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Abstract We describe some particular finite sums of multiple zeta values which arise
from J. Ecalle’s “arborification”, a process which can be described as a surjective
Hopf algebra morphism from the Hopf algebra of decorated rooted forests onto a
Hopf algebra of shuffles or quasi-shuffles. This formalism holds for both the iterated
sum picture and the iterated integral picture. It involves a decoration of the forests
by the positive integers in the first case, by only two colours in the second case.
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1 Introduction

Multiple zeta values are defined by the following nested sums:

1
Cny,vnyny) = Z T (D

ki>ky>->k,>1 1

where the 7 ;’s are positive integers. The nested sum (1) converges as long asn; > 2.
The integer r is the depth, whereas the sum p := n; + - - - n, is the weight. Although
the multiple zeta values of depth one and two were already known by L. Euler, the
full set of multiple zeta values first appears in 1981 in a preprint of Jean Ecalle under
the name “moule (27, in the context of resurgence theory in complex analysis [9,
Page 429], together with its companion (2 now known as the set of multiple star zeta
values. The systematic study begins a decade later with the works of Hoffman [15]
and Zagier [26]. It has been remarked by Kontsevich ([26], (see also the intriguing
precursory Remark 4 on Page 431 in [9]) that multiple zeta values admit another
representation by iterated integrals, namely:
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duy du,
s,y = | .- , 2
S, o) / /ofupf...sulfl o) oy @

with pj(u) =1—uif j € {n;,n; +ny,ny +ny+ns3,..., p} and ¢;(u) = u oth-
erwise. For later use we set:

fo(u) :==u, fiw) :=1—u.

Iterated integral representation (2) is the starting point to the modern approach in
terms of mixed Tate motives over Z, already outlined in [26] and widely developed
in the literature since then [1-3, 7, 24]. Multiple zeta values verify a lot of polyno-
mial relations with integer coefficients: the representation (1) by nested sums leads
to quasi-shuffle relations, whereas representation (2) by iterated integrals leads to
shuffle relations. A third family of relations, the regularization relations, comes from
a subtle interplay between the first two families, involving divergent multiple zeta
sums ((1, n, . ..n,). A representative example of each family (in the order above) is
given by:

€(2,3) +¢(3,2) +¢(5) = C2)¢3), 3)
€(2,3) +3¢(3,2) +6¢(4, 1) = ((2)¢3), 4)
2.1 =CO). o)

It is conjectured that these three families include all possible polynomial rela-

C(2k)

tions between multiple zeta values. Note that the rationality of the quotient ——,
v

proved by L. Euler, does not yield supplementary polynomial identities. As an exam-
2 4

ple, ((2) = % and ((4) = 79r_0 yield 2¢(2)? = 5((4), a relation which can also be
deduced from quasi-shuffle, shuffle and regularization relations.

It is convenient to write multiple zeta values in terms of words. In view of repre-
sentations (1) and (2), this can be done in two different ways. We consider the two
alphabets:

X = {xo, x1}, Yi=A{y,y2, .. 1, (6)

and we denote by X* (resp. Y*) the set of words with letters in X (resp. Y). The
vector space Q(X) freely generated by X* is a commutative algebra for the shuffle
product, which is defined by:

W1 V) W (Vpg1 - Vpyg) == Y Uyt Uy (7

Optq
oeSh(p,q)

withv; € X, j € {l,..., p+q}. Here, Sh(p, q) is the set of (p, g)-shuffies, i.e.
permutations o of {1, ..., p+g¢g}suchthato; <--- <opandopy) < -+ < Opyy.
The vector space Q(Y) freely generated by Y* is a commutative algebra for the
quasi-shuffle product, which is defined as follows: a (p, q)-quasi-shuffle of type r
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isasurjectiono : {1,...,p+¢g}—>{l,...,p+q —r}suchthato; <---0, and
Op+1 < -+ < Opyq. Denoting by Qsh(p, g; r) the set of (p, g)-quasi-shuffles of
type r, the formula for the quasi-shuffle product a1 is:

(Wi wp) MWt Wpeg) ==Y Y wiewl, (8)

r=0 0eQsh(p,q:r)

withw; €Y, j e{l,..., p+q}, and where w? is the internal product of the letters
in the set o' ({j}), which contains one or two elements. The internal product is
defined by [yky/] := = Vet

We denote by Y . the submonoid of words w = wy - - - w, with w; # y;, and
we set X7 = = xoX*x;. An injective monoid morphism is given by changing letter
yn into the word x;~ "X, namely:

