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Abstract The multiple zeta values (MZVs) have been studied extensively in recent
years. Currently there exist a few different types of q-analogs of the MZVs (q-
MZVs) defined and studied by mathematicians and physicists. In this paper, we give
a uniform treatment of these q-MZVs by considering their double shuffle relations
(DBSFs) and duality relations. The main idea is a modification and generalization
of the one used by Castillo Medina et al. to a few other types of q-MZVs including
the one defined by the author in 2003. With different approach, Takeyama already
studied this type by “regularization” and observed that there exist a new family of
Q-linear relations which are not consequences of the DBSFs. We call these duality
relations in this paper and generalize them to all other types of q-MZVs. Since there
are still some missing relations we further define the most general type of q-MZVs
together with a new kind of relations called P-R relations which are used to lower
the deficiencies further. As an application, we will confirm a conjecture of Okounkov
on the dimensions of certain q-MZV spaces, either theoretically or numerically, for
the weight up to 12. Some relevant numerical data are provided at the end.

Keywords Multiple zeta values · q-analog of multiple zeta values · Double
shuffle relations · Duality relations · Rota-Baxter algebras

1 Introduction

The multiple zeta values are iterated generalizations of the Riemann zeta values to
the multiple variable setting. Euler [8] first studied the double zeta values in the 18th
century. Hoffman [13] and Zagier [28] independently considered systematically the
following more general form in the early 1990’s. LetN be the set of positive integers.
For any d ∈ N and s = (s1, . . . , sd) ∈ Nd with s1 ≥ 2 one defines the multiple zeta
values (MZVs) as the d-fold sum

J. Zhao (B)
Department of Mathematics, The Bishop’s School, La Jolla, CA 92037, USA
e-mail: zhaoj@ihes.fr

© Springer Nature Switzerland AG 2020
J. I. Burgos Gil et al. (eds.), Periods in Quantum Field Theory
and Arithmetic, Springer Proceedings in Mathematics & Statistics 314,
https://doi.org/10.1007/978-3-030-37031-2_10

259

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37031-2_10&domain=pdf
mailto:zhaoj@ihes.fr
https://doi.org/10.1007/978-3-030-37031-2_10


260 J. Zhao

ζ(s) =
∑

k1>···>kd>0

1

ks11 · · · ksdd
.

In 1980s, Ecalle studied some quite general mathematical objects called “moulds”
(functions with variable number of variables) of which the MZVs are one of the
examples [9, p. 429]. He even mentioned their iterated integral representation [9,
p. 431, Remark 4] without explicitly producing it.

A lot of important and sometimes surprising applications of MZVs have been
found in many areas in mathematics and theoretical physics in recent years; see [4,
5, 10, 18, 19]. One of the most powerful ideas is to consider the so-called double
shuffle relations (DBSFs). The stuffle relations are obtained directly by using the
above series definition when multiplying twoMZVs. The other, the shuffle relations,
can be produced bymultiplying their integral representations and usingChen’s theory
of iterated integrals [6]. The interested reader is referred to the seminal paper [16]
for more details.

Lagging behind the above development for about a decade, a few q-analogs were
proposed and studied by different mathematicians and physicists. All of these q-
analogs enjoy the property that when q → 1 one can recover the ordinary MZVs
defined in the above if no divergence occurs. In this paper, by modifying and gener-
alizing an idea in [7] we give a uniform treatment of these q-analogs by using some
suitable Rota–Baxter algebras which reflect the properties of Jackson’s iterated inte-
gral representations of these q-analogs.

Recall that for any fixed q with 0 < q < 1 one can define the q-analog of positive
integers by setting [k] = [k]q := 1 + q + · · · + qk−1 = (1 − qk)/(1 − q) for all k ∈
N. To summarize the various versions of q-analog of MZVs (q-MZVs for abbrevia-
tion), we first define a general type of q-MZVof 2d variables s1, . . . , sd , a1, . . . , ad ∈
Z by

ζ aq [s] :=
∑

k1>···>kd>0

qk1a1+···+kdad

[k1]s1 · · · [kd ]sd = (1 − q)|s|
∑

k1>···>kd>0

qk1a1+···+kdad

(1 − qk1 )s1 · · · (1 − qkd )sd
, (1)

where |s| = s1 + · · · + sd is called the weight and d the depth. The variables of a are
called auxiliary variables. Also, it is often convenient to study its modified form by
dropping the power of 1 − q, i.e.,

zaq [s] :=
∑

k1>···>kd>0

qk1a1+···+kdad

(1 − qk1)s1 · · · (1 − qkd )sd
,

In the following table, we list a few different versions of q-MZVs that have
been studied so far by different authors, except for one new type (type IV in the
table). We only write down their modified form although sometimes the original
authors considered only ζq . We note that in 2004, Bradley [3] apparently defined
ζ (s1−1,...,sd−1)
q [s1, . . . , sd ] independently, and later, Okuda and Takeyama also studied
some of the relations among this type of q-MZVs in [22]. Additionally, it is not hard
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Table 1 A time line of different versions of q-MZVs. �= this paper

Type Year Authors q-MZV DBSF

2001 Schlesinger [23] z
(0,...,0)
q [s1, . . . , sd ] See (2)

I 2002 Kaneko et al. [17] z
(s−1)
q [s] (depth=1) N/A

I 2003 Zhao [29] z
(s1−1,...,sd−1)
q [s1, . . . , sd ] [25], [26], �

II 2003 Zudilin [30] z
(s1,...,sd )
q [s1, . . . , sd ] [24], �

III 2012 Ohno et al. [20] z
(1,0,...,0)
q [s1, . . . , sd ] [7], �

IV 2014 Zhao � z
(s1−1,s2,...,sd )
q [s1, . . . , sd ] �

BK 2013 Bachmann & Kühn [1] zBKq [s1, . . . , sd ] [31]

O 2014 Okounkov [21] zOq [s1, . . . , sd ], s j ≥ 2 �

G 2003 Zhao [29] z
(a1,...,ad )
q [s1, . . . , sd ] �

to see that Schlesinger’s version diverges when |q| < 1 but can converge if |q| > 1.
In fact, for s ∈ Zd

z
(0,...,0)
q−1 [s1, . . . , sd ] = (−1)s1+···+sd z

(s1,...,sd )
q [s1, . . . , sd ] = (−1)s1+···+sd zIIq [s1, . . . , sd ]. (2)

So it suffices to consider type II in order to understand Schlesinger’s q-MZVs. The
last column of Table1 provides the references where DBSFs are considered sys-
tematically (not only the stuffle), some of which are apparently different from our
approach in this paper.

In this paper, we will use suitable Rota–Baxter algebras to study types I-IV q-
MZVs listed in Table1 in details. We also briefly consider the general type G and
Okounkov’s type O q-MZVs. Note that the numerators inside the summands of ζBK

q

and ζO
q are not exact powers of q, but some polynomials of q enjoying nice properties.

Further, for ζO
q the polynomial numerator is at worst a sum of two q-powers so our

method can still work. See Corollary 6.6. It may be difficult to use the approach
here to study the Bachmann and Kühn type since the numerators are much more
complicated.

In the classical setting, the so-called regularized DBSFs play extremely impor-
tant roles in discovering and proving Q-linear relations among the MZVs. The first
serious attempt to discover the DBSFs among q-MZVs was carried out by the author
in [29] by using Jackson’s iterated q-integrals. However, the computation there was
too complicated so only very few relations were found successfully. The real break-
through camewith Takeyama’s successful application ofHoffman’s algebras to study
type I q-MZVs in [26]. However, his approach to the shuffle relations relies on some
auxiliary multiple polylogarithm functions and consequently it is very hard to see
why these relations should hold.

The situation looks much better with the appearance of the recent paper [7] by
Castillo Medina, Ebrahimi-Fard andManchon who generalized Chen’s iterated inte-
grals to Jackson’s iterated q-integrals to study type III q-MZVs by using Rota–Baxter
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algebra techniques. Later, Singer [24, 25] adopted the algebraic setup of the DBSFs
to study type I and type II q-MZVs. Motivated by this new idea, in this paper we will
consider all the q-MZVs of type I, II, III and IV by finding/using their correct realiza-
tions in terms of Jackson’s iterated q-integrals. Then by combining the Rota–Baxter
algebra technique and Hoffman’s algebra of words we are able to study the DBSFs
of all of these q-MZVs.

When one considers the Q-linear relations among the ordinary MZVs, the main
difficulty lies in the insufficiency of DBSFs produced by only admissible arguments.
In the q-analog setting, the situation is only partially similar and sometimes much
more complicated.

For type Iq-MZVs, our computation shows that theDBSFsCANprovide all theQ-
linear relations. However, in order to study these relations, as Takeyama noticed first,
one has to enlarge the set of type Iq-MZVs to somethingwe call type Ĩ q-MZVswhich
are a kind of “regularized” q-MZVs in the sense that one needs to consider some
convergent versions of q-MZVs when s1 = 1 by modifying the auxiliary variables
of a. But for these type Ĩ q-MZVs themselves, DBSFs are insufficient to provide all
the Q-linear relations and a certain “Resummation Identity” defined by Takeyama
is required. In this paper, we will adopt the term “duality” due to its similarity
to the duality relations of the ordinary MZVs. Moreover, for type Ĩ q-MZVs of
weight bounded by w there are often still missing relations even after we consider
both DBSFs and duality relations within the same weight and depth range. These
missing relations can be recovered only after we increase the weight and depth. This
phenomenon is not unique to type Ĩ q-MZVs. We have recorded this fact by using
the “deficiency” numbers listed in the tables in the last section of this paper.

Similar to type I, we find that type IV q-MZVs also need to be “regularized”
when s1 = 1. Again, we achieve this by introducing some convergent versions of the
q-MZVs by modifying the auxiliary variables in a.

It turns out that type II q-MZVs behave the most regularly and enjoy some prop-
erties closest to those of the classical MZVs. For example, their duality relations
(see Theorem 8.4) have the cleanest form. Moreover, every other type of q-MZVs
considered in this paper can be converted to type II. But still, there are relations that
cannot be proved by DBSFs and dualities, at least when one is confined within the
same weight and depth range. In fact, we find three independent Q-linear relations
in weight 4 that can only be proved when we consider weight 5 DBSFs and dualities.

