
Lie Theory for Quasi-Shuffle Bialgebras

Loïc Foissy and Frédéric Patras

Abstract Many features of classical Lie theory generalize to the broader context
of algebras over Hopf operads. However, this idea remains largely to be developed
systematically. Quasi-shuffle algebras provide for example an interesting illustration
of these phenomena, but have not been investigated from this point of view. The
notion of quasi-shuffle algebras can be traced back to the beginnings of the theory
of Rota-Baxter algebras, but was developed systematically only recently, starting
essentially with Hoffman’s work, that was motivated by multizeta values (MZVs)
and featured their bialgebra structure. Many partial results on the fine structure of
quasi-shuffle bialgebras have been obtained since then but, besides the fact that each
of these articles features a particular point of view, they fail to develop systematically
a complete theory. This article builds on these various results and develops the analog
theory, for quasi-shuffle algebras, of the theory of descent algebras and their relations
to free Lie algebras for classical enveloping algebras.
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1 Introduction

Enveloping algebras of Lie algebras are known to be a fundamental notion, for an
impressive variety of reasons. Their bialgebra structure allows to make a natural
bridge between Lie algebras and groups. As such they are a key tool in pure algebra,
algebraic and differential geometry, and so on. Their combinatorial structure is inter-
esting on its own and is the object of the theory of free Lie algebras. Applications
thereof include the theory of differential equations, numerics, control theory... From
themodern point of view, featured in Reutenauer’sFree Lie algebras [38], the “right”
point of view on enveloping algebras is provided by the descent algebra: most of their
key properties can indeed be obtained and finely described using computations in
symmetric group algebras relying on the statistics of descents of permutations. More
recently, finer structures have emerged that refine this approach. Let us quote, among
others, the Malvenuto-Reutenauer or free quasi-symmetric functions Hopf algebra
[29] and its bidendriform structure [14].

Many features of classical Lie theory generalize to the broader context of alge-
bras over Hopf operads [24]. However, this idea remains largely to be developed
systematically. Quasi-shuffle algebras provide for example an interesting illustration
of these phenomena, but have not been investigated from this point of view.

The notion of quasi-shuffle algebras was developed systematically only recently,
starting essentially with Hoffman’s work, that was motivated by multizeta values
(MZVs) and featured their bialgebra structure [23]. The reason for the appearance of
quasi-shuffle products inmany application fields (classical and stochastic integration,
summation processes, probability, renormalization...) is explained by the construc-
tion by Ebrahimi-Fard of a forgetful functor from Rota–Baxter algebras of non-zero
weight to quasi-shuffle algebras [11]. Many partial results on the structure of quasi-
shuffle bialgebras have been obtained during the last two decades [17, 28, 30–32],
fine structure theorems have been obtained in [2], but, besides the fact that each of
these articles features a particular point of view, they fail to develop systematically
a complete combinatorial theory.

This article builds on these various results and develops the analog theory, for
quasi-shuffle bialgebras, of the theory of descent algebras and their relations to free
Lie algebras for classical enveloping algebras.

The plan is as follows. Sections2 and 3 recall the fundamental definitions. These
are fairly standard ideas and materials, excepted for the fact that bialgebraic struc-
tures are introduced from the point of view of Hopf operads that will guide later
developments.

The following section shows how the symmetrization process in the theory of
twisted bialgebras (or Hopf species) can be adapted to define a noncommutative
quasi-shuffle bialgebra structure on the operad of quasi-shuffle algebras (Theorem 1).

Section5 deals with the algebraic structure of linear endomorphisms of quasi-
shuffle bialgebras and studies from this point of view the structure of surjections.
Section6 deals with the projection on the primitives of quasi-shuffle bialgebras -the
analog in the present setting of the canonical projection from an enveloping algebra
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to the Lie algebra of primitives. As in classical Lie theory, a structure theorem for
quasi-shuffle algebras follows from the properties of this canonical projection.

Section7 investigates the relations between the shuffle and quasi-shuffle oper-
ads when both are equipped with the Hopf algebra structure inherited from the Hopf
operadic structure of their categories of algebras (as such they are isomorphic respec-
tively to the Malvenuto-Reutenauer Hopf algebra, or Hopf algebra of free quasi-
symmetric functions, and to the Hopf algebra of word quasi-symmetric functions).
We recover in particular from the existence of a Hopf algebra morphism from the
shuffle to the quasi-shuffle operad (Theorem 3) the exponential isomorphism relat-
ing shuffle and quasi-shuffle bialgebras. Section8 studies coalgebra endomorphisms
of quasi-shuffle bialgebras and classifies natural Hopf algebra endomorphisms and
morphisms relating shuffle and quasi-shuffle bialgebras.

Section9 studies coderivations. Quasi-shuffle bialgebras are considered classi-
cally as filtered objects (the product does not respect the tensor graduation), however
the existence of a natural graded Hopf algebra structure can be deduced from the
general properties of their coderivations.

Section10 recalls briefly how the formalism of operads can be adapted to take into
account graduations by using decorated operads. We detail then the case of quasi-
shuffle algebras and conclude by initiating the study of the analog, in this context,
of the classical descent algebra. Section11 shows, using the bidendriform rigidity
theorem, that the decorated quasi-shuffle operad is free as a noncommutative shuffle
algebra.

Section12 shows that the quasi-shuffle analog of the descent algebra, QDesc, is,
up to a canonical isomorphism, a free noncommutative quasi-shuffle algebra over the
integers (Theorem 6). The last section concludes by investigating the quasi-shuffle
analog of the classical sequence of inclusions Desc ⊂ PBT ⊂ Sh of the descent
algebra into the algebra of planar binary trees, resp. the operad of shuffle algebras. In
the quasi-shuffle context, this sequence reads Desc ⊂ ST ⊂ QSh, where ST stands
for the algebra of Schröder trees and QSh for the quasi-shuffle operad.
Terminology Following a suggestion by the referee, we include comments on the
terminology. The behaviour of shuffle products was investigated by Eilenberg and
MacLane in the early 50’s [12]. They introduced the key idea of splitting shuffle prod-
ucts into two “half-shuffle products” and used the algebraic relations they satisfy to
prove the associativity of shuffle products in topology. Soon after, and independently,
Schützenberger axiomatized the shuffle products appearing in combinatorics and Lie
algebra theory [42]. In control theory, shuffles and their relations appear in relation to
products of iterated integrals under the name chronological products. The terminol-
ogy is probably inspirated by the physicists’ time-ordered products. The structure of
the corresponding operad was implicit in Schützenberger’s work as a consequence
of his description of free shuffle algebras, it was introduced independently by Loday
in the early 2000’s [25]. Following a wit by the topologist J.-M. Lemaire, this operad
of shuffle algebras is now often called operad of Zinbiel algebras (up to a few excep-
tions previous names such as “commutative dendriform algebras” do not seem to
be used anymore). The wit is motivated by a Koszul duality phenomenon with the
Bloh-Cuvier notion of Leibniz algebras. The operad encoding the axioms associated
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naturally to Hoffmann’s quasi-shuffle algebras is called instead operad of commuta-
tive tridendriform algebras [28].

As far as the subject of the present article is concerned, quasi-shuffles are usually
viewed as a deformation of shuffles (Hoffmann’s isomorphism states for example that
under relatively mild technical conditions quasi-shuffle bialgebras are isomorphic to
shuffle bialgebras [17, 23]), and from this point of view the (weird and heavy)
terminology commutative tridendriform algebras is not consistent with the one of
Zinbiel algebras.

For that reason and other, historical and conceptual, ones we prefer to use the
simple and coherent terminology promoted in articles such as [16, 17, 31] of “shuffle
algebras” (resp. operad) and “quasi-shuffle algebras” (resp. operad) for algebras
equipped with product operations satisfying the axioms obeyed by the various usual
commutative shuffle and quasi-shuffle products that have appeared in the literature
(resp. the corresponding operads). The reader familiar with the operadic terminology
should therefore have in mind the dictionary:

• Shuffle algebra = Zinbiel algebra
• Quasi-shuffle algebra = commutative tridendriform algebra
• Noncommutative shuffle algebra = dendriform algebra
• Noncommutative quasi-shuffle algebra = tridendriform algebra.

Notations and conventions All the structures in the article (vector spaces, algebras,
tensor products...) are defined over a field k. Algebraic theories and their categories
(Com,As, Sh,QSh . . . ) are denoted in italic, as well as the corresponding free alge-
bras over sets or vector spaces (QSh(X),Com(V ) . . . ). Operads (of which we will
study underlying algebra structures) and abbreviations of algebra names are written
in bold (QSh,NSh,Com,FQSym . . . ).

2 Quasi-Shuffle Algebras

Quasi-shuffle algebras have mostly their origin in the theory of Rota-Baxter algebras
and related objects such as MZVs (this because the summation operator of series is
an example of a Rota–Baxter operator [10]). As we just mentioned, this is sometimes
traced back to Cartier’s construction of free commutative Rota-Baxter algebras [3].
They appeared independently in the study of adjunction phenomena in the theory
of Hopf algebras. The relations defining quasi-shuffle algebras have also be written
down in probability, in relation to semimartingales, but this does not seem to have
given rise to a systematic algebraic approach. Recent developments really started
with Hoffman’s [23].

Another reason for the development of the theory lies in the theory of combi-
natorial Hopf algebras and, more specifically, into the developments originating in
the theory of quasi-symmetric functions, the dual theory of noncommutative sym-
metric functions and other Hopf algebras such as the one of word quasi-symmetric
functions. This line of thought is illustrated in [17, 30–32].
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Still another approach originates in the work of Chapoton on the combinatorial
and operadic properties of permutohedra and other polytopes (see e.g. [6, 7] and
the introductions of [2, 32]). These phenomena lead to the axiomatic definition
of noncommutative quasi-shuffle algebras (also known as dendriform trialgebras)
in [28].

We follow here the Rota–Baxter approach to motivate the introduction of the
axioms of quasi-shuffle algebras. This approach is the one underlying at the moment
most of the applications of the theory and the motivations for its development. Rota–
Baxter algebras encode for example classical integration, summation operations (as
in the theory ofMZVs), but also renormalization phenomena in quantum field theory,
statistical physics and dynamical systems (see the survey article [10]). As explained
below, any commutative Rota–Baxter algebra of weight non zero gives automatically
rise to a quasi-shuffle algebra.

Definition 1 A Rota–Baxter (RB) algebra of weight θ is an associative algebra A
equipped with a linear endomorphism R such that

∀x, y ∈ A, R(x)R(y) = R(R(x)y + x R(y) + θxy).

It is a commutative Rota–Baxter algebra if it is commutative as an algebra.

Setting R′ := R/θ when θ �= 0, one gets that the pair (A, R′) is a Rota–Baxter
algebra of weight 1. This implies that, in practice, there are only two interesting
cases to be studied abstractly: the weight 0 and weight 1 (or equivalently any other
non zero weight). The others can be deduced easily from the weight 1 case. Similar
observations apply for one-parameter variants of the notion of quasi-shuffle algebras.

A classical example of a Rota–Baxter operator of weight 1 is the summation
operator acting on sequences ( f (n))n∈N of elements of an associative algebra A

R( f )(n) :=
n−1∑

i=0

f (i).

This general property of summation operators applies in particular to MZVs. Recall
that the latter are defined for k positive integers n1, . . . , nk ∈ N

∗, n1 > 1, by

ζ(n1, . . . , nk) :=
∑

m1>···>mk>0

1

mn1
1 · · ·mnk

k

.

The Rota–Baxter property of summation operators translates then into the identity

ζ(p)ζ(q) = ζ(p, q) + ζ(q, p) + ζ(p + q).

From now on in this article, RB algebra will stand for RB algebra of weight 1.
When otherRBalgebraswill be considered, theirweightwill bementioned explicitly.
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An important property of RB algebras, whose proof is left to the reader, is the
existence of an associative product, the RB double product �, defined by:

x � y := R(x)y + x R(y) + xy (1)

so that: R(x)R(y) = R(x � y). If one sets, in a RB algebra, x ≺ y := x R(y),
x 	 y := R(x)y, one gets immediately relations such as

(x · y) ≺ z = xyR(z) = x · (y ≺ z),

(x ≺ y) ≺ z = x R(y)R(z) = x ≺ (y � z),

and so on. In the commutative case, x ≺ y = y 	 x , and all relations between the
products ≺,	, · and � :=≺ + 	 +· follow from these two. In the noncommutative
case, the relations duplicate and one has furthermore (x 	 y) ≺ z = R(x)yR(z) =
x 	 (y ≺ z). These observations give rise to the axioms of quasi-shuffle algebras
and noncommutative quasi-shuffle algebras.

Fromnowon, “commutative algebra”without other precisionmeans commutative
and associative algebra; “product” on a vector space Ameans a bilinear product, that
is a linear map from A ⊗ A to A.

Definition 2 A quasi-shuffle (QSh) algebra A is a nonunital commutative algebra
(with product written •) equipped with another product ≺ such that

(x ≺ y) ≺ z = x ≺ (y � z) (2)

(x • y) ≺ z = x • (y ≺ z). (3)

where x � y := x ≺ y + y ≺ x + x • y. We also set for further use x 	 y := y ≺ x .
As theRBdouble product in a commutativeRBalgebra, the product � is automatically
associative and commutative and defines another commutative algebra structure on
A.

Recall, for further use, that shuffle algebras correspond to weight 0 commutative
RB algebras, that is quasi-shuffle algebras with a null product • = 0. Equivalently:

Definition 3 A shuffle (Sh) algebra is a vector space equipped with a product ≺
satisfying (2) with x � y := x ≺ y + y ≺ x .

It is sometimes convenient to equip quasi-shuffle algebras with a unit. The phe-
nomenon is exactly similar to the case of shuffle algebras [42]: given a quasi-shuffle
algebra, one sets B := k ⊕ A, and the products ≺, • have a partial extension to B
defined by, for x ∈ A:

1 • x = x • 1 := 0, 1 ≺ x := 0, x ≺ 1 := x .

The products 1 ≺ 1 and 1 • 1 cannot be defined consistently, but one sets 1 � 1 := 1,
making B a unital commutative algebra for �.
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The categories of quasi-shuffle and of unital quasi-shuffle algebras are clearly
equivalent (under the operation of adding or removing a copy of the ground field).

Definition 4 Anoncommutative quasi-shuffle algebra (NQSh algebra) is a nonunital
associative algebra (with product written •) equipped with two other products ≺,	
such that, for all x, y, z ∈ A:

(x ≺ y) ≺ z = x ≺ (y � z) (4)

(x 	 y) ≺ z = x 	 (y ≺ z) (5)

(x � y) 	 z = x 	 (y 	 z) (6)

(x ≺ y) • z = x • (y 	 z) (7)

(x 	 y) • z = x 	 (y • z) (8)

(x • y) ≺ z = x • (y ≺ z). (9)

where x � y := x ≺ y + x 	 y + x • y.

As the RB double product, the product � is automatically associative and equips A
with another associative algebra structure. Indeed, the associativity relation

(x • y) • z = x • (y • z) (10)

and (4)+ . . . +(9) imply the associativity of �:

(x � y) � z = x � (y � z). (11)

If A is furthermore a quasi-shuffle algebra, then the product � is commutative.
One can show that these properties are equivalent to the associativity of the double

product � in a Rota-Baxter algebra (this is because the free NQSh algebras embed
into the corresponding free Rota–Baxter algebras).

Noncommutative shuffle algebras correspond to weight 0 RB algebras, that is
NQSh algebras with a null product • = 0. Equivalently:

Definition 5 A noncommutative shuffle (NSh) algebra is a vector space equipped
with two products ≺,	 satisfying (4, 5, 6) with x � y := x ≺ y + y ≺ x .

The most classical example of such a structure is provided by the topologists’
shuffle product and its splitting into two “half-shuffles”, an idea going back to [12].

As in the commutative case, it is sometimes convenient to equip NQSh algebras
with a unit. Given a NQSh algebra, one sets B := k ⊕ A, and the products ≺, 	, •
have a partial extension to B defined by, for x ∈ A:

1 • x = x • 1 := 0, 1 ≺ x := 0, x ≺ 1 := x, 1 	 x := x, x 	 1 := 0.
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The products 1 ≺ 1, 1 	 1 and 1 • 1 cannot be defined consistently, but one sets
1 ∗ 1 := 1, making B a unital commutative algebra for ∗.

The categories of NQSh and unital NQSh algebras are clearly equivalent.
The following Lemma encodes the previously described relations between RB

algebras and quasi-shuffle algebras:

Lemma 1 The identities x ≺ y := x R(y), x 	 y := R(x)y, x • y := xy induce a
forgetful functor from RB algebras to NQSh algebras, resp. from commutative RB
algebras to QSh algebras.

Remark 1 Let A be a NQSh algebra.

1. If A is a commutative algebra (for the product •) and if for x, y ∈ A: x ≺ y =
y 	 x, we say that A is commutative as a NQSh algebra. Then, (A, •,≺) is a
quasi-shuffle algebra.

2. We put �=≺ +•. Then (4)+(7)+(9)+(10), (5)+(9) and (6) give:

(x � y) � z = x � (y � z + y 	 z), (12)

(x 	 y) � y = x 	 (y � z), (13)

(x � y + x 	 y) 	 z = x 	 (y 	 z). (14)

These are the axioms that define a noncommutative shuffle algebra structure
(A,�,	) on A. Similarly, if 
=	 +•, then (A,≺,
) is a noncommutative
shuffle algebra.

