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Preface

Theoretical Physics and Mathematics have a long tradition of cross-fertilization
with questions, insights and tools having been transferred from either one to the
other. A particularly active area over the past few decades has been the relationship
between amplitudes in perturbative quantum field theories (pQFT) on the physical
side and a certain class of periods and motives on the mathematical side.

Feynman graphs and their associated Feynman integrals play the quintessential
role in the perturbative approach to QFT. The calculation of Feynman integrals is
crucial for accurate and precise theoretical predictions, and these have been cor-
roborated by experiments probing the realm of elementary particles to spectacularly
high accuracy. The computation associated to a particular physical process may a
priori involve thousands or even millions of such integrals, though, and in quite a
few instances physicists have found ways to invoke structure and symmetry that cut
down on that number drastically.

From the point of view of pure mathematics, more precisely, from an arithmetic–
geometric perspective, it is profitable to interpret a typical Feynman integral as an
integral of a rational algebraic differential form over a domain defined by algebraic
equations and inequalities. Such an integral goes under the name period in math-
ematics, and each such period is associated to—or rather a shadow of—a mathe-
matical object called a motive. Motives have a very rich structure that can be used to
obtain relations between Feynman integrals, dramatically simplifying many
computations.

For instance, at low loop order, Feynman integrals tend to produce periods of the
simplest motives, the so-called mixed Tate motives (MTM’s), more specifically
those MTM’s which are defined over a field (in the mathematical sense). The
periods of MTM’s over a number field of the complex numbers are multiple zeta
values and values of multiple polylogarithms.

Multiple zeta values (MZV’s) and multiple polylogarithms (MPL’s) are very
active and rather recent research topics in modern mathematics. In fact, a systematic
study only started in the early 1990s with the (independent) seminal works of
Hoffman and Zagier, although the prehistory can be traced back to Euler in the
eighteenth century. In QFT, some of the first instances can be attributed to the work
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of the theoretical physicists t’Hooft–Veltman (involving dilogarithms, 1972) and to
Broadhurst (first conjecturally new irreducible MZV in weight 8, mid-80s). Research
on MZV’s, MPL’s and related problems has rapidly grown in the past two decades,
and involves several areas of advanced mathematics: number theory, algebraic
K-theory, hyperbolic geometry, combinatorics, arithmetic and algebraic geometry
(motives), Lie group theory (Grothendieck–Teichmüeller theory, Drinfel’d associ-
ators, Kashiwara–Vergne Conjecture, Broadhurst–Kreimer Conjecture), and as
indicated above, show deep connections with high-energy physics.

We would like to mention also that the theory of MZV’s and their relatives has a
strong combinatorial flavour. The common algebraic structures of these numbers,
e.g. shuffle and quasi-shuffle algebras, Lie algebras and Lie series, as well as Hopf
algebras, call for a careful study of algebraic and advanced combinatorics in the
context of underlying mathematical theory.

When studying Feynman integrals at higher loop order, periods associated to
other motives appear, like elliptic polylogarithms. This insight triggered further
interest among mathematicians and physicists alike as it revealed rich and fruitful
contact points between these communities.

In the year 2014, the Instituto de Ciencias Matemáticas—ICMAT in Madrid
hosted a special semester devoted to the study of multiple zeta values and con-
nections to high-energy physics. The present volume is a compilation of papers that
arose during two conferences that took place as part of the special semester.

Let us explain quickly the content of the present volume. The reader can find
here a survey article by Todorov on the relationship between number theory and
QFT as well as a survey by Panzer concerning open problems on periods associated
with Feynman integrals.

The review by Stieberger unfolds and discusses periods appearing in superstring
amplitudes. Similarly, Schlotterer exposes the links between superstring amplitudes
and both classical and elliptic MZV’s. The latter ones are being investigated and
related to elliptic associators in the paper by Matthes on the mathematical side.
Moreover, elliptic polylogarithms play a crucial role in studying the massive sunrise
integral in the paper by Adams, Bogner and Weinzierl on the physical side. Further
relations between periods and high-energy physics are explained in Vergu’s article,
which surveys the role of cluster algebras in scattering amplitudes and in particular
in N ¼ 4 supersymmetric Yang–Mills theory.

There are competing approaches suggesting good definitions of q-analogues of
multiple zeta values satisfying good properties. One version is based on Bachmann
and Kühn’s bi-brackets, which in turn arose from the study of multiple Eisenstein
series. In the present volume, the authors give a conjectural dimension formula for
q-MZV’s, while Bachmann further provides a review of the subject. In a different
direction, Zhao uniformizes different approaches to q-MZV’s by generalizing the
respective double shuffle relations and ‘duality relations’, while Singer extends both
MZV’s and q-MZV’s to non-positive integers in a way that respects the shuffle
relations using Rota–Baxter algebras. The latter contribution treats these q-analo-
gues in connection with the theory of renormalization, a topic which is also at the
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heart of the papers by Nikolov who treats it from an operadic point of view,
invoking vertex algebras, and by Rejzner who investigates algebraic structures in
the so-called Epstein–Glaser renormalization.

The language of moulds developed by Ecalle in the context of his resurgence
theory aims at studying local properties of dynamical systems. It is well known that
Ecalle provides an alternative presentation of multiple zeta values. It is discussed in
the papers by Malvenuto and Patras, who view the shuffle and quasi-shuffle
properties in the context of generalized bialgebras, and the one by Salerno and
Schneps who use the mould language to give a simple and natural proof of
Racinet’s theorem showing that formal MZV’s, subject to double shuffle relations
and modulo products, form a Lie coalgebra.

Other combinatorial structures related to multiple zeta values and polylogarithms
are the subject of the papers by Chapoton, by Ebrahimi-Fard, Gray and Manchon,
by Manchon and by Foissy and Patras.

Furusho investigates the action of the Grothendieck–Teichmüller group, which,
in turn, is closely connected with MZV’s, on a vector space of tangles with an
application to pro-algebraic knots.

A distribution formula for complex and l-adic polylogarithms is the main result
of the paper by Nakamura and Wojtkowiak.

It turns out that many of the above-mentioned objects have a close relationship
also to string amplitudes, as reviewed by Stieberger and Schlotterer.

Finally, the paper by Zudilin gives a new proof of the identity

fðf2; 1g‘Þ ¼ fðf3g‘Þ

using generating series.
As a closing remark, we would like to extend our sincere gratitude to the

ICMAT for its hospitality and to its staff, whose professionalism made the orga-
nization of the semester possible, as well as to all the participants who contributed
to its success.

Last but not least, this volume would not have been possible without the
commitment of all the referees to which we extend our sincere gratitude.

Madrid, Spain José Ignacio Burgos Gil
Trondheim, Norway Kurusch Ebrahimi-Fard
Durham, UK Herbert Gangl
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Perturbative Quantum Field Theory
Meets Number Theory

Ivan Todorov

Dedicated to the memory of Raymond Stora, mentor and friend.

Abstract Feynman amplitudes are being expressed in terms of a well structured
family of special functions and a denumerable set of numbers—periods, studied by
algebraic geometers and number theorists. The periods appear as residues of the
poles of regularized primitively divergent multidimensional integrals. In low orders
of perturbation theory (up to six loops in the massless ϕ4 theory) the family of hyper-
logarithms and multiple zeta values (MZVs) serves the job. The (formal) hyperlog-
arithms form a double shuffle differential graded Hopf algebra. Its subalgebra of
single valued multiple polylogarithms describes a large class of euclidean Feynman
amplitudes. As the grading of the double shuffle algebra of MZVs is only conjec-
tural, mathematicians are introducing an abstract graded Hopf algebra of motivic
zeta values whose weight spaces have dimensions majorizing (hopefully equal to)
the dimensions of the corresponding spaces of real MZVs. The present expository
notes provide an updated version of 2014’s lectures on this subject presented by the
author to a mixed audience of mathematicians and theoretical physicists in Sofia and
in Madrid.
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2 I. Todorov

1 Introduction

In the period preceding the start of the Large Hadron Collider (LHC) at CERN the
“theoretical theorists” indulged into physically inspired speculations. That produced
(occasionally) interestingmathematical insights but the contact of the resulting activ-
ity with real physics, as much as it existed at all, mainly came through its impact on
quantumfield theory (QFT).WhenLHCbeganworking at full swing themajor part of
the theory which does have true applications in particle physics turned out to be good
old perturbative QFT—as it used to be over sixty years ago with quantum electrody-
namics. There is a difference, however. Half a century ago the dominating view still
was that QFT is “plagued with divergences” and that renormalization merely “hides
the difficulties under the rug”. In the words of Freeman Dyson [42] perturbative QFT
was an issue for divorce between mathematics and physics. The work of Stueckel-
berg, Bogolubov, Epstein and Glaser, Stora and others gradually made it clear (in
the period 1950–1980, although it took quite a bit longer to get generally acknowl-
edged) that perturbative renormalization can be neatly formulated as a problem of
extension of distributions, originally defined for non-coinciding arguments in posi-
tion space. A parallel development, due to Stueckelberg and Petermann, Gell-Mann
and Low, Bogolubov and Shirkov (see [12]), culminating in the work of Kenneth
Wilson, the renormalization group became a tool to study QFT—well beyond keep-
ing track of renormalization ambiguities. (The authors of [44] have felt the need,
even in 2012—the year of the final confirmation of the Standard Model through the
discovery of the Higgs boson—to appeal to fellow theorists “to stop worrying [about
divergences] and love QFT”.) It was however a newer development, pioneered by
David Broadhurst that led to an unlikely confluence between particle physics and
number theory (see e.g. [15] and references to earlier work cited there). In a nutshell,
renormalization consists in subtracting a pole term whose residue is an interesting
number—a period in the sense of [51]—associated with the corresponding Feynman
amplitude, independent of the ambiguities inherent to the renormalization procedure.
These numbers also appear in the renormalization group beta-function [48, 68] and,
somewhat mysteriously, in the successive approximation of such an all important
physical quantity as the anomalous magnetic moment of the electron (see [69] as
well as Eq. (36) below). More generally, for rational ratios of invariants and masses,
euclidean Feynman amplitudes are periods [11]. Theorists are trying to reduce the
evaluation of Feynman amplitudes to an expansion with rational coefficients in a
basis of transcendental functions and numbers (see [1, 40] and references therein).
Thanks to the rich algebraic structure of the resulting class of functions, this devel-
opment did not make mathematically minded theorists redundant—substituted by
computer programmers.

The present lecture provides an introductory survey of the double shuffle andHopf
algebra of (formal) hyperlogarithms and of the associated multiple zeta values and
illustrates their applications toQFT on simple examples of evaluatingmassless Feyn-
man amplitudes in the position space picture. We note by passing that this picture
is advantageous for exhibiting the causal factorization principle of Epstein-Glaser
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[43, 63] and it allows an extension to a curved space-time (see [31, 36, 41, 50]). It is
also preferable from computational point of view when dealing with off-shell mass-
less amplitudes (see [37, 70, 73–75]). On the other hand, on shell scattering ampli-
tudes are studied for good reasons in momentum space. Moreover, the pioneering
work of Bloch, Kreimer and others [6, 7, 9, 28, 30] that displayed the link between
Feynman amplitudes, algebraic geometry and number theory is using the “graph
polynomial” in the Schwinger (or Feynman) momentum space α-representation.
The equivalence of the definition of quantum periods in the different pictures is
established in [69].

We begin in Sect. 2 with a brief introduction to position space renormalization
highlighting the role of “Feynman periods”. We point out in Sect. 2.3 that (primitive)
4-point functions in the ϕ4 theory are conformally invariant and can be expressed
as functions of a complex variable z (that appears subsequently as the argument
of multiple polylogarithms). Section3 is devoted to the double shuffle algebra of
hyperlogarithms including the Knizhnik-Zamolodchikov equation for their generat-
ing function L(z). The definition of monodromy of L(z) (31) involves the “Drinfeld
associator”—the generating series of multiple zeta values (MZVs) whose formal and
motivic generalizations are surveyed in Sect. 4. We give, in particular, a pedestrian
summary of Brown’s derivation of the Hilbert-Poincaré series of the dimensions of
weight spaces of motivic zeta values and formulate the more refined Broadhurst-
Kreimer’s conjecture. The Hopf algebra of MZVs is extended at the end of Sect. 4
to a comodule structure of a quotient Hopf algebra of multiple polylogarithms. In
Sect. 5 we review Brown’s theory [17, 18] of single valued hyperlogarithms and
end up with a couple of illustrative applications. An appendix is devoted to a brief
historical survey, including a glimpse into the life and work of Leonhard Euler with
whom originates to a large extent the theory of MZVs and polylogarithms.

