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Abstract In this paper I give an overview of mathematical structures appearing in
perturbative algebraic quantum field theory (pAQFT) in the case of the massless
scalar field on Minkowski spacetime. I also show how these relate to Kontsevich-
Zagier periods. Next, I review the pAQFT version of the renormalization group flow
and reformulate it in terms of Feynman graphs. This allows me to relate Kontsevich-
Zagier periods to numbers appearing in computing the pAQFT β-function.
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1 Introduction

Perturbative AQFT is a mathematically rigorous framework that allows to build
models of physically relevant quantum field theories on a large class of Lorentzian
manifolds. The basic objects in this framework are functionals on the space of field
configurations and renormalization method used is the Epstein-Glaser (EG) renor-
malization [20]. The main idea in the EG approach is to reformulate the renormal-
ization problem, using functional analytic tools, as a problem of extending almost
homogeneously scaling distributions that are well defined outside some partial diag-
onals in R

n . Such an extension is not unique, but it gives rise to a unique “residue”,
understood as an obstruction for the extended distribution to scale almost homoge-
neously. Physically, such scaling violations are interpreted as contributions to the β

function.
The main result of this paper is Proposition 2, where we show how a large class of

residues relevant for computing the β function in the pAQFT framework, is related
to Kontsevich-Zagier periods. Following [35] we define:
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Definition 1 A period is a complex number whose real and imaginary parts are val-
ues of absolutely convergent integrals of rational functions with rational coefficients,
over domains in R

n given by polynomial inequalities with rational coefficients.

A very accessible introduction to periods and their relation to Feynman integrals can
be found for example in [9, 12].

In Sect. 5 we review the main ideas behind the pAQFT renormalization group
(following [4]) and propose a reformulation in terms of Feynman graphs. The latter
allows then to relate the numbers appearing in the computation of the pAQFT β

function to periods discussed in Sect. 4.

2 Functionals

Let M be the D-dimensional Minkowski spacetime, i.e. R
D with the metric

η = diag(1,−1, . . . ,−1
︸ ︷︷ ︸

D−1

) .

Define the configuration space E of the theory as the space of smooth sections of a
vector bundle E overM, i.e.E

.= Γ (E
π−→ M). Fixing E specifies the particle content

of the model under consideration. In this paper we will consider only the scalar field,
i.e. E = C∞(M, R). The field configurations are denoted by ϕ. For future reference,
define D

.= C∞
c (M, R) the space of smooth compactly supported functions on M

and more generally, D(O)
.= C∞

c (O, R), where O is an open subset of R
n .

LetC∞(E , C) denote the space of smooth [2, 36] functionals on E . An important
class of functionals is provided by the local ones.

Definition 2 A functional F ∈ C∞(E , C) is called local (an element ofFloc) if for
each ϕ ∈ E there exists k ∈ N such that

F(ϕ) =
∫

M

f ( j kx (ϕ)) , (1)

where j kx (ϕ) is the k-th jet prolongation of ϕ and f is a density-valued function on
the jet bundle.

The following definition introduces the notion of spacetime localization of a func-
tional.

Definition 3 The spacetime support supp F of a functional F ∈ C∞(E , C) is
defined by

supp F
.= {x ∈ M|∀ neighborhoods U of x ∃ϕ,ψ ∈ E , supp ψ ⊂ U ,

such that F(ϕ + ψ) �= F(ϕ)} .
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Derivatives of smooth compactly-supported functionals are distributions with com-
pact support,1 i.e.

F (n)(ϕ) ∈ E ′(Mn, C) ≡ E ′C(Mn) , ∀ϕ ∈ E , n ∈ N .

If F is local then each F (n)(ϕ) is a distribution supported on the thin diagonal

Dn
.= {(x1, . . . , xn) ∈ M

n, x1 = · · · = xn} . (2)

Local functionals are important, since they are used to model interactions in pertur-
bative QFT. In the Epstein-Glaser approach, interaction is first restricted to a compact
region to avoid the IR problem and subsequently extended by taking the adiabatic
limit. In this work we are interested only in the UV (i.e. short distance) behavior of
the theory, so we leave this last step out.

One can define various important classes of functionals by formulating conditions
on the singularity structure of their derivatives F (n)(ϕ) ∈ E ′C(Mn). A notion used
in this context is that of a wavefront set. For a given distribution u ∈ D ′(Rn), its
wavefront set WF(u) contains information about points in R

n at which u is singular,
but also about directions in the momentum space (i.e. after the Fourier transform)
in which û(k) fails to decay sufficiently fast. In other words, WF(u) characterizes
singular directions of u. For a pedagogical introduction toWF sets see [5]. Knowing
the WF sets of distributions u1, u2 one can apply the criterion due to Hörmander
[28] to check if the pointwise product of u1, u2 is well defined. This motivates using
WF sets of functional derivatives F (n)(ϕ) to distinguish classes of “well-behaving”
functionals. One such class is called microcausal functionals Fμc. For the precise
definition and for possible modifications of this notion see [4, 41]. For the purpose of
this paper, it is enough to know that Floc ⊂ Fμc and that some important algebraic
structures are well defined on this space.

3 The S-Matrix and Time-Ordered Products

In the next step we introduce the S-matrix. Since we work perturbatively, the S-
matrix is understood as a formal power series in the coupling constant λ and a
Laurent series in �, with coefficients in smooth functionals. First we introduce the
time-ordered products.

Definition 4 Time ordered products are multilinear maps T n : F⊗n
loc → Fμc[[�]],

n ∈ N, satisfying:

1Prime always denotes the topological dual, so E ′(Mn) is the space of continuous linear maps from
E (Mn) to R and similarly, E ′(Mn, C) is the space of continuous linear maps to C. E (Mn) is always
understood as equippedwith its natural Fréchet topology. It is a standard result in functional analysis
that the dual of the space of smooth functions is exactly the space of distributions with compact
support.
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1. Causal factorisation property

T n(F1, . . . , Fn) = T k(F1, . . . , Fk) 	 T n−k(Fk+1, . . . , Fn) ,

if the supports supp Fi , i = 1, . . . , k of the first k entries do not intersect the past
of the supports supp Fj , j = k + 1, . . . , n of the last n − k entries. Here 	 is the
operator product of the quantum theory defined by

(F 	 G)(ϕ)
.= e

�

〈

Δ+, δ2

δϕδϕ′
〉

F(ϕ)G(ϕ′)|ϕ′=ϕ ,

where Δ+ is the Wightman 2-point function.
2. T 0 = 1, T 1 = id.
3. Symmetry: For a purely bosonic theory T ns are symmetric in their arguments.

If the fermions are present, T ns are graded-symmetric.
4. Field independence: T n(F1, . . . , Fn), as a functional on E , depends on ϕ only

via the functional derivatives of F1, . . . , Fn , i.e.

δ

δϕ
T n(F1, . . . , Fn) =

n
∑

i=1

T n

(

F1, . . . ,
δFi
δϕ

, . . . , Fn

)

5. ϕ-Locality: T n(F1, . . . , Fn) = T n(F [N ]
1 , . . . , F [N ]

n ) + O(�N ), where F [N ]
i is

the Taylor series expansion of the functional Fi up to the N -th order.
6. Poincaré invariance: Let α ∈ P↑

+ (the proper ortochronous Poincaré group).We
define σα(ϕ)(x)

.= ϕ(α−1x) for ϕ ∈ E , x ∈ M and define the action of α ∈ P↑
+

on functionals using σα(F)
.= F(σα(ϕ)). We require σα ◦ T n ◦ (σ−1

α )⊗n = T n .

We refer to these conditions as the Epstein-Glaser (EG) axioms.