All type III q-MZVs are convergent, even for negative arguments. For simplicity,
in this paper we consider only those with nonnegative arguments s1, . . . , sd with
s1 ≥ 1. In this case, the DBSFs are still insufficient. In the last section, we will see
that in weight 3 there is already a missing relation which can be recovered by the
duality. Essentially because of the need to apply the duality relations, we have to
modify the original Jackson’s iterated integral representation given in [7]. See the
remarks after Theorem 6.1. In contrast to the other types of q-MZVs, we cannot
suppress the deficiency for type III even if we consider more DBSFs and duality
relations by increasing the weight and depth. This might be caused by our restriction
of only nonnegative arguments and thus further investigations are called for.
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On the other hand, we can improve the above situation by considering the more
general type G values. All the missing relations are thus proved up to and including
weight 4 and at the same time both deficiencies are decreased in weight 5 and 6. The
key idea here is to convert all type G values to type II values by using a new kind of
relations called P-R relations.

We point out that our method can be easily adapted to study q-MZVs of the
following general forms:

z(s1−a1,...,sd−ad )
q [s1, . . . , sd ], z(a1,...,ad )q [s1, . . . , sd ],

where a1 ≥ a2 ≥ · · · ≥ ad ≥ 0 are all fixed integers. Furthermore, when the weight
is not too large, our method can be programmed to compute all the relations among
q-MZVs of the general form zaq [s] when a is taken within a certain range. This will
be carried out in Sect. 9.

As an application, for small weight cases it is possible to confirm Okounkov’s
conjecture [21] on the dimension of the q-MZVs zOq [s] usingCorollary 6.6.We do this
numerically up to weight 12 and give rigorous proof up to weight 6 (both inclusive).

Throughout the paper we will use the modified form zq most of the time. All the
results can be translated into the standard form ζq by inserting the correct powers of
(1 − q)w, where w is the corresponding weight, into the formulas.

2 Convergence Domain for q-MZVs

We need the following result to find the convergence domain for different types of
q-MZVs. It is Proposition 2.2 of [29] where the order of the indices in the definition
of ζ (a1,...,ad )

q [s1, . . . , sd ] (denoted by fq(sd , . . . , s1; ad , . . . , a1) in loc. cit.) is opposite
to this paper.

Proposition 2.1 The function ζ (a1,...,ad )
q [s1, . . . , sd ] converges if Re(a1 + · · · + a j )

> 0 for all j = 1, . . . , d. It can be analytically continued to a meromorphic function
over C2d via the series expansion

ζ
(a1,...,ad )
q [s1, . . . , sd ] = (1 − q)|s|

∞∑

b1,...,bd=0

d∏

j=1

[(
s j + b j − 1

b j

)
q(d+1− j)(b j+a j )

1 − qb1+a1+···+b j+a j

]
. (3)

It has the following (simple) poles: a1 + · · · + a j ∈ Z�0 + 2π i
log q Z for j = 1, . . . , d.

Corollary 2.2 Let s = (s1, . . . , sd) ∈ Zd . Then

(i) ζ I
q [s] converges if s1 + · · · + s j > j for all j = 1, . . . , d.

(ii) ζ II
q [s] converges if s1 + · · · + s j > 0 for all j = 1, . . . , d.

(iii) ζ III
q [s] always converges.

(iv) ζ IV
q [s] converges if s1 + · · · + s j > 1 for all j = 1, . . . , d.
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Definition 2.3 For convenience, a composition s ∈ Z≥0 is said to be type
τ -admissible if s satisfies the condition for type τ q-MZVs in the corollary. Here and
in what follows, τ = I, II, III, or IV.

3 Rota–Baxter Algebra

In this section we briefly review some fundamental facts of Rota–Baxter algebras
which will be crucial in the study of the q-analog of shuffle relations for all of q-
MZVs considered in this paper. For a good introduction to the Rota–Baxter algebras,
see [11].

Definition 3.1 Fix an algebra A over a commutative ring R and an element λ ∈ R.
We call A a Rota–Baxter R-algebra and P a Rota–Baxter operator of weight λ if
the operator P satisfies the following Rota–Baxter relation of weight λ:

P(x)P(y) = P(P(x)y) + P(xP(y)) + λP(xy) ∀x, y ∈ A. (4)

Recall that for any continuous function f (x) on [α, β], Jackson’s q-integral is
defined by

∫ β

α

f (x) dq x :=
∑

k≥0

f
(
α + qk(β − α)

)
(qk − qk+1)(β − α). (5)

Taking α = 0 and β = t in (5), we set

J[ f ](t) := (1 − q)
∑

k≥0

f (qkt)qkt = (1 − q)
∑

k≥0

Ek[M[ f ]](t) = (1 − q)P
[
M[ f ]](t) (6)

where the multiplication operator M[ f ](t) := t f (t),

E[ f ](t) := Eq [ f ](t) := f (qt), and P[ f ](t) := Pq [ f ](t) := f (t) + f (qt) + f (q2t) + · · ·

are the q-expanding and the (principle) q-summation operators, respectively. We
also need to define the (remainder) q-summation operator

R[ f ](t) := Rq [ f ](t) := f (qt) + f (q2t) + · · · = (P[ f ] − f )(t).

So, P is the principle part (i.e. the whole thing) while R is the remainder (i.e.,
without the first term). Clearly, P = R + I where, as an operator, I[ f ] = f . This
implies PR = RP.
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Let tQ[[t, q]] be the ring of formal series in two variables with t > 0. Then J, E,
P and R are all Q[[q]]-linear endomorphisms of tQ[[t, q]]. We can further define the
inverse to P which is called the q-difference operator:

D := I − E. (7)

The following results extend those of [7, (21)–(23)]. In the final computation
we will not need D since we will consider only nonnegative arguments in all the
q-MZVs. But in the theoretical part of this paper we do need to use D for type III
q-MZVs.

Proposition 3.2 For any f, g ∈ tQ[[t, q]] we have

P[ f ]P[g] = P
[
P[ f ]g]+ P

[
f P[g]]− P[ f g], (8)

R[ f ]R[g] = R
[
R[ f ]g]+ R

[
fR[g]]+ R[ f g], (9)

R[ f ]P[g] = R
[
R[ f ]g]+ R

[
fR[g]]+ R[ f ]g + R[ f g], (10)

J[ f ]J[g] = J
[
J[ f ]g]+ J

[
f J[g]]− (1 − q)J

[
I f g

]
, (11)

= J
[
f J[g]]+ qJ

[
J
[
E[ f ]]g], (12)

D[ f ]D[g] = D[ f ]g + fD[g] − D[ f g], (13)

D[ f ]P[g] = D
[
f P[g]]+ D[ f ]g − f g, (14)

D[ f ]R[g] = D
[
fR[g]]+ D[ f g] − f g, (15)

DP = PD = I, PR = RP. (16)

Proof The identities (8), (13) and (14) are just (21), (23) and (26) of [7], respectively.
All the others follow from R = P − I easily.

By Proposition 3.2 we see that P and R are both Rota–Baxter operators on
tQ[[t, q]] (of weight −1 and 1, respectively) but D is not. In fact, D satisfies the
condition (13) of a differential Rota–Baxter operator [12]. Moreover, it is invertible
in the sense that Rota–Baxter operator P and the differential D are mutually inverse
by (16).

We end this section with an identity which will be used to interpret Takeyama’s
Resummation Identity in [26]. For any n ∈ N, set

Pn = P ◦ · · · ◦ P︸ ︷︷ ︸
n times

and Rn = R ◦ · · · ◦ R︸ ︷︷ ︸
n times

.

Theorem 3.3 Let d ∈ N and α j , β j ∈ N for all j = 1, . . . , d. Let y(t) = t
1−t . Then

we have

Rα1yβ1 · · ·Rα	yβ	(t) =
∑

j1≥β1,..., j	≥β	

k1≥α1,..., k	≥α	

	∏

r=1

[(
jr − 1

βr − 1

)(
kr − 1

αr − 1

)
qkr

∑	
s=r js t jr

]
. (17)
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Proof First we show that

Rα(t j ) = qα j t j

(1 − q j )α
. (18)

Indeed, if α = 1 then

R(t j ) =
∑

k≥1

qkj t j = q j t j

1 − q j
.

So (18) can be proved easily by induction.
Now we proceed to prove that for any integer m ≥ 0

Rα1yβ1 · · ·Rα	

(
yβ	 (t) · tm

)
=

∑

j1≥β1,..., j	≥β	
k1≥α1,..., k	≥α	

tm
	∏

r=1

[(
jr − 1

βr − 1

)(
kr − 1

αr − 1

)
qkr (m+∑	

s=r js )t jr
]
.

(19)
If 	 = 1 then we have

Rα
(
yβ(t) · tm

)
=Rα

(( t

1 − t

)β

tm
)

= Rα
∑

j≥0

(
β + j − 1

j

)
tm+β+ j

=Rα
∑

j≥β

(
j − 1

β − 1

)
tm+ j

=
∑

j≥β

(
j − 1

β − 1

)
qα(m+ j)tm+ j

(1 − qm+ j )α
(by (18))

=
∑

j≥β

(
j − 1

β − 1

)∑

k≥0

(
α + k − 1

k

)
q(α+k)(m+ j)tm+ j

=
∑

j≥β

∑

k≥α

(
j − 1

β − 1

)(
k − 1

α − 1

)
qk(m+ j)tm+ j .

This proves (19) when 	 = 1. In general

Rα1yβ1 · · ·Rα	−1

(
yβ	−1(t)

(
Rα	

(
yβ	(t) · tm

)))

=
∑

j	≥β	

∑

k	≥α	

(
j	 − 1

β	 − 1

)(
k	 − 1

α	 − 1

)
qk	(m+ j	)Rα1yβ1 · · ·Rα	−1

(
yβ	−1(t) · tm+ j	

)
.

So (19) follows immediately by induction.We can nowfinish the proof of the theorem
by taking m = 0.

Corollary 3.4 Let d ∈ N and α j , β j ∈ N for all j = 1, . . . , d. Then we have

Rα1yβ1 · · ·Rα	yβ	(1) = Rβ	yα	 · · ·Rβ1yα1(1). (20)
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Proof In (17) we use the substitutions jr ↔ k	+1−r for all r = 1, . . . , 	. Then the
power of q in the term of (17) indexed by ( j1, ..., j	, k1, ..., k	) is equal to

	∑

r=1

	∑

s=r

jskr −→
	∑

r=1

	∑

s=r

j	+1−r k	+1−s =
	∑

s=1

s∑

r=1

j	+1−r k	+1−s

=
	∑

s=1

	+1−s∑

r=1

j	+1−r ks =
	∑

s=1

	∑

r=s

jr ks =
	∑

r=1

kr

	∑

s=r

js .

which follows from the substitution s ↔ 	 + 1 − s followed by r ↔ 	 + 1 − r and
r ↔ s. This proves the corollary.

