
The Elliptic Sunrise

Luise Adams, Christian Bogner and Stefan Weinzierl

Abstract In this talk, we discuss our recent computation of the two-loop sunrise
integralwith arbitrary non-zero particlemasses in the vicinity of the equalmass point.
In two space-time dimensions, we arrive at a result in terms of elliptic dilogarithms.
Near four space-time dimensions, we obtain a result which furthermore involves
elliptic generalizations of Clausen and Glaisher functions.
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1 Introduction

In the computation of many Feynman integrals the use of multiple polylogarithms1

[1]

Li(s1, ..., sk )(z1, ..., zk) =
∑

n1>n2...>nk≥1

zn11 ...znkk
ns11 ...nskk

, si ≥ 1, |zi | < 1

is very advantageous. In particular, these functions, shown as nested sums here, also
have representations as iterated integrals, given by the classes of hyperlogarithms
[2, 3] or by iterated integrals on moduli spaces of curves of genus zero (see [4]).

1Our summation convention is widely used in the physics literature, including our previous work.
Notice that it differs from the convention in [1].
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Apparently, it is not possible to express every Feynman integral in terms of this
framework of functions. This problem is expected to affect an entire class of massive
integrals (see e.g. [5]) and was furthermore pointed out for certain massless integrals,
arising inN = 4 supersymmetric Yang-Mills theory [6, 7].

One of the simplest Feynman integrals where multiple polylogarithms are not
sufficient to express the result is the massive two-loop sunrise integral

S(D, t) =
∫

dDk1dDk2
(
iπ D/2

)2
1(−k21 + m2

1

) (−k22 + m2
2

) (− (p − k1 − k2)
2 + m2

3

) .

In this talk, we consider this integral as a function of the three particle masses
satisfying 0 < m1 ≤ m2 ≤ m3 < m1 + m2 and of the squared momentum t = p2.
The condition m3 < m1 + m2 ensures that all pseudo-thresholds are positive. We
omit an explicitmass-scale parameterμ in our equations.We discuss the computation
of this Feynman integral at D = 2 and D = 4 dimensions in terms of the Laurent
expansions

S(2 − 2ε, t) = S(0)(2, t) + S(1)(2, t)ε + O
(
ε2

)
,

S(4 − 2ε, t) = S(−2)(4, t)ε−2 + S(−1)(4, t)ε−1 + S(0)(4, t) + O(ε).

In the case of D = 2, the integral is finite and our result is the coefficient S(0)(2, t).
In the case of D = 4, we compute the coefficient S(0)(4, t). The pole terms were
already known and read

S(−2)(4, t) = −1

2

(
m2

1 + m2
2 + m2

3

)
,

S(−1)(4, t) = 1

4
t − 3

2

(
m2

1 + m2
2 + m2

3

) +
3∑

i=1

m2
i ln

(
m2

i

)
.

In order to obtain S(0)(4, t), we compute the ε-coefficient S(1)(2, t) of the two-
dimensional case and relate S(2 − 2ε, t) with S(4 − 2ε, t) by Tarasov’s dimension
shift relations [8, 9]. Our work on these integrals is motivated by the search for
classes of functions beyond multiple polylogarithms, which are appropriate for the
computation of Feynman integrals.

In Sect. 2 we briefly comment on three computational approaches which fail to
provide a result in terms of multiple polylogarithms for the massive sunrise integral.
We begin our computation with the integral in two dimensions and discuss our first
solution of the differential equation for S(0)(2, t) in Sect. 3. In Sect. 4 we express this
result in terms of an elliptic dilogarithm. Section5 introduces further elliptic gener-
alizations of polylogarithms, understood as elliptic generalizations of Clausen and
Glaisher functions, which arise in our results for S(1)(2, t) and S(0)(4, t). Section6
contains the conclusions of this talk.
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2 Basic Properties of the Massive Sunrise Integral

The massive sunrise integral was extensively studied in the past [5, 10–28]. Let us
recall some important aspects.

Firstly, in [15] the integral S(D, t) is expressed as a linear combination of gener-
alized hypergeometric functions of Lauricella type C, which are functions of t , of the
squared particle masses and of the dimension D. While a wide range of generalized
hypergeometric functions can be expanded in terms of multiple polylogarithms with
today’s methods, this has not been achieved for the mentioned result so far.

