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Abstract The present article dealswith various generating series and group schemes
(not necessarily affine ones) associated withMZVs. Our developments are motivated
by Ecalle’s mould calculus approach to the latter. We propose in particular a Hopf
algebra–type encoding of symmetril moulds and introduce a new resummation pro-
cess for MZVs.
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1 Introduction

Motivated by the study of multiple zeta values (MZVs), Jean Ecalle has introduced
various combinatorial notions such as the ones of “symmetral moulds”, “symme-
trel moulds”, “symmetril moulds” or “symmetrul moulds” [4, 7]. The first two are
well-understood classical objects: they are nothing but characters on the shuffle alge-
bra, resp. the quasi-shuffle algebra over the integers, both isomorphic to the algebra
QSym of Quasi-symmetric functions. These two notions are closely related to the
interpretation of properly regularizedMZVs as real points of two prounipotent affine
group schemes (associated respectively to the integral and power series representa-
tions of MZVs), whose interactions through double shuffle relations has given rise to
the modern approach to MZVs (by Zagier, Deligne, Ihara, Racinet, Brown, Furusho
and many others) [3, 10, 12, 18].

Although fairly natural from the point of view of MZVs (the resummation of
MZVs into suitable generating series gives rise to a symmetril mould), the notion of
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symmetrility is more intriguing and harder to account for using classical combina-
torial Hopf algebraic tools.

The aim of this article is accordingly threefold. We first show that Ecalle’s mould
calculus can be interpreted globally, beyond the cases of symmetral and symmetrel
moulds, as a rephrasing of the theory of MZVs into the framework of prounipotent
groups. However, these are not necessarily associated to affine group schemes (that
is, to groups whose elements are characters on suitable Hopf algebras), at least in our
interpretation and indeed, to account for symmetrility we introduce a new class of
functors from commutative algebras to groups referred to as generic group schemes
(because the elements of these groups are characters on suitably defined “generic”
Hopf algebras). Second, we focus on this notion of symmetrility, develop system-
atic foundations for the notion and prove structure theorems for the corresponding
algebraic structures. Third, we interpret Ecalle’s resummation of MZVs by means
of formal power series as the result of a properly defined Hopf algebra morphism.
This construction is reminiscent in many aspects of the resummation of the various
Green’s functions in the functional calculus approach to quantum field theory or sta-
tistical physics, see e.g. [17]. This approach leads us to introduce a new resummation
process, different from Ecalle’s. The new process is more complex combinatorially
but more natural from the group and Lie theoretical point of view: indeed, it encodes
MZVs into new generating series that behave according to the usual combinatorics
of tensor bialgebras and their dual shuffle bialgebras.

In the process, we introduce various Hopf algebraic structures that, besides being
motivated by the mould calculus approach to MZVs, seem to be interesting on their
own from a combinatorial algebra point of view.

We refer the readers not acquainted with classical arguments on the theory of
MZVs to Cartier’s Bourbaki seminar [2] that provides a short and mostly self con-
tained treatment of the key notions.

2 Hopf Algebras

We recall first briefly the definition of a Hopf algebra and related notions. The reader
is referred to [2] for details. All the maps we will consider between vector spaces
will be assumed to be linear, unless otherwise stated explicitly. We will be mostly
interested in graded or filtered connected Hopf algebras, and restrict therefore our
presentation to that case.

Let H = ⊕
n∈N Hn be a graded vector space over a field k of characteristic zero.

We will always assume that the Hn are finite dimensional. We write H≤n := ⊕

m≤n
Hm ,

H≥n := ⊕

m≥n
Hm and H+ := ⊕

n∈N∗ Hn . The graded vector space H is said to be

connected if H0
∼= k.

An associative and unital product μ : H ⊗ H → H on H (also written h · h′ :=
μ(h ⊗ h′)) with unit map η : k → H0 ⊂ H (so that for any h ∈ H and η(1) =:
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1 ∈ H0, 1 · h = h · 1 = h) makes H a graded (resp. filtered) algebra if, for any inte-
gers n,m, μ(Hn ⊗ Hm) ⊂ Hn+m (resp. μ(Hn ⊗ Hm) ⊂ H≤n+m).

Dualizing, a coassociative and counital coproduct � : H → H ⊗ H on H (also
written using the abusive but useful Sweedler notation �(h) = h(1) ⊗ h(2)) with
counit map ν : H → k (with ν the null map on H+) makes H a graded coalgebra
if, for any integer n, �(Hn) ⊂ ⊕

p+q=n
Hp ⊗ Hq =: (H ⊗ H)n . The coproduct (resp.

the coalgebra H ) is cocommutative if for any h ∈ H , h(1) ⊗ h(2) = h(2) ⊗ h(1).
Recall that the category of associative unital algebras is monoidal: the tensor

product of two associative unital algebras is a unital associative algebra. Assume
that (μ,η) and (�,ν) equip H with the structure of an associative unital algebra and
coassociative counital coalgebra: they equip H with the structure of a bialgebra if
furthermore � and ν are maps of algebras (or equivalently μ and η are maps of
coalgebras). The bialgebra H is called a Hopf algebra if furthermore there exists a
endomorphism S of H (called the antipode) such that

μ ◦ (I d ⊗ S) ◦ � = μ ◦ (S ⊗ I d) ◦ � = η ◦ ν =: ε. (1)

A bialgebra or a Hopf algebra is graded (resp. filtered) if it is a graded algebra
and coalgebra (resp. a filtered algebra and a graded coalgebra). Graded and filtered
connected bialgebras are automatically equipped with an antipode and are therefore
Hopf algebras, and the two notions of Hopf algebras and bialgebras identify in that
case, see e.g. [2] for the graded case, the filtered one being similar. This observation
will apply to the bialgebras we will consider.

Example 1 The first example of a bialgebra occurring in the theory of MZVs is
QSym, the quasi-shuffle bialgebra over the integersN∗. The underlying graded vector
space is the vector space over the sequences of integers (written as bracketed words)
[n1...nk]. The bracket notation is assumed to behave multilinearly: for example, for
two words n1 . . . nk , m1 . . .ml and two scalars α, β

[α n1 . . . nk + β m1 . . .ml] = α[n1 . . . nk] + β[m1 . . .ml].

The words of length k span the degree k component of QSym (another graduation
is obtained by defining the word [n1...nk] to be of degree n1 + · · · + nk). The graded
coproduct is the deconcatenation coproduct:

�([n1...nk]) :=
k∑

i=0

[n1 . . . ni ] ⊗ [ni+1 . . . nk].

