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Abstract The realmultiple zeta values ζ(k1, . . . , kr ) are known to formaQ-algebra;
they satisfy a pair of well-known families of algebraic relations called the double
shuffle relations. In order to study the algebraic properties ofmultiple zeta values, one
can replace them by formal symbols Z(k1, . . . , kr ) subject only to the double shuffle
relations. These form a graded Hopf algebra over Q, and quotienting this algebra
by products, one obtains a vector space. A complicated theorem due to G. Racinet
proves that this vector space carries the structure of a Lie coalgebra; in fact Racinet
proved that the dual of this space is a Lie algebra, known as the double shuffle Lie
algebra ds. J. Ecalle developed a new theory to explore combinatorial and algebraic
properties of the formal multiple zeta values. His theory is sketched out in some
publications. However, because of the depth and complexity of the theory, Ecalle did
not include proofs of many of the most important assertions, and indeed, even some
interesting results are not always stated explicitly. The purpose of the present paper
is to show how Racinet’s theorem follows in a simple and natural way from Ecalle’s
theory. This necessitates an introduction to the theory itself, which we have pared
down to only the strictly necessary notions and results.

Keywords Mould · Double shuffle · Multiple zeta values · Lie algebra ·
Dimorphy · Flexions

1 Introduction

In his doctoral thesis from 2000, Georges Racinet ([10], see also [11]) proved a
remarkable theorem using astute combinatorial and algebraic reasoning. His proof
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was later somewhat simplified and streamlined by Furusho [8], but it remains really
difficult to grasp the essential key that makes it work. The purpose of this article is
to show how Ecalle’s theory of moulds yields a very different and natural proof of
the same result. The only difficulty is to enter into the universe of moulds and learn
its language; the theory is equipped with a sort of standard all-purpose “toolbox”
of objects and identities which, once acquired, serve to prove all kinds of results, in
particular the one we consider in this paper. Therefore, the goal of this article is not
only to present the mould-theoretic proof of Racinet’s theorem, but also to provide
an initiation into mould theory in general. Ecalle’s seminal article on the subject is
[6], and a detailed introduction with complete proofs can be found in [12]; the latter
text will be referred to here for some basic lemmas.

We begin by recalling the definitions necessary to state Racinet’s theorem.

Definition 1 Let u, v be two monomials in x and y. Then the commutative shuffle
product sh(u, v) is defined recursively by sh(u, v) = {{u}} if v = 1 and {{v}} if u =
1, where {{·}} denotes a multiset, i.e. an unordered list with possible repetitions;
otherwise, writing u = Xu′ and v = Yv′ where X,Y ∈ {x, y} represents the first
letter of the word, we have the recursive rule

sh(Xu,Yv) = {{X · sh(u,Yv)}} ∪ {{Y · sh(Xu, v)}}, (1)

where ∪ denotes the union of the two multisets which preserves repetitions and
X · sh(u, v) means we multiply every member in the multiset sh(u, v) on the left
by X .

For example,

sh(xy, x) = {{x · sh(y, x)}} ∪ {{x · sh(xy, 1)}}
= {{x · {{yx, xy}} }} ∪ {{x · {{xy}} }}
= {{xyx, xxy}} ∪ {{xxy}}
= {{xyx, xxy, xxy}}

If u, v are two words ending in y, we can write them uniquely as words in the
letters yi = xi−1y. The stuffle product of u, v is defined by st(u, v) = {{u}} if v = 1
and {{v}} if u = 1, and

st(yiu, y j v) = {{yi · st(u, y j v)}} ∪ {{y j · st(yiu, v})} ∪ {{yi+ j · st(u, v)}}, (2)

where yi and y j are respectively the first letters of the words u and v written in the
y j .

For example,
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st(y1y2, y1) = {{y1 · st(y2, y1)}} ∪ {{y1 · st((y1y2, 1)}} ∪ {{y2 · st(y2, 1)}}
= {{y1y2y1, y1y1y2, y1y3}} ∪ {{y1y1y2}} ∪ {{y2y2}}
= {{y1y2y1, y1y1y2, y1y3, y1y1y2, y2y2}}

Definition 2 The double shuffle space ds is the space of polynomials f ∈ Q〈x, y〉,
the polynomial ring on two non-commutative variables x and y, of degree ≥3 that
satisfy the following two properties:

1. The coefficients of f satisfy the shuffle relations

∑

w∈sh(u,v)

( f |w) = 0, (3)

where u, v are words in x, y and sh(u, v) is the set of words obtained by shuffling
them. This condition is equivalent to the assertion that f lies in the free Lie algebra
Lie[x, y], a fact that is easy to see by using the characterization of Lie polynomials
in the non-commutative polynomial ringQ〈x, y〉 as those that are “Lie-like” under
the coproduct Δ defined by Δ(x) = x ⊗ 1 + 1 ⊗ x and Δ(y) = y ⊗ 1 + 1 ⊗ y,
i.e. such thatΔ( f ) = f ⊗ 1 + 1 ⊗ f ([13, Chap.3, Theorem 5.4]). Indeed, when
the property of being Lie-like under Δ is expressed explicitly on the coefficients
of f it is nothing other than the shuffle relations (3).

2. Let f∗ = πy( f ) + fcorr, where πy( f ) is the projection of f onto just the words
ending in y, and

fcorr =
∑

n≥1

(−1)n−1

n
( f |xn−1y)yn . (4)

Considering f∗ as being rewritten in the variables yi = xi−1y, the coefficients of
f∗ satisfy the stuffle relations:

∑

w∈st(u,v)

( f∗|w) = 0, (5)

where u and v are words in the yi .

The double shuffle space ds is the one defined by Racinet in [10] (which he
denoted dm, for the French term “double mélange”). It should not be confused with
the bigraded space Dsh studied in [9]. The space Dsh is a linearized version of ds,
which has also been the subject of a great deal of study, but is more often denoted ls
(cf. for example [3]).

For every f ∈ Lie[x, y], define a derivation D f of Lie[x, y] by setting it to be

D f (x) = 0, D f (y) = [y, f ]

on the generators. Define the Poisson (or Ihara) bracket on (the underlying vector
space of) Lie[x, y] by
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{ f, g} = [ f, g] + D f (g) − Dg( f ). (6)

This definition corresponds naturally to the Lie bracket on the space of derivations
of Lie[x, y]; indeed, it is easy to check that

[D f , Dg] = D f ◦ Dg − Dg ◦ D f = D{ f,g}. (7)

Theorem 1 (Racinet) The double shuffle space ds is a Lie algebra under the Poisson
bracket.

The goal of this paper is to give the mould-theoretic proof of this result, which
first necessitates rephrasing the relevant definitions in terms of moulds. The paper
is organized as follows. In Sect. 2, we give basic definitions from mould theory that
will be used throughout the rest of the paper, and in Sect. 3 we define dimorphy and
consider the main dimorphic subspaces related to double shuffle. In Sect. 4 we give
the dictionary between mould theory and the double shuffle situation. In Sect. 5 we
give some of the definitions and basic results on the group aspect of mould theory.
In Sect. 6 we describe the special mould pal that lies at the heart of much of mould
theory, and introduce Ecalle’s fundamental identity. The final Sect. 7 contains the
simple and elegant proof of the mould version of Racinet’s theorem. Sections2, 3, 5
and 6 can serve as a short introduction to the basics of mould theory; a much more
complete version with full proofs and details is given in [12], which is cited for some
results. Every mould-theory definition in this paper is due to Ecalle, as are all of the
statements, although some of these are not made explicitly in his papers, but used as
assumptions. Our contribution has been firstly to provide complete proofs of many
statements which are either nowhere proved in his articles or proved by arguments
that are difficult to understand (at least by us), secondly to pick a path through the
dense forest of his results that leads most directly to the desired theorem, and thirdly,
to give the dictionary that identifies the final result with Racinet’s theorem above.

In order to preserve the expository flow leading to the proof of the main theorem,
we have chosen to consign the longer and more technical proofs to appendices or,
for those that already appear in [12], to simply give the reference.

2 Definitions for Mould Theory

This section constitutes what could be called the “first drawer” of the mould toolbox,
with only the essential definitions of moulds, some operators on moulds, and some
mould symmetries.Wework over a base field K , and let u1, u2, . . . be a countable set
of indeterminates, and v1, v2, . . . another. The definitions below arise from Ecalle’s
papers (see especially [6], and are also developed at length in [5, 12]).
Moulds. A mould in the variables ui is a family A = (Ar )r≥0 of functions of the ui ,
where each Ar is a function of u1, . . . , ur . We call Ar the depth r component of the
mould. In this paper we let K = Q, and in fact we consider only rational-function
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valued moulds, i.e. we have Ar (u1, . . . , ur ) ∈ Q(u1, . . . , ur ) for r ≥ 0. Note that
A0(∅) is a constant. We often drop the index r when the context is clear, and write
A(u1, . . . , ur ). Moulds can be added and multiplied by scalars componentwise, so
the set of moulds forms a vector space. A mould in the vi is defined identically for
the variables vi .