Secondly, one may attempt to compute the integral by integration over Feynman
parameters. In terms of Feynman parameters, the integral in D = 2 dimensions reads

S(2, t) =
∫

σ

ω

F
,

with ω = x1dx2 ∧ dx3 + x2dx3 ∧ dx1 + x3dx1 ∧ dx2 and σ = {[x1 : x2 : x3]
∈ P

2|xi ≥ 0, i = 1, 2, 3} while the second Symanzik polynomial is given as

F = −x1x2x3t + (
x1m

2
1 + x2m

2
2 + x3m

2
3

)
(x1x2 + x2x3 + x1x3) .

For an attempt to iteratively build up the result in terms of the mentioned iterated
integrals which represent the multiple polylogarithms, the polynomial F would
have to satisfy the criterion of linear reducibility [29]. The latter is a sufficient but
not necessary criterion to obtain multiple polylogarithms in the result. However, the
polynomial fails this criterion and a change of variables to restore linear reducibility
for a new set of integration variables is unknown for this case.

Thirdly, the integral S(D, t) for generic space-time dimension satisfies an inho-
mogeneous fourth-order differential equation in t :

(
P4

d4

dt4
+ P3

d3

dt3
+ P2

d2

dt2
+ P1

d1

dt1
+ P0

)
S (D, t) = c12T12 + c13T13 + c23T23

(1)

where the Ti j = T
(
m2

i , D
)
T

(
m2

j , D
)
are products of tadpole integrals

T (m2, D) =
∫

dDk

iπ
D
2

1(−k2 + m2
) = Γ

(
1 − D

2

) (
m2

) D
2 −1

.

All coefficients Pk and ci j are polynomials in m2
1, m

2
2, m

2
3, t, D. Their explicit

expressions are provided in appendix A of [30]. Each of the functions S(0)(2, t),
S(1)(2, t), S(0)(4, t) satisfies an inhomogeneous differential equation of second or
higher order. If any of these operators would factorize into differential operators of
first order the corresponding coefficient could be obtained as an iterated integral in
a straightforward way (see e.g. Sect. 2 of [31]). However, this is not the case for any
of these operators.
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All of these points give rise to the expectation, that we need functions beyond
multiple polylogarithms to express the integrals S(0)(2, t), S(1)(2, t), S(0)(4, t).
This expectation is confirmed by our results for these functions.

3 The Differential Equation in Two Dimensions

We follow the approach of differential equations and beginwith the Feynman integral
in D = 2 dimensions. For the case of equal masses m1 = m2 = m3, a differential
equation of second order was already given in [14]. A full solution in terms of
integrals over elliptic integrals was obtained in [19].

For the case of arbitrary masses, a differential equation of second order was found
later in [23]:

L2 S(2, t) = p3(t),

L2 = p2(t)
d2

dt2
+ p1(t)

d

dt
+ p0(t), (2)

where p0(t), p1(t), p2(t) are polynomials in t and in the m2
i and where p3(t) fur-

thermore involves ln(m2
i ), i = 1, 2, 3. We take this equation as the starting point of

our computation and make the classical ansatz

S(2, t) = C1ψ1(t) + C2ψ2(t) +
∫ t

0
dt1

p3(t1)

p0(t1)W (t1)
(−ψ1(t)ψ2(t1) + ψ2(t)ψ1(t1))

(3)
where ψ1, ψ2 are solutions of the homogeneous equation, C1, C2 are constants and

W (t) = ψ1(t)
d

dt
ψ2(t) − ψ2(t)

d

dt
ψ1(t)

is the Wronski determinant.
At this point, it is useful to consider the zero-set of the second Symanzik poly-

nomial F . This cubical curve intersects the integration domain σ of the Feynman
integral at the three points

P1 = [1 : 0 : 0], P2 = [0 : 1 : 0], P3 = [0 : 0 : 1].

We choose one of these points Pi as the origin and transform the curve toWeierstrass
normal form

y2z − x3 − g2(t)xz
2 − g3(t)z

3 = 0. (4)



The Elliptic Sunrise 137

By this transformation, the chosen origin is mapped to the point [x : y : z] =
[0 : 1 : 0]. In this way, we obtain three elliptic curves EF ,i according to the three
points Pi , i = 1, 2, 3.