2 Residues of Primitively Divergent Amplitudes

2.1 Periods in Position Space Renormalization

A position space Feynman integrand G(�x) in a massless QFT is a rational homo-
geneous function of �x ∈ R

N. If G corresponds to a connected graph with V (≥ 2)
vertices then, in a four-dimensional (4D) space-time, N = 4(V − 1). The integrand
is convergent if it is locally integrable everywhere so that it defines a homogeneous
distribution on R

N. G is superficially divergent if it gives rise to a homogeneous
density in RN of non-positive degree:

G(λ�x) dNλx = λ−κG(�x) dN x , κ ≥ 0 , �x ∈ R
N (λ > 0) ; (1)

κ is called the (superficial) degree of divergence. In a scalar QFT with massless
propagators a connected graph with a setL of internal lines gives rise to a Feynman
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amplitude that is a multiple of the product

G(�x) =
∏

(i, j)∈L

1

x2i j
, xi j = xi − x j , x

2 =
∑

α

xαxα. (2)

If G is superficially divergent (i.e. if κ = 2L − N ≥ 0 where L is the number of
lines inL ) then it is divergent—that is, it does not admit a homogeneous extension
as a distribution onRN . (For more general spin-tensor fields whose propagators have
polynomial numerators a superficially divergent amplitudemay, in fact, turn out to be
convergent—see Sect. 5.2 of [63].) A divergent amplitude is primitively divergent if
it defines a homogeneous distribution away from the small diagonal (xi = x j for all
i, j). The following proposition (Theorem 2.3 of [62]) serves as a definition of both
the residue ResG and of a renormalized (primitively divergent) amplitude Gρ(�x).
Proposition 1 If G(�x) (2) is primitively divergent then for any smooth norm ρ(�x)
on RN one has

[ρ(�x)]εG(�x) − 1

ε
(Res G)(�x) = Gρ(�x) + O(ε). (3)

Here Res G is a distribution with support at the origin. Its calculation is reduced to
the case κ = 0 of a logarithmically divergent graph by using the identity

(Res G)(�x) = (−1)κ

κ! ∂i1 ...∂iκ Res (xi1 ...xiκG)(�x) (4)

where summation is assumed (from 1 to N) over the repeated indices i1, ..., iκ . If G
is homogeneous of degree −N then

(Res G)(�x) = res (G) δ(�x) (for ∂i (x
iG) = 0) . (5)

Here δ(�x) is the N-dimensional Dirac delta function while the numerical residue
res G is given by an integral over the hypersurface Σρ = {�x | ρ(�x) = 1}:

res G = 1

π N/2

∫

Σρ

G(�x)
N∑

i=1

(−1)i−1xidx1 ∧ ... ˆdxi ... ∧ dxN , (6)

(a hat over an argumentmeaning, as usual, that this argument is omitted). The residue
res G is independent of the (transverse to the dilation) surface Σρ since the form in
the integrand is closed in the projective space PN−1.

We note that N is even, in fact, divisible by 4, so that PN−1 is orientable.
The functional res G is a period according to the definition of [51, 61]. Such

residues are often called “Feynman” or “quantum” periods in the present context
(see e.g. [69]). The same numbers appear in the expansion of the renormalization
group beta function (see [48, 68]).
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The convention of accompanying the 4D volume d4x by a π−2 (2π2 being the
volume of the unit sphere S3 in four dimensions), reflected in the prefactor, goes back
at least toBroadhurst and is adopted in [28, 69]; it yields rational residues for one- and
two-loop graphs. For graphs with three or higher number of loops � (= h1, the first
Betti number of the graph) one encounters, in general, multiple zeta values of overall
weight not exceeding 2� − 3 (cf. [15, 69, 70]). If we denote by L and V the numbers
of internal lines and vertices of a connected graph then � = L − V + 1(= V − 1
for a connected 4-point graph in the ϕ4 theory). With the above choice of the 4D
volume form the only residues at three, four and five loops (in the ϕ4 theory) are
integer multiples of ζ(3), ζ(5) and ζ(7), respectively. The first double zeta value,
ζ(3, 5), appears at six loops (with a rational coefficient) (see the census in [69]).
All known residues were (up to 2013) rational linear combinations of multiple zeta
values (MZVs) [15, 69]. A seven loop graph was recently demonstrated [14, 64]
to involve multiple Deligne values—i.e., values of hyperlogarithms at sixth roots of
unity.

Remark 1 The definition of a period is deceptively simple: a complex number is a
period if its real and imaginary parts can be written as absolutely convergent inte-
grals of rational functions with rational coefficients in domains given by polynomial
inequalities with rational coefficients. The set P of all periods would not change if
we replace everywhere in the definition “rational” by “algebraic”. If we denote by
Q̄ the field of algebraic numbers (the inverse of a non-zero algebraic number being
also algebraic) then we would have the inclusions

Q ⊂ Q̄ ⊂ P ⊂ C. (7)

The periods form a ring (they can be added andmultiplied) but the inverse of a period
needs not be a period. Feynman amplitudes in an arbitrary (relativistic, local)QFTcan
be normalized in such away that the only numerical coefficient to powers of coupling
constants and ratios of dimensional parameters that appear are periods [11]. The set
of all periods is still countable although it contains infinitely many transcendent
numbers. A useful criterion for transcendence is given by the Hermite-Lindemann
theorem: if z is a non-zero complex number then either z or ez is transcendental. It
follows that e(= e1) is transcendental and so is π as eiπ = −1 and i is algebraic.
Furthermore, the natural logarithm of an algebraic number different from 0 and 1 is
transcendental. Examples of periods include the transcendentals

π =
∫∫

x2+y2≤1
dxdy, ln n =

∫ n

1

dx

x
, n = 2, 3, ..., (8)

as well as the values of iterated integrals, to be introduced in Sect. 3, at algebraic
arguments. They include both the classical MZVs as well as the above mentioned
multiple Deligne values. The basis e of natural logarithms, the Euler constant
γ = −Γ ′(1), as well as ln(ln n), ln(ln(ln n)), ..., and 1/π are believed (but not
proven) not to be periods.
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2.2 Vacuum Completion of 4-Point Graphs in ϕ4

In the important special case of the ϕ4 theory (in four space-time dimensions) the
definition of residue admits an elegant generalization which also simplifies its prac-
tical calculation. Following Schnetz [69, 70] we associate to each 4-point graph Γ

of the ϕ4 theory a completed vacuum graph Γ̄ , obtained from Γ by joining all four
external lines in a new vertex “at infinity”. An n-vertex 4-regular vacuum graph—
having four edges incident with each vertex and no tadpole loops—gives rise to n
4-point graphs (with (n − 1) vertices each) corresponding to the n possible choices
of the vertex at infinity. The introduction of such completed graphs is justified by the
following result (see Proposition 2.6 and Theorem 2.7 of [69] as well as Sect. 3.1 of
[75]).

Theorem 1 A 4-regular vacuum graph Γ̄ with at least three vertices is said to be
completed primitive if the only way to split it by a four edge cut is by splitting off one
vertex. A 4-point Feynman amplitude corresponding to a connected 4-regular graph
Γ is primitively divergent iff its completion Γ̄ is completed primitive. All 4-point
graphs with the same primitive completion have the same residue.

The period of a completed primitive graph Γ̄ is equal to the residue of each
4-point graph Γ = Γ̄ − v (obtained from Γ̄ by cutting off an arbitrary vertex v).
The resulting common period can be evaluated from Γ̄ by choosing arbitrarily three
vertices {0, e (s.t. e2 = 1),∞}, setting all propagators corresponding to edges of
the type (xi ,∞) equal to 1 and integrating over the remaining n − 2 vertices of Γ

(n = V (Γ )):

Per(Γ̄ ) ≡ res(Γ ) =
∫

Γ (e, x2, ..., xn−1, 0)
n−1∏

i=2

d4xi
π2

. (9)

The proof uses the conformal invariance of residues in the ϕ4-theory.
There are infinitely many primitively divergent 4-point graphs (while there is a

single primitive 2-point graph—corresponding to the self-energy amplitude (x212)
−3).

A remarkable sequence of �-loop graphs (� ≥ 3) with four external lines, the zig-zag
graphs, can be characterized by their n-point vacuum completions Γ̄n, n = � + 2
as follows. Γ̄n admits a closed Hamiltonian cycle that passes through all vertices
in consecutive order such that each vertex i is also connected with i ± 2 (mod n).
These graphs were conjectured by Broadhurst and Kreimer [15] in 1995 and proven
by Brown and Schnetz [29] to have residues

Per(Γ̄�+2) = 4 − 43−�

�

(
2� − 2

� − 1

)
ζ(2� − 3) for � = 3, 5, ... ;

= 4

�

(
2� − 2

� − 1

)
ζ(2� − 3) for � = 4, 6, ... . (10)
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We note that the periods for � = 3, 4 also belong to the with � spokes series and are
given by

(2�−2
�−1

)
ζ(2� − 3) (cf. (75) below).

2.3 Primitive Conformal Amplitudes

Each primitively divergent Feynman amplitude G(x1, ..., x4) defines a conformally
covariant (locally integrable) function away from the small diagonal x1 = ... = x4.
On the other hand, every four points, x1, ..., x4, can be confined by a conformal
transformation to a projective 2-plane (for instance by sending a point to infinity and
another to the origin). Then we can represent each euclidean point xi by a complex
number zi so that

x2i j = |zi j |2 = (zi − z j )(z̄i − z̄ j ). (11)

Tomake the correspondence between 4-vectors x and complex numbers z explicit we
fix a unit vector e and let n be a variable unit vector parametrizing a 2-sphere orthog-
onal to e. Then any euclidean 4-vector x can be written (in spherical coordinates) in
the form:

x = r(cosρ e + sinρ n) , e2 = 1 = n2 , en = 0 , r ≥ 0 , 0 ≤ ρ ≤ π . (12)

In these coordinates the 4D volume element takes the form

d4x = r3drsin2ρ dρ d2n ,

∫

S2
d2n = 4π . (13)

We associate with the vector x (12) a complex number z such that:

z = reiρ → x2(= r2) = zz̄ , (x − e)2 = |1 − z|2 = (1 − z)(1 − z̄) (14)

∫

n∈S2
d4x

π2
= |z − z̄|2 d

2z

π
,

∫

S2
δ(x)d4x = δ(z)d2z . (15)

For a graph with four distinct external vertices in the ϕ4 theory the amplitude
(integrated over the internal vertices) has scale dimension 12 (in mass or inverse
length units) and can be written in the form:

G(x1, ..., x4) = g(u, v)∏
i< j x

2
i j

= F(z)∏
i< j |zi j |2

(16)

where the indices run in the range 1 ≤ i < j ≤ 4, the (positive real) variables u, v,
and (the complex) z are conformally invariant crossratios:
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u = x212x
2
34

x213x
2
24

= zz̄ , v = x214x
2
23

x213x
2
24

= |1 − z|2 , z = z12z34
z13z24

. (17)

The crossratios z and z̄ are the simplest realizations of the argument z of the
hyperlogarithmic functions introduced in the next section. They also appear (as a
consequence of the so called dual conformal invariance [38, 39]) in the expressions
of momentum space integrals like

T (p21, p
2
2, p

2
3) =

∫
d4k

π2k2(p1 + k)2(k − p3)2
= F(z)

p23
(18)

where p1 + p2 + p3 = 0, p21
p23

= zz̄, p22
p23

= |1 − z|2 (see Eqs. (5–9) of [40]).

3 Double Shuffle Algebra of Hyperlogarithms

The story of polylogarithms begins with the dilogarithmic function (see the inspired
and inspiring lecture [81] as well as the brief historical survey in the Appendix). Here
we shall start instead with the modern general notion of a hyperlogarithm [17, 19]
whose physical applications are surveyed in [40, 64].