4 q-Analogs of Hoffman algebras

Weknow that (regularized) DBSFs lead tomany (and conjecturally all)Q-linear rela-
tions among the MZVs. The key idea here was first suggested by Hoffman [14] who
used some suitable algebra of words to codify both the stuffle (also called harmonic
shuffle [27] or quasi-shuffle [15]) relations coming from the series representation
of MZVs and the shuffle relations coming from the iterated integral expressions of
MZVs. The detailed regularization process can be found in [16]. To study similar
relations of the q-MZVs we should modify the Hoffman algebras in the q-analog
setting.

The following definition for type I q-MZVs was first proposed by Takeyama [26].
We adopt different notations here in hoping to give a uniform and more transparent
presentation for all types of q-MZVs.

First we consider some algebras which will be used to define the stuffle relations
later.

Definition 4.1 Let X∗
θ be the set of words on the alphabet Xθ = {a, a−1, b, θ}.

Denote by Aθ = Q〈a, a−1, b, θ〉 the noncommutative polynomial Q-algebra of
words from X∗

θ . Set

γ := b − θ, zs := as−1b, z′
s := as−1θ, s ∈ Z.

Let YĨ := {θ} ∪ {zk}k≥1, YII := {z′
k}k≥0, YIII := {zk}k∈Z and YĨV := YII. We point out

that z0, z′
0 �= 1where 1 is the empty word.We put a tilde on top of both I and IV since

we need to consider some kind of regularization due to convergence issues involved
in type I and IV q-MZVs. This is realized by the introduction of the letter θ . Again,
we use Y ∗

τ to denote the set of words generated on Yτ for any type τ .
Let A1

Ĩ
, A1

II, AIII and AĨV be the subalgebras of Aθ freely generated by the sets YĨ ,
YII, YIII and YĨV, respectively. Set
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A1
III := Q1 +

∑

k∈Z
z′
kAIII �⊂ AIII, A1

ĨV := Q1 + θAĨV +
∑

k≥1

zkAĨV �⊂ AĨV.

Here, all integer subscripts are allowed in YIII because type III q-MZVs converge for
all integer arguments. Further, we define the following subalgebras corresponding to
the convergent values:

A0
I := Q1 +

∑

k≥2

zkA
1
Ĩ
, A0

Ĩ
:= Q1 + θA1

Ĩ
+
∑

k≥2

zkA
1
Ĩ

� A1
Ĩ
,

A0
II := Q1 +

∑

k≥1

z′
kA

1
II � A1

II, A0
III := A1

III,

A0
IV := Q1 +

∑

k≥2

zkAĨV, A0
ĨV := Q1 + θAĨV +

∑

k≥2

zkAĨV � A1
ĨV.

For each type τ the words in A0
τ are called type τ -admissible. This is consistent with

Definition 2.3 since we consider only non-negative compositions s.

Definition 4.2 To define the stuffle product for type τ = Ĩ and II, similar to theMZV
case, we define a commutative product [−,−]τ first:

[zk, zl ]Ĩ = zk+l + zk+l−1, [θ, zk]Ĩ = zk+1, [θ, θ ]Ĩ = z2 − θ, [z′
k, z

′
l ]II = z′

k+l
(21)

for all k, l ≥ 1. Now we define the stuffle product ∗τ on A1
τ inductively as follows.

For any words u, v ∈ A1
τ and letters α, β ∈ Yτ , we set 1 ∗τ u = u = u ∗τ 1 and

(αu) ∗τ (βv) = α(u ∗τ βv) + β(αu ∗τ v) + [α, β]τ (u ∗τ v). (22)

Remark 4.3 (i). The definition for ∗Ĩ is the same as in [26].
(ii). One can check that ∗τ is well-defined for τ = Ĩ and II. Namely, u ∗τ v ∈ A1

τ

if u, v ∈ A1
τ .

(iii). It is not hard to check that for τ = Ĩ and II, (A0
τ , ∗τ ) ⊂ (A1

τ , ∗τ ) as subalge-
bras.

(iv). In the following, we will need to define stuffle product ∗ord on AIII by setting
τ = ord and [zr , zs]ord = zr+s for all r, s ∈ Z in (22).

In [7], the stuffle product�- for type III q-MZVs is defined. We will modify this in
the following way (see the remarks after Theorem 6.1). Our modified stuffle product
for type III q-MZVs will be denoted by ∗III.

Definition 4.4 Wenowdefine a stuffle product∗III onA1
III. First,we define an injective

shifting operator S− on any word of A1
III by acting on the first letter:

S−(z′
nw) := znw − zn−1w ∈ AIII for all n ∈ Z and w ∈ Y ∗

III. (23)

For any k, l ∈ Z and any u, v ∈ Y ∗
III, define the stuffle product ∗III by
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1 ∗III 1 = 1, 1 ∗III z
′
ku = z′

ku ∗III 1 = z′
ku,

z′
ku ∗III z

′
lv = z′

k

(
u ∗ord S−(z′

lv)
)+ z′

l

(
S−(z′

ku) ∗ord v
)+ (z′

k+l − z′
k+l−1)(u ∗ord v).

Here ∗ord is the ordinary stuffle defined in Remark 4.3 (iv).

For type ĨV, we provide a definition similar to type III.

Definition 4.5 We now define a stuffle product ∗ĨV onA1
ĨV
. First, we define a shifting

operator S+ similar to (23) by

S+(znw) := z′
nw + z′

n−1w ∈ AĨV for all n ∈ N and w ∈ Y ∗̃
IV.

Then, for any k, l ≥ 1 and any u, v ∈ Y ∗̃
IV
we set

1 ∗ĨV 1 = 1, 1 ∗ĨV zku = zku ∗ĨV 1 = zku,

zku ∗ĨV zlv = zk
(
u ∗II S+(zlv)

)+ zl
(
S+(zku) ∗II v

)+ (zk+l + zk+l−1)(u ∗II v),

zku ∗ĨV θv = θv ∗ĨV zku = zk
(
u ∗II θv

)+ θ
(
S+(zku) ∗II v

)+ zk+1(u ∗II v),

θu ∗ĨV θv = θ
(
u ∗II θv

)+ θ
(
θu ∗II v

)+ (z2 − θ)(u ∗II v),

where ∗II is the stuffle product on A1
II = AĨV defined in Definition 4.2.

Lemma 4.6 The stuffle products ∗III and ∗ĨV are both well-defined. Namely, if u, v ∈
A1

τ then u ∗τ v ∈ A1
τ for τ = III or ĨV.

Proof We prove the lemma for type ĨV only. Type III is similar but simpler.
First we note that k + l − 1 ≥ 1 if k, l ≥ 1. So the first letter of each of the terms

of u ∗ĨV v has the right form, i.e., either θ or zk for k ≥ 1. We need to show that after
truncating the first letter each term lies in AĨV. Notice thatS+(zlv),S+(zku) ∈ AĨV
and ∗II does not decrease the size the subscripts (which are all non-negative). The
lemma is now proved.

Proposition 4.7 Let τ = Ĩ, II, III or ĨV. Then the stuffle algebras (A1
τ , ∗τ ) are all

commutative and associative.

Proof This follows from the fact that the product [−,−]τ are all commutative and
associative which can be verified easily.

We now turn to the shuffle algebra which is an analog of the corresponding algebra
for MZVs reflecting the properties of their representations using iterated integrals.

Definition 4.8 Let Xπ = {π, δ, y} be an alphabet and X∗
π be the set of words gener-

atedby Xπ .DefineAπ = Q〈π, δ, y〉 to be thenoncommutative polynomialQ-algebra
of words of X∗

π . We may embed Aθ defined by Definition 4.1 as a subalgebra of Aπ

in two different ways: put ρ = π − 1 and let
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(A) a := π, a−1 := δ, b := πy, θ = ρy =⇒ γ := y,

(B) a := ρ, a−1 := −, b := πy, θ = ρy =⇒ γ := y.

We denote the image of the embedding by A
(A)
θ and A

(B)
θ , respectively. The dash −

for the image of a−1 in (B) means it does not matter what image we choose since a−1

appears only when we consider type III q-MZVs using (A). We will use embedding
(B) for the other three types for which a−1 will not be utilized essentially because of
convergence issues.

5 q-Stuffle relations

First we define the Q-linear realization maps zq : A0
τ → C (τ = Ĩ, II) by zq [1] = 1

and
zq [yτ

1 . . . yτ
d ] :=

∑

k1>···>kd>0

Mτ
k1(y

τ
1 ) . . . Mτ

kd (y
τ
d ),

for every admissible word yτ
1 . . . yτ

d ∈ A0
τ where the Q-linear maps

M Ĩ
m(θ) := qm

1 − qm
, M Ĩ

m(zs) := q(s−1)m

(1 − qm)s
, M II

m(z′
s) := qsm

(1 − qm)s
,

for all m ∈ N. Note that M Ĩ
k(γ ) = M Ĩ

k(z1 − θ) = 1. For example, we have

zq [z2z5γ 2z1] = z(1,4,0,0,0)q [2, 5, 0, 0, 1], zq [θ z7θ z4] = z(1,6,1,3)q [1, 7, 1, 4],

which are not q-MZVs of type I.
For type τ = III or ĨV, we similarly define theQ-linear realizationmaps zq : A0

τ →
C by zq [1] = 1 and

zq [yτ
1 . . . yτ

d ] :=
∑

k1>···>kd>0

M1,τ
k1

(yτ
1 )M

τ
k2(y

τ
2 ) . . . Mτ

kd (y
τ
d ),

for every admissible word yτ
1 . . . yτ

d ∈ A0
τ where the Q-linear maps

M1,III
m (z′s) := qm

(1 − qm)s
, M III

m (zs) := 1

(1 − qm)s
,

M ĨV
m (θ) = M1,ĨV

m (θ) := qm

1 − qm
, M1,ĨV

m (zs) := qm(s−1)

(1 − qm)s
, M ĨV

m (z′s) := qsm

(1 − qm)s
,

for all m ∈ N.
The following theorem is parallel to [7, Proposition 9] and includes [26, Theorem

1].
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Theorem 5.1 Let τ = Ĩ, II, III or ĨV. For any uτ , vτ ∈ A0
τ we have

zq [uτ ∗τ vτ ] = zq [uτ ]zq [vτ ]. (24)

Proof Since type Ĩ case is just [26, Theorem 1], we only need to consider the other
three types. The proof is basically the same as that of [26, Theorem 1]. In fact, it
suffices to observe that

M II
m(z′k)M II

m(z′l ) = M II
m(z′k+l ), M1,III

m (z′k)M III
m (zl ) = M III

m (zk+l − zk+l−1),

M III
m (zk)M

III
m (zl ) = M III

m (zk+l ), M1,III
m (z′k)M

1,III
m (z′l ) = M1,III

m (z′k+l − z′k+l−1),

M ĨV
m (z′k)M ĨV

m (z′l ) = M ĨV
m (z′k+l ), M1,ĨV

m (zk)M
ĨV
m (z′l ) = M ĨV

m (z′k+l + z′k+l−1),

M ĨV
m (θ)M ĨV

m (z′k) = M ĨV
m (z′k+1), M1,ĨV

m (zk)M
1,ĨV
m (zl ) = M1,ĨV

m (zk+l + zk+l−1),

M1,ĨV
m (θ)M ĨV

m (z′k) = M ĨV
m (z′k+1), M ĨV

m (θ)M ĨV
m (θ) = M1,ĨV

m (θ)M ĨV
m (θ) = M ĨV

m (z′2),

M1,ĨV
m (θ)M1,ĨV

m (zk) = M1,ĨV
m (zk+1), M1,ĨV

m (θ)M1,ĨV
m (θ) = M1,ĨV

m (z2 − θ),

for all k, l ≥ 0, m ≥ 1. Of course, we need to assume k, l ≥ 2 for M1,ĨV
m (zk) and

M1,ĨV
m (zl).

