),
described above, determines an algebra homomorphism from (H1, ∗) to (A, ·). In
particular {w �→ Fw(m)}m∈N is again a family of homomorphism as used in Con-
struction6.8.

For a word w = zs1 . . . zsl ∈ H1 we also write in the following fs1,...,sl (m) :=
fw(m) and similarly Fs1,...,sl (M) := Fw(M).

Example 6.10 Let fw(m) be as in Construction6.8. In small lengths the Fw are given
by

Fs1 (M) =
∑

M>m1>0

fs1 (m1) , Fs1,s2 (M) =
∑

M>m1>0

fs1,s2 (m1) +
∑

M>m1>m2>0

fs1 (m1) fs2 (m2)

and one can check directly by the use of the stuffle product for the fw that

Fs1 (M) · Fs2 (M) =
∑

M>m1>0

fs1 (m1) ·
∑

M>m2>0

fs2 (m2)

=
∑

M>m1>m2>0

fs1 (m1) fs2 (m2) +
∑

M>m2>m1>0

fs2 (m2) fs1 (m1) +
∑

M>m1>0

fs1 (m1) fs2 (m1)

=
∑

M>m1>m2>0

fs1 (m1) fs2 (m2) +
∑

M>m2>m1>0

fs2 (m2) fs1 (m1)

+
∑

M>m1>0

(
fs1,s2 (m1) + fs2,s1 (m1) + fs1+s2 (m1)

)

= Fs1,s2 (M) + Fs2,s1 (M) + Fs1+s2 (M) .

Let us now give an explicit example for maps fw in which we are interested.
Recall (Definition3.5) that for integers s1, . . . , sl ≥ 2 we defined the multitangent
function by

Ψs1,...,sl (z) =
∑

n1>···>nl
n j∈Z

1

(z + n1)s1 · · · (z + nl)sl
.

In [12], where these functions were introduced, the author uses the notation
T es1,...,sl (z)which corresponds to our notationΨs1,...,sl (z). It was shown there that the
series Ψs1,...,sl (z) converges absolutely when s1, . . . , sl ≥ 2. These functions fulfill
(for the cases they are defined) the stuffle product. As explained in Sect. 3.2 the mul-
titangent functions appear in the calculation of the Fourier expansion of the multiple
Eisenstein series Gs1,...,sl , for example in length two it is

Gs1,s2(τ ) =ζ(s1, s2) + ζ(s1)
∑

m1>0

Ψs2(m1τ ) +
∑

m1>0

Ψs1,s2(m1τ )

+
∑

m1>m2>0

Ψs1(m1τ )Ψs2(m2τ ) .
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One nice result of [12] is a regularization of the multitangent function to get a
definition of Ψs1,...,sl (z) for all s1, . . . , sl ∈ N. We will use this result together with
the above construction to recover the Fourier expansion of the multiple Eisenstein
series.

Theorem 6.11 ([12]) For all s1, . . . , sl ∈ N there exist holomorphic functions
Ψs1,...,sl on H with the following properties

(i) Setting q = e2πiτ for τ ∈ H the map w �→ Ψw(τ ) defines an algebra homomor-
phism from (H1, ∗) to (C[[q]], ·).

(ii) In the case s1, . . . , sl ≥ 2 the Ψs1,...,sl are given by the multitangent functions
in Definition3.5.

(iii) The monotangents functions have the q-expansion given by

Ψ1(τ ) = π

tan(πτ )
= (−2πi)

(
1

2
+
∑

n>0

qn

)

and for k ≥ 2 by

Ψk(τ ) = (−2πi)k

(k − 1)!
∑

n>0

nk−1qn .

(iv) (Reduction intomonotangent function) EveryΨs1,...,sl (τ ) can bewritten as aZ -
linear combination of monotangent functions. There are explicit εs1,...,sli,k ∈ Z
s.th.

Ψs1,...,sl (τ ) = δs1,...,sl +
l∑

i=1

si∑

k=1

εs1,...,sli,k Ψk(τ ) ,

where δs1,...,sl = (πi)l

l! if s1 = · · · = sl = 1 and l even and δs1,...,sl = 0 otherwise.
For s1 > 1 and sl > 1 the sum on the right starts at k = 2, i.e. there are no
Ψ1(τ ) appearing and therefore there is no constant term in the q-expansion.

Proof This is just a summary of the results in Section 6 and 7 of [12]. The last
statement (iv) is given by Theorem 6 in [12].

Due to iv) in the Theorem the calculation of the Fourier expansion of multiple Eisen-
stein series, where ordered sums ofmultitangent functions appear, reduces to ordered
sums of monotangent functions. The connection of these sums to the brackets, i.e.
to the functions g, is given by the following fact which can be seen by using iii) of
the above Theorem. For n1, . . . , nr ≥ 2 it is

gs1,...,sr (τ ) =
∑

m1>···>ml>0

Ψs1(m1τ ) . . . Ψsl (mlτ ) .

For w ∈ H1 we now use the Construction6.8 with A = C[[q]] and the family of
homomorphism {w �→ Ψw(nτ )}n∈N (see Theorem6.11 (i) ) to define
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g∗,M(w) := (−2πi)|w| ∑

1≤k≤l(w)
w1...wk=w

∑

M>m1>···>mk>0

Ψw1(m1τ ) . . . Ψwk (mkτ ) .

From Proposition6.9 it follows that for all M ∈ N the map g∗,M is an algebra homo-
morphism from (H1, ∗) to C[[q]].