Let σ0 = 0, σ1, ..., σN be distinct complex numbers corresponding to an alphabet
X = {e0, ..., eN }. Let X∗ be the set of words w in this alphabet including the empty
word ∅. The hyperlogarithm Lw(z) is an iterated integral [19, 33] defined recursively
in any dense simply connected open subset U of the punctured complex plane D =
C \ Σ, Σ = {σ0, ..., σN } by the differential equations1

d

dz
Lwσ (z) = Lw(z)

z − σ
, σ ∈ Σ , L∅ = 1 , (19)

and the initial condition

Lw(0) = 0 for w �= 0n(= 0 . . . 0), L0n (z) = (ln z)n

n! , L∅ = 1. (20)

Denoting by σ n a word of n consecutive σ ’s we find, for σ �= 0,

Lσ n (z) = (ln(1 − z
σ
))n

n! . (21)

There is a correspondence between iterated integrals and multiple power series:

1We use following [20, 70] concatenation to the right. Other authors, [14, 40], use the opposite
convention. This also concerns the definition of coproduct (63) (65) below.
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(−1)d Lσ10n1−1...σd0nd−1(z) = Lin1,...,nd (
σ2

σ1
, ...,

σd

σd−1
,
z

σd
) (22)

where Lin1,...,nd is given by the d-fold series

Lin1,...,nd (z1, ..., zd) =
∑

1≤k1<...<kd

zk11 ...zkdd
kn11 ...kndd

. (23)

More generally, we have

(−1)d L0n0σ10n1−1...σd0nd−1(z) =
∑

k0≥0 ki≥ni ,1≤i≤d
k0+...+kd=n0+...+nd

(−1)k0+n0
d∏

i=1

(
ki − 1
ni − 1

)
L0k0 (z) Lk1−kr (

σ2

σ1
, ...,

σd

σd−1
,
z

σd
). (24)

In particular, L01(z) = Li2(z) − ln zLi1(z) = Li2(z) + ln z ln(1 − z). The number
of letters |w| = n0 + ... + nd of a word w defines its weight, while the number d of
non zero letters is its depth. We observe that the product LwLw′ of two hyperloga-
rithms of weights |w|, |w′| and depths d, d ′ can be expanded in hyperlogarithms of
weight |w| + |w′| and depth d + d ′ (as the product of simplices can be expanded
into a sum of higher dimensional simplices). This observation can be formalized as
follows. The set X∗ of words can be equipped with a commutative shuffle product
w ��w′ defined recursively by

∅ ��w = w(= w ��∅) , au ��bv = a(u ��bv) + b(au ��v) (25)

where u, v,w are (arbitrary) words while a, b are letters (note that the empty word
∅ is not a letter). We denote by

OΣ = C
[
z,

( 1

z − σi

)

i=1,...,N

]
(26)

the ring of regular functions on D. Extending by OΣ linearity the correspon-
dence w → Lw one proves that it defines a homomorphism of shuffle algebras
OΣ ⊗ C(X) → LΣ where LΣ is the OΣ span of Lw,w ∈ X∗. The commutativ-
ity of the shuffle product is made obvious by the identity

Lu��v = LuLv(= LvLu). (27)

It is easy to verify, in particular, that the dilogarithm Li2(z)(= −L10(z)) given by
(23) for d = 1, n1 = 2 disappears from the shuffle product:

L0��1(z) = L01(z) + L10(z) = L0(z)L1(z). (28)
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If the shuffle relations are suggested by the expansion of products of iterated inte-
grals, the product of series expansions of type (23) suggests the (also commutative)
stuffle product. Rather than giving a cumbersome general definition we shall illus-
trate the rule on the simple example of the product of depth one and depth two factors
(cf. [40]):

Lin1,n2(z1, z2)Lin3(z3) = Lin1,n2,n3(z1, z2, z3) +
Lin1,n3,n2(z1, z3, z2) + Lin3,n1,n2(z3, z1, z2) +

Lin1,n2+n3(z1, z2z3) + Lin1+n3,n2(z1z3, z2). (29)

We observe the that the multiple polylogarithms of one variable (with z1 = ... =
zd−1 = 1 considered in [18, 70] span a shuffle but not a stuffle algebra. As seen from
the above example the stuffle product also respects the weight but (in contrast to the
shuffle product) only filters the depth (the depth of each term in the right hand side
does not exceed the sum of depths of the factors in the left hand side (which is three
in Eq. (29)).

It is convenient to rewrite the definition of hyperlogarithms in terms of a formal
series L(z) with values in the (free) tensor algebra C(X) (the complex vector space
generated by all words in X∗) which satisfies the Knizhnik-Zamoldchikov equation:

L(z) :=
∑

w

Lw(z)w,
d

dz
L(z) = L(z)

N∑

i=0

ei
z − σi

. (30)

One assigns weight −1 to eσ , so that L(z) carries weight zero. If the index of the
hyperlogarithm Lw is expressed by its (potential) singularities σi the word w which
multiplies it in the series (30) should be written in terms of the corresponding (non-
commuting) symbols ei (thus justifying the apparent doubling of notation). In the
special case when the alphabet X consists of just two letters e0, e1 corresponding
to σ0 = 0, σ1 = 1, L(z) is the generating function of the classical multipolyloga-
rithms while its value at z = 1, Z := L(1) is the generating function of MZVs. In
these notations the monodromy of L around the points 0 and 1 is given by

M0 L(z) = e2π ie0 L(z) , M1 L(z) = Z e2π ie1 Z−1L(z), Z =
∑

w

ζww, (31)

so that M0L0n (z) = L0n (z) + 2π i L0(n−1) (z), M1Lin(z) = Lin(z) − 2π i L0(n−1) (z).
The first relation (31) follows from the fact that L(z) is the unique solution of the
Knizhnik-Zamolodchikov equation obeying the “initial” condition

L(z) = ee0 ln zh0(z), h0(0) = 1, (32)

h0(z) being a formal power series in the words in X∗ that is holomorphic in z in
the neighborhood of z = 0. The second relation (31) is implied by the fact that there
exists a counterpart h1(z) of h0, holomorphic around z = 1 and satisfying h1(1) = 1
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such that
L(z) = Z ee1 ln(1−z) h1(z) (33)

(see [70] or Appendix C of [73]). This construction can be viewed as a special case
(corresponding to N = 1) of a monodromy representation of the fundamental group
of the punctured plane D (studied in Sect. 6 of [17]).

The next simplest case, N = 2, including the square roots of unity ±1, has been
considered by physicists [65] under the name harmonic polylogarithms. The value
of the function

L−10n−1(z) =
∞∑

k=1

(−1)k−1 z
k

kn
= −Lin(−z) (34)

at z = 1 is the Euler phi function [4] (alias, Dirichlet eta function)

φ(n) =
∞∑

k=1

(−1)k−1 1

kn
= (1 − 21−21−n

)ζ(n), φ(1) = ln(2), (35)

a special case of the Dirichlet L-functions [71]. It is remarkable that the anomalous
magnetic moment of the electron, the most precisely measured quantity in physics,
is expressed in terms of values of the Dirichlet eta function at integer points:

g − 2

2
= 1

2

α

π
+ (φ(3) − 6φ(1)φ(2) + 197

2432
)(

α

π
)2 + ... (36)

(see [69] where also the next (α3-)contribution is expressed in terms of (multiple)
eta values). The same weight three combination, φ(3) − 6φ(1)φ(2), appears in the
second order of the Lamb shift calculation (see [57]).

Remark 2 The repeated application of the recursive differential equations (19) leads
to dLσ (z) = dz

z−σ
(d1 = 0). Brown [17] calls such differential equations unipotent

and proves that the double shuffle algebra LΣ is a differential graded (by the weight)
algebra.

The weight of consecutive terms in the expansion of L(z) (33) is the sum of the
weights of hyperlogarithms and the zeta factors. It is thus natural to begin the study
of multiple polylogarithms with the algebra of MZVs.

4 Formal Multizeta Values

4.1 Shuffle Regularized MZVs

We now turn to the alphabet X of two letters e0, e1 corresponding to σ0 = 0, σ1 = 1
and restrict the multiple polylogarithm (23) to a single variable:
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Lin1,...,nd (z) =
∑

1≤k1<...<kd

zkd

kn11 ...kndd
.

The MZV ζ(n1, ..., nd) is then defined as its value at 1 whenever the corresponding
series converges. Using also (22) we can write:

(−1)dζ10n1−1...10nd−1 = ζ(n1, ..., nd) =
∑

1≤k1<...<kd

1

kn11 ...kndd
for nd > 1. (37)

The convergent MZVs of a given weight satisfy a number of shuffle and stuffle
identities. Looking for instance at the shuffle (sh) and the stuffle (st) products of two
−ζ10 = ζ(2) we find:

sh : ζ 2
10 = 4ζ1100 + 2ζ1010(= 4ζ(1,3) + 2ζ(2, 2)); st : ζ(2)2 = 2ζ(2, 2) + ζ(4);

hence ζ(4) = 4ζ(1, 3) = ζ(2)2 − 2ζ(2, 2).
(38)

There are no non-zero convergent words of weight 1 and hence no shuffle or stuffle
relations of weight 3. On the other hand, already Euler has discovered the rela-
tion: ζ(1, 2) = ζ(3). Thus shuffle and stuffle relations among convergent words do
not exhaust all known relations among MZVs of a given weight. Introducing the
divergent zeta values which correspond to nd = 1 we observe that they cancel in the
difference between the shuffle and stuffle products u ��v − u ∗ v of divergent words.
For instance, at weight 3 we have

ζ((1) ��(2)) = 2ζ(1, 2) + ζ(2, 1); ζ((1) ∗ (2)) = ζ(1, 2) + ζ(3) + ζ(2, 1).
(39)

Extending the homomorphism w → ζ(w) as a homomorphism of both the shuffle
and the stuffle algebras to divergent words, assuming, in particular, that ζ((1) �
�(2)) = ζ((1) ∗ (2)) = ζ(1)ζ(2) and taking the difference of the two equations (39)
we observe that all divergent zeta’s cancel and we recover Euler’s identity above.

Remark 3 In fact, the shuffle product is naturally defined (as we did in (25)) in the
two-letter alphabet {0, 1} used as lower indices, while the stuffle product has a simple
formulation in the infinite alphabet of all positive integers, appearing (in parentheses)
as arguments of zeta. Equation (37) provides the translation between the two:

�n = (n1, ..., nd) ↔ (−1)d , ρ(�n) for ρ(�n) = 10n1−1...10nd−1. (40)

Using this correspondence one obtains, in particular, the first relation (39).

It is useful to introduce shuffle regularized MZVs using the following result (see
Lemma 2.2 of [20]).

Proposition 2 There is a unique way to define a set of real numbers I (a0; a1, ..., an;
an+1) for any ai ∈ {0, 1}, such that
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(i) I (0; 1, a2, ....an−1, 0; 1) = (−1)dζ(n1, ..., nd ) for ρ(�n) = (1, a2, ..., an−1, 0);
(i i) I (a0; a1; a2) = 0, I (a0, a1) = 1 for all a0, a1, a2 ∈ {0, 1};
(i i i) I (a0; a1, ..., ar ; an+1)I (a0; ar+1, ..., ar+s) =

∑

σ∈Σ(r,s)

I (a0; aσ(1), ..., aσ(r+s); an+1) (r + s = n);

(iv) I (a; a1, ..., an; a) = 0 for n > 0, a ∈ {0, 1}
(v) I (a0; a1, ..., an; an+1) = (−1)n I (an+1; an, ..., a1; a0);
(vi) I (a0; a1, ..., an; an+1) = I (1 − an+1; 1 − an, ..., 1 − a1; 1 − a0). (41)

HereΣ(r, s) is the set of permutations of the indices (1, ..., n) preserving the order of
the first r and the last s among them; Eq. (v) is the reverse of path formula, while (vi)
expresses functoriality with respect to the map t → 1 − t . Equation ζ(n1, ..., nd) =
(−1)d I (0; ρ(�n); 1) then defines the shuffle regularized zeta values for all nd ≥ 1.
Condition (ii) implies, in particular, ζ(1) = 0.

