
Polylogarithm Identities, Cluster
Algebras and theN = 4
Supersymmetric Theory

Cristian Vergu

Abstract Scattering amplitudes in N = 4 super-Yang Mills theory can be com-
puted to higher perturbative orders than in any other four-dimensional quantum field
theory. The results are interesting transcendental functions. By a hidden symmetry
(dual conformal symmetry) the arguments of these functions have a geometric inter-
pretation in terms of configurations of points in CP

3 and they turn out to be cluster
coordinates. We briefly introduce cluster algebras and discuss their Poisson structure
and the Sklyanin bracket. Finally, we present a 40-term trilogarithm identity which
was discovered by accident while studying the physical results.
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1 Introduction

There is no doubt that quantum field theory and mathematics are deeply connected.
There are many examples where field theory intuition helped formulate mathemat-
ical conjectures or even theorems (Seiberg-Witten theory in topology [62], Wilson
loops in Chern-Simons theory for knot theory [61]). Similarly, progress in mathe-
matics has stimulated progress in field theory (as a prime example we have ADHM
construction [8] of instantons, but also work in index theory [7] which helped in the
understanding of field theory anomalies). And these are just a few of many examples.

In this review we will focus on one of the many connecting bridges between
quantum field theory and number theory: polylogarithms. In quantum field theory
polylogarithms and the closely relatedmultiple zeta values are ubiquitous. They arise
in the perturbative computations of various quantities.
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There are many quantities one may attempt to compute and, moreover, there
are many different quantum field theories. Many results are already available but
frequently the complexity of the final answers (not to mention the complexity of the
computation) is forbidding. We are then naturally led to ask which field theories and
what quantities are most likely to be understood in simple terms.

These questions, while very natural, are not at all obvious, but in recent years an
answer has began to emerge. As we will explain, the answer is somewhat surprising.
The textbook example for the simplest interacting field theory is called the φ4 theory.
This is a theory of a single scalar field with a four-point interaction. The Feynman
diagrams in this theory have internal vertices of degree four. Many results are known
in this theory see, for example, Ref. [20, 59]. However, it has recently emerged that
there is a better candidate for study, which we will discuss below.

Relativistic field theories are symmetric under the Poincaré group. The Poincaré
group has the Lorentz group O(1, 3) as a subgroup and particles are in correspon-
dencewith irreducible representations of these symmetry groups. The scalar particles
transform in the trivial representation of O(1, 3) so they realize the relativistic sym-
metry in the simplest possible way. As mentioned above, the φ4 theory is a theory of
scalar (or spin zero) fields.

Other representations of the Lorentz symmetrymay appear: fermionswhich trans-
form as a representation of the covering group Spin(1, 3), gauge fields which are
vectors of O(1, 3), the graviton which is rank two tensor representation, etc. In the
case of the gauge fields and of the graviton the formulation of the quantum theory is
complicated by the fact that states are defined modulo gauge transformations. This
also complicates the computations since one has to make a choice of gauge (or a
choice of representative in the equivalence class).

Despite these technical complications, in many cases the final results, when
expressed in terms of appropriate variables, turn out to be strikingly simple (the
computation of Parke and Taylor in Ref. [57] being a prime example). Then, we are
led to suspect that there should be more efficient ways to find these answers.

We have briefly discussed the theories but we still haven’t specified the types of
quantities we are going to compute. We turn to this question next. The quantities
which will be most relevant in the following discussion are scattering amplitudes.
Let us give a rough definition of scattering amplitudes. A field theory of the kind we
will consider is defined by a functional S[φ] called action, depending of functions
φ(x, t) called fields (here t is time, x is a three-dimensional vector and φ is a generic
name for a field; in general the theory can contain several fields with different O(1, 3)
transformations). From this functional we can obtain by variational methods partial
differential equations (called equations of motion) for the fields of the theory. Now,
given some boundary conditions φ± at t = ±∞ for the fields, from the solution φ0 to
the equation of motion satisfying these boundary conditions one can build a complex
number exp(i S[φ0]) which is called the tree level amplitude of transition between
φ− and φ+ (if there is no solution for the prescribed boundary conditions, then the
amplitude is defined to be zero). The name ‘tree’ is due to the fact that this quantity
can be computed as a sum of tree-shaped Feynman diagrams.
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The computation using the definition can be tedious in general, especially for
gauge theories where one has to make an arbitrary choice of gauge (in the final result
the dependence on this arbitrary choice must cancel; when this happens we call the
answer ‘gauge invariant’). The tree level amplitudes have two important properties:
analyticity (in a certain domain) and factorization.1 Factorization here means that the
amplitude has certain poles whose residues are products of simpler amplitudes. The
requirement of factorization is a very powerful constraint; using it, the BCFW [19]
recursion relations allow the computation of all tree-level amplitudes of the N = 4
theory we will describe in the next section.

In the quantum theory graphs with loops appear as well. Graphs with loops corre-
spond to non-trivial integrals, which yield mathematically interesting results. It is an
empirical observation that the transcendentality of an �-loop result is bounded from
above by 2�; for a one-loop quantity the most complicated part can be expressed in
terms of dilogarithms.

For theories relevant experimentally, like Quantum Chromodynamics (QCD), a
one-loop answer will contain not only dilogarithms, but also logarithms and even
rational terms. The transcendentality of the answer is not uniform. However, for the
special case ofN = 4, the answers are of uniform transcendentality. In some cases,
see Ref. [52], theN = 4 answer can be obtained from the uniform transcendentality
of the more complicated QCD result.

2 The Maximally Supersymmetric Theory

We mentioned previously that the theories with spin are in some sense simpler than
theories of scalar (spinless) particles. Even so, there are many possible theories
of particles with spin. Supersymmetry is a remarkable symmetry which can trans-
form between particles of different spins. The maximal supersymmetry of a non-
gravitational theory in three space and one time dimensions is called N = 4 super-
symmetry. The reason for the name is that N = 1 supersymmetry is the minimal
supersymmetry and the maximal supersymmetry has four times as many supersym-
metries as the minimal one.

In Ref. [24], Coleman and Mandula proved a theorem about the possible symme-
tries of a relativistic theory.Under certain assumptions they showed that the symmetry
group has the structure of a product between the Lorentz and some other ‘internal’
symmetry group. Later, Haag et al. [47] showed that a non-trivial symmetry structure
is possible, but it has to be a supergroup symmetry, not a Lie group symmetry. A
supergroup is obtained by exponentiating Lie superalgebra elements, where a Lie
superalgebra is a Z2-graded algebra with a bracket satisfying graded commutativity
and a graded version of Jacobi identity. The supergroup has a usual Lie group as

1Analyticity survives after adding quantum corrections, but factorization becomes more subtle in
case there are infrared divergences (see Ref. [13]). Since scattering amplitudes in gauge theories
are infrared divergent, exploiting factorization at loop level seems to be much harder.
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a subgroup and, somewhat surprisingly, this is also enlarged with respect to a typ-
ical relativistic theory. In a relativistic theory the symmetry group is the Poincaré
group, which now gets enhanced to a SO(2, 4) group, also known as the conformal
group. The new symmetries are the dilatation D and four conformal transformations
K0, . . . , K3.

The theorywithmaximal supersymmetrywas constructed shortly after inRef. [18]
by Brink, Schwarz and Scherk. This theory is uniquely defined by its symmetry. It is
a theory of a connection A on an SU(N ) principal bundle over Minkowski spaceM,
together with fermionic field Ψ and scalar fields Φ. The action functional is given
by the Yang-Mills term together with other terms dictated by supersymmetry, which
we do not write explicitly since they will not be important in the following

S[A, Ψ,Φ] = 1

2g2

∫
M

tr(F ∧ ∗F + · · · ). (1)

Here the trace is taken in the fundamental representation of SU(N ) and g2 is a real
number, called coupling constant. F = d A + A ∧ A is the curvature of the connec-
tion A and ∗F is the Hodge dual. The scattering amplitudes, can be expanded as a
power series in g.