In the chart z = 1 we write Eq.4 as

y2 = 4(x − e1)(x − e2)(x − e3),

which defines the three roots e1, e2, e3 with e1 + e2 + e3 = 0. These provide the
boundaries of the period integrals

ψ1 = 2
∫ e3

e2

dx

y
= 4

D̃
1
4

K (k), ψ2 = 2
∫ e3

e1

dx

y
= 4i

D̃
1
4

K (k ′)

of the elliptic curve. Here the polynomial D̃ is given as

D̃ = (t − (m1 + m2 − m3)
2)(t − (m1 − m2 + m3)

2)(t − (−m1 + m2 + m3)
2)(t − (m1 + m2 + m3)

2)

and we have obtained the complete elliptic integral of the first kind

K (x) =
∫ 1

0
dt

1√
(1 − t2)(1 − x2t2)

with moduli k =
√

e3−e2
e1−e2

, k ′ = √
1 − k2 =

√
e1−e3
e1−e3

. These period integrals ψ1, ψ2

are solutions of the homogeneous equation associated to Eq.3.
We still have to fix the constants. It can be shown that C2 has to vanish while

the other constant C1 is derived from a known result [32–34] for the zero-mass limit
S(2, 0). Now all pieces of our ansatz in Eq.3 are determined. In order to simplify
the integrand of the particular solution, we furthermore make use of the remaining
two associated period integrals of EF ,i . In conclusion, we obtain a result [31] of the
form

S(2, t) = S(2, 0) + ψ1(t)

π2

∫ t

0
dt1ρ(t1) (5)

where the integrand ρ involves elliptic integrals of the first and second kind.

4 The Massive Sunrise Integral in Two Dimensions

The general shape of our result of Eq.5 has a disadvantage. While the involved
elliptic integrals are well-studied functions, nicely related to the underlying elliptic
curve of the problem, the integral over these functions in not a known function. This
integral might remind us vaguely of an iterated integral, but in this form, it can not
be recognized as a generalization of a polylogarithm. However, for the equal-mass
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case, it was shown more recently in [24], that the integral can be expressed in terms
of an elliptic dilogarithm. Various notions of elliptic polylogarithms were previosly
introduced in the mathematical literature [35–40].

Before we apply an elliptic generalization of a polylogarithm to the sunrise inte-
gral with arbitrary masses, let us briefly recall the basic concept of an elliptic func-
tion. With respect to a lattice L = Z + τZ with τ ∈ C and Im(τ ) > 0, a function
f is said to be elliptic, if it satisfies f (x) = f (x + λ) for λ ∈ L . Accordingly, the
corresponding function f̃ (z) of z ∈ C

� defined by f̃ (e2π i x ) = f (x) is elliptic, if

f̃ (z) = f̃ (z · qλ) , qλ ∈ e2π iλ for λ ∈ L . (6)

Recall that a cell of the lattice with τ = ψ2

ψ1
is isomorphic to an elliptic curve with

the periods ψ1, ψ2.

A crucial idea for the construction of such elliptic functions is to consider sums of
the form

∑
n∈Z g (z · qn) over some function g. If a sum of this type is well-defined,

it clearly satisfies the condition of Eq.6 by construction. This concept can serve for
definitions of elliptic generalizations of polylogarithms. For example in [39] it is
used to define the class of multiple elliptic polylogarithms. The elliptic dilogarithm
in this framework reads

Ẽ2(z; u; q) =
∑

m∈Z
umLi2(q

mz)

where u is a sufficiently small damping parameter to guarantee the convergence of
the function.