Definition 5 The formal S-matrix is a map from Floc toFμc[[λ]]((�)) defined as

S(λF) =
∞
∑

n=0

(λi)n

n!�n
Tn(F

⊗n) , (3)

With T ns satisfying the EG axioms. Let (Floc)
⊗n
pds denote the subset of F⊗n

loc con-
sisting of functionals with pairwise disjoint supports. On such functionals one can
define the n-fold time-ordered product to be

T n(F1, . . . , Fn) = m ◦ e�
∑

i< j D
i j
F (F1 ⊗ · · · ⊗ Fn) , (4)

where Di j
F

.= 〈ΔF, δ2

δϕi δϕ j
〉,m denotes the pointwisemultiplication andΔF is the Feyn-

man propagator of the free scalar field theory on M. Unfortunately, this definition
doesn’t trivially extend to arbitrary local functionals, due to singularities of the Feyn-
man propagator. Instead, one has to use more sophisticated analytical tools, which
wewill review in the next section.Wewill refer to (4) as the non-renormalized n-fold
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time-ordered product and the problem of extending T n to arbitrary local functional
is referred to as the renormalization problem.

To organize the combinatorics present in the construction of time-ordered prod-
ucts, it is convenient to write them in terms of Feynman graphs. To see how this
comes about, we use the identity

e�
∑

i< j D
i j
F =

∏

i< j

∞
∑

li j=0

(

� Di j
F

)li j

li j ! (5)

to obtain the expansion
T n =

∑

Γ ∈G n

T Γ ,

where Gn is the set of all graphs with n vertices and no tadpoles (i.e. no loops in
the graph-theoretic sense). Let E(Γ ) denote the set of edges and V (Γ ) the set of
vertices of the graph Γ . Contributions from particular graphs are given by

T Γ = 1

Sym(Γ )
m ◦ 〈tΓ , δΓ 〉 , (6)

with

δΓ = δ2 |E(Γ )|
∏

i∈V (Γ )

∏

e:i∈∂e δϕi (xe,i )

and
tΓ =

∏

e∈E(Γ )

�ΔF(xe,i , i ∈ ∂e) (7)

The symmetry factor Sym is the number of possible permutations of lines joining
the same two vertices, Sym(Γ ) = ∏

i< j li j !.
Note that the map δΓ applied to F ∈ F⊗n

loc yields, at any n-tuple of field config-
urations (ϕ1, . . . , ϕn), a compactly supported distribution in the variables xe,i , i ∈
∂e, e ∈ E(Γ ) with support on the partial diagonal

DiagΓ = {xe,i = x f,i , i ∈ ∂e ∩ ∂ f, e, f ∈ E(Γ )} ⊂ M
2|E(Γ )| .

This partial diagonal can be parametrized using the centre of mass coordinates

zv
.= 1

valence(v)

∑

e:v∈∂e

xe,v ,

assigned to each vertex. The remaining relative coordinates are x rele,v = xe,v − zv,
where v ∈ V (Γ ), e ∈ E(Γ ) and v ∈ ∂e. Obviously, we have

∑

e|v∈∂e x
rel
e,v = 0 for all
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v ∈ V (Γ ), so in fact DiagΓ is parametrized by |V (Γ )| − 1 independent variables.
In this parametrization δΓ F can be written as a finite sum

δΓ F =
∑

β

f β∂βδrel ,

where β ∈ N
D(|V (Γ )|−1)
0 , each f β(ϕ1, . . . , ϕn) is a test function on DiagΓ and δrel is

the Dirac delta distribution in relative coordinates, i.e. δrel(g) = g(0, . . . , 0), where
g is a function of (x rele,v, v ∈ V (Γ ), e ∈ E(Γ )).

Let YΓ denote the vector space spanned by derivatives of the Dirac delta distribu-
tions ∂βδrel, where β ∈ N

D(|V (Γ )|−1)
0 and let D(DiagΓ ,YΓ ) denote the graded space

of test functions on DiagΓ with values in YΓ . With this notation we have δΓ F ∈
D(DiagΓ ,YΓ ) and if F ∈ (Floc)

⊗n
pds, then δΓ F is supported onDiagΓ \ DIAG,where

DIAG is the large diagonal:

DIAG = {

z ∈ DiagΓ | ∃v,w ∈ V (Γ ), v �= w : zv = zw
}

.

We can therefore write (6) in the form

1

Sym(Γ )
〈tΓ , δΓ 〉 =

∑

finite

〈

f β∂βδrel, t
Γ
〉

where tΓ is written in terms of centre of mass and relative coordinates. To see that
this expression is well defined, note that we can move all the partial derivatives ∂β

to tΓ by formal partial integration. Then the contraction with δrel is just the pullback
through the diagonal map ρΓ : DiagΓ → M

2|E(Γ )| by

(ρΓ (z))e,v = zv if v ∈ ∂e .

The pullback ρ∗
Γ of each tΓβ

.= ∂β tΓ is a well defined distribution on DiagΓ \DIAG,
so (6) makes sense if F ∈ (Floc)

⊗n
pds.

The renormalization problem to extend T n’s to maps on the full F⊗n
loc is now

reduced to extending distributions ρ∗
Γ t

Γ
β to the diagonal.

In this and the next section we will consider the simplest situation, where the free
theory is the free massless scalar field and the possible interactions are local func-
tionals F1, . . . , Fn that depend on the field itself but not on its derivatives. Without
the loss of generality, we can assume them to be monomials, i.e. of the form

F(ϕ) =
∫

f (x)ϕ(x)ldDx ,

where f ∈ D , l ∈ N. Such a functional can be graphically represented as a vertex of
valence l, decorated by the test function f.
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The distributions we need to extend are then uΓ = ρ∗
Γ t

Γ , where tΓ is given by
(7). We can write the explicit expression for uΓ using the following rules:

1. Choose a vertex of Γ and label it as x0 = 0. Label the remaining vertices with
variables x1, . . . , xn , where n = |V (Γ )| − 1.

2. Assign theFeynmanpropagatorΔF(xi , x j ) to each edge e ∈ E(Γ ), where xi , x j ∈
∂e.

Because of the translational symmetry, the Feynman propagator ΔF(x, y) depends
only on the difference x − y. Explicitly, it is given by

ΔF(x, y) = (−1)
D
2 −1Γ ( D

2 − 1)

4π
D
2

lim
ε→0+

1

((x − y)2 − iε)
D
2 −1

≡ kD

((x − y)2 − i0)
D
2 −1

,

where (x − y)2
.= η(x − y, x − y) is the square with respect to the Minkowski met-

ric and Γ denotes the Gamma function. We use the bold symbol to distinguish this
from the notation we use for graphs. It follows now that

uΓ (x1, . . . , xn−1) = k |E(Γ )|
D

∏

e∈E(Γ )((xs(e) − x f (e))2 − i0)
D
2 −1

, (8)

where {xs(e), x f (e)} = ∂e is the pair of vertices that constitute the boundary of an
edge e and the order of these vertices is irrelevant.

Example 1 Consider the following examples:

1. For the fish graph: uΓ (x) = k2D
(x2−i0)D−2 ,

2. For the triangle graph:

uΓ (x, y) = k3D
(x2 − i0)

D
2 −1(y2 − i0)

D
2 −1((x − y)2 − i0)

D
2 −1

.

We have seen how to reduce the renormalization problem to extension of distri-
butions. The construction of T ns proceeds inductively. Given renormalized time-
ordered products of order k < n, we can use the causal factorisation property to fix
the time-ordered products at order n up to the thin diagonal Dn (see (2)). On the level
of graphs it means that all the distributions uγ corresponding to proper subgraphs
γ ⊂ Γ have been constructed and substituted into uΓ . The renormalization problem
for uΓ is now the extension of a distribution defined everywhere outside the thin
diagonal of the graph Γ understood as the subset of DiagΓ with all the variables
equal. Because of the translation symmetry, this is in fact extension problem for a
distribution defined everywhere outside the origin.
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4 Distributional Residues and Periods

The framework of pAQFT is different from the one of Connes and Kreimer in two
fundamental ways: oneworks in position rather thanmomentum space and themetric
of the underlying spacetime has Lorentzian rather than Euclidean signature. The
latter is the reason for invoking Epstein-Glaser causal approach to renormalization,
as outlined in the previous section.

