
Arborified Multiple Zeta Values
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Abstract Wedescribe someparticular finite sumsofmultiple zeta valueswhich arise
from J. Ecalle’s “arborification”, a process which can be described as a surjective
Hopf algebra morphism from the Hopf algebra of decorated rooted forests onto a
Hopf algebra of shuffles or quasi-shuffles. This formalism holds for both the iterated
sum picture and the iterated integral picture. It involves a decoration of the forests
by the positive integers in the first case, by only two colours in the second case.
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1 Introduction

Multiple zeta values are defined by the following nested sums:

ζ(n1, . . . , nr ) :=
∑

k1>k2>···>kr≥1

1

kn11 · · · knrr , (1)

where the n j ’s are positive integers. The nested sum (1) converges as long as n1 ≥ 2.
The integer r is the depth, whereas the sum p := n1 + · · · nr is the weight. Although
the multiple zeta values of depth one and two were already known by L. Euler, the
full set of multiple zeta values first appears in 1981 in a preprint of Jean Ecalle under
the name “moule ζ•

<”, in the context of resurgence theory in complex analysis [9,
Page 429], together with its companion ζ•≤ now known as the set of multiple star zeta
values. The systematic study begins a decade later with the works of Hoffman [15]
and Zagier [26]. It has been remarked by Kontsevich ([26], (see also the intriguing
precursory Remark 4 on Page 431 in [9]) that multiple zeta values admit another
representation by iterated integrals, namely:
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ζ(n1, . . . , nr ) =
∫

· · ·
∫

0≤u p≤···≤u1≤1

du1
ϕ1(u1)

· · · du p

ϕp(u p)
, (2)

with ϕ j (u) = 1 − u if j ∈ {n1, n1 + n2, n1 + n2 + n3, . . . , p} and ϕ j (u) = u oth-
erwise. For later use we set:

f0(u) := u, f1(u) := 1 − u.

Iterated integral representation (2) is the starting point to the modern approach in
terms of mixed Tate motives over Z, already outlined in [26] and widely developed
in the literature since then [1–3, 7, 24]. Multiple zeta values verify a lot of polyno-
mial relations with integer coefficients: the representation (1) by nested sums leads
to quasi-shuffle relations, whereas representation (2) by iterated integrals leads to
shuffle relations. A third family of relations, the regularization relations, comes from
a subtle interplay between the first two families, involving divergent multiple zeta
sums ζ(1, n2 . . . nr ). A representative example of each family (in the order above) is
given by:

ζ(2, 3) + ζ(3, 2) + ζ(5) = ζ(2)ζ(3), (3)

ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1) = ζ(2)ζ(3), (4)

ζ(2, 1) = ζ(3). (5)

It is conjectured that these three families include all possible polynomial rela-

tions between multiple zeta values. Note that the rationality of the quotient
ζ(2k)

π2k
,

proved by L. Euler, does not yield supplementary polynomial identities. As an exam-

ple, ζ(2) = π2

6
and ζ(4) = π4

90
yield 2ζ(2)2 = 5ζ(4), a relation which can also be

deduced from quasi-shuffle, shuffle and regularization relations.
It is convenient to write multiple zeta values in terms of words. In view of repre-

sentations (1) and (2), this can be done in two different ways. We consider the two
alphabets:

X := {x0, x1}, Y := {y1, y2, y3, . . .}, (6)

and we denote by X∗ (resp. Y ∗) the set of words with letters in X (resp. Y ). The
vector space Q〈X〉 freely generated by X∗ is a commutative algebra for the shuffle
product, which is defined by:

(v1 · · · vp) �� (vp+1 · · · vp+q) :=
∑

σ∈Sh(p,q)

vσ−1
1

· · · vσ−1
p+q

(7)

with v j ∈ X , j ∈ {1, . . . , p + q}. Here, Sh(p, q) is the set of (p, q)-shuffles, i.e.
permutations σ of {1, . . . , p + q} such that σ1 < · · · < σp and σp+1 < · · · < σp+q .
The vector space Q〈Y 〉 freely generated by Y ∗ is a commutative algebra for the
quasi-shuffle product, which is defined as follows: a (p, q)-quasi-shuffle of type r
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is a surjection σ : {1, . . . , p + q} →→ {1, . . . , p + q − r} such that σ1 < · · ·σp and
σp+1 < · · · < σp+q . Denoting by Qsh(p, q; r) the set of (p, q)-quasi-shuffles of
type r , the formula for the quasi-shuffle product ��- is:

(w1 · · ·wp) ��- (wp+1 · · · wp+q) :=
∑

r≥0

∑

σ∈Qsh(p,q;r)
wσ

1 · · · wσ
p+q−r (8)

with w j ∈ Y , j ∈ {1, . . . , p + q}, and where wσ
j is the internal product of the letters

in the set σ−1({ j}), which contains one or two elements. The internal product is
defined by [yk yl ] := yk+l .

