
Evaluating Generating Functions
for Periodic Multiple Polylogarithms
via Rational Chen–Fliess Series

Kurusch Ebrahimi-Fard, W. Steven Gray and Dominique Manchon

Abstract The goal of the paper is to give a systematic way to numerically evaluate
the generating function of a periodic multiple polylogarithm using a Chen–Fliess
series with a rational generating series. The idea is to realize the corresponding Chen–
Fliess series as a bilinear dynamical system. A standard form for such a realization is
given. The method is also generalized to the case where the multiple polylogarithm
has non-periodic components. This allows one, for instance, to numerically validate
the Hoffman conjecture. Finally, a setting in terms of dendriform algebras is provided.
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1 Introduction

Given any vector s = (s1, s2, . . . , sl) ∈ N
l with s1 ≥ 2 and si ≥ 1 for i ≥ 2, the

associated multiple polylogarithm (MPL) of depth l and weight |s| := ∑l
i=1 si is

taken to be

Lis(t) :=
∑

k1>k2>···>kl≥1

t k1

ks1
1 k

s2
2 · · · ksll

, |t | ≤ 1, (1)
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whereupon the multiple zeta value (MVZ) of depth l and weight |s| is the value of
(1) at t = 1, namely,

ζ(s) := Lis(1).

Any such vector s will be referred to as admissible. The MPL in (1) can be represented
in terms of iterated Chen integrals with respect to the 1-forms ω

(1)
j := dt j/(1 − t j )

and ω
(0)
j := dt j/t j . Indeed, using the standard notation, |s( j)| := s1 + · · · + s j , j ∈

{1, . . . , l}, one can show that

Lis(t) =
∫ t

0

( |s(1)|−1∏

j=1

ω
(0)
j

)

ω
(1)
|s(1)| · · ·

( |s(l)|−1∏

j=|s(l−1)|+1

ω
(0)
j

)

ω
(1)
|s(l)|. (2)

For instance,

Li(2,1,1)(t) =
∫ t

0

dt1
t1

∫ t1

0

dt2
1 − t2

∫ t2

0

dt3
1 − t3

∫ t3

0

dt4
1 − t4

=
∑

k1>k2>k3≥1

t k1

k2
1k2k3

.

An MPL of depth l is said to be periodic if it can be written in the form Li{s}n (t),
where {s}n denotes the n-tuple (s, s, . . . , s) ∈ N

nl , n ≥ 0 with Li{s}0(t) := 1.1 In this
case, the sequence (Li{s}n (t))n∈N0 has the generating function

Ls(t, θ) :=
∞∑

n=0

Li{s}n (t)
(
θ |s|)n . (3)

In general, the integral representation (2) implies thatLs will satisfy a linear ordinary
differential equation in t whose solution can be written in terms of a hypergeometric
function [1, 4, 5, 28–31]. For example, when l = 1 and s = (s), it follows that

((

(1 − t)
d

dt

)(

t
d

dt

)s−1

− θ s

)

Ls(t, θ) = 0, (4)

and its solution is the Euler–Gauss hypergeometric function

L(s)(t, θ) =s Fs−1

( −ωθ,−ω3θ, . . . ,−ω2s−1θ

1, 1, . . . , 1

∣
∣
∣
∣ t

)

,

where ω = eπ i/s , a primitive s-th root of −1 [4]. By expanding this solution into a
hypergeometric series and equating like powers of θ with those in (3), it is possible
to show, for example, when s = 2 that

1Following other authors, {s}n = {(s1, s2, . . . , sl )}n will be written more concisely as
{s1, s2, . . . , sl }n .
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ζ({2}n) = π2n

(2n + 1)! , n ≥ 1. (5)

In a similar manner it can be shown that

ζ({3, 1}n) = 2π4n

(4n + 2)! , n ≥ 1.

This method has yielded a plethora of such MZV identities [3, 4, 6, 32]. The most
general case is treated in [31], where it is shown thatLs satisfies the linear differential
equation of Fuchs type

(Ps − θ |s|)Ls(t, θ) = 0, (6)

where for s = (s1, s2, . . . , sl) ∈ N
l

Ps := Psl Psl−1 · · · Ps1

and

Psi :=
(

(1 − t)
d

dt

) (

t
d

dt

)si−1

.

(The conventions in [31] are to use −θ in place of θ and t in place of 1 − t .) In [31]
and related work [28–30], the authors develop WKB type asymptotic expansions of
these hypergeometric solutions.

The ultimate goal of the present paper is to provide a numerical scheme for
estimating Ls(t, θ) by in essence mapping the |s|-order linear differential equation
(6) to a system of |s| first-order bilinear differential equations which can be solved
by standard tools found in software packages like MatLab. Specifically, it will be
shown how to construct a dynamical system of the form

ż = N0z u0 + N1z u1, z(0) = z0 (7a)

y = Cz, (7b)

which when simulated over the interval (0, 1) has the property that y(t) = Ls(t, θ)

for any value of θ and t ∈ (0, 1). In this case, the matrices N0 and N1 will depend on
θ , and the initial condition z0 and the input functions u0, u1 must be suitably chosen.
Such a technique could be useful for either disproving certain conjectures involving
MZVs or providing additional evidence for the truthfulness of other conjectures.
For example, one could validate with a certain level of (numerical) confidence a
conjecture of the form

ζ({sa}n) = bnζ({sb}n), n, b ∈ N,

where sa ∈ N
la , sb ∈ N

lb with |sa| = |sb|. Take as a specific example the known
identity
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ζ({4}n) = 4nζ({3, 1}n) (8)

for all n ≥ 1, so that sa = (4), sb = (3, 1) and b = 4 [4]. Note that for n = 1 the
identity follows immediately from double shuffle relations for MZVs [22]. On the
level of generating functions it is evident that

L(4)(1, θ) =
∞∑

n=0

Li{4}n (1)
(
θ4

)n =
∞∑

n=0

ζ({4}n) θ4n

L(3,1)(1,
√

2θ) =
∞∑

n=0

Li{3,1}n (1)
(
(
√

2θ)4
)n =

∞∑

n=0

4nζ({3, 1}n) θ4n.