Example 1 (Hoffman, [23]) Let V be an associative, non unitary algebra. The prod-
uct of v,w ∈ V is denoted by v.w. The augmentation ideal T+(V ) = ⊕

n∈N∗
V⊗n of

the tensor algebra T (V ) = ⊕
n∈N∗

Tn(V ) = ⊕
n∈N∗

V⊗n (resp. T (V )) is given a unique

(resp. unital) NQSh algebra structure by induction on the length of tensors such that
for all a, b ∈ V , for all v,w ∈ T (V ):

av ≺ bw = a(v − bw), av 	 bw = b(av − w), av • bw = (a.b)(v − w),

(15)

where − =≺ + 	 +• is called the quasi-shuffle product on T (V ) (by definition:
∀v ∈ T (V ), 1− v = v = v − 1).

Definition 6 The NQSh algebra (T+(V ),≺,	, •) is called the tensor quasi-shuffle
algebra associated to V . It is quasi-shuffle algebra if, and only if, (V, .) is commu-
tative (and then is called simply the quasi-shuffle algebra associated to V ).

Here are examples of products in T+(V ). Let a, b, c ∈ V .

a ≺ b = ab, a 	 b = ba, a • b = a.b,

a ≺ bc = abc, a 	 bc = bac + bca + b(a.c), a • bc = (a.b)c,

ab ≺ c = abc + acb + a(b.c), ab 	 c = cab, ab • c = (a.c)b.
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In particular, the restriction of • to V is the product of V . If the product of V is zero,
we obtain for − the usual shuffle product .

A useful observation, to which wewill refer as “Schützenberger’s trick” (see [42])
is that, in T+(V ), for v1, . . . , vn ∈ V ,

v1 . . . vn = v1 ≺ (v2 ≺ . . . (vn−1 ≺ vn) . . . )). (16)

3 Quasi-Shuffle Bialgebras

We recall that graded connected and more generally conilpotent bialgebras are auto-
matically equipped with an antipode [5], so that the two notions of bialgebras and
Hopf algebras identify when these conditions are satisfied—this will be most often
the case in the present article.

Quasi-shuffle bialgebras are particular deformations of shuffle bialgebras associ-
ated to the exponential and logarithm maps. They were first introduced by Hoffman
in [23] and studied further in [2, 17, 26]. The existence of a natural isomorphism
between the two categories of bialgebras is known as Hoffman’s isomorphism [23]
and has been studied in depth in [17].

We introduce here a theoretical approach to their definition, namely through the
categorical notion of Hopf operad, see [24]. The underlying ideas are elementary
and deserve probably to be better known. We avoid using the categorical or operadic
langage and present them simply (abstract definitions and further references on the
subject are given in [24]).

Let us consider categories of binary algebras, that is algebras defined by one or
several binary products satisfying homogeneous multilinear relations (i.e. algebras
over binary operads). For example, commutative algebras are algebras equipped with
a binary product · satisfying the relations x · (y · z) = (x · y) · z and x · y = y · x ,
and so on. Multilinear means that letters should not be repeated in the defining
relations: for example, n-nilpotent algebras defined by a binary product with xn =
0, n > 1 are excluded.

The category of algebras will be said non-symmetric if in the defining relations
the letters x, y, z... always appear in the same order. For example, the category Com
of commutative algebras is not non-symmetric because of the relation x · y = y · x ,
whereas As, the one of associative algebras (x · (y · z) = (x · y) · z) is.

Notice that the categories Sh, QSh of shuffle and quasi-shuffle algebras are not
non-symmetric (respectively because of the relation x � y = x ≺ y + y ≺ x and
because of the commutativity of the • product) and are equipped with a forgetful
functor to Com. The categories NSh, NQSh of noncommutative shuffle and quasi-
shuffle algebras are non-symmetric (in their defining relations the letters x, y, z are
not permuted) and are equipped with a forgetful functor to As.
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Definition 7 Let C be a category of binary algebras. The category is said Hopfian
if tensor products of algebras in C are naturally equipped with the structure of an
algebra in C (i.e. the tensor product can be defined internally to C).

Classical examples of Hopfian categories are Com and As.

Definition 8 A bialgebra in a Hopfian category of algebras C (or C-bialgebra) is an
algebra A in C equipped with a coassociative morphism to A ⊗ A in C.

Equivalently, it is a coalgebra in the tensor category of C-algebras.
Further requirements can be made in the definition of bialgebras, for example

when algebras have units. When C = Com or As, we recover the usual definition of
bialgebras.

Proposition 1 A category of binary algebras equipped with a forgetful functor to
Com is Hopfian. In particular, Pois, Sh,QSh are Hopfian.

Here Po is stands for the category of Poisson algebras, studied in [24] from this
point of view.

Indeed, let C be a category of binary algebras equipped with a forgetful functor
to Com. We write μ1, . . . ,μn the various binary products on A, B ∈ C and · the
commutative product (which may be one of the μi , or be induced by these products
as the � product is induced by the ≺,	 and • products in the case of shuffle and
quasi-shuffle algebras). Notice that a given category may be equipped with several
distinct forgetful functors to Com: the quasi-shuffle algebras carry, for example, two
commutative products (• and �).

The Proposition follows by defining properly theC-algebra structure on the tensor
products A ⊗ B:

μi (a ⊗ b, a′ ⊗ b′) := μi (a, a′) ⊗ b · b′.

The new productsμi on A ⊗ B clearly satisfy the same relations as the corresponding
products on A, which concludes the proof. Notice that one could also define a “right-
sided” structure by μi (a ⊗ b, a′ ⊗ b′) := a · a′ ⊗ μi (b, b′).

Abialgebra (without a unit) in the category of quasi-shuffle algebras is a bialgebra
in the Hopfian categoryQSh, where the Hopfian structure is induced by the � product.
Concretely, it is a quasi-shuffle algebra A equipped with a coassociative map Δ in
QSh to A ⊗ A, where the latter is equipped with a quasi-shuffle algebra structure by:

(a ⊗ b) ≺ (a′ ⊗ b′) = (a ≺ a′) ⊗ (b � b′), (17)

(a ⊗ b) • (a′ ⊗ b′) = (a • a′) ⊗ (b � b′). (18)

The same process defines the notion of shuffle bialgebra (without a unit), e.g. by
taking a null • product in the definition.

Using Sweedler’s shortcut notation Δ(a) =: a(1) ⊗ a(2), one has:

Δ(a ≺ b) = a(1) ≺ b(1) ⊗ a(2) � b(2), (19)
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Δ(a • b) = a(1) • b(1) ⊗ a(2) � b(2). (20)

In the unital case, B = k ⊕ A, one requires furthermore that Δ be a counital
coproduct (with Δ(1) = 1 ⊗ 1) and, since 1 ≺ 1 and 1 • 1 are not defined, sets:

(1 ⊗ b) ≺ (1 ⊗ b′) = 1 ⊗ (b ≺ b′),

(1 ⊗ b) • (1 ⊗ b′) = 1 ⊗ (b • b′).

Since unital quasi-shuffle and shuffle bialgebras are more important for applications,
we call them simply quasi-shuffle bialgebras and shuffle bialgebras. In this situation
it is convenient to introduce the reduced coproduct on A,

Δ̃(a) := Δ(a) − a ⊗ 1 − 1 ⊗ a.

Concretely, we get:

Definition 9 The unital QSh algebra k ⊕ A equipped with a counital coassociative
coproduct Δ is a quasi-shuffle bialgebra if and only if for all x, y ∈ A (we introduce
for the reduced coproduct the Sweedler-type notation Δ̃(x) = x ′ ⊗ x ′′):

Δ̃(x ≺ y) = x ′ ≺ y′ ⊗ x ′′ � y′′ + x ′ ⊗ x ′′ � y + x ≺ y′ ⊗ y′′ + x ′ ≺ y ⊗ x ′′ + x ⊗ y,
(21)

Δ̃(x • y) = x ′ • y′ ⊗ x ′′ � y′′ + x ′ • y ⊗ x ′′ + x • y′ ⊗ y′′. (22)

The same constructions and arguments hold in the non-symmetric context. We do
not repeat them and only state the conclusions.

Proposition 2 A non-symmetric category of binary algebras equipped with a for-
getful functor to As is Hopfian. In particular, NSh and NQSh are Hopfian.

A bialgebra (without a unit) in the category of noncommutative quasi-shuffle
(NQSh) algebras is a bialgebra in the Hopfian category NQSh, where the Hopfian
structure is induced by the � product. Concretely, it is a NQSh algebra A equipped
with a coassociative map Δ in NQSh to A ⊗ A, where the latter is equipped with a
NQSh algebra structure by:

(a ⊗ b) ≺ (a′ ⊗ b′) = (a ≺ a′) ⊗ (b � b′), (23)

(a ⊗ b) 	 (a′ ⊗ b′) = (a 	 a′) ⊗ (b � b′), (24)

(a ⊗ b) • (a′ ⊗ b′) = (a • a′) ⊗ (b � b′). (25)

The same process defines the notion of NSh (or dendriform) bialgebra (without a
unit), e.g. by taking a null • product in the definition.
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Recall that setting �:=≺ +• defines a forgetful functor from NQSh to NSh alge-
bras. The same definition yields a forgetful functor from NQSh to NSh bialgebras.

In the unital case, one requires furthermore that Δ be a counital coproduct (with
Δ(1) = 1 ⊗ 1) and sets

(1 ⊗ b) ≺ (1 ⊗ b′) = 1 ⊗ (b ≺ b′),

and similarly for 	 and •. Since this case is more important for applications, we call
simply NQSh and NSh bialgebras the ones with a unit.

Definition 10 The unital NQSh algebra k ⊕ A equipped with counital coassociative
coproduct Δ is a NQSh bialgebra if and only if for all x, y ∈ A:

Δ̃(x ≺ y) = x ′ ≺ y′ ⊗ x ′′ � y′′ + x ′ ⊗ x ′′ � y + x ≺ y′ ⊗ y′′ + x ′ ≺ y ⊗ x ′′ + x ⊗ y,
(26)

Δ̃(x 	 y) = x ′ 	 y′ ⊗ x ′′ � y′′ + y′ ⊗ x � y′′ + x 	 y′ ⊗ y′′ + x ′ 	 y ⊗ x ′′ + y ⊗ x,
(27)

Δ̃(x • y) = x ′ • y′ ⊗ x ′′ � y′′ + x ′ • y ⊗ x ′′ + x • y′ ⊗ y′′. (28)

Recall, for later use, that a NQSh bialgebra k ⊕ A is connected if the reduced
coproduct is locally conilpotent:

A =
⋃

n≥0

Ker(Δ̃(n)),

where Δ̃(n) is the iterated coproduct of order n (Ker(Δ̃, the set of primitive ele-
ments, is also denoted Prim(A)) and similarly for the other unital bialgebras we
will consider.

The reason for the importance of the unital case comes from Hoffman’s:

Example 2 Let V be an associative, non unitary algebra. With the deconcatenation
coproduct Δ, defined by:

Δ(x1 . . . xn) =
n∑

i=0

x1 . . . xi ⊗ xi+1 . . . xn,

the tensor quasi-shuffle algebra T (V ) is a NQSh bialgebra. When V is commutative,
it is a quasi-shuffle bialgebra.

4 Lie Theory for Quasi-Shuffle Bialgebras

The structural part of Lie theory, as developed for example in Bourbaki’s Groupes
et Algèbres de Lie [1] and Reutenauer’s monograph on free Lie algebras [38], is
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largely concernedwith the structure of enveloping algebras and cocommutative Hopf
algebras. It was shown in [24] that many phenomena that might seem characteristic
of Lie theory do actually generalize to other families of bialgebras -precisely the ones
studied in the previous section, that is the ones associated with Hopfian categories
of algebras equiped with a forgetful functor to Com or As.

Themost natural way to study these questions is by working with twisted algebras
over operads—algebras in the category of S-modules (families of representations
of all the symmetric groups Sn, n ≥ 0) or, equivalently, of functors from finite
sets to vector spaces. However, doing so systematically requires the introduction of
many terms and preliminary definitions (see [24]), and we prefer to follow here a
more direct approach inspired by the theory of combinatorial Hopf algebras. The
structures we are going to introduce are reminiscent of the Malvenuto–Reutenauer
Hopf algebra [29], whose construction can be deduced from the Hopfian structure of
As, see [35–37] and [24, Example 2.3.4]. The same process will allow us to contruct
a combinatorial Hopf algebra structure on the operadQSh of quasi-shuffle algebras.

Recall that an algebraic theory such as the ones we have been studying (associa-
tive, commutative, quasi-shuffle, NQSh... algebras) is entirely characterized by the
behaviour of the corresponding free algebra functor F : an analytic functor described
by a sequence of symmetric group representation Fn (i.e. a S-module) so that, for a
vector space V , F(V ) = ⊕

n
Fn ⊗Sn V

⊗n.Composition of operations for F-algebras

are encoded by natural transformations from F ◦ F to F . By a standard process, this
defines a monad, and F-algebras are the algebras over this monad. The direct sum
F = ⊕

n
Fn equipped with the previous (multilinear) composition law is called an

operad, and F-algebras are algebras over this operad. Conversely, the Fn are most
easily described as the multilinear part of the free F-algebras F(Xn) over the vector
space spanned by a finite set with n elements, Xn := {x1, . . . , xn}. Here, multilinear
means that Fn is the intersection of the n eigenspaces associated to the eigenvalue λ
of the n operations induced on F(Xn) by the map that scales xi by λ (and acts as the
identity on the x j , j �= i).

Let X be a finite set, and let us anticipate on the next Lemma and write
QSh(X) := T+(k[X ]+) for the quasi-shuffle algebra associated to k[X ]+, the (non
unital, commutative) algebra of polynomials without constant term over X . For I
a multiset over X , we write xI the associated monomial (e.g. if I = {x1, x3, x3},
xI = x1x23 ). The tensors xI1 . . . xIn = xI1 ⊗ · · · ⊗ xIn form a basis of QSh(X).

There are several ways to show that QSh(X) is the free quasi-shuffle algebra over
X : the property can be deduced from the classical constructions of commutativeRota-
Baxter algebras by Cartier [3] or Rota [39, 40] (indeed the tensor product xI1 . . . xIn
corresponds to the Rota–Baxter monomial xI1R(xI2 R(xI3 . . . R(xIn ) . . . ))) in the free
RBalgebra over X ). It can be deduced from the construction of the free shuffle algebra
over X by standard filtration/graduation arguments. It can also be deduced from a
Schur functor argument [26]. The simplest proof is but the one due to Schützenberger
for shuffle algebras that applies almost without change to quasi-shuffle algebras [42,
p. 1–19].
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Lemma 2 The quasi-shuffle algebra QSh(X) is the (unique up to isomorphism)
free quasi-shuffle algebra over X.

Proof Indeed, let A be an arbitrary quasi-shuffle algebra generated by X . Then, one
checks easily by a recursion using the defining relations of quasi-shuffle algebras
that every a ∈ A is a finite sum of “normed terms”, that is terms of the form

xI1 ≺ (xI2 ≺ (xI3 · · · ≺ xIn ) . . . ).

But, if A = QSh(X), by the Schützenberger’s trick, xI1 ≺ (xI2 ≺ (xI3 · · · ≺ xIn ) . . . )

= xI1 . . . xIn ; the result follows from the fact that these terms form a basis of
QSh(X). �

Corollary 1 The component QShn of the operad QSh identifies therefore with the
linear span of tensors xI1 . . . xIk , where I1 � · · · � Ik = [n].

Let us introduce useful notations. We write xI := xI1 . . . xIk , where I denotes an
arbitrary ordered sequence of disjoint subsets ofN∗, I1, . . . , Ik , and set |I| := |I1| +
· · · + |Ik |. Recall that the standardization map associated to a subset I = {i1, . . . , in}
of N∗, where i1 < · · · < in is the map st from I to [n] defined by: st (ik) := k. The
standardization of I is then the ordered sequence st (I) := st (I1, . . . , Ik), where st
is the standardization map associated to the subset I1 � · · · � Ik of the integers. We
also set st (xI) := xst (I). For example, if I = {2, 6}, {5, 9}, st (I) = {1, 3}, {2, 4}
and st (xI) = x1x3 ⊗ x2x4. The shift by k of a subset I = {i1, . . . , in} (or a sequence
of subsets, and so on...) of N∗, written I + k, is defined by I + k := {i1 + k, . . . ,
in + k}.
Theorem 1 The operad QSh of quasi-shuffle algebras inherits from the Hopfian
structure of its category of algebras a NQSh bialgebra structure whose product
operations are defined by:

xI ≺ xJ := xI ≺ f xJ+n,

xI 	 xJ := xI 	 f xJ+n,

xI • xJ := xI • f xJ+n,

where I and J run over ordered partitions of [n] and [m]; the coproduct is defined
by:

Δ(x) := (st ⊗ st) ◦ Δ f (x),

where, on the right-hand sides, ≺ f ,	 f , • f ,Δ f stand for the corresponding opera-
tions on QSh(N∗) (where, as usual, x ≺ f y =: y 	 f x).

