Uniform Approach to Double Shuffle m
and Duality Relations of Various oo
q-Analogs of Multiple Zeta Values via
Rota—-Baxter Algebras

Jiangiang Zhao

Abstract The multiple zeta values (MZVs) have been studied extensively in recent
years. Currently there exist a few different types of g-analogs of the MZVs (g-
MZVs) defined and studied by mathematicians and physicists. In this paper, we give
a uniform treatment of these g-MZVs by considering their double shuffle relations
(DBSFs) and duality relations. The main idea is a modification and generalization
of the one used by Castillo Medina et al. to a few other types of g-MZVs including
the one defined by the author in 2003. With different approach, Takeyama already
studied this type by “regularization” and observed that there exist a new family of
Q-linear relations which are not consequences of the DBSFs. We call these duality
relations in this paper and generalize them to all other types of g-MZVs. Since there
are still some missing relations we further define the most general type of g-MZVs
together with a new kind of relations called P-R relations which are used to lower
the deficiencies further. As an application, we will confirm a conjecture of Okounkov
on the dimensions of certain g-MZV spaces, either theoretically or numerically, for
the weight up to 12. Some relevant numerical data are provided at the end.

Keywords Multiple zeta values + g-analog of multiple zeta values - Double
shuffle relations + Duality relations + Rota-Baxter algebras

1 Introduction

The multiple zeta values are iterated generalizations of the Riemann zeta values to
the multiple variable setting. Euler [8] first studied the double zeta values in the 18th
century. Hoffman [13] and Zagier [28] independently considered systematically the
following more general form in the early 1990’s. Let N be the set of positive integers.
Foranyd e Nands = (sq,...,8;) € N9 with s; > 2 one defines the multiple zeta
values (MZVs) as the d-fold sum
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In 1980s, Ecalle studied some quite general mathematical objects called “moulds”
(functions with variable number of variables) of which the MZVs are one of the
examples [9, p. 429]. He even mentioned their iterated integral representation [9,
p. 431, Remark 4] without explicitly producing it.

A lot of important and sometimes surprising applications of MZVs have been
found in many areas in mathematics and theoretical physics in recent years; see [4,
5, 10, 18, 19]. One of the most powerful ideas is to consider the so-called double
shuffle relations (DBSFs). The stuffle relations are obtained directly by using the
above series definition when multiplying two MZVs. The other, the shuffle relations,
can be produced by multiplying their integral representations and using Chen’s theory
of iterated integrals [6]. The interested reader is referred to the seminal paper [16]
for more details.

Lagging behind the above development for about a decade, a few g-analogs were
proposed and studied by different mathematicians and physicists. All of these g-
analogs enjoy the property that when ¢ — 1 one can recover the ordinary MZVs
defined in the above if no divergence occurs. In this paper, by modifying and gener-
alizing an idea in [7] we give a uniform treatment of these g-analogs by using some
suitable Rota—Baxter algebras which reflect the properties of Jackson’s iterated inte-
gral representations of these g-analogs.

Recall that for any fixed ¢ with 0 < ¢ < 1 one can define the g-analog of positive
integers by setting [k] = [k], :=1+qg +--- + ¢ 1= 1—-4¢g5/0 - g)forallk €
N. To summarize the various versions of g-analog of MZVs (¢g-MZVs for abbrevia-

tion), we first define a general type of g-MZV of 2d variables sy, ..., 54, a1, ..., a4 €
Z by
kiay+--+kqaq kyay+--+kgaq
._ q _ |s| q
L3Ms) = - =(-gq) , (1
! k1>-§:kd>0 N ! k1>-§:kd>0 (1 =gkt (1 = gtaysa M

where |s| = 51 + - - - + 5,4 is called the weight and d the depth. The variables of a are
called auxiliary variables. Also, it is often convenient to study its modified form by
dropping the power of 1 — ¢, i.e.,

kiay+---+kgaq

a . 4
jq[S] = Z (1_qk1)51 ...(1—qkd)5d’

ki>->ky>0

In the following table, we list a few different versions of g-MZVs that have
been studied so far by different authors, except for one new type (type IV in the
table). We only write down their modified form although sometimes the original
authors considered only £,. We note that in 2004, Bradley [3] apparently defined
g‘(s‘ Lewsa=Drg 000 sy4] independently, and later, Okuda and Takeyama also studied
some of the relatlons among this type of g-MZVs in [22]. Additionally, it is not hard
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Table 1 A time line of different versions of g-MZVs. x=this paper

Type | Year Authors q-MZV DBSF
2001 | Schlesinger [23] 3 Vst sal See (2)
I 2002 | Kaneko et al. [17] 397 D[s] (depth=1) N/A
I 2003 | Zhao [29] st =Drg sl [251, [26], *
I 2003 | Zudilin [30] ;,5,“““””[“, o8l [24], »
m 2012 | Ohno et al. [20] 3001 sal [7],
NV | 2014 | Zhao« gt ] *
BK | 2013 | Bachmann & Kiihn [1] 30°[s1, - -, 84l [31]
O 2014 Okounkov [21] 3‘?[‘91, e Sqlisp =2 *
G 2003 | Zhao [29] 3Dy s *

to see that Schlesinger’s version diverges when |¢| < 1 but can converge if |g| > 1.
In fact, for s € Z¢

(,.

3 Vst sal = (CDTERGEE sy ) = () sl (2)

So it suffices to consider type II in order to understand Schlesinger’s g-MZVs. The
last column of Table 1 provides the references where DBSFs are considered sys-
tematically (not only the stuffle), some of which are apparently different from our
approach in this paper.

In this paper, we will use suitable Rota—Baxter algebras to study types I-IV g-
MZVs listed in Table 1 in details. We also briefly consider the general type G and
Okounkov’s type O g-MZVs. Note that the numerators inside the summands of ;fK
and {f are not exact powers of ¢, but some polynomials of g enjoying nice properties.
Further, for §;) the polynomial numerator is at worst a sum of two g-powers so our
method can still work. See Corollary 6.6. It may be difficult to use the approach
here to study the Bachmann and Kiihn type since the numerators are much more
complicated.

In the classical setting, the so-called regularized DBSFs play extremely impor-
tant roles in discovering and proving QQ-linear relations among the MZVs. The first
serious attempt to discover the DBSFs among g-MZVs was carried out by the author
in [29] by using Jackson’s iterated g-integrals. However, the computation there was
too complicated so only very few relations were found successfully. The real break-
through came with Takeyama’s successful application of Hoffman’s algebras to study
type I g-MZVs in [26]. However, his approach to the shuffle relations relies on some
auxiliary multiple polylogarithm functions and consequently it is very hard to see
why these relations should hold.

The situation looks much better with the appearance of the recent paper [7] by
Castillo Medina, Ebrahimi-Fard and Manchon who generalized Chen’s iterated inte-
grals to Jackson’s iterated g-integrals to study type Il g-MZVs by using Rota—Baxter
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algebra techniques. Later, Singer [24, 25] adopted the algebraic setup of the DBSFs
to study type I and type I g-MZVs. Motivated by this new idea, in this paper we will
consider all the g-MZVs of type L, II, Il and IV by finding/using their correct realiza-
tions in terms of Jackson’s iterated g-integrals. Then by combining the Rota—Baxter
algebra technique and Hoffman’s algebra of words we are able to study the DBSFs
of all of these g-MZVs.

When one considers the Q-linear relations among the ordinary MZVs, the main
difficulty lies in the insufficiency of DBSFs produced by only admissible arguments.
In the g-analog setting, the situation is only partially similar and sometimes much
more complicated.

Fortype I g-MZV's, our computation shows that the DBSFs CAN provide all the Q-
linear relations. However, in order to study these relations, as Takeyama noticed first,
one has to enlarge the set of type I g-MZV's to something we call type I g-MZVs which
are a kind of “regularized” g-MZVs in the sense that one needs to consider some
convergent versions of g-MZVs when s; = 1 by modifying the auxiliary variables
of a. But for these type I g-MZVs themselves, DBSFs are insufficient to provide all
the Q-linear relations and a certain “Resummation Identity” defined by Takeyama
is required. In this paper, we will adopt the term “duality” due to its similarity
to the duality relations of the ordinary MZVs. Moreover, for type I g-MZVs of
weight bounded by w there are often still missing relations even after we consider
both DBSFs and duality relations within the same weight and depth range. These
missing relations can be recovered only after we increase the weight and depth. This
phenomenon is not unique to type I g-MZVs. We have recorded this fact by using
the “deficiency” numbers listed in the tables in the last section of this paper.

Similar to type I, we find that type IV g-MZVs also need to be “regularized”
when s; = 1. Again, we achieve this by introducing some convergent versions of the
g-MZVs by modifying the auxiliary variables in a.