The unital “quasi-shuffle” product − is the filtered product defined inductively by
(the empty word identifies with the unit):
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[n1...nk]− [m1 . . .ml] := [n1(n2...nk − m1 . . .ml)] +
[m1(n1...nk − m2 . . .ml)] + [(n1 + m1)(n2...nk − m2 . . .ml)].

For example,

[35]− [1] = [3(5− 1) + 1(35) + 45] = [351] + [315] + [36] + [135] + [45].

Notice that, here and later on,we use in such formulas the shortcut notation [3(5− 1)]
for the concatenation of [3] with [5− 1] (so that [3(5− 1)] = [3(51 + 15 + 6)] =
[351 + 315 + 36]).

Algebra characters on QSym (i.e. unital multiplicative maps from QSym to a
commutative unital algebra A) are called by Ecalle symmetrel moulds. The convolu-
tion product of linear morphisms from QSym to A,

f ∗ g := mA ◦ ( f ⊗ g) ◦ �,

where mA stands for the product in A, equips the set GQSym(A) of A-valued charac-
ters with a group structure. Since QSym is a filtered connected commutative Hopf
algebra, the corresponding functor GQSym is (by Cartier’s correspondence between
group schemes and commutative Hopf algebras over a field of characteristic 0) a
prounipotent affine group scheme. Properly regularized MZVs are real valued alge-
bra characters on QSym and probably the most important example of elements in
GQSym(R) [2].

The quasi-shuffle bialgebra QSh(B) over an arbitrary commutative algebra
(B,×) is defined similarly: the underlying vector space is T (B) := ⊕

n∈N
B⊗n , the

coproduct is the deconcatenation coproduct and the product is defined recursively by
(we use a bracketed word notation for tensor products): [b1 . . . bk] := b1 ⊗ ... ⊗ bk ,

[b1 . . . bk]− [c1 . . . cl ] := [b1(b2...bk − c1 . . . cl)] +
[c1(b1...bk − c2 . . . cl)] + [(b1 × c1)(b2...bk − c2 . . . cl)].

Example 2 The second example arises from the integral representation of MZVs.
The corresponding graded vector space T (x, y) is spanned by words in two variables
x and y. The length of a word defines the grading. The coproduct is again the
deconcatenation coproduct acting on words. The product is the shuffle product,
defined inductively on sequences by

a1...ak b1 . . . bl := a1(a2...ak b1 . . . bl) + b1(a1...ak b2 . . . bl).

The Hopf algebra T (x, y) is called the shuffle bialgebra over the set {x, y}. Properly
regularized MZVs are algebra characters on T (x, y) (or on subalgebras thereof),
but the regularization process fails to preserve simultaneously the shuffle and quasi-
shuffle products [2].
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Shuffle bialgebras over arbitrary sets X are defined similarly and denoted Sh(X)

(see [8]). In the mould calculus terminology, a character on Sh(X) is called a sym-
metral mould. The shuffle bialgebra over N∗, Sh(N∗), is written simply Sh and will
be called the integer shuffle bialgebra. It is isomorphic to QSym as a bialgebra [11].

Example 3 Rota-Baxter quasi-shuffle bialgebras. This third example departs from
the two previous ones in that it is not a classical one but already illustrates a leading
idea of mould calculus, namely: the application of fundamental identities of integral
calculus to word-indexed formal power series. We refer e.g. to [5] and to the survey
[6] for an overview of Rota–Baxter algebras and their relations to integral calculus
and MZVs as well as for their general properties.

Let A be a commutative Rota-Baxter algebra of weight θ , that is a commutative
algebra equipped with a linear endomorphism R such that

∀x, y ∈ A, R(x)R(y) = R(R(x)y + x R(y) + θxy).

The term R(x)y + x R(y) + θxy =: x ∗R y defines a new commutative (and asso-
ciative) product ∗R on A called the double Rota-Baxter product.We define the double
quasi-shuffle bialgebra over a Rota–Baxter algebra A, QShR(A), as the bialgebra
which identifies with T (A) := ⊕

n∈N
A⊗n as a vector space, equipped with the decon-

catenation coproduct, and equipped with the following recursively defined product
R :

x1...xk R y1...yl := x1(x2...xk R y1...yl) + y1(x1...xk R y2...yl)+
(x1 ∗R y1)(x2...xk R y2...yl).

The fact that QShR(A) is indeed a bialgebra follows from the general definition
of the quasi-shuffle bialgebra over a commutative algebra A, see [9, 11].

Example 4 This fourth example (a particular case of the previous one) and the fol-
lowing one are the first concrete examples of the kind of Hopf algebraic structure
showing up specifically in mould calculus. The definitions we introduce are inspired
by the notion of symmetrul mould [7, p. 418] of which they aim at capturing the
underlying combinatorial structure.

Let R[X ] be equipped with the Riemann integral R := ∫ X
0 viewed as a Rota–

Baxter operator of weight zero. With the notation ai := Xi−1, i ∈ N∗ we get:
R(ai ) := ai+1

i and

ai ∗R a j = i + j

i j
ai+ j .

This associative and commutative product gives rise to the following definition:

Definition 1 The bialgebra of quasi-symmetrul functions QSul is the quasi-shuffle
bialgebra over the linear span of the integers N∗ equipped with the product
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[i] ∗ [ j] := i + j

i j
[i + j].

Proposition 1 The bialgebras QSym, Sh and QSul are isomorphic, the isomor-
phism φ from Sh to QSul is given by:

φ([n1 . . . nk]) :=
∑

μ1+···+μi=k

(n1 + · · · + nμ1) . . . (nμ1+···+μi−1+1 + · · · + nμ1+···+μi )

μ1! . . . μi !n1 . . . nk
·

[n1 + · · · + nμ1 , . . . , nμ1+···+μi−1+1 + · · · + nμ1+···+μi ].

The proposition is an application of Hoffman’s structure theorems for quasi-shuffle
bialgebras [11]. It also follows from the combinatorial analysis of quasi-shuffle bial-
gebras understood as deformations of shuffle bialgebras in [9].

Example 5 The previous example gives the pattern for the notion of symmetrulity
(and gives a hint for its analytic meaning). Let now V be a vector space with a
distinguished basis B := (vi )i∈I and M a subsemigroup of (R>0,+), the strictly
positive real numbers. Let A be the linear span of M × Bwhose elements (m, v) are
represented

(m
v

)
, to stick to the “bimould” calculus notation [7]. We set:

(
m1

v1

)

∗
(
m2

v2

)

:= − 1

m2

(
m1 + m2

v1

)

− 1

m1

(
m1 + m2

v2

)

.