Terms in the perturbative expansion are computed by summing Feynman graphs.
The contribution of a Feynman graph can be factored in two different types of terms:
the kinematic part, depending on the positions (or on the momenta after Fourier
transform) and the ‘color’ part which depends on the Lie algebra su(N ) of the
gauge group SU(N ). The observables can then be decomposed on a basis of su(N )

invariants whose coefficients depend on N and g. If we select invariants which can
be written as a single trace and, for these terms, we select the dominant behavior
when N → ∞, then the topology of the contributing graphs simplifies. We find that
only planar graphs contribute. The way to select the planar graph contributions is to
reorganize the perturbation theory as an expansion in λ = g2N around λ = 0, with
N → ∞ and g2 → 0. This is the well-known ’t Hooft limit [49].

From his study of the large N limit, ’t Hooft conjectured that the result in the
’t Hooft limit is the genus zero term in an expansion of a theory which sums over
surfaces. A theorywhich sums over surfaces is a string theory (in a theory of particles,
one sums2 over particle paths, as instructed by the Feynman path integral). The
conjecture also stated that subleading terms in N correspond to sums over surfaces
of higher genera.

This conjecture of ’t Hooft is very general, and was initially proposed for QCD,
where the gauge group SU(3) was to be replaced by SU(N ). It was hoped that
understanding N → ∞ case could shed some light on the N = 3 case. If instead
of QCD we consider the N = 4 supersymmetric theory, the conjecture was sharp-
ened by the AdS/CFT correspondence of Maldacena (see Ref. [53]). The AdS/CFT

2The sum over particle histories is not well-defined mathematically. Nevertheless, we can use it
formally to compute the perturbative expansion. A similar statement holds for a string theory, where
we sum over string histories also called worldsheets.
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correspondence identifies the precise measure on the space of surfaces. In fact, we
should use super-strings, but if we set the fermions to zero we obtain a theory of a
string moving in an AdS5 × S

5 geometry. Here CFTmeans Conformal Field Theory,
which in this case is a theory with a symmetry group containing SO(2, 4). The AdS5
space is the five-dimensional hyperbolic space with a non-definite metric, which
can be obtained by analytically continuing some coordinates to imaginary values
(a procedure called Wick rotation in the Quantum Field Theory literature). This is
similar to the relation between Euclidean space R

4 and Minkowski space M. The
isometry group of AdS5 is again SO(2, 4). In fact, the full PSU(2, 2|4) symmetry
groups match on both sides of the correspondence.

The AdS/CFT duality describes a physical system in two different ways. When
the ’t Hooft coupling λ is small, the field theory perturbative expansion in powers
of λ is reliable. When the ’t Hooft coupling is large, instead, one should use string
theory on the AdS5 × S

5 background. In this case, the expansion variable is λ−1/2.
Therefore, the duality is of strong-weak type; the strong coupling (λ → ∞) in the
CFT can be mapped to a weakly coupled description in the dual string theory.

The computation of the scattering amplitudes can also be done in the dual string
theory, as described in Ref. [1]. In the dual string theory scattering amplitudes are
given by the exponential of a minimal surface in AdS5 which ends on the boundary
of AdS5 on a polygon whose sides are the momenta of the scattered particles (the
polygon closes by momentum conservation).

3 Kinematics

In this section we describe the kinematics of a scattering process in terms of configu-
rations of points inCP3. This was initiated in Ref. [48] for tree-level amplitudes, later
extended to superspace in Ref. [54] and further studied in Ref. [6]. The usefulness of
these variables for loop amplitudes was emphasized in Ref. [4] and also in Ref. [46]
for an explicit two-loop result.

Consider an n-particle scattering process. The particle labeled by i is described
by the on-shell momentum pi (with p2i = 0, where the norm is computed using the
Minkowski metric), its helicity si and a gauge algebra generator ti ∈ su(N ). The
helicity labels the representation under the compact subgroup U(1) of the Lorentz
group O(1, 3) which preserves the momentum pi . In fact, if our theory contains
fermions we need to pass to the covering group Spin(1, 3) of part of the Lorentz
group connected to the identity. In the end, the representations turn out to be labeled
by s ∈ Z/2.

As we discussed above, in the ’t Hooft limit N → ∞, g2N = λ fixed, only single-
trace terms survive in the scattering amplitudes. If we look at one of these single-trace
terms, we see that the scattered particles are cyclically ordered. We can therefore
introduce a dual space with coordinates x such that the momenta pi are expressed as
pi = xi−1 − xi . The xi coordinates are only defined up to a translation xi ∼ xi + a.
We denote by M̃ the space parametrized by dual coordinates x .
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The N = 4 super-Yang-Mills theory is superconformal invariant. Besides this
superconformal symmetry, theN = 4 super-Yang-Mills theory also has a surprising
dual superconformal symmetry,whose bosonic subgroup acts on the dual coordinates
x . In the followingwewillmostly be interested in the conformal subgroup of this dual
superconformal group. The dual superconformal symmetry is a hidden symmetry,
which only arises in the ’t Hooft limit. In particular, it can not be verified on the
Lagrangian of the theory.

Historically, this symmetry arose as follows. First, the authors of Ref. [34] noticed
that integrals appearing in the perturbative computations of Refs. [2, 15] have a
curious inversion property in the dual space. Together with the obvious Lorentz
symmetry, this generates the conformal group. This symmetry was then confirmed,
and in fact used to guide the computations, at higher loop orders and for larger
numbers of external particles in Refs. [10, 11, 14]. In a parallel development [1],
Alday and Maldacena showed how to compute scattering amplitudes in the dual
string theory. This turned out to be closely related to the computation of a Wilson
loop (in a language more familiar to mathematicians, a Wilson loop is the trace of
the holonomy of the connection A around a curve). The strong coupling compu-
tation leads us to believe that there is a connection between scattering amplitudes
and a Wilson loop around a polygonal contour with vertices xi . This was confirmed
also at weak coupling in several papers [12, 17, 31, 32, 35]. Under the duality the
scattering amplitudes map to Wilson loops and the dual conformal symmetry of
scattering amplitudes maps to the conformal symmetry of the Wilson loops. Refer-
ence [33] showed that in fact the scattering amplitudes enjoy a dual super-conformal
symmetry. This corresponds in the dual side to the superconformal symmetry of a
Wilson super-loop, which is the trace of the holonomy of a superconnection in super-
space along a polygonal contour. The corresponding super-loops were first defined in
Refs. [23, 55].

The dual space M̃ is noncompact and it does not have an action of the conformal
group since some points are sent to infinity under conformal transformations. This
problem can be solved by compactifying M̃ is a way compatible with the action of
the conformal group. Moreover, M̃ comes with a Minkowski signature. It is more
convenient to use complex coordinates instead and to impose reality conditions when
needed. Doing this, we can treat both the cases of Lorentz signature and of split
signature. The complexified and compactified dual space can be represented as the
G(2, 4) Grassmannian of two-planes in C4 containing the origin. Therefore, to each
point in dual space M̃ we can associate a two-plane in C4. Two points in dual space
are light-like separated if their corresponding planes intersect in a line (it is easy
to check that this imposes one constraint). If we projectivize this construction, to a
line through the origin in C4 corresponds a point in CP3 and to a two-plane through
the origin in C

4 corresponds a projective line in CP
3. We can do this for all pairs

of points (xi−1, xi ) and associate to each of them a point Zi ∈ CP
3. So instead of

describing the kinematics by giving the momenta pi subject to on-shell conditions
p2i = 0 and momentum conservation

∑n
i=1 pi = 0, we can describe it by giving n
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points Zi ∈ CP
3. The variables Zi are known as momentum twistors3 and were

introduced in Ref. [48]. Unlike for the variables pi or xi , the momentum twistors are
unconstrained.