There has been a lot of work done concerning periods in position space approach
to renormalization. The most recent comprehensive review has been given in [37],
while for historical remarks on the development of the subject, it is worth to look up
[47]. A very detailed analysis of renormalization of Feynman integrals and its relation
to periods and motives has been done in the series of papers [14, 15]. However, the
computations performed in these works are done in Euclidean signature. Another
noteworthy work, focusing on relations between Epstein-Glaser renormalization and
“wonderful compactifications” is [3].

There are some serious technical difficulties arising when changing the signature
to Lorentzian. In the present paper we show how some standard methods used in
Euclidean setting can, nevertheless, be applied also to the Lorentzian case.

Before coming to the main result of this paper, let us recall some basic facts about
the problem of extension of almost homogeneous distributions [4, 7, 23, 31, 37, 45].

Definition 6 We say that a distribution u ∈ D ′(RN \ {0}) scales almost homoge-
neously, if (ρ d

dρ )k+1ραu(ρ.) = 0 for some k ∈ N0 (called scaling order), α ∈ R

(called scaling degree).

The almost homogeneous scaling relation can also be written in terms of the Euler
operator E = ∑d

i=1 x
i ∂
∂xi , namely a distribution with scaling degree α and order k

satisfies
(E + α)k+1u = 0 ,

while (E + α)ku �= 0.

Example 2 For a graph Γ with n vertices the distribution u ≡ uΓ that we need
to extend belongs to D ′(RN \ {0}), where N = (n − 1)D and D is the dimension
of M.

The following result was proven in [26, Proposition 1] (see also [37, section 4.4]):

Proposition 1 Let u be a (Lorentz invariant) almost homogeneously scaling distri-
bution with degree α = N + N0, then there exists a non-unique (Lorentz invariant)
extension ū ∈ D ′(RN ) of u and

(

ρ
d

dρ

)k+1

ρα ū(ρ.)

∣

∣

∣

ρ=1
= (E + α)k+1ū =

∑

|β|=α−N

cβ∂βδ ,

where β ∈ N
N
0 is a multiindex.
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In the proof of the above proposition provided in [26], the coefficients cα are com-
puted by integrating certain (closed) distributional forms over a closed codimension
1 surface enclosing the origin. We will now review the construction of these forms
and it will become clear that these do not depend on the choice of the extension.
Moreover, their closeness is the reason why cαs do not depend on the choice of the
integration surface and hence the homogeneous differential operator

∑

|β|=α−N

cβ∂β (9)

doesn’t depend on the choice of the extension ū. This fact has also been highlighted
in the discussion following formula (4.21) in [37, section 4.4]).

We will call (9) the residue of u and denote it by Res(u), so that

(E + α)k+1ū = Res(u)δ .

Coefficients of the differential operator Res(u) can be explicitly computed using the
construction of ū proposed in [26, eq. (186)] and [37, Theorem 4.8]. Let us outline
the main ideas behind this construction. First, note that the almost homogeneous
scaling implies that the distributional kernel of u can be written as [26, eq. (172)],
[37, eq. (3.12)]

u(r x) =
k
∑

m=0

r−l (log r)
m

m! vm(x) r > 0 , (10)

where vm = (E + α)mu. Let 〈u, f 〉 denote the dual pairing between the distribution u
and the test function f ∈ D(RN \ {0}). This pairing is usually realized as the integral

〈u, f 〉 =
∫

MN

u(x) f (x)dN x . (11)

We rewrite this integral using the representation (10). First, choose a compact
N − 1dimensional hypersurface around theorigin, homoeomorphic to the (Euclidean)
sphere SN−1 that intersects each orbit of the scaling transformation x �→ μx exactly
once. Note that the map R+ × Σ � (r, x̂) �→ r x̂ ∈ R

N \ {0} is a diffeomorphism,
since the surface Σ is transverse to the orbits of dilations in R

N .
Using microlocal analysis techniques [28] one can show that distributions vm

appearing in (10) have well defined restrictions to Σ (see [26], Section3.3, after
eq. (173)). Denote points on Σ by x̂ and write the restriction of vm as vm(x̂). Next,
define for r > 0 the following space

Σr
.= {r x̂ ∈ R

N |x̂ ∈ Σ} .
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Denote the natural inclusion of Σr into R
N by ir . One introduces a (N − 1)-form Ω

on R
N by

Ω(x) =
N
∑

a=1

(−1)a−1xadx1 ∧ · · · ∧ ̂dxa ∧ · · · ∧ dxN ,

where xa are components of x ∈ R
N . The caret symbol̂means that the correspond-

ing factor is omitted. We can now write

dN x = dr

r
∧ i∗r Ω .

Let ρΣ : R
N \ {0} → R+ denote the smooth function defined by the condition

x

ρΣ(x)
∈ Σ .

We obtain a measure on Σ by setting

dσ(x̂) = ρΣ(x)−NΩ(x) ,

and express the pairing (11) as

〈u, f 〉 =
∫ ∞

−∞

k
∑

m=0

θ(r)r N−1−l (log r)
m

m!
(∫

Σ

vm(x̂) f (r x̂)dσ(x̂)

)

dr , (12)

where θ denotes the Heaviside step function. Denote F(r)
.= ∫

Σ
vm(x̂) f (r x̂)dσ(x̂).

Formula (12) makes sense, since the support of the test function f is bounded away
from the origin inR

N and hence F(r) is a test function onR+ (i.e. smooth compactly
supported), whose support is bounded away from r = 0. If we want f to be an
arbitrary test function, then F(r) vanishes for sufficiently large r , but does not vanish
near r = 0 [26, discussion following eq. (184)].

The renormalization problem has therefore been reduced to extension of the dis-
tribution θ(r)r N−1−l(log r)m onR. This is done by various methods, see for example
[22, 24, 25, 37, 43]. The idea that we are going to follow here (proposed by [23]
based on the ideas of [21, 39]) is to consider first the extension of the distribu-
tion θ(r)r N−1−l+ε(log r)m for a complex, non integer N − 1 − l + ε. If we require
the almost homogeneous scaling, then the extension exists and is unique. Next, we
expand the resulting extended distribution in ε and subtract the pole part.

Let us come back to our original extension problem for u ∈ D ′(RN \ {0}). It is
well known in the literature on differential renormalization (see e.g. [26, eq. (186)] or
[37, Thm. 4.8]) that an extension ū of an almost homogeneously scaling distribution
u of order k and degree α to an everywhere-defined distribution can be obtained by
setting
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〈ū, f 〉 .= lim
ε→0

(∫ ∞

0

∫

Σ

r εu(r x̂)
uhe

f (r x̂)dσ(x̂)dr

−
k
∑

m=0

(−1)m+α−N

εm+1

∑

|β|=α−N

1

β!
∫ ∞

0

∫

Σ

vm(x̂) f (r x̂)∂βδ(r x̂)dσ(x̂)dr

⎞

⎠ ,

where . uhe denotes the unique almost homogeneous extension, β ∈ N
N
0 is a multiin-

dex, β! ≡ β1! . . . βN ! and ∂β .= ∂
β1
x1 . . . ∂

βN
xN .

We are now ready to compute the almost homogeneous scaling violation for the
extension ū. The coefficients cβ of Res(u) in formula (9) are obtained from (see e.g.
[26, eq. (92)])

cβ
.= (−1)α−N 1

β!
∫

Σ

x̂βvm(x̂)dσ(x̂)

that manifestly doesn’t depend on the choice of the extension, but only on u. Note
that cβ does not depend on the choice ofΣ because the integrand is a (distributional)
closed form (see [26, eq. (210)] for the proof of closedness).

As a special case we can consider a distribution with scaling degree α = N and
scaling order 0. In this case the residue is given in terms of a complex number

Res(u) = c0 =
∫

Σ

u(x̂)dσ(x̂) . (13)

Definition 7 For a graph Γ with n vertices and no derivatives decorating the edges,
the scaling degree of the distribution uΓ is given by the formula

αΓ = (D − 2)|E(Γ )| .