The link with the Hopfian structure of the category of quasi-shuffle algebras refers
to [24, Theorem 2.3.3]: any connected Hopf operad is a twisted Hopf algebra over
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this operad. The Theorem 1 can be thought of as a reformulation of this general result
in terms of NQSh bialgebras.

The fact that QSh is a NQSh algebra follows immediately from the fact that
QSh(N∗) is aNQShalgebra for≺ f ,	 f , • f , togetherwith the fact that the category of
NQSh algebras is non-symmetric. The coalgebraic properties and their compatibility
with the NQSh algebra structure are less obvious and follow from the following
Lemma (itself a direct consequence of the definitions):

Lemma 3 Let I = I1, . . . , Ik and J = J1, . . . , Jl be two ordered sequence of dis-
joint subsets of N∗ that for any n ∈ Ip, p ≤ k and any m ∈ Jq , q ≤ l we have
n < m. Then:

st (xI ≺ f xJ ) = xst (I) ≺ f xst (J )+|I| = xst (I) ≺ xst (J ),

st (xI 	 f xJ ) = xst (I) 	 f xst (J )+|I| = xst (I) 	 xst (J ),

st (xI • f xJ ) = xst (I) • f xst (J )+|I| = xst (I) • xst (J ).

The Hopf algebra QSh is naturally isomorphic with WQSym, the Chapoton-
Hivert Hopf algebra of word quasi-symmetric functions, that has been studied in
[17, 31], also in relation to quasi-shuffle algebras, but from a different point of view.

Let us conclude this section by some insights on the “Lie theoretic” structure
underlying the previous constructions on QSh (where “Lie theoretic” refers con-
cretely to the behaviour of the functor of primitive elements in a class of bialgebras
associated to an Hopfian category with a forgetful functor to As or Com). Recall
that there is a forgetful functor from quasi-shuffle algebras to commutative algebras
defined by keeping only the • product. Dually, the operad Com embeds into the
operad QSh: Comn is the vector space of dimension 1 generated by the monomial
x1 . . . xn , and through the embedding intoQSh thismonomial is sent to themonomial
(a tensor of length 1) x•n

1 := x1 • · · · • x1 in QSh viewed as a NQSh algebra. Let us
write slightly abusively Com for the image of Com in QSh, we have, by definition
of the coproduct on QSh:

Theorem 2 The operad Com embeds into the primitive part of the operad QSh
viewed as a NQSh bialgebra. Moreover, the primitive part of QSh is stable under
the • product.

Proof Only the last sentence needs to be proved. It follows from the relations:

1 • x = x • 1 = 0

for x ∈ QShn, n ≥ 1. �

From the point of view of S-modules, the Theorem should be understood in the
light of [24, Theorem 2.4.2]: for P a connected Hopf operad, the space of primitive
elements of the twisted Hopf P-algebra P is a sub-operad of P.
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As usual in categories of algebras a forgetful functor such as the one from QSh
to Com induced by • has a left adjoint, see e.g. [19] for the general case and [26]
for quasi-shuffle algebras. This left adjoint, written U (by analogy with the case of
classical enveloping algebras: U (A) ∈ QSh for A ∈ Com equipped with a product
written ·) is, up to a canonical isomorphism, the quotient of the free quasi-shuffle
over the vector space A by the relations a • b = a · b. When the initial category is
Hopfian, such a forgetful functor to a category of algebras over a naturally defined
sub-operad arises from the properties of the tensor product of algebras in the initial
category, see [24, Theorem 2.4.2 and Sect. 3.1.2]—this is exactly what happens with
the pair (As,Lie) in the classical situationwhere the left adjoint is the usual enveloping
algebra functor, and here for the pair (QSh,Com).

Lemma 4 (Quasi-shuffle PBW theorem) The left adjoint U of the forgetful functor
from QSh to Com, or “quasi-shuffle enveloping algebra” functor from Com to QSh,
is (up to isomorphism) Hoffman’s quasi-shuffle algebra functor T+.

Proof An elementary proof follows once again from (a variant of) Schützenberger’s
construction of the free shuffle algebra. Notice first that T+(A) is generated by A
as a quasi-shuffle algebra, and that, in it, the relations a • b = a · b hold. Moreover,
choosing a basis (ai )i∈I of A, the tensors ai1 . . . ain = ai1 ≺ (ai2 ≺ · · · ≺ ain ) . . . )

form a basis of T+(A). On the other hand, by the definition of the left adjoint U (A)

as a quotient of Sh(A) by the relations a • b = a · b, using the defining relations of
quasi-shuffle algebras, any term inU (A) can be written recursively as a sum of terms
in “normed form” ai1 ≺ (ai2 ≺ . . . (ain−1 ≺ ain ) . . . ). The Lemma follows. �

Notice that the existence of a basis of T+(A) of tensors ai1 . . . ain = ai1 ≺ (ai2 ≺
· · · ≺ ain ) . . . ) is the analog, for quasi-shuffle enveloping algebras, of the Poincaré-
Birkhoff-Witt (PBW) basis for usual enveloping algebras.

5 Endomorphism Algebras

We follow once again the analogy with the familiar notion of usual enveloping
algebras and connected cocommutative Hopf algebras and study, in this section the
analogs of the convolutionproduct of their linear endomorphisms. Surjections happen
to play, for quasi-shuffle algebras T (A) associated to commutative algebras A, the
role played by bijections in classical Lie theory, see [29] and [17, 31].

Proposition 3 Let A be a coassociative (non necessarily counitary) coalgebra with
coproduct Δ̃ : A −→ A ⊗ A, and B be a NQSh algebra. The space of linear mor-
phisms Lin(A, B) is given a NQSh algebra structure in the following way: for all
f, g ∈ Lin(A, B),

f ≺ g =≺ ◦( f ⊗ g) ◦ Δ̃, f 	 g =	 ◦( f ⊗ g) ◦ Δ̃, f • g = • ◦ ( f ⊗ g) ◦ Δ̃.

(29)
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Proof The construction follows easily from the fact that NQSh is non-symmetric
and from the coassociativity of the coproduct. As an example, let us prove (5) using
Sweedler’s notation for Δ̃. Let f, g, h ∈ Lin(A, B). For all x ∈ A,

( f 	 g) ≺ h(x) = ( f 	 g)(x ′) ≺ h(x ′′)
= ( f ((x ′)′) 	 g((x ′)′′)) ≺ h(x ′′)
= f (x ′) 	 (g((x ′′)′) ≺ h((x ′′)′′)
= f (x ′) 	 (g ≺ h)(x ′′)
= f 	 (g ≺ h)(x).

So ( f 	 g) ≺ h = f 	 (g ≺ h). �

Remark 2 The induced product � on Lin(A, B) is the usual convolution product.

Corollary 2 The set of linear endomorphisms of A, where k ⊕ A is a NQSh bialge-
bra, is naturally equiped with the structure of a NQSh algebra.

Let us turn now to the quasi-shuffle analog of the Malvenuto-Reutenauer non-
commutative shuffle algebra of permutations. The appearance of a noncommutative
shuffle algebra of permutations in Lie theory in [29] can be understood operadically
by noticing that the linear span of the n-th symmetric groupSn isAsn , the n-th com-
ponent of the operad of associative algebras. The same reason explainwhy surjections
appear naturally in the study of quasi-shuffle algebras: ordered partitions of initial
subsets of the integers (say {2, 4}, {5}, {1, 3}) parametrize a natural basis of QShn ,
and such ordered partitions are canonically in bijection with surjections (here, the
surjection s from [5] to [3] defined by s(2) = s(4) = 1, s(5) = 2, s(1) = s(3) = 3).
Let us show how the NQSh algebra structure ofQSh can be recovered from the point
of view of the structure of NQSh algebras of linear endomorphisms. In the process,
we also give explicit combinatorial formulas for the corresponding structure maps
≺,	, •. We also point out that composition of endomorphisms leads to a new prod-
uct on QSh (such a product is usually called “internal product” in the theory of
combinatorial Hopf algebras, we follow the use, see [18, 31]).

Recall that a word n1 . . . nk over the integers is called packed if the underlying
set S = {n1, . . . , nk} is an initial subset of N∗, that is, S = [m] for a certain m.
For later use, recall also that any word n1 . . . nk over the integers can be packed:
pack(n1 . . . nk) = m1 . . .mk is the unique packed word preserving the natural order
of letters (mi < m j ⇔ ni < n j , mi = m j ⇔ ni = n j , e.g. pack(6353) = 3121).

Let n ≥ 0. We denote by Sur jn the set of maps σ : [n] := {1, . . . , n} −→ N
∗

such that σ({1, . . . , n}) = {1, . . . , k} for a certain k. The corresponding elements in
QShn are the ordered partitions σ−1({1}), . . . ,σ−1({k}) of [n]. The integer k is the
maximum of σ and denoted by max(σ). The element σ ∈ Sur jn will be represented
by the packed word (σ(1) . . . σ(n)). We identify in this way elements of Sur jn with
packed words of length n.

We assume that V is an associative, commutative algebra andworkwith the quasi-
shuffle algebra T+(V ). Let σ ∈ Sur jn , n ≥ 1. We define Fσ ∈ Endk(T (V )) in the
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following way: for all x1, . . . , xl ∈ V ,

Fσ(x1 . . . xl) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎝
∏

σ(i)=1

xi

⎞

⎠ . . .

⎛

⎝
∏

σ(i)=max(σ)

xi

⎞

⎠ if l = n,

0 otherwise.

Note that in each parenthesis, the product is the product of V . For example, if x, y,
z ∈ V ,

F(123)(xyz) = xyz F(132)(xyz) = xzy F(213)(xyz) = yxz
F(231)(xyz) = zxy F(312)(xyz) = yzx F(321)(xyz) = zyx
F(122)(xyz) = x(y.z) F(212)(xyz) = y(x .z) F(221)(xyz) = z(x .y)
F(112)(xyz) = (x .y)z F(121)(xyz) = (x .z)y F(211)(xyz) = (y.z)x

F(111)(xyz) = x .y.z.

Wealso define F1, where 1 is the emptyword, by F1(x1 . . . xn) = ε(x1 . . . xn)1,where
ε is the augmentation map from T (V ) to k (with kernel T+(V )).

Notations. Let k, l ≥ 0.

1. a. We denote by QShk,l the set of (k, l) quasi-shuffles, that is to say elements
σ ∈ Sur jk+l such that σ(1) < . . . < σ(k) and σ(k + 1) < . . . < σ(k + l).

b. QSh≺
k,l is the set of (k, l) quasi-shuffles σ such that σ−1({1}) = {1}.

c. QSh	
k,l is the set of (k, l) quasi-shuffles σ such that σ−1({1}) = {k + 1}.

d. QSh•
k,l is the set of (k, l) quasi-shuffles σ such that σ−1({1}) = {1, k + 1}.

Note that QShk,l = QSh≺
k,l � QSh	

k,l � QSh•
k,l .

2. If σ ∈ Sur jk and τ ∈ Sur jl , σ ⊗ τ is the element of Sur jk+l represented by the
packed word στ [max(σ)], where [k] denotes the translation by k (312[5] = 867).

The subspace of EndK (T (V )) generated by the maps Fσ is stable under compo-
sition and the products:

Proposition 4 Let σ ∈ Sur jk and τ ∈ Sur jl .

1. If max(τ ) = k, then Fσ ◦ Fτ = Fσ◦τ . Otherwise, this composition is equal to 0.
2.

Fσ ≺ Fτ =
∑

ζ∈QSh≺
k,l

Fζ◦(σ⊗τ ), Fσ 	 Fτ =
∑

ζ∈QSh	
k,l

Fζ◦(σ⊗τ ),

Fσ • Fτ =
∑

ζ∈QSh•
k,l

Fζ◦(σ⊗τ ), Fσ − Fτ =
∑

ζ∈QShk,l

Fζ◦(σ⊗τ ).

The same formulas describe the structure of the operad QSh as a NQSh algebra
(i.e., inQSh, using the identification between surjections and ordered partitions,
σ ≺ τ = ∑

ζ∈QSh≺
k,l

ζ ◦ (σ ⊗ τ ), and so on).
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Proof The proof of 1 and 2 follows by direct computations. The identification with
the corresponding formulas forQSh follows from the identities, for all x1, . . . , xk+l ∈
V , in the quasi-shuffle algebra T+(V ):

x1 . . . xk ≺ xk+1 . . . xk+l =
∑

ζ∈QSh≺
k,l

Fζ(x1 . . . xk+l),

x1 . . . xk 	 xk+1 . . . xk+l =
∑

ζ∈QSh	
k,l

Fζ(x1 . . . xk+l),

x1 . . . xk • xk+1 . . . xk+l =
∑

ζ∈QSh•
k,l

Fζ(x1 . . . xk+l),

x1 . . . xk − xk+1 . . . xk+l =
∑

ζ∈QShk,l

Fζ(x1 . . . xk+l).

Moreover:
x1 . . . xk xk+1 . . . xk+l =

∑

ζ∈Shk,l
Fζ(x1 . . . xk+l),

where Shk,l is the set of (k, l)-shuffles, that is to say Sk+l ∩ QShk,l . �

Remark 3 1. F(1...n) is the projection on the space of words of length n. Conse-
quently:

I d =
∞∑

n=0

F(1...n).

2. In general, this action of packed words is not faithful. For example, if A is a trivial
algebra, then for any σ ∈ Sur jk \ Sk , Fσ = 0.

3. Here is an example where the action is faithful. Let A = K [Xi | i ≥ 1]+. Let us
assume that

∑
aσFσ = 0. Acting on the word X1 . . . Xk , we obtain:

∑

σ∈Sur jk
aσ

⎛

⎝
∏

σ(i)=1

Xi

⎞

⎠ . . .

⎛

⎝
∏

σ(i)=max(σ)

Xi

⎞

⎠ = 0.

As the Xi are algebraically independent, the words appearing in this sum are
linearly independent, so for all σ, aσ = 0.

6 Canonical Projections on Primitives

This section studies the analog, for quasi-shuffle bialgebras, of the canonical pro-
jection from a connected cocommutative Hopf algebra to its primitive part—the
logarithm of the identity (see e.g. [33, 34, 38]). See also [2] where this particular
topic and related ones are addressed in a more general setting.
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Recall that a coalgebra C with a coassociative coproduct Δ̃ is connected if and
only if the coproduct il locally conilpotent (for c ∈ C there exists n ∈ N∗ such that
Δ̃(n)(c) = 0).

Proposition 5 Let A be a coassociative, non counitary, coalgebra with a locally
conilpotent coproduct

Δ̃ : A −→ A ⊗ A, A =
⋃

n≥0

Ker(Δ̃(n)),

and let B be a NQSh algebra. Then, for any f ∈ Lin(A, B), there exists a unique
map π f ∈ Lin(A, B), such that

f = π f + π f ≺ f.

Proof For all n ≥ 1, we put Fn = Ker(Δ̃(n)): this defines the coradical filtration of
A. In particular, F1 =: Prim(A). Moreover, if n ≥ 1:

Δ̃(Fn) ⊆ Fn−1 ⊗ Fn−1.

Let us choose for all n a subspace En of A such that Fn = Fn−1 ⊕ En . In particular,
E1 = F1 = Prim(A). Then, A is the direct sum of the En’s and for all n:

Δ̃(En) ⊆
⊕

i, j<n

Ei ⊗ E j .

Existence. We inductively define a map π f : En −→ B for all n ≥ 1 in the following
way:

• For all a ∈ E1, π f (a) = f (a).

• If a ∈ En , as Δ̃(a) ∈
⊕

i+ j<n

Ei ⊗ E j , (π f ⊗ f ) ◦ Δ̃(a) is already defined. We then

put:
π f (a) = f (a)− ≺ ◦(π f ⊗ f ) ◦ Δ̃(a) = f (a) − (π f ≺ f )(a)

Unicity. Letμ f such that f = μ f + (μ f ≺ f ). For alla ∈ E1, f (a) = μ f (a) + 0,
so μ f (a) = π f (a). Let us assume that for all k < n, μ f (a) = π f (a) if a ∈ Ek . Let
a ∈ En . Then:

a = μ f (a) + μ f (a
′) ≺ a′′ = μ f (a) + π f (a

′) ≺ a′′ = μ f (a) + a − π f (a),

so μ f (a) = π f (a). Hence, μ f = π f . �

Proposition 6 When A = B = T+(V ) and f = I d, the map π := π f defined in
Proposition 5 is equal to the projection F(1).
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Proof First, observe that, as QSh≺
1,k = {(1, . . . , k)}, for all packed words (a1 . . . ak),

F(1) ≺ F(a1...ak ) = F(1(a1+1)...(ak+1)). Hence, in A:

F(1) + F(1) ≺ I dA = F(1) +
∞∑

n=1

F(1) ≺ F(1...n) = F(1) +
∞∑

n=1

F(1...n+1)

=
∞∑

n=1

F(1...n) = I dA.

By unicity in Proposition 5, π f = F(1). �

More generally, we have:

Proposition 7 Let A be a non unital, connected NQSh bialgebra, and π the unique
solution to

IdA = π + π ≺ I dA,

then π is a projection on Prim(A), and for all x ∈ Prim(A), y ∈ A, π(x ≺ y) = 0.