Therefore, identity (8) implies that

L(4)(1, θ) − L(3,1)(1,
√

2θ) = 0, ∀θ ∈ R, (9)

a claim that can be tested empirically if these generating functions can be accurately
evaluated. The method can also be generalized to address the conjecture of Hoffman
that

ζ({2}n, 2, 2, 2) + 2ζ({2}n, 3, 3) = ζ(2, 1, {2}n, 3), (10)

for all integers n > 0, which has only been proved for n ≤ 8 [6]. The idea here
is to admit non-periodic components in the generating function calculation. For
example, ({2}n, 3, 3) can be viewed as having the periodic component {2}n and the
non-periodic component (3, 3). In the general case, say when sn := (sa, {sb}n, sc),
n ≥ 0, the generating function is defined analogously as

L(sa ,{sb},sc)(t, θ) :=
∞∑

n=0

Lisn (t)
(
θ |sb |)n .

Therefore, relation (10), if true, would imply that

L({2},2,2,2)(1, θ) + 2L({2},3,3)(1, θ) − L(2,1,{2},3)(1, θ) = 0, ∀θ ∈ R. (11)

The basic approach to estimatingLs(t, θ) is to map a periodic multiple polylogarithm
to a rational series and then to employ well known concepts from control theory
to produce bilinear state space realization (7) of the corresponding rational Chen–
Fliess series [2, 16, 17]. The periodic nature of the MPL always ensures that these
realizations have a certain built-in recursion/feedback structure. The technique will
first be described in general, and then it will be demonstrated by empirically verifying
the identities (5), (8), and (10). It should be noted that the connection between
polylogarithms and differential equations with singularities at {0, 1,∞} has been
well studied by a number of researchers, especially, [8, 10, 19, 20]. (See, in particular,
[20, Chapter 4] and the references therein.) In addition, rational series of the type
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suitable for representing periodic multiple polylogarithms have appeared in [8, 20].
In this regard, the main contribution here is to customize these results specifically
and explicitly for periodic multiple polylogarithms and then to actually apply them
to problems like the Hoffman conjecture (10).

The paper is organized as follows. In the next section, a brief summary of rational
Chen–Fliess series is given to establish the notation and the basic concepts to be
employed. Then the general method for evaluating a generating function of a periodic
multiple polylogarithm is given in the subsequent section, which also contains in
Sect. 3.3 a short digression regarding another way of looking at periodic MPLs in
terms of dendriform algebra along the lines of reference [15]. This is followed by
several examples in Sect. 4. In particular, the last example shows that the Hoffman
conjecture (10) has a high likelihood of being true. The final section gives the paper’s
conclusions.

2 Preliminaries

2.1 Chen–Fliess Series

A finite nonempty set of noncommuting symbols X = {x0, x1, . . . , xm} is called an
alphabet. Each element of X is called a letter, and any finite sequence of letters from
X , η = xi1 · · · xik , is called a word over X . The length of word η, denoted |η|, is the
number of letters in η. The set of all words with fixed length k is denoted by Xk .
The set of all words including the empty word, ∅, is designated by X∗. It forms a
monoid under catenation. The set ηX∗ξ ⊆ X∗ is the set of all words with prefix η

and suffix ξ . Any mapping c : X∗ → R
� is called a formal power series. The value

of c at η ∈ X∗ is written as (c, η) ∈ R
� and called the coefficient of the word η in

the series c. Typically, c is represented as the formal sum c = ∑
η∈X∗(c, η)η. If the

constant term (c,∅) = 0 then c is said to be proper. The collection of all formal
power series over the alphabet X is denoted by R

�〈〈X〉〉. The subset of polynomials
is written as R

�〈X〉. Each set forms an associative R-algebra under the catenation
product.

Definition 1 Given ξ ∈ X∗, the corresponding left-shift operator ξ−1 : X∗ → R〈X〉
is defined:

η �→ ξ−1(η) :=
{

η′ : η = ξη′
0 : otherwise.

It is extended linearly to R
�〈〈X〉〉.

One can formally associate with any series c ∈ R
�〈〈X〉〉 a causal m-input, �-output

operator, Fc, in the following manner. Let t0 < t1 be fixed, and consider a class
of locally integrable functions u = (u1, . . . , um) ∈ Lm

1,loc[t0, t1) modulo almost-
everywhere equality with respect to the Lebesgue measure. For any compact subset
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Ω = [t0, s] ⊂ [t0, t1), the usual L1 norm restricted to Ω , denoted here by ‖·‖1,Ω ,
provides a family of seminorms on Lm

1,loc[t0, t1). Define inductively for each word
η ∈ X∗ and u ∈ Lm

1,loc(Ω) an iterated integral by setting E∅[u] = 1 and letting

Exi η̄[u](t) :=
∫ t

t0

ui (τ )Eη̄[u](τ ) dτ, (12)

where xi ∈ X , η̄ ∈ X∗, t ∈ Ω , and u0 = 1. The input-output operator corresponding
to the series c ∈ R

�〈〈X〉〉 is the Fliess operator or Chen–Fliess series

Fc[u](t) =
∑

η∈X∗
(c, η) Eη[u](t) (13)

[17]. If there exist real numbers Kc, Mc > 0 such that the coefficients of the gener-
ating series c = ∑

η∈X∗(c, η)η ∈ R
�〈〈X〉〉 satisfy the growth bound

|(c, η)| ≤ KcM
|η|
c |η|!, ∀η ∈ X∗, (14)

then the series (13) converges absolutely and uniformly for every t ∈ Ω provided
the measure of Ω and ‖u‖1,Ω are sufficiently small [18].

In the case of polylogarithms, it is sufficient to consider the single-input, single-
output case m = � = 1 and to set t0 = 0 and t1 = 1. The convergence situation,
however, is a bit different: the underlying iterated integrals (12) involve the locally
integrable function u1(t) = 1/(1 − t) on [0, 1), but the function u0 is now given by
u0(t) = 1/t , which is locally integrable only on (0, 1). The growth condition (14) is
not sufficient to ensure the convergence of a Chen-Fliess series. Even rationality of the
generating series c is not sufficient as it can be shown using results from [20, Theorem
4.3.4], for example, that Fc[Li0](t) with c = ∑

k≥0 x
k
0 x1 and Li0(t) := t/(1 − t) is

divergent. Therefore, the convergence of (13) will have to be addressed for the
specific case of interest in the context of polylogarithms.