In fact, it suffices to add a condition involving multiplication by the divergent
word (1),

ζ((1) ��w − (1) ∗ w) = 0 for all convergent wordsw, (42)

to the shuffle and stuffle relations among convergent words in order to obtain all
known relations among MZVs of a given weight. For w = (n), n ≥ 2 (a word of
depth 1), Eq. (42) gives

ζ((1) ��(n) − (1) ∗ (n)) =
n−1∑

i=1

ζ(i, n + 1 − i) − ζ(n + 1) = 0 (43)

(a relation known to Euler). The discovery (and the proof) that

ζ(2n) = − B2n

2(2n)! (2π i)
2n, B2 = 1

6
, B4 = − 1

30
, B6 = 1

42
, (−1)n−1B2n ∈ Q>0,

(44)
where Bn are the (Jacob) Bernoulli numbers, was among the first that made Euler
famous (see Appendix). Nothing is known about the transcendence of ζ(n) (or of
ζ(n)

πn ) for odd n.We introduce followingLeila Schneps [67] the notion of theQ-algebra
FZ of formal MZVs ζ f which satisfy the relations:

ζ f (1) = 0, ζ f (u)ζ f (v) = ζ f (u ��v) = ζ f (u ∗ v), ζ f ((1) ��w − (1) ∗ w) = 0.
(45)

The algebra FZ = ⊕
n FZ n is weight graded and

FZ 0 = Q,FZ 1 = {0},FZ 2 = 〈ζ(2)〉,FZ 3 = 〈ζ(3)〉,FZ 4 = 〈ζ(4)〉,
FZ 5 = 〈ζ(5), ζ(2)ζ(3)〉,FZ 6 = 〈ζ(2)3, ζ(3)2〉,

FZ 7 = 〈ζ(7), ζ(2)ζ(5), ζ(2)2ζ(3)〉, (46)
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where < x, y, ... > is theQ vector space spanned by x, y, ... (and we have replaced
ζ f by ζ in the right hand side for short). Clearly, there is a surjection ζ f → ζ of
FZ onto Z . The main conjecture in the theory of MZVs is that this surjection
is an isomorphism of graded algebras. This is a strong conjecture. If true it would
imply that there is no linear relation among MZVs of different weights over the
rationals. Actually, a less obvious statement is valid: such an isomorphism would
imply that all MZVs are transcendental. Indeed, if a non-zero multiple zeta value
is algebraic, then expanding out its minimal polynomial according to the shuffle
relation ζ(u)ζ(v) = ζ(u ��v) (starting with ζ 2(w)) would give a linear combination
of multiple zetas in different weights equal to zero, contradicting the weight grading.
In fact, we only know that there are infinitely many linearly independent overQ odd
zeta values (Ball and Rivoal, 2001) and that ζ(3) is irrational (Apéry, 1978). From
now on, we shall follow the physicists’ practice to treat this conjecture as true and
to omit the f ’s in the notation for (formal) MZVs.

Examples: E1. In order to see that the space Z4 of weight four zeta values is
1-dimensional we should add to Eqs. (38) the relation (43) for n = 3 and its depth
three counterpart:

ζ((1) ��(1, 2) − (1) ∗ (1, 2)) = ζ(1, 1, 2) − ζ(1, 3) − ζ(2, 2)(= ζ(1, 1, 2) − ζ(4)) = 0.
(47)

This allows to express all zeta values of weight four as (positive) integer multiples
of ζ(1, 3) (see Eq. (B.8) of [73]).

E2. The shuffle and the stuffle products corresponding to ζ(2)ζ(3) give two rela-
tions which combined with (43) for n = 4 allow to express the three double zeta
values of weight five in terms of simple ones:

ζ(1, 4) = 2ζ(5) − ζ(2)ζ(3), ζ(2, 3) = 3ζ(2)ζ(3) − 11

2
ζ(5),

ζ(3, 2) = 9

2
ζ(5) − 2ζ(2)ζ(3). (48)

In general, the number of convergentwords ofweight n and depth d in the alphabet
{0, 1} is (n−2

d

)
, so their number at weight n is 2n−2. As it follows from Eq. (46) the

number of relations also grows fast: there are six relations among the eight MZVs
at weight five; 14 such relations at weight six, 29, at weight seven. One first needs a
double zeta value, say ζ(3, 5), in order to write a basis (of four elements) at weight
eight (there being 60 relations among the 26 elements ofFZ 8). Taking the identities
among (formal) zeta values into accountwe canwrite the generating series Z ofMZV
(also called Drinfeld’s associator) in terms of multiple commutators of e0, e1:

Z = 1 + ζ(2)[e0, e1] + ζ(3)[[e0, e1], e0 + e1] + .... (49)

It is natural to ask what is the dimension dn of the space FZ n of (formal) MZVs
of any given weight n and then to construct a basis of independent elements. These
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problems have only been solved for the so called motivic MZV. Here is a simple-
minded substitute of their abstract construction.

4.2 Hopf Algebra of Motivic Zeta Values

Consider the concatenation algebra

C = Q〈 f3, f5, ...〉, (50)

the free algebra over Q on the countable alphabet { f3, f5, ....} (see Example 21 in
[77]). The algebra of motivic zeta values is identified (non-canonically) with the
algebra

C [ f2] = C ⊗Q Q[ f2], (51)

which plays an important role in the theory of mixed Tate motives (see Sect. 3 of
[20]). The algebra C [ f2] is graded by the weight (the sum of indices of fi ) and it
is straightforward to compute the dimension dn of the weight spacesC [ f2]n for any
n. Indeed, the generating (or Hibert-Poincaré) series for the dimensions dC

n of the
weight n subspace of C is given by

∑

n≥0

dC
n tn = 1

1 − t3 − t5 − ...
= 1 − t2

1 − t2 − t3
(52)

while the corresponding series of the second factor Q[ f2] in (51) is (1 − t2)−1.
Multiplying the two we obtain the dimensions dn of the weight spaces conjectured
by Don Zagier:

∑

n≥0

dnt
n = 1

1 − t2 − t3
, d0 = 1, d1 = 0, d2 = 1, dn+2 = dn + dn−1. (53)

Here is awonderfulmore detailed conjecture advancedbyBroadhurst andKreimer
[15] (1997); its motivic version is still occupying mathematicians.

Let Z r
n be the linear span of ζ(n1, ..., nk), n1 + ... + nk = n, k ≤ r ; we define

dn,r as the dimension of the quotient space Z r
n /Z r−1

n . Broadhurst and Kreimer
have advanced the following conjecture for the generating series of dn,r (based on
experience with MZVs appearing in Feynman amplitudes):

D(X,Y ) = 1 + E (X)Y

1 − O(X)Y + S (X)Y 2(1 − Y 2)
=

∑
dn,r X

nY r . (54)

Here E (X) and O(X) generate series of even and odd powers of X ,
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E (X) = X2

1 − X2
= X2 + X4 + ..., O(X) = X3

1 − X2
= X3 + X5 + ..., (55)

while S (X) is the generating series for the dimensions of the spaces of cuspidal
modular forms (see for background the physicists’ oriented survey [80]):

S (X) = X12

(1 − X4)(1 − X6)
. (56)

Setting in (54) Y = 1 we recover the Zagier conjecture (53) (with dn = ∑
r dn,r ),

proven for motivic MZVs. The ansatz (54) can presently only be derived in the
motivic case under additional assumptions (cf. [32]).

The concatenation algebra C , identified with the quotient

C = C [ f2]/Q[ f2], (57)

can be equipped with a Hopf algebra structure (with fi as primitive elements) with
the deconcatenation coproduct Δ : C → C ⊗ C given by

Δ( fi1 ... fir ) = 1 ⊗ fi1 ... fir + fi1 ... fir ⊗ 1 +
r−1∑

k=1

fi1 ... fik ⊗ fik+1 ... fir . (58)

This coproduct can be extended to the trivial comodule C [ f2] (51) by setting

Δ : C [ f2] → C ⊗ C [ f2], Δ( f2) = 1 ⊗ f2 (59)

(and assuming that f2 commutes with fodd ). Remarkably, there appear to be a one-
to-one (albeit non-canonical) correspondence between the bases of the weight spaces
Zn and C [ f2]n as displayed in the following list ([20], 3.4)

〈ζ(2)〉 ↔ 〈 f2〉; 〈ζ(3)〉 ↔ 〈 f3〉; 〈ζ(2)2〉 ↔ 〈 f 22 〉;
〈ζ(5), ζ(2)ζ(3)〉 ↔ 〈 f5, f2 f3(= f3 f2)〉; 〈ζ(2)3, ζ(3)2〉 ↔ 〈 f 32 , f3 �� f3〉;
〈ζ(7), ζ(2)ζ(5), ζ(2)2ζ(3)〉 ↔ 〈 f7, f2 f5, f 22 f3〉;
〈ζ(2)4, ζ(2)ζ(3)2, ζ(3)ζ(5), ζ(3, 5)〉 ↔ 〈 f 42 , f3 �� f3 f2, f3 �� f5, f5 f3〉. (60)

There is a counterpart of Proposition 2 definingmotivic iterated integralswhoseHopf
algebra,2 [47], is non-canonically isomorphic toC [ f2]. It allows to define a surjective
period map C [ f2] → Z onto the algebra of real MZVs ([20] Theorem 3.5). Since,
on the other hand, C [ f2] satisfies the defining relations of the formal zeta values
we have the surjections FZ → C [ f2] → Z . Our main conjecture would then
mean that the two (surjective) maps are also injective and thus define isomorphisms

2Brown’s definition which we follow differs from Goncharov’s (adopted in [32]) in that the motivic
ζm(2) is non-zero.
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of graded algebras.. If true it would imply that the (infinite sequence of) numbers
π, ζ(3), ζ(5), ... are transcendental algebraically independent over the rationals (cf.
[77]). It would also fix the dimension of the weight spacesZn to be equal to dn (53).
Presently, we only know that this is true for n = 0, 1, 2, 3, 4; in general, the above
cited results prove that

dimZn ≤ dn , dimZn = dn for n ≤ 4 . (61)

Remark 4 The validity of the above sharpened conjecture would imply, in particular,
that ζ(2n + 1) are primitive elements of the Hopf algebra of MZVs:

Δ(ζ(2n + 1)) = ζ(2n + 1) ⊗ 1 + 1 ⊗ ζ(2n + 1). (62)

Eq. (44) precludes the possibility of extending this property to even zeta values.
Indeed, it implies the relation ζ(2n) = bnζ(2)n, bn = (24)n |B2n |

2(2n)! which is only com-
patible with the one-sided coproduct Δζ(2) = 1 ⊗ ζ(2).

If for weights n ≤ 7 one can express all MZVs in terms of (products of) simple
zeta values (of depth one) the last equation (60) shows that for n ≥ 8 this is no longer
possible. Brown [21] has established that the Hoffman elements ζ(n1, ..., nd) with
ni ∈ {2, 3} form a basis of motivic zeta values for all n (see also [35, 77]).

The coproduct for MZV, described in Remark 4 extends to hyperlogarithms and
can be formulated in terms of the regularized iterated integrals of Proposition 2—see
Theorem 3.8 of [20] and Sect. 5.3 of [40]. Here we shall just reproduce the special
case of the coproduct of a classical polylogarithm:

ΔLin(z) = Lin(z) ⊗ 1 +
n−1∑

k=0|

(ln z)k

k! ⊗ Lin−k(z). (63)

According to Remark 4, specializing to z = 1 in (63) for even n leads to a con-
tradiction unless we factor the algebra of hyperlogarithms by ζ(2) or, better, by
ln(−1) = iπ(= √−6ζ(2)) setting

H := LΣ/ iπLΣ so that LΣ = H [iπ ] . (64)

The coaction Δ is then defined on the comodule LΣ as follows:

Δ : LΣ → H ⊗ LΣ , Δ(iπ) = 1 ⊗ iπ . (65)

The asymmetry of the coproduct is also reflected in its relation to differentiation and
to the discontinuity discσ = Mσ − 1:

Δ(
∂

∂z
F) = (

∂

∂z
⊗ id)ΔF , Δ(discσ F) = (id ⊗ discσ )ΔF . (66)
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We leave it to the reader to verify that e.g. for F = Li2(z) both sides of (66) give
the same result. This allows us, in particular, to considerLΣ as a differential graded
Hopf algebra.

5 Single-Valued Hyperlogarithms. Applications

Knowing the action of the monodromy Mσi around each singular point of a hyper-
logarithm one can construct single valued hyperlogarithms in the tensor product of
LΣ with its complex conjugate [17]. We shall survey this construction for classical
multiple polylogarithms LΣ = Lc, defined as O-linear combination of Lw(z) for
w, words in the “Morse alphabet” X = {e0, e1} ↔ {0, 1}, where O = C[z, 1

z ,
1

z−1 ].
This case is spelled out in [18, 70]. The tensor product L̄c ⊗ Lc contains functions
of (z̄, z) transforming under arbitrary representations of the monodromy group (see
Theorem 7.4 of [17]) including the trivial one,—i.e. the single-valued multiple poly-
logarithms (SVMPs). We introduce an ŌO basis of homogeneous SVMPs Pw(z)
and will denote by

PX (z) =
∑

w∈X∗
Pw(z)w (67)

its generating series. Their significance stems from the fact that a large class of
euclidean Feynman amplitudes are single valued. The following theorem is a special
case of Theorem 8.1 proven by Brown [17] (coinciding with Theorem 2.5 of [70]).