It turns out that type I g-MZVs behave the most regularly and enjoy some prop-
erties closest to those of the classical MZVs. For example, their duality relations
(see Theorem 8.4) have the cleanest form. Moreover, every other type of g-MZVs
considered in this paper can be converted to type II. But still, there are relations that
cannot be proved by DBSFs and dualities, at least when one is confined within the
same weight and depth range. In fact, we find three independent Q-linear relations
in weight 4 that can only be proved when we consider weight 5 DBSFs and dualities.

All type I g-MZVss are convergent, even for negative arguments. For simplicity,
in this paper we consider only those with nonnegative arguments sy, ..., s; with
s1 > 1. In this case, the DBSFs are still insufficient. In the last section, we will see
that in weight 3 there is already a missing relation which can be recovered by the
duality. Essentially because of the need to apply the duality relations, we have to
modify the original Jackson’s iterated integral representation given in [7]. See the
remarks after Theorem 6.1. In contrast to the other types of g-MZVs, we cannot
suppress the deficiency for type I even if we consider more DBSFs and duality
relations by increasing the weight and depth. This might be caused by our restriction
of only nonnegative arguments and thus further investigations are called for.
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On the other hand, we can improve the above situation by considering the more
general type G values. All the missing relations are thus proved up to and including
weight 4 and at the same time both deficiencies are decreased in weight 5 and 6. The
key idea here is to convert all type G values to type II values by using a new kind of
relations called P-R relations.

We point out that our method can be easily adapted to study g-MZVs of the
following general forms:

oS sy sl 3D Lsy, L sals

where a; > a, > --- > ay > 0 are all fixed integers. Furthermore, when the weight
is not too large, our method can be programmed to compute all the relations among
g-MZVs of the general form 37[s] when a is taken within a certain range. This will
be carried out in Sect. 9.

As an application, for small weight cases it is possible to confirm Okounkov’s
conjecture [21] on the dimension of the g-MZV's 33 [s] using Corollary 6.6. We do this
numerically up to weight 12 and give rigorous proof up to weight 6 (both inclusive).

Throughout the paper we will use the modified form 3, most of the time. All the
results can be translated into the standard form ¢, by inserting the correct powers of
(1 — g)", where w is the corresponding weight, into the formulas.

2 Convergence Domain for g-MZVs

We need the following result to find the convergence domain for different types of
q-MZVs. It is Proposition 2.2 of [29] where the order of the indices in the definition
of;;“' """ “[sy, ..., s4](denotedby f,(sa, ..., s1;aq, ..., ar)inloc. cit.) is opposite
to this paper.

Proposition 2.1 The function C(;“l """ (s, ..., Sq] converges if Re(a; + - - + a;)
> O0forall j =1, ...,d. It can be analytically continued to a meromorphic function
over C?¢ via the series expansion

(d+1=j)(bj+aj)
@y,ag) N S +b —1 q T4
¢ [$1, ..., sal = (1 —¢q) Z l_[ |:( [ et | 3)

]

It has the following (simple) poles: ay + - - - +a;j € Zgo + 207 forj =1,...,d.

log
Corollary 2.2 Lets = (si, ..., sq) € Z°. Then
@) {ql[s] converges if sy +---+s; > jforall j=1,...,d.
(>i1) {;l[s] converges if sy +---+s; >0forall j =1,...,d.
(iii) {qm [s] always converges.
@iv) {;V[s] converges if sy +---+s; > 1forall j=1,...,d.
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Definition 2.3 For convenience, a composition s € Zs( is said to be type
T-admissible if s satisfies the condition for type T g-MZVs in the corollary. Here and
in what follows, t = I, II, IIl, or IV.

3 Rota-Baxter Algebra

In this section we briefly review some fundamental facts of Rota—Baxter algebras
which will be crucial in the study of the g-analog of shuffle relations for all of g-
MZVs considered in this paper. For a good introduction to the Rota—Baxter algebras,
see [11].

Definition 3.1 Fix an algebra A over a commutative ring R and an element A € R.
We call A a Rota—Baxter R-algebra and &7 a Rota—Baxter operator of weight A if
the operator & satisfies the following Rota—Baxter relation of weight A:

PX)P(y) = P(PX0)y) + PxP(y) +rP(xy) Vx,yeA. (4

Recall that for any continuous function f(x) on [, 8], Jackson’s g-integral is
defined by

B
/ ) dgx =Y fla+4¢"(B—o)g" — "B —a). (5)
o k>0

Taking « = 0 and 8 = ¢ in (5), we set

JIFI0 ==Y flgd"ng*t = 1= q) Y B MIfI)0) = (1 = )P[MLf1] () (6)
k>0 k>0

where the multiplication operator M[ f](¢) := tf(¢),

E[£1(t) := Eg[£1(t) := f(gt). and P[£1(z) := Py[£1(t) := f() + f(gt) + f(g°0) + -

are the g-expanding and the (principle) q-summation operators, respectively. We
also need to define the (remainder) q-summation operator

RIF1(0) := Ry [f10) = f(gD) + f(g*D) +--- = PLF1 = NHH®).

So, P is the principle part (i.e. the whole thing) while R is the remainder (i.e.,
without the first term). Clearly, P = R + I where, as an operator, I[ f] = f. This
implies PR = RP.
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Let tQ[¢, ¢l be the ring of formal series in two variables with £ > 0. Then J, E,
P and R are all Q[[¢]-linear endomorphisms of rQ[[#, ¢]l. We can further define the
inverse to P which is called the g-difference operator:

D:=1I-E. (N

The following results extend those of [7, (21)—(23)]. In the final computation
we will not need D since we will consider only nonnegative arguments in all the
g-MZVs. But in the theoretical part of this paper we do need to use D for type I
q-MZVs.

Proposition 3.2 For any f, g € tQlt, g1l we have

P[fIP[¢] = P[P[f]¢] + P[fPl¢]] — PL/2], (8)
R[fIR[¢] = R[R[f1g] + R[fRIgl] + R[fzl, 9
R[fIP[¢] = R[R[f]g] + R[fRIg]] + R[f1g + RIfzgl, (10)
I =[] + I FIgl] — A — @I[Ifg], (11)

=J[fIlgl] + qJ[I[ELf1]g]. (12)

D[fID[g] = DI f1g + fDlgl — D[ fzgl. (13)
D[f1P[g] = D[ fP[g]] +DIflg — fs. (14)
D[fIR[g] = D[ fR[g]] +D[fg] — f3. (15)
DP =PD =1, PR = RP. (16)

Proof The identities (8), (13) and (14) are just (21), (23) and (26) of [ 7], respectively.
All the others follow from R = P — I easily.

By Proposition 3.2 we see that P and R are both Rota—Baxter operators on
tQIlz, g1l (of weight —1 and 1, respectively) but D is not. In fact, D satisfies the
condition (13) of a differential Rota—Baxter operator [12]. Moreover, it is invertible
in the sense that Rota—Baxter operator P and the differential D are mutually inverse
by (16).

We end this section with an identity which will be used to interpret Takeyama’s
Resummation Identity in [26]. For any n € N, set

P'=Po---oP and R*"=Ro---oR.

n times n times

Theorem 3.3 Letd e Nandaj;,B; e Nforall j =1,...,d. Lety(t) = i=. Then
we have

RYyP Ry =Y 1"[[(’“1)<a_1)q"'-2f=r-'*rf'}. (17)

j1>/31 ----- JjezPer=1
ki>ap,.... ke>ay
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Proof First we show that
. qaj [j
R*(t)) = ———. (18)
(I —q/)
Indeed, if « = 1 then

, i
R(t/) =) ¢"t = —lq_ -
k>1 q

So (18) can be proved easily by induction.
Now we proceed to prove that for any integer m > 0

st ()= 5 e[ (e )

J1ZB1sn jezBe =1
klzal,..., kgzot[

(19)
If £ = 1 then we have

et ) = (1) ) = (P e
j=0
—R Z( ) m+j

} ot(m+j)tm+j
( ) el L

J= 1) <0‘ +]]: l>q(a+k)(m+j)tm+j
k=0

(J =\ (k-1 gk gm,
° B—1)\a—1
JzB kza

This proves (19) when ¢ = 1. In general
Ro‘lyﬁl ... RY-1 <yﬁe—1 ) (Raz (yﬂz (1) - th)))

— Z Z (]6 o 1>< 11>qkz(m+.iz)Ralyﬂl . LR (yﬂ"'(l‘) . tm-‘rjz).

Je=Pe ke>aq

Slbi i

So (19) follows immediately by induction. We can now finish the proof of the theorem
by taking m = 0.