Proof Let us prove that for all a ∈ En , π(a) ∈ Prim(A) by induction on n. As
E1 = Prim(A), this is obvious if n = 1. Let us assume the result for all k < n. Let
a ∈ En . Then π(a) = a − π(a′) ≺ a′′. By the induction hypothesis, we can assume
that π(a′) ∈ Prim(A), so:

Δ̃(π(a)) = a′ ⊗ a′′ − π(a′) ≺ a′′ ⊗ a′′′ − π(a′) ⊗ a′′

= (a′ − (π ≺ I d)(a′) − π(a′)) ⊗ a′′ = 0.

Hence, for all a ∈ A, π(a) ∈ Prim(a). So π that, by its very definition, acts as the
identity on Prim(A), is a projection on Prim(A).

Let x ∈ Prim(A) and y ∈ En , let us prove thatπ(x ≺ y) = 0 by induction on n. If
n = 1, then y ∈ Prim(A), so Δ̃(x ≺ y) = x ⊗ y, and π(x ≺ y) = x ≺ y − π(x) ≺
y = x ≺ y − x ≺ y = 0. Let us assume the result at all rank < n. We have:

Δ̃(x ≺ y) = x ≺ y′ ⊗ y′′ + x ⊗ y.

By the induction hypothesis, we can assume that π(x ≺ y′) = 0, so π(x ≺ y) = x ≺
y − 0 − π(x) ≺ y = x ≺ y − x ≺ y = 0. �

Remark 4 For all x, y ∈ Prim(A):

π(x ≺ y) = 0, π(x 	 y) = x 	 y − y ≺ x, π(x • y) = x • y.

Proposition 8 Let A be a nonunital, connected quasi-shuffle bialgebra. Then
Prim(A) is stable under • and the following map is an isomorphism of quasi-shuffle
bialgebras:
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θ :
{
T+(Prim(A)) −→ A

a1 . . . ak −→ a1 ≺ (a2 ≺ (. . . ≺ ak) . . .).

Proof Let a1, . . . , ak ∈ Prim(A). An easy induction on k proves that:

Δ̃(θ(a1 ⊗ . . . ⊗ ak)) =
k−1∑

i=1

θ(a1 ⊗ . . . ⊗ ai ) ⊗ θ(ai+1 ⊗ . . . ⊗ ak).

So θ is a coalgebra morphism.
From this coalgebra morphism property and the identity π(x ≺ y) = 0 for x ∈

Prim(A), we get for a1, . . . , ak ∈ Prim(A), (I dA ⊗ π) ◦ Δ̃(θ(a1 ⊗ . . . ⊗ ak)) =
θ(a1 ⊗ . . . ⊗ ak−1) ⊗ θ(ak). Since θ is the identity on its restriction to Prim(A), its
injectivity follows by induction.

Let a = a1 . . . ak and b = b1 . . . bl ∈ T+(Prim(A)). Let us prove by induction
on k + l that:

θ(a ≺ b) = θ(a) ≺ θ(b), θ(a 	 b) = θ(a) 	 θ(b), θ(a • b) = θ(a) • θ(b).

If k = 1, then a ≺ b1 . . . bl = ab1 . . . bl , so θ(a ≺ b) = a ≺ θ(b) = θ(a) ≺ θ(b). If
l = 1, then a 	 b = ba, so θ(a 	 b) = b ≺ θ(a) = θ(b) ≺ θ(a) = θ(a) 	 θ(b). If
k = l = 1, , x • y = π(x • y) ∈ Prim(A), so θ(a • b) = a • b = θ(a) • θ(b). All
these remarks give the results for k + l ≤ 2. Let us assume the result at all ranks
< k + l. If k = 1, we already proved that θ(a ≺ b) = θ(a) ≺ θ(b). If k ≥ 2, a ≺
b = a1(a2 . . . ak − b). By the induction hypothesis applied to a2 . . . ak and b:

θ(a ≺ b) = a1 ≺ (θ(a2 . . . ak) � θ(b)) = (a1 ≺ θ(a2 . . . ak)) ≺ θ(b) = θ(a) ≺ θ(b).

Using the commutativity of T+(Prim(A)) and A, we obtain θ(a 	 b) = θ(a) 	
θ(b). If l > 1, a • b = a • (b1 ≺ b2 . . . bl) = (a • b1) ≺ b2 . . . bl . Moreover, a • b1
is a linear span of words of length ≤ k + 1, so, by the preceding computation and
the induction hypothesis:

θ(a • b) = θ(a • b1) ≺ θ(b2 . . . bl).

The induction hypothesis holds for a and b1, so:

θ(a • b) = (θ(a) • θ(b1)) ≺ •(b2 . . . bl) = θ(a) • (b1 ≺ θ(b2 . . . bl)) = θ(a) • θ(b).

If l = 1, then k > 1 and we conclude with the commutativity of •.
Let us now prove that Prim(A) generates A as a quasi-shuffle algebra. Let A′ be

the quasi-shuffle subalgebra of A generated by Prim(A). Let a ∈ En , let us prove
that x ∈ A′ by induction on n. As E1 = Prim(A), this is obvious if n = 1. Let us
assume the result for all ranks < n. Then a = π(a) + π(a′) ≺ a′′. By the induction
hypothesis, a′′ ∈ A′. Moreover, π(a) and π(a′) ∈ Prim(A), so a ∈ A′.
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As a conclusion, θ is a morphism of quasi-shuffle algebras, whose image contains
Prim(A), which generates A, so θ is surjective. �

7 Relating the Shuffle and Quasi-Shuffle Operads

A fundamental theorem of the theory of quasi-shuffle algebras relates quasi-shuffle
bialgebras and shuffle bialgebras and, under some hypothesis (combinatorial and
graduation hypothesis on the generators in Hoffman’s original version of the theorem
[23]), shows that the two categories of bialgebras are isomorphic. This result allows
to understand quasi-shuffle bialgebras as deformations of shuffle bialgebras and,
as such, can be extended to other deformations of the shuffle product than the one
induced by Hoffman’s exponential map, see [17]. We will come back to this line of
arguments in the next section.

Here, we stick to the relations between shuffle and quasi-shuffle algebras and
show that Hoffman’s theorem can be better understood and refined in the light of an
Hopf algebra morphism relating the shuffle and quasi-shuffle operads.

Let us notice first that the same construction that allows to define a NQSh algebra
structure on the operad QSh allows, mutatis mutandis, to define a noncommutative
shuffle algebra structure on Sh, the operad of shuffle algebras. A natural basis of the
latter operad is given by permutations (the result goes back to Schützenberger, who
showed that the tensor algebra over a vector space V is a model of the free shuffle
algebra over V [42]). Let us stick here to the underlying Hopf algebra structures.

Recall first that the set of packed words (or surjections, or ordered partitions of
initial subsets of the integers) Sur j is a basis of QSh. As a Hopf algebra, QSh is
isomorphic toWQSym, the Hopf algebra of word symmetric functions, see e.g. [17]
for references on the subject. This Hopf algebra structure is obtained as follows. For
all σ ∈ Sur jk , τ ∈ Sur jl :

σ � τ =
∑

ζ∈QShk,l

ζ ◦ (σ ⊗ τ ).

For all σ ∈ Sur jn:

Δ(σ) =
max(σ)∑

k=0

σ|{1,...,k} ⊗ Pack(σ|{k+1,...,max(σ)}),

where for all I ⊆ {1, . . . ,max(σ)}, σ|I is the packed word obtained by keeping only
the letters of σ which belong to I .

On the other hand, the set of permutations is a basis of the operad Sh. As a Hopf
algebra, the latter identifies with the Malvenuto-Reutenauer Hopf algebra [29] and
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with the Hopf algebra of free quasi-symmetric functions FQSym. Its Hopf structure
is obtained as follows. For all σ ∈ Sk , τ ∈ Sl :

σ � τ =
∑

ζ∈Shk,l
ζ ◦ (σ ⊗ τ ).

For all σ ∈ Sn:

Δ(σ) =
max(σ)∑

k=0

σ|{1,...,k} ⊗ Pack(σ|{k+1,...,max(σ)}).

There is an obvious surjectiveHopf algebramorphismΞ fromQSh toSh, sending
a packed word σ to itself if σ is a permutation, and to 0 otherwise. From an operadic
point of view, this maps amounts to put to zero the • product. There is however
another, non operadic, transformation, relating the two structures.

We use the following notations:

1. Let σ ∈ Sn and τ ∈ Sur jn . We shall say that τ ∝ σ if:

∀1 ≤ i, j ≤ n, (σ(i) ≤ σ( j) =⇒ τ (i) ≤ τ ( j)).

2. Let τ ∈ Sur jn . We put τ ! =
max(τ )∏

i=1

|τ−1({i})|!.

Theorem 3 Consider the following map:

Φ :
⎧
⎨

⎩

Sh −→ QSh

σ ∈ Sn −→
∑

τ∝σ

τ

τ ! .

Then Φ is an injective Hopf algebra morphism. Moreover it is equivariant: for all
σ, τ ∈ Sn,

Φ(σ ◦ τ ) = Φ(σ) ◦ τ .

Proof Let σ, τ ∈ Sn . Then τ ∝ σ if, and only if, σ = τ . So, for all σ ∈ Sn:

Φ(σ) = σ + linear span of packed words which are not permutations.

So Ξ ◦ Φ = I dSh, and Φ is injective.
Let τ ∈ Sur jn and σ ∈ Sn . Then τ ∝ σ if, and only if, τ ◦ σ−1 ∝ In . Moreover,

|τ ◦ σ−1|! = τ !, as σ is a bijection. Hence:

Φ(σ) =
∑

τ∝σ

τ

τ ! =
∑

ρ∝In

ρ ◦ σ

ρ! = Φ(In) ◦ σ.
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More generally, if σ, τ ∈ Sn , Φ(σ ◦ τ ) = Φ(In) ◦ (σ ◦ τ ) = (Φ(In) ◦ σ) ◦ τ =
Φ(σ) ◦ τ .

Let σ1 ∈ Sn1 and σ2 ∈ Sn2 .

Φ(σ1) � Φ(σ2) =
∑

τ1∝σ1,τ2∝σ2
ζ∈QSh(max(τ1),max(τ2))

ζ ◦ (τ1 ⊗ τ2)

τ1!τ2! .

Let S be the set of elements σ ∈ Sur jn1+n2 such that:

• For all 1 ≤ i, j ≤ n1, σ1(i) ≤ σ1( j) =⇒ σ(i) ≤ σ( j).
• For all 1 ≤ i, j ≤ n2, σ2(i) ≤ σ2( j) =⇒ σ(i + n1) ≤ σ( j + n2).

Let τ1 ∝ σ1, τ2 ∝ σ2 and ζ ∈ QSh(max(τ1),max(τ2)). As ζ is increasing on
{1, . . . ,max(τ1)} and {max(τ1) + 1, . . . ,max(τ1) + max(τ2)}, ζ ◦ (τ1 ⊗ τ2) ∈ S.
Conversely, if σ ∈ S, there exists a unique τ1 ∈ Sur jn1 , τ2 ∈ Sur jn2 and ζ ∈
QShmax(τ1),max(τ2) such that σ = ζ ◦ (τ1 ⊗ τ2): in particular, τ1 = Pack(σ(1) . . .

σ(n1)) and τ2 = Pack(σ(n1 + 1) . . . σ(n1 + n2)). As σ ∈ S and ζ ∈
QShmax(τ1),max(τ2), τ1 ∝ σ1 and τ2 ∝ σ2. Hence:

Φ(σ1) � Φ(σ2) =
∑

σ∈S

σ

Pack(σ(1) . . . σ(n1))!Pack(σ(n1 + 1) . . . σ(n1 + n2))! .

On the other hand:
Φ(σ1 � σ2) =

∑

ζ∈Sh(n1,n2)
τ∝ζ◦(σ1⊗σ2)

τ

τ ! .

Let ζ ∈ Sh(n1, n2) and τ ∝ ζ ◦ (σ1 ⊗ σ2). If 1 ≤ i, j ≤ n1 and σ1(i) ≤ σ1( j), then:

ζ ◦ (σ1 ⊗ σ2)(i) = ζ(σ1(i)) ≤ ζ(σ1( j)) = ζ ◦ (σ1 ⊗ σ2)(i),

so τ (i) ≤ τ ( j). If 1 ≤ i, j ≤ n2 and σ2(i) ≤ σ2( j), then:

ζ ◦ (σ1 ⊗ σ2)(i + n1) = ζ(σ2(i) + max(σ1)) ≤ ζ(σ2( j) + max(σ1)) = ζ ◦ (σ1 ⊗ σ2)( j + n1),

so τ (i + n1) ≤ τ ( j + n2). Hence, τ ∈ S and finally:

Φ(σ1 � σ2) =
∑

τ∈S

τ

τ !�{ζ ∈ Sh(n1, n2) | τ ∝ ζ ◦ (σ1 ⊗ σ2)}.

Let τ ∈ S. We put τ1 = (τ (1) . . . τ (n1)) and τ2 = (τ (n1 + 1) . . . τ (n1 + n2)). Let
ζ ∈ Sh(n1, n2), such that τ ∝ ζ ◦ (σ1 ⊗ σ2). For all 1 ≤ i ≤ max(τ ), ζ(τ−1({i})) =
Ii is entirely determined and does not depend on ζ. By the increasing conditions on ζ,
the determination of such a ζ consists of choosing for all 1 ≤ i ≤ max(τ ) a bijective
map ζi from τ−1({i}) to Ii , such that ζi is increasing on τ−1({i}) ∩ {1, . . . , n1} =



508 L. Foissy and F. Patras

τ−1
1 ({i}) and on τ−1({i}) ∩ {n1 + 1, . . . , n1 + n2} = τ−1

2 ({i}). Hence, the number of
possibilities for ζ is:

max(τ )∏

i=1

|τ−1(i)|!
|τ−1

1 ({i})|!|τ−1
2 ({i})|!

=

max(τ )∏

i=1

|τ−1({i})|!
max(τ1)∏

i=1

|τ−1
1 ({i})|!

max(τ2)∏

i=1

|τ−1
2 ({i})|!

=

max(τ )∏

i=1

|τ−1({i})|!
max(Pack(τ1))∏

i=1

|Pack(τ1)−1({i})|!
max(Pack(τ2))∏

i=1

|Pack(τ2)−1({i})|!

= τ !
Pack(τ1)!Pack(τ2)! .

Hence:

Φ(σ1 � σ2) =
∑

τ∈S

τ

τ !
τ !

Pack(τ (1) . . . τ (n1))!Pack(τ (n1 + 1) . . . τ (n1 + n2))!
= Φ(σ1) � Φ(σ2).

So Φ is an algebra morphism.
Let σ ∈ Sn .

Δ(Φ(σ))

=
∑

τ∝σ

max(τ )∑

k=0

1

τ !τ|{1,...,k} ⊗ Pack(τ|{k+1,...,max(τ )}

=
∑

τ∝σ

max(τ )∑

k=0

1

τ|{1,...,k}!Pack(τ|{k+1,...,max(τ )}!τ|{1,...,k} ⊗ Pack(τ|{k+1,...,max(τ )}

=
n∑

k=0

∑

τ1∝σ|{1,...,k}
τ2∝Pack(σ|{k+1,...,n})

τ1

τ1! ⊗ τ2

τ2!

= (Φ ⊗ Φ) ◦ Δ(σ).

Hence, Φ is a coalgebra morphism. �
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Example 3

Φ((1)) = (1),

Φ((12)) = (12) + 1

2
(11),

Φ((123)) = (123) + 1

2
(112) + 1

2
(122) + 1

6
(111),

Φ((1234)) = (1234) + 1

2
(1123) + +1

2
(1223) + +1

2
(1233)

+ 1

4
(1122) + 1

6
(1112) + 1

6
(1222) + 1

24
(1111).

More generally:

Φ((1 . . . n)) =
n∑

k=1

∑

i1+...+ik=n

1

i1! . . . ik ! (1
i1 . . . kik ).

Remark 5 The map Φ is not a morphism of NSh algebras from (Sh,≺,	) to
(QSh,�,	), nor to (QSh,≺,
). Indeed:

Φ((1) ≺ (1)) = (12) + 1

2
(11),

Φ((1)) ≺ Φ((1)) = (12),

Φ((1)) � Φ((1)) = (12) + (11).

We extend the map σ −→ Fσ into a linear map from QSh to End(T (V )). By
Proposition 4, F is an algebra morphism.

Corollary 3 (Exponential isomorphism) Le us consider the following linear map:

φ :
{

T (V ) −→ T (V )

x1 . . . xn −→ FΦ(In)(x1 . . . xn).

Then φ is a Hopf algebra isomorphism from (T (V ), ,Δ) to (T (V ), − ,Δ).

Proof Let x1, . . . , xk+l ∈ V .
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φ(x1 . . . xk xk+1 . . . xk+l) =
∑

ζ∈Sh(k,l)

FΦ(Ik+l ) ◦ Fζ(x1 . . . xk+l)

=
∑

ζ∈Sh(k,l)

FΦ(Ik+l )◦ζ(x1 . . . xk+l)

=
∑

ζ∈Sh(k,l)

FΦ(ζ)(x1 . . . xk+l)

= FΦ(Ik�Il )(x1 . . . xk+l)

= FΦ(Ik )�Φ(Il )(x1 . . . xk+l)

= FΦ(Ik ) − FΦ(Il )(x1 . . . xk+l)

=
k+l∑

i=0

FΦ(Ik )(x1 . . . xi )− FΦ(Il )(xi+1 . . . xk+l)

= FΦ(Ik )(x1 . . . xk)− FΦ(Il )(xk+1 . . . xk+l)

= φ(x1 . . . xk)−φ(xk+1 . . . xl).