The complexified dual conformal group acts as SL(4,C) on the momentum
twistors [Z ] → [MZ ], where M is an SL(4,C) matrix and we have denoted by
[Z ] the homogeneous coordinates of the point Z . The SL(4,C) is the double cover
of the complexified orthogonal group SO(6,C). There is a small subtlety here. We
defined the Lorentz group to beO(1, 3) and its complexification is O(4,C). However,
the parity transformation in O(4,C) does not embed in SO(6,C), nor in its double
cover SL(4,C). Then, the question is how does this discrete parity transformation
act on the momentum twistor space. The answer is as follows. There is another space
which, for lack of a better name, we call conjugate momentum twistor space whose
points we label byWi . There is a pairing between points in these two spaces, defined
up to rescaling which we denote by W · Z . Then we impose the rescaling invariant
constraints Wi · Zi = 0 and Wi−1 · Zi = Wi+1 · Zi = 0 (here i ± 1 are considered
modulo n, the number of particles in the scattering process). Given the Zi , the Wi

are determined up to a rescaling. Then, parity acts as the discrete transformation
Zi ↔ Wi .

The translation of the kinematics to momentum twistor language makes it easy
to build conformal invariants. In order to make SL(4,C) invariants, we can form
four-brackets 〈i jkl〉 = Vol(vi , v j , vk, vl), where vi is a vector in C

4 corresponding
to Zi and Vol is a volume form which is preserved by the action of SL(4,C).

So we have established that we can describe the kinematics of a scattering process
by giving a configuration of n ordered points Zi in CP

3. The homogeneous coordi-
nates of these points fit in a 4 × n matrix. The conformal invariants are built from
the 4 × 4 minors of this 4 × n matrix.

The description above is very similar to the description of coordinates on a Grass-
mannian. For k ≤ n, theGrassmannianG(k, n) of k-planes in an n-dimensional space
can be described as the space of k × n matrices of full rank modulo the left action by
GL(k). Given such a k × n matrix, we can form

(n
k

)
minors of type k × k. They can

be labeled by k integers i1, . . . , ik ∈ {1, . . . , n}, corresponding to the columns of the
initial k × n matrix. We will denote the determinants of these minors by 〈i1, . . . , ik〉.
These determinants are also known as Plücker coordinates, and satisfy Plücker rela-
tions

〈i, k, I 〉〈 j, l, I 〉 = 〈i, j, I 〉〈k, l, I 〉 + 〈 j, k, I 〉〈i, l, I 〉, (2)

where I is a multi-index with k − 2 entries. The Plücker relations define an embed-
ding, called Plücker embedding, of the Grassmannian into a projective space of
dimension

(n
k

)
.

In the next section we will show that the Plücker relations in Eq. (2) are the
same as the exchange relations in a cluster algebra (see Eq. (5, for example). This
will also provide a way to build more complicated coordinates starting from simple

3A similar construction can be done for Minkowski space M instead, in which case we obtain the
Penrose’s twistor space (see Ref. [58]).
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minors. Such combinations naturally appear in expressions for scattering amplitudes
in N = 4.

Grassmannians have the important property of duality which identifies G(k, n)

with G(n − k, n). This is useful since it allows to simplify the geometric picture (as
has been done in Refs. [41, 46]). Consider first the case n = 6. The kinematics is
described by a configuration of six ordered points in CP

3 or by the Grassmannian
G(4, 6). By Grassmannian duality this is the same as G(2, 6) which then can be
translated to a configuration of six ordered points in CP

1, a much simpler-looking
(though equivalent) geometric configuration.

A similar simplification can be performed for the case of n = 7, where a config-
uration of seven points in CP

3 can be mapped to a configuration of seven points in
CP

2. In general, this means that the configurations of n ordered points in CPk−1 are
the same as configurations of n ordered points inCPn−k−1. Therefore we can restrict
to 2 ≤ k ≤ � n−1

2  without loss of generality.

4 Introduction to Cluster Algebras

In this section we present some useful facts about cluster algebras. In the next section
we will make the connection with Grassmannians and Plücker coordinates. Clus-
ter algebras have been introduced in a series of papers [9, 37–39] by Fomin and
Zelevinsky.

Since the formal definition is a bit complicated, we will content ourselves with an
informal description. Cluster algebras are characterized as follows: they are commu-
tative algebras constructed from distinguished generators (called cluster variables)
which are grouped into non-disjoint sets of constant cardinality (called clusters). The
clusters are constructed recursively by an operation called mutation from an initial
cluster. The number of variables in a cluster is called the rank of the cluster algebra.

Let us consider an example. The A2 cluster algebra is defined by the following
data:

• cluster variables: xm, m ∈ Z

• clusters: {xm, xm+1}
• initial cluster: {x1, x2}
• rank: 2
• exchange relations: xm−1xm+1 = 1 + xm
• mutation: {xm−1, xm} → {xm, xm+1}.

Using the exchange relations we find that

x3 = 1 + x2
x1

, x4 = 1 + x1 + x2
x1x2

, x5 = 1 + x1
x2

, x6 = x1, x7 = x2, . . . .

(3)
Therefore, the sequence xm is periodic with period five and the number of cluster
variables is finite.
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When expressing the cluster variables xm in terms of the variables (x1, x2), we
encounter two unexpected features (which hold in general for arbitrary cluster alge-
bras). First, the denominators of the cluster variables are always monomials. In
general, we expect the cluster variables to be rational fractions of the initial cluster
variables, but in fact the denominator is always a monomial. This is known under
the name of “Laurent phenomenon” (see [37]). The second observation is that the
numerator is a polynomial with positive coefficients.

As we alluded to before, this construction has a connection with Plücker rela-
tions. If we set x1 = 〈23〉〈14〉

〈12〉〈34〉 and x2 = 〈13〉〈45〉
〈34〉〈15〉 , where 〈i j〉 are coordinates of the

Grassmannian G(2, 5), we can compute the rest of cluster variables by using the
Plücker identities 〈ik〉〈 jl〉 = 〈i j〉〈kl〉 + 〈il〉〈 jk〉, to obtain

x1 = 〈23〉〈14〉
〈12〉〈34〉 , x2 = 〈13〉〈45〉

〈34〉〈15〉 , x3 = 〈12〉〈35〉
〈15〉〈23〉 , x4 = 〈25〉〈34〉

〈23〉〈45〉 , x5 = 〈15〉〈24〉
〈12〉〈45〉 .

In the following we will use a description of cluster algebras starting with quiver.
We now describe how to obtain a cluster algebra from a quiver. A quiver is an oriented
graph which we will require to be connected, finite, without loops (arrows with the
same origin and target) and two-cycles (pairs of arrows going in opposite directions
between two vertices).

Starting with a quiver with a given vertex k we define a new quiver obtained by
mutating at vertex k. The new quiver is obtained by applying the following operations
on the initial quiver:

• for each path i → k → j we add an arrow i → j ,
• reverse all the arrows on the edges incident with k,
• remove all the two-cycles that may have formed.

The mutation at k is an involution; when applied twice in succession we obtain the
initial cluster.