5:Y" — X*
n—1

-1
Ynytet Yn, > Xg T Xy kg’ X,
and restricts to a monoid isomorphism from Y onto X* . Asnotation suggests,
Y¥ . and X! are two convenient ways to symbolize convergent multiple zeta
values through representations (1) and (2) respectively. The following notations are

commonly adopted:
Cat Yy + =+ ym,) = C(n1, ..o np), 9)

du, du,
) , 10
C (x xi’) / /O<u,< <u <1 fm(ul) fe,,(up) ( )

and extended to finite linear combinations of convergent words by linearity. In par-
ticular we have:

C(ny, ... np) = Gu (xoxy" -+ xox|"), (1)

hence the relation:

CGo =Cmos
is obviously verified. The quasi-shuffle relations then write:
Go (W W) = Gu (W) G (W) (12)

for any w, w' € Y __, whereas the shuffle relations write:

G (v ) = Gy (V)¢ (V) 13)

for any v, v’ € X’ .. By assigning an indeterminate value 6 to (1) and setting
Ga (y1) = Cu (x1) = 6, it is possible to extend (y, , resp. (y , to all words in Y*, resp.
to X*x;, such that (12), resp. (13), still holds. It is also possible to extend (y to a
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map defined on X* by assigning an indeterminate value 6’ to (y (xo), such that (13)
is still valid. We will stick to 6’ = 6 for symmetry reasons, reflecting the following
formal equality between two infinite quantities:

/1 dt ' di
It is easy to show that for any word v € X* or w € Y*, the expressions ( (v) and

Ga (w) are polynomial with respect to 6. It is no longer true that extended (y, coincides
with extended (y o s, but the defect can be explicitly written:

Theorem 1 (Boutet de Monvel and Zagier [26]) There exists an infinite-order
invertible differential operator p : R[] — R[] such that

Cw05=poGy- (14)

The operator p is explicitly given by the series:

—" d\"
p = exp (Z()n& (@> ) (15)

n>2

In particular, p(1) = 1, p(d) = 0, and more generally p(P) — P is a polynomial of
degree < d — 2 if P is of degree d, hence p is invertible. A proof of Theorem 1 can
be read in numerous references, e.g. [5, 17, 21]. Any word w € Y} gives rise to
Hoffman’s regularization relation:

Cuw (1 ms(w) — s(y1 mw)) =0, (16)

which is a direct consequence of Theorem 1. The linear combination of words
involved above is convergent, hence (16) is a relation between convergent multi-
ple zeta values, although divergent ones have been used to establish it. The simplest
regularization relation (5) is nothing but (16) applied to the word w = y;,.

Rooted trees can enrich the picture in two ways: first of all, considering a rooted
tree ¢ with set of vertices V(¢) and decoration n, € Z.o, v € V(t), we define the
associated contracted arborified multiple zeta value by:

Fo=>Y T] ki (17)

keD, vev@) Y

where D, is made of those maps v — k, € Z.( suchthatk, < k,, if and only if there
is a path from the root to w through v. The sum (17) is convergent as long as n,, > 2 if
v is a leaf of 7. The definition is multiplicatively extended to rooted forests. A similar
definition can be introduced starting from the integral representation (2): considering
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a rooted tree 7 with set of vertices V(7) and decoration e, € {0, 1}, v € V(7), we
define the associated arborified multiple zeta value by:

T . du,
< ()= /ueA l_[ feu(uv)’ (18)

T veV(r)

where A, C [0, 11V™! is made of those maps v — u, € [0, 1] such that u, < u,, if
and only if there is a path from the root to w through v. The integral (18) is convergent
as long as e, = 1 if v is the root of 7 and e, = 0 if v is a leaf of 7. A multiplicative
extension to two-coloured rooted forests will also be considered. A further extension
of multiple zeta values to more general finite posets than rooted forests, in this non-
contracted form, recently appeared in a paper by Yamamoto [25], see also [18]. We
give a brief account of these “posetified” multiple zeta values in Sect. 6.

Arborified and contracted arborified multiple zeta values are finite linear combi-
nations of ordinary ones. For example we have :

@y @
& @ ) = ((ny1, na, n3) + C(na, ny, n3) + ((ny + na, n3)

and, choosing white for colour 0 and black for colour 1:

< (%) =2¢3, 1) +((2,2),

c%iw = 3¢(4).

The terminology comes fromJ. Ecalle’s arborification, a transformation which admits
a “simple” and a “contracting” version [10, 11]. This transformation is best under-
stood in terms of a canonical surjective morphism from Butcher-Connes-Kreimer
Hopf algebra of rooted forests onto a corresponding shuffle Hopf algebra (quasi-
shuffle Hopf algebra for the contracting arborification) [13].