So φ is an algebra morphism.
For any packed words σ ∈ Sur jk , τ ∈ Sur jl and all x1, . . . , xn ∈ V we define

Gσ⊗τ by:
Gσ⊗τ (x1 . . . xn) = Fσ(x1 . . . xk) ⊗ Fτ (xk+1 . . . xn)

is k + l = n and = 0 else. Then, for all increasing packed word σ, for all x ∈ T (V ):

Δ(Fσ(x)) = GΔ(σ)(x).

Hence, if x1, . . . , xn ∈ V :

Δ ◦ φ(x1 . . . xn) = GΔ(Φ(In))(x1 . . . xn)

= G(Φ⊗Φ)◦Δ(In)(x1 . . . xn)

=
n∑

k=0

GΦ(Ik )⊗Φ(In−k )(x1 . . . xn)

=
n∑

k=0

FΦ(Ik )(x1 . . . xk) ⊗ FΦ(In−k )(xk+1 . . . xn)

=
n∑

k=0

φ(x1 . . . xk) ⊗ φ(xk+1 . . . xn)

= (φ ⊗ φ) ◦ Δ(x1 . . . xn).

So φ is a coalgebra morphism.
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As the unique bijection appearing in Φ(In) is In , for all word x1 . . . xn:

φ(x1 . . . xn) = x1 . . . xn + linear span of words of length < n.

So φ is a bijection. �

Example 4 Let x1, x2, x3, x4 ∈ V .

φ(x1) = x1,

φ(x1x2) = x1x2 + 1

2
x1.x2,

φ(x1x2x3) = x1x2x3 + 1

2
(x1.x2)x3 + 1

2
x1(x2.x3) + 1

6
x1.x2.x3,

φ(x1x2x3x4) = x1x2x3x4 + 1

2
(x1.x2)x3x4 + 1

2
x1(x2.x3)x4

+ 1

2
x1x2(x3.x4) + 1

4
(x1.x2)(x3.x4) + 1

6
(x1.x2.x3)x4

+ 1

6
x1(x2.x3.x4) + 1

24
x1.x2.x3.x4.

More generally, for all x1, . . . , xn ∈ V :

φ(x1 . . . xn) =
n∑

k=1

∑

i1+...+ik=n

1

i1! . . . ik ! F(1i1 ...kik )(x1 . . . xn).

Remark 6 1. This isomorphism is the morphism denoted by exp and obtained in
the graded case by Hoffman in [23].

2. If V is a trivial algebra, then φ = I dT (V ).
3. This morphism is not a NSh algebra morphism, except if V is a trivial algebra.

In fact, except if the product of V is zero, the NSh algebras (T (V ),�,	) and
(T (V ),≺,
) are not commutative, so cannot be isomorphic to a shuffle algebra.

8 Coalgebra and Hopf Algebra Endomorphisms

In the previous section,we studied the links between shuffle and quasi-shuffle operads
and obtained as a corollary the exponential isomorphism of Corollary 3 between
the shuffle and quasi-shuffle Hopf algebra structures on T (V ). This section aims
at classifying all such possible (natural, i.e. functorial in commutative algebras V )
morphisms.We refer to our [17] for applications of natural coalgebra endomorphisms
to the study of deformations of shuffle bialgebras.
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Recall that we defined π as the unique linear endomorphism of the quasi-shuffle
bialgebra T+(V ) such that π + π ≺ I dT+(V ) = I dT+(V ). By Proposition 6, it is equal
to F(1), so is the canonical projection on V . This construction generalizes as follows.

Hereafter, we work in the unital setting and write ε for the canonical projection
from T (V ) to the scalars (the augmentation map). It behaves as a unit w.r.t. the NQSh
products on End(T+(V )): for g ∈ End(T+(V )), ε ≺ g = 0, g ≺ ε = g.

Proposition 9 Let f : T (V ) −→ V bea linearmap such that f (1) = 0. There exists
a unique coalgebra endomorphism ψ of T (V ) such that π ◦ ψ = f . This coalgebra
endomorphism is the unique linear endomorphism of T (V ) such that ε + f ≺ ψ =
ψ.

Proof First step. Let us prove the unicity of the coalgebra morphism ψ such that
π ◦ ψ = f . Let ψ1,ψ2 be two (non zero) coalgebra endomorphisms such that π ◦
ψ1 = π ◦ ψ2. Let us prove that for all x1, . . . , xn ∈ V , ψ1(x1 . . . xn) = ψ2(x1 . . . xn)
by induction on n. If n = 1, asψ1(1) andψ2(1) are both nonzero group-like elements,
they are both equal to 1. Let us assume the result at all rank < n. Then:

Δ ◦ ψ1(x1 . . . xn) = (ψ1 ⊗ ψ1) ◦ Δ(x1 . . . xn)

= ψ1(x1 . . . xn) ⊗ 1 + 1 ⊗ ψ1(x1 . . . xn)

+
n−1∑

i=1

ψ1(x1 . . . xi ) ⊗ ψ1(xi+1 . . . xn),

Δ ◦ ψ2(x1 . . . xn) = ψ2(x1 . . . xn) ⊗ 1 + 1 ⊗ ψ2(x1 . . . xn)

+
n−1∑

i=1

ψ2(x1 . . . xi ) ⊗ ψ2(xi+1 . . . xn).

Applying the induction hypothesis, for all i ≤ 1 ≤ n − 1, ψ1(x1 . . . xi ) =
ψ2(x1 . . . xi ) and ψ1(xi+1 . . . xn) = ψ2(xi+1 . . . xn). Consequently, ψ1(x1 . . . xn) −
ψ2(x1 . . . xn) is primitive, so belongs to V and:

ψ1(x1 . . . xn) − ψ2(x1 . . . xn) = π ◦ ψ1(x1 . . . xn) − π ◦ ψ2(x1 . . . xn) = 0.

Second step. Let us prove the existence of a (necessarily unique) endomorphism
ψ such that ψ = ε + f ≺ ψ. We construct ψ(x1 . . . xn) for all x1, . . . , xn ∈ V by
induction on n in the following way: ψ(1) = 1 and, if n ≥ 1:

ψ(x1 . . . xn) := f (x1 . . . fn) +
n−1∑

i=1

f (x1 . . . xi ) ≺ ψ(xi+1 . . . xn).

Then (ε + f ≺ ψ)(1) = ε(1) = 1 = ψ(1). If n ≥ 1:
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(ε + f ≺ ψ)(x1 . . . xn)

= ε(x1 . . . xn) + f (x1 . . . xn) +
n−1∑

i=1

f (x1 . . . xi ) ≺ ψ(xi+1 . . . xn)

= 0 + f (x1 . . . xn) +
n−1∑

i=1

f (x1 . . . xi ) ≺ ψ(xi+1 . . . xn)

= ψ(x1 . . . xn).

Hence, ε + f ≺ ψ = ψ.

Third step. Let ψ such that ε + f ≺ ψ = ψ. Let us prove that Δ ◦ ψ(x1 . . . xn) =
(ψ ⊗ ψ) ◦ Δ(x1 . . . xn) by induction on n. If n = 0, then ψ(1) = ε(1) + f (1) =
1 + 0 = 1, so Δ ◦ ψ(1) = (ψ ⊗ ψ) ◦ Δ(1) = 1 ⊗ 1. If n ≥ 1, we put x = x1 . . . xn ,
Δ(x) = x ⊗ 1 + 1 ⊗ x + x ′ ⊗ x ′′. The induction hypothesis holds for x ′′.
Moreover:

ψ(x) = ε(x) + f (x) + f (x ′) ≺ ψ(x ′′) = f (x) + f (x ′) ≺ ψ(x ′′).

As f (x), f (x ′) ∈ V are primitive:

Δ̃ ◦ ψ(x) = f (x ′) ⊗ ψ(x ′′) + f (x ′) ≺ ψ(x ′′)′ ⊗ ψ(x ′′)′

= f (x ′) ⊗ ψ(x ′′) + f (x ′) ≺ ψ(x ′′) ⊗ ψ(x ′′′)
= ψ(x ′) ⊗ ψ(x ′′)

= (ψ ⊗ ψ) ◦ Δ̃(x).

As ψ(1) = 1, we deduce thatΔ ◦ ψ(x) = (ψ ⊗ ψ) ◦ Δ(x). So ψ is a coalgebra mor-
phism. Moreover, π ◦ ψ(1) = π(1) = 0 = f (1). If ε(x) = 0:

π ◦ ψ(x) = π ◦ f (x) + π( f (x ′) ≺ f (x ′′)) = f (x),

as f (x), (x ′) ∈ V (so f (x ′) ≺ f (x ′′) is a linear span of words of length ≥ 2, so
vanishes under the action of π). Hence, π ◦ ψ = f . �

Proposition 10 Let A =
∑

n≥1

an X
n be a formal series without constant term. Let fA

be the linear map from T (V ) to V defined by fA(x1 . . . xn) = anx1 • . . . • xn and let
φA be the unique coalgebra endomorphism of T (V ) such that π ◦ φA = f A. For all
x1, . . . , xn ∈ V :

φA(x1 . . . xn) =
n∑

k=1

∑

i1+...+ik=n

ai1 . . . aik F(1i1 ...kik )(x1 . . . xn). (30)
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Proof Note that f A(x1 . . . xn) = anF(1n)(x1 . . . xn). Let φ be the morphism defined
by the second member of (30). Then (ε + f A ≺ φ)(1) = 1 + f A(1) = 1 = φ(1). If
n ≥ 1:

(ε + f A ≺ φ)(x1 . . . xn)

= f A(x1 . . . xn) +
n−1∑

i=1

f A(x1 . . . xi ) ≺ φ(xi+1 . . . xn)

= anF(1n)(x1 . . . xn)

+
n−1∑

i=1

n∑

k=2

∑

i2+...+ik=n−i

aiai2 . . . aik F(1i ) ≺ F(1i2 ...(k−1)ik )(x1 . . . xn)

= anF(1n)(x1 . . . xn)

+
n−1∑

i=1

n∑

k=2

∑

i+i2+...+ik=n

aiai2 . . . aik ≺ F(1i2i2 ...kik )(x1 . . . xn)

= φ(x1 . . . xn).

By unicity in Proposition 9, φ = φA. �

Remark 7 The morphism φ defined in corollary 3 is φexp(X)−1.

Proposition 11 φX = I d and for all formal series A, B without constant terms,
φA ◦ φB = φA◦B.

Proof For all x1, . . . , xn ∈ V , π ◦ I d(x1 . . . xn) = δ1,nx1 . . . xn = fX (x1 . . . xn). By
unicity in Proposition 9, φX = I d. Moreover:

π ◦ φA ◦ φB(x1 . . . xn)

= f A

⎛

⎝
n∑

k=1

∑

i1+...+ik=n

bi1 . . . bik (x1 • . . . • xi1) . . . (xi1+...+ik−1+1 • . . . • x1+...+ik )

⎞

⎠

=
n∑

k=1

∑

i1+...+ik=n

akbi1 . . . bik x1 • . . . • xn

= f A◦B(x1 . . . xn).

By unicity in Proposition 9, φA ◦ φB = φA◦B . �

So the set of all φA, where A is a formal series such that A(0) = 0 and A′(0) �= 1,
is a subgroup of the group of coalgebra isomorphisms of T (V ), isomorphic to the
group of formal diffeomorphisms of the line.
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Corollary 4 The inverse of the isomorphism φ defined in corollary 3 is φln(1+X):

φ−1(x1 . . . xn) =
n∑

k=1

∑

i1+...+ik=n

(−1)n+k

i1 . . . ik
F(1i1 ...kik )(x1 . . . xn).

Proposition 12 Let A ∈ K [[X ]]+.
1. φA : (T (V ), ,Δ) −→ (T (V ), ,Δ) is a Hopf algebra morphism for any

commutative algebra V if, and only if, A = aX for a certain a ∈ K.
2. φA : (T (V ), ,Δ) −→ (T (V ), − ,Δ) is a Hopf algebra morphism for any

commutative algebra V if, and only if, A = exp(aX) − 1 for a certain a ∈ K.
3. φA : (T (V ), − ,Δ) −→ (T (V ), − ,Δ) is a Hopf algebra morphism for any

commutative algebra V if, and only if, A = (1 + X)a − 1 for a certain a ∈ K.
4. φA : (T (V ), − ,Δ) −→ (T (V ), ,Δ) is a Hopf algebra morphism for any

commutative algebra V if, and only if, A = a ln(1 + X) for a certain a ∈ K.

Proof First, note that for any x1, . . . , xk ∈ V :

π ◦ φA(x1 . . . xk) = ak F(1...1)(x1 . . . xk).

Consequently, for any commutative algebra V , for any x, x1, . . . , xk ∈ V , k ≥ 1:

π ◦ φA(x x1 . . . xk) = π(xx1 . . . xk+1 + . . . + x1 . . . xk+1x)

= (k + 1)ak+1x .x1 · . . . · xk,
π(φA(x) φA(x1 . . . xk)) = 0,

π(φA(x)− φA(x1 . . . xk)) = a1akx .x1 · . . . · xk .

1. We assume that φA is an algebra morphism for any V for the shuffle product.
Let us choose an algebra V and elements x, x1, . . . , xk ∈ V such that x .x1 · . . . ·
xk �= 0 in V . As φ(x x1 . . . xk) = φ(x) φ(x1 . . . xk), applying π, we deduce that
for all k ≥ 1, (k + 1)ak+1 = 0, so ak+1 = 0. Hence, A = a1X . Conversely, for any
x1, . . . , xk ∈ V ,φaX (x1 . . . xk) = ak1x1 . . . xk , soφaX is an endomorphismof theHopf
algebra (T (V ), ,Δ).

2. We already proved that φexp(X)−1 is a Hopf algebra morphism from (T (V ),

,Δ) to (T (V ), − ,Δ). By composition:

φexp(aX)−1 = φexp(X)−1 ◦ φaX : (T (V ), , Δ) −→ (T (V ), , Δ) −→ (T (V ), − , Δ)

is a Hopf algebra morphism.
We assume that φA is an algebra morphism for any V from the shuffle product to

the quasi-shuffle product. Let us choose an algebra V , and x, x1, . . . , xk ∈ V , such
that x .x1 · . . . · xk �= 0 in V . As φ(x x1 . . . xk) = φ(x)− φ(x1 . . . xk), applying π,

we deduce that for all k ≥ 1, (k + 1)ak+1 = a1ak , so ak = ak1
k! for all k ≥ 1. Hence,

A = exp(a1X) − 1.
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3. The following conditions are equivalent:

• For any V , φA : (T (V ), − ,Δ) −→ (T (V ), − ,Δ) is a Hopf algebra morphism.
• For any V , φln(1+X) ◦ φA ◦ φexp(X)−1 : (T (V ), ,Δ) −→ (T (V ), ,Δ) is a
Hopf algebra morphism. For any V , φln(1+X)◦A◦(exp(X)−1) : (T (V ), ,Δ) −→
(T (V ), ,Δ) is a Hopf algebra morphism.

• There exists a ∈ K , ln(1 + X) ◦ A ◦ (exp(X) − 1) = aX .
• There exists a ∈ K , A = (1 + X)a − 1.

4. Similar proof. �

Remark 8 TheProposition12 classifies actually all theHopf algebra endomorphisms
and morphisms relating shuffle and quasi-shuffle algebras T (V ), that are natural (i.e.
functorial) in V . This naturality property follows formally from the study of nonlinear
Schur-Weyl duality in [17, 31].

9 Coderivations and Graduations

The present section complements the previous one that studied coalgebra endomor-
phisms. We aim at investigating here coderivations of quasi-shuffle bialgebras. As
an application we recover the existence of a natural graded structure on the Hopf
algebras (T (V ), − ,Δ) [17].

Notations. Let A be a NQSh algebra, f ∈ EndK (A) and v ∈ A. We define:

f ≺ v :
{
A −→ A
x −→ f (x) ≺ v,

v ≺ f :
{
A −→ A
x −→ v ≺ f (x).

Proposition 13 Let f : T (V ) −→ V be a linear map. There exists a unique
coderivation D of T (V ) such that π ◦ D = f . Moreover, D is the unique linear
endomorphism of T (V ) such that D = f + π ≺ D + f ≺ I d.

Proof First step. Let us prove that the unicity of the coderivation D such thatπ ◦ D =
f . The result is classical [20] and elementary, we include its proof for completeness
sake. Let D1 and D2 be two coderivations such that π ◦ D1 = π ◦ D2. Let us prove
that D1(x1 . . . xn) = D2(x1 . . . xn) by induction on n.

Δ ◦ D1(1) = (D1 ⊗ I d + I d ⊗ D1)(1 ⊗ 1) = D1(1) ⊗ 1 + 1 ⊗ D1(1),

so D1(1) ∈ Prim(T (V )) = V . Similarly, D2(1) ∈ V . Hence, D1(1) = π ◦ D1(1) =
π ◦ D2(1) = D2(1). Let us assume the result at all ranks < n. If p = 1 or 2:

Δ ◦ Dp(x1 . . . xn) =
n∑

i=0

Dp(x1 . . . xi ) ⊗ xi+1 . . . xn +
n∑

i=0

x1 . . . xi ⊗ Dp(xi+1 . . . xn).
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Applying the induction hypothesis at all ranks < k, we obtain by subtraction:

Δ ◦ (D1 − D2)(x1 . . . xn) = (D1 − D2)(x1 . . . xn) ⊗ 1 + 1 ⊗ (D1 − D2)(x1 . . . xn).