Definition 8 We define the divergence degree of a graph Γ by

ωΓ = αΓ − (|V (Γ )| − 1)D .

A graph Γ is called superficially divergent if ωΓ ≥ 0.

Hence graphs with αΓ = N are characterized by the condition

(D − 2)|E(Γ )| = (|V (Γ )| − 1)D . (14)

Note that the loop number of a graph (the first Betti number) is given by h1 =
|E(Γ )| − |V (Γ )| + 1, so the above condition can be also expressed as

|E(Γ )| = D

2
h1 .
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In four dimensions (D = 4) this reduces to |E(Γ )| = 2h1. If Γ satisfies (14) and has
no superficially divergent subgraphs (here a subgraph γ ⊂ Γ is specified by choosing
a subset of vertices ofΓ and taking all the edges connecting these), then it has scaling
degree αΓ = N (so the divergence degree vanishes) and scaling order kΓ = 0. Such
graphs coincide with primitive graphs in the Connes-Kreimer approach, if we restrict
to D = 4 and fix the interaction.

Remark 1 The class of primitive graphs in the Epstein-Glaser Hopf algebra [18, 25,
34, 38] differs from the class of primitive graphs in the Connes-Kreimer approach.
As an example consider the two vertex graph, which has |E(Γ )| = 4 and h1 = 3.
This graph is primitive in the Epstein-Glaser Hopf algebra, but not primitive in the
Connes-Kreimer approach.

Consider a graph Γ with |E(Γ )| = D
2 h1 and no superficially divergent subgraphs.

Let Δ be the simplex defined by
∑

e∈E(Γ ) αe = 1 and αe > 0. We introduce the

measure μ(α)
.= δ(1 −∑

e∈E(Γ ) αe)
∏

e∈E(Γ ) α
D
2 −2
e dαe on Δ. Let

Ψ̂Γ (α) =
∑

T spanning
tree

∏

e∈T
αe

be the dual graph polynomial (see e.g. [6, 9, 33, 49]). We define

PΓ
.=
∫

Δ

μ(α)

(Ψ̂Γ (α))D/2
. (15)

If PΓ converges absolutely, then it defines a real period of the graph Γ in the sense
of Definition 36 of [11].

It was shown in [6] that, in D = 4, under assumptions on Γ stated above, PΓ

indeed converges absolutely. For explicit computations of these periods in Euclidean
φ4 theory in 4 dimensions, see for example [42].

It is highly plausible that this result can also be generalized to other dimen-
sions, e.g. D = 6. For an elementary argument, first note that potential singular-
ities of the integrand lie on C

.= XΓ ∩ ∂Δ, the intersection of the hyper-surface
XΓ

.= {α ∈ R
|E(Γ )||Ψ̂Γ (α) = 0} with the boundary ∂Δ. If C is just a collection of

points, one can split the integration region into small neighborhoods of these points
and the rest. For each such neighborhood one parametrizes the integral using spher-
ical coordinates around the point and examines the behaviour of the integrand as the
radius r approaches 0. One can now observe that for each such integral, extra fac-
tors of αe contribute r (|E(Γ )|−1)( D

2 −2), the integration measure contributes r |E(Γ )|−2,
while the denominator contributes r−(|V (Γ )|−2) D

2 . The last assertion follows from the
fact that Ψ̂Γ is a degree |V (Γ )| − 1 polynomial and because we are integrating over
the simplex, the dominant contribution comes from degree |V (Γ )| − 2 terms. Since
|V (Γ )| − 1 = D−2

2 |E(Γ )|, the integrand can be bounded by a constant, as r → 0.
We perform these estimates explicitly in Example 4.
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In proposition 2 we show how periods defined by (15) appear in distributional
residues in Lorentzian signature. Before we do that, it is worth to recall a few facts
concerning graph polynomials (see [9, 13] for a more comprehensive review).

Definition 9 ([44, 48]) The generic graph Laplacian (or Kirchhoff matrix) is the
|V (Γ )| × |V (Γ )| matrix defined by

Li j (α) =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

∑

e∈E(Γ )

vi ,v j ∈∂e

−αe if i �= j,

∑

e∈E(Γ )

vi ∈∂e

αe if i = j,

for all vi , v j ∈ V (Γ ). A sum over the empty set is set to be zero.

Theorem 1 (tree-matrix theorem in [48], thm. VI.29) Let Γ be a graph with N
edges, all of them labelled by the set {α1, . . . , αN } and let vi be an arbitrary vertex
of Γ . LetLΓ (α) be the generic Laplacian and Ψ̂Γ the dual graph polynomial. Then
we have

Ψ̂Γ = Det(LΓ (α)[vi ]) ,

where the notation LΓ (α)[vi ] means the (i, i) minor of the matrixLΓ (α).

We are now ready to prove our main result of this section.

Proposition 2 LetΓ be a graphwith |E(Γ )| = D
2 h1 and such that every proper sub-

graph γ satisfies |E(Γ )| > 2h1. If PΓ converges absolutely, then the distributional
residue Res uΓ is given by

Res uΓ = c0 = 2i (2D−1)(|V |−1)

(4π)|E(Γ )| PΓ .

Proof First recall that the integral (13) doesn’t depend on the choice of Σ . The
simplest choice is the unit Euclidean sphere in R

Dn , where n = |V (Γ )| − 1. Denote

X ≡ (x01 , . . . , x
0
n , . . . , x

D−1
1 , . . . , xD−1

n )

Using the formula (8) we obtain

c0 = (−1)(
D
2 −1)|E(Γ )|

(

Γ ( D
2 − 1)

4π
D
2

)|E(Γ )|
lim

ε→0+

∫

Σ

dσ(X)
∏

e∈E(Γ )((xs(e) − x f (e))2 − iε)
D
2 −1

,

Denote be ≡ (xs(e) − x f (e))
2 − iε, e ∈ E(Γ ). We have �(ibe) = ε > 0, so we can

use the well known Schwinger trick to write
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1
∏

e∈E(Γ ) b
D
2 −1
e

= Γ (( D
2 − 1)|E(Γ )|)

(Γ ( D
2 − 1))|E(Γ )|

∫ 1

0
. . .

∫ 1

0

δ(1 −∑

e∈E(Γ ) αe)

(
∑

e∈E(Γ ) αebe)(
D
2 −1)|E(Γ )|

∏

e∈E(Γ )

α
D
2 −1
e dαe

≡ Γ (( D
2 − 1)|E(Γ )|)

(Γ ( D
2 − 1))|E(Γ )|

∫

Δ

μ(α)

(
∑

e∈E(Γ ) αebe)(
D
2 −1)|E(Γ )| ,

where k = |E(Γ )|. Nowwewant to performa change of variables to put the quadratic
form B ≡ ∑

e∈E(Γ ) αebe into its normal form. We write B = XT MX , where M is a
block diagonal matrix of the form

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

N 0 0 . . . 0
0 −N 0 . . . 0
0 0 −N . . . 0
...

...

0 0 0 . . . −N

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Each block is a (|V (Γ )| − 1)-dimensional symmetric positive semidefinite matrix
(as αe ≥ 0, ∀e ∈ E(Γ ) ), which is in fact the (0, 0) minor of the generic graph
Laplacian LΓ (α) introduced in Definition 9. We can find a non-singular matrix Λ

such that
ΛT NΛ = 1 .

The argument proceeds now exactly the same as in [6, 8]. Defining

S
.=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Λ 0 0 . . . 0
0 Λ 0 . . . 0
0 0 Λ . . . 0
...

...

0 0 0 . . . Λ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

we obtain

ST MS
.=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 . . . 0
0 −1 0 . . . 0
0 0 −1 . . . 0
...

...