Theorem 2 There exists a unique family of single-valued functions Pw(z),w ∈
X∗, z ∈ C \ {0, 1} such that their generating function (67) satisfies the following
Knizhnik-Zamolodchikov equations and initial condition:

∂PX (z) = PX (z)(
e0
z

+ e1
z − 1

) , ∂ := ∂

∂z
, ∂̄ := ∂

∂ z̄
,

∂̄PX (z) = (
e0
z̄

+ e′
1

1 − z̄
)PX (z) , Z−e0,−e′

1
e′
1Z

−1
−e0,−e′

1
= Ze0,e1e1Z

−1
e0,e1 ,

PX (z) ∼ ee0 ln(zz̄) for z ∼ 0 . (68)

The functions Pw(z) are linearly independent over ŌO and satisfy the shuffle rela-
tions. Every element of their linear span has a primitive with respect to ∂

∂z , and

every single valued function F(z) ∈ L̄cLc can be written as a unique ŌO-linear
combination of Pw(z).

The equation for e′
1 is dictated by the expression for the monodromy of Lw(z) (31)

around z = 1 and can be solved recursively in terms of elements of the Lie algebra
over the ring of zeta integers Z[Z ], generated by e0, e1 and their multiple commu-
tators (see Lemma 2.6 of [70]). The result is:
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e′
1 = e1 + 2ζ(3)[[[e0, e1], e1] , e0 + e1] + ζ(5)(...) + ... , (69)

where the parenthesis multiplying ζ(5) consists of eight bracket words of degree six
in {e0, e1}. It follows, in particular, that e′

1 = e1 for words of weight not exceeding
three or depth not exceeding one.

We proceed to constructing some simple examples of basic SVMPs. For words
involving (repeatedly) a single letter we have

P0n (z) = (ln z̄z)n

n! (Pw(0) = 0 for w �= 0n,w �= ∅), P1n (z) = (ln |1 − z|2)n
n! .

(70)
The depth-one-weight-two SVMPs, which satisfy the differential equations

∂P01 = P0
z − 1

, ∂̄P01 = P1
z̄

(P01(0) = 0 = P10(0)) ,

∂P10 = P1
z

, ∂̄P10 = P0
z̄ − 1

, (71)

are given by

P01 = L10(z̄) + L01(z) + L0(z̄)L1(z) = Li2(z) − Li2(z̄) + ln z̄z ln(1 − z),

P10 = L01(z̄) + L10(z) + L1(z̄)L0(z) = Li2(z̄) − Li2(z) + ln z̄z ln(1 − z̄) . (72)

They obey the shuffle relation P01 + P10 = P0P1 so that the only new weight two
function is their difference,

P01 − P10 = 2(Li2(z) − Li2(z̄) + ln z̄z ln
1 − z

1 − z̄
) = 4i D(z) , (73)

proportional to the Bloch-Wigner dilogarithm (see [5] as well as the stimulating
survey [81]), D(z) = Im(Li2(z) + ln(1 − z) ln |z|). One can also write down depth-
one SVMPs of arbitrary weight encountered in the expression Fn(z) for the graphical
function associated with the wheel diagram with (n + 1) spokes, first computed by
Broadhurst in 1985 (for a modern treatment and references to earlier work—see
[70]):

Fn(z) = (−1)n
P0n−110n (z) − P0n10n−1(z)

z − z̄
=

=
n∑

k=0

(−1)n−k

(
n + k

n

)
P0n−k (z)

Lin+k(z) − Lin+k(z̄)

z − z̄
. (74)

The period of the wheel amplitude is given by the limit of this expression for z → 1

Fn(1) =
(
2n

n

)
Li2n−1(1) =

(
2n

n

)
ζ(2n − 1). (75)
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Just likeMZVs appear as values at z = 1 ofmultiple polylogarithms the values at one
of SVMPs define single-valued periods [22] which find applications in QFT (and in
superstring theory—in the hands of Stephan Stieberger). Their generating function
is

Zsv = Pe0,e1(1) = 1 + 2ζ(3)[e0, [e1, e0]] + 2ζ(5)(...) + ... ⇒ ζ sv(2) = 0. (76)

The structure of a graded Hopf algebra of the family of hyperlogarithms allows
to read off there symmetry properties from the simpler properties of ordinary log-
arithms, as illustrated in Example 25 of [40] which begins with a derivation of

the inversion formula for the dilog: Li2
(
1
x

)
= iπ ln x − Li2(x) − 1

2 ln
2 x + 2ζ(2).

Remarkably, the SVMPs satisfy simpler symmetry relations under the permutation
groupS3 of Möbius transformations of P1(C)\{0, 1,∞} that interchange the singu-
lar points (see Sect. 2.6 of [70]).S3 is generated by two involutive transformations,
s1 : z → 1 − z, s2 : z → 1

z such that s1s2 : z → z−1
z , (s1s2)3 = 1. The formal power

series Pe0,e1(z) satisfies simple symmetry relations under s1 and s2 (cf. Lemma 2.17
of [70]):

Pe0,e1(1 − z) = Pe0,e1(1)Pe1,e0(z), Pe0,e1(
1

z
) = Pe0,−e0−e1(1)P−e0−e1,e1(z). (77)

According to (76) the first factor in the right hand side of (77) does not contribute
to the transformation law of SVMPs of weight one and two; s1 just permutes the
indices 0 and 1 while P0(

1
z ) = −P0(z), P1(

1
z ) = P1(z) − P0(z) and

P01(
1

z
) = P00(z) − P01(z), P10(

1

z
) = P00(z) − P10(z) ⇒ D(

1

z
) = −D(z) (78)

where D(z) is the Bloch-Wigner dilogarithm (73).
Finally we shall demonstrate as a simple illustration of the theory how one can

calculate—without really integrating—the integral

I (x1, x2, x3, x4) =
∫

d4x

π2

4∏

i=1

1

(x − xi )2
= f (u, v)

x213x
2
24

, (79)

where u, v are the crossratios (17). Using the conformal invariance of f (u, v)we can
set x1 → ∞, x2 = e (e2 = 1), x4 = 0; x23 = z̄z, (x3 − e)2 = |1 − z|2 (cf. Sect. 2.3).
Applying to the result the 4-dimensional Laplacian with respect to x3 which acts
on F(z) = f (u, v) as 1

4Δ3F(z) = 1
z−z̄ ∂̄∂[(z − z̄)F(z)], and using the fact that the

massless scalar propagator is the Green function of −Δ we obtain:
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∂̄∂[(z − z̄)F(z)] = z̄ − z

z̄z|1 − z|2 = 1

z̄(z − 1)
− 1

z(z̄ − 1)

⇒ F(z) = P01(z) − P10(z)

z − z̄
. (80)

Thus F(z) is given by (74) for n = 1, (z − z̄)F(z) being the only odd with respect
to complex conjugation SVMP of weight two. We note that the odd denominator
z − z̄ also comes from the Jacobian J of the change of integration variables {xα} →
{Di = (x − xi )2}, α, i = 1, ..., 4 in (79):

I (x1, ..., x4) = 1

π2

∫
1

J

4∏

i=1

dDi

Di
, J = det

(
∂Di

∂xα

)
. (81)

Indeed, at the singularity Di = 0 we have

J |Di=0 = 4x213x
2
24

√
2(u + v + uv) − 1 − u2 − v2 = 4x213x

2
24

√
−(z − z̄)2. (82)

(More about the “d(log) forms and generalized unitarity cuts” the reader will find
in Sect. 6 of [49].) Integrals of the type of (79) have been calculated long ago by
more conventional methods [76]. For an application of the present techniques to a
(previously unknown) 3-loop correlator—see [37].

6 Outlook

Multidimensional Feynman integrals give rise to a family of functions and numbers
with the structure of a differential graded double shuffle Hopf algebra. It is displayed
most readily for conformally invariant position space amplitudes in a massless QFT.

The dimensions of weight spaces of MZVs (which exhaust the Feynman peri-
ods up to six loops in the massless ϕ4 theory) do not exceed—and are conjectured
to coincide with—their motivic counterparts studied by Francis Brown [20]. Val-
ues of hyperlogarithms at sixth roots of unity first appear at seven loops. For the
two-loop sunrise integral with massive propagators one encounters multiple elliptic
polylogarithms [2, 8, 10] (studied previously in [27]).

The interplay between algebraic geometry, number theory and perturbative QFT
is a young and vigorous subject and our survey is far from complete. We have
not touched upon the application of cluster algebras to multileg on-shell Feynman
amplitudes—see [46] for a remarkable first step in this direction. As hyperlogarithms
and associated numbers do not suffice for expressing massive and higher order Feyn-
man amplitudes, mathematicians are exploring their generalizations [5, 24, 25] and
physicists are closely following this development [2, 12]. For the connections of
MZVs with other parts of mathematics (including the Grothendieck-Teichmüller Lie
algebra, mixed Tate motives and modular forms)—see [67].
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Appendix. Historical Notes

Leonhard Euler (1707-1783)

Just as Archimedes (287–212) dominated the mathematics of the 3d century BC so,
2000 years later, Euler is dominating the mathematics of 18th century. Born in the
family of the Protestant minister of the parish church in Riehen, a suburb of the free
(Swiss) city ofBasel (see [45]where pictures of the church and of the parish residence
are reproduced), he entered the University of Basel at the age of 13 to study theology.
His mathematics professor, Leibniz’s student Johann Bernoulli (1667–1748—who
had inherited the Basel chair of his brother Jacob, 1654–1705), offered to give private
consultations at his home to the diligent boy on Saturday afternoons. At the age of
twenty Euler accepted a call to the Academy of Sciences of St. Petersburg (founded
a few years earlier by the czar Peter I, the Great) where two of Johann’s sons, Daniel
and Niklaus Bernoulli, were already active. Contrary to most other foreign members
he mastered quickly the Russian language, both in writing and speaking. It is during
this very active first St. Petersburg period that Euler first became interested (around
1729—along with major work on mechanics, music theory, and naval architecture)
in the “Basel problem”—the problem of finding what we would now call (after
Riemann) ζ(2)(= ∑∞

1 1/n2). (It is actually a problem which a young professor in
Bologna, PietroMengoli, successor of the great Cavalieri, posed in 1644/1650 [4] and
which excited the brothers-rivals Jacob and Johann Bernoulli in Basel.) Euler started
by devising efficient approximation for calculating the (slowly convergent) series
for ζ(2). As Weil [79] puts it “as with most of the questions that ever attracted his
attention, he never abandoned it, soonmaking a number of fundamental contributions
...”. In 1731 the 24-year-old Euler introduced the “Euler-Mascheroni constant” (see
[54]):

γ = lim
n→∞(

n∑

k=1

1

k
− ln n) =

∞∑

n=2

(−1)n
ζ(n)

n
(= 0.5772...) . (83)

He then discovered the so-called Euler-MacLaurin formula and introduced for the
first time the Bernoulli numbers into the subject [79]. Next came, in 1735, his sensa-
tional discovery of the formula ζ(2) = π2

6 , based on a bold application of the theory
of algebraic equations to the transcendental equation 1 − sin x = 0. This was soon
followed by the calculation of ζ(m) for m = 4, 6, etc. In the same period Euler
calculated ζ(3) up to ten significant digits and convinced himself that it is not a
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rational multiple of π3 (with a small denominator) and found on the way the identity
ζ(1, 2) = ζ(3) [35]. Peeling off consecutive prime factors from ζ(s), starting with
two (see [45]),

(1 − 2−s)ζ(s) = 1 + 3−s + 5−s + ... ,

Euler discovered in 1737 the fabulous product formula,

∏

p

(1 − p−s)ζ(s) = 1 . (84)

It was during the subsequent Berlin period (1741-1766), invited by Frederick II, that
Euler conjectured, in 1749, the functional equation for the zeta function that became,
110 years later, the basis ofRiemann’s great 1859paper, [79]. Euler’swork onnumber
theory was done, as Fermat’s a century earlier, against a background of contempt
towards the field by the majority of mathematicians. He was not deterred. As he once
observed “one may see how closely and wonderfully infinitesimal analysis is related
not only to ordinary analysis but even to the theory of numbers, however repugnant
the latter may seem to that higher kind of calculus” (see [78] Chapter III Sect. V).
Euler’s “defense of Christianity” of 1747, as Weil ([78] Chapter III, Sect. II) puts it,
“did nothing to ingratiate its author with the would be philosopher-king Frederick.”
Disgusted by the superficial (but fashionable at the court of Frederick) anticlerical
Voltaire, Euler took the opportunity offered to him by Empress Catherine II (the
Great) to return to St. Petersburg where he spent the last (most productive!) period
of his life (1766–1783).