Let ARI (resp. ARI) denote the space of moulds in the ui (resp. in the vi ) such
that A0(∅) = 0.1 These two vector spaces are obviously isomorphic, but they will be
equipped with very different Lie algebra structures. We use superscripts on ARI to
denote the type of moulds we are dealing with; in particular ARIpol denotes the space
of polynomial-valued moulds, and ARIrat denotes the space of rational-function
moulds.
Operators on moulds. We will use the following operators on moulds in ARI:

neg(A)(u1, . . . , ur ) = A(−u1, . . . ,−ur ) (8)

push(A)(u1, . . . , ur ) = A(−u1 − · · · − ur , u1, . . . , ur−1) (9)

mantar(A)(u1, . . . , ur ) = (−1)r−1A(ur , . . . , u1) (10)

We also introduce the swap, which is a map from ARI to ARI given by

swap(A)(u1, . . . , ur ) = A(vr , vr−1 − vr , vr−2 − vr−1, . . . , v1 − v2), (11)

and its inverse, also called swap, from ARI to ARI:

swap(A)(v1, . . . , vr ) = A(u1 + · · · + ur , u1 + · · · + ur−1, . . . , u1 + u2, u1).
(12)

Thanks to this formulation, which is not ambiguous since to know which swap is
being used it suffices to check whether swap is being applied to a mould in ARI or
one in ARI, we can treat swap like an involution: swap ◦ swap = id.

Let us now introduce some notation necessary for the Lie algebra structures on
ARI and ARI.
Flexions. Let w = (u1, · · · , ur ). For every possible way of cutting the word w into
three (possibly empty) subwords w = abc with

a = (u1, . . . , uk), b = (uk+1, . . . , uk+l), c = (uk+l+1, . . . , ur ),

set
{
a� = (u1, u2, · · · , uk + uk+1 + · · · + uk+l) if b = ∅, otherwise a� = a
�c = (uk+1 + · · · + uk+l+1, uk+l+2, · · · , ur ) if b = ∅, otherwise. �c = c.

1Ecalle works with bimoulds, which are moulds that are simultaneously in the variables ui and vi .
However, while bimoulds are well-adapted to the study of certain more complex objects such as
multizeta values colored by roots of unity, they do not arise naturally in the context of the simple
multizeta values used here, and we found that using moulds in only the ui or only the vi made the
proofs and the notation considerably simpler.
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If noww = (v1, . . . , vr ) is a word in the vi , then for every decompositionw = abc
with

a = (v1, . . . , vk), b = (vk+1, . . . , vk+l), c = (vk+l+1, . . . , vr ),

we set
{
b� = (vk+1 − vk+l+1, vk+2 − vk+l+1, . . . , vk+l − vk+l+1) if c = ∅, otherwise b� = b

�b = (vk+1 − vk , vk+2 − vk , . . . , vk+l − vk) if a = ∅, otherwise �b = b.

Operators on pairs of moulds. For A, B ∈ ARI or A, B ∈ ARI, we set

mu(A, B)(w) =
∑

w=ab

A(a)B(b) (13)

lu(A, B) = mu(A, B) − mu(B, A) (14)

For any mould B ∈ ARI, we define two operators on ARI, amit(B) and anit(B),
defined by

(
amit(B) · A)

(w) =
∑

w=abc
b,c =∅

A(a�c)B(b)

(
anit(B) · A)

(w) =
∑

w=abc
a,b =∅

A(a�c)B(b) (15)

For any mould B ∈ ARI, the operators amit(B) and anit(B) are derivations of
ARI for the lu-bracket (see [12, Proposition 2.2.1]). We define a third derivation,
arit(B), by (

arit(B) · A)
(w) = amit(B) · A − anit(B) · A. (16)

If B ∈ ARI we have derivations of ARI given by

(
amit(B) · A)

(w) =
∑

w=abc
b,c =∅

A(ac)B(b�)

(
anit(B) · A)

(w) =
∑

w=abc
a,b =∅

A(ac)B(�b), (17)

and again we define the derivation arit(B) as in (16).
Finally, for A, B ∈ ARI or A, B ∈ ARI, we set

ari(A, B) = arit(B) · A + lu(A, B) − arit(A) · B. (18)
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Remark. The condition b = ∅ in the definitions of amit and anit above are not
necessary in (15) and (17), sincewe are assuming that B ∈ ARI, so it has the property
that B(∅) = 0; thismeans that includingdecompositionswithb = ∅ in the sumwould
not actually change the values. However, we chose to reproduce Ecalle’s definition,
which also applies to moulds with non-zero value in depth 0, so as to make it easier
to consult his articles and recognize the same definitions.

Since arit is a derivation for lu, the ari-operator is easily shown to be a Lie bracket.
Note that although we use the same notation ari for the Lie brackets on both ARI
and ARI, they are two different Lie brackets on two different spaces. Indeed, while
some formulas and properties (such as mu, or alternality, see (19) below) are written
identically for ARI and ARI, others, in particular all those that use flexions, are very
different, since the definitions of upper flexions (on the ui ) and lower flexions (on
the vi ) are very different. This can be seen in the following examples.

Examples. We give a few of the expressions above explicitly in low depth. The
moulds amit(B) · A and amit(B) · A are all zero in depth 1. Let A, B ∈ ARI and let
us compute the mould amit(B) · A in depth 2. The only possible decomposition of
w = (u1, u2) as abc with b, c = ∅ is abc = (∅)(u1)(u2), so using the upper flexions
as in (15), we have �c = (u1 + u2) and

(
amit(B) · A)

(u1, u2) = A(u1 + u2)B(u1).

(Note that if we don’t include the condition b = ∅ in the sum, wewould also consider
the decomposition abc = (u1)(∅)(u2) so we would add on the term A(u1, u2)B(∅),
but as pointed out in the remark above, this term is zero since B ∈ ARI.)

Now let us compute the mould anit(B) · A in depth 3. Let w = (u1, u2, u3). The
decompositions w = abc with a,b = ∅ are given by (u1)(u2)(u3), (u1, u2)(u3)(∅)

and (u1)(u2, u3)(∅), so

(
anit(B) · A)(u1, u2, u3) =

A(u1 + u2, u3)B(u2) + A(u1, u2 + u3)B(u3) + A(u1 + u2 + u3)B(u2, u3).

If A, B ∈ ARI, we again compute amit(B) · A in depth 2 and anit(B) · A in depth
3, but now using the lower flexions of (17); we obtain the expressions

(
amit(B) · A)

(v1, v2) = A(v2)B(v1 − v2),

(
anit(B) · A)

(v1, v2, v3) =
A(v1, v3)B(v2 − v1) + A(v1, v2)B(v3 − v2) + A(v1)B(v2 − v1, v3 − v1).

Symmetries. A mould in ARI (resp. ARI) is said to be alternal if for all words u, v
in the ui (resp. vi ),
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∑

w∈sh(u,v)

A(w) = 0. (19)

The relations in (19) are known as the alternality relations, and they are identical
for moulds in ARI and ARI. Let us now define the alternility relations, which are
only applicable to moulds in ARI. Just as the alternality conditions are the mould
equivalent of the shuffle relations, the alternility conditions are the mould equivalent
of the stuffle relations, translated in terms of the alphabet {v1, v2, . . .} as follows.
Let Y1 = (yi1 , . . . , yir ) and Y2 = (y j1 , . . . , y js ) be two sequences; for example, we
consider Y1 = (yi , y j ) and Y2 = (yk, yl). Let w be a word in the stuffle product
st

(
Y1,Y2

)
, which in our example is the 13-element multiset

{{(yi , y j , yk, yl), (yi , yk, y j , yl), (yi , yk, yl , y j ), (yk, yi , y j , yl), (yk, yi , yl , y j ),
(yk, yl , yi , y j ), (yi , y j+k, yl), (yi+k, y j , yl), (yi , yk, y j+l), (yi+k, yl , y j ),

(yk, yi , y j+l), (yk, yi+l , y j ), (yi+k, y j+l)}}.
(20)

To each such word we associate an alternility term for the mould A, given by
associating the tuple (v1, v2, v3, v4) to the ordered tuple (yi , y j , yk, yl) and taking

1

(vi − v j )

(
A(. . . , vi , . . .) − A(. . . , v j , . . .)