6 Jackson’s Iterated q-Integrals

Set

x0 := x0(t) = 1

t
, x1 := x1(t) = 1

1 − t
, y := y(t) = t

1 − t
.

Recall that fora = x0(t)dt andb = x1(t)dt , we can expressMZVsbyChen’s iterated
integrals:

ζ(s1, . . . , sd) =
∫ 1

0
as1−1b · · · asd−1b.

Replacing the Riemann integrals by Jackson’s q-integrals (6) one gets

Theorem 6.1 ([7, (29)]) For s = (s1, . . . , sd) ∈ Nd set w = |s| and

ζ̃ III
q [s; t] := J

[
c1J
[
c2 · · · J[cw] · · · ]

]
(t),

where ci = x1 if i ∈ {u1, u2, . . . , ud}, u j := s1 + s2 + · · · + s j , and ci = x0 other-
wise. Or, equivalently, set w = π s1 yπ s2 y . . . π sd y and

z̃IIIq [w; t] := Ps1
[
y · · ·Psd [y] · · · ](t).
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Then
zIIIq [s] = z̃IIIq [w; q]

However, the representation of ζ III
q [s] using z̃IIIq in Theorem 6.1 is not ideal in the

sense that one has to evaluate t at q. We would like to use Corollary 3.4 so we need to
set t = 1. This leads to the idea of replacing the first factor Ps1 by Ps1−1R and, more
generally, the following two generalizations. For any a = (a1, . . . , ad) ∈ (Z≥0)

d ,
define

zq [ρa1 y . . . ρad y; t] := Ra1
[
yRa2 [y · · ·Rad [y] · · · ]](t).

Theorem 6.2 Let s = (s1, . . . , sd) ∈ Nd and a = (a1, . . . , ad) ∈ (Z≥0)
d . Put w =

|s| and w = wa(s) = ρa1π s1−a1 y . . . ρadπ sd−ad y. Then

zq [wa(s); t] := Ra1
[
Ps1−a1 [yRa2 [Ps2−a2 [y · · ·Rad [Psd−ad [y]] · · · ]]]](t). (25)

Suppose a1 + · · · + a j > 0 for all j = 1, . . . , d. Then we have

ζ a
q [s] = (1 − q)wzq [wa(s); 1], zaq [s] = zq [wa(s)] := zq [wa(s); 1]. (26)

Proof First we observe three important facts: for any k ≥ 1 we have

P(tk) =
∑

j≥0

qk j tk = tk

1 − qk
, D(tk) = tk(1 − qk), and R(tk) =

∑

j≥1

qk j tk = qktk

1 − qk

by the definition of the two summation operators and the difference operator. Repeat-
edly applying this we get

Pm(t k) = P
(

t k

(1 − qk)m−1

)
= t k

(1 − qk)m
, ∀m ∈ Z, (27)

Rm(t k) = R

((
qk

1 − qk

)m−1

t k
)

= qmktk

(1 − qk)m
∀m ∈ Z≥0. (28)

Thus

P
(
y(t) · t k) =

∑

j≥0

q j (k+1)t k+1

1 − q j t
=
∑

j≥0

∑

	≥0

q j (k+	+1)t k+	+1 =
∑

	>k

t	

1 − q	
.

Similarly, we have

D
(
y(t) · t k) = t k+1

1 − t
− qk+1t k+1

1 − qt
=
∑

	≥0

(1 − qk+	+1)t k+	+1 =
∑

	>k

(1 − q	)t	,

and



Uniform Approach to Double Shuffle and Duality Relations … 273

R
(
y(t) · t k) =

∑

j≥1

q j (k+1)t k+1

1 − q j t
=
∑

j≥1

∑

	≥0

q j (k+	+1)t k+	+1 =
∑

	>k

q	t	

1 − q	
.

It follows from (27) and (28) that

Pm
(
y(t) · t k) =

∑

	>k

t	

(1 − q	)m
∀m ∈ Z, (29)

Rm
(
y(t) · t k) =

∑

	>k

qm	t	

(1 − q	)m
∀m ∈ Z≥0. (30)

We now prove by induction on the the depth d that for all s = (s1, . . . , sd) ∈ Nd ,

zq [wa(s); t] =
∑

k1>···>kd>0

t k1qk1a1 . . . qkdad

(1 − qk1)s1 · · · (1 − qkd )sd
. (31)

When d = 1, i.e., s = s, then by (29) followed by (28)

zq [wa(s); t] = RaPs−a[y](t) =
∑

k>0

Ra
(
t k
)

(1 − qk)s−a
=
∑

k>0

qaktk

(1 − qk)s
.

This proof works even when s = a because of (30) (take k = 0 and m = a there).
Turning to the general case, we let d ≥ 2 and assume (31) holds for smaller depths.

Then by the inductive assumption

zq [wa(s); t] =Ra1Ps1−a1
[
yRa2Ps2−a2 [y · · ·RadPsd−ad [y] · · · ]](t)

=
∑

k2>···>kd>0

Ra1Ps1−a1
(
y(t) · t k2)qk2a2 . . . qkdad

(1 − qk2)s2 · · · (1 − qkd )sd

=
∑

k1>···>kd>0

Ra1
(
t k1
)
qk2a2 . . . qkdad

(1 − qk1)s1−a1(1 − qk2)s2 · · · (1 − qkd )sd
(by (29))

=
∑

k1>···>kd>0

t k1qk1a1 . . . qkdad

(1 − qk1)s1 · · · (1 − qkd )sd

by (28). Again, if s1 = a1 the proof is still valid. This completes the proof of (31).
Setting t = 1 we arrive at (26).

By change of variables a j → s j − a j for all j = 1, . . . , d we immediately obtain
the next result. Observe that by (25), we have

zq [ws−a(s); t] := Rs1−a1
[
Pa1 [yRs2−a2 [Pa2 [y · · ·Rsd−ad [Pad [y]] · · · ]]]](t),

where s − a = (s1 − a1, . . . , sd − ad).
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Theorem 6.3 Let s = (s1, . . . , sd) ∈ Nd , a = (a1, . . . , ad) ∈ (Z≥0)
d , and w = |s|.

Suppose s1 + · · · + s j > a1 + · · · + a j for all j = 1, . . . , d. Then we have

ζ s−a
q [s] = (1 − q)wzq [ws−a(s); 1], zs−a

q [s] = zq [ws−a(s)] := zq [ws−a(s); 1].
(32)

By specializing the preceding two theorems to the four types of q-MZVs in Table1
we quickly find the following corollary. For future reference, we will say wτ has the
typical type τ form for each type τ .

Corollary 6.4 For s = (s1, . . . , sd) ∈ Nd , we set

wI(s) := ρs1−1πy . . . ρsd−1πy = zs1 . . . zsd ∈ A
(B)
θ ⊂ Aπ y (s1 ≥ 2),

wII(s) := ρs1 y . . . ρsd y = z′
s1 . . . z′

sd ∈ A
(B)
θ ⊂ Aπ y,

wIII(s) := π s1−1ρyπ s2 y . . . π sd y = z′
s1 zs2 . . . zsd ∈ A

(A)
θ ⊂ Aπ y,

wIV(s) := ρs1−1πyρs2 y . . . ρsd y = zs1 z
′
s2 . . . z′

sd ∈ A
(B)
θ ⊂ Aπ y (s1 ≥ 2),

and

zq [wI(s); t] :=Rs1−1
[
P[yRs2−1[P[y · · ·Rsd−1[P[y]] · · · ]]]](t),

zq [wII(s); t] :=Rs1
[
yRs2 [y · · ·Rsd [y] · · · ]](t),

zq [wIII(s); t] :=Ps1−1
[
R
[
y[Ps2 [y[Ps3 [y · · ·Psd [y] · · · ]]]]]

]
(t),

zq [wIV(s); t] :=Rs1−1
[
P
[
yRs2 [yRs3 [y · · ·Rsd [y] · · · ]]]

]
(t).

Then for all the types τ = I, II, III and IV, we have

ζ τ
q [s] = (1 − q)wzq [wτ (s); 1], zτq [s] = zq [wτ (s)] := zq [wτ (s); 1].

Moreover, similar results hold for type Ĩ and ĨV q-MZVs. We may replace any of
the consecutive strings ρs j−1π by a single ρ in wĨ(s) and wĨV(s), and replace the
corresponding operator string Ps j−1R by a single R.

We now apply the above to Okounkov’s q-MZVs. For any n ∈ N we let n− and
n+ be the two nonnegative integers such that

n − 1

2
≤ n− ≤ n

2
≤ n+ ≤ n + 1

2
.

Clearly we have n+ + n− = n always, n+ = n− if n is even, and n+ = n− + 1 if n
is odd. We can now define a variation of Okounkov’s q-MZVs. Let s ∈ (Z≥2)

d . Then

ζO
q [s] :=

∑

k1>···>kd>0

d∏

j=1

qk j s
+
j + qk j s

−
j

[k j ]s j = (1 − q)|s|
∑

k1>···>kd>0

d∏

j=1

qk j s
+
j + qk j s

−
j

(1 − qk j )s j
.
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Again, its modified form is:

zOq [s] :=
∑

k1>···>kd>0

d∏

j=1

qk j s
+
j + qk j s

−
j

(1 − qk j )s j
.

Remark 6.5 The above variation is equal to Okounkov’s original q-MZVs up to a
suitable 2-power.More precisely, the power is given by the number of even arguments
in s.