We denote by Y ∗
conv the submonoid of words w = w1 · · ·wr with w1 
= y1, and

we set X∗
conv = x0X∗x1. An injective monoid morphism is given by changing letter

yn into the word xn−1
0 x1, namely:

s : Y ∗ −→ X∗

yn1 · · · ynr �−→ xn1−1
0 x1 · · · xnr−1

0 x1,

and restricts to a monoid isomorphism from Y ∗
conv onto X∗

conv. As notation suggests,
Y ∗
conv and X∗

conv are two convenient ways to symbolize convergent multiple zeta
values through representations (1) and (2) respectively. The following notations are
commonly adopted:

ζ��- (yn1 · · · ynr ) := ζ(n1, . . . nr ), (9)

ζ�� (xe1 · · · xep ) :=
∫

· · ·
∫

0≤u p≤···≤u1≤1

du1
fe1(u1)

· · · du p

fep (u p)
, (10)

and extended to finite linear combinations of convergent words by linearity. In par-
ticular we have:

ζ(n1, . . . , nr ) = ζ�� (x0x
n1
1 · · · x0xnr1 ), (11)

hence the relation:
ζ��- = ζ�� ◦ s

is obviously verified. The quasi-shuffle relations then write:

ζ��- (w ��- w′) = ζ��- (w)ζ��- (w′) (12)

for any w,w′ ∈ Y ∗
conv, whereas the shuffle relations write:

ζ�� (v �� v′) = ζ�� (v)ζ�� (v′) (13)

for any v, v′ ∈ X∗
conv. By assigning an indeterminate value θ to ζ(1) and setting

ζ��- (y1) = ζ�� (x1) = θ, it is possible to extend ζ��- , resp. ζ�� , to all words in Y ∗, resp.
to X∗x1, such that (12), resp. (13), still holds. It is also possible to extend ζ�� to a
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map defined on X∗ by assigning an indeterminate value θ′ to ζ�� (x0), such that (13)
is still valid. We will stick to θ′ = θ for symmetry reasons, reflecting the following
formal equality between two infinite quantities:

∫ 1

0

dt

t
=

∫ 1

0

dt

1 − t
.

It is easy to show that for any word v ∈ X∗ or w ∈ Y ∗, the expressions ζ�� (v) and
ζ��- (w) are polynomialwith respect to θ. It is no longer true that extended ζ��- coincides
with extended ζ�� ◦ s, but the defect can be explicitly written:

Theorem 1 (Boutet de Monvel and Zagier [26]) There exists an infinite-order
invertible differential operator ρ : R[θ] → R[θ] such that

ζ�� ◦ s = ρ ◦ ζ��- . (14)

The operator ρ is explicitly given by the series:

ρ = exp

(
∑

n≥2

(−1)nζ(n)

n

(
d

dθ

)n
)

. (15)

In particular, ρ(1) = 1, ρ(θ) = θ, and more generally ρ(P) − P is a polynomial of
degree ≤ d − 2 if P is of degree d, hence ρ is invertible. A proof of Theorem 1 can
be read in numerous references, e.g. [5, 17, 21]. Any word w ∈ Y ∗

conv gives rise to
Hoffman’s regularization relation:

ζ��
(
x1 �� s(w) − s(y1 ��- w)

) = 0, (16)

which is a direct consequence of Theorem 1. The linear combination of words
involved above is convergent, hence (16) is a relation between convergent multi-
ple zeta values, although divergent ones have been used to establish it. The simplest
regularization relation (5) is nothing but (16) applied to the word w = y2.