)
(21)

for each contraction occurring in the word w. For instance in our example we have
the six alternility terms

A(v1, v2, v3, v4), A(v1, v3, v2, v4), A(v1, v3, v4, v2), A(v3, v1, v2, v4),
A(v3, v1, v4, v2), A(v3, v4, v1, v2)

(22)

corresponding to the first six words in (20), the six terms

1

(v2 − v3)

(
A(v1, v2, v4) − A(v1, v3, v4)

)
,

1

(v1 − v3)

(
A(v1, v2, v4) − A(v3, v2, v4)

)
,

1

(v2 − v4)

(
A(v1, v3, v2) − A(v1, v3, v4)

)
,

1

(v1 − v3)

(
A(v1, v4, v2) − A(v3, v4, v2)

)
,

1

(v2 − v4)

(
A(v3, v1, v2) − A(v3, v1, v4)

)
,

1

(v1 − v4)

(
A(v3, v1, v2) − A(v3, v4, v2)

)

(23)

corresponding to the next six words, and the final term

1

(v1 − v3)(v2 − v4)

(
A(v1, v2) − A(v3, v2) − A(v1, v4) + A(v3, v4)

)
(24)

corresponding to the final word with the double contraction.
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Let us write Aw for the alternility term of A associated to a word w in the stuffle
product st(Y1,Y2); note that the alternility terms (for example those in (22), (23) and
(24) associated to the words w in the list (20)) are not all terms of the form A(w)

or even linear combinations of such terms (due to the denominators). However, the
alternility terms Aw are all polynomials in the vi , since the zeros of the denominators
all correspond to zeros of the numerator.

The alternility relation associated to the pair (Y1,Y2) on A is the sum of the
alternility terms associated to words in the stuffle of Y1 and Y2; it is given by

∑

w∈st(Y1,Y2)
Aw = 0. (25)

Let Ar,s denote the left-hand side of (25). Note that indeed, Ar,s does not depend
on the actual sequences Y1 and Y2, but merely on the number of letters in Y1 and
in Y2. For example when r = s = 2, the alternility sum A2,2 is given by the sum of
the terms (22)–(24) above. Furthermore, like for the shuffle, we may assume that
r ≤ s by symmetry. Thus we have the following definition: a mould in ARI is said
to be alternil if it satisfies the alternility relation Ar,s = 0 for all pairs of integers
1 ≤ r ≤ s.

3 Lie Subalgebras of ARI

In this section, we show that the spaces of moulds satisfying certain important sym-
metry properties are closed under the ari-bracket. In particular, we introduce the
following dimorphic spaces investigated by Ecalle, where the term dimorphy refers
to the double description of a mould by a symmetry property on it and another one
on its swap.

Definition 3 Let ARIal denote the set of alternal moulds. Let ARIal/al (resp.
ARIal/ il ) denote the set of alternal moulds with alternal (resp. alternil) swap. Let
ARIal∗al (resp. ARIal∗il ) denote the set of alternal moulds whose swap is alter-
nal (resp. alternil) up to addition of a constant-valued mould. Finally, let ARIal/al
(resp. ARIal∗al , ARIal/il , ARIal∗il) denote the subspace of ARIal/al (resp. ARIal∗al ,
ARIal/ il , ARIal∗il ) consisting of moulds A such that A1 is an even function, i.e.
A(−u1) = A(u1).

The first main theorem of this paper is the following result, which is used con-
stantly in Ecalle’swork although no explicit proof appears to have beenwritten down,
and the proof is by no means as easy as one might imagine.

Theorem 2 The subspace ARIal ⊂ ARI of alternal moulds forms a Lie algebra
under the ari-bracket, as does the subspace ARIal of ARI.

The full proof is given in Appendix A. The idea is as follows: if C = ari(A, B),
then by (18) it is enough to show separately that if A and B are alternal then lu(A, B)
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is alternal and arit(B) · A is alternal. This is done via a combinatorial manipulation
that is fairly straightforward for lu but actually quite complicated for arit.

We next have a simple but important result on polynomial-valued moulds.

Proposition 1 The subspace ARIpol of polynomial-valued moulds in ARI forms a
Lie algebra under the ari-bracket.

Proof This follows immediately from the definitions of mu, arit and ari in (13)–(18),
as all the operations and flexions there are polynomial. �

Nowwe give another key theorem, the first main result concerning dimorphy. This
result, again, is used repeatedly by Ecalle but we were not able to find a complete
proof in his papers, so we have reconstructed one here (see also [12, Sect. 2.5]).

Theorem 3 The subspaces ARIal/al and ARIal∗al form Lie algebras under the
ari-bracket.

The proof is based on the following two propositions.

Proposition 2 If A ∈ ARIal∗al , then A is neg-invariant and push-invariant.

The proof of this proposition is deferred to Appendix B.

Proposition 3 If A and B are both push-invariant moulds, then

swap
(
ari

(
swap(A), swap(B)

)) = ari(A, B), (26)

Proof Explicit computation using the flexions shows that for all moulds A, B ∈ ARI
we have the general formula:

swap
(
ari(swap(A), swap(B))

) = axit
(
B,− push(B)

) · A − axit
(
A,− push(A)

) · B
+ lu(A, B),

(27)

where here ari is the Lie bracket on ARI, and axit is the operator on ARI defined for
a general pair of moulds B,C ∈ ARI by the formula

axit(B,C) · A = amit(B) · A + anit(C) · A.

(See [12, Sect. 4.1] for complete details of this flexion computation.) Comparing
with (16) shows that arit(B) = axit(B,−B). Thus if A and B are push-invariant,
(27) reduces to

swap
(
ari

(
swap(A), swap(B)

)) = arit(B) · A − arit(A) · B + lu(A, B),

which is exactly ari(A, B) by (18). �
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Proof (Theorem 3) Using these two propositions, the proof becomes reasonably
easy. We first consider the case where A, B ∈ ARIal/al . In particular A and B
are alternal. Set C = ari(A, B). The mould C is alternal by Theorem 2. By
Proposition 2, we know that A and B are push-invariant, so by Proposition 3 we
have swap(C) = swap

(
ari(A, B)

) = ari
(
swap(A), swap(B)

)
. But this is also alter-

nal by Theorem 2, soC ∈ ARIal/al . Furthermore, it follows directly from the defining
formula for the ari-bracket, which is additive in the mould depths, that if C is an ari-
bracket of two moulds in ARI, i.e. with constant term equal to 0, we must have
C(u1) = 0, so C ∈ ARIal/al .

Nowwe consider themore general situationwhere A, B ∈ ARIal∗al . Let A0, B0 be
the constant-valued moulds such that swap(A) + A0 and swap(B) + B0 are alternal.
From the definitions (13)–(16), we see that for any constant-valued mould M0, we
have arit(M0) · M = 0. Indeed if M0 is constant-valued, say with constant value cr
in depth r , then

(
arit(M0) · M)(w) =

∑

w=abc
b,c =0

M(a�c)M0(b) −
∑

w=abc
a,b =0

M(a�c)M0(b).

Writing w = abc = (u1, . . . , ui )(ui+1, . . . , ui+ j )(ui+ j+1, . . . , ur ), we can rewrite
this as

r−2∑

i=0

r−1∑

j=1

c j M(u1, . . . , ui , ui+1 + · · · + ui+ j+1, ui+ j+2, . . . , ur )

−
r−1∑

i=1

r−1∑

j=1

c j M(u1, . . . , ui−1, ui + · · · + ui+ j , ui+ j+1, . . . , ur ).

But by renumbering i as i + 1 in the first sum shows that these two sums are in fact
equal, so their difference is zero. An analogous computation shows that arit(M) ·
M0 = lu(M, M0); thus by (18), we have ari(M, M0) = 0. Thus we find that

ari(A + A0, B + B0) = ari(A, B) + ari(A, B0) + ari(A0, B) + ari(A0, B0) = ari(A, B).

(28)
Now, A and B are push-invariant by Proposition 2, and constant-valued moulds are
always push-invariant, so A + A0 and B + B0 are also push-invariant; thus we have

swap(C) = swap
(
ari(A, B)

)

= swap
(
ari(A + A0, B + B0)

)
by (28)

= ari
(
swap(A + A0), swap(B + B0)

)
by (26).

But since swap preserves constant-valued moulds, we have swap(A + A0) =
swap(A) + A0 and swap(B + B0) = swap(B) + B0. These two moulds are alter-
nal by hypothesis, so by Theorem 2, their ari-bracket is alternal, i.e. swap(C) is
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alternal. Since as above we have C(u1) = 0, we find that in fact C is not just in
ARIal∗al but in ARIal/al . This completes the proof of Theorem 3. �

We will see in the next section that the double shuffle space ds defined in Sect. 1
is isomorphic to the space of polynomial-valued moulds ARIpolal∗il , with the alternal-
ity property translating shuffle and the alternility property translating stuffle. Thus
dimorphy is closely connected to double shuffle, but much more general, since the
symmetry properties of alternality or alternility on itself or its swap can hold for any
mould, not just polynomial ones.