To define stuffle regularized multiple Eisenstein series we need the following: For
an arbitrary quasi-shuffle algebraQ〈A〉 define the following coproduct for a word w

ΔH (w) =
∑

uv=w

u ⊗ v .

Then it is known due to Hoffman ([21]) that the space (Q〈A〉,�,ΔH ) has the struc-
ture of a bialgebra. With this we try to mimic the definition of the G� and use the
coproduct structure on the space (H1, ∗,ΔH ) to define for M ≥ 0 the function G∗,M

and then take the limit M → ∞ to obtain the stuffle regularized multiple Eisenstein
series. For this we consider the following diagram

(H1, ∗)
ΔH ��

G∗,M

��

(H1, ∗) ⊗ (H1, ∗)

g∗,M⊗ Z∗

��
C[[q]] C[[q]] ⊗ Zm

��

with the above algebra homomorphism g∗,M : (H1, ∗) → C[[q]] and the map Z∗ for
stuffle regularized multiple zeta values given in Proposition3.2.

Definition 6.12 For integers s1, . . . , sl ≥ 1 and M ≥ 1, we define the q-series
G∗,M

s1,...,sr ∈ C[[q]] as the image of the word w = zs1 . . . zsl ∈ H1 under the algebra
homomorphism (g∗,M ⊗ Z∗) ◦ ΔH :

G∗,M
s1,...,sl (τ ) := m

(
(g∗,M ⊗ Z∗) ◦ ΔH

(
w
)) ∈ C[[q]] .

For s1, . . . , sl ≥ 2 the limit

G∗
s1,...,sl (τ ) := lim

M→∞ G∗,M
s1,...,sl (τ ) (28)

exists and we have Gs1,...,sl = G∗
s1,...,sl = G�s1,...,sl ([3, Proposition 6.13]).

Remark 6.13 The open question is for what general s1, . . . , sl the limit in (28) exists.
It is believed that this is exactly the case for s1 ≥ 2 and s2, . . . , sl ≥ 1 as explained
in Remark 6.14 in [3]. This would be the case if Ψ1,...,1 are the only multitangent
functions with a constant term in the decomposition of Theorem6.11 (iv). That this
is the case is remarked, without a proof, in [13] in the last sentence of page 3.

Theorem 11 ([3]) For all s1, . . . , sl ∈ N and M ∈ N the G∗,M
s1,...,sl ∈ C[[q]] have the

following properties:
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(i) Their product can be expressed in terms of the stuffle product.
(ii) In the case where the limit G∗

s1,...,sl := limM→∞ G∗,M
s1,...,sl exists, the functions

G∗
s1,...,sl are elements inMZB.

(iii) For s1, . . . , sl ≥ 2 the G∗
s1,...,sl exist and equal the classical multiple Eisenstein

series
Gs1,...,sl (τ ) = G∗

s1,...,sl (τ ) .

6.4 Double Shuffle Relations for Regularized Multiple
Eisenstein Series

By Theorem6.7 we know that the product of two shuffle regularized multiple Eisen-
stein series G�s1,...,sl with s1, . . . , sl ≥ 1 can be expressed by using the shuffle product
formula. This means we can for example replace every ζ byG� in the shuffle product
(4) of multiple zeta values and obtain

G�2 · G�3 = G�2,3 + 3G�3,2 + 6G�4,1 . (29)

Due to Theorem6.7 (iii) we know that G�s1,...,sl = Gs1,...,sl whenever s1, . . . , sl ≥ 2.
Since the product of two multiple Eisenstein series Gs1,...,sl can be expressed using
the stuffle product formula we also have

G�2 · G�3 = G2 · G3 = G2,3 + G3,2 + G5

= G�2,3 + G�3,2 + G�5 .
(30)

Combining (29) and (30) we obtain the relation G�5 = 2G�3,2 + 6G�4,1. In the follow-
ing we will call these relations, i.e. the relations obtained by writing the product of
two G�s1,...,sl with s1, . . . , sl ≥ 2 as the stuffle and shuffle product, restricted double
shuffle relations.

We know that multiple zeta values fulfill even more linear relations, in particular
we can express the product of two multiple zeta values ζ(s1, . . . , sl) in two different
ways whenever s1 ≥ 2 and s2, . . . , sl ≥ 1. A natural question therefore is, in which
cases the G� also fulfill these additional relations. The answer to this question is
that some are satisfied and some are not, as the following will show.

In [3, Example 6.15] it is shown thatG�2,1,2 = G∗
2,1,2 ,G

�

2,1 = G∗
2,1,G

�

2,2,1 = G∗
2,2,1

and G�4,1 = G∗
4,1. Since the product of two G∗ can be expressed using the stuffle

product we obtain

G�2 · G�2,1 = G∗
2 · G∗

2,1

= G∗
2,1,2 + 2G∗

2,2,1 + G∗
4,1 + G∗

2,3

= G�2,1,2 + 2G�2,2,1 + G�4,1 + G�2,3 .

(31)

Using also the shuffle product to express G�2 · G�2,1 we obtain a linear relation in
weight 5 which is not covered by the restricted double shuffle relations. This linear
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relation was numerically observed in [9] but could not be proven there. So far it is not
known exactly which products of the G� can be written in terms of stuffle products.