So (D1 − D2)(x1 . . . xn) ∈ V . Applying π:

(D1 − D2)(x1 . . . xn) = π ◦ (D1 − D2)(x1 . . . xn) = 0.

So D1(x1 . . . xn) = D2(x1 . . . xn).

Second step. Let us prove the existence of a map D such that D = f + π ≺
D + f ≺ I d. We define D(x1 . . . xn) by induction on n by D(1) = f (1) and:

D(x1 . . . xn) = x1 ≺ D(x2 . . . xn) +
n−1∑

i=0

f (x1 . . . xi ) ≺ xi+1 . . . xn + f (x1 . . . xn).

Then ( f + π ≺ D + f ≺ I d)(1) = f (1) = D(1). If n ≥ 1:

( f + π ≺ D + f ≺ I d)(x1 . . . xn)

= f (x1 . . . xn) +
n∑

i=1

π(x1 . . . xi ) ≺ D(xi+1 . . . xn)

+
n−1∑

i=0

f (x1 . . . xi ) ≺ xi+1 . . . xn

= f (x1 . . . xn) + x1 ≺ D(x2 . . . xn) +
n−1∑

i=0

f (x1 . . . xi ) ≺ xi+1 . . . xn

= D(x1 . . . xn).

So D = f + π ≺ D + f ≺ I d.

Last step. Let D be such that D = f + π ≺ D + f ≺ I d. Let us prove that Δ ◦
D(x1 . . . xn) = (D ⊗ I d + I d ⊗ D) ◦ Δ(x1 . . . xn) by induction on n. If n = 0:

Δ ◦ D(1) = Δ( f (1))

= f (1) ⊗ 1 + 1 ⊗ f (1)

= D(1) ⊗ 1 + 1 ⊗ D(1)

= (D ⊗ I d + I d ⊗ D)(1 ⊗ 1).

Let us assume the result at all ranks < n.
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D(x1 . . . xn) = ( f + π ≺ D + f ≺ I d)(x1 . . . xn)

=
n∑

i=1

π(x1 . . . xi ) ≺ D(xi+1 . . . xn) +
n−1∑

i=0

f (x1 . . . xi ) ≺ xi+1 . . . xn

+ f (x1 . . . xn)

= x1D(x2 . . . xn) +
n∑

i=0

f (x1 . . . xi )xi+1 . . . xn.

Hence:

Δ ◦ D(x1 . . . xn))

=
n∑

j=1

x1D(x2 . . . x j ) ⊗ x j+1 . . . xn

+
n∑

j=1

x1 . . . x j ⊗ D(x j+1 . . . xn) + 1 ⊗ x1D(x2 . . . xn)

+
n∑

i=0

n∑

j=i

f (x1 . . . xi )xi+1 . . . x j ⊗ x j+1 . . . xn

+
n∑

i=0

1 ⊗ f (x1 . . . xi )xi+1 . . . xn

=
n∑

j=1

x1D(x2 . . . x j ) ⊗ x j+1 . . . xn

+
n∑

j=1

x1 . . . x j ⊗ D(x j+1 . . . xn) + 1 ⊗ x1D(x2 . . . xn)

+
n∑

j=1

j∑

i=1

f (x1 . . . xi )xi+1 . . . x j ⊗ x j+1 . . . xn

+ f (1) ⊗ x1 . . . xn +
n∑

i=0

1 ⊗ f (x1 . . . xi )xi+1 . . . xn

=
n∑

j=0

D(x1 . . . x j ) ⊗ x j+1 . . . xn +
n∑

j=1

x1 . . . x j ⊗ D(x j+1 . . . xn)

= (D ⊗ I d + I d ⊗ D) ◦ Δ(x1 . . . xn).

Moreover, π ◦ D(1) = π ◦ f (1) = f (1); if n ≥ 1:
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π ◦ D(x1 . . . xn) = π(x1D(x2 . . . xn)) +
n∑

i=0

π( f (x1 . . . xi )xi+1 . . . xn)

= 0 + f (x1 . . . xn).

So π ◦ D = f . �

Proposition 14 Let A =
∑

n≥1

an X
n be a formal series without constant term. Let DA

be the unique coderivation of T (V ) such that π ◦ φA = f A. For all x1, . . . , xn ∈ V :

DA(x1 . . . xn) =
n∑

i=1

ai

n−i+1∑

j=1

F(12... j−1 j i j+1...n−i+1)(x1 . . . xn). (31)

Proof Let D be the linear endomorphism defined by the right side of (31). As
f A(1) = 0, we get by induction on n:

( f + π ≺ D + f ≺ I d)(x1 . . . xn)

= f (x1 . . . xn) + x1D(x2 . . . xn) +
n−1∑

i=1

f (x1 . . . xi )xi+1 . . . xn

= x1D(x2 . . . xn) +
n∑

i=1

f (x1 . . . xi )xi+1 . . . xn

=
n−1∑

i=1

ai

n−i+1∑

j=2

F(12... j−1 j i j+1...n−i+1)(x1 . . . xn) +
n∑

i=1

ai F(1i2...n−i+1)(x1 . . . xn)

=
n∑

i=1

ai

n−i+1∑

j=1

F(12... j−1 j i j+1...n−i+1)(x1 . . . xn)

= D(x1 . . . xn).

Moreover, π ◦ D(x1 . . . xn) = anx1 • . . . • xn = f A(x1 . . . xn). The unicity in Propo-
sition 13 implies that D = DA. �

Corollary 5 For all word x1 . . . xn, DX (x1 . . . xn) = nx1 . . . xn.

Proof Indeed, DX (x1 . . . xn) =
n∑

j=1

F(12... j−1 j1 j+1...n)(x1 . . . xn) = nx1 . . . xn . �

Remark 9 Let A and B be two formal series andλ ∈ K . As DA + λDB is a coderiva-
tion and π ◦ (DA + λDB) = f A + λ fB = f A+λB :

DA + λDB = DA+λB .
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Moreover, the group of coalgebra automorphims of T (V ) acts on the space of
coderivations of T (V ) by conjugacy. Let us precise this action if we work only
with automorphisms and coderivations associated to formal series.

Proposition 15 Let A, B be two formal series without constant terms, such that
A′(0) �= 0. Then:

φ−1
A ◦ DB ◦ φA = D B◦A

A′ .

Proof By linearity and continuity of the action, it is enough to prove this formula if
B = X p. We denote by C the inverse of A for the composition.

π ◦ φ−1
A ◦ DX p ◦ φA(x1 . . . xn)

= fC ◦ DXp

⎛

⎝
n∑

k=1

∑

i1+...+ik=n

ai1 . . . aik F(1i1 ...kik )(x1 . . . xn)

⎞

⎠

=
n∑

k=p−1

∑

i1+...+ik=n

(k − p − 1)ck−p+1ai1 . . . aik x1 • . . . • xn.

So π ◦ φA−1 ◦ DX p ◦ φA is the linear map associated to the formal series:

⎛

⎝
∞∑

k=p−1

(k − p + 1)ck−p+1X
k

⎞

⎠ ◦ A =
( ∞∑

i=0

iai X
i−1+p

)
◦ A

= (X pC ′) ◦ A

= ApC ′ ◦ A

= Ap

A′ .

Hence, φA−1 ◦ DX p ◦ φA = D Ap

A′ . �

Corollary 6 The eigenspaces of the coderivation D(1+X)ln(1+X) give a gradation of
the Hopf algebra (T (V ), − ,Δ).

Proof Let D = φ ◦ DX ◦ φ−1. As φ = φexp(X)−1:

D = φ−1
ln(1+X) ◦ DX ◦ φln(1+X) = D(1+X)ln(1+X).

As DX is a derivation of the algebra (T (V ), ) and φ is an algebra isomorphism
from (T (V ), ) to (T (V ), − ), D is is a derivation of the algebra (T (V ), − ). As
it is conjugated to DX , its eigenvalues are the elements of N. �
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Remark 10 As (1 + X)ln(1 + X) = 1 +
∞∑

k=2

(−1)k

k(k − 1)
Xk :

D(1+X)ln(1+X)(x1 . . . xn)

= nx1 . . . xn +
n∑

i=2

n−i+1∑

j=1

(−1)i

i(i − 1)
x1 . . . x j−1(x j • . . . • x j+i−1)x j+i . . . xn.

The gradation of A = (T (V ), − ) is given by:

An = Vect

⎛

⎜⎜⎝

n∑

k=1

∑

i1+...+ik=n

1

i1! . . . ik !

(
i1∏

i=1

xi

)
. . .

⎛

⎝
i1+...+ik∏

i=i1+...+ik−1+1

xi

⎞

⎠ ,

x1, . . . , xn ∈ V

⎞

⎟⎟⎠ .

10 Decorated Operads and Graded Structures

In many applications, algebras over operads carry a natural graduation. This is
because geometrical objects (polynomial vector fields, spaces, differential forms…),
but also combinatorial and algebraic ones carry often a graduation (or a dimension,
a cardinal…) that is better taken into account in the associated algebra structures. As
far as quasi-shuffle algebras are concerned, they often naturally carry a graduation in
their application domains : think to quasi-symmetric functions and multizeta values
(MZVs) [4]; Ecalle’s mould calculus and dynamical systems [13]; iterated integrals
of Itô type in stochastic calculus [8, 9].

Here, we recall briefly how the formalism of operads can be adapted to take
into account graduations [41]. We detail then the case of quasi-shuffle algebras and
conclude by studying the analogue, in this context, of the classical descent algebra
of a graded commutative or cocommutative Hopf algebra [34].

In this section, we denote by A = ⊕
n∈N

An (where A0 = k, the ground field), a

graded, connected, quasi-shuffle bialgebra. By graded we mean that all the structure
maps (≺, •,Δ) are graded maps. Then Prim(A) = V = ⊕

n∈N∗
Vn is an associative,

commutative graded algebra for the product • and we can identify A and the quasi-
shuffle bialgebra T (V ) as graded quasi-shuffle algebras. Be aware however that the
graduation of T (V ) is not the tensor length: for example, for v1 ∈ Vn1 , . . . , vk ∈ Vnk ,
the degree of the tensor v1 . . . vk ∈ V⊗k is now n1 + · · · + nk .

It is an easy exercise to adapt the definition of operads to the graded case: whereas
the component Fn of an operad identifies with the set of multilinear elements in the n
letters x1, . . . , xn in the free algebra F(Xn), Xn := {x1, . . . , xn}, the corresponding
component of the associated graded operad Fd

n is obtained by allowing the xi s to be
decorated by integers (corresponding to degrees). Each sequence (d1, . . . , dn) of
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decorations gives then rise to a component of the associated decorated operad,
isomorphic to Fn and corresponding to n-ary operations that act on a sequence
(a1, . . . , an) of elements of a F-graded algebra as the corresponding element of
Fn would when deg(ai ) = di , and as the null map else, see [41] for details. We call
Fd = ∪nFd

n the (integer-)decorated operad associated to F-algebras.
The decorated operad QShd is then spanned by decorated packed words, where:

Definition 11 A decorated packed word of length k is a pair (σ, d), where σ is a
packed word of length k and d is a map from {1, . . . , k} into N

∗. We denote it by(
σ(1) . . . σ(k)
d(1) . . . d(k)

)
.

Notation. Let (σ, d) =
(

σ(1) . . . σ(k)
d(1) . . . d(k)

)
be a decorated packed word. Let m be the

maximumofσ.Wedefine F(σ,d) ∈ Endk(A) in the followingway: for all x1, . . . , xl ∈
V , homogeneous,

F(σ,d)(x1 . . . xl) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛

⎝
∏

σ(i)=1

xi

⎞

⎠ . . .

⎛

⎝
∏

σ(i)=m

xi

⎞

⎠

if k = l and
deg(x1) = d(1),

...

deg(xk) = d(k),

0 otherwise.

Note that in each parenthesis, the product is the product • of V . For example, if
x, y, z ∈ V are homogeneous,

F⎛

⎝ 2 1 2
a b c

⎞

⎠
(xyz) = y(x • z)

if deg(x) = a, deg(y) = b, and deg(z) = c, and 0 otherwise.
The subspace of Endk(A) generated by these maps is stable under composition

and the noncommutative quasi-shuffle products:

Proposition 16 Let

(σ, d) =
(

σ(1) . . . σ(k)
d(1) . . . d(k)

)
and (τ , e) =

(
τ (1) . . . τ (l)
e(1) . . . e(l)

)

be two decorated packed words. max(τ ) = k and for all 1 ≤ j ≤ k,
∑

τ (i)= j

e(i) =
d( j), then:

F(σ,d) ◦ F(τ ,e) = F(
σ ◦ τ (1) . . . σ ◦ τ (l)
e(1) . . . e(l)

).
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Otherwise, this composition is equal to 0. Moreover:

F(σ,d) ≺ F(τ ,e)

=
∑

Pack(u(1)...u(k))=σ,
Pack(u(k+1)...u(k+l))=τ ,

min(u(1)...u(k))<min(u(k+1)...u(k+l))

F(
u(1) . . . u(k) u(k + 1) . . . u(k + l)
d(1) . . . d(k) e(1) . . . e(l)

),

F(σ,d) 	 F(τ ,e)

=
∑

Pack(u(1)...u(k))=σ,
Pack(u(k+1)...u(k+l))=τ ,

min(u(1)...u(k))>min(u(k+1)...u(k+l))

F(
u(1) . . . u(k) u(k + 1) . . . u(k + l)
d(1) . . . d(k) e(1) . . . e(l)

),

F(σ,d) • F(τ ,e)

=
∑

Pack(u(1)...u(k))=σ,
Pack(u(k+1)...u(k+l))=τ ,

min(u(1)...u(k))=min(u(k+1)...u(k+l))

F(
u(1) . . . u(k) u(k + 1) . . . u(k + l)
d(1) . . . d(k) e(1) . . . e(l)

).

Proof Direct computations. �

Remark 11 1. For all packed word (σ(1) . . . σ(n)):

F(σ(1)...σ(n)) =
∑

d(1),...,d(n)≥1

F⎛

⎝ σ(1) . . . σ(n)

d(1) . . . d(n)

⎞

⎠
.

2. In general, this action of decorated packed words is not faithful. For example, if
V = K [X ]+, where X is homogeneous of degree n, then F⎛

⎝1 2
1 1

⎞

⎠
= F⎛

⎝2 1
1 1

⎞

⎠
.

Indeed, both sends the word XX on itself and all the other words on 0.
3. Here is an example where the action is faithful. Let V = K [Xi | i ≥ 1]+, where

Xi is homogeneous of degree 1 for all i . Let us assume that
∑

a(σ,d)F(σ,d) = 0.
Acting on the word (Xa1

1 ) . . . (Xak
k ), we obtain:

∑

length(σ)=k

a⎛

⎝ σ(1) . . . σ(k)
a1 . . . ak

⎞

⎠

⎛

⎝
∏

σ(i)=1

Xai
i

⎞

⎠ . . .

⎛

⎝
∏

σ(i)=max(σ)

Xai
i

⎞

⎠ = 0.

As the Xi are algebraically independent, the words appearing in this sum are
linearly independent, so for all (σ, d), a(σ,d) = 0.
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Notations.

1. For all n ≥ 1, we put:

pn =
n∑

k=1

∑

d(1)+...+d(k)=n

F(
1 . . . k

d(1) . . . d(k)

).

Themap pn is the projection on the space of words of degree n, so
∑

n≥1

pn = I dA.

2. For all n ≥ 1, we put:
qn = F(

1
n

).

The map qn is the projection on the space of letters of degree n, so, by
Proposition 6, q =

∑

n≥1

qn = F(1) is the projectionπ of Proposition 5. It is not difficult

to deduce, in the same way as proposition 12 of [16], the following result:

Theorem 4 The NQSh subalgebra QDesc(A) of EndK (A) generated by the homo-
geneous components pn of I dA is also generated by the homogeneous components
qn of the projection on Prim(A) of Proposition 5. Moreover, for all n ≥ 1:

qn =
n∑

k=1

(−1)k+1
∑

a1+...+ak=n

pa1 ≺ (pa2 − . . . − pak ).

Remark 12 This result is the quasi-shuffle analog of the statement that the descent
algebra of a graded connected cocommutative Hopf algebra H (the convolution
subalgebra of End(H) generated by the graded projections) is equivalently generated
by the graded components of the convolution logarithm of the identity [34].

11 Structure of the Decorated Quasi-Shuffle Operad

In this section, we show that the decorated quasi-shuffle operad QShd is free as a
NSh algebra using the bidendriform techniques developed in [14].