4 Dictionary with the Lie Algebra and Double Shuffle
Framework

Let Ci = ad(x)i−1y ∈ Q〈x, y〉, where ad(x)y = [x, y]. By Lazard elimination (see
[2, Proposition 10a]), the subringQ〈C1,C2, . . .〉, which we denote simply byQ〈C〉,
is free on the Ci . Let Q0〈C〉 denote the subspace of polynomials in the Ci with
constant term equal to 0. Define a linear map

ma : Q0〈C〉 ∼→ ARIpol

Ca1 · · ·Car �→ Aa1,...,ar (29)

where Aa1,...,ar is the polynomial mould concentrated in depth r defined by

Aa1,...,ar (u1, . . . , ur ) = (−1)a1+···+ar−r ua1−1
1 · · · uar−1

r . (30)

This map ma is trivially invertible and thus an isomorphism of vector spaces. Let
Lie[C] denote the free Lie algebra Lie[C1,C2, . . .] on the Ci . Note that, again by
Lazard elimination, we can write Lie[x, y] = Qx ⊕ Lie[C]. Since by its definition,
all elements of the double shuffle space ds ⊂ Lie[x, y] are polynomials of degree
≥ 3, we have

ds ⊂ Lie[C] ⊂ Q0〈C〉.

Definition 4 LetMT 0 denote the Lie algebra whose underlying space is the space
of polynomials Q0〈C〉, equipped with the Poisson bracket (6), and let mt denote the
subspace of Lie polynomials in theCi , i.e. the vector space Lie[C] equipped with the
Poisson bracket. Observe thatmt is closed under the Poisson bracket since if f, g are
Lie then so are D f (g), Dg( f ) and [ f, g], so mt is a Lie algebra. The letters “M-T”
stand for twisted Magnus (cf. [10]).

Let MT denote the universal enveloping algebra of mt. It is isomorphic as a
vector space to Q〈C〉, and like all universal enveloping algebras, it is equipped with
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a pre-Lie2 law�. In the special case where g ∈ mt, the pre-Lie law onMT reduces
to the expression f � g = f g − Dg( f ), so that we have f � g − g � f = { f, g}
as befits the pre-Lie law of a universal enveloping algebra.

Let us also define the twisted Magnus group as the exponential MT = exp�(mt),
where

exp�( f ) =
∑

n≥0

1

n! f
�n.

Note that
f �n = f �(n−1) � f = f n − D f ( f

�n),

which gives an explicit recursive expression for f �n .

Theorem 4 (Racinet) The linear isomorphism (29) is a Lie algebra isomorphism

ma : MT 0
∼→ ARIpol , (31)

and it restricts to a Lie algebra isomorphism of the Lie subalgebras

ma : mt
∼→ ARIpolal . (32)

Proof In view of the fact that ma is invertible as a linear map, the isomorphism
(31) follows from the following identity relating the Poisson bracket and the ari-
bracket on polynomial-valued moulds, which was proven by Racinet in his thesis
([10, Appendix A], see also [12, Corollary 3.3.4]):

ma
({ f, g}) = ari

(
ma( f ),ma(g)

)
. (33)

The isomorphism (32), identifyingLie polynomialswith alternal polynomialmoulds,
follows from a standard argument thatwe indicate briefly, as it ismerely an adaptation
to Lie[C] of the similar argument following the definition of the shuffle relations in
(3). Let Δ denote the standard cobracket on Q〈C〉 defined by Δ(Ci ) = Ci ⊗ 1 +
1 ⊗ Ci . Then the Lie subspace Lie[C] of the polynomial algebra Q〈C〉 is the space
of primitive elements for Δ, i.e. elements f ∈ Lie[C] satisfying Δ( f ) = f ⊗ 1 +
1 ⊗ f . This condition on f is given explicitly on the coefficients of f by the family
of shuffle relations ∑

D∈sh(Ca1 ···Car ,Cb1 ···Cbs )

( f |D) = 0,

where ( f |D) denotes the coefficient in the polynomial f of the monomial D in the
Ci . But these conditions are exactly equivalent to the alternality relations

2A pre-Lie law must satisfy the defining relation
(
( f � g) � h

) − (
f � (g � h)

) = ((
f � h) �

g
) − (

f � (h � g)
)
.
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∑

D∈sh((a1,...,ar ),(b1,...,bs ))
ma( f )(D) = 0,

proving (32). �

Theorem 5 The linear isomorphism (32) restricts to a linear isomorphism of the
subspaces

ma : ds ∼→ ARIpolal∗il . (34)

Proof By (32), since ds ⊂ mt, we have ma : ds ↪→ ARIpolal . If an element f ∈ ds
has a depth 1 component, i.e. if the coefficient of xn−1y in f is non-zero, then n
is odd; this is a simple consequence of solving the depth 2 stuffle relations (see [4,
Theorem 2.30 (i)] for details). Thus, if the mould ma( f ) has a depth 1 component,
it will be an even function, since by the definition of ma the degree of ma( f )(u1)
is equal to the degree of f minus 1. This shows that ma maps ds to moulds that are
even in depth 1, i.e.

ma : ds ↪→ ARIpolal .

It remains only to show that if f ∈ ds then swap
(
ma( f )

)
is alternil up to addi-

tion of a constant mould, i.e. that the stuffle conditions (5) imply the alternility of
swap

(
ma( f )

)
.

By additivity, we may assume that f is of homogeneous degree n. Let C be the
constant mould concentrated in depth n given by

C(u1, . . . , un) = (−1)n−1

n
( f |xn−1y),

and let A = swap
(
ma( f )

) + C . Ecalle showed (see [10,Appendix A] or [12, (3.2.6)]
for full details) that we have the following explicit expression for swap

(
ma( f )

)
. If

for r ≥ 1 we write the depth r part of f∗ as

( f∗)r =
∑

a=(a1,...,ar )

ca ya1 · · · yar , (35)

then swap
(
ma( f )

)
is given by

swap
(
ma( f )

)
(v1, . . . , vr ) =

∑

a=(a1,...,ar )

ca v
a1−1
1 · · · var−1

r (36)

Note that since f is homogeneous of degree n, the associated mould

A = swap
(
ma( f )

) + C
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is concentrated in depths≤ n. We will use this close relation between the polynomial
f∗ and the mould A to show that the stuffle relations (5) on f∗ are equivalent to the
alternility of A.

For any pair of integers 1 ≤ r ≤ s, let Ar,s denote the alternility sum associ-
ated to the mould A as in (25). By definition, A is alternil if and only if Ar,s = 0
for all pairs 1 ≤ r ≤ s. Recall from Sect. 2 that the alternility sum Ar,s is a poly-
nomial in v1, . . . , vr+s obtained by summing up polynomial terms in one-to-one
correspondence with the terms of the stuffle of two sequences of lengths r and s.
By construction, the coefficient of a monomial w = vb1−1

1 · · · vbr+s−1
r+s in the alternility

term corresponding to a given stuffle term is equal to the coefficient in f∗ of the
stuffle term itself. This follows from a direct calculation obtained by expanding the
alternility terms; for example, the alternility term corresponding to the stuffle term
(yi , y j+k, yl) in (20) is given by

1

v2 − v2

(
A(v1, v2, v4) − A(v1, v3, v4)

)

(see (22)), whose polynomial expansion is given by

∑

a=(a1,a2,a3)

cav
a1−1
1

(a2−2∑

m=0

vm2 v
a2−2−m
3

)
va3−1
4 ,

and the coefficient of the monomial vi−1
1 v j−1

2 vk−1
3 vl−1

4 in this alternility term corre-
sponds to a1 − 1 = i − 1, m = j − 1, a2 − 2 − m = k − 1 and a3 − 1 = l − 1, i.e.
a1 = i , a2 = j + k, a3 = l, so it is equal to ci, j+k,l which is exactly the coefficient
( f∗|yi y j+k yl) in (35). The alternility sum is equal to zero if and only if the coefficient
of each monomial in v1, . . . , vr+s is equal to zero, which is thus equivalent to the full
set of stuffle relations on f∗. �

In view of (33) and (34), a mould-theoretic proof of Racinet’s theorem consists
in proving that ARIpolal∗il is a Lie algebra under the ari-bracket. To prove this mould-
theoretic version, we need to make use of the Lie group GARI associated to ARI,
defined in the next section. In Sect. 6 we give the necessary results from Ecalle’s
theory, and the theorem is proved in Sect. 7.