0 0 0 . . . −1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

≡ Ξ , (16)

This suggests a change of variables X �→ S−1X that puts the quadratic form B into
the normal form. In order to perform this change of variables we only need to ensure
that in the following formula the order of integration can be interchanged:
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∫

Σ

∫

Δ

1

(
∑

e∈E(Γ ) αebe)(
D
2 −1)|E(Γ )| μ(α)dσ (17)

For this, note that
|
∑

e∈E(Γ )

αebe|2 ≥ |
∑

e∈E(Γ )

αe|2ε2 .

Since on the simplexΔwe have
∑

e∈E(Γ ) αe = 1, we can conclude that the integrand
in (17) is uniformly bounded by 1

ε2
and as long as ε > 0, we can interchange the

order of integration and perform the desired change of variables X �→ S−1X . The
Jacobian for this change of variables is

Det S = (DetΛ)D = (Det N )−D/2 ,

since (DetΛ)2 Det N = 1. It follows now from the tree-matrix Theorem 1 that

Det N = Ψ̂Γ (α) .

It is now also explicitly seen that the result doesn’t depend on the choice of the vertex
to which we assigned 0 in our Feynman rules, as the tree-matrix theorem gives the
same result for any choice of the minor LΓ [vi ], vi ∈ V (Γ ).

We can now rewrite c0 as

c0 = Γ
(|E(Γ )|( D

2 − 1)
)

(

(−1)(
D
2 −1)

4π
D
2

)|E(Γ )|

× lim
ε→0+

∫

Σ

dσ

(XTΞ X − iε)|E(Γ )|( D
2 −1)

∫

Δ

Ψ̂
−D/2
Γ (α)μ(α) =

Γ
(|E(Γ )|( D

2 − 1)
)

(

(−1)(
D
2 −1)

4π
D
2

)|E(Γ )|
PΓ lim

ε→0+

∫

Σ

dσ

(XTΞ X − iε)|E(Γ )|( D
2 −1)

,

(18)

where Ξ is a diagonal metric given in (16).
The remaining integral in (18) is easy to evaluate. It is the residue of the distribution

t (X) = 1

(XTΞ X − i0)(
D
2 −1)|E(Γ )|

on the indefinite product space (R(D−2)|E(Γ )|, Ξ), with divergence degree 0 and scal-
ing order 0. Now we use formula [4, Appendix C, formula after eq. (102)]:

Res t = i s |Sd−1| ,
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where d is the total dimension of the indefinite product space (in our case d =
(|V (Γ )| − 1)D = |E(Γ )|(D − 2)) and s is the number of minus signs in the sig-
nature of Ξ (in our case s = (|V (Γ )| − 1)(D − 1)) and |Sd−1| is the volume of the
unit sphere in d dimensions. We obtain

Res t = i (D−1)(|V (Γ )|−1)
∣

∣S|E(Γ )|(D−2)−1
∣

∣ .

With this result and the formula for the volume of the unit sphere in d dimensions

|Sd−1| = 2πn/2

Γ ( n2 )
,

we arrive at

c0 = i (2D−1)(|V (Γ )|−1) 2

(4π)|E(Γ )| PΓ .

In particular, for D = 4 we have

c0 = (−i)(|V (Γ )|−1) 2

(4π)|E(Γ )|

∫

Δ

|Ψ̂Γ |−2Ω(α) ,

where Ω(α) is the standard measure on the simplex.

Example 3 The simplest example is the fish graph in 4 dimensions:

The scaling degree and the scaling order vanish, so from Proposition 2 we obtain

c0 = −i
2

(4π)2
PΓ .

Here Ψ̂Γ = α1 + α2, so PΓ = 1 and hence c0 = −i
8π2 .

Example 4 Following [4], consider the triangle in 6 dimensions:

Proposition 2 implies that

c0 = − 2

(4π)3
PΓ ,

if PΓ converges. Since Ψ̂ (α) = α1α2 + α1α3 + α2α3, we have

PΓ =
∫

Δ

α1α2α3δ(1 − α1 − α2 − α3)dα1dα2dα3

(α1α2 + α2α3 + α1α3)3
.
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To see that this integral is absolutely convergent, note that singularities of the inte-
grand appear only in the “corners” of the simplex.Using the symmetry of the problem,
we pick the α3 = 1 and consider the integral Iε of the same integrand as above, but
over a small neighborhood of the point (α1, α2, 1) on the simplex Δ. Using polar
coordinates α1 = r cos θ , α2 = r sin θ , this integral takes the form

Iε =
∫ ε

0

∫ π/2

0

r3 sin2 θ cos θ(1 − r
√
2 sin(θ + π

4 ))

r3( 12r sin 2θ + √
2 sin(θ + π

4 ) − 2r sin2(θ + π
4 ))3

dθdr

Since sin(θ + π
4 ) does not vanish in the interval [0, π

2 ], the integrand can be bounded
by a constant when r → 0, so Iε is absolutely convergent and so is PΓ .

Following [4, example on p. 39] we evaluate this integral by integrating out α3 and
then changing the variables to λ, κ , so that α1 = λκ and α2 = (1 − λ)κ . We obtain

PΓ =
∫ 1

0

∫ 1

0

λ(1 − λ)κ2(1 − κ)

(λ(1 − λ)κ2 + κ(1 − κ))3
dκdλ = 1

2
,

so

c0 = − 1

26π3
.

Example 5 The final example is the well known “wheel with three spokes” graph in
4 dimensions:

This one also satisfies the assumptions of Proposition 2, so using the general formula
we obtain

c0 = i

211π6
PΓ = 3i

210π6
ζ(3) ,

where we used the well-known value PΓ = 6ζ(3) (see e.g. [10]).

Proposition 2 allows to reduce the problemof computing a large class of distributional
residues to the problem of evaluating periods arising from graph polynomials, of the
form discussed in [1, 6, 11, 42], so can be used to easily translate the existing results
and apply them to theories in Lorentzian signature.

Let us come back to the general case. Let Γ be a graph with ωΓ ≥ 0. If it contains
proper subgraphs with ωγ ≥ 0, then one has to renormalize these first and substitute
the result to the expression for tΓ . If overlapping divergences are present, a partition
of unity might be required. However, there are convincing arguments that this step
can be avoided; compare the Example 4.16 in [18] (using the partition of unity)
with example 5.3 of [24] (without the partition of unity). A distribution constructed
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this way is denoted by ũΓ and it was shown in [29] that the property of almost
homogeneous scaling is preserved in the recursive procedure of renormalization of
proper subgraphs. Hence ũΓ is an almost homogeneously scaling distribution and
the general formula for its residue is

Res(ũΓ ) =
∑

|β|=α−N

cβ∂β ,

where

cβ
.= (−1)α−N 1

β!
∫

Σ

x̂β(E + α)k ũΓ (x̂)dσ(x̂) , (19)

If a graph is EG primitive, then k = 0, ũΓ = uΓ and the residue is uniquely deter-
mined by the graph. Residues for EG primitive graphs which are not CK primitive
can be obtained by using the fact that coefficients cβ are Lorentz invariant. This
implies that integrals (19) can be reduced to scalar integrals multiplying appropriate
powers of ημν .

We believe that a result generalizing Proposition 2 can be established also in this
case and we will address it in future work.

Example 6 Consider the sunset diagram in 4 dimensions:

We have m = 0 and α = 8. This implies that |β| = 4 so we need to compute

cμναβ = 1

(2π)84!
∫

Σ

xμxνxαxβ

(x2 − i0)4
dσ(x) .

The Lorenz invariance and the symmetry of the problem imply that

(2π)8cμναβ = 1

4!24 (ηαβημν + ημβηνα + ημαηνβ)

∫

σ

(x2)2

(x2 − i0)4
dσ(x)

= 1

2632
(ηαβημν + ημβηνα + ημαηνβ)

∫

σ

dσ(x)

(x2 − i0)2

= − iπ2

2532
(ηαβημν + ημβηνα + ημαηνβ) (20)

Hence

Res(uΓ ) = − i

2133π6
�2 .