Corollary 6.6 For s = (s1, . . . , sd) ∈ Nd , we set

wO(s) = (ρs−
1 π s+

1 + ρs+
1 π s−

1 )y . . . (ρs−
d π s+

d + ρs+
d π s−

d )y ∈ A
(B)
θ ⊂ Aπ y

and

zq [wO(s); t] = (Rs−
1 Ps+

1 + Rs+
1 Ps−

1 )
[
y · · · (Rs−

d Ps+
d + Rs+

d Ps−
d )[y] · · · ](t).

Then we have

ζO
q [s] = (1 − q)wzq [wO(s); 1], zOq [s] = zq [wO(s)] := zq [wO(s); 1].

It is possible to obtain the shuffle relations among zOq [s]-values usingCorollary 6.6.
The stuffle relations among zOq [s] is mentioned implicitly in Okounkov’s original
paper. For our modified version, they can be derived from the following fact (cf.
Proposition 2.2 (ii) of [2]). Let FO

n (t) = (tn
+ + tn

−
)/(1 − t)n for all n ≥ 2. Then for

all r, s ∈ Z≥2, we have

FO
r (t) · FO

s (t) =
{
2FO

r+s(t), if r or s is even;
2FO

r+s(t) + 1
2 F

O
r+s−2(t), if r and s are odd.

For example,

zOq [2, 3]zOq [2] = 2zOq [2, 2, 3] + zOq [2, 3, 2] + 2zOq [4, 3] + 2zOq [2, 5],
zOq [2, 3]zOq [3] = 2zOq [2, 3, 3] + zOq [3, 2, 3] + 2zOq [5, 3] + 2zOq [2, 6] + 1

2
zOq [2, 4].

7 q-Shuffle Relations

In contrast to theMZVcase, theq-shuffle product ismuchmore difficult to define than
the q-stuffle product. In this section we will use the Rota–Baxter algebra approach
to define this for type Ĩ, II, III, and ĨV q-MZVs. Note that this has been done for type
III q-MZVs in [7] which we recall first.
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The q-shuffle product onAπ (see Definition 4.8) is defined recursively as follows:
for any words u, v ∈ X∗

π we define 1� u = u� 1 = u and

(yu)� v =u� (yv) = y(u� v), (33)

πu� πv = π(u� πv) + π(πu� v) − π(u� v), (34)

δu� δv =u� δv + δu� v − δ(u� v), (35)

δu� πv = πv� δu = δ(u� πv) + δu� v − u� v (36)

for any words u, v ∈ X∗
π . Equation (33) reflects the fact that when y(t) is multiplied

in front of either of the two factors in a product, it can be multiplied after taking the
product. Equations (34)–(36) formalize (8), (13) and (14), respectively.

Corollary 7.1 For any words u, v ∈ X∗
π , we have

ρu� ρv = ρ(u� ρv) + ρ(ρu� v) + ρ(u� v), (37)

ρu� πv = πv� ρu = ρ(ρu� v) + ρ(u� ρv) + ρu� v + ρ(u� v), (38)

δu� ρv = ρv� δu = δ(u� πv) − u� v = δ(u� ρv) + δ(u� v) − u� v.
(39)

Proof These follows easily from (33)–(36) and the relation ρ = π − 1.

Corollary 7.2 For j = 1, 2 let X ( j)
θ and X ( j),∗

θ be the embedding of Xθ and X∗
θ into

X∗
π , respectively, by Definition 4.8. For any α, β ∈ X ( j)

θ and u, v ∈ X ( j),∗
θ , we have

1� u = u� 1 = u and

αu� βv = α(u� βv) + β(αu� v) + [α, β] j (u� v),

where [α, β] j is determined by [a, b]1 = [b, a]1 = −b, [a, b]2 = [b, a]2 = 0 and

[a, a] j = (−1) j a, [b, b] j = −bγ, [α, γ ] j = [γ, α] j = −αγ. (40)

Proof All of these identities follow from straightforward computation using (33)–
(39). For example,

bu� bv = πyu� πyv = π(yu� πyv) + π(πyu� yv) − π(yu� yv)

= πy(u� πyv) + πy(πyu� v) − πyy(u� v)

= b(u� bv) + b(bu� v) − bγ (u� v).

(41)

Similarly,

θu� θv = ρyu� ρyv = ρ(yu� ρyv) + ρ(ρyu� yv) + ρ(yu� yv)

= ρy(u� ρyv) + ρy(ρyu� v) + ρyy(u� v)

= θ(u� θv) + θ(θu� v) + θγ (u� v).

(42)
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The rest of the proof is left to the interested reader.

Proposition 7.3 The algebra (Aπ ,�) is commutative and associative.

Proof See [7, Theorem 7].

The following corollary generalizes [26, Proposition 1].

Corollary 7.4 For j = 1 or 2 the algebras (A
( j)
θ ,�) are commutative and

associative.

Proof This follows immediately from Proposition 7.3 since (A
( j)
θ ,�) are sub-

algebras of (Aπ ,�) if� for A( j)
θ is defined as in Corollary 7.2.

Our next theorem shows that we may use the shuffle algebra structure defined
above to describe the q-shuffle relations among different types of q-MZVs. Before
doing so, we need to show that the q-shuffle products really make sense for all the
types.

Proposition 7.5 Embed A0
Ĩ
,A0

II,A
0
ĨV

⊂ A
(B)
θ and A0

III ⊂ A
(A)
θ . Then for each type τ ,

if the two words u, v ∈ A0
τ have the typical type τ form listed in Corollary 6.4 then

there is an algorithm to express u� v using only those words in the same form.

Proof The case for type Ĩ is proved by [26, Proposition 2].
Type II is in fact the easiest since we can restrict ourselves to use only (33) and

(37) to compute the shuffle and therefore π never comes into the picture. Clearly all
such words must start with ρ and end with y.

For type III let’s assumeu = π s1−1ρyπ s2 y . . . π sd y andv = πa1−1ρyπa2 y . . . πad y.
If we use the definition (34) repeatedly then in each word appearing in u� v the
first ρ always appears before all the y’s. Such a word can be written in the form
π sρr y · · · for some s ∈ Z and r ≥ 1 (notice that if ρ and π are commutative). Now
we can rewrite this as π s(π − 1)r−1ρy · · · and replace all the ρ’s after the first y by
π − 1. This produces a word of typical type III form.

Type ĨV is similar to type III except that we need to take θ into account. Notice
that by definition if w ∈ A0

ĨV
then it can be written as θw′, or zkw′ (k ≥ 2, w′ ∈ Y ∗̃

IV
)

or a finite linear combination of these. So we have three cases to check. First, we
prove that for all k, l ≥ 2 and u, v ∈ Y ∗̃

IV

zku� zlv ∈ A0
ĨV. (43)

Indeed, putting k = r + 1 and l = s + 1 we have

ρrπyu� ρsπyv

= ρ(ρr−1πyu� ρsπyv) + ρ(ρrπyu� ρs−1πyv) + ρ(ρr−1πy � ρs−1πyv).

Now inside each of the three parentheses we replace every π by ρ + 1 and use
only (33) and (37) to expand (recall that θ = ρy). We see that every term in the
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expansion has the form ρn yw for some n ≥ 1 and w ∈ Y ∗̃
IV
. If n = 1 then we have

ρn yw = θw ∈ A0
ĨV

. If n ≥ 2 we can write it as

ρn−1(π − 1)yw =
n−1∑

j=1

(−1) j−1ρn− jπyw + (−1)n−1θw ∈ A0
ĨV (44)

with each word of typical type ĨV form.
Now we assume k = r + 1 ≥ 2 and u, v ∈ Y ∗̃

IV
. Then

zku� θv =ρrπyu� ρyv

= ρ(ρr−1πyu� ρyv) + ρy(ρrπyu� v) + ρy(ρr−1πy � v) ∈ A0
IV

since ρy = θ and the first term can be dealt with as in the proof of (43).
Finally,

θu� θv ∈ A0
ĨV

follows from (42) immediately. This completes the proof of the proposition.

The following theorem generalizes [26, Theorem 2] but it does not contain [7,
Theorem 7] since our word representation of type III q-MZVs is different from that
given in [7].

Theorem 7.6 EmbedA0
Ĩ
,A0

II,A
0
ĨV

⊂ A
(B)
θ andA0

III ⊂ A
(A)
θ . Then for each type τ and

for any uτ , vτ ∈ A0
τ , we have

zq [uτ ]zq [vτ ] = zq [uτ � vτ ]. (45)

Proof For each type τ weobserve that zq [wτ ; t] satisfies (45) because of the identities
in Proposition 3.2. Then the theorem follows from the fact that zq [wτ ] = zq [wτ ; 1]
for any word wτ ∈ A0

τ by Corollary 6.4.

8 Duality Relations

The DBSFs do not contain all linear relations among the various types of q-MZVs.
In [26], Takeyama discovered the following relations which provides some of the
missing relations for type Ĩ q-MZVs, at least in the small weight cases. He called
them Resummation Identities. We would rather call them “duality” relations because
of their similarity to the duality relations for the classical MZVs.

Theorem 8.1 ([26, Theorem 4]) For a positive integer k, set
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ϕk := (−1)k

⎛

⎝
k∑

j=2

(−1) j z j − θ

⎞

⎠ ,

where ϕ1 = θ = ρy ∈ A
(B)
θ . Let 	 ∈ N and α j , β j ∈ Z≥0 for all j = 1, . . . , 	. Then

we have
zĨq [ϕα1+1γ

β1 · · ·ϕα	+1γ
β	 ] = zĨq [ϕβ	+1γ

α	 · · · ϕβ1+1γ
α1 ]. (46)

We can use the Rota–Baxter algebra approach to give a new proof of this result.

Proof Notice that γ = y, z j = ρ j−1πy and θ = ρy with the embeddingA0
Ĩ

⊂ A
(B)
θ .

Since π = ρ + 1, for all k ≥ 1, we have (cf. (44))

ϕk = (−1)k

⎛

⎝
k∑

j=2

(−1) jρ j−1(ρ + 1)y − ρy

⎞

⎠

= (−1)k

⎛

⎝
k∑

j=2

(−1) jρ j y +
k∑

j=2

(−1) jρ j−1y − ρy

⎞

⎠ = ρk y.

(47)

Thus the theorem follows from Corollaries 3.4 and 6.4 easily.

Remark 8.2 Although not mentioned explicitly in [26], there is a subtle point in
applying Theorem 8.1. Notice that in the expression of ϕk the letter θ appears. How-
ever, q-MZVs of the form such as ζ I

q [θγ z2γ ] = ζ I
q [ρy2ρ2πy] is not really defined.