Based on the same basic idea, we define the class of functions [41]

ELin;m(x; y; q) =
∞∑

j=1

∞∑

k=1

x j

j n
yk

km
q jk =

∞∑

k=1

yk

km
Lin(q

kx),

En;m(x; y; q) =
{

1
i

( 1
2Lin(x) − 1

2Lin(x
−1) + ELin;m(x; y; q) − ELin;m(x−1; y−1; q)

)
,

1
2Lin(x) + 1

2Lin(x
−1) + ELin;m(x; y; q) + ELin;m(x−1; y−1; q)

(7)
with the first line for n + m even and the second line for n + m odd. Note that our
elliptic dilogarithm

E2; 0(x; y; q) = 1

i

⎛

⎝1

2
Li2 (x) − 1

2
Li2

(
x−1) +

∞∑

i=1

yiLi2
(
qi x

)
−

∞∑

j=1

y− jLi2
(
q j x−1

)
⎞

⎠

is closely related to the above function Ẽ2. We obtain
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E2; 0(x; y; q) = 1

i

(
Ẽ2(x; y; q) − 1

2

1 + y

1 − y
ζ(2) − 1

4

1 + y

1 − y
ln2(−x)

− y

(1 − y)2
ln(−x) ln(q) − 1

2

y (1 + y)

(1 − y)3
ln2(q)

)

in the region of parameters given by x ∈ C\[0, ∞[, |y| > 1 and real-valued q in the

range 0 ≤ q < min
(
|x |, 1

|x | , |y|, 1
|y|

)
.

Using the function E2; 0, we express our result for the massive sunrise integral in
two space-time dimensions in a very compact way as2

S (2, t) = ψ1(q)

π

3∑

i=1

E2; 0(wi (q); −1; −q) where q = eπ i ψ2(t)
ψ1(t) . (8)

Note that the dependence on t is now implicitly expressed in terms of q, which is
defined by the periods of the elliptic curve. The arguments w1, w2, w3 are functions
of q and of the squared particle masses. They are directly obtained from the three
intersection points P1, P2, P3 by the consecutive transformations on the elliptic
curves EF ,i , i = 1, 2, 3, indicated above. In this sense, every piece of the compact
result Eq. 8 is nicely related to the underlying elliptic curves EF ,i .

In the case of equal masses, the result simplifies to

S (2, t) = 3
ψ1(q)

π
E2; 0 (exp (2π i/3) ; −1; −q) .

5 The Massive Sunrise Integral Around Four Dimensions

By use of dimension shift relations [8, 9], we express the coefficient S(0)(4, t) of the
sunrise integral near D = 4 dimensions in terms of coefficients of the D = 2 case
[30]. We obtain S(0)(4, t) as a linear combination of terms S(0)(2, t), ∂

∂m2
i
S(0)(2, t),

S(1)(2, t), ∂

∂m2
i
S(1)(2, t), i = 1, 2, 3. Therefore, our remaining task is the compu-

tation of S(1)(2, t).
From Eq.1 we obtain the differential equation

L1,a L1,b L2 S
(1)(2, t) = I1(t). (9)

Here L1,a and L1,b are differential operators of first order,

L1,a = p1,a
d

dt
+ p0,a and L1,b = p1,b

d

dt
+ p0,b,

2By a slight abuse of notation, we denote with ψ1 the above function of t and the corresponding
function of q.
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where p0,a, p1,a are rational functions of t and the squared particle masses and
p0,b, p1,b are polynomials in these variables. The homogeneous solutions ψa, ψb of
these operators, defined by

L1,a ψa(t) = 0 and L1,b ψb(t) = 0

are easily obtained.
The operator L2 in Eq.9 is the one of Eq.2 which already appeared in the differ-

ential equation of the two-dimensional case. The inhomogeneous term I1 of Eq.9 is
a combination of certain differentiations of our result S(0)(2, t), of logarithms in the
squared particle masses and of a polynomial in the squared masses and in t.

Solving Eq.9 for the combination L2 S(1)(2, t), we obtain

L2 S
(1)(2, t) = I2(t) (10)

with

I2(t) = C̃1ψb(t) + C̃2ψb(t)
∫ t

0

ψa(t1)dt1
p1,b(t1)ψb(t1)

+ ψb(t)
∫ t

0

ψa(t1)dt1
p1,b(t1)ψb(t1)

∫ t1

0

I1(t2)dt2
p1,a(t2)ψa(t2)

where C̃1, C̃2 are integration constants.
Now with Eq.10 we have to solve a similar differential equation as in the two-

dimensional case, with the only difference that the inhomogeneous part is more
complicated. However, we can make a similar ansatz and we have the same period
integrals ψ1, ψ2 of EF ,i as solutions of the homogeneous equation. Therefore, it
is useful to introduce the variable q again in the same way as in Eq.8. In terms of
integrals over q, we obtain

S(1)(2, t) = C3ψ1 + C4ψ2 − ψ1

π

∫ q

0

dq1
q1

∫ q1

0

dq2
q2

I2 (q2) ψ1 (q2)
3

πp2 (q2)W (q2)
2 .