The paper is organized as follows: after a reminder on shuffle and quasi-shuffle
Hopf algebras, we describe the two versions of arborification in some detail, and we
describe a possible transformation from contracted arborified to arborified multiple
zeta values, which can be seen as an arborified version of the map s from words in
Y* into words in X*. A more natural version of this arborified s with respect to the
tree structures is still to be found. We finally give in Sect. 6 an account of the more
general poset multiple zeta values in both simple and contracting versions, and we
interpret the restricted sum formula of [12, 23] in terms of simple poset multiple zeta
values.
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2 Shuffle and Quasi-Shuffle Hopf Algebras

Let V be any commutative algebra on a base field k of characteristic zero. The
product on V will be denoted by (a, b) — [ab]. This algebra is not supposed to be
unital: in particular any vector space can be considered as a commutative algebra
with trivial product (a, b) +> [ab] = 0. The associated quasi-shuffle Hopf algebra
is (T(V), HI, A), where (T(V), A) is the tensor coalgebra:

T(V) = Ve

k>0

The decomposable elements of V®* will be denoted by v - - - v, with v; € V. The
coproduct A is the deconcatenation coproduct:

k
A ) =D V10 @ Uyt - Uk (19)
=0
The quasi-shuffle product m1 is given for any vy, ... v,44 by:

—_

W1 V) B Wpir - vppg) = Y el (20)

r>0 0eQsh(p,q;r)

withv; € Y, j e {l,..., p+ g}, and where v}’ is the internal product of the letters in
the set o~ !({j}), which contains one or two elements. Note that if the internal product
vanishes, only ordinary shuffles (i.e. quasi-shuffles of type r = 0) do contribute to
the quasi-shuffle product, which specializes to the shuffle product m in this case. The
tensor coalgebra endowed with the quasi-shuffle productur is a Hopf algebra which,
remarkably enough, does not depend on the particular choice of the internal product
[16]. An explicit Hopf algebra isomorphism exp from (T(V), HI, A) onto (T(V),
u, A) is given in [16]. Although we won’t use it, let us recall its expression: let P (k)

be the set of compositions of the integer k, i.e. the set of sequences I = (i, ..., i,)
of positive integers such that i; +---+i, = k. Forany u = v;...v, € T(V) and
any composition I = (i1, ..., i,) of k we set:
ITul :=Tvr ... vy L lvigr - v ] [0 1 - Uk
Then:
expu = Z P [u].

I=(iy,..., i,.)eP(k)l
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Moreover ([16], lemma 2.4), the inverse log of exp is given by :

_1\k—r
logu = Z (, 1), I[ul.

i
I=(i1,..ieP) ! r

For example for vy, v,, v3 € V we have:
expv; =v; ,logv; = vy,
exp(viv2) =viv2 + %[UIUZL log(viv2) = vivy — %[Ulvz],
exp(vivav3) = viv203 + %([vlvz]vs +vi[vous]) + é[UIUZUB]a

1 1
log(vivav3) = vivav3 — z([v1vz]v3 + vi[vav3]) + §[U1U2U3]-

Going back to the notations of the introduction, Q(Y') is the quasi-shuffle Hopf alge-
bra associated to the algebra tk[¢] of polynomials without constant terms, whereas
Q(X) is the shuffle Hopf algebra associated with the two-dimensional vector space
spanned by X.

3 The Butcher-Connes-Kreimer Hopf Algebra
of Decorated Rooted Trees

Let D be a set. A rooted tree is an oriented (non planar) graph with a finite number of
vertices, among which one is distinguished and called the root, such that any vertex
admits exactly one incoming edge, except the root which has no incoming edges. A
‘D-decorated rooted tree is a rooted tree ¢ together with a map from its set of vertices
V(¢) into D. Here is the list of (non-decorated) rooted trees up to five vertices:

e b TEThuv e

A D-decorated rooted forest is a finite collection of D-decorated rooted trees, with
possible repetitions. The empty set is the forest containing no trees, and is denoted
by 1. For any d € D, the grafting operator Bi takes any forest and changes it into
a tree by grafting all components onto a common root decorated by d, with the
convention Bi(l) = o.