Corollary 3.4 Letd e Nand oj, Bj e Nforall j =1, ...,d. Then we have

Ralyﬂl . Rwyﬂz(l) — Rﬂzyw . Rﬂlyal (D). (20)
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Proof In (17) we use the substitutions j, <> ki1, forall r =1, ..., £. Then the
power of ¢ in the term of (17) indexed by (jy, ..., je, k1, ..., k¢) is equal to

4 4 4 4 4 s
Z Z jskr — Z Z jl+17rkf+17s = Z Z j4+17rkl+1fs

r=1 s=r r=1 s=r s=1 r=1
t l+1-s

=D ek —szrk —Zk st

s=1 r=1 s=1 r=s

which follows from the substitution s <> £ + 1 — s followed by r <+ £ + 1 — r and
r <> s. This proves the corollary.

4 g-Analogs of Hoffman algebras

We know that (regularized) DBSFs lead to many (and conjecturally all) Q-linear rela-
tions among the MZVs. The key idea here was first suggested by Hoffman [14] who
used some suitable algebra of words to codify both the stuffle (also called harmonic
shuffle [27] or quasi-shuffle [15]) relations coming from the series representation
of MZVs and the shuffle relations coming from the iterated integral expressions of
MZVs. The detailed regularization process can be found in [16]. To study similar
relations of the g-MZVs we should modify the Hoffman algebras in the g-analog
setting.

The following definition for type I g-MZV's was first proposed by Takeyama [26].
We adopt different notations here in hoping to give a uniform and more transparent
presentation for all types of g-MZVs.

First we consider some algebras which will be used to define the stuffle relations
later.

Definition 4.1 Let X} be the set of words on the alphabet Xy = {a, a=',b,06)}.
Denote by 2y = Q(a,a”!, b,0) the noncommutative polynomial Q-algebra of
words from Xj. Set

y:=b-—0, 2 =a""'b, zZ, = a9, seZ.

Let Y7 := {60} U {zili=1, Y1 := {23 }k=0, Ym = {zx}rez and Yy := Y5. We point out
that zo, z;, # 1 where 1 is the empty word. We put a tilde on top of both I and IV since
we need to consider some kind of regularization due to convergence issues involved
in type I and IV ¢-MZVs. This is realized by the introduction of the letter 6. Again,
we use Y to denote the set of words generated on Y- for any type 7.

Let Q[il, 25, A and Ay be the subalgebras of Ay freely generated by the sets V3,
Yn, Yn and Yp, respectively. Set
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Ay =Ql+ > zjAn ¢ An. Ay == Q1+ 60Uy + > 2y ¢ Ag-
keZ k>1

Here, all integer subscripts are allowed in Yy because type Il g-MZV's converge for
all integer arguments. Further, we define the following subalgebras corresponding to
the convergent values:

A =Ql+ ) %A, A= Q1+02 + ) A C A,
k>2 k>2

A=Ql+) 7AW S A, A=Ay,
k>1

A =Q1+ Y 2y, Ay = QL+ 62Uy + Y zUy & Al
k>2 k>2

For each type 7 the words in 21° are called type t-admissible. This is consistent with
Definition 2.3 since we consider only non-negative compositions s.

Definition 4.2 To define the stuffle product for type T = I and II, similar to the MZV
case, we define a commutative product [—, —]; first:

[z, 2] = 2kt + Zigi—1, [0, 2dj = zig1, 10,0 =220 -6, [z, 21lt = 25y
(21)
for all k,/ > 1. Now we define the stuffle product *; on Q[l inductively as follows.
For any words u, v € Qll and letters o, 8 € Y, weset1 %, u =u =u*, 1 and

(au) *; (BY) = a(u*; Bv) + Bau *; V) + [o, Bl (0 %, V). (22)

Remark 4.3 (i). The definition for x; is the same as in [26].

(ii). One can check that #, is well-defined for = I and IL. Namely, u %, v € Q(l
ifu,veAl

(iii). It is not hard to check that for r = I and I, (2[?, %) C (Q(i, %) as subalge-
bras.

(iv). In the following, we will need to define stuffle product .4 on Ay by setting
t =ord and [z,, ZsJora = Zr4s for all r, s € Z in (22).

In [7], the stuffle product LI for type Il g-MZVs is defined. We will modify this in
the following way (see the remarks after Theorem 6.1). Our modified stuffle product
for type I g-MZVs will be denoted by .

Definition 4.4 We now define a stuffle product y on 2L}, First, we define an injective
shifting operator .%_ on any word of 2lj; by acting on the first letter:

S (ZW) :==2z,W—2z,_W € g foralln € Zand w € Yj. (23)

For any k, [ € Z and any u, v € Y, define the stuffle product *p by
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1xg1=1, 1xgzu=zu*gl=zu,

Zpw sy 2V = 2 (W kord - (2)V)) + 20 (L (ZW) *ora V) + (Zhy — Zpas—1) (W kora V).
Here 4 is the ordinary stuffle defined in Remark 4.3 (iv).
For type N, we provide a definition similar to type II.

Definition 4.5 We now define a stuffle product x5 on Qllli/ First, we define a shifting
operator ., similar to (23) by

S (z2aW) = z,W+z,_ W €Uy foralln € Nandw € V7.
Then, for any k,/ > 1 and any u, v € Y]»’\g we set

x5 1=1, 1 x5 zzu = Zyu i 1 = zzu,
zew gy 21V =z (Wkn L4 (V) + 21 (S 2w) #1 V) + et + Zeri—1) (@ g V),
2k OV =0V *f i = 24 (u * 9V) + 9(5”+(zku) k[ v) + Zgp1 (@ kg v),
Ou x5, Ov :9(u *q 9V) + G(Ou * V) + (22 — 0)(u *q V),

where *j is the stuffle product on 2} = g defined in Definition 4.2.

Lemma 4.6 The stuffle products +y_and *g; are both well-defined. Namely, ifu, v €
Al thenau*, v e Al fort =MWorlV.

Proof We prove the lemma for type |\ only. Type Il is similar but simpler.

First we note thatk +1 — 1 > 1if k, [ > 1. So the first letter of each of the terms
of u xf v has the right form, i.e., either 6 or z; for k > 1. We need to show that after
truncating the first letter each term lies in . Notice that . (z;v), .7, (zxu) € Uy
and #*j does not decrease the size the subscripts (which are all non-negative). The
lemma is now proved.

Proposition 4.7 Let T = f, I, Il or . Then the stuffle algebras (Q(i, *;) are all
commutative and associative.

Proof This follows from the fact that the product [—, —], are all commutative and
associative which can be verified easily.

‘We now turn to the shuffle algebra which is an analog of the corresponding algebra
for MZ Vs reflecting the properties of their representations using iterated integrals.

Definition 4.8 Let X, = {7, §, y} be an alphabet and X be the set of words gener-
atedby X ;. Define2(, = Q(m, §, y) to be the noncommutative polynomial Q-algebra
of words of X*. We may embed 2, defined by Definition 4.1 as a subalgebra of A,
in two different ways: put p = 7 — 1 and let
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(A) a:=m, al:=3, b:=ny, 06=py = y:=y,
(B) a:=p, a'i=—, bi=my, 6=py = y:i=y.

We denote the image of the embedding by QléA) and QléB) , respectively. The dash —
for the image of a~! in (B) means it does not matter what image we choose since a !
appears only when we consider type Il g-MZVs using (A). We will use embedding
(B) for the other three types for which a~! will not be utilized essentially because of
convergence issues.

5 gq-Stuffle relations

First we define the Q-linear realization maps 3, : A% — C (r = I, 1) by gl =1
and
sayfvili= Y MEOD M),

ki > >kys>0

for every admissible word y] ...y} € 22 where the Q-linear maps

m (s—Dm sm

q

1— qm

a4
I—qgm*

_1
(1—qm*’

ML (©9) = . M) = . M) =

for all m € N. Note that M,E(y) = M,E(m — 6) = 1. For example, we have
3glzazsy’nl =500012,5,0,0, 11, 3400270241 = 3{"*"V[1,7,1, 4],
which are not g-MZVs of type L.

For type T = W or IV, we similarly define the Q-linear realization maps 3, : A —
Cby 34[11 =1 and

3 -yili= Y MTODMELO5) . ME (),

ky>>ky>0

for every admissible word yi ...y; € 2 where the Q-linear maps

L, 9" m, . 1
My~ (zg) = T My, (z5) == T—g
~ ~ m ~ m(s—1) ~ sm
mNoy=mNoy=—1— MNey=T1—_ MV =1
w @ =My €)= T MY (@) = e M @) =

forallm € N.
The following theorem is parallel to [7, Proposition 9] and includes [26, Theorem
1].
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Theorem 5.1 Lerr =1 I, Il or V. For any u;, v; € ng we have
3q [ll-[ *r V‘[] =3q [ur ]Zq [Vr ] . (24)

Proof Since type I case is just [26, Theorem 1], we only need to consider the other
three types. The proof is basically the same as that of [26, Theorem 1]. In fact, it
suffices to observe that

MY MY () = MA@, My ™ @M (1) = M @it = Zi—1)-

M3 (2 ) MBS (2) = My zs). My )My @) = My @y — gy
MV oMY =MV, MV oMV e = MYV @, 42 ),
VoMY =mVc . MV eombV ey = MEY @ + s,

N om¥ o =mV e, u¥oul o) = miN oym @) = u¥ @),

MEN OMEY @) = MEY . MEY @mLY 0) = MEN @ — o),

for 291 k,l >0, m > 1. Of course, we need to assume k, [ > 2 for M,i;ﬁ’(zk) and
ML (z)).