Each quiver of the restricted type defined above is in one-to-one correspondence
with skew-symmetric matrices, once we fix an ordering of the vertices. The skew-
symmetric matrix b is such that bi j is the difference between the number of arrows
i → j and the number of arrows j → i . Since only one of the terms above is non-
vanishing, bi j = −b ji . Under a mutation at vertex k the matrix b transforms to b′
given by

b′
i j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−bi j , if k ∈ {i, j},
bi j , if bikbk j ≤ 0,

bi j + bikbk j , if bik, bkj > 0,

bi j − bikbk j , if bik, bkj < 0

. (4)

If we start with a quiver with n vertices and associate to each vertex i a variable xi ,
we can use the skew-symmetric matrix b to define a mutation relation at the vertex
k by
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xkx
′
k =

∏
i |bik>0

xbiki +
∏

i |bik<0

x−bik
i , (5)

with the understanding that an empty product is set to one. The mutation at k changes
xk to x ′

k defined by Eq. (5) and leaves the other cluster variables unchanged.
The A2 cluster algebra can be expressed by a quiver x1 → x2. Then, a mutation

at x1 replaces it by x ′
1 = 1+x2

x1
≡ x3 and reverses the arrow. A mutation at x2 replaces

it by x ′
2 = 1+x1

x2
≡ x5. In the diagram (6) below we represent the quivers and the

mutations for the A2 cluster algebra (the arrows between quivers are labeled by the
mutated variable).

x3 ← x2

x3 → x4x5 ← x4

x5 → x1

x1 → x2

x2

x1

x3

x4

x5
(6)

5 The Cluster Algebra for G(k, n)

The Grassmannian G(k, n) has a cluster algebra structure which was described in
Ref. [40] (this construction is also reviewed in Ref. [51]).

For k < n we consider the description of the GrassmannianG(k, n) as the equiva-
lence classes of k × n matrices of full rank, where twomatrices are equivalent if they
differ by the left action of a GL(k)matrix. If the leftmost k × k minor is non-singular,
i.e. 〈1, . . . , k〉 �= 0 then, by left multiplication with an appropriate GL(k) matrix, we
can transform it to the identity matrix. After this operation the representative k × n
matrix has the form (1k,Y ), where 1k is the k × k identity matrix and Y is a k × l
matrix with l = n − k. The entries yi j , 1 ≤ i ≤ k, 1 ≤ j ≤ l of the matrix Y are
coordinates on the cell of the Grassmannian where 〈1, . . . , k〉 �= 0.

Now we define a matrix Fi j for 1 ≤ i ≤ k, 1 ≤ j ≤ l, which is the biggest square
matrix which fits inside Y and whose lower-left corner is at position (i, j) inside Y .
Then we define l(i, j) = min(i − 1, n − j − k) and

fi j = (−1)(k−i)(l(i, j)−1) det Fi j . (7)

According to Ref. [40], the initial quiver for the G(k, n) cluster algebra is given
by4

4Here we are presented a flipped version of the quiver and with the arrows reversed with respect to
the quivers of Refs. [40, 51].
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f1l · · · f13 f12 f11

f2l · · · f23 f22 f21

...
...

...
...

...

fkl · · · fk3 fk2 fk1

(8)

The quiver above has two types of vertices, boxed andunboxed. The boxedvertices
are special and called frozen vertices.Wedonot allowmutations in the frozenvertices.
The associated variables to the frozen vertices are called coefficients instead of cluster
variables. We define the principal part of such a quiver to be the quiver obtained by
erasing the frozen vertices and the edges incident with them.

For the case n = 5 and k = 2, we can compute f11 = 〈23〉, f12 = 〈24〉, f13 =
〈25〉, f21 = 〈34〉, f22 = 〈45〉, f23 = 〈15〉. Then, the the initial quiver diagram looks
like below

25 24 〈23〉

〈34〉〈45〉〈15〉

〈12〉 (9)

where we have also included explicitly a frozen variable 〈12〉 which is equal to unity
in the special parametrization we chose (on the part of the Grassmannian where
〈12〉 �= 0).

After doing amutation on the node 〈14〉, we obtain a similar quiver diagramwhere
the frozen vertex 〈15〉 is special instead of 〈34〉. Just like in the four-point case the
arrows containing the mutated node get reversed and the link between 〈13〉 and 〈34〉
gets deleted and replaced with a link 〈13〉 → 〈15〉. It is easy to see that by mutating
one gets the five similar quivers and nothing more.

The principal part of the quiver for configurations of five points in CP
1 is the

same as the Dynkin diagram of A2 Lie algebra. Indeed, this is the A2 cluster algebra
we discussed in Sect. 4. The appearance of the A2 Dynkin diagram provides the
motivation for the name. We can define scaling invariant cross-ratios associated to
any unfrozen node by taking the ratio of the product of coordinates in the quiverwhich
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can be reached by going against the arrows going in by the product of coordinates
in the quiver which can be reached by following the arrows going out. For example,
the cross-ratio corresponding to 〈13〉 in the quiver (9) is given by 〈12〉〈34〉

〈14〉〈23〉 . A mutation
reverses the arrows and therefore transforms these ratios to their inverse. These cross-
ratios are the cluster variables of the A2 algebra, and the exchange relations following
from the quiver description can be shown to be the same as the exchange relations
of the A2 algebra.

More complicated cases appear for six points in CP
2, where we obtain a D4

Dynkin diagram. We can start with an initial quiver at the left below and mutate at
vertex 〈236〉 to obtain the principal part of the quiver shown at right, which is the
same as the Dynkin diagram of D4.

〈236〉

〈136〉

〈126〉 〈156〉

〈356〉

〈235〉 〈234〉

〈345〉

〈456〉

〈123〉

•

• •

•

(10)

We should note that for the quiver in (10), the cross-ratio corresponding to the
entry 〈356〉 is given by 〈136〉〈235〉〈456〉

〈156〉〈236〉〈345〉 . This is more complicated than the cross-ratios
which were obtained previously and it has some interesting properties. It appeared
already in [45] (before the cluster algebras were discovered), in connection with
functional equations for the trilogarithm. For a geometrical interpretation of this
quantity see Sect. 7 and Figs. 4, 5 and 6.

In Ref. [38], Fomin and Zelevinsky showed that a cluster is of finite type (i.e.
it has a finite number of cluster variables), if the principal part of its quiver can be
transformed to a Dynkin diagram by a sequence of mutations. Furthermore, if the
principal part of the quiver contains a subgraph which is an affine Dynkin diagram,
then the cluster algebra is of infinite type. Using this characterization, one can show
that the cluster algebras arising from G(2, n) and G(3, 6), G(3, 7) and G(3, 8) are
of finite type. In Ref. [60], Scott has shown that all the otherG(k, n) with 2 ≤ k ≤ n

2
are of infinite type.

This has striking implications for scattering amplitudes in N = 4 super-Yang-
Mills theory which, as we have reviewed, are based on Grassmannians G(4, n), for
n ≥ 6. If n = 6 we obtain G(4, 6) = G(2, 6) which is of finite type. If n = 7 we
obtain G(4, 7) = G(3, 7) which is again of finite type. However, starting at eight-
point the cluster algebras are not of finite type anymore.
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Notice that the seeds we have been using break the cyclic symmetry of the con-
figuration of points. In order to see that the cyclic symmetry is preserved we need to
show that two quivers whose labels are permuted by one unit are linked by a sequence
of mutations. This can be shown in full generality (see Ref. [41] for details).

So far the most studied cases were G(4, n) for n = 6, 7. The case n = 8 is more
complicated also because the cluster algebra is infinite. In the remainder of this
section we will list a few of the cluster coordinates appearing forG(4, 8) and discuss
their properties. By using mutations, one encounters

〈12(345) ∩ (678)〉 ≡ 〈1345〉〈2678〉 − 〈2345〉〈1678〉. (11)

Here, the ∩ notation emphasizes the following geometrical fact: the composite
bracket 〈12(345) ∩ (678)〉 vanishes whenever the projective line (345) ∩ (678)
obtained by intersecting two projective planes (345) and (678) and the points 1
and 2 lie in the same projective plane. This notation has been introduced in Ref. [4].