Polylogarithms and multiple zeta values

The study of polylogarithms has started with the dilogarithm function. Its integral
representation (that serves as an analytic continuation of the series)

Li2(z) (=
∞∑

n=1

zn

n2
) = −

∫ z

0

ln(1 − t)

t
dt (85)

first appears in 1696 in a letter of Leibniz (1646–1716) to Johann Bernoulli. As
already noted, Euler started playing with the corresponding series around 1729.
According to Maximon [59] (who is taking care to establish the priority of British
mathematicians) the first study of the properties of the integral (85) for complex
z belongs to John Landen (1719–1790) whose memoir appears in the Phil. Trans.
R. Soc. Lond. in 1760, albeit most authors credit for this Euler (who wrote on the
subject later, in 1768). The first comprehensive study of the dilog was given in the
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book of Spence of 1809 (see [3, 59]) whose results are usually attributed to later
work of Abel. The name Euler dilogarithm was only introduced by Hill (1828). The
two-variable, five-term relation

Li2(x) + Li2(y) + Li2(
1 − x

1 − xy
) + Li2(1 − xy) + Li2(

1 − y

1 − xy
) =

π2

6
− ln x ln(1 − x) − ln y ln(1 − y) + ln(

1 − x

1 − xy
) ln(

1 − y

1 − xy
) (86)

was discovered and rediscovered by Spence (1809), Abel (1827), Hill (1828),
Kummer (1840), Schaeffer (1846) (see [81]). The oriented (odd under permutations
of the vertices) volume of the ideal tetrahedron in hyperbolic space is expressed
in terms of the Bloch-Wigner function (73): D̃(z1, ..., z4) := D( z12z34z13z24

). It has been
found by Lobachevsky in 1836 (for a review see [60]). An early (1955) reference, in
which Clausen’s (1832) dilogarithm appears in a fourth order calculation in QFT, is
[52]. Twoyears laterA. Petermann and (independently)C.A. Sommerfield uncovered
ζ(3) in a calculation of the electron magnetic moment (see the lively review in [72]
where important later work by Laporta and Remiddi [56] is also surveyed—see also
[74]). It reappeared in another calculation in perturbative quantum electrodynamics
in the mid 1960’s [66]. The modern notations and a survey of dilogarithmic identities
and their polylogarithmic generalizations are given by an electrical engineer [58] (for
a nice informative review of his book—see [3]). The harmonic polylogarithms (with
singularities at the three roots of the equation x3 = x) are surveyed in [65]. David
Broadhurst was a pioneer in the systematic study of MZV in QFT (see [15] and ref-
erences to earlier work cited there as well as his popular talk [13] in which he shares
his enthusiasmwith beautiful numbers—like ζ(3)—appearing in various branches of
physics). The saga of the anomalous electron magnetic moment (g − 2) calculation
continues to this day (for a review of a leading author in the field—see [53]; a later
four-loop analytic calculation is reported in [55]). The resurgence of polylogarithms
in pure mathematics, anticipated by 19th century work of Kummer and Poincaré and
a 20 century contribution by Lappo-Danilevsky, was prepared by the work of Chen
[19, 33] on iterated path integrals. The coproduct of hyperlogarithms was written
down by Goncharov [47] as a planar decorated version of Connes-Kreimer’s Hopf
algebra of rooted trees [34]. One of a number of recent conferences dedicated to this
topic had the telling title Polylogarithms as a Bridge between Number Theory and
Particle Physics (see the notes [82] which contain a historical survey with a bibliog-
raphy of some 394 entries). Recent developments and perspectives are surveyed in
Francis Brown’s lecture [23] at the 2014 International Congress of Mathematicians
and [26] as well as in the lectures ([6, 32]) in these proceedings.
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Some Open Problems on Feynman
Periods

Erik Panzer

Abstract Feynman integrals of quantum field theories that contain non-scalar par-
ticles go beyond the well-studied leading period associated to primitive Feynman
graphs. It is therefore necessary to study the space of periods spanned by all conver-
gent Feynman integrals for a given graph. Even when the leading period is known,
this total space of periods is not understood and carries non-trivial structures. After
reviewing the leading period, we consider all convergent integrals of a graph and
related open questions.

Keywords Feynman integrals · Periods · Multiple zeta values

1 The Leading Feynman Period

Let G be a connected graph and T (G) the set of its spanning trees. We associate a
variable αe to each edge of G and define its graph polynomial [11, 31] as

ψG :=
∑

T∈T (G)

∏

e/∈T
αe. (1)

The inverse of this polynomial defines the integrand of logarithmically divergent
Feynman amplitudes in a scalar quantum field theory. Concretely, let N denote
the number of edges in G and note that ψG is homogeneous of degree h1(G) =
dim H1(G), the number of independent cycles in G. This is also known as the loop
number of the graph. If N = 2h1(G) and

P(G) :=
∫ ∞

0
· · ·

∫ ∞

0

dα1 · · · dαN−1

ψ2
G

∣∣
αN=1

> 0 (2)
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converges, then G is called primitive log. div. and the numberP(G) is independent
of the choice of the last edge. We will call these numbers leading periods. Their
physical significance stems from the fact that they provide renormalization scheme
independent contributions to the β-function of a four-dimensional theory.1 Typical
examples are

Already thirty years ago, the periods for all primitive log. div. graphs with h1(G) ≤
6 loops were evaluated in terms of Riemann zeta values ζ (n) = ∑∞

k=1 k
−n , their

products and only one further number [13]. It took ten years [14] to identify this
number,

(3)

because it involves the multiple zeta value ζ (3, 5) = ∑
1≤k<r 1/(k

3r5) which, con-
jecturally, cannot be expressed as a polynomial in Riemann zeta values with rational
coefficients. More generally, multiple zeta values (MZV) are defined by

ζ (n1, . . . , nd) =
∑

1≤k1<···<kd

1

kn11 · · · kndd
(nd ≥ 2) (4)

and they are of great interest in their own right. Many more occurrences of MZV
in Feynman integrals have been found [39], which triggered intensive research by
mathematicians and physicists. By now, Feynman integrals in general arewell known
to linkmethods from calculus, combinatorics, algebraic geometry and number theory
(as illustrated in this proceedings volume; see also [5, 6, 16, 17]).

In these notes we will continue to consider only logarithmically divergent inte-
grals, which means that they are determined by the polynomial ψG alone and do
not depend on physical data like masses or momenta of elementary particles. For
primitive log. div. graphs G, the leading periods (2) are now known for all G with
h1(G) ≤ 7 loops [38]. In particular we now know the first explicit examples where
P(G) is (conjecturally) not an MZV, but expressible as a linear combination of
multiple polylogarithms (MPL)

1The β-function determines the running of the coupling constant under the evolution by the renor-
malization group and is a fundamental property of a quantum field theory [30].
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Lin1,...,nd (z) :=
∑

1≤k1<···<kd

zkd

kn11 · · · kndd
(5)

at second or sixth roots of unity z [36, 38]. We also know many graphs for which
there are strong indications to believe that they cannot be evaluated in terms of MPL
at any algebraic arguments [21–23, 40].

While there are still many open questions and unresolved conjectures for the
leading periods, we refer to [38] for a thorough discussion. Instead, we want to look
at generalizations of the periodsP(G) from (2) which are particularly important for
gauge theories.

2 Generalized Feynman Periods

Feynman integrals are essential to the perturbative formulation of quantum field
theory. Namely, observables like cross-sections of scattering processes are expressed
as series over a (typically infinite) set of Feynman graphs. To each of these graphs,
there is an associated Feynman integral which gives a contribution to the cross-
section. We refer to [30] for a detailed introduction to these concepts and to [41]
for a thorough discussion of Feynman integrals (we will work exclusively in the
manifoldly named Schwinger-, Feynman- or α-representation).

What is important for these notes is that different types of particles give rise to
different Feynman integrals. The leading period from Eq. (2) is only a very special
case of a Feynman integral, namely under the assumptions that

1. only scalar particles partake in the interaction,
2. the integral is logarithmically divergent,
3. there are no subdivergences and
4. the dimension of space-time is four.

The first constraint excludes all particles of the standard model (gauge bosons and
fermions) with the sole exception of a scalar Higgs boson. However, there are well-
known techniques which allow to reduce such Feynman integrals to linear combina-
tions of scalar integrals [42]. The integrals arising after this procedure take the form
(up to simple prefactors which are irrelevant to the following discussion)

Iν(G) :=
∫ ∞

0
· · ·

∫ ∞

0

α
ν1−1
1 dα1 · · · ανN−1

N−1dαN−1

ψ
d/2
G

∣∣∣
αN=1

(6)

and are indexed by a vector ν = (νe)e=1...N ∈ NN which encodes a monomial∏
e ανe−1

e multiplying the integrand. The exponent d/2 in Eq. (6) is not fixed to
2; instead it can also take higher integer values subject to the condition
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N∑

e=1

νe = d

2
h1(G) (7)

which encodes that the integrand is homogeneous of degree zero (in particular, d is
determined by ν). This ensures that Iν(G) is independent of the choice of the N ’th
edge, corresponding to a logarithmic divergence. As a consequence, our integrals
are independent of any kinematic data of the interacting particles like masses and
momenta. Nevertheless these periods play a crucial role, because they compute
massless propagators [35] and determine the renormalization group functions (β-
functions and anomalous dimensions) in minimal subtraction schemes via standard
techniques [32].

2.1 Convergence

The convergence of a generalized period can be inferred from a simple power-
counting procedure [45]. In the integral representation (6), this amounts to con-
sidering the growth of the integrand as αe → 0 for some subset γ � e of edges.2

Lemma 1 The generalized period Iν(G) for ν ∈ NN converges precisely when

∑

e∈γ

νe >
d

2
h1(γ ) (8)

holds for all non-empty proper subgraphs γ � G. We call such indices ν convergent
in d dimensions.

Example 1 For thewheelwith 3 spokes graph , the convergence conditions
from triangle subgraphs γ are (with respect to the edge labels in Table1)

ν1 + ν2 + ν3, ν1 + ν5 + ν6, ν2 + ν4 + ν6, ν3 + ν4 + ν5 >
d

2
. (9)

The 2-loop subgraphs γ = G \ e yield the constraint d < (
∑6

i=1 νi ) − νe, which is
equivalent to νe < d/2 via Eq. (7). Together with Eq. (9) and νe > 0 (from γ = {e}),
these conditions are also sufficient for the convergence of Iν(W3).3 The vector ν =
(1, 1, 1, 2, 2, 2) is not convergent, because it gives d/2 = 3 and thus violates the first
triangle condition in Eq. (9). Examples of convergent periods are given in Table1.

2Note that due to the projective nature of the integral (6), this region is equivalently described by
αe → ∞ for all e /∈ γ , which we thus do not have to consider separately.
3More generally, for an arbitrary graph G, the only independent constraints on convergence are
those arising from 2-connected subgraphs γ . Such graphs are usually called 1PI in physics. In the
case of G = W3, the 2-connected subgraphs are precisely the edges, triangles and the graphs G \ e.
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Table 1 Someperiods of thewheelwith 3 spokes graphW3, including the leading periodP(W3) =
6ζ (3) from Eq. (2)

Remark 1 One can check that a graph must be 2-connected in order to have any
convergent periods (otherwise, Eq. (8) has no solutions).4 We will therefore only
consider 2-connected graphs.

Remark 2 Recall that d is a function of ν by Eq. (7). Condition (8) is equivalent to

h1(G)
∑

e∈γ

νe > h1(γ )
∑

e∈G
νe. (10)

Definition 1 Given a graph G, we denote by P̂ (G) the Q-vector space generated
by the convergent generalized Feynman periods of G in even dimensions:

P̂ (G) := linQ {Iν(G) : ν is convergent in an even dimension} . (11)

Remark 3 Equivalently, P̂ (G) is the set of all convergent integrals of the form

IP(G) :=
∫ ∞

0
dα1 · · ·

∫ ∞

0
dαN−1

P

ψk
G

∣∣∣∣
αN=1

(12)

where k ∈ N and P ∈ Q[α] is a homogeneous polynomial of degree kh1(G) −
N . Since we can multiply with 1 = ψG

ψG
, every period in dimension d is a linear

combination of periods in dimension d + 2. Also, from cohomology theory it is
clear that P̂ (G) is a finite dimensional vector space over Q (see Sect. 2.4.1).