6 Jackson’s Iterated ¢-Integrals

Set
== (t) - ! - (t) - _1 - (t) - _t
Xo = X , X1 =X = , Y y = .
0 0 t 1 1 1—1 1—1¢

Recall thatfora = x((¢)dt and b = x;(t)dt, we can express MZVs by Chen’s iterated
integrals:

1
sty ..., 8q) =/ a1 @,

0
Replacing the Riemann integrals by Jackson’s g-integrals (6) one gets
Theorem 6.1 ([7, (29)]) Fors = (s, ..., sq) € N? set w = |s| and

E;H[s; t]:= J[clJ[cz - Jlew] - ']](f),

where ¢; = xy ifi € {uy,ua, ..., ug}, uj =581+ +---+s;, and ¢; = xo other-
wise. Or, equivalently, set w = 7% yn2y ... %y and

5wt =P [y P¥[y]--- ] ().



272 J. Zhao

Then
3¢181 = 341w: g1

However, the representation of Q}H [s] using Zgl in Theorem 6.1 is not ideal in the
sense that one has to evaluate ¢ at g. We would like to use Corollary 3.4 so we need to
set t = 1. This leads to the idea of replacing the first factor P*' by P*'~'R and, more
generally, the following two generalizations. For any a = (ay, ..., aq) € (Zs0)?,
define

3qlp™y ... p™y; 1] :== R [yR®[y---R“[y]---1](®).

Theorem 6.2 Lets = (s, ...,s;) € N and a = (a, ...,ay) € (Z=o)?. Put w =
Is| and w = wW2(s) = p“ 1= %y ... pYgSiT%y, Then

3q[WH(8); 1] := RO [PI = [yR™ [P~ [y - R[P*~[y]]--- ]| 1) (25)
Suppose ay +---+aj; > O0forall j =1,...,d. Then we have
gilsl= (1 —q)"34[W(s); 11, 35ls] = 34[W*(s)] := 34 [W*(s); 1].  (26)
Proof First we observe three important facts: for any k > 1 we have
k
k kj k f k k k k kj k
P(t )=§)th =T D(*) = *(1 — ¢¥), and R( ):;qjt =T

by the definition of the two summation operators and the difference operator. Repeat-
edly applying this we get

.y tk tk
P (") = P ((1 _ qk)ml> — G Wmel @7)

k m—1 mk ¢k

m q k q t
R"(t*)= R —_— "= —--— v Z~o. 28
“ ((l—qk) ) g mEEe Y

Thus
j(k+1) sk+1 14
kY _ g j(k+0+1) hte+1 _ !
P(y)- )= e q’ t _Zl—q@’
j=0 j=0 £>0 >k
Similarly, we have
(k1 Plaariay
D(y(t) . lk) — - o = ” — Z(l _ qk+[+l)tk+5+l — Z(l _ qﬁ)tﬁ’

=0 >k

and
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R(y(1) - ¥) Z q](kﬂ)fkﬂ _ ZZqJ(kJrZJrl) el Z q‘t*

j=1 j=11¢>0 >k

It follows from (27) and (28) that

£t
P(y(t) 1) =) ——— Vm € Z, (29)
= (=g
qm€t€
R"(y(0) - 1) =) ———— Vm € Zo. (30)
>k (I —=q5" -
We now prove by induction on the the depth d that for all s = (51, ..., s4) € N,
tqukldl o qkdad
a(s): t] = . 31
3qIW(5); 1] k Eg(ﬁl—qmﬂ~%1—ﬁﬂw (31
1> >kg>

Whend = 1, 1i.e., s = s, then by (29) followed by (28)

R¢ (lk) B qaktk
(=g (=g

3g[W(); 1] = RP“[yl(1) = )

k>0 k>0

This proof works even when s = a because of (30) (take k = 0 and m = a there).
Turning to the general case, we letd > 2 and assume (31) holds for smaller depths.
Then by the inductive assumption

3q[W*(9): 1] =R“P" ' [yRZPZ [y ... R“P* %“[y] - - 1] (1)
Z RaPpsi—a (y(t) A tkz)qkzaz » .qkdad
- loo =0 (1 - qkz)sz (1= qkd)Sd

_ Z Ra]( ) kzaz . qkdad
(1 —ghysi—ai(1 — gk)s2 ... (1 — gka)sa

ky>-->ky>0

(by (29))

tquklal . qkdad

= Z (1 —gkysv... (1 — gka)sa

ky>->ky>0

by (28). Again, if s; = a; the proof is still valid. This completes the proof of (31).
Setting t = 1 we arrive at (26).

By change of variablesa; — s; —a; forall j =1, ..., d we immediately obtain
the next result. Observe that by (25), we have

3q [ws—a(s); t]:= RS @ [Pdl [nyz—az [Paz [y--- R4 [Pad yll--- ]]]](t),

wheres —a = (s; —aj, ..., sq — aq).



274 J. Zhao

Theorem 6.3 Lets = (s, ...,s;) € N', a=(ay,...,a;) € (Z=0)¢, and w = |s|.
Suppose s1 +---+s; > a1 +---+ajforall j =1,...,d. Then we have

g sl = (1= @) "3 [Ww* () 11, 35 [8] = 3g[W* ()] 1= 34[W**(s); 11.
(32)

By specializing the preceding two theorems to the four types of g-MZVs in Table 1
we quickly find the following corollary. For future reference, we will say w, has the
typical type t form for each type .

Corollary 6.4 Fors = (s,...,54) € N9, we set

wi(s) == p" 'y . p iy = Zg .- 25y € ngB) cUAyy (51 =>2),
wi(s) :=p"y...p%y =2z ...z, € QI(B) c Ay,

Tz/

— 5 A
wu(s) =" pyrty iy =2 2,2y, € ATV C Ury,

w(s) 1= p lmypy . ptly = Ty Zg, - - - z;d € QléB) Cy (51 =2),
and
3q[wi(s); 1] =R [P[yR*'[P[y - - R*7'[P[y]] - - - N]®).
3q[wa(): 1] =R [yR?[y - --R¥[y] - -- 1] (1),
salwa(s); 1] =P [R[y[P[y[P [y - P11 - 111] ),

3q[w(s); t] :=R""! [P[)’RS2 [yR®[y---R¥[y]-- ']]]](t)-
Then for all the types T =1, II, Il and IV, we have
glsl= (1 =) 3q[w=(s); 11, 3481 = 34[We ()] := 3g[W:(s); 1].

Moreover, similar results hold for type [and NV q-MZVs. We may replace any of
the consecutive strings p* ~'w by a single p in wi(s) and wg;(s), and replace the
corresponding operator string P>\ ~'R by a single R.

We now apply the above to Okounkov’s g-MZVs. For any n € N we let n~ and
n' be the two nonnegative integers such that

n—1 . n + _n+l1
<n <-<n"< .
2~ -2~ - 2
Clearly we have n* +n~ = n always,n™ =n~ ifniseven,andnt =n~ +1ifn

is odd. We can now define a variation of Okounkov’s g-MZVs. Let s € (Z=,)?. Then

qu[s] = Z : H[k+]sq =(1-q" Z l_[ sl —H{);f/ )

ky>-->kq>0 j=1 ky>-->kq>0 j=1
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Again, its modified form is:
q I / +q S
HOEDY H TR
ky>->kq>0 j=1

Remark 6.5 The above variation is equal to Okounkov’s original g-MZVs up to a
suitable 2-power. More precisely, the power is given by the number of even arguments
ins.

Corollary 6.6 Fors = (s, ...,sq) € N, we set
Wo(s) = (p" T + p )y . (0 4 pYi)y e AP Ay
and
3gIWo(8); 11 = (R P + RTPT)[y- - (RVPY + RYPY)[y]---](0).
Then we have
I8l = (1= q)"34[Wo(9); 11, 3181 = 34[Wo ()] 1= 34[Wo(s); 1].

Itis possible to obtain the shuffle relations among 32 [s]-values using Corollary 6.6.
The stuffle relations among 53[5] is mentioned implicitly in Okounkov’s original
paper. For our modified version, they can be derived from the following fact (cf.
Proposition 2.2 (ii) of [2]). Let Fr?(t) = (t”+ + 1" )/(1 — )" foralln > 2. Then for
allr, s € Z>,, we have

2FC (1), if r or s is even;
(6] . O — r+s
F@0) - F@ { 2FS (1) + 3 SF2, (1), if r and s are odd.