Let 77 denote the set of nonempty rooted trees and let ’HgCK = k[T P] be the
free commutative unital algebra generated by elements of 7 2. We identify a product
of trees with the forest containing these trees. Therefore the vector space underlying
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HECK is the linear span of rooted forests. This algebra is a graded and connected
Hopf algebra, called the Hopf algebra of ‘D-decorated rooted trees, with the following
structure: the grading is given by the number of vertices, and the coproduct on a
rooted forest u is described as follows [14, 20]: the set V(u) of vertices of a forest u
is endowed with a partial order defined by x < y if and only if there is a path from
a root to y passing through x. Any subset W of V(u) defines a subforest u, of u
in an obvious manner, i.e. by keeping the edges of # which link two elements of W.
The coproduct is then defined by:

AQu) = Z up, @u . Q21

VUW=V (u)
W<V

Here the notation W < V means that y < x for any vertex x in V and any vertex
y in W such that x and y are comparable. Such a couple (V, W) is also called an
admissible cut, with crown (or pruning) u Iy and trunk u Ly We have for example:

A =1l®1+10]+e0.
AN) = VR1+10 W +2e® ]+ ee® e

The counit is (1) = 1 and £(u) = 0 for any non-empty forest u. The coassociativ-
ity of the coproduct is easily checked using the following formula for the iterated

coproduct:
AN w) = Z u,

1
Vi L1V, =V ()
V<oV

®~'~®u|v.

The notation V,, < --- < V; is to be understood as V; < V; for any i > j, with
i,jefl,...,n}

This Hopf algebra first appeared in the work of Diir in 1986 [8]. Its dual algebra
appears in [10] (Page 81 therein). It has been rediscovered and intensively studied by
Kreimer in 1998 [19], as the Hopf algebra describing the combinatorial part of the
BPHZ renormalization procedure of Feynman graphs in a scalar ¢* quantum field
theory. Its group of characters:

GBex = Homag(Hick, k) (22)
is known as the Butcher group and plays a key role in approximation methods in
numerical analysis [4]. Connes and Kreimer also proved in [6] that the operators Bi
satisfy the property

A(BL(ty -+ 1n)) = BL(ty -+ 1) @ 1+ (1A ®BY) 0 Aty -+ - 1), (23)

forany #, ..., t, € 7. This means that Bi is a 1-cocycle in the Hochschild cohomol-
ogy of HgCK with values in ’HgCK.
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4 Simple and Contracting Arborification

The Hopf algebra of decorated rooted forests enjoys the following universal property
(see e.g. [14]): let D be a set, let H be a graded Hopf algebra, and, for any d € D,
let L¢ : H — H be a Hochschild one-cocycle, i.e. a linear map such that:

A(L*(x)) = LY(x) ® 13 + (1d QL") 0 A(x). (24)
Then there exists a unique Hopf algebra morphism @ : HECK — 'H such that:
PoBl=L'00® (25)

for any d € D. Now let V be a commutative algebra, let (T(V), HI, A) be the cor-
responding quasi-shuffle Hopf algebra, let (e;) ep be a linear basis of V, and let
L?: T (V) — T(V) the right concatenation by e,, defined by:

Ld(vl CoUR) = UL ey, (26)

One can easily check, due to the particular form of the deconcatenation coproduct,
that L9 verifies the one-cocycle condition (24). The contracting arborification of the
quasi-shuffle Hopf algebra above is the unique Hopf algebra morphism

ay : Hcx = (T(V), 1, A) 27

such that ay o Bi = L% o ay forany d € D. The map ay sends any decorated forest
to the sum of all its linear extensions, taking contractions into account (see Example
(30) below). It is obviously surjective, since the word w = ey, - - - ¢4, can be obtained
as the image of the ladder £y (w) with r vertices decorated by dj, . ..d, from top
to bottom. This map is invariant under linear base changes. For the shuffle algebra
(i.e. when the internal product on V is set to zero), the corresponding Hopf algebra
morphism ay is called simple arborification, and the corresponding section will be
denoted by £x (see Examples (31) and (32) below).

Letus apply this construction to multiple zeta values (the base field k being the field
Q of rational numbers): we denote by ax (resp. ay) the simple (resp. contracting)
arborification from Hy . onto Q(X) (resp. from H} .y onto Q(Y)). The maps
Cw and (g defined in the introduction are characters of the (Hopf) algebras Q(X)
and Q(Y) respectively, with values in the algebra R[6]. The simple and contracted
arborified multiple zeta values are then respectively given by:

¢ HE G — RIO)
T (I (1) = Cu o ax (7). (28)
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and:

(o : Hpox — RIO]
t—> (1) = Gu oay(®). (29)