5 The Group GARI

In this section we introduce several notions on the group GARI of moulds with
constant term 1, which are group analogs of the Lie notions introduced in Sect. 2. To
move from the Lie algebra ARI to the associated group GARI, Ecalle introduces a
pre-Lie law on ARI, defined as follows:
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preari(A, B) = arit(B) · A + mu(A, B), (37)

where arit and mu are as defined in (16) and (13). Indeed, if A, B ∈ ARI then
preari(A, B) also lies in ARI, and it is straightforward to check that preari satisfies
the defining condition of pre-Lie laws given in Sect. 4. Using preari, Ecalle defines
an exponential map on ARI in the standard way:

expari(A) =
∑

n≥0

1

n! preari(A, . . . , A︸ ︷︷ ︸
n

), (38)

where
preari(A, . . . , A︸ ︷︷ ︸

n

) = preari(preari(A, . . . , A︸ ︷︷ ︸
n−1

), A).

This map is the exponential isomorphism expari : ARI → GARI, where GARI is
nothing other than the group of all moulds with constant term equal to 1, equipped
with the multiplication law, denoted gari, that comes as always from the Campbell-
Hausdorff law ch(·, ·) on ARI:

gari
(
expari(A), expari(B)

) = expari(ch(A, B)). (39)

The gari-inverse of a mould B ∈ GARI is denoted invgari(B). The inverse isomor-
phism of expari is denoted by logari.

Like all Lie algebras, ARI is equipped with an action of the associated group
GARI, namely the standard adjoint action, denoted Adari (Ecalle denotes it simply
adari, but we have modified it to stress the fact that it represents the adjoint action of
the group GARI on ARI ):

Adari(A) · B = gari
(
preari(A, B), invgari(A)

)

= d

dt
|t=0 gari

(
A, expari(t B), invgari(A)

)

= B + ari
(
logari(A), B

) + 1

2
ari

(
logari(A), ari

(
logari(A), B

)) + · · ·
(40)

Finally, to any mould A ∈ GARI (i.e. any mould in the ui with constant term 1),
Ecalle associates an automorphism ganit(A) of the ring of all moulds in the ui under
the mu-multiplication which is just the exponential of the derivation anit

(
logari(A)

)
.

The analogous objects exist for moulds in the vi . If preari denotes the pre-Lie
law on ARI given by (37) (but for the derivation arit of ARI), then the formula (38)
defines an analogous exponential isomorphismARI → GARI, where GARI consists
of all moulds in the variables vi with constant term 1 and multiplication determined
by (39) (note that this definition depends on that of arit, so just as the Lie bracket ari
is different for ARI and ARI, the multiplication is different for GARI and GARI).
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As above, we let the automorphism ganit(A) of GARI associated to each A ∈ GARI
be defined as the exponential of the derivation anit

(
logari(A)

)
of ARI.

Definition 5 Amould A ∈ GARI (resp. GARI) is symmetral if for all words u, v in
the ui (resp. in the vi ), we have

∑

w∈sh(u,v)

A(w) = A(u)A(v). (41)

Following Ecalle, we write GARIas (resp. GARIas) for the set of symmetral moulds
in GARI (resp. GARI). The property of symmetrality is the group equivalent of
alternality; in particular,

A ∈ ARIal (resp. ARIal) ⇔ expari(A) ∈ GARIas (resp. GARIas ). (42)

RemarkLetMT denote the twistedMagnusgroupof power series inQ〈〈C1,C2, . . .〉〉
with constant term 1, identified with the exponential of the twisted Magnus Lie
algebra mt defined by

exp�( f ) =
∑

n≥0

1

n! f �n

for f ∈ mt, where � is the pre-Lie law

f � g = f g + D f (g) (43)

defined for f, g ∈ mt (see Sect. 4). The group MT is equipped with the twisted
Magnus multiplication

(
f � g

)
(x, y) = f (x, gyg−1)g(x, y). (44)

Notice that it makes sense to use the same symbol � for (43) and (44), because in
fact � is the multiplication on the completion of the universal enveloping algebra of
mt, and (43) and (44) merely represent the particular expressions that it takes on two
elements of mt resp. two elements of MT .

The multiplication (44) corresponds to the gari-multiplication in the sense that the
map ma defined in (29) yields a group isomorphism MT

∼→ GARIpol . If g ∈ MT ,
then the automorphism ganit

(
ma(g)

)
is the GARI-version of the automorphism of

MT given by mapping x �→ x and y �→ yg.
The fact of having non-polynomial moulds in GARI gives enormously useful pos-

sibilities of expanding the familiar symmetries and operations (derivations, shuffle
and stuffle relations etc.) to a broader situation. In particular, the next section con-
tains some of Ecalle’s most important results in mould multizeta theory, which make
use of moulds with denominators and have no analog within the usual polynomial
framework.
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6 The Mould Pair pal/ pi l and Ecalle’s Fundamental
Identity

In this section we enter into the “second drawer” of Ecalle’s powerful toolbox, with
the mould pair pal/pil and Ecalle’s fundamental identity.

Definition 6 Let dupal be the mould defined explicitly by the following formulas:
dupal(∅) = 0 and for r ≥ 1,

dupal(u1, . . . , ur ) = Br

r !
1

u1 · · · ur

(
r∑

i=0

(−1)i
(r − 1

i

)
ui+1

)
, (45)

where Br denotes the r -th Bernoulli number.

This mould is actually quite similar to a power series often studied in classical
situations. Indeed, if we define dar to be the mould operator defined by

dar ·A(u1, . . . , ur ) = u1 · · · ur A(u1, . . . , ur ),

then dar ·dupal is a polynomial-valued mould, so it is the image of a power series
under ma; explicitly

dar ·dupal = ma
(
x − ad(−y)

exp(ad(−y)) − 1
(x)

)
.

Ecalle gave several equivalent definitions of the key mould pal, but the most
recent one (see [7]) appears to be the simplest and most convenient. If we define dur
to be the mould operator defined by

dur ·A(u1, . . . , ur ) = (u1 + · · · + ur ) A(u1, . . . , ur ),

then the mould pal is defined recursively by

dur ·pal = mu(pal, dupal). (46)

Calculating the first few terms of pal explicitly, we find that

pal(∅) = 1

pal(u1) = 1

2u1

pal(u1, u2) = u1 + 2u2
12u1u2(u1 + v2)

pal(u1, u2, u3) = −1

24u1u3(u1 + u2)
.
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Let pil = swap(pal). The most important result concerning pal, necessary for
the proof of Ecalle’s fundamental identity below, is the following.

Theorem 6 The moulds pal and pil are symmetral.

In [6, Sect. 4.2], the mould pil (called ess) is given an independent definition
which makes it easy to prove that it is symmetral. Similarly, it is not too hard to
prove that pal is symmetral using the definition (46). The real difficulty is to prove
that pil (as defined in [6]) is the swap of pal (as defined in (46)). Ecalle sketched
beautiful proofs of these two facts in [7], and the details are fully written out in [12,
Sects. 4.2, 4.3].

Before proceeding to the fundamental identity, we need a useful result in which
a very simple v-mould is used to give what amounts to an equivalent definition of
alternility.3

Proposition 4 Let pic be the v-mould defined by pic(v1, . . . , vr ) = 1/v1 · · · vr . Then
for any alternal mould A ∈ ARI, the mould ganit(pic) · A is alternil.

Proof The proof is deferred to Appendix C. �

We now come to Ecalle’s fundamental identity.
Ecalle’s fundamental identity: For any push-invariant mould A, we have

swap
(
Adari(pal) · A) = ganit(pic) · (

Adari(pil) · swap(A)
)
. (47)

The proof of this fundamental identity actually follows as a consequence of (27) and
a more general fundamental identity, similar but taking place in the group GARI and
valid for all moulds. It is given in full detail in [12, Theorem 4.5.2].

7 The Main Theorem

In this section we give Ecalle’s main theorem on dimorphy, which shows how the
mould pal transforms moulds with the double symmetry al ∗ al to moulds that are
al ∗ il. We then show how Racinet’s theorem follows directly from this. We first
need a useful lemma.

Lemma 1 If C is a constant-valued mould, then

ganit(pic) · Adari(pil) · C = C. (48)

3This is just one example of a general identity valid for flexion units, see [6, p. 64] where Ecalle
explains the notion of alternality twisted by a flexion unit and asserts that alternility is merely
alternality twisted by the flexion unit 1/v1.
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Proof [1, Corollary 4.43] We apply the fundamental identity (47) in the case where
A = swap(A) = C is a constant-valued mould, obtaining

swap
(
Adari(pal) · C) = ganit(pic) · Adari(pil) · C.