For example,

3012,3150121 =25.12, 2, 31 + 3712, 3, 21 + 2504, 31 + 23712, 51,

1
312,315 131 = 25012, 3,31+ 3713, 2, 31 + 2515, 31 + 2312, 6] + 53712, 41.

7 q-Shuffle Relations

In contrast to the MZV case, the ¢-shuffle product is much more difficult to define than
the g-stuffle product. In this section we will use the Rota—Baxter algebra approach
to define this for type I, II, III, and I\ q-MZVs. Note that this has been done for type
Il g-MZVs in [7] which we recall first.
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The g-shuffle product on 2, (see Definition 4.8) is defined recursively as follows:
for any words u, v € X we definel .WWu=ull1 =uand

(yw) v =uw(yv) =yv), (33)
rullrv=r(@WnaVv)+rx(rallv) —mx@Llv), (34)
Sullédv=uldév+dullv—3s5uLuv), 35)
Sullrzv=nvilédu=456ullnrv)+dullv—ullyv 36)

for any words u, v € X7. Equation (33) reflects the fact that when y(¢) is multiplied
in front of either of the two factors in a product, it can be multiplied after taking the
product. Equations (34)—(36) formalize (8), (13) and (14), respectively.

Corollary 7.1 For any words u, v € X%, we have

pull pv = pal pv) + p(pulv) + p(ulv), 37
pulllrv=mnvilpu= p(pulllv)+ pullpv)+pullv+ pav), (38)

sullpv=pvilléu= d(ullnv)—ullv=5§ullpv)+sullv) —ullv.
(39)

Proof These follows easily from (33)—(36) and the relation p = 7 — 1.

Corollary 7.2 For j = 1,2 let X;j) and X(Sj)'* be the embedding of Xy and X} into

X%, respectively, by Definition 4.8. For any o, € Xf,j) andu,v € Xéj)‘*, we have
lWu=uwl=uand

aull By = a(u W Bv) + B(au W v) + [o, B];(u V),
where [a, B1; is determined by |a, by = [b, al; = —b, [a, b, =[b,al, = 0 and
la,al; = (=1)a, [b,b]; = —by, la,ylj=Iy,alj=—ay. (40)

Proof All of these identities follow from straightforward computation using (33)—
(39). For example,

bullbv=myullryv=n(yullmyv)+ m(mryullyv) —x(yullyv)
=ngyuWmyv)+ay(myullv) —mryy(ulv) (41)
=b(uWbv)+bhullv)—byuLlv).

Similarly,

full 6v = pyull pyv = p(yu Ll pyv) + p(pyu LU yv) + p(yu L yv)
=py(ull pyv) + py(pyu W v) + pyy(mv)  (42)
=60uWwov)+6@ullv)+oy@lv).
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The rest of the proof is left to the interested reader.
Proposition 7.3 The algebra (2, L)) is commutative and associative.
Proof See [7, Theorem 7].

The following corollary generalizes [26, Proposition 1].

Corollary 7.4 For j =1 or 2 the algebras (Qlfgj),LLl) are commutative and
associative.

Proof This follows immediately from Proposition 7.3 since (Qléj ), LLI) are sub-
algebras of (A, L) if L for Q[;J ) is defined as in Corollary 7.2.

Our next theorem shows that we may use the shuffle algebra structure defined
above to describe the g-shuffle relations among different types of g-MZVs. Before
doing so, we need to show that the g-shuffle products really make sense for all the

types.

Proposition 7.5 Embed Ql?, A9, 91%, C QléB) and A € AV, Then for each type t,
if the two words u, v € ng have the typical type t form listed in Corollary 6.4 then
there is an algorithm to express u L v using only those words in the same form.

Proof The case for type I is proved by [26, Proposition 2].

Type 1L is in fact the easiest since we can restrict ourselves to use only (33) and
(37) to compute the shuffle and therefore 7w never comes into the picture. Clearly all
such words must start with p and end with y.

Fortypelllet’sassumeu = %'~ pyn®2y. .. w%yandv = 7% pyn @y .. . w%y,
If we use the definition (34) repeatedly then in each word appearing in u LI v the
first p always appears before all the y’s. Such a word can be written in the form
w*p"y--- forsomes € Z and r > 1 (notice that if p and 7 are commutative). Now
we can rewrite this as 7°(;r — 1)"~!py - - - and replace all the p’s after the first y by
m — 1. This produces a word of typical type Il form.

Type IV is similar to type I except that we need to take 6 into account. Notice
that by definition if w € Ql%/ then it can be written as OW', or zxw' (k > 2, W' € Y7)
or a finite linear combination of these. So we have three cases to check. First, we
prove that for all k,/ > 2 andu, v € YI%

Zulzv e A (43)

Indeed, putting k =r + 1 and/ = s + 1 we have
p ryaw p’ryv
=p(o"'myu i p’wyv) + p(p"wyu  p " 'wyv) + p(o Iy W p T wyw).

Now inside each of the three parentheses we replace every m by p 4+ 1 and use
only (33) and (37) to expand (recall that & = py). We see that every term in the
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expansion has the form p" yw for some n > 1 and w € Y. If n =1 then we have
plyw = 0w € Ql%,. If n > 2 we can write it as

n—1
PN —Dyw =) (1" myw+ (1) low e AY (44

j=1

with each word of typical type IV form.
Now we assume k =r +1>2andu,v € Yl%. Then

Zru W Ov =p " wyu W pyv
= p(p " 'myw pyv) + py(p myu i v) + py(p " 'wy Wv) € A
since py = 6 and the first term can be dealt with as in the proof of (43).

Finally,
fulllfv e Q(%/

follows from (42) immediately. This completes the proof of the proposition.

The following theorem generalizes [26, Theorem 2] but it does not contain [7,
Theorem 7] since our word representation of type Il g-MZVs is different from that
given in [7].

Theorem 7.6 Embed Ql?, A9, 91%, - QléB) and Ay C QI(SA) . Then for each type T and
foranyu,, v, € A°, we have

3q [ut]éq [Vr] - 5q [ur L Vr]- (45)

Proof Foreachtype T we observe that 3,[w; ] satisfies (45) because of the identities
in Proposition 3.2. Then the theorem follows from the fact that 3,[w.] = 3,[w.; 1]
for any word w, € % by Corollary 6.4.

8 Duality Relations

The DBSFs do not contain all linear relations among the various types of g-MZVs.
In [26], Takeyama discovered the following relations which provides some of the
missing relations for type T g-MZVs, at least in the small weight cases. He called
them Resummation Identities. We would rather call them “duality” relations because
of their similarity to the duality relations for the classical MZVs.

Theorem 8.1 ([26, Theorem 4]) For a positive integer k, set
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k

o= (D[ Y =1z -0 |,

Jj=2

where o1 = 0 = py € QléB). Lett e Nand aj, B € Zsoforall j =1,...,L. Then
we have

30l @a 1V 0u 1y P = 5 Lop 1V 01y (46)

We can use the Rota—Baxter algebra approach to give a new proof of this result.

Proof Noticethaty = y,z; = p/~'myand 6 = py with the embedding 21 C AP
Since 7 = p + 1, for all k > 1, we have (cf. (44))

k

o =D [ D (=17 o+ Dy —py
= @7)

k k
=D DY Dy + ) (=17 y = py | =00y
=2 j=2

Thus the theorem follows from Corollaries 3.4 and 6.4 easily.

Remark 8.2 Although not mentioned explicitly in [26], there is a subtle point in
applying Theorem 8.1. Notice that in the expression of ¢y the letter 6 appears. How-
ever, g-MZVs of the form such as g“; [yzy] = ;‘; [oy?p?my] is not really defined.

In fact, it should be denoted by ¢, [0y z2y] = é,q(1,0,1,0)[1’ 0, 2, 0] (and such values
always converge by Proposition 2.1 because of the leading 1 in the auxiliary variable
a). But, suitable Q-linear combinations of (46) may lead to identities in which only
zx’s appear. Then all terms can be written as honest ;q‘ -values. This explains the use

of two admissible structures 50 and $H° in [26]. For an illuminating example, see the
proof of Proposition 7 of op. cit. This remark also applies to Theorem 8.5 for the
duality of type IV ¢g-MZVs.

Similar relations for type I g-MZVs have the most aesthetic appeal and is the
primary reason why we prefer to call it by the name “duality”.

Theorem 8.3 Let ¢ e Nanda;, Bj e Nforall j =1, ..., L Then we have
sl Yl peyPy = aalpfeye - pPry].
Proof This follows from Corollaries 3.4 and 6.4 immediately.
Of course we may apply the same idea to type Il and I\ q-MZVs.