Rooted trees can enrich the picture in two ways: first of all, considering a rooted
tree t with set of vertices V(t) and decoration nv ∈ Z>0, v ∈ V(t), we define the
associated contracted arborified multiple zeta value by:

ζT-(t) :=
∑

k∈Dt

∏

v∈V(t)

1

knv
v

, (17)

where Dt is made of those maps v �→ kv ∈ Z>0 such that kv < kw if and only if there
is a path from the root tow through v. The sum (17) is convergent as long as nv ≥ 2 if
v is a leaf of t . The definition is multiplicatively extended to rooted forests. A similar
definition can be introduced starting from the integral representation (2): considering
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a rooted tree τ with set of vertices V(τ ) and decoration ev ∈ {0, 1}, v ∈ V(τ ), we
define the associated arborified multiple zeta value by:

ζT (τ ) :=
∫

u∈Δτ

∏

v∈V(τ )

duv

fev
(uv)

, (18)

where Δτ ⊂ [0, 1]|V(τ )| is made of those maps v �→ uv ∈ [0, 1] such that uv ≤ uw if
and only if there is a path from the root tow through v. The integral (18) is convergent
as long as ev = 1 if v is the root of τ and ev = 0 if v is a leaf of τ . A multiplicative
extension to two-coloured rooted forests will also be considered. A further extension
of multiple zeta values to more general finite posets than rooted forests, in this non-
contracted form, recently appeared in a paper by Yamamoto [25], see also [18]. We
give a brief account of these “posetified” multiple zeta values in Sect. 6.

Arborified and contracted arborified multiple zeta values are finite linear combi-
nations of ordinary ones. For example we have :

ζT-( n3

n2n1

) = ζ(n1, n2, n3) + ζ(n2, n1, n3) + ζ(n1 + n2, n3)

and, choosing white for colour 0 and black for colour 1:

ζT

( )
= 2ζ(3, 1) + ζ(2, 2),

ζT ( ) = 3ζ(4).

The terminology comes fromJ.Ecalle’s arborification, a transformationwhich admits
a “simple” and a “contracting” version [10, 11]. This transformation is best under-
stood in terms of a canonical surjective morphism from Butcher-Connes-Kreimer
Hopf algebra of rooted forests onto a corresponding shuffle Hopf algebra (quasi-
shuffle Hopf algebra for the contracting arborification) [13].

The paper is organized as follows: after a reminder on shuffle and quasi-shuffle
Hopf algebras, we describe the two versions of arborification in some detail, and we
describe a possible transformation from contracted arborified to arborified multiple
zeta values, which can be seen as an arborified version of the map s from words in
Y ∗ into words in X∗. A more natural version of this arborified s with respect to the
tree structures is still to be found. We finally give in Sect. 6 an account of the more
general poset multiple zeta values in both simple and contracting versions, and we
interpret the restricted sum formula of [12, 23] in terms of simple poset multiple zeta
values.
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2 Shuffle and Quasi-Shuffle Hopf Algebras

Let V be any commutative algebra on a base field k of characteristic zero. The
product on V will be denoted by (a, b) �→ [ab]. This algebra is not supposed to be
unital: in particular any vector space can be considered as a commutative algebra
with trivial product (a, b) �→ [ab] = 0. The associated quasi-shuffle Hopf algebra
is

(
T (V ),��- ,Δ

)
, where

(
T (V ),Δ

)
is the tensor coalgebra:

T (V ) =
⊕

k≥0

V⊗k .

The decomposable elements of V⊗k will be denoted by v1 · · · vk with v j ∈ V . The
coproduct Δ is the deconcatenation coproduct:

Δ(v1 · · · vk) :=
k∑

r=0

v1 · · · vr ⊗ vr+1 · · · vk . (19)

The quasi-shuffle product ��- is given for any v1, . . . vp+q by:

(v1 · · · vp) ��- (vp+1 · · · vp+q) :=
∑

r≥0

∑

σ∈Qsh(p,q;r)
vσ
1 · · · vσ

p+q−r (20)

with v j ∈ Y , j ∈ {1, . . . , p + q}, and where vσ
j is the internal product of the letters in

the setσ−1({ j}), which contains one or two elements. Note that if the internal product
vanishes, only ordinary shuffles (i.e. quasi-shuffles of type r = 0) do contribute to
the quasi-shuffle product, which specializes to the shuffle product�� in this case. The
tensor coalgebra endowed with the quasi-shuffle product��- is a Hopf algebra which,
remarkably enough, does not depend on the particular choice of the internal product
[16]. An explicit Hopf algebra isomorphism exp from

(
T (V ),��- ,Δ

)
onto

(
T (V ),

�� ,Δ
)
is given in [16]. Although we won’t use it, let us recall its expression: letP(k)

be the set of compositions of the integer k, i.e. the set of sequences I = (i1, . . . , ir )
of positive integers such that i1 + · · · + ir = k. For any u = v1 . . . vk ∈ T (V ) and
any composition I = (i1, . . . , ir ) of k we set:

I [u] := [v1 . . . vi1].[vi1+1 · · · vi1+i2 ] . . . [vi1+···+ir−1+1 . . . vk].