This product ∗ is associative and commutative.
Using the notation

(m1 ... mn

v1 ... vn

)
for the tensor product of the

(mi

vi

)
in T (A), equipped

with the deconcatenation coproduct, the following recursively defined product yields
a bialgebra structure denoted QSul(M, V ) on T (A):

(
m1 ... mn

v1 ... vn

)

ul

(
p1 ... pk
w1 ... wl

)

:=
(
m1

v1

)((
m2 ... mn

v2 ... vn

)

ul

(
p1 ... pk
w1 ... wl

))

+
(
p1
w1

) ((
m1 ... mn

v1 ... vn

)

ul

(
p2 ... pk
w2 ... wl

))

−
(

1

p1

(
m1 + p1

v1

)

+ 1

m1

(
m1 + p1

w1

)) (
m2 ... mn

v2 ... vn

)

ul

(
p2 ... pk
w2 ... wl

)

.

Definition 2 (Corollary) For B an arbitrary commutative algebra, denote the group
of B-valued characters ofQSul(M, V )byGQSul(M,V )(B) : then the functorGQSul(M,V )

is a prounipotent affine group schemewhose points are called symmetrul moulds [7].

Let us write Sh(M, V ) for the shuffle bialgebra over A, and GSh(M,V ) for the
corresponding prounipotent affine group scheme, we have:

Theorem 1 The prounipotent affine group schemes GQSul(M,V ) and GSh(M,V ) are
isomorphic. The isomorphism is induced by the bialgebra isomorphism φ between
Sh(M, V ) and QSul(M, V ) defined by:
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φ

(
m1 . . .mn

v1 . . . vn

)

:=
∑

μ1+···+μi=n

(−1)n−i

μ1! . . . μi ! ·

(
μ1∑

i=1

1

m1 . . .mi−1mi+1 . . .mμ1

(
m1 + · · · + mμ1

vi

))

. . .

⎛

⎝
n∑

i=μ1+···+μi−1+1

1

mμ1+···+μi−1+1 . . .mi−1mi+1 . . .mn

(
mμ1+···+μi−1+1 + · · · + mn

vi

)
⎞

⎠ .

This theorem follows once again from Hoffman’s structure theorem for quasi-
shuffle algebras by identification of the coefficients of the exponential isomorphism
in the particular case under consideration.

In Ecalle’s terminology, symmetrul moulds and symmetral moulds on M × V
are canonically in bijection. Notice that whereas the definition of symmetrul moulds
as characters on the Hopf algebra QSul(M, V ) is essentially a group-theoretical
interpretation of the definitions given in [7], the equivalence between the two notions
of symmetrulity and symmetrality of Theorem 1 (and therefore also the precise
formula for the isomorphism) is new at our best knowledge.

We do not insist further on the notion of symmetrulity that is relatively easy to
handle group-theoretically as we just have seen, and will focus preferably on the one
of symmetrility, whose signification for MZVs seems deeper, and for which a group-
theoretical account is harder to obtain, since it does not seem possible to interpret
symmetril moulds as elements of a prounipotent affine group scheme, but only as
elements of a properly defined prounipotent group scheme.

3 Generic Bialgebras

Symmetril moulds, of which a formal definitionwill be given later, behave verymuch
as characters on QSym or T (x, y). There are even some conversion rules to move
from one notion to the other, that we will explain later. Unfortunately, this notion
of symmetrility fails to be accounted for by using a naive theory of characters on a
suitable Hopf algebra. The aim of this section is to explain what has to be changed
in the classical theory of Hopf algebras to make sense of the notion.

The constructions in this section are motivated by the two notions of twisted
bialgebras (also called Hopf species) explored in [1, 14–16] and the one of con-
structions in the sense of Eilenberg and MacLane [13]. However, both the theory of
constructions and vector species are too functorial to account for the very specific
combinatorics of symmetrility, and we have to introduce for its proper understanding
a different framework. In view of the similarities with the theory of constructions,
we decided to keep however the terminology of “generic structures” used in [13].
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Let X be a finite or countable alphabet, partitioned into subsets X = ∐

i∈I
Xi . We

say that the partition is trivial if the Xi are singletons. Aword over X (possibly empty)
is said to be generic if it contains at most one letter in each Xi : for example, when
X = {a, b, c}, abc is generic for the trivial partition X = {{a}, {b}, {c}} but is not
generic for the partition X = {{a, b}, {c}}. This means that no letter can appear twice.
Similarly, tensor products of words are generic if they contain overall at most one
letter in each Xi . Two generic tensor products of words, t, t ′, are said to be in generic
position if t ⊗ t ′ is again a generic tensor product. Two linear combinations of generic
tensor products of words

∑
t λt t ,

∑
t ′ λt ′ t ′ are in generic position if all the pairs (t, t ′)

are. The underlying word u(t) of a tensor product t of words is the word obtained
by concatenating its components: observe that different tensors might have the same
underlying word. For instance u(x1 ⊗ x2x4 ⊗ x3) = u(x1x2 ⊗ x4x3) = x1x2x4x3, so
that u(t) is generic if and only if t is generic.

Definition 3 The categoryGenX of generic expressions over X is the smallest linear
(i.e. such that Hom-sets are k-vector spaces) subcategory of the category of vector
spaces:

• containing the null vector space,
• containing the one-dimensional vector spaces Vt generated by generic tensor prod-
ucts of words t ,

• closed by direct sums (although this will not be the case in the examples we will
consider, multiple copies of the Vt can be allowed, the following rules are applied
to each of these copies),

and such that furthermore Hom-sets contain:

• for t, t ′ two generic tensors with u(t) = u(t ′), the map from Vt to Vt ′ induced by
f (t) := t ′,

• the maps induced by substitutions of the letters inside the blocks Xi ,
• the maps obtained by erasing letters in the tensor products (e.g. the map induced
by f (x1 ⊗ x2x4 ⊗ x3) := x1 ⊗ x4) (the example refers to the case where X =
{xi }i∈N∗ , with the trivial partition).

Most importantly for our purposes, GenX is equipped with a symmetric monoidal
category structure by the generic tensor product ⊗̂ defined on the Vt by

Vt⊗̂Vt ′ :=
{
Vt⊗t ′ if t ⊗ t ′ is generic,
0 otherwise.

The generic tensor product is extended to direct sums by the rule

(A ⊕ B)⊗̂(C ⊕ D) = A⊗̂C ⊕ A⊗̂D ⊕ B⊗̂C ⊕ B⊗̂D.