Already for n = 7 we encounter 〈12(345) ∩ (567)〉, when expressed in CP3 lan-
guage. In previous work (see Ref. [45]) a different notation has been used for this
quantity. First, a transformation to CP2 language was performed. Points in CP2 can
be represented as vectors in C

3, modulo rescalings. For two three-vectors v1, v2 we
have a notion of vector product v1 × v2 which is the vector orthogonal to the plane
spanned by v1 and v2. Then, the composite brackets containing ∩ can be translated
to

〈v1 × w1, v2 × w2, v3 × w3〉 = 〈v1v2w2〉〈w1v3w3〉 − 〈w1v2w2〉〈v1v3w3〉. (12)

Above, the right-hand side does not have the same manifest symmetry as the left-
hand side so more equivalent expressions can be found by applying permutations to
the vector labels. Notice that the left-hand side vanishes when v1 × w1 and v2 × w2

differ by a rescaling. This is equivalent to the statement that the planes spanned by
(v1, w1) and (v2, w2) are identical. Hence, 〈v1v2w2〉 = 0 and 〈v2w1w2〉 = 0 so the
right-hand side vanishes as well.

Since the G(4, 8) cluster algebra is infinite, we are bound to find more and more
complicated expressions. One remarkable feature of the mutations is that the denom-
inator can always be canceled by the numerator, after using Plücker identities. There-
fore, these coordinates always seem to be polynomials in the Plücker coordinates.
This is an analog of the Laurent phenomenon, but this time we obtain polynomials.5

As an example in G(4, 8), we have the following identity

〈1237〉〈1245〉〈1678〉 + 〈1278〉〈45(671) ∩ (123)〉
〈1267〉 = 〈45(781) ∩ (123)〉. (13)

Here the left-hand side is the expression obtained following a mutation, while the
right-hand side is the expression where the denominator has been canceled.

5This holds in many explicit examples, but I have not found a proof in the literature.
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Even more complicated coordinates can be generated. As an example, we also
find

〈(123) ∩ (345), (567) ∩ (781)〉. (14)

This vanisheswhen the lines (123) ∩ (345) and (567) ∩ (781) intersect. Equivalently,
we can say that the lines (345) ∩ (567) and (781) ∩ (123) intersect.

6 Poisson Brackets

One can define a Poisson bracket on the cluster coordinates. It is enough to define
the Poisson bracket between the coordinates in a given cluster. If Xi , X j belong to
the same cluster, i.e. they are vertices in the same quiver, then their Poisson bracket
is defined as

{Xi , X j } = bi j Xi X j , (15)

where bi j = −b ji is the b matrix of the cluster. The Poisson bracket is compatible
with mutations. That is,

{X ′
i , X

′
j } = b′

i j X
′
i X

′
j , (16)

where X ′
i and b′

i j are obtained by a mutation from Xi and bi j , respectively.
The Poisson structure is easiest to understand for G(2, n) cluster algebras (see

Ref. [36] for a discussion). To a configuration of n points inCP1 with a cyclic ordering
we associate a convex polygon. Each of the vertices of this polygon corresponds to
one of the n points.

Then consider a complete triangulationof the polygon.Eachof then − 3diagonals
in this triangulation determines a quadrilateral and therefore four points in CP

1.
Suppose a diagonal E determines a quadrilateral with vertices i, j, k, l where the
ordering is the same as the ordering of the initial polygon. Using these four points
we can form a cross-ratio r(i, j, k, l) = zi j zkl

z jk zil
. We have r(i, j, k, l) = r(k, l, i, j)

which implies that the cross-ratio is uniquely determined by the diagonal E and we
don’t have to chose an orientation.

Ifweflip the diagonal E then the initial cross-ratio goes to its inverse, but the cross-
ratios corresponding to neighboring quadrilaterals change in amore complicatedway.
In fact, they transform in the same way as the cluster coordinates, if the matrix bi j is
defined as follows. Two diagonals E and F in a given triangulation are called adjacent
if they are the sides of one of the triangles of the triangulation. If the diagonals
are adjacent we set bEF = 1 if the diagonal E comes before F when listing the
diagonals at the common vertex in clockwise order. Otherwise we set bEF = −1. If
two diagonals E and F are not adjacent we set εEF = 0.

In general, it is hard to compute the Poisson bracket between two coordinates in
different clusters. One approach is to express the second coordinate in terms of the
coordinates of a cluster containing the first one. Then, we can use the definition. In
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general this is hard. Another approach is to use the Sklyanin bracket (see Ref. [40]).
To explain this, we restrict again to the part of the Grassmannian G(k, n) where
〈1, . . . , k〉 �= 0 and we use a representative under the left GL(k) action which is
(1k,Y ), where Y is a k × l, l = n − k matrix. We denote the entries of the matrix Y
by yi j , i = 1, . . . k, j = 1, . . . , l. On these coordinates we introduce a bracket called
Sklyanin bracket given by

{yi j , yαβ}S = (sgn(α − i) − sgn(β − j))yiβ yα j . (17)

In general, Sklyanin bracket is defined using an R-matrix, which is a solution of a
modified classical Yang-Baxter equation (see Ref. [40] for details).

Now, we can extend the Sklyanin bracket to arbitrary functions of the variables
y, in the usual way

{ f, g}S =
∑

i, j,α,β

∂ f

∂yi j
{yi j , yαβ}S ∂g

∂yαβ
. (18)

This bracket satisfies the Jacobi identity, as can be shownbydirect computation, using
the identity sgn(x) sgn(y) + sgn(y) sgn(z) + sgn(z) sgn(x) = −1 for x + y + z =
0 and xyz �= 0.

The cluster coordinates can be expressed in terms of variables y and their bracket
can be computed using the formula above. As an example, consider the case of the
A2 algebra again. There we have the cluster coordinates

X1 = (12)(45)

(15)(24)
= − y12y23 − y13y22

y12y23
, X2 = (25)(34)

(23)(45)
= y13(y11y22 − y12y21)

y11(y12y23 − y13y22)
.

(19)
The computation of the bracket {X1, X2}S is a bit tedious, but straightforward. We
find

{X1, X2}S = 2X1X2. (20)

Up to a factor of 2, we obtain the answer expected from the definition in terms
of the b matrix of the quiver. Now, we can compute Poisson brackets between any
cluster coordinates, even if they don’t belong to the same cluster. Most of the Poisson
brackets between coordinates which don’t belong to the same cluster will be very
complicated, but sometimes one obtains zero. This information combined with other
physical requirements, can uniquely determine some parts of the amplitudes, as done
for example in Ref. [44].
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a
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d

O

α β
γ

δ

ρ

Fig. 1 The cross-ratio of four lines in CP2

7 Elements of Projective Geometry

It is very useful to understand the cross-ratios geometrically. For example, the A2

cluster algebra described above involves the geometry of five points on CP1.
The simplest type of cross-ratio is the cross-ratio of four points (a, b, c, d) in

CP
1. If the points have have coordinates (za, zb, zc, zd), then their cross-ratio is

r(a, b, c, d) = zabzcd
zbczda

, (21)

with zab = za − zb. In the followingwewill try to reducemore complicated situations
to configurations of four points on a projective line.