Theorem 8.4 Let ¢ € Nanda;, Bj e Nforall j =1, ..., L Then we have
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32[[(7'[ — 1)a1—lpyl3| (r — l)otzyﬁz e — l)agyﬂ(]
= 521[(7-[ — l)ﬂz—lpym (r — l)ﬁé—lyﬂt(’,—l N l)ﬁ' Y.

Proof Since p = m — 1 this follows from Corollaries 3.4 and 6.4 easily.

Theorem 8.5 Let ¢ € Nanda;, B; e Nforall j =1, ..., L Then we have

32/[90041)75]_1,0“2)7/32 . ,Owyﬂ‘] — 314\/[(0;3[)7&{_1,0&71)7

Oy,

- pPy .,

Here oy =60 = py € Ql(gB).
Proof This follows from (47), Corollaries 3.4 and 6.4.

9 The General Type G ¢g-MZVs

All of the g-MZVs of type I, II, Il and IV considered in the above are some special
J = 2, all of which are convergent by Proposition 2.1. We call these rype G g-MZVs.

Similar to the first four types, we may use words to encode these values according
to Theorem 6.2. Namely, we can define

30" yp®y - p%y; t] i= RUy[R2y[- - - [R“y] - 1] ().
By therelationm = p+1and P =R + I, we get
sl T yp iy e pharys 1] = RO[PY [YRZ[PP[y - RU[P[y]] - TN](0).

Thus we have

where w(s) = p“ " "%y ... p%gt=4y e X* The shuffle product structure is
reflected by (X}, LL1) where the LU is defined by (33), (34), (37) and (38).

We observe that there is often more than one way to express a type G g-MZV
using words because of the relation 7 = p 4 1. For example, using the relations

wlpy =mp’y +mpy = p°y + 207y + py
we get immediately the relations
350131 = 3013145121 = 5131 + 2357121 + 30V 1.

We call all such relations P-R relations.
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Proposition 9.1 Forallu, v € A%, we haveu LU v € A2

Proof Notice that admissible words in A% must end with y and have at least one p
before the first y. Moreover, the converse is also true. This is rather straightforward
if we use the P-R relations repeatedly to get rid of all the ’s.

Now, by using the definition of LU it is not hard to see that u LUl v ends with y and
and has at least one p before the first y if both u and v are admissible. Sou LU v € A%
and the proposition is proved.

To define the stuffle product we let
Yo ={zas | a,s € Zzp,a < s},

and let g be the the noncommutative polynomial Q-algebra of words of Y§ built
on the alphabet Y. Define the type G-admissible words as those in

2= | zas%.

1<a<s

We can regard g as a subalgebra of X by setting z;,; = p“m°~“y. Then stuffle
product g on Q[OG can be defined inductively as follows. For any wordsu, v € Ql% and
letters z, 5, 2oy € Yo Withl <a <sand1 <a’' <s'wesetlxsgu=u=usxg1
and

(Za,su) *G (Zu’,s/v) = Zu,s(u *G Za’,s’v) + Za’.s’(za,su *G V) + Za+a/,s+s/(u *G V)~

It is easy to show that (U2, *g) is a commutative and associative algebra.
We leave the proof of the following theorems to the interested readers. The first
result clearly provides the DBSFs of type G g-MZVs.

Theorem 9.2 For anyu,v € A% C X we have

3qlu*g v] = 3,[u i v] = 3,[ul3,[v]. (48)

The duality relations are given in the cleanest form by Theorem 8.4 which can be
translated into the following.

Theorem 9.3 Let{ € Nand o, B; e Nforall j =1, ..., L. Set

s = (a1, 097 0p, 027 oy, 0P,
sV = (Be, 0%, Bpy, 071 L By, 00,

Then we have
3qls] =35 [s”].
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Remark 9.4 We point out that the duality in Theorem 9.3 cannot be used to derive
any relation among MZVs. For example, when £ = 1 the MZV ¢ (ar, 0~ 1) converges
if @ > B while the MZV ¢ (B, 0%~ ') converges if 8 > .

10 Numerical Data

In this last section, we compute the Q-linear relations among various types of g-
MZVs of small weight by using the DBSFs and the duality relations. Most of the
computation is carried out with the computer algebra system MAPLE, version 16.
My laptop has Intel Core 17 with CPU speed at 2.4 GHz and 16 GB RAM.

For each type T we will define the set of type T-admissible words WZ with both
weight and depth bounded by w. This is necessary since we allow 0 in some types of
q-MZVs. We have to control the number of 0’s occurring as arguments in g-MZVs
since otherwise the dimensions to be considered becomes infinite. Another reason
that the depth has to be bounded is because the duality essentially swaps the depth
and the weight.

We denote by Z¢  the Q-space generated by ¢g-MZVs of type T corresponding
to the type t-admissible words WL, DS;W the space generated by the DBSFs, and
DUZ, the space generated by the duality relations. Hence DU, \ DS gives the
duality relations that are not contained in DSZ,.

Type I. We have seen that it is necessary to consider g-MZVs of the form 37 (s)
with (a;, s;) = (s; — 1,s;) or (a;, s;) = (1, 1). The latter case corresponds to the
words containing the letter 6. We have called all of these values type I4-MZVs.

Proposition 10.1 Let F_; =0, Fy = 1, F = 1, ... be the Fibonacci sequence. Then
forallw > 1 we have

EWL, =2""'—1 and WL =P, - L

Proof The first equation follows from the same argument as that for MZVs. It is
given by the number of integer solutions to the inequality

St Hsg<w, d>1,5>2,5,...,5 > 1.

Or, more directly and perhaps much easier, we can count the corresponding admis-
sible words. Clearly, there are 2"~! ways to form a word consisting of w — 1 letters
where the letters can be either p or 7. Let S,, be the set of such words. We now show
that there is a one-to-one correspondence between S,, and the set A,, of admissible
word of weight w. First, from each word w € S, we can obtain a word in A,, by
inserting a letter y after each 7 in w and attach 'y at the end. On the other hand, for
each word in A,, we may chop off the ending 7y and removing all the y’s to get a
word in w. This establishes the one-to-one correspondence.
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Table 2 Dimension of g-MZVs of type I

w 2 3 4 5 6 7
WL 4 12 33 88 232 609
Lower bound of dim Zi<w 3 14 27 50 91
dimDS. 1 17 56 171 497
dimDUL , \ DSL 0 0 1 3 6
Deficiency 0 1,0 1,0 8 15

We now prove the second equation. Let a, (resp. b,) be the number of type I
q-MZVs of weight n beginning with (a;, s;) = (1, 1) (resp. (a;, s;) = (s; — 1, 5)).
Let’s call the two different beginnings 1-initial and 2-initial, respectively. Thena; = 1
and b; = 0. Now to produce weight n + 1 1-initials one can attach (¢, s) = (1, 1)
to the beginning of any weight n type I g-MZVs. Moreover, one can change the
beginning of any weight n 1-initial to (¢, s) = (0, 1) and then attach (¢, s) = (1, 1).
Thus a,+1 = 2a, + b,. To obtain 2-initials of weight n 4 1 one either changes a 1-
initial of weight n to begin with (¢, s) = (1, 2) or changes a 2-initial value of weight
n to begin with (s, s + 1) from (s — 1, s) (i.e., increases the first argument by 1).
Hence b, = a, + b,. Thus it is easy to see that a, = F,_ and b,, = F,,_3 for all

n > 1. Therefore
2w—2

WL, =Y F =P, -1
n=0

which can be proved easily by induction.

We find up to weight 3 the following identity (49) cannot be proved by DBSFs
and dualities up to weight 3. Let 1, denote the string where 1 is repeated n times.
Then

300012, 11 =500, 11 = 0011 + 50 O3] (49)

Interestingly, (49) can be proved using weight 4 DBSFs and dualities. This is why
we put 0 as the final deficiency (Table 2).
Having proved (49), we find, up to weight 4, the only one missing relation is

3013, 10 =30V a] = 25711, 2, 11+ 52011, 2, 1]

(50)
g V12 1] = 50012 1] = 5 O] + g (1),

In weight 5, there are three missing relations:

5913, 20 =30 1141 — 321041 — 35" Is1] — 54 113, 21 = 230 [15] — 255 [s2] + 235 [ 151,
5ol =39 12, 1] — 520511 — 235V Is1] — 3521 + 35V Is2] + 37 [15] — 54/ [14]
30120 1,20 = 58] 4 3B 141 + 2320141 — 3212, 151 — 5812, 131,
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Table 3 Dimension of g-MZVs of type I

w 2 |3 |4 5 6 7 8 9
WL 1 3|7 15 31 63 127 | 255
Lower bound of dim Zlgw 1 2 4 7 11 18 27 42
dim DSL,, 0 1 3 8 20 45
dimDUL,, \ DSL,, 0 |0 |0 0 0 0
Deficiency 0 0 0 0 0 0

300 13,21 =350912, 121 = 330912, 1, 21 = 3381141 + 321141 — 38115]

1 13,0 1
—3g VIs11 = 3 Is11 = 23 [s11 = 5 "2 1151 = 23 V[s2] + 3¢ [s2]

g2, 131+ 254 [1a] + 36 113, 21 + 235 P[],

where s; = (1,2, 15), so = (12,2, 1), t; = (1,0, 1), t; = (12,0, 1), s3 = (t2, 0),
ts = (15,0), ts = (1,02, 12), ts = (1,0, 1, 0), t; = (1, 03, 1), and tg = (1, 02, 1).