Notice, for further use, the canonical embedding A⊗̂B ↪→ A ⊗ B.
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The reader familiarwith homological algebrawill have recognized themain ingre-
dients of the theory of constructions [13]. Generic algebras, coalgebras, Hopf alge-
bras, Lie algebras, and so on, are, by definition, algebras, coalgebras, Hopf algebras,
Lie algebras, and so on, in a given GenX . For example, a generic algebra A with-
out unit is an object of GenX equipped with an associative product map μ from
A⊗̂A to A. Notice that μ can be viewed alternatively as a partially defined product
map on A (it is defined only on elements in A ⊗ A in generic position and linear
combinations thereof).

We will study from now on only standard generic bialgebras H , by which we
mean that (H, π�) is a generic bialgebra with product π and coproduct� such that:

• H = ⊕

n∈N
Hn , where H0 = V∅ is identified with the ground field k and ∅ behaves

as a unit/counit for the product and the coproduct,
• the coproduct is graded,
• the product satisfies the filtering condition: ∀k, l > 0, π(Hk ⊗ Hl) ⊂⊕

0<n≤k+l Hn .

These bialgebras behave as the analogous usual bialgebras (the same arguments and
proofs apply, we refer e.g. to [2] for the classical case). In particular such a bial-
gebra is equipped with a convolution product of linear endomorphims: for arbitrary
f, g ∈ HomGenX (H, H), f ∗ g := π ◦ ( f ⊗̂g) ◦ �. The projection u from H to H0

orthogonally to the Hi , i ≥ 1 is a unit for ∗. Convolution of linear forms on H is
defined similarly.

The existence of an antipodal map, that is a convolution inverse S to the identity
map I , follows from the identity

S = (u + (I − u))∗ −1 = u +
∑

n>0

(−1)n(I − u)∗n, (2)

where the rightmost sum restricts to a finite sum when S is acting on a graded com-
ponent Hn since the coproduct is graded. In particular, a standard generic bialgebra
H is automatically a generic Hopf algebra.

Since A⊗̂B ⊂ A ⊗ B, one candefinemorphisms froman algebra, bialgebra,Hopf
algebra... in GenX to a classical algebra, bialgebra, Hopf algebra... We will call such
morphisms regularizing morphisms. For example, a regularizing morphism between
a standard generic bialgebra H equipped with the product μ and the coproduct �

and a graded Hopf algebra H ′ equipped with the product μ′ and the coproduct �′ is
a morphism of graded vector spaces f that maps the unit ∅ of H to the unit 1 ∈ H ′

0
of H ′ and such that, for any h, h′ in generic position in H ,

f (μ(h⊗̂h′)) = μ′( f (h) ⊗ f (h′)), ( f ⊗ f ) ◦ �(h) = �′( f (h)).

Example 6 A first example of a standard generic bialgebra will look familiar to
readers acquainted with the theory of free Lie algebras and Reutenauer’s monograph
[19]. Let X = {1, . . . , n} be equippedwith the trivial partition. Then, let T g

k (X) be the
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linear span of genericwords of length k, we have: T g(X) = ⊕

k∈N
T g
k (X) = ⊕

k≤n
T g
k (X);

the highest order non trivial component of this direct sum, T g
n (X), is usually called

the multilinear part of the tensor algebra over X in the literature. Concatenation of
words defines a map from T g

k (X)⊗̂T g
l (X) to T g

k+l(X) and a generic algebra structure
on T g(X) = ⊕

n∈N
T g
n (X). Similarly, the usual unshuffling of words � (the coproduct

dual to the one introduced in example 2) defines, when restricted to generic words, a
generic coalgebra structure, and, together with the concatenation product, a standard
generic bialgebra structure on T g(X). The generic Lie algebra of primitive elements
of T g(X) is defined as usual: Prim(T g(X)) := {w ∈ T g(X),�(w) = w ⊗ 1 + 1 ⊗
w}, its highest order non trivial componentwith respect to the graduation by the length
of words is simply the multilinear part of the usual free Lie algebra over X .

Dually, the shuffle product and the deconcatenation product (as in Example 2)
define a (dual) standard generic bialgebra structure on T g(X), that will be named
the generic shuffle bialgebra over X and denoted Shg(X). We write simply Shg for
Shg(N∗).

This example is particularly easy to understand: the embedding of T g(X) into the
usual tensor algebra T (X) over X is a regularizing morphism, and all our assertions
are direct consequences of the behaviour of T (X) as exposed e.g. in [19].

Definition 4 Let H be a standard generic bialgebra. For B an arbitrary commutative
algebra, a B-valued character on H is, by definition, a unital multiplicative map from
H to B, that is a map φ such that:

• φ(∅) = 1,
• for any h1, h2 in generic position, writing h1 · h2 := π(h1⊗̂h2)

φ(h1 · h2) = φ(h1)φ(h2). (3)

Proposition 2 Let H be a standard generic bialgebra. The set GH (B) of B-valued
characters is equipped with a group structure by the convolution product ∗. The
corresponding functor GH from commutative algebras over the reference ground
field k to groups is called, by analogy with the classical case, a generic group scheme.

Indeed, we have, for any φ, φ′ ∈ GH (B), and any h, h′ ∈ H+ := ⊕

n>0
Hn in generic

position:

φ ∗ φ′(∅) = φ(∅)φ′(∅) = 1,

φ ∗ φ′(h · h′) = φ(h(1) · h ′(1))φ′(h(2) · h ′(2))

= φ(h(1))φ′(h(2))φ(h
′(1))φ′(h

′(2))

= φ ∗ φ′(h) · φ ∗ φ′(h′),
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where we used a Sweedler-type notation �(h) = h(1)⊗̂h(2).
Similarly, φ ◦ S is the convolution inverse of φ since: ((φ ◦ S) ∗ φ)(∅) =

φ(∅)2 = 1 and, for h as above,

((φ ◦ S) ∗ φ)(h) = φ(S(h(1)))φ(h(2)) = φ(S(h(1)) · h(2)) = φ ◦ u(h) = 0.

Notice that, contrary to the classical case, the identity φ(S(h(1)))φ(h(2)) =
φ(S(h(1)) · h(2)) is not straightforward, since identity Eq.3 holds only under the
assumption that h1, h2 are in generic position. Here, we can apply the identity
because S, in view of Eq.2, can be written on each graded component as a sum
of convolution powers I ∗k of the identity map. It is then enough to check that, given
h ∈ H+, I ∗k(h(1)) ⊗ h(2) can be written as a linear combination of tensor products
w ⊗ w′, where w,w′ are in generic position, which follows from the definition of
the convolution product ∗ and the coassociativity of �.