By duality, a point inCP2 is in correspondence with a line inCP2. A configuration
of four points on a projective line in CP

2 dualizes to a configuration of four lines
intersecting in a point. Therefore, we can talk about the cross-ratio of four lines in
CP

2 (see Fig. 1).
The cross-ratios of four lines (α,β, γ, δ) containing a point O can be related to

the cross-ratio of four points by taking an arbitrary line ρ (not containing the point O)
and computing the intersection points a = ρ ∩ α, b = ρ ∩ β, c = ρ ∩ γ, d = ρ ∩ δ.
Then, the cross-ratio of the points (a, b, c, d) on ρ is independent on ρ and is equal
to the cross-ratio of the lines (α,β, γ, δ)

r(α,β, γ, δ) = r(a, b, c, d). (22)

If the lines are defined by pairs of points α = (OA), β = (OB), γ = (OC),
δ = (OD), as in Fig. 2, then the cross-ratio of the four lines is

r(α,β, γ, δ) = r(a, b, c, d) = (O|A, B,C, D) ≡ 〈OAB〉〈OCD〉
〈OBC〉〈ODA〉 , (23)

where 〈XY Z〉 is proportional to the oriented area of the triangle Δ(X,Y, Z).
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a
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d
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Fig. 2 The cross-ratio of four lines determined by their common intersection point O and another
point on each on of them

A

B

C

D

X

C

Fig. 3 The cross-ratio of points A, B, C , D with respect to the conic C

If the four points A, B, C , D do not belong to a line we can’t generically define
their cross-ratio. However, given a conic C such that A, B, C , D belong6 to C, then
we can define their cross-ratio as follows: pick a point X on the conic C. Then,
by Chasles’ theorem the cross-ratio of the lines (X A), (XB), (XC) and (XD) is
independent on the point X and is defined to be the cross-ratio of the points A, B,
C , D (with respect to the conic C). See Fig. 3.

Let us now discuss the triple ratio of six points in CP
2 which was introduced by

Goncharov. We take the six points to be A, B, C , X , Y , Z . Numerically, this triple
ratio is given by

r3(A, B,C; X,Y, Z) = 〈ABX〉〈BCY 〉〈CAZ〉
〈ABY 〉〈BCZ〉〈CAX〉 . (24)

It turns out that this ratio has several geometrical interpretations. Consider first the
situation in Fig. 4. There, we have four lines which are dashed and blue: α = (CB),
β = (Cb), γ = (Cc), δ = (Cd), where b = (AX) ∩ (BY ), c = A and d = (CZ) ∩
(AX). Their cross-ratio, obtained by intersecting with the line (AX), is given by

6Any conic is determined by five points. Given four points there is an infinity of conics which
contain them.
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A = cX

B

Y

C

Z

a b d

Fig. 4 Triple ratio, expressed as a cross-ratio of points on the line (AX)

AX

B = a′

Y

C

Z

b′

d′

c′

Fig. 5 Triple ratio, expressed as a cross-ratio of points on the line (BY )

r(α,β, γ, δ) = r(a, b, c, d) = (C |B, (AX) ∩ (BY ), A, Z). (25)

But, instead of considering the intersections of the lines (α,β, γ, δ) with the line
(AX) as above, we can consider the intersection with the line (BY ). The intersection
points are

a′ = α ∩ (BY ) = B, (26)

b′ = β ∩ (BY ) = b = (AX) ∩ (BY ), (27)

c′ = γ ∩ (BY ) = (CA) ∩ (BY ), (28)

d ′ = δ ∩ (BY ) = (CZ) ∩ (BY ). (29)

The corresponding figure is Fig. 5. If we denote by α′ = (AB), β′ = (AX), γ′ =
(AC), δ′ = (Ad ′), we have

r(a, b, c, d) = r(α,β, γ, δ) = r(a′, b′, c′, d ′) =
= r(α′,β′, γ′, δ′) = (A|B, X,C, (BY ) ∩ (CZ)). (30)



Polylogarithm Identities, Cluster Algebras … 163

AX
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Z

a′′

b′′

d′′

Fig. 6 Triple ratio, expressed as a cross-ratio of points on the line (CZ)

Now we can repeat the previous procedure. We compute the cross-ratio r(α′,β′,
γ′, δ′) by considering the intersection with (CZ). The intersection points are

a′′ = α′ ∩ (CZ) = (AB) ∩ (CZ), (31)

b′′ = β′ ∩ (CZ) = (AX) ∩ (CZ), (32)

c′′ = γ′ ∩ (CZ) = C, (33)

d ′′ = δ′ ∩ (CZ) = (BY ) ∩ (CZ). (34)

See Fig. 6 for a geometrical representation. If we define the lines α′′ = (BA), β′′ =
(Bb′′), γ′′ = (BC), δ′′ = (Bd ′′), we have

(B|A, (CZ) ∩ (AX),C, Y ) = r(α′′,β′′, γ′′, δ′′) = r(a′′, b′′, c′′, d ′′) = r(α′, β′, γ′, δ′).
(35)

We have therefore shown that

(A|B, X,C, (BY ) ∩ (CZ)) = (B|A, (CZ) ∩ (AX),C, Y ) = (C |B, (AX) ∩ (BY ), A, Z).

(36)
Notice that this is also implied by the symmetry r3(A, B,C; X,Y, Z) = r3(B,C, A;
Y, Z , X).

Let us now show that the invariant (A|B, X,C, (BY ) ∩ (CZ)) has the same zeros
and poles as r3(A, B,C; X, Y, Z). Form the definition, we know that (A|B, X,C,

(BY ) ∩ (CZ)) vanishes when 〈ABX〉 = 0 or 〈AC(BY ) ∩ (CZ)〉 = 0. The sec-
ond three-bracket vanishes if 〈BCY 〉 = 0 or 〈CAZ〉 = 0. In the first case B,C,Y
are collinear and therefore (BY ) ∩ (CZ) = C so we have 〈AC(BY ) ∩ (CZ)〉 =
〈ACC〉 = 0. In the second case, when 〈CAZ〉 = 0 we have that A ∈ (CZ), C ∈
(CZ) and P ≡ (BY ) ∩ (CZ) ∈ (CZ). Since all the entries of the three-bracket are
collinear, we find that 〈AC(BY ) ∩ (CZ)〉 = 0. We have shown that (A|B, X,C,

(BY ) ∩ (CZ)) vanishes if 〈ABX〉 = 0 or 〈BCY 〉 = 0 or 〈CAZ〉 = 0 which is the
same as the numerator of r3(A, B,C; X,Y, Z). In order to find the poles we reason
in the same way.
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8 Polylogarithm Identities

In this section we provide some more mathematical details on transcendental func-
tions and explain how to partially integrate them. We denote by Ln the Abelian
group (under addition) of transcendental functions of transcendentality weight n. An
important character in this story is the Bloch group Bn , also called the classical poly-
logarithm group: it is the subgroup of Ln generated by the classical polylogarithm
functions Lin and their products.

Consider first the simplest kind of transcendental function, the logarithm. If we are
working modulo 2πi , then we have that ln z + lnw = ln(zw), for any z, w ∈ C

∗. In
order to express this simple functional relation formally, define Z[C∗] to be the free
Abelian group generated by {z}, with integer coefficients and z non-zero complex
numbers. Concretely, elements of this group are quantities like {z} + {w} and the
group operation is defined in the obvious way. Then, we can quotient this group by
the relations satisfied by the logarithm to obtain the logarithm group B1,

B1 = Z[C∗]/({z} + {w} − {zw}). (37)

This group is isomorphic to the multiplicative group of complex numbers, C×.
The next simplest transcendental functions are the dilogarithms, Li2. The dilog-

arithms satisfy a simple five-term functional relation. One way to express this func-
tional relation is to consider five points on CP

1 with coordinates z1, . . . , z5. From
any four such points we can form a cross-ratio r(z1, . . . , ẑi , . . . z5), where the hatted
argument is missing. We use the definition r(i, j, k, l) = zi j zkl

z jk zli
with zi j = zi − z j .