In fact there is a different, more direct, way to obtain residues for all the “sunset”
type diagrams with arbitrary number of lines. For details see [37, section 5.2] or [4,
Appendix C]. The general formula is
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Res

(

1

(X2 − i0)
d
2 +l

)

= cl�l ,

where

cl = i s |Sd−1| Γ ( d2 )

22l l!Γ ( d2 + l)

and X ∈ R
d with the diagonal metric of the form diag(1, . . . , 1−1, . . . ,−1

︸ ︷︷ ︸

s

). The

Example 6 is then the special case of this formula with d = 4, s = 3 and l = 2.

5 Renormalization Group Flow

In [4] the breaking of the homogeneous scaling is shown to relate to the definition
of the β-function. In this section we review the main ideas of that argument.

In the first step we generalize the discussion from the previous sections from the
massless to themassive scalar field. For studying the scaling properties, it is crucial to
work with time-ordered products that are smooth in mass.2 This is, unfortunately, not
the case if we use the standard Feynman propagatorΔF. To rectify this, we replace in
our framework the 2-point functionΔ+ with a Hadamard 2-point function H and the
Feynman propagator ΔF with a corresponding modified Feynman propagator HF.
Crucially, H and HF are smooth in mass. The choice of these objects is unique up to
a parameter M > 0 with the dimension of mass. Explicit formula for HF

M was derived
in [4] and it reads:

HF
M (x) = mD−2

(2π)
D
2 yD−2

(

K D
2 −1(y) + (−1)

D
2 log

M

m
I D

2 −1(y)

)

, (21)

where y
.= √−m2(x2 − i0) and K , I are modified Bessel’s functions. In 4 dimen-

sions this amounts to

HF
M (x) = −1

4π2(x2 − i0)

+ log(−M2(x2 − i0))m2 f (m2x2) + m2F(m2x2) ,

2The usual physical argument for the 2-point functions not being smooth atm2 = 0 is that it should
not be possible to go smoothly to models with imaginary mass. However, the smoothness in mass
is crucial for renormalization on curved spacetimes, as argued in [4, 30–32]. Another approach was
proposed in [19], where the “usual” 2-point function can be used and the smoothness in mass is
replaced by the smoothen of appropriately rescaled time-ordered products.
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while in 6 dimensions

HF
M (x) = 1

4π3(x2 − i0)2
+ m2 f (m2x2)

π (x2 − i0)

+ 1

π

(

log(−M2(x2 − i0))m4 f ′(m2x2) + m4F ′(m2x2)
)

,

where f and F are real-valued analytic functions. f and f ′ can be expressed in terms
of the Bessel functions J1 and J2, respectively, namely

f (z)
.= 1

8π2
√
z
J1(

√
z) , f (0) = 1

24 π2
, f ′(z) = −1

16π2 z
J2(

√
z) ;

and F is given by a power series

F(z)
.= − 1

4π

∞
∑

k=0

{ψ(k + 1) + ψ(k + 2)} (−z/4)k

k!(k + 1)! , F(0) = 2C − 1

4π
,

where C is Euler’s constant and the Psi-function is related to the Gamma-function
by ψ(x)

.= Γ ′(x) /Γ (x).
The non-uniqueness of H and HF forces one to use a bitmore abstract construction

to define the observables and time-ordered product.

Definition 10 For amassm wedefine a family of algebrasA(m)M

.= (Fμc[[�]], 	H),
labeled by M > 0, where H ≡ Hm

M and 	H is defined by

(F 	H G)(ϕ)
.= e

�

〈

H, δ2

δϕδϕ′
〉

F(ϕ)G(ϕ′)|ϕ′=ϕ

Different choices of the Hadamard 2-point function for a given mass m differ by a
smooth function, i.e. Hm

M1
− Hm

M2
is smooth. This allows to define a homomorphism

αm
M1M2

.= e
�

〈

Hm
M1

−Hm
M2

, δ2

δϕ2

〉

,

between the algebras A(m)M1
and A(m)M2

. We are now ready to define the algebra
of observables for a fixed mass.

Definition 11 A(m), the algebra of observables for mass m consists of families
A = (AM)M>0, where AM ∈ A(m)M and we have AM1

= αm
M1M2

(AM2
).

We can identify abstract elements of the algebra A(m) with concrete functionals in
Fμc[[�]]. For A ∈ A(m) denote

AM

.= αH(A) ,
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where αH ≡ e
〈

�H, δ2

δϕ2

〉

and H ≡ Hm
M is the appropriate Hadamard 2-point function.

AM defined this way is now a functional in Fμc[[�]]. Conversely, let F ∈ Fμc. We
denote by α−1

H F the element of A(m) such that (α−1
H F)M = F , where H ≡ Hm

M , as
above. The rationale behind this notation is explained in [4] and further clarified in
[41]. Let Aloc(m) denote the subspace of A(m) arising from local functionals.

Now, following [4], we want to combine algebras corresponding to different
masses in a common algebraic structure.

Definition 12 We define the following bundle of algebras

B =
⊔

m2∈R

A(m) .

Let A = (Am)m2∈R be a section ofB. We fix M > 0 and define a function from R+
toFμc[[�]] by

m2 �→ αM(A)(m)
.= αH(A

m) , where H ≡ Hm
M .

Definition 13 A section A ofB is called smooth if αM(A) is smooth for some (and
hence all) M > 0. The space of smooth sections of B is denoted by A. Similarly,
Aloc denotes the space of smooth sections ofB such that A(m) ∈ Aloc(m) for all m.

A is equipped with a non-commutative product defined as follows:

(A 	 B)mM
.= Am

M 	H Bm
M ,

where H ≡ Hm
M . The n-fold time-ordered productT n is amap fromAloc toA defined

by
T n(A1, . . . , An)(m)

.= α−1
H ◦ T n

H (αH A1 . . . , αH An) ,

where H ≡ Hm
M is a Hadamard 2-point function for mass m and maps T n

H :
Floc[[�]] → Fμc[[�]] satisfy axioms from Definition 4 with Δ+ replaced by H .

The S-matrix is now a map from Aloc to A defined by

S(A)
.=

∞
∑

n=0

1

n!T
n(A⊗n) .

Axioms for time-ordered products can be conveniently formulated on the level of
S-matrices.

S 1. Causality S(A + B) = S(A) 	 S(B) if supp(Am) is later than supp(Bm) for
all m2 ∈ R+.3

3We define supp Am .= supp(αH (A)), where H ≡ Hm
M and this definition is independent of the

choice of M .
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S 2. S(0) = 1, S(1)(0) = id,
S 3. ϕ-Locality:αM ◦ S(A)(ϕ0) = αM ◦ S ◦ α−1

M

(

αM(A)[N ]
ϕ0

)

(ϕ0) + O(�N+1),where

αM(A)[N ]
ϕ0

(ϕ) =
N
∑

n=0

1

n!
〈

δnαM(A)

δϕn
(ϕ0), (ϕ − ϕ0)

⊗n

〉

is the Taylor expansion up to order N . The dependence on mass m is kept
implicit in all these formulas.

S 4. Field independence: S doesn’t explicitly depends on field configurations.

In Epstein-Glaser renormalization the freedom in defining the renormalized S-matrix
is controlled by the Stückelberg-Petermann renormalization group.

Definition 14 The Stückelberg-Petermann renormalization group R is defined as
the group of maps Z : Aloc → Aloc with the following properties:

Z 1. Z(0) = 0,
Z 2. Z (1)(0) = id,
Z 3. Z = id + O(�),
Z 4. Z(F + G + H) = Z(F + G) + Z(G + H) − Z(G), if supp F ∩ supp G =

∅,
Z 5. δZ

δϕ
= 0.

Note that constructing Z ’s can be reduced to constructing maps ZH : Floc[[�]] →
Floc[[�]] which control the freedom in constructing T n

H , so the abstract formal-
ism reviewed in the present section can be related to the more concrete description
presented in Sects. 1–3. We have

Z = α−1
H ◦ ZH ◦ αH .