2.2 Bilinear Realizations of Rational Chen–Fliess Series

A series c ∈ R〈〈X〉〉 is called invertible if there exists a series c−1 ∈ R〈〈X〉〉 such
that cc−1 = c−1c = 1.2 In the event that c is not proper, i.e., the coefficient (c,∅) is
nonzero, it is always possible to write

c = (c,∅)(1 − c′),

where c′ ∈ R〈〈X〉〉 is proper. It then follows that

2The polynomial 1∅ is abbreviated throughout as 1.
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c−1 = 1

(c,∅)
(1 − c′)−1 = 1

(c,∅)
(c′)∗,

where the Kleene star of c′ is defined by

(c′)∗ :=
∞∑

i=0

(c′)i .

In fact, c ∈ R〈〈X〉〉 is invertible if and only if c is not proper. Now let S be a subalgebra
of the R-algebra R〈〈X〉〉 with the catenation product. S is said to be rationally closed
when every invertible c ∈ S has c−1 ∈ S (or equivalently, every proper c′ ∈ S has
(c′)∗ ∈ S). The rational closure of any subset E ⊂ R〈〈X〉〉 is the smallest rationally
closed subalgebra of R〈〈X〉〉 containing E .

Definition 2 A series c ∈ R〈〈X〉〉 is rational if it belongs to the rational closure of
R〈X〉.

Rational series have appeared in a number of different contexts including automata
theory [26], control theory [17], formal language theory [25], and polylogarithms
[20]. The monograph [2] provides a concise introduction to the area. Of particu-
lar importance is an alternative characterization of rationality using the following
concept.

Definition 3 A linear representation of a series c ∈ R〈〈X〉〉 is any triple (μ, γ, λ),
where

μ : X∗ → R
n×n

is a monoid morphism, and the vectors γ, λT ∈ R
n×1 are such that each coefficient

(c, η) = λμ(η)γ, ∀η ∈ X∗.

The integer n is the dimension of the representation.

Definition 4 A series c ∈ R〈〈X〉〉 is called recognizable if it has a linear represen-
tation.

Theorem 1 [26] A formal power series is rational if and only if it is recognizable.

Returning to (13), Chen–Fliess series Fc is said to be rational when its generating
series c ∈ R〈〈X〉〉 is rational. The state space realization (7) is said to realize Fc on
some admissible input set U when (7a) has a well defined solution, z(t), on the
interval [t0, t0 + T ] for every T > 0 with input u ∈ U and output

y(t) = Fc[u](t) = C(z(t)), t ∈ [t0, t0 + T ].

Identify with any linear representation (μ, γ, λ) of the series c ∈ R〈〈X〉〉 the bilinear
system
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(N0, N1, z0,C) := (μ(x0), μ(x1), γ, λ).

The following result is well known.

Theorem 2 [17, 18] The statements below are equivalent for a given c ∈ R〈〈X〉〉:
i (μ, γ, λ) is a linear representation of c.
ii The bilinear system (N0, N1, z0,C) realizes Fc on the extended space Lp,e(t0)

for any p ≥ 1.

3 Evaluating Periodic Multiple Polylogarithms

It is first necessary to associate a periodic MPL and its generating function to a
rational series. Elements of this idea have appeared in numerous places. The approach
taken here is most closely related to the one presented in [21]. The next step is
then to find the bilinear realization of the rational Chen–Fliess series in terms of its
linear representation (see Theorem 4). The case when non-periodic components are
present works similarly but is slightly more complicated (see Theorem 5). Recall
that throughout m = 1, so that the underlying alphabet is X := {x0, x1}.

3.1 Periodic Multiple Polylogarithms

Given any admissible vector s ∈ N
l , there is an associated word ηs ∈ x0X∗x1 of

length |s|
ηs = xs1−1

0 x1x
s2−1
0 x1 · · · xsl−1

0 x1.

In which case, cs := (θ |s|ηs)
∗ = ∑

n≥0

(
θ |s|ηs

)n
is a rational series satisfying the

identity
1 + (θ |s|ηs)cs = cs. (15)

The idea is to now relate the generating function of the sequence (Li{s}n (t))n>0 to the
Chen–Fliess series with generating series cs. Recall that for any word xiξ ′ ∈ X∗ the
iterated integral is defined inductively by

Exi ξ ′ [u](t) =
∫ t

0
ui (τ )Eξ ′ [u](τ ) dτ,

where xi ∈ X , ξ ′ ∈ X∗. Assume here that the letters x0 and x1 correspond to the inputs
u0(t) := 1/t and u1(t) := 1/(1 − t), respectively, and E∅ := 1. For the formal power
series cs ∈ R〈〈X〉〉, the corresponding Chen–Fliess series is then taken to be
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Fcs [u] =
∑

ξ∈X∗
(cs, ξ)Eξ [u].

Comparing this to the classical definition (13), the factor 1/t can be extracted from
u0 and u1 so that each integral can be viewed instead as integration with respect to
the Haar measure. That is,

Exi ξ ′ [u](t) =
∫ t

0
ūi (τ )Eξ ′ [u](τ )

dτ

τ
,

where ū0(t) := 1 and ū1(t) = tu1(t). The following theorem is central to the paper.

Theorem 3 For any admissible vector s ∈ N
l ,

Ls(t, θ) = Fcs [Li0](t), t ∈ [0, 1),

where Li0(t) := t/(1 − t), and the defining series for Fcs [Li0](t) converges abso-
lutely for any fixed t ∈ [0, 1) provided θ ∈ R is sufficiently small.

Proof First observe that since cs = ∑
n≥0

(
θ |s|ηs

)n
, it follows directly that

Fcs [u](t) =
∞∑

n=0

F(θ |s|ηs)
n [u](t) =

∞∑

n=0

Eηn
s
[u](t) (

θ |s|)n .

Comparing this against the definition

Ls(t, θ) =
∞∑

n=0

Li{s}n (t)
(
θ |s|)n ,

it is evident that one only needs to verify the identity

Eηn
s
[Li0](t) = Li{s}n (t), n ≥ 0. (16)

But this is clear from (2), i.e., for any admissible vector s ∈ N
l

Lis(t) =
∫ t

0
ui (τ )Lis′(τ ) dτ,

where ηs = xiηs′ ,

ui (t) =
{ 1

t : i = 0
t

1−t
1
t : i = 1,

and Li∅(t) = 1 [32]. Therefore, it follows directly that Lis(t) = Eηs [Li0](t), from
which (16) also follows. To prove the convergence claim, it is sufficient to consider
the special case where ηs = xs1−1

0 x1 so that cs = (θ s1xs1−1
0 x1)

∗. The general case then
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follows similarly. Clearly, for any t ∈ [0, 1)

Ex1[Li0](t, 0) = ln

(
1

1 − t

)

=
∞∑

k=1

t k

k
.