Then the five-term identity can be written as

5∑
i=1

(−1)i Li2(−r(z1, . . . , ẑi , . . . , z5)) = logs, (38)

where we have denoted by logs the terms which can be written uniquely in terms of
logarithms. There is a theorem (see Ref. [16]) that all the relations between dilog-
arithms are consequences of the five-term relations. We can now define the Bloch
group B2 by analogy to the logarithm case.We first defineZ[C] to be the free Abelian
group generated by {z}2, where z is a complex number. Then, we quotient be the
five-term relations and the quotient is denoted by B2

B2 = Z[C]/(five-term relations). (39)

In this case we have a group morphism δ, B2
δ−→ Λ2

C
∗ which is defined by

δ({z}2) = (1 − z) ∧ z. To check that this is a group morphism we need to show
that δ(five-term relation) = 0 or
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5∑
i=1

(−1)i (1 + r(z1, . . . , ẑi , . . . , z5)) ∧ r(z1, . . . , ẑi , . . . , z5) = 0, (40)

which can be done by a short computation.
Let us now discuss Li3 functions. There is a theorem stating that all transcenden-

tality three functions can be written as a linear combination of Li3 and products of
lower transcendentality functions (see Ref. [45]).

Just like in the previous cases, we first need to find the functional relations satisfied
by Li3 functions. The identity satisfied by Li3 is very similar to the one satisfied by
Li2 and can be described in terms of configurations of seven points on CP

2. It is
convenient to describe each of these points in terms of their homogeneous vi ∈ C

3

coordinates, with i = 1, . . . , 7. For three such vectors vi , v j , vk we can define a three-
bracket 〈·, ·, ·〉 : C3 × C

3 × C
3 → C by the volume of the parallelepiped generated

by them 〈i, j, k〉 = Vol(vi , v j , vk).
Given six points in CP3, we can form a cross-ratio

r3(1, 2, 3, 4, 5, 6) = 〈124〉〈235〉〈316〉
〈125〉〈236〉〈314〉 . (41)

Such cross-ratios have been introduced and extensively used in Ref. [45] and we also
discuss their geometric interpretation in Sect. 5. The Li3 functional relations can be
expressed in terms of this cross-ratio as

7∑
i=1

(−1)i Alt6 Li3(−r3(1, . . . , î, . . . , 7)) ≈ 0, (42)

where Alt6 mean antisymmetrization in the six points on which r3 depends and ≈
means that we have omitted the terms which are products of lower transcendentality
functions.

Now we define
B3 = Z[C]/(seven-term relations). (43)

There is a morphism δ : B3 → B2 ⊗ C
∗, δ({x}3) = {x}2 ⊗ x . In order to show that

this morphism is well-defined, we need to show that that δ annihilates the seven-term
relations.

It may seem that we can continue in the same way to higher transcendentality.
However, this is not the case. At transcendentality four there are new functions
which can not be expressed in terms of Li4 and products of lower transcendentality
functions. We can define Bn for n ≥ 4 in the same way as before, but there is a bigger
group Ln which is the Abelian group related to weight n polylogs, some of which
are not classical polylogs.

We defined Bn to be the Abelian groups generated by classical polylogs andLn to
be the Abelian groups of all polylogs of weight n. Nowwewant to characterize them.
The most mathematically concise way to describe their (conjectural!) connection is
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by an exact sequence, which for n = 4 reads

0 → B4 → L4 → Λ2B2 → 0. (44)

An exact sequence is a sequence of maps between spaces such that the image of a
map falls in the kernel of the next one. In the example above, the first arrow says
that B4 maps to L4 injectively, which is obvious since B4 is contained in L4. The
last arrow says that the map L4 → Λ2B2 is surjective. This is less obvious, but it
means that for any element of Λ2B2 one can find a weight four polylog with that
Λ2B2 projection.

Finally, the rest of the sequence means that ker(L4 → Λ2B2) = B4. This means
that if a weight four polylog has zero Λ2B2 projection, which is to say it belongs to
ker(L4 → Λ2B2), then it is a classical polylog, and vice versa.

Notice that in Fig. 4, we have five points (a, b, X, c, d) on the line (AX). From
five points (z1, . . . , z5) in CP

1 we can produce a dilogarithm identity

5∑
i=1

(−1)i {−r(z1, . . . , ẑi , . . . , z5)}2 = 0. (45)

This motivates us to find the expressions in terms of three-brackets for the other
cross-ratios that can be constructed from these five points on (AX) (see Fig. 4):

r(b, X, A, d) = 〈BXY 〉〈ACZ〉
〈A × X, B × Y,C × Z〉 , (46)

r(a, X, A, d) = (C |B, X, A, Z), (47)

r(a, b, A, d) = r3(A, B,C; X,Y, Z), (48)

r(a, b, X, d) = r3(X, B,C; A,Y, Z), (49)

r(a, b, X, A) = (B|C,Y, X, A). (50)

This provides a geometric proof for the following dilogarithm identity

−
{ 〈BXY 〉〈ACZ〉

〈A × X, B × Y,C × Z〉
}
2

+
{ 〈CBX〉〈CAZ〉

〈CX A〉〈CZB〉
}
2

−
{ 〈ABX〉〈BCY 〉〈CAZ〉

〈ABY 〉〈BCZ〉〈CAX〉
}
2

+
{ 〈XBA〉〈BCY 〉〈CXZ〉

〈XBY 〉〈BCZ〉〈CX A〉
}
2

−
{ 〈BCY 〉〈BX A〉

〈BY X〉〈BAC〉
}
2

= 0. (51)

Here is a 40-term trilogarithm identity which was discovered when analyzing
results of two-loop computations in N = 4 theory.
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{
−〈125〉〈134〉

〈123〉〈145〉
}
3

+
{
−〈126〉〈145〉

〈124〉〈156〉
}
3

+
{
−〈126〉〈145〉〈234〉

〈123〉〈146〉〈245〉
}
3

+
1

3

{
− 〈136〉〈145〉〈235

〈123〉〈156〉〈345〉
}
3

+ (cyclic permutations)−
(anti-cyclic permutations) = 0. (52)

In order to check that the B2 ∧ C
∗ projection of the 40-term trilogarithm identity

is zero we need some dilogarithm identities. For example, one of the dilogarithm
identities which is useful is

−
{
− 〈123〉〈456〉

〈1 × 2, 3 × 4, 5 × 6〉
}
2

−
{
−〈125〉〈134〉

〈123〉〈145〉
}
2

−
{
−〈123〉〈156〉〈345〉

〈125〉〈134〉〈356〉
}
2

+
{
−〈124〉〈156〉〈345〉

〈125〉〈134〉〈456〉
}
2

−
{
−〈156〉〈345〉

〈135〉〈456〉
}
2

= 0.

(53)

It can be interpreted geometrically as five points (3, 4, (15) ∩ (34), (12) ∩ (34),
(34) ∩ (56)) on the line (34).

The second useful dilogarithm identity is

{
− 〈156〉〈234〉

〈1 × 2, 3 × 4, 5 × 6〉
}
2

−
{
−〈136〉〈234〉

〈123〉〈346〉
}
2

−
{
−〈156〉〈236〉

〈126〉〈356〉
}
2

+
{
−〈123〉〈156〉〈346〉

〈126〉〈134〉〈356〉
}
2

−
{
−〈123〉〈256〉〈346〉

〈126〉〈234〉〈356〉
}
2

= 0.

(54)

It can be interpreted geometrically as five points (1, 2, (12) ∩ (34), (12) ∩ (36),
(12) ∩ (56)) on the line (12).