So it is enough to show that the left-hand side of this is equal toC , i.e. thatAdari(pal) ·
C = C , since a constant mould is equal to its own swap. As we saw just before (28),
the definitions (13)–(16) imply that ari(A,C) = 0 for all A ∈ ARI. Now, by (40) we
see that Adari(pal) · C is a linear combination of iterated ari-brackets of logari(pal)
with C , but since pal ∈ GARI, logari(pal) ∈ ARI, so ari(logari(pal),C) = 0, i.e.
all the bracketed terms in (40) are 0. Thus Adari(pal) · C = C . This concludes the
proof. �

We can now state the main theorem on moulds.

Theorem 7 The action of the operatorAdari(pal) on the Lie subalgebraARIal∗al ⊂
ARI yields a Lie isomorphism of subspaces

Adari(pal) : ARIal∗al ∼→ ARIal∗il . (49)

Thus in particular ARIal∗il forms a Lie algebra under the ari-bracket.

Proof The proof we give appears not to have been published anywhere by Ecalle,
but we learned its outline from him through a personal communication to the second
author, for which we are grateful.

Note first that Adari(pal) preserves the depth 1 component of moulds in ARI, so
if A is even in depth 1 then so is Adari(pal) · A. We first consider the case where
A ∈ ARIal/al , i.e. swap(A) is alternal without addition of a constant correction.
By (42), the mould Adari(pal) · A is alternal, since pal is symmetral by Theo-
rem 6. By Proposition 2, A is push-invariant, so Ecalle’s fundamental identity (47)
holds. Since A ∈ ARIal/al , swap(A) is alternal, and by Theorem 6, pil is alternal;
thus by (42), Adari(pil) · swap(A) is alternal. Then by Proposition 4, ganit(pic) ·
Adari(pil) · swap(A) is alternil, and finally by (47), swap

(
Adari(pal) · A)

is alternil,
which proves that Adari(pal) · A ∈ ARIal/il as desired.

We now consider the general case where A ∈ ARIal∗al . Let C be the constant-
valued mould such that swap(A) + C is alternal. As above, we have that Adari(pal) ·
A is alternal, so to conclude the proof of the theorem it remains only to show that
its swap is alternil up to addition of a constant mould, and we will show that this
constant mould is exactly C . As before, since swap(A) + C ∈ ARI is alternal, the
mould

Adari(pil) · (
swap(A) + C

) = Adari(pil) · swap(A) + Adari(pil) · C

is also alternal. Thus by Proposition 4, applying ganit(pic) to it yields the alternil
mould
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ganit(pic) · Adari(pil) · swap(A) + ganit(pic) · Adari(pil) · C.

By Lemma 1, this is equal to

ganit(pic) · Adari(pil) · swap(A) + C, (50)

which is thus alternil. Now, since A is push-invariant by Proposition 2, we can apply
(47) and find that (50) is equal to

swap
(
Adari(pal) · A) + C,

which is thus also alternil. Therefore swap
(
Adari(pal) · A)

is alternil up to a constant,
which precisely means that Adari(pal) · A ∈ ARIal∗il as claimed. Since Adari(pal)
is invertible (with inverse Adari

(
invgari(pal)

)
) and by the analogous arguments this

inverse takes ARIal∗il to ARIal∗al , this proves that (49) is an isomorphism. �
Corollary 1 ARIpolal∗il forms a Lie algebra under the ari-bracket.

Proof By Proposition 1, ARIpol is a Lie algebra under the ari-bracket, so since
ARIal∗il is as well by Theorem 7, their intersection also forms a Lie algebra. �

In view of (33) and (34), this corollary is equivalent to Racinet’s theorem that ds
is a Lie algebra under the Poisson bracket.
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Appendix A

Proof of Theorem 2. We cut it into two separate results as explained in the main text.

Proposition 5 If A, B are alternal moulds then C = lu(A, B) is alternal.

Proof We have

C(w) = lu(A, B)(w) =
∑

w=ab

(
A(a)B(b) − B(a)A(b)

)
,

so we need to show that the following sum vanishes:

∑

w∈sh(u,v)

C(w) =
∑

w∈sh(u,v)

lu(A, B)(w)

=
∑

w∈sh(u,v)

∑

w=ab

(
A(a)B(b) − B(a)A(b)

)
. (51)
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This sum breaks into three pieces: the terms where a contain letters from both u
and v, the case where a contains only letters from u or from v but b contains letters
from both, and finally the cases a = u, b = v and a = v,b = u.

The first type of terms add up to zero because we can break up the sum into smaller
sums where a lies in the shuffle of the first i letters of u and j letters of b, and these
terms already sum to zero since A and B are alternal.

The second type of term adds up to zero for the same reason, because even though
a may contain only letters from one of u and v, bmust contain letters from both and
therefore the same reasoning holds.

The third type of term yields A(u)B(v) − B(u)A(v) when a = u,b = v and
A(v)B(u) − B(v)A(u) when a = v, b = u, which cancel out. Thus the sum (51)
adds up to zero. �

Proposition 6 If A and B are alternal moulds in ARI, then C = arit(B) · A is
alternal.

Proof By definition, C is alternal if

∑

w=sh(x,y)

C(w) = 0,

for all pairs of non-trivial words x, y.
Pick an arbitrary pair of non-trivial words x, y, of appropriate length (that is, so

that their lengths add up to the length of A plus the length of B). We will be shuffling
x and y together, and the resulting word is then broken up into three parts (all possible
ones) in order to compute the flexions. Thus, if we break up w = abc, a must be a
shuffle of some parts at the beginning of each word x, y, bmust come from shuffling
their middles, and c can only come from shuffling the last parts. Then we can rewrite
this computation as follows:

∑

w=sh(x,y)

arit(B) · A(w) =
∑

w=sh(x,y)

⎛

⎜⎝
∑

w=abc
c =∅

A(a�c)B(b) −
∑

w=abc
a =∅

A(a�c)B(b)

⎞

⎟⎠

=
∑

x=x1x2x3
y=y1y2y3 ,x3y3 =∅

∑

a=sh(x1 ,y1)

b=sh(x2 ,y2),c=sh(x3 ,y3)

A(a�c)B(b)

−
∑

x=x1x2x3
y=y1y2y3 ,x1y1 =∅

∑

a=sh(x1 ,y1)

b=sh(x2 ,y2),c=sh(x3 ,y3)

A(a�c)B(b).

Now for a fixed splitting of each x and y into three parts, we have the following
possibilities.
Case I. Both x2 = y2 = ∅. Then B(∅) = 0 so we are done.
Case II. Both x2 and y2 are nonempty. The trick here is that because of the flexion
operations, no matter how b = sh(x2, y2) is shuffled, the part being added together
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with the last letter in a and the first letter in c remains the same. Thus, if we further
fix a particular a and c, we get that

∑

b=sh(x2,y2)

A(a�c)B(b) = A(a�c)
∑

b=sh(x2,y2)

B(b) = 0

and ∑

b=sh(x2,y2)

A(a�c)B(b) = A(a�c)
∑

b=sh(x2,y2)

B(b) = 0,

by alternality of B. And thus,

∑

a=sh(x1 ,y1)

c=sh(x3 ,y3)

∑

b=sh(x2,y2)

A(a�c)B(b) = 0

and ∑

a=sh(x1 ,y1)

c=sh(x3 ,y3)

∑

b=sh(x2,y2)

A(a�c)B(b) = 0.

Case III. Either x2 = ∅ or y2 = ∅, but not both. Without loss of generality, assume
x2 = ∅. Then we have

∑

a=sh(x1 ,y1)

b=y2 ,c=sh(x3 ,y3)

A(a�c)B(b) = B(y2)
∑

a=sh(x1 ,y1)

c=sh(x3 ,y3)

A(a�c).

And similarly,

∑

a=sh(x1 ,y1)

b=y2 ,c=sh(x3 ,y3)

A(a�c)B(b) = B(y2)
∑

a=sh(x1 ,y1)

c=sh(x3 ,y3)

A(a�c).

Recall that by definition

sh(x1, y1) = sh(x′
1, y1)(last letter in x1) + sh(x1, y′

1)(last letter in y1)

and

sh(x3, y3) = (first letter in x3) sh(x′
3, y3) + (first letter in y3) sh(x3, y′

3).

Thus,

a�c = sh(x1, y1)(sum of letters in y2 plus first letter in x3) sh(x′
3, y3) (52)

or



422 A. Salerno and L. Schneps

a�c = sh(x1, y1)(sum of letters in y2 plus first letter in y3) sh(x3, y′
3) (53)

and

a�c = sh(x′
1, y1)(sum of letters in y2 plus last letter in x1) sh(x3, y3) (54)

or

a�c = sh(x1, y′
1)(sum of letters in y2 plus last letter in y1) sh(x3, y3). (55)

Recall that, since x2 is assumed to be empty, then for a given x1, x3, we can let
x1, x3 be so that x1 is x1 with an additional letter given by the first letter of x3 and x3
is defined in the logical way. That means that Eqs. (52) and (54) are exactly the same.
Thus, we get direct cancellation for all possible choices of x1, x3 (this is compatible
with the restrictions on nonemptiness given by the definition).