Hence, for any s1 ≥ 1

Ex
s1−1
0 x1

[Li0](t, 0) =
∞∑

k=1

t k

ks1
= Li(s1)(t) < ∞,

and similarly, for any n ≥ 1

E(
x
s1−1
0 x1

)n [Li0](t, 0) =
∞∑

k1,k2,...,kn=1

t k1+k2+···+kn

ks1
1 (k1 + k2)s1 · · · (k1 + k2 + · · · + kn)s1

.

The convergence claim for the series

F(
θ s1 x

s1−1
0 x1

)∗ [Li0](t) =
∞∑

n=0

E(
x
s1−1
0 x1

)n [Li0](t, 0) θ s1n

can be verified by the ratio test. Observe

E(
x
s1−1
0 x1

)n+1[Li0](t, 0) |θ |s1(n+1)

E(
x
s1−1
0 x1

)n [Li0](t, 0) |θ |s1n

=
∑∞

k1,k2,...,kn+1=1
t k1+k2+···+kn+1

k
s1
1 (k1+k2)

s1 ···(k1+k2+···+kn+1)
s1

∑∞
k1,k2,...,kn=1

t k1+k2+···+kn

k
s1
1 (k1+k2)

s1 ···(k1+k2+···+kn)s1

|θ |s1

=
∞∑

k1=1

t k1

ks1
1

∑∞
k2,k3,...,kn+1=1

t k2+k3+···+kn+1

(k1+k2)
s1 (k1+k2+k3)

s1 ···(k1+k2+···+kn+1)
s1

∑∞
k2,k3,...,kn+1=1

t k2+k3+···+kn+1

k
s1
2 (k2+k3)

s1 ···(k2+k3+···+kn+1)
s1

|θ |s1

< Li(s1)(t)|θ |s1,

so that ratio is less than one when |θ | < (1/Li(s1)(t))
1/s1 . �

The key idea now is to apply Theorem 2 and the rational nature of the series cs in
order to build a bilinear realization of the mapping u �→ y = Fcs [u] (see [23, 24])
so that Ls(t, θ) can be evaluated by numerical simulation of a dynamical system. In
principle, one could attempt to ensure that any such realization is minimal in dimen-
sion or even canonical in some sense [7, 9, 11, 27]. There is also the potential for
lower dimensional realizations to exist if systems other than bilinear realizations are
considered. But in the present context these issues are not really essential. In addition,
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the realizations considered here are in the same general class as those described in [8,
20] for realizing classes of hypergeometric functions and polylogarithms using ratio-
nal generating series. But in this work they are customized specifically for periodic
multiple polylogarithms.

Theorem 4 For any admissible s ∈ N
l , Ls(t, θ) = Fcs [Li0](t) has the bilinear

realization
(N0, N1, z0,C) := (

μ(x0), μ(x1), γ, λ
)
,

where

N0 = diag
(
N0(s1), N0(s2), . . . , N0(sl)

)
(17a)

N1 = I+
|s| − N0 + θ |s|e|s|eT1 (17b)

with N0(si ) ∈ R
si×si and I+

|s| ∈ R
|s|×|s| being matrices of zeros except for a super

diagonal of ones, ei is an elementary vector with a one in the i-th position, and
z0 = CT = e1 ∈ R

|s|×1.

Proof First recall Definition 1 describing the left-shift operator on X∗, i.e., for any
xi ∈ X , x−1

i (·) is defined by x−1
i (xiη) = η with η ∈ X∗ and zero otherwise. In which

case, (xiξ)−1(·) = ξ−1x−1
i (·) for any ξ ∈ X∗. Now assign the first state of the real-

ization to be
z1(t) = Fcs [u](t) = 1 + F(θ |s|ηs)cs [u](t).

In light of the integral representation (2) of MPLs, differentiate z1 exactly s1 times
so that the input u1(t) := ū1(t)/t appears. Assign a new state at each step along the
way. Specifically,

ż1(t) = 1

t
Fθ |s|x−1

0 (ηs)cs
[u](t) =: z2(t)

1

t
...

żs1−1(t) = 1

t
F

θ |s|(xs1−1
0 )−1(ηs)cs

[u](t) =: zs1(t)
1

t

żs1(t) = ū1(t)
1

t
F

θ |s|(xs1−1
0 x1)−1(ηs)cs

[u](t) =: zs1+1(t)ū1(t)
1

t
.

This produces the first s1 rows of the matrices in (17) since when l > 1
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⎡

⎢
⎢
⎢
⎣

ż1(t)
...

żs1−1(t)
żs1(t)

⎤

⎥
⎥
⎥
⎦

= I+
s1×(s1+1)

⎡

⎢
⎢
⎢
⎣

z1(t)
...

zs1(t)
zs1+1(t)ū1(t)

⎤

⎥
⎥
⎥
⎦

1

t

= [
N0(s1) 0

]

⎡

⎢
⎢
⎢
⎣

z1(t)
...

zs1(t)
zs1+1(t)

⎤

⎥
⎥
⎥
⎦

1

t
+ [

0s1 es1

]

⎡

⎢
⎢
⎢
⎣

z1(t)
...

zs1(t)
zs1+1(t)

⎤

⎥
⎥
⎥
⎦
ū1(t)

1

t
.

Both
[
N0(s1) 0

]
and

[
0s1 es1

]
denote matrices in R

s1×(s1+1). The pattern is exactly
repeated until the final state, then the periodicity of cs comes into play. Namely,

ż|s|(t) = θ |s|ū1(t)
1

t
F(ηs)−1(ηs)cs [u](t) =: θ |s|z1(t)ū1(t)

1

t
,

which gives the final rows of N0 and N1 in (17). �

It is worth pointing out that the validity of (6) is obvious in the present setting.
Namely, (6) follows from the fact that (15) implies η−1

s (cs) − θ |s|cs = 0, and thus,
Theorem 3 gives

(Ps − θ |s|)Ls(t, θ) = (Ps − θ |s|)Fcs [Li0](t) = F
η−1

s (cs)−θ |s|cs
[Li0](t) = F0·cs [Li0](t) = 0.

3.2 Periodic Multiple Polylogarithms with Non-periodic
Components

The non-periodic case requires a generalization of the basic set-up. The following
lemma links this class of generating functions to the corresponding set of rational
Fliess operators.