In fact, it should be denoted by ζ Ĩ
q [θγ z2γ ] = ζ (1,0,1,0)

q [1, 0, 2, 0] (and such values
always converge by Proposition 2.1 because of the leading 1 in the auxiliary variable
a). But, suitable Q-linear combinations of (46) may lead to identities in which only
zk’s appear. Then all terms can be written as honest ζ I

q -values. This explains the use

of two admissible structures Ĥ0 and H0 in [26]. For an illuminating example, see the
proof of Proposition 7 of op. cit. This remark also applies to Theorem 8.5 for the
duality of type ĨV q-MZVs.

Similar relations for type II q-MZVs have the most aesthetic appeal and is the
primary reason why we prefer to call it by the name “duality”.

Theorem 8.3 Let 	 ∈ N and α j , β j ∈ N for all j = 1, . . . , 	. Then we have

zIIq [ρα1 yβ1 · · · ρα	 yβ	 ] = zIIq [ρβ	 yα	 · · · ρβ1 yα1 ].

Proof This follows from Corollaries 3.4 and 6.4 immediately.

Of course we may apply the same idea to type III and ĨV q-MZVs.

Theorem 8.4 Let 	 ∈ N and α j , β j ∈ N for all j = 1, . . . , 	. Then we have
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zIIIq [(π − 1)α1−1ρyβ1(π − 1)α2 yβ2 · · · (π − 1)α	 yβ	 ]
= zIIIq [(π − 1)β	−1ρyα	(π − 1)β	−1 yα	−1 · · · (π − 1)β1 yα1 ].

Proof Since ρ = π − 1 this follows from Corollaries 3.4 and 6.4 easily.

Theorem 8.5 Let 	 ∈ N and α j , β j ∈ N for all j = 1, . . . , 	. Then we have

zĨVq [ϕα1 y
β1−1ρα2 yβ2 · · · ρα	 yβ	 ] = zĨVq [ϕβ	

yα	−1ρβ	−1 yα	−1 · · · ρβ1 yα1 ].

Here ϕ1 = θ = ρy ∈ A
(B)
θ .

Proof This follows from (47), Corollaries 3.4 and 6.4.

9 The General Type G q-MZVs

All of the q-MZVs of type Ĩ, II, III and ĨV considered in the above are some special
forms of the q-MZVs z(a1,...,ad )q [s1, . . . , sd ] where 1 ≤ a1 ≤ s1, 0 ≤ a j ≤ s j for all
j ≥ 2, all of which are convergent by Proposition 2.1. We call these type G q-MZVs.
Similar to the first four types, we may use words to encode these values according
to Theorem 6.2. Namely, we can define

zq [ρa1 yρa2 y · · · ρad y; t] := Ra1y
[
Ra2y[· · · [Rady] · · · ]](t).

By the relation π = ρ + 1 and P = R + I, we get

zq [ρa1πb1 yρa2πb2 y · · · ρadπbd y; t] = Ra1
[
Pb1 [yRa2 [Pb2 [y · · ·Rad [Pbd [y]] · · · ]]]](t).

Thus we have

zq [wa(s)] := zq [wa(s); 1] = z(a1,...,ad )q [s1, . . . , sd ],

where wa(s) = ρa1π s1−a1 y · · · ρadπ sd−ad y ∈ X∗
π . The shuffle product structure is

reflected by (X∗
π ,�) where the� is defined by (33), (34), (37) and (38).

We observe that there is often more than one way to express a type G q-MZV
using words because of the relation π = ρ + 1. For example, using the relations

π2ρy = πρ2y + πρy = ρ3y + 2ρ2y + ρy

we get immediately the relations

z(1)q [3] = z(2)q [3] + z(1)q [2] = z(3)q [3] + 2z(2)q [2] + z(1)q [1].

We call all such relations P-R relations.
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Proposition 9.1 For all u, v ∈ A0
G, we have u� v ∈ A0

G.

Proof Notice that admissible words in A0
G must end with y and have at least one ρ

before the first y. Moreover, the converse is also true. This is rather straightforward
if we use the P-R relations repeatedly to get rid of all the π ’s.

Now, by using the definition of� it is not hard to see that u� v ends with y and
and has at least one ρ before the first y if both u and v are admissible. So u� v ∈ A0

G
and the proposition is proved.

To define the stuffle product we let

YG = {za,s | a, s ∈ Z≥0, a ≤ s},

and let AG be the the noncommutative polynomial Q-algebra of words of Y ∗
G built

on the alphabet YG. Define the type G-admissible words as those in

A0
G =

⋃

1≤a≤s

za,sAG.

We can regard AG as a subalgebra of X∗
π by setting zta,s = ρaπ s−a y. Then stuffle

product ∗G onA0
G can be defined inductively as follows. For anywordsu, v ∈ A0

G and
letters za,s, za′,s ′ ∈ YG with 1 ≤ a ≤ s and 1 ≤ a′ ≤ s ′ we set 1 ∗G u = u = u ∗G 1
and

(za,su) ∗G (za′,s ′v) = za,s(u ∗G za′,s ′v) + za′,s ′(za,su ∗G v) + za+a′,s+s ′(u ∗G v).

It is easy to show that (A0
G, ∗G) is a commutative and associative algebra.

We leave the proof of the following theorems to the interested readers. The first
result clearly provides the DBSFs of type G q-MZVs.

Theorem 9.2 For any u, v ∈ A0
G ⊂ X∗

π we have

zq [u ∗G v] = zq [u� v] = zq [u]zq [v]. (48)

The duality relations are given in the cleanest form by Theorem 8.4 which can be
translated into the following.

Theorem 9.3 Let 	 ∈ N and α j , β j ∈ N for all j = 1, . . . , 	. Set

s = (α1, 0
β1−1, α2, 0

β2−1, . . . , α	, 0
β	−1),

s∨ = (β	, 0
α	−1, β	−1, 0

α	−1−1, . . . , β1, 0
α1−1).

Then we have
zsq [s] = zs

∨
q [s∨].
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Remark 9.4 We point out that the duality in Theorem 9.3 cannot be used to derive
any relation amongMZVs. For example, when 	 = 1 theMZV ζ(α, 0β−1) converges
if α > β while the MZV ζ(β, 0α−1) converges if β > α.

10 Numerical Data

In this last section, we compute the Q-linear relations among various types of q-
MZVs of small weight by using the DBSFs and the duality relations. Most of the
computation is carried out with the computer algebra system MAPLE, version 16.
My laptop has Intel Core i7 with CPU speed at 2.4GHz and 16GB RAM.

For each type τ we will define the set of type τ -admissible wordsWτ
�w with both

weight and depth bounded by w. This is necessary since we allow 0 in some types of
q-MZVs. We have to control the number of 0’s occurring as arguments in q-MZVs
since otherwise the dimensions to be considered becomes infinite. Another reason
that the depth has to be bounded is because the duality essentially swaps the depth
and the weight.

We denote by Zτ
�w the Q-space generated by q-MZVs of type τ corresponding

to the type τ -admissible wordsWτ
�w, DS

τ
�w the space generated by the DBSFs, and

DUτ
�w the space generated by the duality relations. Hence DUτ

�w \ DSτ
�w gives the

duality relations that are not contained in DSτ
�w.

Type I. We have seen that it is necessary to consider q-MZVs of the form zaq(s)
with (a j , s j ) = (s j − 1, s j ) or (a j , s j ) = (1, 1). The latter case corresponds to the
words containing the letter θ . We have called all of these values type Ĩ q-MZVs.

Proposition 10.1 Let F−1 = 0, F0 = 1, F1 = 1, ... be the Fibonacci sequence. Then
for all w ≥ 1 we have

�WI
�w = 2w−1 − 1 and �WĨ

�w = F2w − 1.

Proof The first equation follows from the same argument as that for MZVs. It is
given by the number of integer solutions to the inequality

s1 + · · · + sd ≤ w, d ≥ 1, s1 ≥ 2, s2, . . . , sd ≥ 1.

Or, more directly and perhaps much easier, we can count the corresponding admis-
sible words. Clearly, there are 2w−1 ways to form a word consisting of w − 1 letters
where the letters can be either ρ or π . Let Sw be the set of such words. We now show
that there is a one-to-one correspondence between Sw and the set Aw of admissible
word of weight w. First, from each word w ∈ Sw we can obtain a word in Aw by
inserting a letter y after each π in w and attach πy at the end. On the other hand, for
each word in Aw we may chop off the ending πy and removing all the y’s to get a
word in w. This establishes the one-to-one correspondence.
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Table 2 Dimension of q-MZVs of type Ĩ

w 2 3 4 5 6 7

�WĨ
�w 4 12 33 88 232 609

Lower bound of dim ZĨ
�w 3 7 14 27 50 91

dimDSĨ
�w 1 4 17 56 171 497

dimDUĨ
�w \ DSĨ

�w 0 0 1 2 3 6

Deficiency 0 1,0 1,0 3 8 15

We now prove the second equation. Let an (resp. bn) be the number of type Ĩ
q-MZVs of weight n beginning with (a j , s j ) = (1, 1) (resp. (a j , s j ) = (s j − 1, s j )).
Let’s call the twodifferent beginnings 1-initial and2-initial, respectively.Thena1 = 1
and b1 = 0. Now to produce weight n + 1 1-initials one can attach (t, s) = (1, 1)
to the beginning of any weight n type Ĩ q-MZVs. Moreover, one can change the
beginning of any weight n 1-initial to (t, s) = (0, 1) and then attach (t, s) = (1, 1).
Thus an+1 = 2an + bn . To obtain 2-initials of weight n + 1 one either changes a 1-
initial of weight n to begin with (t, s) = (1, 2) or changes a 2-initial value of weight
n to begin with (s, s + 1) from (s − 1, s) (i.e., increases the first argument by 1).
Hence bn+1 = an + bn . Thus it is easy to see that an = F2n−2 and bn = F2n−3 for all
n ≥ 1. Therefore

�WĨ
�w =

2w−2∑

n=0

Fn = F2w − 1

which can be proved easily by induction.

We find up to weight 3 the following identity (49) cannot be proved by DBSFs
and dualities up to weight 3. Let 1n denote the string where 1 is repeated n times.
Then

z(1,1)q [2, 1] = z(1,1)q [1, 1] − z(13)q [13] + z(1,1,0)q [13]. (49)

Interestingly, (49) can be proved using weight 4 DBSFs and dualities. This is why
we put 0 as the final deficiency (Table2).

Having proved (49), we find, up to weight 4, the only one missing relation is

z(2,1)q [3, 1] =z(1,0,1)q [13] − 2z(13)q [1, 2, 1] + z(12,0)q [1, 2, 1]
+z(13)q [2, 12] − z(1,0,1)q [2, 12] − z(13,0)q [14] + z(12,02)q [14].