We cannot do the same for (53) and (55), since y2 is assumed to be nonempty. For
these, notice that if we keep y fixed and sum over all possible partitions of x = x1x2x3
where x2 = ∅, and x3 = ∅ we get that each

a�c = sh(x1, y1)(sum of letters in y2 plus first letter in y3) sh(x3, y′
3)

could be seen as a term in the shuffle sh(x, y1�y3). To see this, suppose that

x = u1 · · · uk |uk+1 · · · ul = x1|x3
and that

y = ul+1 · · · ul+i |ul+i+1 · · · ul+ j |ul+ j+1 · · · un = y1|y2|y3.

Then

a�c = sh((u1 · · · uk), (ul+1 · · · ul+i ))(ul+i+1+ · · · + ul+ j + ul+ j+1)

· sh((uk+1 · · · ul), (ul+ j+2 · · · un)).

And so if we allow the k to shift from 1 to l, this is essentially the shuffling of the
words u1 · · · ul = x and ul+1 · · · ul+i (ul+i+1 + · · · + ul+ j + ul+ j+1)ul+ j+2 · · · un =
y1�y3. Thus we have

∑

x=x1x3
x3 =∅

∑

a=sh(x1 ,y1)

b=y2 ,c=yfirst sh(x3 ,y′3)

A(a�c) =
∑

w=sh(x,y1�y3)
A(w) = 0

by alternality of A.
A similar argument holds for the terms corresponding to the other flexion (the

terms corresponding to Eq. (55)).
Putting all of these cases together, we see that indeed, C is alternal. �
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Proposition 7 If A and B are alternal moulds in ARI, then C = arit(B) · A is
alternal.

Proof As with the proof for ARIal , we have to show that

∑

w=sh(x,y)

C(w) = 0,

for all pairs of non-trivial words x, y. Again, this can be rewritten as follows:

∑

w=sh(x,y)

arit(B) · A(w) =
∑

w=sh(x,y)

⎛

⎜⎝
∑

w=abc
c =∅

A(ac)B(b�) −
∑

w=abc
a =∅

A(ac)B(�b)

⎞

⎟⎠

=
∑

x=x1x2x3
y=y1y2y3,x3y3 =∅

∑

a=sh(x1 ,y1)

b=sh(x2 ,y2),c=sh(x3 ,y3)

A(ac)B(b�)

−
∑

x=x1x2x3
y=y1y2y3,x1y1 =∅

∑

a=sh(x1 ,y1)

b=sh(x2 ,y2),c=sh(x3 ,y3)

A(ac)B(�b)

Again, for a fixed splitting of each x and y into three parts, we have the following
possibilities.
Case I. Both x2 = y2 = ∅. Then B(∅) = 0 so we are done.
Case II. Both x2 and y2 are nonempty.

Here, no matter how b = sh(x2, y2) is shuffled, the part being subtracted from b,
which is either the last letter in a or the first letter in c, remains the same if we fix a
particular a and c. Thus, we get that

b�i = sh(x2, y2)i − first letter in c = sh((x2k − first letter in c), (y2k − first letter in c))i

and

�bi = sh(x2, y2)i − last letter in a = sh((x2k − last letter in a), (y2k − last letter in a))i .

Thus, ∑

b=sh(x2,y2)

A(ac)B(b�) = A(ac)
∑

b=sh(x2,y2)

B(b�) = 0

and ∑

b=sh(x2,y2)

A(ac)B(�b) = A(ac)
∑

b=sh(x2,y2)

B(�b) = 0,

by alternality of B. And thus,
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∑

a=sh(x1 ,y1)

c=sh(x3 ,y3)

∑

b=sh(x2,y2)

A(ac)B(b�) = 0

and ∑

a=sh(x1 ,y1)

c=sh(x3 ,y3)

∑

b=sh(x2,y2)

A(ac)B(�b) = 0.

Case III. Either x2 = ∅ or y2 = ∅, but not both. Without loss of generality, assume
x2 = ∅.

Recall, again, that by definition

sh(x1, y1) = sh(x′
1, y1)(last letter in x1) + sh(x1, y′

1)(last letter in y1)

and

sh(x3, y3) = (first letter in x3) sh(x′
3, y3) + (first letter in y3) sh(x3, y′

3).

Since x2 = ∅, we can see that

b�i = y2i − first letter in c

and
�bi = y2i − last letter in a.

For a given x1, x3, we can let x1, x3 be so that x1 is x1 with an additional letter
given by the first letter of x3 and x3 is defined in the logical way. That means that

A(sh(x1′, y1)(last letter in x1) sh(x3, y3))B(�b)

and
A(sh(x1, y1)(first letter in x3) sh(x′

3, y3))B(b�)

are identical (for each fixed shuffling).
Thus,weget direct cancellation for all possible choices ofx1, x3 (this is compatible

with the restrictions on nonemptiness given by the definition).
The only terms that have not cancelled out are the ones coming from the second

term in the shuffle equations above. Now, suppose that

x = v1 · · · vk |vk+1 · · · vl = x1|x3
and that

y = vl+1 · · · vl+i |vl+i+1 · · · vl+ j |vl+ j+1 · · · vn = y1|y2|y3,

and fix this splitting of y. Then
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ac = sh(v1 · · · vk, vl+1 · · · vl+i )vl+ j+1 sh(vk+1 · · · vl , vl+ j+2 · · · vn).

And so ifwe allow the k to shift from1 to l, this is essentially the shuffling of thewords
v1 · · · vl = x and vl+1 · · · vl+i , vl+ j+1, vl+ j+2 · · · vn = y1y3. Notice that this shuffling
fixes b�, since

b� = (vl+i+1 − vl+ j+1, . . . , vl+ j − vl+ j+1).

Thus we have

∑

x=x1x3
x3 =∅

∑

a=sh(x1 ,y1),b=y2
c=yfirst sh(x3 ,y′3)

A(ac)B(b�) = B(b�)
∑

w=sh(x,y1y3)

A(w) = 0

by alternality of A.
A similar argument holds for the terms corresponding to the other flexion. Com-

bining all the cases, we see that indeed, C is alternal. �

Appendix B

Proof of Proposition 2. By additivity, we may assume that A is concentrated in a
fixed depth d, meaning that A(u1, . . . , ur ) = 0 for all r = d. We use the following
two lemmas.

Lemma 2 If A ∈ ARIal , then

A(u1, . . . , ur ) = (−1)r−1A(ur , . . . , u1);

in otherwords, A ismantar-invariant. Similarly, if A ∈ ARIal then again A ismantar-
invariant.

Proof We give the argument for ARI; the result in ARI comes from the identical
computation with ui replaced by vi . We first show that the sum of shuffle relations

sh
(
(1), (2, . . . , r)

) − sh
(
(2, 1), (3, . . . , r)

) + sh
(
(3, 2, 1), (4, . . . , r)

) + · · ·

+(−1)r−2 sh
(
(r − 1, . . . , 2, 1), (r)

) = (1, . . . , r) + (−1)r (r, . . . , 1).

Indeed, using the recursive formula for shuffle, we can write the above sum with two
terms for each shuffle, as
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(1, . . . , r) + 2 · sh((1), (3, . . . , r))

− 2 · sh((1), (3, . . . , r)) − 3 · sh((2, 1), (4, . . . , r))

+ 3 · sh((2, 1), (4, . . . , r)) + 4 · sh((3, 2, 1), (5, . . . , r))

+ · · · + (−1)r−3(r − 1) · sh((r − 2, . . . , 1), (r)
)

+ (−1)r−2(r − 1) · sh((r − 2, . . . , 1), (r)
) + (−1)r−2(r, r − 1, . . . , 1)

= (1, . . . , r) + (−1)r (r, . . . , 1).