Lemma 1 For any admissible s := (sa, {sb}, sc)

Ls(t, θ) = Fcs [Li0](t), t ∈ [0, 1), θ ∈ R,

where cs := ηsa

(
θ |sb|ηsb

)∗
ηsc .

Proof Similar to the periodic case, cs = ∑
n≥0 ηsa

(
θ |sb|ηsb

)n
ηsc , and therefore,

Fcs [u](t) =
∞∑

n=0

F
ηsa

(
θ |sb |ηsb

)n
ηsc

[u](t) =
∞∑

n=0

Eηsa ηn
sb

ηsc
[u](t) (

θ |sb |)n .
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The same argument used for proving (16) now shows that Eηsa ηn
sb

ηsc
[Li0](t) = Lisn (t),

n ≥ 0. In which case, Fcs [Li0](t) = Ls(t, θ) as claimed. �

The required generalization of Theorem 4 is a bit more complicated. A simple
example is given first to motivate the general approach.

Example 1 Consider the periodic MPL with non-periodic components specified by
s = (2, 1, {2}, 3) as appearing in (11). In this case, cs = ∑

n≥0 x0x2
1 (θ2x0x1)

nx2
0 x1 =

x0x2
1 c̄, where c̄ = x2

0 x1 + θ2x0x1c̄. Assign the first state of the realization to be

z1(t) = Fcs [u](t) = Fx0x2
1 c̄

[u](t).

The strategy here is to differentiate z1 exactly
∣
∣ηsa

∣
∣ = ∣

∣x0x2
1

∣
∣ = 3 times, assigning

new states along the way, in order to remove the prefix x0x2
1 and isolate c̄. At which

point, the identity c̄ = x2
0 x1 + θ2x0x1c̄ is used and the process is continued. This will

yield a certain block diagonal structure for N0 and an upper triangular form for N1.
As will be shown shortly, this structure is completely general but possibly redundant.
Specifically,

ż1(t) = 1

t
Fx2

1 c̄
[u](t) =: z2(t)

1

t

ż2(t) = 1

t
ū1(t)Fx1 c̄[u](t) =: z3(t)ū1(t)

1

t

ż3(t) = 1

t
ū1(t)Fc̄[u](t) = 1

t
ū1(t)Fx2

0 x1+θ2x0x1 c̄[u](t) =: z4(t)ū1(t)
1

t

ż4(t) = 1

t
Fx0x1+θ2x1 c̄[u](t) =: z5(t)

1

t

ż5(t) = 1

t
Fx1[u](t) + θ2

t
ū1(t)Fc̄[u](t) =: z6(t)

1

t
+ θ2z4(t)ū1(t)

1

t

ż6(t) = ū1(t)
1

t
.

The corresponding realization at this point has the form

ż =Ñ0zū0 + Ñ1zū1 + B1ū1, z(0) = z̃0

y =C̃z,

which does not have the form of a bilinear realization as defined in (7) since the
state equation for z6 does not depend on z, and thus, the term B1ū1 with B1 = e6

appears. Nevertheless, a permutation of the canonical embedding of Brockett (see
[7, Theorem 1]), namely,

N0 =
[
Ñ0 0
0 0

]

, N1 =
[
Ñ1 B1

0 0

]

, z0 =
[
z̃0

1

]

, CT =
[
C̃T

0

]

, (18)
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renders an input-output equivalent bilinear realization of the desired form, albeit at
the cost of increasing the dimension of the system by one. In this case,

N0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, N1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

0 0 0 0 0 0 0
0 0 0 θ2 0 0 0
0 0 0 0 0 0 1

0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, z(0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0

0
0
0

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, CT =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0

0
0
0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Theorem 5 Consider any admissible s := (sa, {sb}, sc) with ηsa := xi1 · · · xik , k =
j|sa |, and |sc| > 0. Then Ls(t, θ) = Fcs [Li0](t) has the bilinear realization
(N0, N1, z0,C), where

N0 = diag(N0(sa), N0(sb, sc), 0), N1 =
[
N1(sa) E|sa |1

0 N1(sb, sc)

]

with Ni (sa) ∈ R
|sa |×|sa | being a matrix of zeros and ones depending only on sa, E|sa |1

is the elementary matrix with a one in position (|sa| , 1), and Ni (sb, sc) ∈ R
sbc×sbc

is a matrix of zeros, ones, and the entry θ |sb |. (Its dimension sbc and exact structure
depend only on sb and sc.) Finally, z0 = e1 + e|sa |+sbc ∈ R

(|sa |+sbc)×1 and C = e1 ∈
R

1×(|sa |+sbc).

Proof Following Example 1, assign the first state of the realization to be

z1(t) = Fcs [u](t) = Fηsa c̄[u](t),

where c̄ := ηsc + θ |ηsb |ηsb c̄, and differentiate z1 until the series c̄ appears in isolation.
Observe

ż1(t) =
1∑

i=0

ūi (t)
1

t
Fx−1

i (ηsa )c̄[u](t) =: eT2 z(t)ūi1(t)
1

t
.

So the first row of Ni1 is eT2 , where xi1 is the first letter of ηsa , and the first row of the
other realization matrix contains all zeroes. Continuing in this way,

żk(t) =
1∑

i=0

ūi (t)
1

t
Fη−1

sa (ηsa )c̄[u](t) =: eTk+1z(t)ūik (t)
1

t
.

Since in general xik = x1, the k-th row of N1 is eTk+1, and the k-th row of the N0

contains all zeroes. So far, this is in agreement with the proposed structure of the
realization. Next observe that
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żk+1(t) =
1∑

i=0

ūi (t)
1

t
Fx−1

i (c̄)[u](t)

=
1∑

i=0

ūi (t)
1

t
Fx−1

i (ηsc )
[u](t)

︸ ︷︷ ︸
=:zk+2(t)

+
1∑

j=0

ū j (t)
1

t
Fx−1

j (ηsb c̄)
[u](t)

︸ ︷︷ ︸
=:zk+3(t)

.