The integration constantsC3, C4 are determined from boundary conditions. Expand-
ing the integrand, we can perform the integrations order by order and obtain a
q−expansion of S(1)(2, t) to high orders. This step finally allows us to find a result
for S(1)(2, t) in closed form,which can be confirmed to satisfy the differential Eq.10.

Let us refer to [30] for the explicit result and just highlight some of its properties
here. Apart from classical (multiple) polylogarithms, the result involves the functions
E1; 0(x; y; q), E2; 0(x; y; q), E3; 1(x; y; q) as defined in Eq.7 and furthermore a
quadruple sum of the form

�(x1, x2; y1, y2; −q) =
∞∑

j1=1

∞∑

k1=1

∞∑

j2=1

∞∑

k2=1

k21 (−q) j1k1+ j2k2

j2 ( j1k1 + j2k2)
2

(
x
j1
1 y

k1
1 − x

− j1
1 y

−k1
1

) (
x
j2
2 y

k2
2 + x

− j2
2 y

−k2
2

)
.
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For the arguments of these functions, we have y, y1, y2 ∈ {−1, 1} and x, x1, x2 ∈
{w1, w2, w3} , where the wi again are the arguments obtained from the intersection
points mentioned above.

The appearance of the functions E1; 0(x; y; q), E2; 0(x; y; q), E3; 1(x; y; q)

shows that the framework of Eq.7, set up for the coefficient S(0)(2, t), is also useful
for S(1)(2, t) and hence also for the four-dimensional case. Furthermore, these func-
tions can be viewed as elliptic generalizations of Clausen and Glaisher functions.
Recall that the Clausen functions are defined by

Cln (ϕ) =
{

1
2i

(
Lin

(
eiϕ

) − Lin
(
e−iϕ

))
for even n,

1
2

(
Lin

(
eiϕ

) + Lin
(
e−iϕ

))
for odd n,

and the Glaisher functions are given as

Gln (ϕ) =
{

1
2

(
Lin

(
eiϕ

) + Lin
(
e−iϕ

))
for even n,

1
2i

(
Lin

(
eiϕ

) − Lin
(
e−iϕ

))
for odd n.

We therefore obtain as ‘non-elliptic limits’ of our functions:

limq→0E1; 0
(
eiϕ; y; q) = Cl1 (ϕ) ,

limq→0E2; 0
(
eiϕ; y; q) = Cl2 (ϕ) ,

limq→0E3; 1
(
eiϕ; y; q) = Gl3 (ϕ) .

As a final remark, let us mention that S(1)(2, t) is a function of mixed weight. It
shares this property with the function E3; 1(x; y; q) which has parts of weight three
and of weight four.

6 Conclusions

We discussed the computation of the massive sunrise integral in two and around four
space-time dimensions. We started with the computation of the O

(
ε0

)
-part of the

integral in two dimensions and expressed our result in terms of an elliptic dilogarithm.
In this form, the result is very compact and every part of it is nicely related to the
underlying elliptic curve, given by the second Symanzik polynomial of the Feynman
graph.

We continued with the computation of the O
(
ε1

)
-part in two dimensions. Apart

from the elliptic dilogarithm, this result involves further elliptic generalizations of
(multiple) polylogarithms, which can be understood as elliptic generalizations of
Clausen and Glaisher functions. Due to well-known dimension shift relations, these
results provide the O

(
ε0

)
-part of the Feynman integral in four dimensions.
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Together with the results of [24, 42], our results give rise to the hope, that elliptic
(multiple) polylogarithms may serve as an appropriate class of functions to compute
further Feynman integrals beyond multiple polylogarithms. Some of our functions
can be related to the functions of [39], where also a framework of iterated integrals,
already applied in a different physics context [43], is provided.
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