Using this, we conclude that if A satisfies the shuffle relations, then

A(u1, . . . , ur ) + (−1)r−1A(ur , . . . , u1) = 0,

which is the desired result. �

Lemma 3 If A ∈ ARIal∗al , then A is neg ◦ push-invariant.
Proof We first consider the case where A ∈ ARIal/al . Using the easily verified iden-
tity

neg ◦ push = mantar ◦ swap ◦mantar ◦ swap, (56)

and the fact that by Lemma 2, if A ∈ ARIal/al , then both A and swap(A) are mantar-
invariant, we have

neg ◦ push(A)(u1, . . . , ur ) = mantar ◦ swap ◦mantar ◦ swap(A)(u1, . . . , ur )

= mantar ◦ swap ◦ swap(A)(u1, . . . , ur )

= mantar(A)(u1, . . . , ur )

= A(u1, . . . , ur ), (57)

so A is neg ◦ push-invariant.
Now suppose that A ∈ ARIal∗al , so A is alternal and swap(A) + A0 is alter-

nal for some constant mould A0. By additivity, we may assume that A is con-
centrated in depth r . First suppose that r is odd. Then mantar(A0)(v1, . . . , vr ) =
(−1)r−1A0(vr , . . . , v1), so since A0 is a constant mould, it is mantar-invariant. But
swap(A) + A0 is alternal, so it is also mantar-invariant by Lemma 2; thus swap(A)

is mantar-invariant, and the identity neg ◦ push = mantar ◦ swap ◦mantar ◦ swap
shows that A is neg ◦ push-invariant as in (57).

Finally, we assume that A is concentrated in even depth r . Here we have
mantar(A0) = −A0, so we cannot use the argument above; indeed swap(A) + A0 is
mantar-invariant, but

mantar(swap(A)) = swap(A) + 2A0. (58)

Instead, we note that if A is alternal then so is neg(A) = A. Thus we can write A as
a sum of an even and an odd function of the ui via the formula
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A = 1

2
(A + neg(A)) + 1

2
(A − neg(A)). (59)

So it is enough to prove the desired result for all moulds concentrated in even depth
r such that either neg(A) = A (even functions) or neg(A) = −A (odd functions).
First suppose that A is even. Then since neg commutes with push and push is of odd
order r + 1 and neg is of order 2, we have

(neg ◦ push)r+1(A) = neg(A) = A. (60)

However, we also have

neg ◦ push(A) = mantar ◦ swap ◦mantar ◦ swap(A)

= mantar ◦ swap(swap(A) + 2A0
)
by (58)

= mantar
(
A + 2A0

)

= A − 2A0.

Thus (neg ◦ push)r+1(A) = A − 2(r + 1)A0, and this is equal to A by (60),
so A0 = 0; thus in fact A ∈ ARIal/al and that case is already proven.

Finally, if A is odd, i.e. neg(A) = −A, the same argument as above gives A −
2(r + 1)A0 = −A, so A = (r + 1)A0, so A is a constant-valuedmould concentrated
in depth r , but this contradicts the assumption that A is alternal since constant moulds
are not alternal, unless A = A0 = 0. Note that this argument shows that all moulds
in ARIal∗al that are not in ARIal/al must be concentrated in odd depths. �

Wecannowcomplete the proof of Proposition 2.4 Because A = neg ◦ push(A),we
have neg(A) = push(A), so in factwe only need to show that neg(A) = A. As before,
we may assume that A is concentrated in depth r . If r = 1, then A is an even function
by assumption. If r is even, then as before we have A = (neg ◦ push)2s+1(A) =
neg(A). Finally, assume r = 2s + 1 is odd. Since we can write A as a sum of an
even and an odd part as in (59), we may assume that neg(A) = −A. Then, since A
is alternal, using the shuffle sh

(
(u1, . . . , u2s)(u2s+1)

)
, we have

2s∑

i=0

A(u1, . . . , ui , u2s+1, ui+1, . . . , u2s) = 0.

Making the variable change u0 ↔ u2s+1 gives

2s∑

i=0

A(u1, . . . , ui , u0, ui+1, . . . , u2s) = 0. (61)

4Ecalle states this result in [6, Sect. 2.4] and there is also a proof in [7, Sect. 12], but we were not
able to follow the argument, so we have provided this alternative proof.
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Now consider the shuffle relation sh((u1)(u2, . . . , u2s+1)), which gives

2s+1∑

i=1

A(u2, . . . , ui , u1, ui+1, . . . , u2s+1) = 0. (62)

Set u0 = −u1 − · · · − u2s+1. Since neg ◦ push acts like the identity on A, we can
apply it to each term of (62) to obtain

2s∑

i=1

−A(u0, u2, . . . , ui , u1, ui+1, . . . , u2s) − A(u0, u2, . . . , u2s, u2s+1).

We apply neg ◦ push again to the final term of this sum in order to get the u2s+1 to
disappear, obtaining

2s∑

i=1

−A(u0, u2, . . . , ui , u1, ui+1, . . . , u2s) + A(u1, u0, u2, . . . , u2s−1, u2s) = 0.

Making the variable change u0 ↔ u1 in this identity yields

2s∑

i=1

−A(u1, u2, . . . , ui , u0, ui+1, . . . , u2s) + A(u0, u1, u2, . . . , u2s−1, u2s) = 0.

(63)
Finally, adding (61) and (63) yields 2A(u0, u1, . . . , u2s) = 0, so A = 0. This con-
cludes the proof that neg(A) = A for all A ∈ ARIal∗al , and thus, by Lemma 3, that
push(A) = A. This concludes the proof of Proposition 2. �

Appendix C

We follow Ecalle’s more general construction of twisted alternality from
[6, pp. 57–64]. Let e ∈ ARI be a flexion unit, which is a mould concentrated in
depth 1 satisfying

e(v1) = −e(−v1)

and
e(v1)e(v2) = e(v1 − v2)e(v2) + e(v1)e(v2 − v1).

Associate to e the mould ez ∈ GARI defined by

ez(v1, . . . , vr ) = e(v1) · · · e(vr ).
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Then a mould A ∈ ARI is said to be e-alternal if A = ganit(ez) · B where B ∈ ARI
is alternal. The conditions for e-alternality can be written out using the explicit
expression for ganit, using flexions, computed by Ecalle [6, (2.36)]:

(
ganit(B) · A)

(w) =
∑

A(b1 · · · bs)B(�c1) · · · A(�cs), (64)

where the sum runs over the decompositions of the word w = (u1, . . . , ur ) (r ≥ 1)
as

w = b1c1 · · · bscs, (s ≥ 1)

where all bi and ci are non-empty words except possibly for cs . For example in small
depths, setting C = ganit(B) · A, we have

C(v1) = A(v1)

C(v1, v2) = A(v1, v2) + A(v1)B(v2 − v1)

C(v1, v2, v3) = A(v1, v2, v3) + A(v1, v2)B(v3 − v2)

+ A(v1)B(v2 − v1, v3 − v1) + A(v1, v3)B(v2 − v1).

Using the expression (64) for ganit(B) · A, the e-alternality relations can be writ-
ten explicitly as follows. Let Y1 = (y1, . . . , yr ) and Y2 = (yr+1, . . . , yr+s). Then for
each word in the stuffle set st(Y1,Y2), we construct the associated e-alternality term,
with an expression of the form

(
C(. . . , vi , . . .) − C(. . . , v j )

)
e(vi − v j )

corresponding to each contraction (cf. (21)). For example, taking Y1 = (yi , y j ) and
Y2 = (yk, yl), the stuffle set st(Y1,Y2) is given in (20), and the corresponding 13
e-alternality terms are, first of all the six shuffle terms

C(v1, v2, v3, v4),C(v1, v3, v2, v4),C(v1, v3, v4, v2),C(v3, v1, v2, v4),

C(v3, v1, v4, v2),C(v3, v4, v1, v2)

(cf. (22)), then the six terms with a single contraction

(
C(v1, v2, v4) − C(v1, v3, v4)

)
e(v2 − v3),

(
C(v1, v2, v4) − C(v3, v2, v4)

)
e(v1 − v3),

(
C(v1, v3, v2) − C(v1, v3, v4)

)
e(v2 − v4),

(
C(v1, v4, v2) − C(v3, v4, v2)

)
e(v1 − v3),

(
C(v3, v1, v2) − C(v3, v1, v4)

)
e(v2 − v4),

(
C(v3, v1, v2) − C(v3, v4, v2)

)
e(v1 − v4)

(cf. (23)), and finally the single term with two contractions,
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(
C(v1, v2) − C(v3, v2) − C(v1, v4) + C(v2, v4)

)
e(v1 − v3)e(v2 − v4).

The e-alternality sum Cr,s is defined to be the sum of all the e-alternality terms
corresponding to words in the stuffle set st(Y1,Y2); this sum is independent of the
actual sequences Y1,Y2, depending only on their lengths r, s. The mould C is said
to satisfy the e-alternality relations if Cr,s = 0 for all 1 ≤ r ≤ s. Comparing with
(22)–(24) we see that the notion of alternality is nothing but the special case of e-
alternality for the flexion unit e(v1) = 1/v1. The associated mould ez is thus equal
to pic, so we find that ganit(pic) · A is alternil if A is alternal.
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