We end this section by comparing different versions of the double shuffle relations
and explain, why multiple Eisenstein series can’t fulfill every double shuffle relation
of multiple zeta values. For this we write for words u, v ∈ H1

ds(u, v) := u � v − u ∗ v ∈ H1 .

Recall that by H0 we denote the algebra of all admissible words, i.e. H0 = 1 · Q +
xHy. Additionally we set H2 = Q〈{z2, z3, . . . }〉 to be the span of all words in H1

with no z1 occurring, i.e. the words for which the multiple Eisenstein series G exists.
These are also the words for which the product of two multiple Eisenstein series can
be expressed as the shuffle and stuffle product by Theorem6.7. Denote by |w| ∈ H1

the length of the word w with respect to the alphabet {x, y} and define

edsk := {
ds(u, v) ∈ H0 | |u| + |v| = k, u ∈ H0, v ∈ H0 ∪ {z1}

}
,

fdsk := {
ds(u, v) ∈ H0 | |u| + |v| = k, u, v ∈ H0

}
,

rdsk := {
ds(u, v) ∈ H0 | |u| + |v| = k, u, v ∈ H2

}
.

Also set eds = ⋃
k>0 edsk and similarly fds and rds. These spaces can be seen as

the words in H0 corresponding to the extended9-, finite- and the restricted double
shuffle relations. We have the inclusions

rdsk ⊂ fdsk ⊂ edsk .

View ζ as a map H0 → Z by sending the word zs1 . . . zsl to ζ(s1, . . . , sl). It is
known ([24, Theroem 2]), that edsk is in the kernel of the map ζ and it is expected
(Statement (3) after Conjecture 1 in [24]) that actually edsk = ker(ζ). Viewing G�

in a similar way as amapH0 → MZB, we know that rdsk is contained in the kernel
of this map (Theorem6.7 (iv)). But due to (31) we also have ds(z2, z2z1) ∈ ker(G�)

which is not an element of rds5. In [2] Example 6.15 ii) it is shown that there are
also elements in fdsk ⊂ edsk , that are not in the kernel of G�. We therefore expect

rds � ker G� � eds

and the above examples show, that it seems to be crucial to understand for which
indices we have G� = G∗ to answer these questions.

We now discuss applications of the extended double shuffle relations to the classi-
cal theory of (quasi-)modular forms. As we have seen in the introduction it is known
due to Euler that

9In [24] the authors introduced the notion of extended double shuffle relations. We use this notion
here for smaller subset of these relations given there as the relations described in statement (3) on
page 315.
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ζ(2)2 = 5

2
ζ(4) , ζ(4)2 = 7

6
ζ(8) , ζ(6)2 = 715

691
ζ(12) . (32)

In the following, wewant to show how to prove these relations using extended double
shuffle relations and argue why for multiple Eisenstein series the second is fulfilled
but the first and the last equation of (32) are not.

(i) The relation ζ(2)2 = 5
2ζ(4) can be proven in the followingway by using double

shuffle relations. It is z2 ∗ z2 = 2 ds(z3, z1) − 1
2 ds(z2, z2) + 5

2 z4, since

ds(z3, z1) = z3z1 + z2z2 − z4 ,

ds(z2, z2) = 4z3z1 − z4 ,

z2 ∗ z2 = 2z2z2 + z4 .

Applying the map ζ we therefore deduce

ζ(2)2 = ζ(z2 ∗ z2) = ζ

(
2 ds(z3, z1) − 1

2
ds(z2, z2) + 5

2
z4

)
= 5

2
ζ(4) .

This relation is not true for Eisenstein series. Though ds(z2, z2) is in the kernel
of G� the element ds(z3, z1) is not. In fact, using the explicit formula for the
Fourier expansion of G�3,1 and G�2,2 together with Proposition4.12 for d[2] we
obtain G�(ds(z3, z1)) = 6ζ(2) dG2, where as before d = q d

dq . Using this we
get

G2
2 = G�(z2 ∗ z2) = G�

(
2 ds(z3, z1) − 1

2
ds(z2, z2) + 5

2
z4

)
= 12ζ(2) dG2 + 5

2
G4 .

This is a well-known fact in the theory of quasi-modular forms ([36]).
(ii) Similarly to the above example one can prove the relation ζ(4)2 = 7

6ζ(8) by
checking that

z4 ∗ z4 = 2

3
ds(z4, z4) − 1

2
ds(z3, z5) + 7

6
z8

and since ds(z4, z4), ds(z3, z5) ∈ rds8 ⊂ ker G� we also derive G4
2 = 7

6G8

by applying the map G� to this equation.
(iii) To prove the relation ζ(6)2 = 715

691ζ(12) in addition to the double shuffles of
the form ds(za, zb) double shuffles of the form ds(zazb, zc) are needed as well.
This follows indirectly from the results obtained in [19]. Using the computer
one can check that

z6 ∗ z6 = 2z6z6 + z12 = 715

691
z12 + 1

22 · 19 · 113 · 691 · (R + E)

with R ∈ rds12 and E ∈ eds12 \ rds12 being the quite complicated elements
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R = 2005598 ds(z6, z6) − 8733254 ds(z7, z5) + 8128450 ds(z8, z4) + 5121589 ds(z9, z3)

+ 16364863 ds(z10, z2) + 2657760 ds(z2z8, z2) + 5220600 ds(z3z7, z2)

+ 12711531 ds(z4z6, z2) + 10460184 ds(z5z5, z2) + 18601119 ds(z6z4, z2)