We denote byQShd
+ the subspace of the decorated quasi-shuffle operad generated

by nonempty decorated packed words. As for a well-chosen graded quasi-shuffle
bialgebra A the action of packed words is faithful, we deduce that QShd

+ inherits a
NQSh algebra structure by:
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(σ, d) ≺ (τ , e)

=
∑

Pack(u(1)...u(k))=σ,
Pack(u(k+1)...u(k+l))=τ ,

min(u(1)...u(k))<min(u(k+1)...u(k+l))

(
u(1) . . . u(k) u(k + 1) . . . u(k + l)
d(1) . . . d(k) e(1) . . . e(l)

)
,

(σ, d) 	 (τ , e)

=
∑

Pack(u(1)...u(k))=σ,
Pack(u(k+1)...u(k+l))=τ ,

min(u(1)...u(k))>min(u(k+1)...u(k+l))

(
u(1) . . . u(k) u(k + 1) . . . u(k + l)
d(1) . . . d(k) e(1) . . . e(l)

)
,

(σ, d) • (τ , e)

=
∑

Pack(u(1)...u(k))=σ,
Pack(u(k+1)...u(k+l))=τ ,

min(u(1)...u(k))=min(u(k+1)...u(k+l))

(
u(1) . . . u(k) u(k + 1) . . . u(k + l)
d(1) . . . d(k) e(1) . . . e(l)

)
.

Notations. Let (σ, d) be a decorated packed word of length k and let I ⊆ {1, . . . ,
max(σ)}. We put σ−1(I ) = {i1, . . . , il}, with i1 < . . . < il . The decorated packed
word (σ, d)|I is (Pack(σ(i1), . . . ,σ(il)), (d(i1), . . . , d(il))).

Definition 12 We define two coproducts on QShd
+ in the following way: for all

nonempty packed word (σ, d),

Δ≺(σ, d) =
max(σ)−1∑

i=σ(1)

(σ, d)|{1,...,i} ⊗ (σ, d)|{{i+1,...,max(σ)},

Δ	(σ, d) =
σ(1)−1∑

i=1

(σ, d)|{1,...,i} ⊗ (σ, d)|{{i+1,...,max(σ)}.

Then QShd
+ is a NSh coalgebra, that is to say:

(Δ≺ ⊗ I d) ◦ Δ≺ = (I d ⊗ (Δ≺ + Δ	)) ◦ Δ≺, (32)

(Δ	 ⊗ I d) ◦ Δ≺ = (I d ⊗ Δ≺) ◦ Δ	, (33)

((Δ≺ + Δ	) ⊗ I d) ◦ Δ	 = (I d ⊗ Δ	) ◦ Δ	. (34)

For all a, b ∈ QShd
+:

Δ≺(a ≺ b) = a′
≺ ≺ b′ ⊗ a′′

≺ � b′′ + a′
≺ ≺ b ⊗ a′′

≺ + a′
≺ ⊗ a′′

≺ � b

+ a ≺ b′ ⊗ b′′ + a ⊗ b, (35)

Δ≺(a 	 b) = a′
≺ 	 b′ ⊗ a′′

≺ � b′′ + a 	 b′ ⊗ b′′ + a′
≺ 	 b ⊗ a′′

≺, (36)

Δ≺(a • b) = a′
≺ • b′ ⊗ a′′

≺ � b′′ + a′
≺ • b ⊗ a′′

≺ + a • b′ ⊗ b′′, (37)

Δ	(a ≺ b) = a′
	 ≺ b′ ⊗ a′′

	 � b′′ + a′
	 ≺ b ⊗ a′′

	 + a′
	 ⊗ a′′

	 � b, (38)
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Δ	(a 	 b) = a′
	 	 b′′ ⊗ a′′

	 � b′′ + a′
	 	 b ⊗ a′′

	 + b′
	 ⊗ a � b′′ + b ⊗ a, (39)

Δ	(a • b) = a′
	 • b′ ⊗ a′′

	 � b′′ + a′
	 • b ⊗ a′′

	. (40)

Proof Let (σ, d) be a decorated packed word. Then:

(Δ≺ ⊗ I d) ◦ Δ≺(σ, d) = (I d ⊗ (Δ≺ + Δ	)) ◦ Δ≺(σ, d)

=
∑

σ(1)≤i< j≤max(σ)−1

(σ, d)|{1,...,i} ⊗ (σ, d)|{i+1,..., j} ⊗ (σ, d)|{ j+1,...,max(σ)},

(Δ	 ⊗ I d) ◦ Δ≺(σ, d) = (I d ⊗ Δ≺) ◦ Δ	(σ, d)

=
∑

1≤i<σ(1)≤ j≤max(σ)−1

(σ, d)|{1,...,i} ⊗ (σ, d)|{i+1,..., j} ⊗ (σ, d)|{ j+1,...,max(σ)},

((Δ≺ + Δ	) ⊗ I d) ◦ Δ	(σ, d) = (I d ⊗ Δ	) ◦ Δ	(σ, d)

=
∑

1≤i< j<σ(1)

(σ, d)|{1,...,i} ⊗ (σ, d)|{i+1,..., j} ⊗ (σ, d)|{ j+1,...,max(σ)}.

Let us prove (35), for a = (σ, d) and b = (τ , e) two decorated packed words of
respective length k and l. We put:

a ⊗ b =
(

σ(1) . . . σ(k) τ (1) + max(σ) . . . τ (l) + max(τ )

d(1) . . . d(k) e(1) . . . e(l)

)
.

Then a ≺ b is the sum of all decorated packed words obtained by quasi-shuffling in
all possible ways the values of the letters in the first row of a ⊗ b, in such a way
that 1 occurs only in the first k columns; Δ≺(a ⊗ b) is then given by separating the
letters of the first row of these decorated packed words in such a way that the first
letter appears in the left side. So at least one of the k first letters appears on the left
side. This gives five possible cases:

1. All the k first letters are on the left and all the l last letters are on the right.
Necessarily, this case comes from the decorated packed word a ⊗ b, and this
gives the term a ⊗ b.

2. All the k first letters are on the left and at least one of the l last letters is on the
left. This gives the term a ≺ b′ ⊗ b′′.

3. At least one of the k first letters is on the right and all the l last letters are on the
left. This gives the term a′≺ ≺ b ⊗ a′′≺.

4. At least one of the k first letters is on the right and all the l last letters are on the
right. This gives the term a′≺ ⊗ a′′≺ � b.

5. At least one of the k first letters is on the right and there are some of the l last
letters on both sides. This gives the term a′≺ ≺ b′ ⊗ a′′≺ � b′′.
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Summing all these terms, we obtain (35). The other compatibilities can be proved
similarly. �

Remark 13 We also obtain, by addition:

Δ≺(a � b) = a′
≺ � b′ ⊗ a′′

≺ � b′′ + a′
≺ � b ⊗ a′′

≺ + a′
≺ ⊗ a′′

≺ � b

+ a � b′ ⊗ b′′ + a ⊗ b, (41)

Δ≺(a 
 b) = a′
≺ 
 b′ ⊗ a′′

≺ � b′′ + a 
 b′ ⊗ b′′ + a′
≺ 
 b ⊗ a′′

≺, (42)

Δ	(a � b) = a′
	 � b′ ⊗ a′′

	 � b′′ + a′
	 � b ⊗ a′′

	 + a′
	 ⊗ a′′

	 � b, (43)

Δ	(a 
 b) = a′
	 
 b′′ ⊗ a′′

	 � b′′ + a′
	 
 b ⊗ a′′

	 + b′
	 ⊗ a � b′′ + b ⊗ a; (44)

Δ̃(a ≺ b) = a′ ≺ b′ ⊗ a′′ � b′′ + a′ ≺ b ⊗ a′′ + a′ ⊗ a′′ � b
+ a ≺ b′ ⊗ b′′ + a ⊗ b, (45)

Δ̃(a 	 b) = a′ 	 b′ ⊗ a′′ � b′′ + a′ 	 b ⊗ a′′ + a 	 b′ ⊗ b′′

+ b′ ⊗ a � b′′ + b ⊗ a, (46)

Δ̃(a • b) = a′ • b′ ⊗ a′′ � b′′ + a′ • b ⊗ a′′ + a • b′ ⊗ b′′; (47)

Δ̃(a � b) = a′ � b′ ⊗ a′′ � b′′ + a′ � b ⊗ a′′ + a′ ⊗ a′′ � b
+ a � b′ ⊗ b′′ + a ⊗ b, (48)

Δ̃(a 
 b) = a′ 
 b′ ⊗ a′′ � b′′ + a′ 
 b ⊗ a′′ + a 
 b′ ⊗ b′′

+ b′ ⊗ a � b′′ + b ⊗ a. (49)

Consequently, (QShd
+,	op,�op,Δ

op
	 ,Δ

op
≺ ) and (QShd

+,
op,≺op,Δ
op
	 ,Δ

op
≺ ) are

bidendriform bialgebras. By the bidendriform rigidity theorem of [14], we have:

Theorem 5 (QShd
+,�,	) and (QShd

+,≺,
) are free NSh algebras.

Forgetting the decoration, we get back theorem 2.5 of [32], up to a permutation
of maximum and minimum, and first and last letters.

Forgeting again the decorations, we obtain a NQSh algebra structure on QSh+
and a NSh coalgebra structure, with compatibilities (35)–(40). Let us describe, for
completeness sake, the dual (half-)products and coproducts. The elements of the dual
basis of packed words are denoted by Nu .

Proposition 17 1. For all nonempty packed words σ, τ , of respective lengths k
and l:

Nσ ≺ Nτ =
∑

α∈Sh≺
k,l

N(σ⊗τ )◦α−1, Nσ 	 Nτ =
∑

α∈Sh	
k,l

N(σ⊗τ )◦α−1 .
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2. For any nonempty packed word σ of length n, denoting by f (σ) the index of the
first appearance of 1 in σ and by l(σ) the index of the last appearance of 1 in σ:

Δ̃≺(Nσ) =
n−1∑

k=l(σ)

Npack(σ(1)...σ(k)) ⊗ Npack(σ(k+1)...σ(n)),

Δ̃	(Nσ) =
f (σ)−1∑

k=1

Npack(σ(1)...σ(k)) ⊗ Npack(σ(k+1)...σ(n)),

Δ̃•(Nσ) =
l(σ)−1∑

k= f (σ)

Npack(σ(1)...σ(k)) ⊗ Npack(σ(k+1)...σ(n)).

12 The Quasi-Shuffle Analog of the Descent Algebra

Recall that, given a graded NQSh bialgebra A, we introduced QDesc(A), the quasi-
shuffle analogue of the descent algebra defined as the NQSh subalgebra of End(A)

generated by the graded projections or, equivalently, by the graded components of the
projection on Prim(A). We write QDesc for the corresponding NQSh subalgebra
of QShd (the subalgebra generated by the

(1
d

)
).

Recall first some properties of NSh algebras.

Notations. Let n ≥ 1.

1. a. Let TSch(n) be the set of Schröder trees of degree n, that is to say reduced
planar rooted trees with n + 1 leaves.

b. For any set D, let TD
Sch(n) be the set of reduced planar rooted trees t with

n + 1 leaves, such that the n spaces between the leaves of t are decorated by
elements of D.

c. T
D
Sch =

⊔

n≥1

T
D
Sch(n).

2. Let t1, . . . , tk ∈ T
N

∗
Sch and let d1, . . . , dk−1 ∈ N

∗. The element t1 ∨d1 . . . ∨dk−1 tk
is obtained by grafting t1, . . . , tk on a common root; for all 1 ≤ i ≤ k, the space
between the right leaf of ti and the left leaf of ti+1 is decorated by di .

Following [28], TD
Sch is a basis of the free NQSh algebra generated by D,

NQSh(D). The three products are inductively defined: if t = t1 ∨d1 . . . ∨dk−1 tk and
t ′ = t ′1 ∨d ′

1
. . . ∨d ′

l−1
t ′l ∈ TSch(D), then

t 	 t ′ = (t � t ′1) ∨d ′
1
t ′2 ∨d ′

2
. . . ∨d ′

l−1
t ′l ,

t ≺ t ′ = t1 ∨d1 . . . ∨ tk−1 ∨dk−2 . . . ∨dk−1 (tk � t ′),
t • t ′ = t1 ∨d1 . . . ∨dk−1 (tk � t ′1) ∨d ′

1
. . . ∨d ′

l−1
t ′l .
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Sending any non binary tree to 0, we obtain the free NSh algebra NSh(D) gen-
erated by D. A basis is given by the set of planar binary trees Tbin(D) ⊆ TSch(D)

whose spaces between the leaves are decorated by elements of D. The products are
given in the following way: if t = t1 ∨d t2 and t ′ = t ′1 ∨d ′ t ′2, then:

t 	 t ′ = (t � t ′1) ∨d ′ t ′2,
t ≺ t ′ = t1 ∨d (t2 � t ′).

We denote by NQSh(1) and by NSh(1) the free NQSh and the free NSh algebra
on one generator. The set TSch is a basis of NQSh(1), and Tbin is a basis of NSh(1).

Example 5

TSch(0) = Tbin(0) = { }, TSch(1) = Tbin(1) = {∨},

TSch(2) =
⎧
⎨

⎩
∨∨ , ∨∨, ∨

⎫
⎬

⎭ , Tbin(2) =
⎧
⎨

⎩
∨∨ , ∨∨

⎫
⎬

⎭ ,

TSch(3) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∨∨
∨

, ∨∨
∨

, ∨∨
∨

, ∨∨
∨

��
, ∨∨ , ∨∨ , ∨∨ ,

∨∨ , ∨∨ ,
��∨

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, Tbin(3) =

⎧
⎪⎨

⎪⎩
∨∨

∨
, ∨∨

∨
, ∨∨

∨
, ∨∨

∨
,

��

⎫
⎪⎬

⎪⎭
.

We define now inductively a surjective map � from the set of packed words
decorated by D into TD

Sch in the following way:

1. �(1) = .
2. If w = (σ, d), let σ−1(1) = {i1, . . . , ik}, i1 < . . . < ik . We put:

w1 = Pack

(
σ(1) . . . σ(i1 − 1)
d(1) . . . d(i1 − 1)

)
,

w2 = Pack

(
σ(i1 + 1) . . . σ(i2 − 1)
d(i1 + 1) . . . d(i2 − 1)

)
,

...

wk+1 = Pack

(
σ(ik + 1) . . . σ(n)

d(ik + 1) . . . d(n)

)
.

Then:
�(σ, d) = �(w1) ∨d(i1) . . . ∨d(ik ) �(wk+1).
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If w = (σ, d) is a decorated packed word of length n, �(w) is an element of
T

D
Sch(n) such that the spaces between the leaves are decorated from left to right by

d(1), . . . , d(n). In particular �
(1
d

)
is the tree ∨ d-decorated.

For any t ∈ T
N

∗
Sch , we put:

Ω(t) =
∑

σ∈Sur j,�(σ)=t

σ ∈ QShd
+.

We extend Ω : NQSh(N∗) −→ QShd
+ by linearity map. It is clearly injective.

Example 6

Ω(∨ ) = (1), Ω( ∨∨ ) = (21), Ω( ∨∨) = (12),

Ω(∨ ) = (11), Ω( ∨∨
∨

) = (321), Ω( ∨∨
∨

) = (231),

Ω( ∨∨
∨

) = (132), Ω( ∨∨
∨
) = (123), Ω(

��
) = (212) + (312) + (213),

Ω( ∨∨ ) = (221), Ω( ∨∨ ) = (211), Ω( ∨∨ ) = (121),

Ω( ∨∨ ) = (112), Ω( ∨∨ ) = (122), Ω(
��∨ ) = (111).

Theorem 6 The map Ω is an injective morphism of NQSh algebras. Consequently,
QDesc, the NQSh subalgebra ofQShd

+ generated by the elements
(1
d

)
, d ≥ 1, is free

and isomorphic to NQSh(N∗).

Proof Let w = (σ, d) be a packed word of length n and let i1, . . . , ik be integers
such that i1 + . . . + ik = n. For all d1, . . . , dk−1 ≥ 1, we put:

insd1,...,dk−1
i1,...,ik

(w)

=
(

σ(1) + 1 . . . σ(i1) + 1 1 . . . 1 σ(i1 + . . . + ik−1 + 1) + 1 . . . σ(n) + 1
d(1) . . . d(i1) d1 . . . dk−1 d(i1 + . . . + ik−1 + 1) . . . d(n)

)
.

It is not difficult to show that:

Ω(t1 ∨d1 . . . ∨dk−1 tk) = insd1,...,dk−1
|t1|,...,|tk | (Ω(t1) � . . . � Ω(tk)).

Hence, if t = t1 ∨d1 . . . ∨dk−1 tk and t ′ = t ′1 ∨d ′
1
. . . ∨d ′

l−1
t ′l :
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Ω(t) 	 Ω(t ′) = ins
d ′
1,...,d

′
l−1

|t |+|t ′1|,...,|t ′l |(Ω(t) � Ω(t ′1) � . . . � Ω(t ′l )),

Ω(t) ≺ Ω(t ′) = insd1,...,dk−1
|t1|,...,|tk |+|t |(Ω(t1) � . . . � Ω(tk) � Ω(t ′)),

Ω(t) • Ω(t ′) = ins
d1,...,dk−1,d ′

1,...,d
′
l−1

[t1|,...,|tk |+|t ′1|,...,|t ′l |(Ω(t1) � . . . � Ω(tk) � Ω(t ′1) � . . . � Ω(t ′l )).

An induction on m + n proves that for t ∈ T
N

∗
Sch(m), t ′ ∈ T

N
∗

Sch(n):

Ω(t 	 t ′) = Ω(t) 	 Ω(t ′), Ω(t ≺ t ′) = Ω(t) ≺ Ω(t ′), Ω(t • t ′) = Ω(t) • Ω(t ′).