The fundamental result in the Epstein-Glaser approach to renormalization is theMain
Theorem of Renormalization [4, 17, 40, 46].

Theorem 2 Given two S-matrices S and ̂S satisfying conditions S 1– S 5, there
exists a unique Z ∈ R such that

̂S = S ◦ Z . (22)

Conversely, given an S-matrix S satisfying the mentioned conditions and a Z ∈ R,
Eq. (22) defines a new S-matrix ̂S satisfying S 1– S 5.

Let us now discuss symmetries. Again, we follow closely [4]. Let G be a subgroup
of the automorphism group of A. Assume that it has a well defined action onS , the
space of S-matrices, by

S �→ g ◦ S ◦ g−1 ,
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where S ∈ S , g ∈ G. Since g ◦ S ◦ g−1 ∈ S , it follows from the Main Theorem of
Renormalization that there exists an element Z(g) ∈ R such that

g ◦ S ◦ g−1 = S ◦ Z(g) .

We obtain a cocycle inR,

Z(gh) = Z(g)gZ(h)g−1 . (23)

The cocycle can be trivialized, i.e. is a coboundary, if there exists an element Z ∈ R
such that

Z(g) = ZgZ−1g−1 ∀g ∈ G . (24)

If this is the case, then

g ◦ S ◦ g−1 = S ◦ ZgZ−1g−1 .

Hence
g ◦ S ◦ Z ◦ g−1 = S ◦ Z ,

so the S-matrix S ◦ Z is G-invariant.
The non-triviality of the cocycle corresponds to the existence of anomalies. One

of the most prominent examples where the cocycle cannot be trivialized is the action
of the scaling transformations.

The scaling transformation is defined first on the level of field configurations
ϕ ∈ E as

(σρϕ)(x) = ρ
2−D
2 ϕ(ρ−1x) , (25)

where D is the dimension ofM. This induces the action on functionals by the pullback
σρ(F)(ϕ)

.= F(σρ(ϕ)) and finally, the action on A can be defined by

σρ(A)m = σρ(A
ρ−1m) .

Let now
σρ ◦ S ◦ σ−1

ρ = S ◦ Z(ρ) . (26)

Z(ρ) is called the Gell-Mann Low cocycle and it satisfies the cocycle condition

Z(ρ1ρ2) = Z(ρ1)σρ1 Z(ρ2)σ
−1
ρ1

. (27)

Typically this cocycle cannot be trivialized. The generator of this cocycle, denoted
by B is related to the β-function known from the physics literature. Following [4]
we define

B
.= ρ

d

dρ
Z(ρ)

∣

∣

∣

ρ=1
, (28)
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The physicalβ-function can be obtained from B after one corrects for the “wave func-
tion renormalization” and “mass renormalization” (see [4, section 6.4] for details).

To find B we differentiate (26) and obtain

ρ
d

dρ
(σρ ◦ S ◦ σ−1

ρ )(V )

∣

∣

∣

ρ=1
= ρ

d

dρ
(S ◦ Z(ρ))(V )

∣

∣

∣

ρ=1
= 〈

S(1)(V ), B(V )
〉

,

Note that
〈

S(1)(V ), .
〉

is invertible in the sense of formal power series so

B(V ) = S(1)(V )−1 ◦ ρ
d

dρ
(σρ ◦ S ◦ σ−1

ρ )(V )

∣

∣

∣

ρ=1

To compute B, first we write it in terms of its Taylor expansion:

B(V ) =
∞
∑

n=0

1

n!
〈

B(n)(0), V⊗n
〉

, (29)

where

〈

B(n)(0), V⊗n
〉 = dn

dλn
B(λV )

∣

∣

∣

∣

λ=0

= ρ
d

dρ

dn

dλn
Z(ρ)(λV )

∣

∣

∣

∣

λ=0,ρ=1

Denote B(n)(0) ≡ B(n). The computation of B(n) amounts to summing up the scaling
violations of distributional extensions appearing at order n in construction of time-
ordered products. To see that lower orders do not contribute, we use the fact that

Z(ρ)(n)(0) = σρ ◦ S(n)(0) ◦ σ−1
ρ − (S ◦ Zn−1(ρ))(n)(0) , (30)

where Zn is an element ofR defined in terms of its Taylor expansion as

Z (k)
n (0)

.=
{

Z (k)(0) , k ≤ n ,

0 , k > n .
(31)

The proof of (30) is provided in [4] and relies on the proof of the Main Theorem of
Renormalization (Theorem 4.1 in [4]). We expand Z(ρ)(n)(0) in terms of Feynman
graphs:

Z(ρ)(n)(0) =
∑

Γ ∈G n

Z(ρ)Γ .

where the sum is over all graphs with n vertices. Similarly for S(n)(0) and B(n)(0).
We can rewrite (30) as

Z(ρ)Γ = σρ ◦ T Γ ◦ σ−1
ρ −

∑

P∈Part′(V (Γ ))

T ΓP ◦
⊗

I∈P

Z(ρ)ΓI , (32)
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where Part′(V (Γ )) denotes the set of partitions of the vertex set V (Γ ), excluding the
partition with n elements; ΓP is the graph with vertex set V (ΓP) = V (Γ ), with all
lines connecting different index sets of the partition P , andΓI is the graphwith vertex
set V (ΓI ) = I and all lines of Γ which connect two vertices in I . Differentiating
(32) with respect ot ρ gives

BΓ = ρ
d

dρ
(σρ ◦ T Γ ◦ σ−1

ρ )

∣

∣

∣

ρ=1
−

∑

P∈Part′(V (Γ ))

T ΓP ◦
⊗

I∈P

BΓI , (33)

Note that BΓ is an operator onF⊗n
loc [[�]].

It is now clear that the second term in (32) subtracts contributions from scaling
violations corresponding to renormalization of all proper subgraphs of Γ . Hence
the only contributions to BΓ arise from scaling violations resulting from extending
distributions defined everywhere outside the thin diagonal of the graph Γ .

For performing computations we need to express V ∈ A in terms of a concrete
functional in Floc. Let’s take V = α−1

M F for some F ∈ Floc. In the computation
of B we have to take into account that αM , does not commute with the scaling
transformations. Define

SM

.= αM ◦ S ◦ α−1
M

and
BM

.= αM ◦ B ◦ α−1
M

We obtain

ρ
∂

∂ρ
(σρ ◦ SM ◦ σ−1

ρ )(F) − M
∂

∂M
SM(F)

∣

∣

∣

ρ=1
= ρ

d

dρ
(σρ ◦ Sρ−1M ◦ σ−1

ρ )(F)

∣

∣

∣

ρ=1

= 〈

S(1)
M (F), BM(F)

〉

.

for V ∈ Floc. The expression for −M ∂
∂M SM was derived in [4] and is given by

M
∂

∂M
S(n)

M = 2� S(n)
M ◦

∑

i �= j

Di j
v ,

where Di j
v

.= 1
2

〈

v, δ2

δϕi δϕ j

〉

is a functional differential operator on F⊗n
loc and v

.=
1
2M

d
dM Hm

M .

Again, BM can be written in terms of its Taylor expansion and B(n)
M (0) is expressed

as a sum over graphs with n vertices. Finally, note that due to the field independence
of S and Z , we have

δn

δϕn
◦ BM(F) =

∑

P∈Part(n)

B(|P|)
M ◦

⊗

I∈P

F |I | .
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It follows that the Taylor expansion of BM(F) around ϕ = 0 is determined by the
values of B(k)

M (F (n1) ⊗ · · · ⊗ F (nk )) at ϕ = 0, where n1 + · · · + nk = n. We will see
now that this allows to express everything in terms of connected graphs.