+ 33877826 ds(z7z3, z2) + 39496002 ds(z8z2, z2) − 13288800 ds(z2z2, z8)

− 5220600 ds(z2z7, z3) − 5734750 ds(z3z6, z3) − 84659 ds(z4z5, z3)

+ 2820467 ds(z5z4, z3) − 5486485 ds(z6z3, z3) + 8462489 ds(z7z2, z3)

− 6067131 ds(z2z6, z4) − 7532671 ds(z3z5, z4) − 10879336 ds(z4z3, z5)

− 5151234 ds(z4z4, z4) + 3440519 ds(z5z3, z4) − 1458819 ds(z6z2, z4)

+ 2259096 ds(z5z2, z5) − 4319105 ds(z3z4, z5) − 778598 ds(z5z2, z5)

+ 7609581 ds(z2z4, z6) + 13064898 ds(z3z3, z6) − 1281420 ds(z3z2, z7) ,

E = −22681134 ds(z11, z1) + 10631040 ds(z3z8, z1) + 4241200 ds(z7z1, z4)

+ 31893120 ds(z4z7, z1) + 58185960 ds(z5z6, z1) + 78309000 ds(z6z5, z1)

+ 77976780 ds(z7z4, z1) + 44849700 ds(z8z3, z1) − 13288800 ds(z9z2, z1)

− 15946560 ds(z10z1, z1) + 75052824 ds(z9z1, z2) + 19477164 ds(z8z1, z3)

− 12951740 ds(z6z1, z5) − 10631040 ds(z2z1, z9)

Here the elements E and R are in the kernel of ζ but E , in contrast to R, is not
in the kernel of G�. The defect here is given by the cusp form Δ in weight 12
as one can derive

G�(E) = −2147

1200
(−2πi)12Δ .

It is still an open problem how to derive these Euler relations in general by using
double shuffle relations. The last example shows that this also seems to be very
complicated. But as the examples above show, this might be of great interest to
understand the connection of modular forms and multiple zeta values. This together
with the question which double shuffle relations are fulfilled by multiple Eisenstein
series will be considered in upcoming works by the author.

7 q-Analogues of Multiple Zeta Values

In general, a q-analogue of an mathematical object is a generalization involving a
new parameter q that returns the original object in the limit as q → 1. The easiest
example of such an generalization is the q-analogue of a natural number n ∈ N given
by

[n]q := 1 − qn

1 − q
= 1 + q + · · · + qn−1 .

Clearly this gives back the original number n as limq→1[n]q = n.
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Several differentmodels for q-analogues ofmultiple zeta values have been studied
in recent years. A good overview of them can be found in [39]. There are different
motivations to study q-analogues of multiple zeta values.

That our brackets can be seen as q-analogue of multiple zeta values somehow
occurred by accident since their original motivation was their appearance in the
Fourier expansion of multiple Eisenstein series. But as turned out, seeing them as
q-analogues gives a direct connection to multiple zeta values. In this section we first
show how the brackets can be seen as a q-analogue of multiple zeta values and then
discuss how one can obtain relations between multiple zeta values using the results
obtained in [6]. The second section will be devoted to connecting the brackets to
other q-analogues.

7.1 Brackets as q-Analogues of MZV and the Map Zk

Define for k ∈ N the map Zk : Q[[q]] → R ∪ {∞} by

Zk( f ) = lim
q→1

(1 − q)k f (q) .

Since we have seen that the brackets can be written as

[s1, . . . , sl ] = 1

(s1 − 1)! . . . (sl − 1)!
∑

n1>···>nl>0

l∏

j=1

qn j Ps j−1 (qn j )

(1 − qn j )s j

and using Pk−1(1) = (k − 1)! and interchanging the summation and the limit we
derive ([6, Proposition 6.4]), that for s1 > 1, i.e. [s1, . . . , sl] ∈ qMZ

Zk ([s1, . . . , sl]) =
{

ζ(s1, . . . , sl) , k = s1 + · · · + sl,
0 , k > s1 + · · · + sl .

Due toMD = qMZ [ [1] ] (Theorem4.11) we can define a well-defined map10 on
the whole space MD by

Zalg
k : FilWk (MD) → R[T ]

Zalg
k

⎛

⎝
k∑

j=0

g j [1]k− j

⎞

⎠ =
k∑

j=0

Z j (g j )T
k− j ∈ R[T ]

where g j ∈ FilWj (qMZ ).

10This map is similar to the evaluation map Z∗ : H1 → R[T ], of stuffle regularized multiple zeta
values, given in Proposition 1 in [24]. We used this map in the previous sections (Proposition3.2)
with T = 0.
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Every relation between multiple zeta values of weight k is contained in the kernel
of the map Zk . Therefore the kernel of Zk was studied in [6].

Theorem 7.1 ([6, Theroem 1.13]) For the kernel of Zalg
k ∈ FilWk (MD) we have

(i) If for [s1, . . . , sl] it holds s1 + · · · + sl < k, then Zalg
k [s1, . . . , sl ] = 0.

(ii) For any f ∈ FilWk−2(MD) we have Zalg
k d( f ) = 0, i.e., d FilWk−2(MD) ⊆

ker Zk.
(iii) If f ∈ FilWk (MD) is a cusp form for SL2(Z), then Zalg

k ( f ) = 0.