In this way, new states are created until finally the term Fc̄[u](t) = zk+1(t) reappears
as it must. This produces an entry θ |sb| in N1 and preserves the proposed structures
of N0 and N1. But note, as in Example 1, that the process can continue to create
new states, and the state zk+1(t) could reappear if ηsc is a power of ηsb , a possibility
that has not been excluded. In addition, this realization could produce copies of the
the first k states if ηsc contains ηsa as a factor. These copies will still preserve the
desired structure, but this possibility points out that in general the final realization
constructed by this process may not be minimal. Finally, the canonical embedding
(18), which is always needed if |sc| > 0, yields the final elements of the proposed
structure. �

Clearly, when non-periodic components are present, giving a precise general form
of the matrices N0 and N1 is not as simple as in the purely periodic case.

3.3 The Dendriform Setting

It is shown in this section that the generating function Ls(t, θ) defined in (3), more
precisely its t-derivative, is a solution of a higher-order linear dendriform equation
in the sense of [15]. The case with non-periodic components can also be considered
from that perspective. This provides a purely algebraic setting for the problem and
also motivates an interesting generalization in the context of the theory of linear
dendriform equations.

Recall that MPLs satisfy shuffle product identities, which are derived from inte-
gration by parts for the iterated integrals in (2). For instance,

Li(2)(t)Li(2)(t) = 4Li(3,1)(t) + 2Li(2,2)(t).

In slightly more abstract terms this can be formulated using the notion of a dendriform
algebra. The reader is referred to [15] for full details. Examples of dendriform alge-
bras include the shuffle algebra as well as associative Rota–Baxter algebras. Indeed,
for any t0 < t1, the space L1,loc[t0, t1) is naturally endowed with such a structure
consisting of two products:

f � g := I ( f )g (19a)

f ≺ g := f I (g), (19b)



460 K. Ebrahimi-Fard et al.

where I is the Riemann integral operator defined by I ( f )(t, t0) := ∫ t
t0
f (s) ds—a

Rota–Baxter map of weight zero. It is easily seen to satisfy the axioms of a dendriform
algebra

f � (g � h) = ( f ∗ g) � h

( f � g) ≺ h = f � (g ≺ h)

( f ≺ g) ≺ h = f ≺ (g ∗ h),

where
f ∗ g := f � g + f ≺ g

is an associative product. The example (19) above moreover verifies the extra com-
mutativity property f � g = g ≺ f , making it a commutative dendriform or Zinbiel
algebra3

( f ≺ g) ≺ h = f ≺ (g ≺ h + h ≺ g).

This is another way of saying that Chen’s iterated integrals define a shuffle product,
which gives rise to the shuffle algebra of MPLs. For more details, including a link
between general, i.e., not necessarily commutative, dendriform algebras and Fliess
operators, see [13–15].

In the following, the focus is on the commutative dendriform algebra (C[t0, t1),
�,≺), where C[t0, t1) stands for the linear subspace of continuous (hence locally
integrable!) functions on [t0, t1). The linear operator R�

g : C[t0, t1) → C[t0, t1) is
defined for g ∈ C[t0, t1) by right multiplication using (19a)

R�
g ( f ) := f � g.

Now add the distribution δ = δt0 to the dendriform algebra C[t0, t1). In view of
the identity I (δ) = 1 on the interval [t0, t1], it follows that R�

f (δ) = δ � f = f
for any f ∈ C[t0, t1). Consider next the specific functions u0(t) = 1/t and u1(t) =
1/(1 − t) which appeared above (with t0 = 0 and t1 = 1 here), and the corresponding
linear operators R�

u0
and R�

u1
. Although u0 is not locally integrable on [0, 1), the space

C[t0, t1) is invariant under R�
u0

. For any word w = xs1−1
0 x1 · · · xsl−1

0 x1 ∈ x0X∗x1, the
linear operator R�

w is defined as the composition of the linear operators associated to
its letters, namely,

R�
w = (R�

u0
)s1−1R�

u1
· · · (R�

u0
)sl−1R�

u1

for w = w1 · · ·w|s| = xs1−1
0 x1 · · · xsl−1

0 x1. Using the shorthand notation R�
w = R�

s
with s = (s1, . . . , sl), the multiple polylogarithm Lis obviously satisfies

3The space of continuous maps on [t0, t1] with values in the algebra Mn(R) is also a dendriform
algebra, with ≺ and � defined the same way. But it is Zinbiel only for n = 1.
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d

dt
Lis = R�

s (δ). (21)

From (21) it follows immediately that

d

dt
Ls(t, θ) =

∞∑

k=0

θ k|s|(R�
s )k(δ),

which in turn yields

d

dt
Ls(t, θ) = δ + θ |s|R�

s

( d

dt
Ls(t, θ)

)
. (22)

Equation (22) is a dendriform equation of degree (|s|, 0) in the sense of [15, Sec-
tion 7]. The general form of the latter is

X = a00 +
|s|∑

q=1

θq
q∑

j=1

(· · · (X � aq1) � aq1 · · · ) � aqq (23)

with a00 := δ, aq j = 0 for q < |s| and a|s| j := w̃ j , matching the notations of equation
(46) in Ref. [15]. The general solution X of (23) is the first coefficient of a vector Y of
length |s| whose coefficients (discarding the first one) are given by θ j R�

w1···wj
(X) for

j = 1, . . . , |s| − 1. This vector satisfies the following matrix dendriform equation
of degree (1, 0):

Y = (δ, 0, . . . , 0
︸ ︷︷ ︸

|s|−1

) + θY � N , (24)

where the matrix4 N is given by:

N =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 w̃1 0 0 · · · 0
0 0 w̃2 0 · · · 0
0 0 0 w̃3 · · · 0
...

...
. . .

. . .
...

...

0 0 0 0 · · · w̃|s|−1

w̃|s| 0 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

First, observe that the |s|-fold product (· · · (N � N ) � · · · ) � N yields a diagonal
matrix with the entry d

dt Lis(t) in the position (1, 1). Second, matrix N splits into
N = N0u0 + N1u1 with N0, N1 as in (17). Equation (24) essentially corresponds to
the integral equation deduced from (7) giving the state z(t).