Example 2 The simplest graph to consider is the bubble withψG = α1 + α2

and d/2 = ν1 + ν2. It has only rational periods, , because

(13)

4G is 2-connected if it is connected and remains connected even after deletion of an arbitrary vertex.
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2.2 General Properties and Relations

This section is a summary of very general results, while the next section will be more
specific to particular examples of graphs.

At first, let us recall the series-parallel operations on graphs (depicted in Fig. 1):

(S) replace two sequential edges (joined at a two-valent vertex) by a single edge,
(P) replace two parallel edges by a single edge.

A 2-connected graph is called series-parallel if it can be reduced to the bubble
(equivalently, to a single edge) by a sequence of the operations (S) and (P). The
following well-known result (see [16, 41]) follows from integrations of Euler’s beta
function similar to Eq. (13).

Lemma 2 If G1 can be obtained from G2 by series-parallel operations, then we
have P̂ (G1) = P̂ (G2). In particular, if G is series-parallel, then P̂ (G) = Q.

Due to this result, it suffices to study graphs without any parallel or sequential edges.
The next well-known simplification arises when G has a 2-cut, that is, there exist
2 vertices v and w such that G \ {v,w} is disconnected. In such a situation we can
partition the edges of G into two subgraphs G ′

1 and G
′
2 such that G

′
1 and G

′
2 intersect

only at v andw (see Fig. 2). In this situation, we callG a 2-vertex-join ofG1 := G ′
1 ∪̇

{v,w} and G2 := G ′
2 ∪̇ {v,w} and write G = G1:G2. The following factorization is

immediate in themomentum-space representation of Feynman integrals; a derivation
directly in Schwinger parameters is given in [16, Proposition 40].

Lemma 3 If G = G1:G2 is a 2-vertex join, then P̂ (G) = P̂ (G1) · P̂ (G2).

(S) : �→ (P) : �→

Fig. 1 The series and parallel operations (S) and (P) acting on a graph (the grey areas indicate
that only a part of the actual graph is shown). On the right is an example of a series-parallel graph

: =

Fig. 2 The 2-vertex join of two graphs identifies a pair of vertices and deletes the edge between
them
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Example 3 The self-join of the wheel with 3 spokes gives the unique graph

(14)

with periods P̂ (G) = {p · q : p, q ∈ P̂ (W3)}. From Table1 we knowQ + Qζ (3)
⊆ P̂ (W3) and conclude that Q + Qζ (3) + Qζ 2(3) ⊆ P̂ (G). For instance, the
leading period of G isP(G) = 36ζ 2(3) = P(W3)

2.

Remark 4 The reduction of series-parallel graphs in Lemma 2 is actually a special
case of the factorization Lemma3 (by cutting the graph at the endpoints of the parallel
or sequential edges).

We can now restrict our attention to 3-connected graphs (these are precisely the
graphs without any 2-cuts). Recall that γ is called a minor of G if γ can be obtained
fromG by a sequence of deletions and contractions of edges. A proof of the following
is given in [16, Proposition 37].

Theorem 1 (Minor monotonicity) If γ is a minor of G, then P̂ (γ ) ⊆ P̂ (G).

Example 4 Consider the family of wheel graphs depicted in Fig. 3. Their leading
periods are known from [12]:

P(Wn) =
(
2n − 2

n − 1

)
ζ (2n − 3). (15)

It is easy to see that each Wm with m ≤ n occurs as a minor of Wn . Hence their
periods must appear as periods of Wn:

Q + Qζ (3) + · · · + Qζ (2n − 3) ⊆ P̂ (Wn) . (16)

One can furthermore check that actually allminors of awheel are either series-parallel
or equivalent to another wheel (under series-parallel operations).

Example 5 The situation is quite different for another famous family of graphs, the
zig-zags (depicted in Fig. 4). Their leading periods are also Riemann zetas [24],

P(Zn) = 4
(2n − 2)!
n!(n − 1)!

(
1 − 1 − (−1)n

22n−3

)
ζ (2n − 3), (17)

W3 = W4 = W5 = W6 =

Fig. 3 The wheel graphs with three, four, five and six loops
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Z4 =W4 = Z5 = Z6 =

Fig. 4 The zig-zag graphs with four, five and six loops

and they contain the smaller zig-zags asminors. But they havemoreminors, including
products. For example, we findW3:W3 in Z6 (delete the middle edge of the baseline
at the bottom and contract the outer arc) and hence deduce ζ 2(3) ∈ P̂ (Z6). The
same reasoning shows that P̂ (Zn) must contain many products of MZV when n
gets large. We do not expect such products for the wheels (Conjecture 1 below).

Remark 5 The reasoning above does not explain all products. For example, W3:W3

is not a minor of Z5, but still we find ζ 2(3) ∈ P̂ (Z5). It shows up, for instance, in

Iν(Z5) = −5

3
+ 161

6
ζ (3) + 70

3
ζ (5) + ζ 2(3) − 441

8
ζ (7) (18)

where we set νe = 2 for the thick edges in and νe = 1 otherwise.

Because a minor is a quotient of a subgraph, Theorem 1 is a special case of

Theorem 2 If γ is a subgraph of G, then P̂ (γ ) · P̂ (G/γ ) ⊆ P̂ (G).

Proof It is well-known that for a subgraph γ of G, the graph polynomial of G
factorizes to leading order in the subgraph variables [5]. Concretely, if we substitute
αe = t α̃e for all e ∈ γ , then (recall that the degree of ψ is the loop number)

ψG(α, α̃, t) = ψγ (α̃)ψG/γ (α)t h1(γ ) + O
(
t h1(γ )+1

)
.

Let us label the edges of γ with 1, . . . , Nγ and those of G/γ with (Nγ + 1) . . . NG .
Consider a pair of convergent periods I(ν1,...,νNγ )(γ ) and I(νNγ +1,...,νNG )(G/γ ). Wemay
assume that they lie in the same dimension d (see Remark 3).We claim that the period

(
∏

e∈G

∫ ∞

0
ανe−1
e dαe

)
d

2

[∑
e∈γ αe∂αe − h1(γ )

]
ψG

ψ
d/2+1
G

δ(1 − αNG ) ∈ P̂ (G)

is equal to the product I...(γ )I...(G/γ ) of our given pair of periods. To see this, we
multiply with 1 = ∫ ∞

0 dtδ(αNγ
− t) and change variables αe = t α̃e for all e ∈ γ as

above. The integrand then becomes

(
∏

e∈γ

α̃νe−1
e dα̃e

)
δ(1 − α̃Nγ

)

⎛

⎝
∏

e∈G/γ

ανe−1
e dαe

⎞

⎠ δ(1 − αNG )(−∂t )
t h1(γ )d/2

ψ
d/2
G
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such that the integration of t becomes trivial. It produces precisely the product of
the integrands of the sought-after periods of γ and G/γ , because the factorization
of ψG mentioned above provides

lim
t→0

th1(γ )d/2

ψ
d/2
G

= 1

[ψγ (α̃)]d/2

1

[ψG/γ (α)]d/2
. ��

Example 6 Inserting W3 into a vertex of another copy of W3 yields a graph which,
according to Theorem 2, has ζ 2(3) as a period. Note that the leading period itself
[35],

(19)

is a combination of ζ 2(3) and ζ (7). Consequently, we know that ζ (7) on its own
must also be a period of this graph.

Remark 6 This product structure in terms of sub-quotients is essential to the motivic
theory of Feynman periods. In fact, a motivic version of Theorem 2 is true; see [19,
Section7.4].

2.3 Families of Graphs with Polylogarithmic Periods

In general it is extremely hard to get a handle on all periods of a Feynman graph,
because in most cases it is unknown what kind of numbers to expect. We will restrict
here to very special cases where the periods can be expressed as MPL from Eq. (5).
At the moment it is unknown how to decide if an arbitrary given graph belongs to
this class. However, there are sufficient criteria which cover many cases of interest.
In this section we summarize results from the integration of the integrals (6) with
hyperlogarithms and refer to [9, 10, 15, 16, 36, 37] for a discussion of this method.

Definition 2 (from [16]) A graph G has vertex-width 3 if its edges can be ordered
in such a way that the subgraphs formed by {e1, . . . , ek} and {ek+1, . . . , eN } have at
most 3 vertices in common (for all 1 < k < N ).

Equivalently, G has vertex-width 3 if it can be constructed from the triangle
by a sequence of the operations shown in Fig. 5 (the three white vertices mark the
intersection of the subgraphs in Definition 2). Note that all wheels and zig-zags can
be obtained this way, hence they are covered by the following result from [16, 36]:

Theorem 3 If G has vertex-width 3, then all of its periods are rational linear com-
binations of MZV.
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−→ −→

(a) (b)

Fig. 5 The allowed steps to construct a graph of vertex-width 3 are: a add an edge between two
of the three marked vertices, b attach a new vertex with a single (new) edge to one of the marked
vertices (the new vertex becomes now marked, and the attachment point is not marked anymore)

Furthermore, only ζ (n1, . . . , nr )ofweight n1 + . . . + nr ≤ N − 3 can appear.Using
the known relations among MZV, this implies for example that

P̂ (W4) ⊆ Q + Qζ (2) + Qζ (3) + Qζ (4) + Qζ (5) + Qζ (2)ζ (3).

In fact, ζ (2)ζ (3) can be excluded, because for graphs with N = 2h1(G) the weight
N − 3 part of the periods is one-dimensional [21]. In this case it is spanned by the
leading periodP(W4) = 20ζ (5). Comparing this with the lower bound of Eq. (16),
we miss the even zeta values. We make

Conjecture 1 Wheel graphs Wn (n ≥ 3) have only odd Riemann zetas as periods:

P̂ (Wn) = Q + Qζ (3) + · · · + Qζ (2n − 3). (20)

This conjecture is supported by explicit computation of periods of W3, W4 and
W5 using the methods of [36, 37]. It would also follow from several conjectures
about motivic Feynman periods as explained in [19, Example 9.7]. Notice how far
Theorem 3 still is from Eq. (20): We not only have to exclude multiple zeta values,
but also all even Riemann zeta values ζ (2k).

Remark 7 Integrals of rational functions which evaluate to linear combinations of
only odd Riemann zeta values are known fromwork on the irrationality of zeta values
[3, 27]. This topic is nicely summarized in [18]. However, it seems unlikely that these
integrals can be related to the Feynman integrals of the wheels in a straightforward
way.

Note that Eq. (20) is false for the zig-zags Zn due to the presence of products as
demonstrated in Example 5 and Eq. (18). It is still striking that no even zeta values
seem to appear in their periods, see Eq. (18). In fact, while ζ (12) is known to appear
in periods [39], the even zeta values with lower weight have not been observed as
periods of any graph.

Conjecture 2 ζ (2) is not a period of any graph: ζ (2) /∈ P̂ (G).

Also this conjecture is supported by the motivic approach to Feynman periods [19].
Furthermore, the cosmic Galois group would imply that together with ζ (2), also all
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Fig. 6 All 3-connected graphs with four loops

Fig. 7 All 3-connected graphs with five loops

productswith odd zeta values (like ζ (2)ζ (3))would be excluded as periods of graphs.
For a discussion of these ideas we refer to [19, 20], and physical interpretations of
the absence of ζ (2) are given in [2, 33].

Inside the full space of 3-connected graphs, those with vertex-width 3 form a tiny
subset. In particular note that graphs with vertex-width 3 are always planar. The first
non-planar graph occurs at 4 loops (see Fig. 6), where the other two graphs have
vertex-width 3. At 5 loops however there are also planar graphs which do not have
vertex-width 3, like the cube in the bottom left of Fig. 7. The following was proved
in [35].

Theorem 4 The periods of all planar graphs with ≤5 loops, except for the cube,
are MZV. For the cube and the non-planar graphs with ≤5 loops, all periods are
rational linear combinations of MPL at z = −1 (so-called alternating sums).

The interesting observation is that all graphs with ≤5 loops seem to have only MZV
as periods [1, 34, 35]; that is, all periods of the supposedly more complicated graphs
(the non-planar ones and the cube) turn out to be MZV.

Conjecture 3 All periods of graphs with ≤5 loops are multiple zeta values.

The phenomenon that suitable linear combinations of alternating sums can combine
to MZV is well-known. Such alternating sums are also called honorary MZV ; one
example is

Li1,2,3(−1) + 7

2
Li1,5(−1) = 17

64
ζ 2(3) − 1

15
ζ 3(2). (21)

Very recently a basis of MZV in terms of such honorary alternating sums was con-
structed [29], using tools of motivic periods [28]. At the moment, however, we can
only use these to show that a given individual computed period is an MZV (for this
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purpose it is also sufficient to look up the corresponding entry in the datamine [7]).
The difficulty is to understand why this miracle has to happen for all periods of the
graphs with ≤5 loops.