Equation (50) was initially verified numerically. Even with all the DBSFs and
dualities from weight 5 and 6 this still would not follow. Fortunately, we will see in
a moment that this relation can be proved using type G g-MZVs. However, the three
missing relations in weight 5 are only proved numerically, since, unfortunately, there
are too many type G g-MZVs of weight 5 so the computer computation requires too
much memory to provide a solution at the moment.

Using the relations obtained above for type I g-MZVs we can compute the fol-
lowing data for type I g-MZVs (Table 3).

It is consistent with Takeyama’s computation at the end of [26]. However, our
computation shows that the DBSFs from type I q-MZVs already imply all the rela-
tions among type I g-MVZs, at least when the weight is less than 8. We thus can
think these type I DBSFs as “regularized” DBSFs for type I g-MVZs.

Conjecture 10.2 All the Q-linear relations of type I g-MZVs can be derived by the
regularized DBSFs, i.e., by the DBSF's for type 1 ¢-MZVs.

Type II. For each fixed weight w > 1 we collect all the type lI-admissible words
of the following form since we want to use the duality relations to its maximal utility.
Such admissible words must consist of letters p and y only, begin with p, end with
v, and the occurrence of p and y is at most w each. For example, we have the duality

3y (0° Y7 oyh) =33 (0*y0*yY) = 333, 0,1,05) = 35(4,2,0,)
when we consider weight 6.

Proposition 10.3 For all w > 1, the number of type U-admissible words is
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Table 4 Dimension of g-MZVs of type I

w 1 2 3 4 5 6
tWL 1 5 19 69 251 923
Lower bound of dimZ%, | 1 3 12 30 73 173
dim DSL,, 0 1 28 124 536
dim DUL, \ DSL,, 0 1 8 35 127
Deficiency 0 0 0 3,0 19,6 87

w—1w—1
<w ZZ (l +]) (2‘:}> — 1.
i=0 j=0

Remark 10.4 This is the sequence A030662 according to the On-Line Encyclopedia
of Integer Sequences http://oeis.org.

Proof For the firstequality, note thatif i + 1 (resp. j + 1)is the number of occurrence
of p (resp. y) in an admissible word of W , then we can put one p at the beginning
and one y at the end, then put i of the other p’s and j of the other y’s in between in
arbitrary order. Thus, by a well-known binomial identity

o ) B ()£ 6)

This completes the proof of the proposition.
Up to weight 4, the following three independent relations cannot be proved using
DBSFs and dualities up to weight 4 (Table4).
3gl1.0. 3] =3012, 2]+ 33512, 2] + 235 [1, 0,2, 0] — 234 (12,0, 1]
+30012.0.21 + 58112, 1,01 = 3811,2,0, 1+ 23012, 0. 151,
300300 =5012. 21 = 23013 11+ 5011, 0. 2,00 — 23015, 0. 11 + 25015, 1. 0]
—3512.0, 2,01+ 3413, 02, 0] + 2353, 02, 11— 34 (3,0, 1,01 + 233, 1, 021,
3g11,0,31 =3412, 21+ 23413, 11+ 39112, 21 + 434112, 0, 11 + 34[12, 0, 2]
+30012. 1,01+ 3001, 2,0, 1]+ 43012, 0, 1, 0] + 23512, 1,0, 1] + 25512, 12, 0].
But using DBSFs and dualities in weight 5, these can all be verified. In weight 5,
we have to use the relations from weight 6 to push the deficiency from 19 down to 6.
It is very likely that relations from weight 7 (or even higher) can reduce this further
down to 0. But our computer runs out of memories so this is not proved.
Type IIL The set of type l-admissible words WL <w Up to weight w consist of those

of the form 7%~ pymr 2y ... w%y withd <w, |s| <w,s; > land s, ...,5; > 0.
First we have
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Table 5 Dimension of g-MZVs of type I

w 1 2 3 4 5 6
nwgw 1 5 19 69 251 923
Lower bound of dim Zﬂglw 1 4 12 30 73 173
dim DSE,, 0 1 5 28 124 536
dimDUE, \ DSE, 0 0 1 5 4
Deficiency 0 0 1,0 10,0 49,6 210,87

Proposition 10.5 For allw > 1, we have

SWE = <2W) — 1
= w

Proof Notice there is an onto map from W%, to WL by changing the all the
7’s to p. For the inverse map, we can change all the p’s to m except for the one
immediately before the first y. Thus this is a one-to-one correspondence and therefore
the proposition follows from Proposition 10.3.

We find that the deficiency is not zero when the weight w = 3, 4, 5, 6. Moreover,
none of these missing Q-linear relations can be recovered even if we consider all the
DBSFs and dualities of weight up to 6.

The only missing relation in weight 3 that cannot be proved is

391,011 =25)11,1,0] — 3011,2,0] — 3712,0,0] +3712,0,11. (51

Up to weight 4 there are 10 missing, up to weight 5, 49, and up to weight 6, 210.
Below, we will see that all of the 10 missing relations up to weight 4 including (51)
can be proved using type G g-MZVs. Similarly, the deficiency up to weight 5 and 6
can be reduced to 6 and 87, respectively.

Type IV. To study type IV g-MZVs 3 =1550[s, ..., s4] we have used the
special type Il values 52 [1, 52, ..., sq] to facilitate us (which can be thought as a kind
of regularization). Type IV g-MZVs together with these values have been called type
V g-MZVs.

Proposition 10.6 For allw > 1, we have

2w—1 & 2w

w

Remark 10.7 The first number gives the sequence A010763 according to the On-
Line Encyclopedia of Integer Sequences http://oeis.org.

Proof Notice that type IV-admissible g-MZVs are in one-to-one correspondence
totheset{(xy,...,x;) € (Zzo)llxl +--+x=j,0<j<w-2,1=<I<w}.For
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Table 6 Dimension of g-MZVs of type v

w 1 2 3 4 5 6
WY, 1 5 19 69 251 923
Lower bound of dimZ¥, | 1 4 12 30 73 173
dimDSY,, 0 1 5 28 124 536
dimDUY, \ DSY, 0 0 1 1 4 4
Deficiency 0 0 1,0 10,0 50,6 210,87

each fixed j we see that the number of nonnegative integer solutions of x; + - - - +
x; = j is given by (lﬂ 1) But

>(3)=(1)

by a well-known binomial identity. By the proof similar to that of Proposition 10.3
we see that )
w— .
w+j 2w — 1
wv — = —1.
=2 (0500

For the second equation, we note that in the word form we have the additional
contribution of the following words: py and pyp®'y...p%y, |s| <w, 1 <d < w.
The number of such words is given by (i = number of p’s, j = number of y’s)

w—2w—1

1+ZZ(+’)—1+Z( 1) = 1w,

j=0 i=0

fWY =1 opwWy = 2(2W - 1) - (zw) L

The proposition is now proved.

Therefore

Type I\ q-MZVs are similar to type Il and Il in the sense that the deficiency is
often nonzero, at least when the weight is less than 6. For example, in weight 3 we
have the following identity which cannot be proved using the DBSFs and dualities
if we only restrict to type I\ q-MZVs of weight and depth no greater than 3.

30 12,0, 1] =31, 0, 1] + 31,2, 0]

However this identity follows from weight 4 DBSFs and dualities.
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Table 7 Dimension of g-MZVs of type IV

w 2 3 4 5 6
nWW 2 9 34 125 461
Lower bound of dim ZY <w 2 7 20 55 141
dim DS<W 0 7 9 51 205
dim DUY,, \ DSY,, 0 0 2 24
Deficiency 0 0 5,0 17,0 91,56

Comparing Tables 5 and 6 we observe that there should be some hidden relations
between type Il and \Y q-MZVs. Although the dimensions seem to be the same, at
least for lower weight, the deficiencies are very different. But using the most general
type G values to be considered in a moment, we can make all the deficiencies smaller.

We can now use all of the relations among type IV g-MZVs to deduce those for
type IV and collect the data in Table 7. Furthermore, by converting all the missing
relations using type II values we can reduce all the deficiencies up to weight 5 to 0.
For weight 6, using type I values we can only reduce the deficiency from 91 to 56.
It is possible that this can be further reduced to 0 using weight 7 relations of type Il
values.