Then:

exp u =
∑

I=(i1,...,ir )∈P(k)

1

i1! . . . ir ! I [u].
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Moreover ([16], lemma 2.4), the inverse log of exp is given by :

log u =
∑

I=(i1,...,ir )∈P(k)

(−1)k−r

i1 . . . ir
I [u].

For example for v1, v2, v3 ∈ V we have:

exp v1 = v1 , log v1 = v1,

exp(v1v2) = v1v2 + 1

2
[v1v2], log(v1v2) = v1v2 − 1

2
[v1v2],

exp(v1v2v3) = v1v2v3 + 1

2
([v1v2]v3 + v1[v2v3]) + 1

6
[v1v2v3],

log(v1v2v3) = v1v2v3 − 1

2
([v1v2]v3 + v1[v2v3]) + 1

3
[v1v2v3].

Going back to the notations of the introduction,Q〈Y 〉 is the quasi-shuffle Hopf alge-
bra associated to the algebra tk[t] of polynomials without constant terms, whereas
Q〈X〉 is the shuffle Hopf algebra associated with the two-dimensional vector space
spanned by X .

3 The Butcher-Connes-Kreimer Hopf Algebra
of Decorated Rooted Trees

LetD be a set. A rooted tree is an oriented (non planar) graph with a finite number of
vertices, among which one is distinguished and called the root, such that any vertex
admits exactly one incoming edge, except the root which has no incoming edges. A
D-decorated rooted tree is a rooted tree t together with a map from its set of vertices
V(t) into D. Here is the list of (non-decorated) rooted trees up to five vertices:

A D-decorated rooted forest is a finite collection of D-decorated rooted trees, with
possible repetitions. The empty set is the forest containing no trees, and is denoted
by 1. For any d ∈ D, the grafting operator Bd+ takes any forest and changes it into
a tree by grafting all components onto a common root decorated by d, with the
convention Bd+(1) = d .

Let T D denote the set of nonempty rooted trees and let HD
BCK = k[T D] be the

free commutative unital algebra generated by elements of T D. We identify a product
of trees with the forest containing these trees. Therefore the vector space underlying
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HD
BCK is the linear span of rooted forests. This algebra is a graded and connected

Hopf algebra, called theHopf algebra of D-decorated rooted trees,with the following
structure: the grading is given by the number of vertices, and the coproduct on a
rooted forest u is described as follows [14, 20]: the set V(u) of vertices of a forest u
is endowed with a partial order defined by x ≤ y if and only if there is a path from
a root to y passing through x . Any subset W of V(u) defines a subforest u|W of u
in an obvious manner, i.e. by keeping the edges of u which link two elements of W .
The coproduct is then defined by:

Δ(u) =
∑

V�W=V(u)

W<V

u|V ⊗ u|W . (21)

Here the notation W < V means that y < x for any vertex x in V and any vertex
y in W such that x and y are comparable. Such a couple (V,W ) is also called an
admissible cut, with crown (or pruning) u|V and trunk u|W . We have for example:

Δ
( ) = ⊗ 1 + 1 ⊗ + ⊗

Δ
( ) = ⊗ 1 + 1 ⊗ + 2 ⊗ + ⊗ .

The counit is ε(1) = 1 and ε(u) = 0 for any non-empty forest u. The coassociativ-
ity of the coproduct is easily checked using the following formula for the iterated
coproduct:

Δ̃n−1(u) =
∑

V1�···�Vn=V(u)

Vn<···<V1

u|V1

⊗ · · · ⊗ u|Vn

.

The notation Vn < · · · < V1 is to be understood as Vi < Vj for any i > j , with
i, j ∈ {1, . . . , n}.