4 Symmetril Moulds and Generic Group Schemes

We come now to the main examples of generic structures in view of the scope of
the present article—symmetrility properties. This section aims at abstracting the key
combinatorial features of symmetrility in order to study them and link them with
classical combinatorial objects, such as quasi-symmetric functions. The next section
will move forward by sticking closer to Ecalle’s study ofMZVs, linking symmetrility
phenomena to the resummation of MZVs.

Definition 5 Let X = N∗, equipped with the trivial partition. We define the generic
divided quasi-shuffle bialgebra over N∗, QShg

d , as the generic bialgebra which iden-
tifies with T g(N∗) as a vector space, equipped with the deconcatenation coproduct,
and equipped with the following recursively defined product (elements of T g(N∗)
are written using a bracketed word notation):

[n1...nk] [m1...ml ] := [n1(n2...nk m1...ml)] + [m1(n1...nk m2...ml)] +
1

n1 − m1
{[n1(n2...nk m2...ml)] − [m1(n2...nk m2...ml)]}.

The elements of the groups GQShg
d
(B) are called symmetril moulds (over N∗).

Proving thatQShg
d is indeed aHopf algebra inGenX is not entirely straightforward

and is better stated at a more general level, by mimicking for generic structures the
theory of quasi-shuffle algebras.

Definition 6 (Proposition) Let X be a partitioned alphabet and assume that ∗ equips
k〈X〉, the linear span of X , with the structure of a generic commutative algebra. Then,
the generic quasi-shuffle bialgebra denotedQShg

∗(X) over (k〈X〉, ∗) is, by definition,
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the generic bialgebrawhose underlying generic coalgebra is T g(X) equippedwith the
deconcatenation coproduct�, andwhose commutative product is defined inductively
(for words satisfying the genericity conditions) by:

[n1...nk] [m1...ml ] := [n1(n2...nk m1...ml)] + [m1(n1...nk m2...ml)] +
[(n1 ∗ m1)(n2...nk m2...ml)].

The fact that the product is well defined and sends two generic words in generic
position on a linear combination of generic words follows from the very definition
of the category of generic expressions.

The associativity of the product follows by induction on the total length k + l + q
from the identity of the expansion:

[(n1...nk m1...ml ) p1..pq ] = [n1(n2...nk m1...ml p1..pq )]
+ [p1((n1(n2...nk m1...ml )) p2..pq )] + [(n1 ∗ p1)(n2...nk m1...ml p1..pq )]

+ [m1(n1...nk m2...ml p1..pq )] + [p1((m1(n1...nk m2...ml )) p2..pq )]
+ [(m1 ∗ p1)(n1...nk m2...ml p2...pq )] + [(n1 ∗ m1)(n2...nk m2...ml p1..pq )]

+ [p1((n1 ∗ m1)(n2...nk m2...ml )) p2..pq )]
+ [(n1 ∗ m1 ∗ p1)(n1...nk m2...ml p1...pq )]

= [n1(n2...nk m1...ml p1..pq )] + [m1(n1...nk m2...ml p1..pq )]
+ [p1(n1...nk m1...ml p2...pq )] + [(n1 ∗ m1)(n2...nk m2...ml p1..pq )]

+ [(n1 ∗ p1)(n2...nk m1...ml p2...pq )] + [(m1 ∗ p1)(n1...nk m2...ml p2...pq )]
+ [(n1 ∗ m1 ∗ p1)(n1...nk m2...ml p2...pq )],

with the same symmetric expansion in the ni ,mi , pi for

[n1...nk (m1...ml p1...pq)].

The compatibility of the deconcatenation coproduct with the product is obtained
similarly and follows the same pattern as the proof that usual quasi-shuffle algebras
over commutative algebras are indeed equipped with a Hopf algebra structure by the
deconcatenation coproduct [9, 11], and is omitted.

We can now conclude that QShg
d is indeed a generic bialgebra from the Lemma:

Lemma 1 The product ∗ defined by

[n] ∗ [m] := 1

n − m
([n] − [m])

equips k < N∗ > with the structure of a generic commutative algebra.

Indeed, for distinct m, n, p,

[(n ∗ m) ∗ p] = 1

n − m
([n] − [m]) ∗ [p] = 1

(n − m)(n − p)
[n]
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+ 1

(m − n)(m − p)
[m] + (

1

(n − m)(p − n)
+ 1

(m − n)(m − p)
)[p]

= 1

(n − m)(n − p)
[n] + 1

(m − n)(m − p)
[m] + 1

(p − n)(p − m)
[p]

which is equal to the same symmetric expression for [n ∗ (m ∗ p)].
For later use, we also calculate iterated products in k < N∗ >.

Lemma 2 For distinct n1, . . . , nk ∈ N ∗ we have

[n1] ∗ · · · ∗ [nk] :=
k∑

i=1

[ni ]
∏

j �=i
(ni − n j )

Let us assume that the Lemma holds for k ≤ p and prove it by induction. Since
the product ∗ is commutative, it is enough to show that the coefficient of [np+1] in
[n1] ∗ · · · ∗ [np+1] is given by 1∏

j≤p
(np+1−n j )

. Equivalently, we have to show that α = 1,

where

α =
p∑

i=1

∏

j≤p
(np+1 − n j )

(np+1 − ni )
∏

j �=i, j≤p
(ni − n j )

=
p∑

i=1

∏

j �=i, j≤p

(np+1 − n j )

(ni − n j )
.

Notice that the induction hypothesis amounts to assuming that the following two
identities hold for arbitrary distinct integersm1, ...,mp (the two identities are shown
to be equivalent by multiplying the i-th term of the sum in the left hand side of the
first identity by (mp − mi )/(mp − mi ))

p−1∑

i=1

∏

j �=i, j≤p−1

(mp − m j )

(mi − m j )
= 1,

p∑

i=1

∏

j �=i, j≤p

1

(mi − m j )
= 0.