Type G. To study the general type G g-MZVs 551“' """ sy, ..., sq] we need all of
the following relations we have defined so far: DBSFs, P-R and duality relations.

Proposition 10.8 For allw > 1, we have

ﬁwgw = Z Z X1 X2+ Xq.

1<d<k<w xi+-+xs=d+k—1
Xlyeuns xg>1

Proof For each fixed depth d and weight k < w, let 3‘(1“‘ """ ad)[sq, ..., s;] be a type
G-admissible g-MZV satisfying s; +---+s4 =k,1 < a; <s1,0 < a; <s; forall
Jj = 2. Whensy,...,s; are fixed and ay, . . ., a; vary, the number of such values is
given by

s1(2+ Dz + 1)+ (sq + 1).

Hence the proposition follows by setting x; = s;, xp = s+ 1,..., x5 =54 + 1.

Let P- RG be the space generated by all the P-R relations of weight bounded by
w. Then we : see that DBSFs are far from enough and both P-R relations and duality
relations contribute non-trivially. Table 8 provides our computational data for the
lower weight cases. One can see that the number of admissible words increases very
fast so that it is very difficult to prove relations of other type g-MZVs by first finding
all the relations for type G g-MZVs. This is possible theoretically, but not feasible
with our current computer powers.
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Table 8 Dimension of g-MZVs of type G

w 1 2 3 4 5 6
nWG 1 8 49 294 1791 11087
Lower bound of dim Z<w 1 4 12 30 73 173
dim DSE 0 1 8 76 <608
dimP-RE \ 0 3 27 177 <1540
(0s¢, UDug,)
dim DUS,\ (P 0 0 2 8 <219

¢, UDSS,)
Deﬁ01ency 0 0 0 3,0

Table 9 Dimension of type O g-MZVs, proved rigorously for w < 6 and numerically for w < 12
w 2 4151 6| 17 8 9 |10 11 12

W2, 1 701220 |33 |54 88 | 143 | 232
Lower bound of dim Z(<)W 1 7111 |18 |27 |42 | 63 95 142
dimDS2,, UDUS 0 0 1| 2] 612 25| 48 90

S|l W

4
4
0

Fortunately, by using P-R relations, all the type G g-MZVs can be converted to
Q-linear combinations of type II values. Therefore, the three missing relations in
weight 4 must be provable using weight 5 DBSFs, P-R and duality relations.

Hence, as we expected, the missing relation (51) for type I g-MZVs of weight
3 and the 9 missing relations of weight 4 can now be proved. And furthermore, the
only one missing relation (50) for type I g-MZVs of weight 4 can now be proved.
We can also obtain the lower bound of dim ZG from that of type I g-MZVs.

Type O. Using Corollary 6.6 we may regard Okounkov’s g-MZVs as Q-linear
combinations of the g-MZVs 37[s] for suitable auxiliary variable a. Further by using
the P-R relations we may further reduce this to type I g-MZVs where we don’t need
the letter = (Table9).

Applying the same idea as above it is possible to verify the following Okounkov’s
dimension conjecture, at least when the weight is small.

Conjecture 10.9 Let Z° be the Q-vector space generated by 3q O[s], Is| < w. Then

s 1 1
M dimZS = -
Z o T T T T2 6483 14
=2 420 + 4+ 70 + 1169 + 187 + 2768 + 42¢% + 63110 + 95:11 + 142112 1 0(¢13).

For example, we have verified all of the following (Q-linearly independent relations
in the lower weight cases up to ¢'%, and we can rigorously prove the first identity
(52) involving only weight 4 and 6 values by using the relations we have found for
type  g-MZVs: (3 = 5?)
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43161 =302, 21 + 123[3, 3] — 63[4, 21, (52)
43071 =32, 31 +3[3, 2] + 83[3, 4] + 63[4, 3] — 4315, 2],
3181 =312, 4] — 3[6] + 23[3, 3] + 63[4, 4],
93[8] =3[6] — 63[3, 31 + 33[4, 2] + 203[3, 5] + 163[5, 3] — 103[6, 2],
3[8] =23[2, 6] — 3[6] + 23[3, 3] + 43[3, 5] — 163(5, 3]
—63[2, 3, 3] + 33[2, 4, 2] — 63[3, 2, 3] — 33[4, 2, 2],
4313, 6] =3[2, 51+ 43(5, 21 + 33[3, 4] + 63[4, 51 + 83(5, 4] + 23(7, 21,
83191 =3[3, 4] — 53[2, 51 — 83[5, 21 — 303[4, 5] — 234, 3] — 363[5, 4] — 103[6, 31,
63[4, 2] = 103[6] + 423[8] — 603[2, 6] — 123[3, 3] — 1203[3, 51 + 31235, 3]
—153[2, 2, 2] + 1803[2, 3, 3] — 903(2, 4, 2] + 1803(3, 2, 31 + 603(3, 3, 21,
723191 = 623(5, 2] + 403[2, 5] — 43(3, 4] + 403(3, 6] — 23[4, 3] + 2403[4, 5]
+2643[5, 4] — 53[2, 2, 3] — 603[3, 3, 3] — 303[4, 2, 3],
163[9] = 23[3, 4] — 103[2, 51 — 123[2, 7] — 83(5, 2] — 603[4, 5] — 243(5, 4]
+43[2, 3, 2] + 43[3, 2, 2] + 33[2, 2, 3] + 243[2, 3, 4] + 183[2, 4, 3]
+123(3, 3, 3] — 1232, 5, 2] + 243(3, 2, 4] + 63(4, 3, 2],
643[9] =403[2, 51 + 203[2, 7] — 83[3, 4] + 443[5, 2] + 203[3, 6] — 43[4, 3]
+2403[4, 5] + 1683[5, 4] — 532, 3, 2] — 53[2, 2, 3] — 403[2, 3, 4] — 3032, 4, 3]
+203[2, 5, 2] — 53[3, 2, 2] — 403[3, 2, 4] — 1003[3, 3, 31 + 103[3, 4, 21,
563091 = 303[2, 51 + 203[2, 71 + 263[5, 2] — 3[3, 4] + 403[3, 6] — 63[4, 3]
+1803[4, 5] + 1123[5, 4] — 53(2, 2, 3] — 53(2, 3, 2] — 53[3, 2, 2] — 403(2, 3, 4]
+203(5, 2, 2] — 4033, 2, 4] — 303[2, 4, 3] + 203[2, 5, 2] — 1403(3, 3, 3].

Therefore, Conjecture 10.9 is proved rigorously up to weight 6 (inclusive), and
verified numerically up to weight 12 (inclusive). The list of relations for weight 10
to 12 is too long to be presented here.

11 Conclusions

‘We have studied various g-analogs of MZVs in this paper using the uniform method
of Rota—Baxter algebras. Among these g-MZVs, there are many QQ-linear relations,
most of which can be proved using DBSFs, P-R and duality relations.

From the data collected in Sect. 10, we have seen that for all of the type I, I, M and
I\ g-MZVs duality relations are necessary to generate some Q-linear relations among
q-MZVs that are missed by the DBSFs, at least when the weight is large enough.
However, the combination of all the DBSFs and dualities are often not exhaus-
tive yet. Sometimes, this difficulty can be overcome by increasing the weight and
depth. But this seems to fail in some other cases, for example, for type I q-MZVs of
weight 4.
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We can improve the above situation by considering the more general type G
values. The advantage is that we have the new P-R relations which provide a lot of
new relations between type G g-MZVs, much more than the DBSFs and dualities
combined. The disadvantage is that there are too many type G values so that even
when the weight is 5 our computer power is too weak to produce all the necessary
relations. However, by using P-R relations all type G values can be converted to
Q-linear combinations of type Il values which can be handled by computer a lot
easier.

As we mentioned in the introduction our method can be easily adapted to study
the g-MZVs of the following forms:

5((1&] """ ad)[slv--'5sd]7 3((;1—% ‘‘‘‘‘ ; d_ad)[slv-"ysd]v

where a; > a; > --- > ay; > 0 are all integers. The monotonicity guarantees that

a good stuffle structure can be defined. For 3((]‘“ """ aa)[sq, ..., s4], we need to use
embedding (A) together with shifting operator .%_ in defining the stuffle and, for
3((1"1‘“1 """" sa=ad)(s, . ..., sq4], we need (B) together with .7,

As an application, we are able to prove Okounkov’s Conjecture 10.9 rigorously
up to weight 6 (inclusive), and verify it numerically up to weight 12 (inclusive).
It would be more effective if one can define a shuffle structure for type O values
themselves and find a relation to the differential operator g % which should play an
important role in the study of these values.
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