The third useful dilogarithm identity is

−
{
− 〈156〉〈234〉

〈1 × 2, 3 × 4, 5 × 6〉
}
2

+
{
−〈145〉〈234〉

〈124〉〈345〉
}
2

+
{
−〈156〉〈245〉

〈125〉〈456〉
}
2

−
{
−〈124〉〈156〉〈345〉

〈125〉〈134〉〈456〉
}
2

+
{
−〈124〉〈256〉〈345〉

〈125〉〈234〉〈456〉
}
2

= 0.

(55)

It can be interpreted geometrically as five points (1, 2, (12) ∩ (34), (12) ∩ (45),
(12) ∩ (56)) on the line (12).

The fourth useful dilogarithm identity is
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{
− 〈123〉〈456〉

〈1 × 2, 3 × 4, 5 × 6〉
}
2

+
{
−〈125〉〈234〉

〈123〉〈245〉
}
2

+
{
−〈123〉〈256〉〈345〉

〈125〉〈234〉〈356〉
}
2

−
{
−〈124〉〈256〉〈345〉

〈125〉〈234〉〈456〉
}
2

+
{
−〈256〉〈345〉

〈235〉〈456〉
}
2

= 0.

(56)

It can be interpreted geometrically as five points (3, 4, (12) ∩ (34), (25) ∩ (34),
(34) ∩ (56)) on the line (34).

The identities above are the identities needed to show the vanishing of terms of
type ∗ ⊗ 〈123〉 in the projection to B2 ⊗ C

∗ of the 40-term trilogarithm identity. For
the terms of type ∗ ⊗ 〈124〉 the same identities are sufficient, but there is another,
simpler identity too, written below

−
{
−〈126〉〈145〉

〈124〉〈156〉
}
2

+
{
−〈126〉〈245〉

〈124〉〈256〉
}
2

−
{
−〈146〉〈245〉

〈124〉〈456〉
}
2

+
{
−〈156〉〈245〉

〈125〉〈456〉
}
2

−
{
−〈156〉〈246〉

〈126〉〈456〉
}
2

= 0.

(57)

This identity is special because it does not depend on point 3 at all. It can be more
geometrically written as

{(1|2654)}2 + {(2|1456)}2 + {(4|1652)}2 + {(5|1246)}2 + {(6|1542)}2 = 0. (58)

Curiously, this simple-looking identity has a slightly more obscure geometrical
interpretation. Through the five points 1, 2, 4, 5, 6 passes a unique conic C. The
cross-ratio (1|2654) is the cross-ratio of the points (2, 6, 5, 4) with respect to the
conic C. But we can pick another point X ∈ C and we have, by Chasles’ theorem,
that (X |2654) = (1|2654). Then the previous identity becomes

{(X |2456)}2 − {(X |1456)}2 + {(X |1256)}2 − {(X |1246)}2 + {(X |1245)}2 = 0,
(59)

which is the usual form of the dilogarithm identity, where the cross-ratios are cross-
ratios of the lines (X1), (X2), (X4), (X5), (X6).

9 Open Questions

The scattering amplitudes inN = 4 theory split into sub-sectorswhich are not related
by supersymmetry transformations. Scattering amplitudes in the simplest sectors are
called MHV (maximally helicity violating) amplitudes, for historical reasons. More
complicated sectors are called NMHV (next to MHV), etc. The six-point MHV
amplitude has transcendentality four but, surprisingly, can be expressed in terms of
classical polylogarithms only, as found in Ref. [46]. The next simplest amplitudes
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are the six-point NMHV, or the seven point MHV, which can not be written in terms
of classical polylogarithms, since their B2 ∧ B2 projection does not vanish.

Consider the Λ2B2 projection of the seven-point MHV amplitude computed in
Ref. [21]. In CP2 language it is given by

−
{

− 〈2 × 3, 4 × 6, 7 × 1〉
〈167〉〈234〉

}
2

∧
{

− 〈7 × 1, 2 × 3, 4 × 5〉
〈127〉〈345〉

}
2

−
{

− 〈2 × 3, 4 × 6, 7 × 1〉
〈167〉〈234〉

}
2

∧
{

− 〈234〉〈456〉
〈246〉〈345〉

}
2

−
{

− 〈2 × 3, 4 × 6, 7 × 1〉
〈167〉〈234〉

}
2

∧
{

− 〈146〉〈567〉
〈167〉〈456〉

}
2

−
{

− 〈2 × 3, 4 × 6, 7 × 1〉
〈167〉〈234〉

}
2

∧
{

− 〈5 × 6, 7 × 1, 2 × 3〉
〈123〉〈567〉

}
2

+
{

− 〈137〉〈467〉
〈167〉〈347〉

}
2

∧
{

− 〈123〉〈347〉
〈137〉〈234〉

}
2

−
{

− 〈137〉〈467〉
〈167〉〈347〉

}
2

∧
{

− 〈347〉〈456〉
〈345〉〈467〉

}
2

+ cyclic permutations of 1, 2, . . . , 7. (60)

Goncharov suggested to look at the Poisson bracket x, y for any {−x}2 ∧ {−y}2 ∈
Λ2B2. This is well-defined since {−x}2 ∧ {−y}2 = −{−y}2 ∧ {−x}2 and a similar
sign change appears from the Poisson bracket.

It is not understood why, but we find that these Poisson brackets are zero. We
can show that for every term {−x}2 ∧ {−y}2 ∈ Λ2B2 listed above there is at least
one cluster containing x and y. In order to prove this, for every pair (x, y) we need
to exhibit a quiver graph which contains them and which is such that there are no
arrows between x and y. Alternatively, one can compute the Sklyanin bracket as in
Sect. 6.

As mentioned in the introduction, scattering amplitudes have the property of
factorization (see Ref. [3]). Formulating this precisely and studying its implications
for the cluster algebra structure would be very interesting. A complete discussion
would take us too far, but wewant tomention only one important aspect: factorization
only works if the transcendental functions satisfy some identities.

In mathematics one prefers to work with some real analytic functions, like

L2(z) = � (Li2(z) + ln |z| ln(1 − z)) , (61)

L3(z) = �
(
Li3(z) − ln |z|Li2(z) − 1

3
ln2 |z| ln(1 − z)

)
, (62)

which have simple functional relations (modulo some additive constants, one can
simply replace {z}2 → L2(z) and {z}3 → L3(z)) to obtain an identity for functions.
However, for physics we need to have complex analytic functions instead. Therefore,
it is not yet clear what are the best building blocks for the scattering amplitudes.

The reader might be puzzled by the following fact: we have a big symmetry group
PSU(2, 2|4) but in terms of Grassmannians only the conformal group SU(2, 2) or the
complexified SL(4) is visible. How to make the rest of the symmetry visible? This
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is not known at present. Maybe recent developments like the definition of cluster
superalgebras in Ref. [56] hold the key to further progress.

Are there other polylogarithm identities of cluster type? As we have reviewed,
the dilogarithm identity contains arguments which form an A2 (or G(2, 5) cluster
algebra, while the trilogarithm identity contains arguments which form a D4 (or
G(3, 6) cluster algebra. A computer search for a Li4 identity with arguments in finite
cluster algebra did not find anything. It is possible that there are such identities for
infinite cluster algebras.

Before ending this brief review, let us point out some references which discuss
complementary details. Cluster algebras appeared in Ref. [5] in connection with
scattering amplitudes, but in a different way than we reviewed here. Reference [42]
also reviews the connection between scattering amplitudes and cluster algebras, with
an emphasis on the combinatorics of Stasheff polytopes. Reference [50] reviews the
case of a three-dimensional analog of the N = 4 theory which we described here.

Many results were obtained by applying the bootstrap method (see Refs. [22,
25–30, 43, 44]).
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