Example 7.2 We illustrate some applications for Theorem7.1. For this we recall
identities for the derivatives and relations of brackets as they were given in [6]. All
of them can be obtained by using the results explained in Sect. 4.

d[1] = [3] + 1

2
[2] − [2, 1] , (33)

d[2] = [4] + 2[3] − 1

6
[2] − 4[3, 1] , (34)

d[2] = 2[4] + [3] + 1

6
[2] − 2[2, 2] − 2[3, 1] , (35)

d[1, 1] = [3, 1] + 3

2
[2, 1] + 1

2
[1, 2] + [1, 3] − 2[2, 1, 1] − [1, 2, 1] , (36)

[8] = 1

40
[4] − 1

252
[2] + 12[4, 4] . (37)

Using Theorem7.1 as immediate consequences and without any difficulties we
recover the following well-known identities for multiple zeta values.

(i) If we apply Z3 to (33) we deduce ζ(3) = ζ(2, 1).
(ii) If we apply Z4 to (34) and (35) we deduce ζ(4) = 4ζ(3, 1) = 4

3ζ(2, 2).
(iii) The identity (36) reads in qMZ [ [1] ] as

d[1, 1] =
(

[3] − [2, 1] + 1

2
[2]

)
· [1] + 2[3, 1] − 1

2
[4] − 1

2
[2, 1] − 1

2
[3] + 1

3
[2] .

Applying Zalg
4 we deduce again the two relations ζ(3) = ζ(2, 1) and 4ζ(3, 1) =

ζ(4), since by Theorem7.1 we have

Zalg
4 (d[1, 1]) = (ζ(3) − ζ(2, 1)) T − 1

2
ζ(4) + 2ζ(3, 1) = 0 .

(iv) If we apply Z8 to (37) we deduce ζ(8) = 12ζ(4, 4).
(v) As we have seen in Proposition4.13 the cusp form Δ can be written as
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− 1

26 · 5 · 691Δ = 168[5, 7] + 150[7, 5] + 28[9, 3]

+ 1

1408
[2] − 83

14400
[4] + 187

6048
[6] − 7

120
[8] − 5197

691
[12] .

(38)

Letting Z12 act on both sides of (38) one obtains the relation (6)

5197

691
ζ(12) = 168ζ(5, 7) + 150ζ(7, 5) + 28ζ(9, 3) .

But asmentioned in the introduction there are also elements in the kernel of Zk that
are not covered byTheorem7.1. Inweight 4 one has the following relation ofmultiple
zeta values ζ(4) = ζ(2, 1, 1), i.e. it is [4] − [2, 1, 1] ∈ ker Z4. But this element can’t
bewritten as a linear combination of cusp forms, lowerweight brackets or derivatives.
But using the double shuffle relations for bi-brackets described in Sect. 5.2 one can
prove11 that

[4] − [2, 1, 1] = 1

2
(d[1] + d[2]) − 1

3
[2] − [3] +

[
2, 1

1, 0

]
. (39)

Another way to see that many of the bi-brackets of weight k are in the ker-
nel of the map Zk is the following. Assume that s1 > r1 + 1 and s j ≥ r j + 1 for
j = 2, . . . , l, then using again the representation with the Eulerian polynomials (See
also Proposition 1 [41]) we get

Zs1+···+sl

([
s1, . . . , sl
r1, . . . , rl

])
= 1

r1! . . . rl !ζ(s1 − r1, . . . , sl − rl)

and in particular with this assumption it is
[s1,...,sl
r1,...,rl

] ∈ ker Zs1+···+sl+1.
The study of the kernel Zk is of great interest since it contains every relation of

weight k. We expect that every element in the kernel of Zk can be described using
bi-brackets of a “certain kind” and it seems to be a really interesting question to
specify this “certain kind” explicitly. To determine which bi-brackets are exactly
in the kernel of the map Zk and also which bi-brackets can be written in terms of
brackets in qMZ is an open problem. The naive guess, that exactly the bi-brackets

11That the last term
[2,1
1,0

]
in (39) is in the kernel of Z4 can be proven in the following way: In

Proposition 7.2 [6] it is shown, that an element f = ∑
n>0 anq

n with an = O(nm) and m < k − 1
is in the kernel of Zk . Here we have

[
2, 1

1, 0

]
=

∑

u1>u2>0
v1,v2>0

v1u1q
v1u1+v2u2 <

∑

u1,u10
v1,v2>0

v1u1q
v1u1+v2u2 = d[1] · [1] ,

where the < is meant to be coefficient wise. Since the coefficients of d[1] · [1] grow like n2 log(n)2

we conclude
[2,1
1,0

] ∈ ker Z4.
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[s1,...,sl
r1,...,rl

]
where at least one r j > 0 are elements in the kernel of Zs1+···+sl+r1+···+rl is

wrong, since for example

lim
q→1

(1 − q)3
[
1, 1

1, 0

]
= ∞ .

7.2 Connection to Other q-Analogues

In [39] the author gives an overview over several different q-analogues of multiple
zeta values. Here we complement his work and focus on aspects related to our
brackets. To compare the brackets to other q-analogues we first generalize the notion
of a q-analogue of multiple zeta values as it was done in [7]. This notion of a
q-analogue does cover many but not all q-analogues described in [39].