We get:

α =
p−1∑

i=1

⎛

⎝
∏

j �=i, j≤p

(np+1 − n j )

(ni − n j )

⎞

⎠ +
∏

j≤p−1

(np+1 − n j )

(np − n j )

=
p−1∑

i=1

⎛

⎜
⎝

∏

j �=i, j≤p−1
(np+1 − n j )

∏

j �=i, j≤p
(ni − n j )

⎞

⎟
⎠

(
(np+1 − ni ) + (ni − np)

) +
∏

j≤p−1

(np+1 − n j )

(np − n j )
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=
⎛

⎜
⎝

p−1∑

i=1

⎛

⎜
⎝

∏

j �=i, j≤p−1
(np+1 − n j )

∏

j �=i, j≤p
(ni − n j )

⎞

⎟
⎠ (np+1 − ni ) +

∏

j≤p−1

(np+1 − n j )

(np − n j )

⎞

⎟
⎠

+
⎛

⎜
⎝

p−1∑

i=1

⎛

⎜
⎝

∏

j �=i, j≤p−1
(np+1 − n j )

∏

j �=i, j≤p
(ni − n j )

⎞

⎟
⎠ (ni − np)

⎞

⎟
⎠

=
p∑

i=1

⎛

⎜
⎝

1
∏

j �=i, j≤p
(ni − n j )

⎞

⎟
⎠ ·

∏

j≤p−1

(n p+1 − n j ) +
p−1∑

i=1

⎛

⎝
∏

j �=i, j≤p−1

(n p+1 − n j )

(ni − n j )

⎞

⎠ = 0 + 1 = 1,

where the last identity follows from the induction hypothesis.

Theorem 2 The following map ψ defines a linear embedding of QShg
d into Sh and

is a regularizing bialgebra map.

ψ([n1 . . . nk]) :=
∑

μ1+···+μi=k

(−1)k−i

μ1 . . . μi

⎛

⎜
⎝

μ1∑

j=1

[n j ]
∏

l �= j,l≤μ1

(n j − nl)

⎞

⎟
⎠ . . .

. . .

⎛

⎜
⎝

k∑

j=μ1+···+μi−1+1

[n j ]
∏

l �= j,μ1+···+μi−1+1≤l≤k
(n j − nl)

⎞

⎟
⎠

In particular, the product and coproduct maps on QShg
d are mapped to the product

and coproduct on Sh.

The Theorem can be rephrased internally to the category GenN∗ . This is because
the image of ψ identifies with the subspace T g(N∗) of Sh (the latter identifying with
T (N∗) as a graded vector space).

Corollary 1 The standard generic bialgebras QShg
d and Shg are isomorphic

under ψ .

The theorem is an extension to the generic case of the Hoffman isomorphism
between shuffle and quasi-shuffle bialgebras. Following [9, 11], the proof of the
isomorphism relies only on the combinatorics of partitions and on a suitable lift to
formal power series of natural coalgebra endomorphisms of shuffle bialgebras (we
refer to [9] for details). Let us show here that these arguments still hold in the generic
framework.

Let P(X) =
∞∑

i=1
pi Xi be a formal power series XQ[[X ]]. This power series

induces a generic coalgebra endomorphism φP of T g(N∗) equipped with the
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deconcatenation coproduct: on an arbitrary generic tensor [n1 . . . nk] ∈ T g(N∗) the
action is given by

φP ([n1 . . . nk ]) =
k∑

j=1

∑

i1+...+i j=k

pi1 ...pi j ([n1] ∗ ... ∗ [ni1 ]) ⊗ ... ⊗ ([ni1+...+i j−1+1] ∗ ... ∗ [nk ]),

(4)
where we recall that [n] ∗ [m] := [n]−[m]

n−m . When p1 �= 0, φP is bijective (by a trian-
gularity argument), and a coalgebra automorphism of T g(N∗).

Let us show now that, for arbitrary P(X), Q(X) ∈ XQ[[X ]],

φP ◦ φQ = φP◦Q, (5)

where (P ◦ Q)(X) := P(Q(X)). We have indeed, for an arbitrary sequence of dis-
tinct integers n1, . . . , nk :

φP ◦ φQ(n1...nk) =

= φP(

k∑

j=1

∑

i1+···+i j=k

qi1 . . . qik (n1 ∗ · · · ∗ ni1) ⊗ · · · ⊗ (ni1+···+i j−1+1 ∗ · · · ∗ nk))

=
k∑

j=1

j∑

l=1

∑

h1+···+hl= j

∑

i1+···+i j=k

ph1 . . . phl qi1 . . . qik (n1 ∗ · · · ∗ ni1+···+ih1
)⊗

· · · ⊗ (ni1+···+ih1+···+hl−1+1 ∗ · · · ∗ nk)

= φP(Q)(n1...nk).

The proof of the theorem follows: ψ = φlog has for inverse ρ = φexp, which maps
isomorphically Shg to QShg

d (Hoffman’s combinatorial argument in the classical
case in [11] applies mutatis mutandis when restricted to generic tensors).

5 Resummation of MZVs

In order to resum MZVs into formal power series equipped with interesting group-
theoretical operations and structures, let us introduce first a formal analogue of the
standard generic bialgebraQShg

d studied previously. Here, “formal”means that num-
bers and sequences of numbers are replaced by formal power series and words over
an alphabet. Proofs of the properties and structure theorems are similar to the ones
for QShg

d and are omitted. Our definitions and constructions are motivated by [7].

Definition 7 Let V = {vi }i∈N∗ , equipped with the trivial partition. We define the
generic divided quasi-shuffle bialgebra over V , QShg

d(V ), as the generic bialgebra
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defined over kV := k((V )), the field of fractions of the ring of formal power series
over V , which identifies with T g(V ) as a vector space, equipped with the deconcate-
nation coproduct, and equipped with the following recursively defined product
(elements of T g(V ) are written using a bracketed word notation):

[vi1 ...vik ] [vik+1 ...vik+l ] := [vi1(vi2 ...vik vik+1 ...vik+l )]
+ [vik+1(vi1 ...vik vik+2 ...vik+l )]

+ 1

vi1 − vik+1

{[vi1(vi2 ...vik vik+2 ...vik+l )] − [vik+1(vi2 ...vik vik+2 ...vik+l )]},

where [vi1 ...vik ] and [vik+1 ...vik+l ] are in generic position (so that 1
vi1−vik+1

is well-

defined).
The elements of the groupsGQShg

d (V )(B), where B runs over algebras over kV asso-
ciated to the generic group scheme GQShg

d (V ) over kV , are called symmetril moulds
(over V ).

Let us denote Shg
V the generic shuffle bialgebra (or g-shuffle bialgebra) over V

with kV as a field of coefficients. Corollary 1 generalizes to QShg
d(V ) and Shg

V : the
two g-bialgebras are isomorphic under ψV :

ψV ([v1 . . . vk]) :=
∑

μ1+···+μi=k

(−1)k−i

μ1 . . . μi

⎛

⎜
⎝

μ1∑

j=1

[v j ]
∏

l �= j,l≤μ1

(v j − vl)

⎞

⎟
⎠ . . .

. . .

⎛

⎜
⎝

k∑

j=μ1+···+μi−1+1

[v j ]
∏

l �= j,μ1+···+μi−1+1≤l≤k
(v j − vl)

⎞

⎟
⎠ .