So Ω is an injective morphism of NQSh algebras. �

13 Lie Theory, Continued

In classical Lie theory, it has been realized progressively that many applications of
the combinatorial part of the theory rely on the freeness of theMalvenuto-Reutenauer
algebra of permutations (for us, the operad Sh or, equivalently, the algebra of free
quasi-symmetric functions FQSym) as a noncommutative shuffle bialgebra (and
more precisely, as a bidendriform bialgebra [14]). As such, Sh has two remarkable
subalgebras. The first is PBT, the noncommutative shuffle sub-bialgebra freely gen-
erated as a noncommutative shuffle algebra by the identity permutation in S1 (in
particular PBT is isomorphic to NSH(1), the free NQSh algebra on one generator).
Its elements can be understood as linear combinations of planar binary trees (PBT
can be constructed directly as a subspace of the direct sum of the symmetric group
algebras is by using a construction going back to Viennot: a natural partition of the
symmetric groups parametrized by planar binary trees), see [21, 22, 27]. The second,
Desc, is known as the descent algebra [38], is isomorphic to Sym, the Hopf algebra
of noncommutative symmetric functions, and is the sub Hopf algebra of PBT and
Sh freely generated as an associative algebra by (all) the identity permutations using
the convolution product �. We get:

Desc = Sym ⊂ PBT = NSH(1) ⊂ Sh = FQSym.

The situation is similar when moving to surjections, that is toQSh. As we already
saw, the noncommutative quasi-shuffle sub-bialgebra freely generated by the identity
permutation inS1 (i.e. the packedword 1) is the free NQSh algebra on one generator,
identified with ST, the linear span of Schröder trees. The sub Hopf algebra of ST
andQSh freely generated as an associative algebra by (all) the identity permutations
using the convolution product � is isomorphic (using e.g. that it is a free associative
algebra over a countable set of generators) to Desc. We get:

Desc = Sym ⊂ ST = NQSH(1) ⊂ QSh = WQSym.
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The aim of the present and last section is to compare explicitely the two sequences
of inclusions. The existence of a Hopf algebra map from Sh = FQSym to QSh =
WQSym was obtained in [17, Corollary 18]. The existence of a map comparing the
two copies of the descent algebra follows, a simple direct proof was given in [8,
Lemma 7.1]. We aim here at refining these results and extend the constructions to
planar and Schröder trees.

We start by showing how planar trees (PBT) can be embedded into Schröder trees
(ST).

Definition 13 Let t, t ′ ∈ TSch .

1. We denote by R(t) the set of internal edges of t which are right, that is to say
edges e such that:

• both extremities of e are internal vertices.
• e is the edge which is at most on the right among all the edges with the same
origin as e.

2. Let I ⊆ R(T ). We denote by t/I the planar reduced tree obtained by contracting
all the edges e ∈ I .

3. We shall say that t ′ ≤ t if there exists I ⊆ R(t), such that t ′ = t/I .

Remark 14 If I ⊆ R(t), then R(t/I ) = R(t) \ I . Moreover, if I, J ⊆ R(t) are dis-
joint, then (t/I )/J = t/(I � J ). This implies that ≤ is a partial order on TSch .

Example 7 Here are the Hasse graphs of TSch(2) and TSch(3).

∨∨ ∨∨

∨

; ∨∨
∨

∨∨
∨

�� ∨∨
∨

∨∨
∨

∨∨ ∨∨ ∨∨ ∨∨ ∨∨

��∨

It is possible to prove the following points:

• For any t ∈ TSch , there exists a unique b(t) ∈ Tbin , such that t ≤ b(t). We denote
by I (t) the unique subset I ⊆ R(b(t)), such that t = b(t)/I .

• For any t, t ′ ∈ TSch , t ≤ t ′ if, and only if, b(t) = b(t ′) and I (t) ⊇ I (t ′).
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Theorem 7 The followingmap is an injectivemorphismof bidendriformbialgebras:

ψ :
⎧
⎨

⎩

(PBT,≺,	,Δ≺,Δ	) −→ (ST,�,	,Δ≺,Δ	)

t ∈ Tbin −→
∑

t ′≤t

t ′.

Proof By universal properties of free objects, there exists a unique morphism of
noncommutative shuffle algebras ψ′ from (NSh(1) = PBT,≺,	) to (NQSh(1) =
ST,�,	), sending ∨ to ∨ . As ∨ is a primitive element (in the bidendriform
sense) for both sides, ψ′ is a morphism of bidendriform bialgebras. We shall prove
that ψ = ψ′.

Let us show that for all t1, t2 ∈ Tbin ,

ψ′(t1 ∨ t2) = ψ′(t1) 	 ∨ � ψ′(t2),

ψ(t1 ∨ t2) = ψ(t1) 	 ∨ � ψ(t2).

The identity ψ = ψ′ will follow by induction.
The identity involving ψ′ follows immediately from the identity, in Tbin:

t1 ∨ t2 = t1 	 ∨ ≺ t2.

Let us consider the action of ψ. We put t = t1 ∨ t2. We first consider the case
where t2 = . In this case, R(t) = R(t1) and for any I ⊆ R(t1), t/I = (t1/I ) ∨ .
Hence:

ψ(t) =
∑

I⊆R(t1)

(t1/I ) ∨ =
⎛

⎝
∑

I⊆R(t1)

t1/I

⎞

⎠ 	 ∨ = ψ(t1) 	 ∨ � .

Wenowconsider the casewhere t2 �= . Let r be the internal edge of t relating the root
of t to the root of t2. Then R(t) = R(t1) � R(t2) � {r}. Let I1 ⊆ R(t1), I2 ⊆ R(t2).
Then:

t/I1 � I2 = (t1/I1) ∨ (t2/I2) = (t1/I1) 	 ∨ ≺ (t2/I2).

We put t2/ i2 = t3 ∨ . . . ∨ tk . Then:

t/I1 � I2 � {r} = t1/I1 ∨ t3 ∨ . . . ∨ tk
= (t1/I1 ∨ ) • (t3 ∨ . . . ∨ tk)

= ((t1/I1) 	 ∨ ) • (t2/I2)

= (t1/I1) 	 ∨ • (t2/I2).
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Hence:

ψ(t) =
∑

I1⊆R(t1),I2⊆R(t2)

(t1/I1) 	 ∨ ≺ (t2/I2) + (t1/I1) 	 ∨ • (t2/I2)

=
∑

I1⊆R(t1),I2⊆R(t2)

(t1/I1) 	 ∨ � (t2/I2)

= ψ(t1) 	 ∨ � ψ(t2).

So ψ = ψ′. As ≤ is an order, ψ is injective. �

We investigate now how the injection of PBT into ST behaves with respect to the
respective embeddings into Sh and QSh. We consider the morphism:

Ω :
⎧
⎨

⎩

ST = NQSh(1) −→ QSh
t −→

∑

σ,�(σ)=t

σ.

There exists a unique map from PBT = NSh(1) to Sh, denoted by Ω ′, making the
following diagram commuting:

ST Ω QSh

PBT
Ω ′ Sh

where the vertical arrows are the canonical projection. For any t ∈ Tbin:

Ω ′(t) =
∑

σ∈S,�(σ)=t

σ.

Example 8

Ω ′(∨ ) = (1), Ω ′( ∨∨ ) = (21), Ω ′( ∨∨) = (12),

Ω ′( ∨∨
∨

) = (321), Ω ′( ∨∨
∨

) = (231), Ω ′( ∨∨
∨

) = (132),

Ω ′( ∨∨
∨
) = (123), Ω ′( ��

) = (312) + (213).
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Proposition 18 [15] Let σ, τ be two packed words of the same length n. We shall
say that σ ≤ τ if:

1. If i, j ∈ [n] and σ(i) ≤ σ( j), then τ (i) ≤ τ ( j).
2. If i, j ∈ [n], i < j and σ(i) > σ( j), then τ (i) > τ ( j).

Then ≤ is a partial order. Moreover, the following map is a Hopf algebra morphism:

Ψ :
⎧
⎨

⎩

Sh −→ QSh
σ −→

∑

τ≤σ

τ .

Here are the Hasse graphs of Sur j2 and Sur j3:
(12) (21)

(11)

;

(123)

(122) (112)

(111)

(132)

(121)

(213)

(212)

(231)

(221)

(312)

(211)

(321)

Lemma 5 For any packed word σ, we put ι(σ) = min{i | σ(i) = 1}. If σ ≤ τ , then
ι(σ) = ι(τ ).

Proof We put i = ι(τ ). For any j , τ ( j) ≥ τ (i), so σ( j) ≥ σ(i) as σ ≤ τ . So σ(i) =
1, and by definition ι(σ) ≤ i . Let us assume that j < i . By definition of ι(τ ), τ ( j) >

τ (i). As σ ≤ τ , σ( j) > σ(i), so σ( j) �= 1, and ι(σ) �= j . So ι(σ) = i . �

Proposition 19 Themap � : Sur j −→ TSch is amorphism of posets: for any packed
words σ, τ ,

σ ≤ τ =⇒ �(σ) ≤ �(τ ).

We define a map ω : TSch −→ Sur j by:

• ω( ) = 1,
• ω(t1 ∨ . . . ∨ tk) = (ω(t1)[1])1 . . . 1(ω(tk)[1]).
Then � ◦ ω = I dTSch , and ω is a morphism of posets: for any t, t ′ ∈ TSch,

t ≤ t ′ =⇒ ω(t) ≤ ω(t ′).
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Proof Let us prove that � is a morphism. Let σ, τ be two packed words, such that
σ ≤ τ ; let us prove that �(σ) ≤ �(τ ).We proceed by induction on the common length
n of σ and τ . If n = 0 or 1, the result is obvious. Let us assume the result at all rank
< n. As ι(σ) = ι(τ ), we can write σ = σ′1σ′′ and τ = τ ′1τ ′′, where σ′ and τ ′ have
the same length and do not contain any 1. By restriction, Pack(σ′) ≤ Pack(τ ′) and
Pack(σ′′) ≤ Pack(τ ′′). By the induction hypothesis, s0 = �(σ′) ≤ �(τ ′) = t0 and
s1 ∨ . . . ∨ sk = �(σ′′) ≤ �(τ ′′) = t1 ∨ . . . ∨ tl . Then:

�(σ) = s0 ∨ s1 ∨ . . . ∨ . . . sk ≤ t0 ∨ t1 ∨ . . . ∨ tl = �(τ ).

Let us now prove that ω is a morphism. Let t , t ′ ∈ TSch , such that t ≤ t ′. By
transitivity, we can assume that there exists e ∈ R(t ′), such that t = t ′|e. Let us prove
that ω(t) ≤ ω(t ′). We proceed by induction on the common degree n of t and t ′. The
result is obvious if n = 0 or 1. Let us assume the result at all ranks < n. We put
t ′ = t ′1 ∨ . . . ∨ t ′k . If e is an edge of t ′i , then t = t ′1 ∨ . . . ∨ (t ′i )|I ∨ . . . ∨ t ′k . We put
σ′
j = ω(t ′j ) and σ j = ω(t j ) for all j . If j �= i , σ′

j = σ j ; by the induction hypothesis,
σi ≤ σ′

i . Then:

ω(t) = (σ1[1])1 . . . 1(σi [1])1 . . . 1(σk[1])
≤ (σ1[1])1 . . . 1(σ′

i [1])1 . . . 1(σk[1]) = ω(t ′).

If e is the edge relation the root of t to the root of t ′k , putting t = t1 ∨ . . . ∨ tk ∨
. . . ∨ tl , then t ′i = ti if i < k and t ′k = tk ∨ . . . ∨ tl . Putting σi = ω(ti ), we obtain:

ω(t) = (σ1[1])1 . . . 1(σk[1])1 . . . 1(σl [1]),
ω(t ′) = (σ1[1])1 . . . 1(σk[2])2 . . . 2(σl[2]).

It is not difficult to prove that ω(t) ≤ ω(t ′). �

Remark 15 There are similar results for decorated packed words, replacing NSh(1)
and NQSh(1) by NSh(N∗n) and NQSh(N∗).

Example 9

ω(∨ ) = (1), ω( ∨∨ ) = (21), ω( ∨∨) = (12), ω(∨ ) = (11),

ω( ∨∨
∨

) = (321), ω( ∨∨
∨

) = (231), ω( ∨∨
∨

) = (132), ω( ∨∨
∨
) = (123),

ω(
��

) = (212), ω( ∨∨ ) = (221), ω( ∨∨ ) = (211), ω( ∨∨ ) = (121),

ω( ∨∨ ) = (112), ω( ∨∨ ) = (122), ω(
��∨ ) = (111).
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Proposition 20 The map Ψ is a bidendriform bialgebra morphism from
(Sh,≺,	,Δ≺,Δ	) to (QSh,�,	,Δ≺,Δ	). Moreover, the following diagram
commutes:

PBT
ψ

Ω ′

ST

Ω

Sh
Ψ

QSh

Proof Let σ be a packed word. We put:

A = {(k, τ ) | τ ≤ σ, k ∈ [max(τ )]},
B = {(k, τ ′, τ ′′) | k ∈ [max(σ)], τ ′ ≤ σ|[k], τ ′′ ≤ Pack(σ|[max(σ)]\[k]).

As Ψ is a coalgebra morphism,

Δ ◦ Ψ (σ) =
∑

τ≤σ

max(τ )∑

k=0

τ|[k] ⊗ Pack(τ|[max(τ )]\[k])

=
∑

(k,τ )∈A

τ|[k] ⊗ Pack(τ|[max(τ )]\[k])

= (Ψ ⊗ Ψ ) ◦ Δ(σ) =
max(σ)∑

k=0

∑

τ ′≤σ|[k]
τ ′′≤Pack(σ|[max(σ)]\[k])

τ ′ ⊗ τ ′′

=
∑

(l,τ ′,τ ′′)∈B
τ ′ ⊗ τ ′′.

Hence, there exists a bijection F : A −→ B, such that, if F(k, τ ) = (l, τ ′, τ ′′), then:

• τ ′ = τ|[k] and τ ′′ = Pack(τ|[max(τ )]\[k]);
• l is the unique integer such that τ ′ ≤ σ|[l].

If k ≥ τ (1), then the first letter of τ appears in τ|[k], so the first letter of σ appears also
in σ|[l]. Consequently l ≥ σ(1). Similarly, if l ≥ σ(1), then k ≥ τ (1). We obtain:

Δ≺ ◦ Ψ (σ) =
=

∑

(k,τ )∈A,k≥τ (1)

τ|[k] ⊗ Pack(τ|[max(τ )]\[k])

=
∑

(l,τ ′,τ ′′)∈B,l≥σ(1)

τ ′ ⊗ τ ′′

= (Ψ ⊗ Ψ ) ◦ Δ≺(σ)

So Ψ is a morphism of dendriform coalgebras.
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Let σ, τ be two permutations. We put:

C = {(α, ζ) | α ∈ Sh(max(σ),max(τ )), ζ ≤ α ◦ (σ ⊗ τ )},
D = {(β,σ′, τ ′) | σ′ ≤ σ, τ ′ ≤ τ ,β ∈ QSh(max(σ′),max(τ ′))},

Then:

Ψ (σ τ ) =
∑

α∈Sh(max(σ),max(τ ))

∑

ζ≤α◦(σ⊗τ )

ζ

=
∑

(α,ζ)∈C
ζ

= Ψ (σ)−Ψ (τ ) =
∑

σ′≤σ
τ ′≤τ

∑

β∈QSh(max(σ′),max(τ ′))

β ◦ (σ′ ⊗ τ ′)

=
∑

(β,σ′,τ ′)∈D
β ◦ (σ′ ⊗ τ ′).

Hence, there exists a bijectionG : D −→ C , such that ifG(β,σ′, τ ′) = (α, ζ), then:

1. ζ = β ◦ (σ′ ⊗ τ ′);
2. α is the unique (max(σ),max(τ ))-shuffle such that ζ ≤ α ◦ (σ ⊗ τ ).

Let us assume that α(1) = 1, and let us prove that β(1) = 1. Denoting by k the
length of σ, 1 appears in the k first letters of ζ ′ = α ◦ (σ ⊗ τ ). Let i ∈ [k], such that
ζ ′(i) = 1. For any j , ζ ′(i) ≤ ζ ′( j). As ζ ≤ ζ ′, ζ(i) ≤ ζ( j), so ζ(i) = 1: 1 appears
among the k first letters of ζ, so β(1) = 1.

Let us assume that α(1) �= 1. Then 1 does not appear in the first k letters of ζ ′.
Let j > k, such that ζ ′( j) = 1. For all i ∈ [k], ζ ′(i) > ζ ′( j) and i < j . As ζ ≤ ζ ′,
ζ(i) > ζ( j), so ζ(i) �= 1: 1 does not appear among the first k letters of ζ, soβ(1) �= 1.
Finally, α(1) = 1 if, and only if, β(1) = 1. Hence:

Ψ (σ ≺ τ ) =
∑

(α,ζ)∈C,α(1)=1

ζ =
∑

(β,σ′,τ ′)∈D,β(1)=1

β ◦ (σ′ ⊗ τ ′) = Ψ (σ) � Ψ (τ ).

By composition, Ω ◦ ψ and Ψ ◦ Ω are both noncommutative shuffle algebra

morphisms, sending ∨ to (1), so, since PBT is a free NSh algebra, they are
equal. �
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