In the following we fix a subset S ⊂ N, which we consider as the support for
index entries, i.e. we assume s1, . . . , sl ∈ S. For each s ∈ S we let Qs(t) ∈ Q[t] be
a polynomial with Qs(0) = 0 and Qs(1) �= 0. We set Q = {Qs(t)}s∈S . A sum of the
form

ZQ(s1, . . . , sl) :=
∑

n1>···>nl>0

l∏

j=1

Qsj (q
n j )

(1 − qn j )s j
(40)

with polynomials Qs as before, defines a q-analogue of a multiple zeta-value of
weight k = s1 + · · · + sl and length l. Observe only because of Qs1(0) = 0 this
defines an element ofQ[[q]]. That these objects are in fact a q-analogue of a multiple
zeta-value is justified by the following calculation.

lim
q→1

(1 − q)k ZQ(s1, . . . , sl) =
∑

n1>···>nl>0

l∏

j=1

lim
q→1

(
Qsj (q

n j )
(1 − q)s j

(1 − qn j )s j

)

= Qs1(1) . . . Qsl (1) · ζ(s1, . . . , sl) .

Here we used that lim
q→1

(1 − q)s/(1 − qn)s = 1/ns and with the same arguments as

in [6] Proposition 6.4, the above interchange of the limit with the sum can be justified
for all (s1, ..., sl) with s1 > 1. Related definitions for q-analogues of multiple zeta
values are given in [14, 28, 33, 42]. It is convenient to define ZQ(∅) = 1 and then
we denote the vector space spanned by all these elements by

Z(Q, S) := 〈
ZQ(s1, . . . , sl)

∣∣ l ≥ 0 and s1, . . . , sl ∈ S
〉
Q

. (41)

Note by the above convention we have, that Q is contained in this space.

Lemma 7.3 ([7, Lemma 2.1]) If for each r, s ∈ S there exists numbers λ j (r, s) ∈ Q

such that
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Qr (t) · Qs(t) =
∑

j∈S
1≤ j≤r+s

λ j (r, s)(1 − t)r+s− j Q j (t) , (42)

then the vector space Z(Q, S) is a Q-algebra.

Theorem 7.4 ([7, Theroem 2.4]) Let Z(Q,N>1) be any family of q-analogues of
multiple zeta values as in (41), where each Qs(t) ∈ Q is a polynomial with degree
at most s − 1, then

Z(Q,N>1) = MD� ,

whereMD � was the in Sect.4.2 defined subalgebra ofMD spanned by all brackets
[s1, . . . , sl ] with s j ≥ 2. Therefore, all such families of q-analogues of multiple zeta
values are Q-subalgebras of MD .

The following proposition allows one to write an arbitrary element in Z(Q,N>1) as
an linear combination of [s1, . . . , sl ] ∈ MD�.

Proposition 7.5 ([7, Proposition 2.5]) Assume k ≥ 2. For 1 ≤ i, j ≤ k − 1 define
the numbers bki, j ∈ Q by

k−1∑

j=1

bki, j
j ! t

j :=
(
t + k − 1 − i

k − 1

)
.

With this it is for 1 ≤ i ≤ k − 1 and QE
j (t) = 1

( j−1)! t Pj (t)

t i =
k∑

j=2

bki, j−1(1 − t)k− j QE
j (t) .

We give some examples of q-analogues of multiple zeta values, with some being
of the above type.

(i) To write the brackets in the above way we choose QE
s (t) = 1

(s−1)! t Ps−1(t),
where the Ps(t) are the Eulerian polynomials defined earlier by

t Ps−1(t)

(1 − t)s
=

∞∑

d=1

ds−1td

for s ≥ 0. With this we have for all s1, . . . , sl ∈ N

[s1, ..., sl ] :=
∑

n1>...>nl>0

l∏

j=1

QE
sj (q

n j )

(1 − qn j )s j
.

and MD = Z({QE
s (t))}s,N).
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(ii) The polynomials QT
s (t) = t s−1 are considered in [33, 42] and sums of the

form (40) with s1 > 1 and s2, . . . , sl ≥ 1 are studied there. Using Proposition7.5
every q-analogue of this type can be written explicitly in terms of brackets.

(iii) Okounkov chooses the following polynomials in [27]

QO
s (t) =

{
t

s
2 s = 2, 4, 6, . . .

t
s−1
2 (1 + t) s = 3, 5, 7, . . . .

and defines for s1, . . . , sl ∈ S = N>1

Z(s) =
∑

n1>···>nl>0

l∏

j=0

QO
sj (q

n j )

(1 − qn j )s j
.

We write for the space of the Okounkov q-multiple zetas

qMZV = Z({QO
s (t)}s,N>1) .

Due to Theorem7.4 we have qMZV = MD�. In [27] Okounkov conjectures,
that the space qMZV is closed under the operator d. In length 1 this is proven in
Proposition 2.9 [7].

(iv) There are also q-analogues which are not of the type as in (40). For example,
the model introduced in [28] and further studied in [18]. For s1, . . . , sl ≥ 1 they are
define by

zq(s1, . . . , sl) =
∑

n1>···>nl>0

qn1

(1 − qn1)s1 . . . (1 − qnl )sl
.

It is easy to see, that every zq(s1, . . . , sl) can be written in terms of bi-brackets. For
example

zq(2, 1) =
∑

n1>n2>0

qn1

(1 − qn1)2(1 − qn2)
=

∑

n1>n2>0

qn1(qn2 + 1 − qn2)

(1 − qn1)2(1 − qn2)

=
∑

n1>n2>0

qn1qn2

(1 − qn1)2(1 − qn2)
+

∑

n1>n2>0

qn1

(1 − qn1)2

= [2, 1] +
∑

n1>0

(n1 − 1)qn1

(1 − qn1)2
= [2, 1] +

[
2

1

]
− [2] .