(50)

In weight 5, there are three missing relations:

z
(14)
q [13, 2] = z

t1
q [14] − z

t2
q [14] − z

(14)
q [s1] − z

t1
q [13, 2] − 2zt3q [15] − 2zt4q [s2] + 2zt5q [15],

z
t4
q [14] = z

(13)
q [2, 12] − z

t2
q [s1] − 2z(14)q [s1] − z

t6
q [s2] + z

(14)
q [s2] + z

t7
q [15] − z

t1
q [14]

−z
(13)
q [2, 1, 2] − z

t5
q [15] + z

t8
q [14] + 2zt2q [14] − z

t2
q [2, 13] − z

t8
q [2, 13],
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Table 3 Dimension of q-MZVs of type I

w 2 3 4 5 6 7 8 9

�WI
�w 1 3 7 15 31 63 127 255

Lower bound of dim ZI
�w 1 2 4 7 11 18 27 42

dimDSI
�w 0 1 3 8 20 45

dimDUI
�w \ DSI

�w 0 0 0 0 0 0

Deficiency 0 0 0 0 0 0

z
(14)
q [13, 2] = 3z(13)q [2, 12] − 3z(13)q [2, 1, 2] − 3zt4q [14] + z

t2
q [14] − z

t3
q [15]

−z
(14)
q [s1] − z

t4
q [s1] − 2zt2q [s1] − z

(13,02)
q [15] − 2z(14)q [s2] + z

t4
q [s2]

+z
t4
q [2, 13] + 2zt1q [14] + z

t1
q [13, 2] + 2z(12,02,1)q [15],

where s1 = (1, 2, 12), s2 = (12, 2, 1), t1 = (1, 0, 12), t2 = (12, 0, 1), s3 = (t2, 0),
t4 = (13, 0), t5 = (1, 02, 12), t6 = (1, 0, 1, 0), t7 = (1, 03, 1), and t8 = (1, 02, 1).

Equation (50) was initially verified numerically. Even with all the DBSFs and
dualities from weight 5 and 6 this still would not follow. Fortunately, we will see in
a moment that this relation can be proved using type G q-MZVs. However, the three
missing relations in weight 5 are only proved numerically, since, unfortunately, there
are too many type G q-MZVs of weight 5 so the computer computation requires too
much memory to provide a solution at the moment.

Using the relations obtained above for type Ĩ q-MZVs we can compute the fol-
lowing data for type I q-MZVs (Table3).

It is consistent with Takeyama’s computation at the end of [26]. However, our
computation shows that the DBSFs from type Ĩ q-MZVs already imply all the rela-
tions among type I q-MVZs, at least when the weight is less than 8. We thus can
think these type Ĩ DBSFs as “regularized” DBSFs for type I q-MVZs.

Conjecture 10.2 All the Q-linear relations of type I q-MZVs can be derived by the
regularized DBSFs, i.e., by the DBSFs for type Ĩ q-MZVs.

Type II. For each fixed weight w ≥ 1 we collect all the type II-admissible words
of the following form since we want to use the duality relations to its maximal utility.
Such admissible words must consist of letters ρ and y only, begin with ρ, end with
y, and the occurrence of ρ and y is at most w each. For example, we have the duality

zIIq(ρ
3y2ρy4) = zIIq(ρ

4yρ2y3) =⇒ zIIq(3, 0, 1, 03) = zIIq(4, 2, 02)

when we consider weight 6.

Proposition 10.3 For all w ≥ 1, the number of type II-admissible words is
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Table 4 Dimension of q-MZVs of type II

w 1 2 3 4 5 6

�WII
�w 1 5 19 69 251 923

Lower bound of dim ZII
�w 1 3 12 30 73 173

dimDSII
�w 0 1 5 28 124 536

dimDUII
�w \ DSII

�w 0 1 2 8 35 127

Deficiency 0 0 0 3,0 19,6 87

�WII
�w =

w−1∑

i=0

w−1∑

j=0

(
i + j

j

)
=
(
2w

w

)
− 1.

Remark 10.4 This is the sequence A030662 according to the On-Line Encyclopedia
of Integer Sequences http://oeis.org.

Proof For thefirst equality, note that if i + 1 (resp. j + 1) is the number of occurrence
of ρ (resp. y) in an admissible word ofWII

�w then we can put one ρ at the beginning
and one y at the end, then put i of the other ρ’s and j of the other y’s in between in
arbitrary order. Thus, by a well-known binomial identity

1 + �WII
�w = 1 +

w−1∑

i=0

w−1∑

j=0

(
i + j

j

)
= 1 +

w−1∑

i=0

(
w + i

w − 1

)
=

w∑

i=0

(
w + i − 1

i

)
=
(
2w

w

)
.

This completes the proof of the proposition.

Up to weight 4, the following three independent relations cannot be proved using
DBSFs and dualities up to weight 4 (Table4).

zIIq [1, 0, 3] = zIIq [2, 2] + 3zIIq [12, 2] + 2zIIq [1, 0, 2, 0] − 2zIIq [12, 0, 1]
+ zIIq [12, 0, 2] + zIIq [12, 1, 0] − zIIq [1, 2, 0, 1] + 2zIIq [2, 0, 12],

zIIq [3, 0] = zIIq [2, 2] − 2zIIq [3, 1] + zIIq [1, 0, 2, 0] − 2zIIq [12, 0, 1] + 2zIIq [12, 1, 0]
− zIIq [2, 0, 2, 0] + zIIq [3, 02, 0] + 2zIIq [3, 02, 1] − zIIq [3, 0, 1, 0] + 2zIIq [3, 1, 02],

zIIq [1, 0, 3] = zIIq [2, 2] + 2zIIq [3, 1] + zIIq [12, 2] + 4zIIq [12, 0, 1] + zIIq [12, 0, 2]
+ zIIq [12, 1, 0] + zIIq [1, 2, 0, 1] + 4zIIq [2, 0, 1, 0] + 2zIIq [2, 1, 0, 1] + 2zIIq [2, 12, 0].

But using DBSFs and dualities in weight 5, these can all be verified. In weight 5,
we have to use the relations from weight 6 to push the deficiency from 19 down to 6.
It is very likely that relations from weight 7 (or even higher) can reduce this further
down to 0. But our computer runs out of memories so this is not proved.

Type III. The set of type III-admissible wordsWIII
�w up to weightw consist of those

of the form π s1−1ρyπ s2 y · · · π sd y with d ≤ w, |s| ≤ w, s1 ≥ 1 and s2, . . . , sd ≥ 0.
First we have

http://oeis.org
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Table 5 Dimension of q-MZVs of type III

w 1 2 3 4 5 6

�WIII
�w 1 5 19 69 251 923

Lower bound of dim ZIII
�w 1 4 12 30 73 173

dimDSIII
�w 0 1 5 28 124 536

dimDUIII
�w \ DSIII

�w 0 0 1 1 5 4

Deficiency 0 0 1,0 10,0 49,6 210,87

Proposition 10.5 For all w ≥ 1, we have

�WIII
�w =

(
2w

w

)
− 1.

Proof Notice there is an onto map from WIII
�w to WII

�w by changing the all the
π ’s to ρ. For the inverse map, we can change all the ρ’s to π except for the one
immediately before the first y. Thus this is a one-to-one correspondence and therefore
the proposition follows from Proposition 10.3.

We find that the deficiency is not zero when the weight w = 3, 4, 5, 6. Moreover,
none of these missing Q-linear relations can be recovered even if we consider all the
DBSFs and dualities of weight up to 6.

The only missing relation in weight 3 that cannot be proved is

zIIIq [1, 0, 1] = 2zIIIq [1, 1, 0] − zIIIq [1, 2, 0] − zIIIq [2, 0, 0] + zIIIq [2, 0, 1]. (51)

Up to weight 4 there are 10 missing, up to weight 5, 49, and up to weight 6, 210.
Below, we will see that all of the 10 missing relations up to weight 4 including (51)
can be proved using type G q-MZVs. Similarly, the deficiency up to weight 5 and 6
can be reduced to 6 and 87, respectively.

Type IV. To study type IV q-MZVs z(s1−1,s2,...,sd )
q [s1, . . . , sd ] we have used the

special type II values zIIq [1, s2, . . . , sd ] to facilitate us (which can be thought as a kind
of regularization). Type IV q-MZVs together with these values have been called type
ĨV q-MZVs.

Proposition 10.6 For all w ≥ 1, we have

�WIV
�w =

(
2w − 1

w

)
− 1, �WĨV

�w =
(
2w

w

)
− 1.

Remark 10.7 The first number gives the sequence A010763 according to the On-
Line Encyclopedia of Integer Sequences http://oeis.org.

Proof Notice that type IV-admissible q-MZVs are in one-to-one correspondence
to the set {(x1, . . . , xl) ∈ (Z≥0)

l |x1 + · · · + xl = j, 0 ≤ j ≤ w − 2, 1 ≤ l ≤ w}. For

http://oeis.org
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Table 6 Dimension of q-MZVs of type ĨV

w 1 2 3 4 5 6

�WĨV
�w 1 5 19 69 251 923

Lower bound of dim ZĨV
�w 1 4 12 30 73 173

dimDSĨV
�w 0 1 5 28 124 536

dimDUĨV
�w \ DSĨV

�w 0 0 1 1 4 4

Deficiency 0 0 1,0 10,0 50,6 210,87

each fixed j we see that the number of nonnegative integer solutions of x1 + · · · +
xl = j is given by

(l+ j−1
l−1

)
. But

w∑

l=1

(
l + j − 1

l − 1

)
=
(
w + j

w − 1

)

by a well-known binomial identity. By the proof similar to that of Proposition 10.3
we see that

�WIV
�w =

w−2∑

j=0

(
w + j

w − 1

)
=
(
2w − 1

w

)
− 1.

For the second equation, we note that in the word form we have the additional
contribution of the following words: ρy and ρyρs1 y . . . ρsd y, |s| < w, 1 ≤ d < w.
The number of such words is given by (i = number of ρ’s, j = number of y’s)

1 +
w−2∑

j=0

w−1∑

i=0

(
i + j

i

)
= 1 +

w−2∑

j=0

(
w + j

w − 1

)
= 1 + �WIV

�w.

Therefore

�WĨV
�w = 1 + 2�WIV

�w = 2

(
2w − 1

w

)
− 1 =

(
2w

w

)
− 1.

The proposition is now proved.