4The size of the matrix can be reduced from 1 + |s|(|s| − 1)/2 to |s| by eliminating rows and
columns of zeroes due to the particular form of (22) compared to equation (46) in [15].
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The case with non-periodic components can also be handled in this setting. Observe

d

dt
Lsa{sb}sc = R�

sa

(
d

dt
L{sb}sc

)

,

and the term X ′ = d
dtL{sb}sc satisfies the dendriform equation

X ′ = R�
sc (δ) + θ |sb|R�

sb(X
′). (25)

Equation (25) is again a dendriform equation of degree (|sb|, 0) with a00 = R�
sc (δ),

aq j = 0 for q < |sb| and a|sb | j = wj using the notation in [15]. The general solution
X ′ of (25) is the first coefficient of a vector Y ′ of length |sb| whose coefficients
(discarding the first one) are given by θ j R�

w1···wj
(X ′) for j = 1, . . . , |sb| − 1. This

vector satisfies the following matrix dendriform equation of degree (1, 0)

Y ′ = (R�
sc (δ), 0, . . . , 0

︸ ︷︷ ︸
|sb|−1

) + θY ′ � M ′,

where the matrix M ′ is given by:

M ′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 w̃1 0 0 · · · 0
0 0 w̃2 0 · · · 0
0 0 0 w̃3 · · · 0
...

...
. . .

. . .
...

...

0 0 0 0 · · · w̃|sb |−1

w̃|sb| 0 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

One can ask the question whether the term X = d
dtLsa{sb}sc itself is a solution of a

dendriform equation. In fact, a closer look reveals that the theory of linear dendriform
equations presented in [15] has not been sufficiently developed to embrace this more
complex setting. In the light of Theorem 5, it is clear that the results in [15] should be
adapted in order to address this question. Such a step, however, is beyond the scope
of this paper and will thus be postponed to another work. It is worth mentioning that
the matrix N needed in the linear dendriform equation

Y ′ = (0, δ, 0, 0, 0, 0, 0) + θY ′ � N

to match the result from Example 1 has the form
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N =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0
0 0 w̃1 0 0 0 0
0 0 0 w̃2 0 0 0
0 0 0 0 w̃3 0 0
0 0 0 0 0 w̃4 0
0 0 0 0 w̃6 0 w̃5

w̃7 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

which reflects the canonical embedding of Brockett. The first component of the vector
Y ′ contains the solution. As indicated earlier, a proper derivation of this result in the
context of general dendriform algebras, i.e., extending the results in [15], lies outside
the scope of the present paper.

4 Examples

In this section, three examples of the method described above are given corresponding
to the generating functions behind the identities (5), (8), and (10).

Example 2 Consider the generating function L(2)(t, θ). This example is simple
enough that a bilinear realization can be identified directly from (4). For any fixed θ

define the first state variable to be z1(t) = L(2)(t, θ), and the second state variable
to be z2(t) = t dL(2)(t, θ)/dt . In which case,

ż1(t) = z2(t)
1

t
, z1(0) = 1 (26a)

ż2(t) = θ2 z1(t)
t

1 − t

1

t
, z2(0) = 0 (26b)

y(t) = z1(t). (26c)

Thereupon, system (26) assumes the form of a bilinear system as given by (17),
where the inputs are set to be ū0(t) = 1 and ū1(t) = Li0(t) = t/(1 − t), i.e.,

N0 = N0(2) =
[

0 1
0 0

]

, N1 = N1(2) =
[

0 0
θ2 0

]

, z(0) = CT =
[

1
0

]

(recall the 1/t factors in (26) are absorbed into Haar integrators). A simulation di-
agram for this realization suitable for MatLab’s Simulink simulation software is
shown Fig. 1. Setting θ = 1 and using Simulink’s default integration routine ode45
(Dormand-Prince method [12]) with a variable step size lower bounded by 10−8,
Fig. 2 was generated showing L(2)(t, 1) = F(x0x1)∗ [Li0](t) as a function of t . In par-
ticular, it was found numerically thatL(2)(1, 1) ≈ 3.6695, which compares favorably
to the theoretical value derived from (5):
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Li0
z2

y´
z1

Haar integrator Haar integrator
q2

Fig. 1 Unity feedback system realizing L(2)(t, 1)

Fig. 2 Plot of L(2)(t, 1)

versus t

L(2)(1, 1) =
∞∑

n=0

ζ({2}n) =
∞∑

n=0

π2n+1

(2n + 1)n
= sinh(π)

π
= 3.6761.

Better estimates can be found by more carefully addressing the singularities at the
boundary conditions t = 0 and t = 1 in the Haar integrators.

Example 3 In order to validate (8), the identity (9) is checked numerically. Since the
generating functions L(4) and L(3,1) are periodic, Theorem 4 applies. For s = (4)

the corresponding bilinear realization is

N0 = N0(4) =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤

⎥
⎥
⎦ , N1 = N1(4) =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
θ4 0 0 0

⎤

⎥
⎥
⎦ , z(0) = CT =

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦ .

For s = (3, 1) the bilinear realization is

N0 =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ , N1 =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 1

θ4 0 0 0

⎤

⎥
⎥
⎦ , z(0) = CT =

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦ .
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Fig. 3 Plot of
L(4)(t, θ) − L(3,1)(t,

√
2θ)

versus t for different values
of θ

These two dynamical systems were simulated using Haar integrators in Simulink and
the difference (9) was computed as a function of t as shown in Fig. 3. As expected, this
difference is very close to zero when t = 1 no matter how the parameter θ is selected.
This is pretty convincing numerical evidence supporting (8), which as discussed in
the introduction is known to be true.

Example 4 Now the method is applied to the generating functions behind the Hoff-
man conjecture (10). In this case, each multiple polylogarithm has non-periodic
components, so Theorem 5 has to be applied three times. The realization for
L(2,1,{2},3)(t, θ) was presented in Example 1. Following a similar approach, the
realization for L({2},2,2,2)(t, θ) and L({2},3,3)(t, θ) are, respectively,

N0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, N1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0
θ2 0 1 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1

0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, z(0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0

0
0
0
0

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, CT =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0

0
0
0
0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

N0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0 0
0 0 1 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, N1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0
θ2 0 0 0 0 0 0

0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1

0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, z(0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0

0
0
0
0

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, CT =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0

0
0
0
0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Fig. 4 Plot of
L({2},2,2,2)(t, θ) +
2L({2},3,3)(t, θ) −
L(2,1,{2},3)(t, θ) versus t for
different values of θ

These dynamical systems were simulated to estimate numerically the left-hand
side of (11) as shown in Fig. 4. As in the previous example, the case where t = 1
is of primary interest. This value is again very close to zero for every choice of θ

tested. It is highly likely therefore that the Hoffman conjecture is true.