Similarly one can prove zq(2, 1, 1) = [2, 1, 1] − 2[2, 1] + [2,1
1,0

] + [2
2

] − 3
2

[2
1

] + [2].
For higher weights this also works as illustrated in the following
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zq(2, 2) =
∑

n1>n2>0

qn1

(1 − qn1)2(1 − qn2)2
=

∑

n1>n2>0

qn1(qn2 + 1 − qn2)

(1 − qn1)2(1 − qn2)2

= [2, 2] + zq(2, 1) = [2, 2] + [2, 1] +
[
2

1

]
− [2] .

Using again Proposition7.5 it becomes clear for arbitrary weights s1, . . . , sl ≥ 2 we
can write zq(s1, . . . , sl) in terms of bi-brackets.

Writing any q-analogue in terms of bi-brackets enables us to use the double shuffle
structure explained in Sect. 5 to obtain linear relations for all of these q-analogues.
Though it might be difficult to compare our double shuffle relations to the double
shuffle relations of other models. For example in the case of zq(s1, . . . , sl) the authors
in [18] consider s1, . . . , sl ∈ Z to describe their double shuffle relations. See [8] for
further details on the comparison between different models of q-analogues and bi-
brackets.

Acknowledgements This paper has served as the introductory part of my cumulative thesis written
at the University of Hamburg. First of all I would like to thank my supervisor Ulf Kühn for his
continuous, encouraging and patient support during the last years. Besides this I also want to thank
several people for supportingme duringmy PhD project bywhether givingme suggestion and ideas,
lettingmegive talks on conferences and seminars, proof readingpapers or havinggeneral discussions
on this topic with me. A big “thank you” goes therefore to Olivier Bouillot, Kathrin Bringmann,
David Broadhurst, Kurusch Ebrahimi-Fard, Herbert Gangl, José I. Burgos Gil, Masanobu Kaneko,
Dominique Manchon, Nils Matthes, Martin Möller, Koji Tasaka, Don Zagier, Jianqiang Zhao and
Wadim Zudilin. Finally I would like to thank the referee for various helpful comments and remarks.

References

1. Andrews, G., Rose, S.: MacMahon’s sum-of-divisors functions, Chebyshev polynomials, and
Quasi-modular forms. J. Reine Angew. Math. 676, 97–103 (2013)

2. Bachmann,H.:MultipleZeta-Werte unddieVerbindung zuModulformendurchmultipleEisen-
steinreihen. Master thesis, Hamburg University (2012). http://www.henrikbachmann.com

3. Bachmann,H.: The algebra of bi-brackets and regularizedmultiple Eisenstein series. J. Number
Theory 200, 260–294 (2019)

4. Bachmann, H.: Multiple Eisenstein series and q-analogues of multiple zeta values. Thesis,
Hamburg University (2015). http://www.henrikbachmann.com

5. Bachmann,H.:Double shuffle relations for q-analogues ofmultiple zeta values, their derivatives
and the connection to multiple Eisenstein series. RIMS Kôyûroku 2017, 22–43 (2015)

6. Bachmann, H., Kühn, U.: The algebra of generating functions for multiple divisor sums and
applications to multiple zeta values. Ramanujan J. 40(3), 605–648 (2016)

7. Bachmann, H., Kühn, U.: A short note on a conjecture of Okounkov about a q-analogue of
multiple zeta values. arXiv:1309.3920 [math.NT]

8. Bachmann, H., Kühn, U.: A dimension conjecture for q-analogues of multiple zeta values. In
This Volume

9. Bachmann, H., Tasaka, K.: The double shuffle relations for multiple Eisenstein series. Nagoya
Math. J. 230, 1–33 (2017)

10. Bachmann, H., Tsumura, H.: Multiple series of Eisenstein type. Ramanujan J. 42(2), 479–489
(2017)

http://www.henrikbachmann.com
http://www.henrikbachmann.com
http://arxiv.org/abs/1309.3920


234 H. Bachmann

11. Borwein, J., Bradley, D.: Thirty-two Goldbach variations. Int. J. Number Theory 02, 65–103
(2006)

12. Bouillot, O.: The algebra of multitangent functions. J. Algebra 410, 148–238 (2014)
13. Bouillot, O.: Table of reduction of multitangent functions of weight up to 10 (2012). http://

www-igm.univ-mlv.fr/~bouillot/Tables_de_multitangentes.pdf
14. Bradley, D.M.: Multiple q-zeta values. J. Algebra 283, 752–798 (2005)
15. Broadhurst, D., Kreimer, D.: Association of multiple zeta values with positive knots via Feyn-

man diagrams up to 9 loops. Phys. Lett. B 393, 403–412 (1997)
16. Ecalle, J.: The flexion structure and dimorphy: flexion units, singulators, generators, and the

enumeration of multizeta irreducibles. In: Asymptotics in Dynamics, Geometry and PDEs,
Generalized Borel Summation, vol. II, pp. 27–211 (2011)

17. Ebrahimi-Fard, K., Manchon, D., Singer, J.: Duality and (q-)multiple zeta values. Adv. Math.
298, 254–285 (2016)

18. Ebrahimi-Fard, K., Manchon, D., Medina, J.C.: Unfolding the double shuffle structure of q-
multiple zeta values. Bull. Austral. Math. Soc. 91(3), 368–388 (2015)

19. Gangl, H., Kaneko,M., Zagier, D.: Double zeta values andmodular forms. Automorphic Forms
and Zeta Functions, pp. 71–106. World Science Publisher, Hackensack, NJ (2006)

20. Goncharov,A.B.:Galois symmetries of fundamental groupoids and noncommutative geometry.
Duke Math. J. 128(2), 209–284 (2005)

21. Hoffman, M.E.: Quasi-shuffle products. J. Algebraic Combin. 11(1), 49–68 (2000)
22. Hoffman, M.E., Ihara, K.: Quasi-shuffle products revisited. J. Algebra 481, 293–326 (2017)
23. Ihara, K.: Derivation and double shuffle relations for multiple zeta values, joint work with M.