They are obviously characters of HgCK and H]éCK respectively, and respectively
coincide with the maps (7 and ¢7 defined in the introduction. This last statement
comes from the fact that, for any X-decorated forest 7, the domain A, can be decom-
posed in a union of simplices the same way ax (7) is decomposed as the sum of its lin-
ear extensions, and similarly with contracting arborification ay for any Y-decorated
forest ¢, taking diagonals in D, into account. Looking back at the examples given
there we have:

@y @
aY( @ ) = Yn1 Yny Yns + Yny Yny Yns + Yni+ns Yns (30)
and
ax(if) = 2X0X0X1X1 + X0X1X0X1, 3D
ax(%f) = 3Xx0X0X0X1. (32)

5 Arborification of the Map s
We are looking for a map s” which makes the following diagram commutative:

Y s” X
Hpek > HBcx

s

QY) ——Q(X)
An obvious answer to this problem is given by:
s =flyoso0ay,

where £y is the section of ay described in the previous section. It has the drawback
of completely destroying the geometry of trees: indeed, any Y-decorated forest is
mapped on a linear combination of X-decorated ladders. We are then looking for a
more natural map with respect to the tree structures, which makes the diagram above
commute, or at least the outer square of the diagram below:
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HECK$H§CK
G| QYY) ——=Q(X) |d&

- s

R[] —2— R[6]

This interesting problem remains open.

6 Poset Multiple Zeta Values

A rooted forest is nothing but a particular finite poset in which each non-minimal
element (i.e. each vertex different from a root) x has a unique predecessor, i.e. there
exists a unique y < x such that forany z withy <z <x,onehasz=xorz = y.It
turns out that most of the concepts previously defined still make sense without this
last condition. First of all, identities (17) and (18) define real numbers for any finite
poset ¢ (resp. T) respectively decorated by Y and X, respectively named contracted
poset multiple zeta values and simple poset multiple zeta value. Connected (non-
decorated) posets up to four vertices are given by:

1 ber Wiezfhund.

We have for example:

©

¢ X ) = C(ny, o, n3, ng) + C(ny, n3, np, na) + C(ny, no + n3, ng)

and
o]

¢’( ‘§?> =(G, D +¢2,2).

Next, for any set D, the linear span of isomorphism classes of D-decorated posets is
a graded connected commutative Hopf algebra H%. The product is given by disjoint
union, and the coproduct is still given by Formula (21). It is well-known that H,? isa
commutative incidence Hopf algebra: see [22, Paragraph 16], taking for F the family
of all finite posets with the notations therein. The forest Hopf algebra H% . is a Hopf



480 D. Manchon

subalgebra of H2. The simple arborification ay : Hj., — (T(X),w, A) extends
to a surjective Hopf algebra morphism py : H5 — (T(X), wm, A) and, similarly, the
contracting arborification ay : H,’;C x — (T(Y),m, A) extends to a surjective Hopf
algebra morphism py : HY — (T'(Y), u1, A).

The “posetization” map px and its contracting version py still map a poset on the
sum of all its linear extensions, moreover taking contraction terms into account in
the case of py. The fact that both are Hopf algebra morphisms can be checked by a
routine computation.

The canonical involution ¢ on the set of finite posets is given by reversing the
order: for example,

() = .

The duality involution o on the set of X-decorated posets is given by both applying ¢
and switching the two colours, i.e. exchanging 0 and 1. The duality relations for
multiple zeta values extends to poset multiple zeta values as follows:

"My =¢"oo(n). (33)

Poset multiple zeta values recently appeared (in the simple form only) in a paper by
Yamamoto [25], as well as in another paper of the same author together with Kaneko
[18]. Let us mention that the restricted sum formula of [12], (see [23], formula (2)
therein) can be understood as an equality between two poset multiple zeta values (in
the simple version) involving “kite-shaped” posets, namely:

" (Aupe) = " (Bupe), (34)

where a, b, c are three non-negative integers, and where A, 5 . and B, ;. are defined
as follows:

e A, ;.. hasaunique white maximum linked to two ladders, the first made of ¢ white
vertices, the second made of b black vertices. Both join to a black ladder (the tail,
pointing downwards) of length a + 1.

e B, . has aunique black minimum linked to two ladders, the first made of b white
vertices, the second made of a black vertices. Both join to a white ladder (the tail,
pointing upwards) of length ¢ 4 1.

Both posets defined above have total number of vertices equal to a + b + ¢ + 2.
From (33) and (34), we immediately get:

"(Aape) = (Acpa)- 35)

Finally, the question asked in Sect. 5 makes also sense in the poset context, replacing
the two Hopf algebras H} - and H} . respectively by H} and HY.
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