5 Conclusions

A systematic way was given to numerically evaluate the generating function of peri-
odic multiple polylogarithm using Chen–Fliess series with rational generating series.
The method involved mapping the corresponding Chen–Fliess series to a bilinear
dynamical system, which could then be simulated numerically using Haar integra-
tion. A standard form for such a realization was given, and the method was generalized
to the case where the multiple polylogarithm could have non-periodic components.
The method was also described in the setting of dendriform algebras. Finally, the
technique was used to numerically validate the Hoffman conjecture.

Acknowledgements The second author was supported by grant SEV-2011-0087 from the Severo
Ochoa Excellence Program at the Instituto de Ciencias Matemáticas in Madrid, Spain. This research
was also supported by a grant from the BBVA Foundation.



Evaluating Generating Functions for Periodic Multiple Polylogarithms … 467

References

1. Aoki, T., Kombu, Y., Ohno, Y.: A generating function for sums of multiple zeta values and its
applications. Proc. Amer. Math. Soc. 136, 387–395 (2008)

2. Berstel, J., Reutenauer, C.: Noncommutative Rational Series with Applications. Cambridge
University Press, Cambridge, UK (2010)

3. Borwein, J.M., Bradley, D.M., Broadhurst, D.J., Lisonek, P.: Combinatorial aspects of multiple
zeta values. Electron. J. Combin. 5 R38, 12 (1998)

4. Borwein, J.M., Bradley, D.M., Broadhurst, D.J., Lisonek, P.: Special values of multidimensional
polylogarithms. Trans. Amer. Math. Soc. 353, 907–941 (2001)

5. Bowman, D., Bradley, D.M.: Multiple polylogarithms: a brief survey. In: Berndt, B.C., Ono, K.
(eds.) Q-series with Applications to Combinatorics, Number Theory, and Physics: A Confer-
ence on Q-series with Applications to Combinatorics, Number Theory, and Physics, pp. 71–92.
AMS, Providence, RI (2001)

6. Borwein, J.M., Zudilin, W.: Math honours: multiple zeta values, available at https://carma.
newcastle.edu.au/MZVs/mzv.pdf

7. Brockett, R.W.: On the algebraic structure of bilinear systems. In: Mohler, R., Ruberti, R. (eds.)
Theory and Applications of Variable Structure Systems, pp. 153–168. Academic Press, New
York (1972)

8. Costermans, C., Minh, H.N.: Some results à l’Abel obtained by use of techniques à la Hopf.
In: Proceeding of the Workshop on Global Integrability of Field Theories and Applications,
Daresbury UK, pp. 63–83 (2006)

9. D’Alessandro, P., Isidori, A., Ruberti, A.: Realization and structure theory of bilinear dynamical
systems. SIAM J. Control 12, 517–535 (1974)

10. Deneufchâtel, M., Duchamp, G.H.E., Minh, V.H.N., Solomon, A.I.: Independence of hyper-
logarithms over function fields via algebraic combinatorics. In: Winkler, F. (ed.) Algebraic
Infomatics, Lecture Notes in Computer Science, vol. 6742, pp. 127–139. Springer, Berlin,
Heidelberg (2011)

11. Dorissen, H.T.: Canonical forms for bilinear systems. Syst. Control Lett. 13, 153–160 (1989)
12. Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl.

Math. 6, 19–26 (1980)
13. Duffaut Espinosa, L.A., Gray, W.S., Ebrahimi-Fard, K.: Dendriform-tree setting for fully non-

commutative Fliess operators. In: Proceedings 53rd IEEE Conference on Decision and Control,
Los Angeles, CA, pp. 4814–4819 (2014), arXiv:1409.0059

14. Duffaut Espinosa, L.A., Gray, W.S., Ebrahimi-Fard, K.: Dendriform-tree setting for fully non-
commutative Fliess operators. IMA J. Math. Control Inform. 35, 491–521 (2018)

15. Ebrahimi-Fard, K., Manchon, D.: Dendriform equations. J. Algebra 322, 4053–4079 (2009)
16. Elliott, D.L.: Bilinear Control Systems. Springer, Dordrecht (2009)
17. Fliess, M.: Fonctionnelles causales non linéaires et indéterminées non commutatives. Bull.

Soc. Math. France 109, 3–40 (1981)
18. Gray, W.S., Wang, Y.: Fliess operators on L p spaces: convergence and continuity. Syst. Control

Lett. 46, 67–74 (2002)
19. Minh, H.N.: Finite polyzêtas, Poly-Bernoulli numbers, identities of polyzêtas and noncommu-

tative rational power series. In: Proceedings of WORDS’03, 4th International Conference on
Combinatorics on Words, Turku, Finland, pp. 232–250 (2003)

20. Minh, V.H.N.: Calcul Symbolique Non Commutatif. Presses Académiques Francophones,
Saarbrücken, Germany (2014)

21. Hoseaux, V., Jacob, G., Oussous, N.E., Petitot, M.: A complete Maple package for noncom-
mutative rational power series. In: Li, Z., Sit, W.Y. (eds.) Computer Mathematics: Proceedings
of the Sixth Asian Symposium, Beijing, China. World Scientific, pp. 174–188 (2003)

22. Ihara, K., Kaneko, M., Zagier, D.: Derivation and double shuffle relations for multiple zeta
values. Compositio Math. 142, 307–338 (2006)

23. Isidori, A.: Nonlinear Control Systems, 3rd edn. Springer, London (1995)

https://carma.newcastle.edu.au/MZVs/mzv.pdf
https://carma.newcastle.edu.au/MZVs/mzv.pdf
http://arxiv.org/abs/1409.0059


468 K. Ebrahimi-Fard et al.

24. Jacob, G.: Réalisation des systèmes réguliers (ou bilinéaires) et séries génératrices non commu-
tatives. In: Landau, I.D. (ed.) Outils et Modèles Mathématiques pour L’automatique, L’analyse
de Systèmes et Le Traitement du Signal. CNRS-RCP 567, CNRS, Paris, pp. 325–357 (1981)

25. Nivat, M.: Transductions des languages de Chomsky. Ann. Inst. Fourier 18, 339–455 (1968)
26. Schützenberger, M.P.: On the definition of a family of automata. Inform. Control 4, 245–270

(1961)
27. Sussmann, H.J.: Minimal realizations and canonical forms for bilinear systems. J. Franklin

Inst. 301, 593–604 (1976)
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29. Zakrzewski, M., Żoładek, H.: Linear differential equations and multiple zeta-values. II. A

generalization of the WKB method. J. Math. Anal. Appl. 383, 55–70 (2011)
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