Kaneko, D. Zagier. RIMS Kôyûroku 1549, 47–63
24. Ihara, K., Kaneko, M., Zagier, D.: Derivation and double shuffle relations for multiple zeta

values. Compos. Math. 142, 307–338 (2006)
25. Ihara, K., Ochiai, H.: Symmetry on linear relations for multiple zeta values. Nagoya Math. J.

189, 49–62 (2008)
26. Kaneko, M., Tasaka, K.: Double zeta values, double Eisenstein series, and modular forms of

level 2. Math. Ann. 357(3), 1091–1118 (2013)
27. Okounkov, A.: Hilbert schemes and multiple q-zeta values. Funct. Anal. Appl. 48, 138–144

(2014)
28. Ohno, Y., Okuda, J., Zudilin, W.: Cyclic q-MZSV sum. J. Number Theory 132(1), 144–155

(2012)
29. Qin, Z., Yu, F.: On Okounkov’s conjecture connecting Hilbert schemes of points and multiple

q-zeta values. Int. Math. Res. Not. 2, 321–361 (2018)
30. Rose, S.: Quasi-modularity of generalized sum-of-divisors functions. Res. Number Theory 1,

Art. 18, 11 pp (2015)
31. Schlesinger, K.-G.: Some remarks on q-deformed multiple polylogarithms.

arXiv:math/0111022 [math.QA]
32. Singer, J.: On q-analogues of multiple zeta values. Funct. Approx. Comment. Math. 53(1),

135–165 (2015)
33. Takeyama, Y.: The algebra of a q-analogue of multiple harmonic series. SIGMA Symmetry

Integrability Geom. Methods Appl. 9, Paper 061 (2013)
34. Yuan, H., Zhao, J.: Double shuffle relations of double zeta values and double Eisenstein series

of level N. J. Lond. Math. Soc. (2) 92(3), 520–546 (2015)
35. Yuan, H., Zhao, J.: Multiple Divisor Functions and Multiple Zeta Values at Level N.

arXiv:1408.4983 [math.NT]
36. Zagier, D.: Elliptic modular forms and their applications. The 1-2-3 of Modular Forms, pp.

1–103. Universitext Springer, Berlin (2008)
37. Zagier, D.: Periods of modular forms, traces of Hecke operators, and multiple zeta values.

RIMS Kôyûroku 843, 162–170 (1993)
38. Zhao, J.: Multiple q-zeta functions and multiple q-polylogarithms. Ramanujan J. 14(2), 189–

221 (2007)

http://www-igm.univ-mlv.fr/~bouillot/Tables_de_multitangentes.pdf
http://www-igm.univ-mlv.fr/~bouillot/Tables_de_multitangentes.pdf
http://arxiv.org/abs/math/0111022
http://arxiv.org/abs/1408.4983


Multiple Eisenstein Series and q-Analogues of Multiple Zeta Values 235

39. Zhao, J.: Uniform approach to double shuffle and duality relations of various q-analogs of
multiple zeta values via Rota-Baxter algebras. arXiv:1412.8044 [math.NT]

40. Zorich, A.: Flat surfaces. Frontiers in Number Theory, Physics, and Geometry, vol. I, Springer
(2006)

41. Zudilin, W.: Multiple q-zeta brackets. Math. 3:1, Spec. Issue Math. Phys. 119–130 (2015)
42. Zudilin, W.: Algebraic relations for multiple zeta values, (Russian. Russian summary) Uspekhi

Mat. Nauk 58 (2003)

http://arxiv.org/abs/1412.8044

	 Multiple Eisenstein Series and q-Analogues of Multiple  Zeta Values
	1 Introduction
	2 Outlook and Related Work
	3 Multiple Eisenstein Series
	3.1 Multiple Zeta Values and Quasi-shuffle Algebras
	3.2 Multiple Eisenstein Series and the Calculation of Their Fourier Expansion

	4 Multiple Divisor-Sums and Their Generating Functions
	4.1 Brackets
	4.2 Derivatives and Subalgebras

	5 Bi-Brackets and a Second Product Expression  for Brackets
	5.1 Bi-Brackets and Their Generating Series
	5.2 Double Shuffle Relations for Bi-Brackets
	5.3 The Shuffle Brackets

	6 Regularizations of Multiple Eisenstein Series
	6.1 Formal Iterated Integrals
	6.2 Shuffle Regularized Multiple Eisenstein Series
	6.3 Stuffle Regularized Multiple Eisenstein Series
	6.4 Double Shuffle Relations for Regularized Multiple Eisenstein Series

	7 q-Analogues of Multiple Zeta Values
	7.1 Brackets as q-Analogues of MZV and the Map Zk
	7.2 Connection to Other q-Analogues

	References