(6)

Let us denote now QSymV the completion (with respect to the grading) of the
bialgebra of quasi-symmetric functions over the base field kV . Since properly regu-
larizedMZVs at positive values are characters onQSym, generating series forMZVs
such as ∑

n1,...,nk≥1

v
n1−1
1 . . . v

nk−1
k ζ(n1, . . . , nk)

and the study of their algebraic structure can be lifted to QSymV . Let us show how
this idea translates group-theoretically.

Theorem 3 The following morphism γ is a regularizing bialgebra map from
QShg

d(V ) to QSymV :

γ ([vi1 . . . vik ]) :=
∑

n1,...,nk≥1

v
n1−1
i1

. . . v
nk−1
ik

· [n1 . . . nk]. (7)
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Notice first that γ is, by its very definition, multiplicative for the concatenation
product:

γ
([vi1 . . . vik ]

) = γ ([vi1]) · γ ([vi2 . . . vik ]) = γ ([vi1]) · γ ([vi2 ]) . . . γ ([vik ]), (8)

from which it follows that γ is a coalgebra map (recall that the later is induced on
QShg

d(V ) and QSymV by deconcatenation).
Let us prove that, for any vi1 ...vik , vik+1 ...vik+l in generic position, we have

γ

(

[vi1 . . . vik ] [vik+1 . . . vik+l ]
)

= γ

(

[vi1 . . . vik ]
)

− γ

(

[vik+1 . . . vik+l ]
)

by induction on k + l. So, let vi0 an element of V distinct from vi1 , ..., vik+l . We get
from (7):

γ

(

[vi0 . . . vik ] [vik+1 . . . vik+l ]
)

= γ

(

[vi0(vi1 ...vik vik+1 ...vik+l )]
)

+ γ

(

[vik+1(vi0 ...vik vik+2 ...vik+l )]
)

+ γ

(
1

vi0 − vik+1

{[vi0(vi1 ...vik vik+2 ...vik+l )] − [vik+1(vi1 ...vik vik+2 ...vik+l )]}
)

.

From Eq.8 and the induction hypothesis, we get:

γ

(

[vi0(vi1 ...vik vik+1 ...vik+l )]
)

= γ

(

[vi0 ]
)

γ

(

[vi1 ...vik vik+1 ...vik+l )]
)

= γ

(

[vi0 ]
)

γ

(

[vi1 . . . vik ]
)

− γ

(

[vik+1 . . . vik+l ]
)

and similarly

γ

(

[vik+1 (vi0 ...vik vik+2 ...vik+l )]
)

= γ

(

[vik+1 ]
)(

γ

(

[vi0 . . . vik ]
)

− γ

(

[vik+2 . . . vik+l ]
))

.

At last,

γ

(
1

vi0 − vik+1

[vi0 − vik+1][vi1 ...vik vik+2 ...vik+l ]
)

=
1

vi0 − vik+1

γ

(

[vi0 − vik+1]
)

γ

(

[vi1 ...vik vik+2 ...vik+l ]
)

and, in view of the recursive definition of − , to conclude the proof it remains to
show that
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1

vi0 − vik+1

γ

(

[vi0 − vik+1]
)

= γ

(

[vi0 ]
)

� γ

(

[vik+1]
)

where, to avoid confusion with other already introduced symbols, � denotes the
product of bracketed integers induced by the addition: [n] � [m] = [n + m].

Indeed, we have:

γ

(

[vi0 − vik+1]
)

=
∑

n≥1

(vn−1
i0

− vn−1
ik+1

)[n] =
∑

n≥2

(vn−1
i0

− vn−1
ik+1

)[n],

and

(vi0 − vik+1)γ ([vi0 ]) � γ ([vik+1]) = (vi0 − vik+1)
∑

n,m≥1

vn−1
i0

vm−1
ik+1

[n + m]

=
∑

p≥2

(vi0 − vik+1)

( ∑

n,m≥0,n+m=p−2

vn
i0v

m
ik+1

)

[p] =
∑

p≥2

(v
p−1
i0

− v
p−1
ik+1

)[p].

Corollary 2 Let V be an infinite alphabet. The regularizing morphism γ induces,
for any commutative algebra B over a base field k a group map from GQSym(B) to
GQShg

d (V )(B ⊗k kV ).

In particular, regularized ζ functions, viewed as a real-valued characters onQSym,
give rise to symmetril R((V ))-valued moulds over V . More generally, symmetrel
moulds give rise to symmetril moulds by resummation [4, 7]—the very reason for
the introduction of the latter.

Recall the definition of the Multiple Zeta Values (MZVs for short) associated to
(s1, s2, . . . , sr ), where the si ’s are positive integers, and s1 > 1:

ζ(s1s2 . . . sr ) :=
∑

n1>···>nr>0

1

ns11 . . . nsrr
.

For εi ∈ Q/Z, the modular MZVs are defined as

ζ

(
ε1 . . . εr

s1 . . . sr

)

:=
∑

n1>···>nr

e2π in1ε1 . . . e2π inr εr

ns11 . . . nsrr
.

Observe that when εi = 0 for all i , then ζ
( 0...0
s1...sr

) = ζ(s1s2 . . . sr ). Let us mention that,
when dealing with modular MZVs, a “bimould” version of the previous construction
has to be used.We only sketch the constructions in that case, they could be developed
in more detail following the previous ones in this section.

Definition 8 Let W := Q/Z × V , with V = {vi }i∈N∗ , equipped with the partition
W = ∐

Wi , Wi := Q/Z × {vi }. We define the generic divided quasi-shuffle bialge-
bra overW , QShg

d(W ), or g-divided quasi-shuffle algebra as the g-bialgebra defined
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over kV := k((V )), which identifies with T g(W ) as a vector space, equipped with
the deconcatenation coproduct, and equipped with the following recursively defined
product (elements of W are represented as column vector):

(
ε1 . . . εr

vi1 . . . vir

) (
εr+1 . . . εr+s

vir+1 . . . vir+s

)

:=
(

ε1

vi1

) ((
ε2 . . . εr

vi2 . . . vir

) (
εr+1 . . . εr+s

vir+1 . . . vir+s

))

+
(

εr+1

vir+1

)((
ε1 . . . εr

vi1 . . . vir

) (
εr+2 . . . εr+s

vir+2 . . . vir+s

))

+ 1

vi1 − vir+1

(
ε1 + εr+1

vi1

)((
ε2 . . . εr

vi2 . . . vir

) (
εr+2 . . . εr+s

vir+2 . . . vir+s

))

− 1

vi1 − vir+1

(
ε1 + εr+1

vir+1

)((
ε2 . . . εr

vi2 . . . vir

) (
εr+2 . . . εr+s

vir+2 . . . vir+s

))

where
(

ε1...εr
vi1 ...vir

)
and

(
εr+1...εr+s

vir+1 ...vir+s

)
are in generic position (so that 1

vi1−vik+1
iswell-defined).