Let F ∈ Floc. Without loss of generality we can assume F to be monomial, i.e.
of the form

F(ϕ) =
∫

M

f (x)p( jx (ϕ))dDx , (34)

where f ∈ D and p is a monomial function on the jet space and jx (ϕ) is a finite
order jet of ϕ at point x . Graphically, we can represent F as a vertex, decorated by
f with one external leg for each factor of ϕ, some of them carrying derivatives. For
example

∫

M
f (x)ϕ4(x)dDx is

f

Given a monomial p on the jet space, define the set of Wick submonomials Wp as
the set of all monomials that are factors of p. For example, for ϕ4(x), the set of Wick
submonomials consists of ϕ4(x), ϕ3(x), ϕ2(x), ϕ(x), 1. To indicate derivatives, we
put lines across edges, e.g. p( jx (ϕ)) = ∂μϕ∂νϕ is

f
μν

and after summing up over the index μ we obtain ∂μϕ∂μϕ ≡ (∂ϕ)2 represented for
simplicity by

f
The Taylor expansion induces a coproduct

p( jx (ϕ + ψ)) = Δ(p)( jx (ϕ) ⊗ jx (ψ)) ,

which can be written explicitly as

Δ(p) =
∑

q∈Wp

Sym(q) p/q ⊗ q ,

where p/q is the graph obtained by removing the edges corresponding to q and
Sym(q) is the number of ways in which graph q can be embedded into graph p. For
the local functional F in (34) we obtain

F(ϕ + ψ) =
∫

M

f (x)Δp( jx (ϕ) ⊗ jx (ψ))dDx .
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Using Sweedler’s notation:

Δp =
∑

p

p(1) ⊗ p(2) .

By a small abuse of notation, we define a functional F(1)(ϕ)
.= ∫

M
f (x)p(1)( jx (ϕ))

dDx , while F(2)(ϕ)(x) is a smooth function defined by x �→ p(2)( jx (ϕ)). Using this
notation:

B(n)
M (F1, . . . , Fn)(ϕ) =

∑

F1,...,Fn

〈

B(n)
M (F1(1), . . . , Fn (1))(0), F1(2), . . . , Fn (2)

〉

.

Here B(n)
M (F1(1), . . . , Fn (1))(0) is a distribution, which we can write as

B(n)
M (F1(1), . . . , Fn (1))(0)(x1, . . . , xn) = f1(x1) . . . fn(xn)

∑

Γ

bΓ (x1, . . . , xn) ,

where the sum runs over connected graphs Γ with vertices representing p1(1), . . . ,

pn (1). Distributions b
Γ are given by

bΓ = ρ
d

dρ
σρ(u

Γ )

∣

∣

∣

ρ=1
,

where uΓ is the extension to the total diagonal of the distribution ũΓ constructed as
in Sect. 4, where all the proper subgraphs have been renormalized. Hence

B(n)
M (F1, . . . , Fn)(ϕ) =

∑

F1,...,Fn

∑

Γ

〈

( f1 ⊗ · · · ⊗ fn) · bΓ , F1(2), . . . , Fn (2)

〉

. (35)

If Γ is EG primitive, then ũΓ = uΓ and uΓ scales homogeneously. In this case

bΓ = Res uΓ .

This result provides a link between Kontsevich-Zagier periods appearing in Propo-
sition 2 and physical quantities computed in the pAQFT framework. However, the
class of distributional residues relevant for the computation of B is larger than the
ones discussed in Sect. 4, since here we need to replace DF with HF given by the
formula (21). To give an idea of how the computation proceeds at low loop orders,
we review the example of ϕ4 in 4 dimensions discussed in [4], but in contrast to [4]
we use the Feynman graphs notation to make it easier to follow.

Example 7 Consider the functional

F(ϕ) = λ

∫

M

f (x)ϕ4(x)d4x .
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The corresponding element of A is

V = α−1
M F ,

i.e.

V (m)M = λ α−1
Hm

M

∫

M

f (x)ϕ4(x)d4x .

We are interested in finding BM for the QFT model with this interaction. First
note that the orbit of the renormalization group is spanned by 1 and functionals
of the form

∫

M
f1(x)ϕ4(x)d4x ,

∫

M
f2(x)ϕ2(x)d4x ,

∫

M
f3(x)(∂ϕ)2(x)d4x , where

f1, f2, f3 ∈ D . Hence, we need to determine BM only on such functionals. Graphi-
cally we represent them as decorated vertices:

f1 f2 f3

Let us now compute B(2)
M on these functionals. We have

B(2)
M

(

f1
,

f1

)

= 16
〈

B(2)
M

(

f1
,

f1

)

(0), ⊗
〉

+

36

〈

B(2)
M

(

f1
,

f1

)

(0), ⊗
〉

+ constant and linear terms , (36)

since the co-product acts as:

Δ
( )

= 1 ⊗ + ⊗ 1 + 4 ⊗
+ 4 ⊗ + 6 ⊗

It follows from (36) now the graphs contributing to B(2)
M are

Γ1 = , Γ2 =

Hence, neglecting constant and linear terms:

B(2)
M

(

f1
,

f1

)

=
〈

( f1 ⊗ f1) · bΓ1 , ⊗
〉

+
〈

( f1 ⊗ f1) · bΓ2 , ⊗
〉

.

A similar reasoning leads to
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B(2)
M

(

f1
,

f2

)

= 6
〈

B(2)
M

(

f1
,

f2

)

(0), ⊗ 1
〉

= 6
〈

( f1 ⊗ f2) · bΓ2 , ⊗ 1
〉

and

B(2)
M

(

f1
,

f3

)

= 6
〈

B(2)
M

(

f1
,

f3

)

(0), ⊗ 1
〉

=
6
〈

( f1 ⊗ f3) · bΓ3 , ⊗ 1
〉

In the latter case there is a new graph appearing, namely

Γ3 = .

Calculating B(2)
M is now reduced to finding the residues: Res uΓ i , i = 1, 2, 3. The

(rather lengthy) computation can be found in Sect. 7.2 of [4].
From the point of view of Kontsevich-Zagier periods, one gets some more inter-

esting numbers in calculating higher orders of B. In particular, the wheel with three
spokes appears as a contribution to

B(4)
M

(

f1

⊗4) = 28
〈

f ⊗4
1 bΓ4 ,

⊗4〉+ . . . ,

where

Γ4 =

and bΓ4 = Res uΓ4 .

6 Conclusion

In this paper we reviewed some important algebraic structures appearing in pertur-
bative Algebraic Quantum Field Theory (pAQFT) on Minkowski spacetime [4] and
we have shown how these relate to periods, usually investigated in a different context
in Euclidean QFT in momentum space. The approach we advocate here provides a
natural interpretation of these periods both in the mathematical and physical context.
Mathematically, these correspond to distributional residues and are therefore intrin-
sic characterizations of scaling properties of certain class of distributions. Physically,
they are relevant in computing the β-function. Note that, in our approach, the later
characterization is independent of any regularization scheme. In fact, regularization
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is not needed at all and there is no need to recur to ill defined divergent expressions.
Instead, the whole analysis is centered around the singularity structure of distribu-
tions that arise from taking powers of the Feynman propagator.

The main result of this paper is that distributional residues in pAQFT, correspond-
ing to CK primitive graphs, are up to a factor that we compute, the same as Feynman
periods in the CK framework (as conjectured in [4]). The remaining EG primitive
graphs, which are not CK primitive, also give rise to multiples of the same periods.

For the future research it would be worth investigating the distributional residues
arising in pAQFT on other Lorentzian manifolds. Some interesting results have
already been obtained for de Sitter spacetime in [27]. All the fundamental struc-
tures of pAQFT presented in this paper generalize easily to curved spacetimes. The
only difference is the form of the Feynman propagator (or rather the “Feynman-like”
propagator HF). The hope is that looking at more general propagators, one would
obtain a richer structure of residues and some new structures would appear, which are
not present in theMinkowski spacetime context (and would not be periods anymore).

In recent work, [16] investigated the dependence of Feynman amplitudes on vari-
ations of the metric in Riemannian setting and shows that integrals of non divergent
Feynman amplitudes associated to closed graphs are functions on the moduli space
of Riemannian metrics. It would be interesting to extend that work to the Lorentzian
setting.
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