This Hopf algebra first appeared in the work of Dür in 1986 [8]. Its dual algebra
appears in [10] (Page 81 therein). It has been rediscovered and intensively studied by
Kreimer in 1998 [19], as the Hopf algebra describing the combinatorial part of the
BPHZ renormalization procedure of Feynman graphs in a scalar ϕ3 quantum field
theory. Its group of characters:

GD
BCK = Homalg(HD

BCK, k) (22)

is known as the Butcher group and plays a key role in approximation methods in
numerical analysis [4]. Connes and Kreimer also proved in [6] that the operators Bd+
satisfy the property

Δ
(
Bd

+(t1 · · · tn)
) = Bd

+(t1 · · · tn) ⊗ 1 + (Id⊗Bd
+) ◦ Δ(t1 · · · tn), (23)

for any t1, ..., tn ∈ T . This means that Bd+ is a 1-cocycle in the Hochschild cohomol-
ogy of HD

BCK with values inHD
BCK.
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4 Simple and Contracting Arborification

The Hopf algebra of decorated rooted forests enjoys the following universal property
(see e.g. [14]): let D be a set, let H be a graded Hopf algebra, and, for any d ∈ D,
let Ld : H → H be a Hochschild one-cocycle, i.e. a linear map such that:

Δ
(
Ld(x)

) = Ld(x) ⊗ 1H + (Id⊗Ld) ◦ Δ(x). (24)

Then there exists a unique Hopf algebra morphism � : HD
BCK → H such that:

� ◦ Bd
+ = Ld ◦ � (25)

for any d ∈ D. Now let V be a commutative algebra, let
(
T (V ),��- ,Δ

)
be the cor-

responding quasi-shuffle Hopf algebra, let (ed)d∈D be a linear basis of V , and let
Ld : T (V ) → T (V ) the right concatenation by ed , defined by:

Ld(v1 . . . vk) := v1 . . . vked . (26)

One can easily check, due to the particular form of the deconcatenation coproduct,
that Ld verifies the one-cocycle condition (24). The contracting arborification of the
quasi-shuffle Hopf algebra above is the unique Hopf algebra morphism

aV : HD
BCK →→ (

T (V ),��- ,Δ
)

(27)

such that aV ◦ Bd+ = Ld ◦ aV for any d ∈ D. The map aV sends any decorated forest
to the sum of all its linear extensions, taking contractions into account (see Example
(30) below). It is obviously surjective, since the wordw = ed1 · · · edr can be obtained
as the image of the ladder �Y (w) with r vertices decorated by d1, . . . dr from top
to bottom. This map is invariant under linear base changes. For the shuffle algebra
(i.e. when the internal product on V is set to zero), the corresponding Hopf algebra
morphism aV is called simple arborification, and the corresponding section will be
denoted by �X (see Examples (31) and (32) below).

Let us apply this construction tomultiple zeta values (the basefield k being thefield
Q of rational numbers): we denote by aX (resp. aY ) the simple (resp. contracting)
arborification from HX

BCK onto Q〈X〉 (resp. from HY
BCK onto Q〈Y 〉). The maps

ζ�� and ζ��- defined in the introduction are characters of the (Hopf) algebras Q〈X〉
and Q〈Y 〉 respectively, with values in the algebra R[θ]. The simple and contracted
arborified multiple zeta values are then respectively given by:

ζT
�� : HX

BCK −→ R[θ]
τ �−→ ζT

�� (τ ) = ζ�� ◦ aX (τ ). (28)



478 D. Manchon

and:

ζT-
��- : HY

BCK −→ R[θ]
t �−→ ζT-

��- (t) = ζ��- ◦ aY (t). (29)

They are obviously characters of HX
BCK and HY

BCK respectively, and respectively
coincide with the maps ζT and ζT- defined in the introduction. This last statement
comes from the fact that, for any X -decorated forest τ , the domainΔτ can be decom-
posed in a union of simplices the sameway aX (τ ) is decomposed as the sum of its lin-
ear extensions, and similarly with contracting arborification aY for any Y -decorated
forest t , taking diagonals in Dt into account. Looking back at the examples given
there we have:

aY ( n3

n2n1

) = yn1 yn2 yn3 + yn2 yn1 yn3 + yn1+n2 yn3 (30)

and

aX ( ) = 2x0x0x1x1 + x0x1x0x1, (31)

aX ( ) = 3x0x0x0x1. (32)

5 Arborification of the Map s

We are looking for a map sT which makes the following diagram commutative:

HY
BCK

aY

sT HX
BCK

aX

Q〈Y 〉 s
Q〈X〉

An obvious answer to this problem is given by:

sT = �X ◦ s ◦ aY ,

where �X is the section of aX described in the previous section. It has the drawback
of completely destroying the geometry of trees: indeed, any Y -decorated forest is
mapped on a linear combination of X -decorated ladders. We are then looking for a
more natural map with respect to the tree structures, which makes the diagram above
commute, or at least the outer square of the diagram below:
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HY
BCK

aY

sT

ζT−��-

HX
BCK

aX

ζT��Q〈Y 〉 s

ζ��-

Q〈X〉
ζ��

R[θ] ρ
R[θ]

This interesting problem remains open.

6 Poset Multiple Zeta Values

A rooted forest is nothing but a particular finite poset in which each non-minimal
element (i.e. each vertex different from a root) x has a unique predecessor, i.e. there
exists a unique y < x such that for any z with y ≤ z ≤ x , one has z = x or z = y. It
turns out that most of the concepts previously defined still make sense without this
last condition. First of all, identities (17) and (18) define real numbers for any finite
poset t (resp. τ ) respectively decorated by Y and X , respectively named contracted
poset multiple zeta values and simple poset multiple zeta value. Connected (non-
decorated) posets up to four vertices are given by:

�∧��

�∧���

�∧��

�

�∧��

�

� �

� �

� � �

� �

�� �∨��

�∧
.

We have for example:

ζT-(
n4

n3n2

n1

�∨��

�∧
) = ζ(n1, n2, n3, n4) + ζ(n1, n3, n2, n4) + ζ(n1, n2 + n3, n4)

and

ζT ( �∨��

�∧
) = ζ(3, 1) + ζ(2, 2).

Next, for any set D, the linear span of isomorphism classes of D-decorated posets is
a graded connected commutative Hopf algebraHD

P . The product is given by disjoint
union, and the coproduct is still given by Formula (21). It is well-known thatHD

P is a
commutative incidence Hopf algebra: see [22, Paragraph 16], taking forF the family
of all finite posets with the notations therein. The forest Hopf algebraHD

BCK is a Hopf
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subalgebra of HD
P . The simple arborification aX : HX

BCK → (T (X),�� ,Δ) extends
to a surjective Hopf algebra morphism pX : HX

P → (T (X),�� ,Δ) and, similarly, the
contracting arborification aY : HY

BCK → (T (Y ),��- ,Δ) extends to a surjective Hopf
algebra morphism pY : HY

P → (T (Y ),��- ,Δ).
The “posetization” map pX and its contracting version pY still map a poset on the

sum of all its linear extensions, moreover taking contraction terms into account in
the case of pY . The fact that both are Hopf algebra morphisms can be checked by a
routine computation.

The canonical involution ι on the set of finite posets is given by reversing the
order: for example,

ι( ) = �∧�� .

The duality involution σ on the set of X -decorated posets is given by both applying ι
and switching the two colours, i.e. exchanging 0 and 1. The duality relations for
multiple zeta values extends to poset multiple zeta values as follows:

ζT (τ ) = ζT ◦ σ(τ ). (33)

Poset multiple zeta values recently appeared (in the simple form only) in a paper by
Yamamoto [25], as well as in another paper of the same author together with Kaneko
[18]. Let us mention that the restricted sum formula of [12], (see [23], formula (2)
therein) can be understood as an equality between two poset multiple zeta values (in
the simple version) involving “kite-shaped” posets, namely:

ζT (Aa,b,c) = ζT (Ba,b,c), (34)

where a, b, c are three non-negative integers, and where Aa,b,c and Ba,b,c are defined
as follows:

• Aa,b,c has a unique white maximum linked to two ladders, the first made of cwhite
vertices, the second made of b black vertices. Both join to a black ladder (the tail,
pointing downwards) of length a + 1.

• Ba,b,c has a unique black minimum linked to two ladders, the first made of b white
vertices, the second made of a black vertices. Both join to a white ladder (the tail,
pointing upwards) of length c + 1.

Both posets defined above have total number of vertices equal to a + b + c + 2.
From (33) and (34), we immediately get:

ζT (Aa,b,c) = ζT (Ac,b,a). (35)

Finally, the question asked in Sect. 5 makes also sense in the poset context, replacing
the two Hopf algebras HX

BCK and HY
BCK respectively by HX

P and HY
P .
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