The elements of the groups GQShg
d (W )(B), where B runs over algebras over kV ,

associated to the generic group scheme GQShg
d (W ) over kW are called symmetril

moulds (over W ).

Symmetril moulds over W can be used to resum modular MZVs by the same
process that allows the resummation of usual MZVs by symmetril moulds over V ,
see [7].

6 A New Resummation Process

In this last section, we introduce a new resummation process for MZVs, based on
Theorem 2. Contrary to Ecalle’s resummation process, which maps a symmetrel
mould (a character on the algebra of quasi-symmetric functions) to a symmetril
mould, the new resummation is much more satisfactory in that it maps a symmetrel
mould to a character on Shg

V , so that calculus on MZVs and other characters on
QSym can be interpreted in terms of the usual rules of Lie calculus (recall that the
set of primitive elements in the dual of Shg

V is simply the multilinear part of the free
Lie algebra over the integers, a well-known object whose study is even easier than
the one of the usual free Lie algebra).

Theorem 4 The inverse ρV of the standard g-bialgebra isomorphism ψV between
QShg

d(V ) and Shg
V is given by

ρV ([v1 . . . vk]) :=
∑

μ1+···+μi=k

1

μ1! . . . μi !

⎛

⎜
⎝

μ1∑

j=1

[v j ]
∏

l �= j,l≤μ1

(v j − vl)

⎞

⎟
⎠ . . .



396 C. Malvenuto and F. Patras

. . .

⎛

⎜
⎝

k∑

j=μ1+···+μi−1+1

[v j ]
∏

l �= j,μ1+···+μi−1+1≤l≤k
(v j − vl)

⎞

⎟
⎠ .

The theorem follows by adapting to T g(V ) the correspondence between formal
power series in XQ[[X ]] and generic coalgebra endomorphisms of T g(N∗): with the
same notation than the one used for T g(N∗), each P ∈ XQ[[X ]] defines a generic
coalgebra endomorphism φP of T g(V ). We have ρV = φexp and ψV = φlog , and the
two morphisms are mutually inverse.

Corollary 3 The morphism
regV := γ ◦ ρV

is a regularizing Hopf algebra morphism from Shg
V to QSymV . It induces, for

any commutative algebra B over the base field k, a group map from GQSym(B)

to GShg
V
(B ⊗k kV ).

Naming generic symmetral moulds the characters on Shg
V , we get that this last

map resums symmetrel moulds (such as regularized MZVs at the positive integers)
into generic symmetral moulds. As announced, this approach should provide a new
way to investigate group-theoretically the properties of MZVs. Together with the
study of the various combinatorial structures introduced in the present article, this
will the object of further studies.

We conclude by illustrating the resummation process on low dimensional exam-
ples that show the behaviour of the map regV . We write ζ for a character on QSym
(a symmetrel mould), having in mind the example of regularized multizetas. The
morphism regV is given in low degrees by:

regV ([v1]) = γ ([v1]) =
∑

n≥1

vn−1
1 [n],

regV ([v1, v2]) =γ ([v1, v2] + 1

2

[v1] − [v2]
v1 − v2

)

=
∑

n,m≥1

vn−1
1 vm−1

2 [n,m] + 1

2(v1 − v2)

∑

n≥1

(vn−1
1 − vn−1

2 )[n]

=
∑

n,m≥1

vn−1
1 vm−1

2 [n,m] + 1

2

∑

n≥2
p+q=n−2

v
p
1 v

q
2 [n].
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regV ([v1, v2, v3]) =γ ([v1, v2, v3] + 1

2

( [v1v3] − [v2v3]
v1 − v2

+ [v1v2] − [v1v3]
v2 − v3

)

+ 1

6

( [v1]
(v1 − v2)(v1 − v3)

+ [v2]
(v2 − v1)(v2 − v3)

+ [v3]
(v3 − v1)(v3 − v2)

)

=
∑

n,m,p≥1

vn−1
1 vm−1

2 v
p−1
3 [n,m, p] + 1

2

( ∑

n≥2,m≥1
p+q=n−2

v
p
1 v

q
2 vm−1

3 [n,m]+

∑

n≥1,m≥2
p+q=m−2

vn−1
1 v

p
2 v

q
3 [n,m]

)

+ 1

6

∑

n≥3
p+q+r=n−3

v
p
1 v

q
2 vr3[n],

where we used the identity

vn−1
1

(v1 − v2)(v1 − v3)
+ vn−1

2

(v2 − v1)(v2 − v3)
+ vn−1

3

(v3 − v1)(v3 − v2)

=
∑

p+q+r=n−3

v
p
1 v

q
2v

r
3.

We get, for the ζ character:

ζ ◦ regV ([v1] [v2]) =ζ

( ∑

n,m≥1

vn−1
1 vm−1

2 ([n,m] + [m, n]) +
∑

n≥2,p+q=n−2

v
p
1 v

q
2 [n]

)

= ζ

( ∑

n,m≥1

vn−1
1 vm−1

2 [n]− [m]
)

= ζ ◦ regV ([v1]) · ζ ◦ regV ([v2]).

ζ ◦ regV ([v1, v2] [v3]) =ζ ◦ regV ([v1, v2, v3] + [v1, v3, v2] + [v3, v1, v2])

=ζ

( ∑

n,m,p≥1

vn−1
1 vm−1

2 v
p−1
3 [n,m] [p]

+
∑

n≥2
p+q=n−2

m≥1

(

(
1

2
v
p
1 v

q
2 vm−1

3 + v
p
1 vm−1

2 v
q
3 )[n,m] + (

1

2
v
p
1 v

q
2 vm−1

3 + vm−1
1 v

p
2 v

q
3 )[m, n])

+ 1

2

∑

n≥3
p+q+r=n−3

v
p
1 v

q
2 vr3[n]

)

=ζ

(( ∑

n,m≥1

vn−1
1 vm−1

2 [n,m] + 1

2

∑

n≥2
p+q=n−2

v
p
1 v

q
2 [n]

)

−
( ∑

r≥1

vr−1
3 [r ]

))

=ζ ◦ regV ([v1, v2]) · ζ ◦ regV ([v3]).
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