Type ĨV q-MZVs are similar to type II and III in the sense that the deficiency is
often nonzero, at least when the weight is less than 6. For example, in weight 3 we
have the following identity which cannot be proved using the DBSFs and dualities
if we only restrict to type ĨV q-MZVs of weight and depth no greater than 3.

zIVq [2, 0, 1] = zIIq [1, 0, 1] + zIIq [1, 2, 0]

However this identity follows from weight 4 DBSFs and dualities.
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Table 7 Dimension of q-MZVs of type IV

w 2 3 4 5 6

�WIV
�w 2 9 34 125 461

Lower bound of dim ZIV
�w 2 7 20 55 141

dimDSIV
�w 0 7 9 51 205

dimDUIV
�w \ DSIV

�w 0 0 0 2 24

Deficiency 0 0 5,0 17,0 91,56

Comparing Tables5 and 6 we observe that there should be some hidden relations
between type III and ĨV q-MZVs. Although the dimensions seem to be the same, at
least for lower weight, the deficiencies are very different. But using the most general
type G values to be considered in amoment, we canmake all the deficiencies smaller.

We can now use all of the relations among type ĨV q-MZVs to deduce those for
type IV and collect the data in Table7. Furthermore, by converting all the missing
relations using type II values we can reduce all the deficiencies up to weight 5 to 0.
For weight 6, using type II values we can only reduce the deficiency from 91 to 56.
It is possible that this can be further reduced to 0 using weight 7 relations of type II
values.

Type G. To study the general type G q-MZVs z(a1,...,ad )q [s1, . . . , sd ] we need all of
the following relations we have defined so far: DBSFs, P-R and duality relations.

Proposition 10.8 For all w ≥ 1, we have

�WG

�w =
∑

1≤d≤k≤w

∑

x1+···+xd=d+k−1
x1,...,xd≥1

x1x2 · · · xd .

Proof For each fixed depth d and weight k ≤ w, let z(a1,...,ad )q [s1, . . . , sd ] be a type
G-admissible q-MZV satisfying s1 + · · · + sd = k, 1 ≤ a1 ≤ s1, 0 ≤ a j ≤ s j for all
j ≥ 2. When s1, . . . , sd are fixed and a1, . . . , ad vary, the number of such values is
given by

s1(s2 + 1)(s3 + 1) · · · (sd + 1).

Hence the proposition follows by setting x1 = s1, x2 = s2 + 1, . . . , xd = sd + 1.

Let P-RG
�w be the space generated by all the P-R relations of weight bounded by

w. Then we see that DBSFs are far from enough and both P-R relations and duality
relations contribute non-trivially. Table8 provides our computational data for the
lower weight cases. One can see that the number of admissible words increases very
fast so that it is very difficult to prove relations of other type q-MZVs by first finding
all the relations for type G q-MZVs. This is possible theoretically, but not feasible
with our current computer powers.
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Table 8 Dimension of q-MZVs of type G

w 1 2 3 4 5 6

�WG
�w 1 8 49 294 1791 11087

Lower bound of dim ZG
�w 1 4 12 30 73 173

dimDSG
�w 0 1 8 76 ≤608

dim P-RG
�w \

(
DSG

�w
⋃

DUG
�w

)
0 3 27 177 ≤1540

dimDUG
�w\ (

P-

RG
�w

⋃
DSG

�w

) 0 0 2 8 ≤219

Deficiency 0 0 0 3, 0

Table 9 Dimension of type O q-MZVs, proved rigorously for w ≤ 6 and numerically for w ≤ 12

w 2 3 4 5 6 7 8 9 10 11 12

�WO
�w 1 2 4 7 12 20 33 54 88 143 232

Lower bound of dim ZO
�w 1 2 4 7 11 18 27 42 63 95 142

dimDSO
�w ∪ DUO

�w 0 0 0 0 1 2 6 12 25 48 90

Fortunately, by using P-R relations, all the type G q-MZVs can be converted to
Q-linear combinations of type II values. Therefore, the three missing relations in
weight 4 must be provable using weight 5 DBSFs, P-R and duality relations.

Hence, as we expected, the missing relation (51) for type III q-MZVs of weight
3 and the 9 missing relations of weight 4 can now be proved. And furthermore, the
only one missing relation (50) for type Ĩ q-MZVs of weight 4 can now be proved.
We can also obtain the lower bound of dim ZG

�w from that of type II q-MZVs.
Type O. Using Corollary 6.6 we may regard Okounkov’s q-MZVs as Q-linear

combinations of the q-MZVs zaq [s] for suitable auxiliary variable a. Further by using
the P-R relations we may further reduce this to type II q-MZVs where we don’t need
the letter π (Table9).

Applying the same idea as above it is possible to verify the following Okounkov’s
dimension conjecture, at least when the weight is small.

Conjecture 10.9 Let ZO
w be the Q-vector space generated by zOq [s], |s| ≤ w. Then

∞∑

w=0

tw dimZO
�w = 1

1 − t − t2 + t6 + t8 − t13
− 1

1 − t

= t2 + 2t3 + 4t4 + 7t5 + 11t6 + 18t7 + 27t8 + 42t9 + 63t10 + 95t11 + 142t12 + O(t13).

For example,wehave verified all of the followingQ-linearly independent relations
in the lower weight cases up to q100, and we can rigorously prove the first identity
(52) involving only weight 4 and 6 values by using the relations we have found for
type II q-MZVs: (z = zOq )
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4z[6] = z[2, 2] + 12z[3, 3] − 6z[4, 2], (52)

4z[7] = z[2, 3] + z[3, 2] + 8z[3, 4] + 6z[4, 3] − 4z[5, 2],
z[8] = z[2, 4] − z[6] + 2z[3, 3] + 6z[4, 4],
9z[8] = z[6] − 6z[3, 3] + 3z[4, 2] + 20z[3, 5] + 16z[5, 3] − 10z[6, 2],
z[8] = 2z[2, 6] − z[6] + 2z[3, 3] + 4z[3, 5] − 16z[5, 3]

−6z[2, 3, 3] + 3z[2, 4, 2] − 6z[3, 2, 3] − 3z[4, 2, 2],
4z[3, 6] = z[2, 5] + 4z[5, 2] + 3z[3, 4] + 6z[4, 5] + 8z[5, 4] + 2z[7, 2],
8z[9] = z[3, 4] − 5z[2, 5] − 8z[5, 2] − 30z[4, 5] − 2z[4, 3] − 36z[5, 4] − 10z[6, 3],

6z[4, 2] = 10z[6] + 42z[8] − 60z[2, 6] − 12z[3, 3] − 120z[3, 5] + 312z[5, 3]
−15z[2, 2, 2] + 180z[2, 3, 3] − 90z[2, 4, 2] + 180z[3, 2, 3] + 60z[3, 3, 2],

72z[9] = 62z[5, 2] + 40z[2, 5] − 4z[3, 4] + 40z[3, 6] − 2z[4, 3] + 240z[4, 5]
+264z[5, 4] − 5z[2, 2, 3] − 60z[3, 3, 3] − 30z[4, 2, 3],

16z[9] = 2z[3, 4] − 10z[2, 5] − 12z[2, 7] − 8z[5, 2] − 60z[4, 5] − 24z[5, 4]
+4z[2, 3, 2] + 4z[3, 2, 2] + 3z[2, 2, 3] + 24z[2, 3, 4] + 18z[2, 4, 3]
+12z[3, 3, 3] − 12z[2, 5, 2] + 24z[3, 2, 4] + 6z[4, 3, 2],

64z[9] = 40z[2, 5] + 20z[2, 7] − 8z[3, 4] + 44z[5, 2] + 20z[3, 6] − 4z[4, 3]
+240z[4, 5] + 168z[5, 4] − 5z[2, 3, 2] − 5z[2, 2, 3] − 40z[2, 3, 4] − 30z[2, 4, 3]
+20z[2, 5, 2] − 5z[3, 2, 2] − 40z[3, 2, 4] − 100z[3, 3, 3] + 10z[3, 4, 2],

56z[9] = 30z[2, 5] + 20z[2, 7] + 26z[5, 2] − z[3, 4] + 40z[3, 6] − 6z[4, 3]
+180z[4, 5] + 112z[5, 4] − 5z[2, 2, 3] − 5z[2, 3, 2] − 5z[3, 2, 2] − 40z[2, 3, 4]
+20z[5, 2, 2] − 40z[3, 2, 4] − 30z[2, 4, 3] + 20z[2, 5, 2] − 140z[3, 3, 3].

Therefore, Conjecture 10.9 is proved rigorously up to weight 6 (inclusive), and
verified numerically up to weight 12 (inclusive). The list of relations for weight 10
to 12 is too long to be presented here.

11 Conclusions

We have studied various q-analogs of MZVs in this paper using the uniform method
of Rota–Baxter algebras. Among these q-MZVs, there are many Q-linear relations,
most of which can be proved using DBSFs, P-R and duality relations.

From the data collected in Sect. 10, we have seen that for all of the type Ĩ, II, III and
ĨV q-MZVs duality relations are necessary to generate someQ-linear relations among
q-MZVs that are missed by the DBSFs, at least when the weight is large enough.
However, the combination of all the DBSFs and dualities are often not exhaus-
tive yet. Sometimes, this difficulty can be overcome by increasing the weight and
depth. But this seems to fail in some other cases, for example, for type Ĩ q-MZVs of
weight 4.
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We can improve the above situation by considering the more general type G
values. The advantage is that we have the new P-R relations which provide a lot of
new relations between type G q-MZVs, much more than the DBSFs and dualities
combined. The disadvantage is that there are too many type G values so that even
when the weight is 5 our computer power is too weak to produce all the necessary
relations. However, by using P-R relations all type G values can be converted to
Q-linear combinations of type II values which can be handled by computer a lot
easier.

As we mentioned in the introduction our method can be easily adapted to study
the q-MZVs of the following forms:

z(a1,...,ad )q [s1, . . . , sd ], z(s1−a1,...,sd−ad )
q [s1, . . . , sd ],

where a1 ≥ a2 ≥ · · · ≥ ad ≥ 0 are all integers. The monotonicity guarantees that
a good stuffle structure can be defined. For z(a1,...,ad )q [s1, . . . , sd ], we need to use
embedding (A) together with shifting operator S− in defining the stuffle and, for
z(s1−a1,...,sd−ad )
q [s1, . . . , sd ], we need (B) together withS+.
As an application, we are able to prove Okounkov’s Conjecture 10.9 rigorously

up to weight 6 (inclusive), and verify it numerically up to weight 12 (inclusive).
It would be more effective if one can define a shuffle structure for type O values
themselves and find a relation to the differential operator q d

dq which should play an
important role in the study of these values.
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