2.4 Further Remarks

Finally we briefly mention further approaches and ideas which might help to under-
stand the spaces of periods of Feynman graphs.

2.4.1 Integration by Parts and Master Integrals

The periods of a graph fulfill a myriad of relations, because P̂ (G) is finite-
dimensional (over Q). This comes about because the de Rham cohomology of the
complement of the graph hypersurface {α : ψG(α) = 0} is finite dimensional. This
cohomology was first studied in [5] and has been further explored since then [21,
26]. One might hope that at least for some interesting family of graphs, an algorithm
to construct a finite generating set of cohomology classes might be devised. It would
then suffice to compute each of the corresponding periods, which is manageable at a
large scale because powerful integration algorithms have been implemented [8, 37].

Similar period relations coming from integration by parts (IBP) in momentum
space have been studied systematically since [25] and have been exceedingly suc-
cessful; currently they form an essential part of almost all perturbative calculations
of loop corrections. However, the application to the high loop numbers we are inter-
ested in is extremely difficult. Only very recently it has been achieved at the 5-loop
level [43]. Since this approach works in dimensional regularization (see Sect. 2.4.2),
this alone does not yet solve our problem, because one needs to control the order of
poles in ε.

For the wheels Wn the IBP identities were solved explicitly in [13] and yield

Lemma 4 All periods of wheels are polynomials in Riemann zeta values:

P̂ (Wn) ⊆ Q[ζ (k) : k ≥ 2]. (22)

This follows because IBP identities express every period of a wheel as a linear
combination of products of coefficients of the ε-expansion of the Γ function,

Γ (1 − ε) = exp

[
εγE +

∑

n≥2

ζ (n)

n
εn

]
, (23)

and one can show that the Euler-Mascheroni constant γE cancels in the end. Hence,
MZV like ζ (3, 5) are excluded from P̂ (Wn) and Lemma 4 gives a much better
bound than the result of Theorem 3, but it is still a long way from Conjecture 1.



Some Open Problems on Feynman Periods 41

2.4.2 Logarithmic Periods and Regularization

A further generalization of the period integrals Iν(G) from Eq. (6) are the so called
logarithmic periods

∫ ∞

0
· · ·

∫ ∞

0
dα1 · · · dαN−1

P(α1, . . . , αN , log(α1), . . . , log(αN ), log(ψG))

ψ
d/2
G

∣∣∣∣∣
αN=1
(24)

where the polynomial P is a homogeneous function of α. These integrals arise as
coefficients if one expands Iν(G) as a function of the νe and the dimension d. In
physics, this dimensional regularization is a popular method to regularize divergent
integrals (which appear abundantly before renormalization) and also essential to
some renormalization schemes like minimal subtraction [32].

The vector space of logarithmic periods of a graph is infinite dimensional: Already

the bubble generates all Riemann zeta values and products from Eq. (13) via
Eq. (23). But still there are interesting structures and several relations from Sect. 2.2
also hold for logarithmic periods [16]. In particular, it is known that all logarithmic
periods of graphs with vertex-width 3 or loop order ≤5 are MZV or alternating sums
and Conjecture 3 is expected to hold also for the logarithmic periods.

However, as soon as logarithmic periods are considered, even zeta values do
appear (so Conjecture 2 does not hold for the spaces of logarithmic periods).

2.4.3 Motivic Feynman Periods

Recently, the theory of motivic periods [20] was applied to Feynman integrals and
appears verypromising to understand someof the observedphenomena, aswealready
mentioned in several places above. Unfortunately, an adequate discussion of these
ideas would be too lengthy to fit in here. Instead we advocate the comprehensive
notes [19].
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Periods and Superstring Amplitudes

S. Stieberger

Abstract Scattering amplitudes which describe the interaction of physical states
play an important role in determining physical observables. In string theory the phys-
ical states are given by vibrations of open and closed strings and their interactions
are described (at the leading order in perturbation theory) by a world–heet given by
the topology of a disk or sphere, respectively. Formally, for scattering of N strings
this leads to N−3–dimensional iterated real integrals along the compactified real
axis or N−3–dimensional complex sphere integrals, respectively. As a consequence
the physical observables are described by periods onM0,N–the moduli space of Rie-
mann spheres of N orderedmarked points. Themathematical structure of these string
amplitudes sharemany recent advances in arithmetic algebraic geometry and number
theory likemultiple zeta values, single–valuedmultiple zeta values,Drinfeld,Deligne
associators, Hopf algebra and Lie algebra structures related to Grothendiecks Galois
theory. We review these results, with emphasis on a beautiful link between general-
ized hypergeometric functions describing the real iterated integrals onM0,N (R) and
the decomposition ofmotivicmultiple zeta values. Furthermore, a relation expressing
complex integrals onM0,N (C) as single–valued projection of iterated real integrals
onM0,N (R) is exhibited.

Keywords Periods · Multiple zeta values · Single-valued multiple zeta values ·
String amplitudes

1 Introduction

During the last years a great deal of work has been addressed to the problem of reveal-
ing and understanding the hidden mathematical structures of scattering amplitudes
in both field–and string theory. Particular emphasis on their underlying geometric
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structures seems to be especially fruitful and might eventually yield an alternative1

way of constructing perturbative amplitudes by methods residing in arithmetic alge-
braic geometry . In such a frameworkphysical quantities are givenbyperiods (ormore
generally by L–functions) typically describing the volume of some polytope or inte-
grals of a discriminantal configuration (a configuration of multivariate hyperplanes).
The mathematical quantities which occur in string amplitude computations are peri-
ods which relate to fundamental objects in number theory and algebraic geometry. A
period is a complex number whose real and imaginary parts are given by absolutely
convergent integrals of rational functions with rational coefficients over domains in
Rn described by polynomial inequalities with rational coefficients. More generally,
periods are values of integrals of algebraic differential forms over certain chains
in algebraic varieties [35]. Example in quantum field theory the coefficients of the
Laurent series in the parameter ε = 1

2 (4−D) of dimensionally regulated Feynman
integrals are numerical periods in the Euclidian regionwith all ratios of invariants and
masses having rational values [10]. Furthermore, the power series expansion in the
inverse string tension α′ of tree–level superstring amplitudes yields iterated integrals
[12, 39, 43], which are periods of the moduli spaceM0,N of genus zero curves with
N ordered marked points [30] and integrate to Q–linear combinations of multiple
zeta values (MZVs) [15, 48]. Similar considerations [18] are expected to hold at
higher genus in string perturbation theory, cf. [22] for some recent investigations at
one–loop. At any rate, the analytic dependence on the inverse string tension α′ of
string amplitudes furnishes an extensive and rich mathematical structure, which is
suited to exhibit and study modern developments in number theory and arithmetic
algebraic geometry.

The forms and chains entering the definition of periods may depend on param-
eters (moduli). As a consequence the periods satisfy linear differential equations
with algebraic coefficients. This type of differential equations is known as gener-
alized Picard–Fuchs equations or Gauss–Manin systems. A subclass of the latter
describes the A–hypergeometric system2 or Gelfand–Kapranov–Zelevinsky (GKZ)
system relevant to tree–level string scattering. One notorious example of periods
are multivariate (multidimensional) or generalized hypergeometric functions.3 In
the non–resonant case the solutions of the GKZ system can be represented by gen-
eralized Euler integrals [26], which appear as world–sheet integrals in superstring
tree–level amplitudes and integrate to multiple Gaussian hypergeometric functions
[39]. Other occurrences of periods as physical quantities are string compactifications
on Calabi–Yau manifolds. According to Batyrev the period integrals of Calabi–Yau

1In field–theory withN = 4 supersymmetry such methods have recently been pioneered by using
tools in algebraic geometry [1, 2] and arithmetic algebraic geometry [27, 31].
2The initial data for a GKZ–system is an integer matrix A ∈ Zr×n together with a parameter
vector γ ∈ Cr . For a given matrix A the structure of the GKZ–system depends on the properties
of the vector γ defining non–resonant and resonant systems. Example a non–resonant system of
A–hypergeometric equations is irreducible [5].
3More precisely, at an algebraic value of their argument their value is 1

π
℘, with ℘ being the set of

periods.
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toric varieties are also governed by GKZ systems. Therefore, the GKZ system is
ubiquitous to functions describing physical effects in string theory as periods.

2 Periods on M0,N

The object of interest is the moduli space M0,N of Riemann spheres (genus zero
curves) of N ≥ 4 ordered marked points modulo the action of PSL(2,C) on those
points. The connected manifold M0,N is described by the set of N–tuples of dis-
tinct points (z1, . . . , zN ) modulo the action of PSL(2,C) on those points. As a
consequence with the choice

z1 = 0, zN−1 = 1, zN = ∞ (1)

there is a unique representative

(z1, . . . , zN ) = (0, t1, . . . , tN−3, 1,∞) (2)

of each equivalence class of M0,N

M0,N � { (t1, . . . , tN−3) ∈ (
P1\{0, 1,∞})N−3 | ti �= t j for all i �= j } , (3)

and the dimension of M0,N (C) is N − 3. On the other hand, the real part of (3)
describing the space of points

M0,N (R) := {(0, t1, . . . , tN−3, 1,∞) | ti ∈ R} (4)

is not connected. Up to dihedral permutation each of its 1
2 (N − 1)! connected com-

ponents (open cells γ )
γ = (z1, z2, . . . , zN ) (5)

is completely described by the (real) ordering of the N marked points

z1 < z2 < . . . < zN , (6)

with:
N⋃

i=1

{zi } = {0, t1, . . . , tN−3, 1,∞} . (7)

In the compactificationM 0,N (R) the components γ become closed cells. Each cell
corresponds to a triangulation of a regular polygon with N sides. The number
of triangulations is given by CN−2 = 2N−2(2N−5)!!

(N−1)! (with CN the Catalan num-
ber). In total an underlying KN−1 associahedron (Stasheff polytope) can naturally
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be associated with each vertex describing one triangulation [15]. The standard cell of
M0,N is denoted by δ and given by the set of real marked points (z1, z2, . . . , zN ) =
(0, t1, t2, . . . , tN−3, 1,∞) on M0,N subject to the (canonical) ordering (6), i.e.:

δ = { tl ∈ R | 0 < t1 < t2 < . . . < tN−3 < 1 } . (8)

A period on M0,N is defined to be a convergent integral [30]

∫

δ

ω (9)

over the standard cell (8) in M0,N (R) and ω ∈ HN−3(M0,N ) a regular algebraic
(N − 3)–form, which converges on δ and has no poles along δ. Every period on
M0,N is a Q–linear combination of MZVs [15]. Furthermore, every MZV can be
written as (9).

To each cell γ a unique (N − 3)–form can be associated [16]

ωγ =
N∏

i=2

(zi − zi−1)
−1 dt1 ∧ . . . ∧ dtN−3 , (10)

subject to (7) with zl = ∞ dismissed in the product. The form (10) is unique up to
scalar multiplication, holomorphic on the interior of γ and has simple poles on the
boundary of that cell. To a cell (6) in M0,N (R) modulo rotations an oriented N–
gon (N–sided polygons) may be associated by labelling clockwise its sides with
the marked points (z1, z2, . . . , zN ). Example according to (6) the polygon with the
cyclically labelled sides γ = (0, 1, t1, t3,∞, t2) is identified with the cell 0 < 1 <

t1 < t3 < ∞ < t2 inM0,6(R) and the corresponding cell form is:

ωγ = ± dt1dt2dt3
(−t2) (t3 − t1) (t1 − 1)

.

The cell form (10) refers to the ordering (6). A cyclic structure γ corresponds to
the cyclic ordering (γ (1), γ (2), . . . , γ (N )) of the elements {1, 2, . . . , N } and refers
to the standard N–gon (1, 2, . . . , N ) modulo rotations. There is a unique ordering σ

of the N marked points (2) as

zσ(1) < zσ(2) < . . . < zσ(N ) . (11)

with σ(N ) = N and compatible with the cyclic structure γ . The cell–form corre-
sponding to γ is defined as [16]

ωγ =
N−1∏

i=2

(
zσ(i) − zσ(i−1)

)−1
dt1 ∧ . . . ∧ dtN−3 . (12)
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zρ(2)z1

zρ(N−2) zρ(N−3)

zρ(N)

zN−1 zρ(3)

Fig. 1 N–gon describing the 01 cyclic structure γ = (0, 1, ρ)

For example the cyclic structure (2, 5, 1, 6, 4, 3) the unique ordering σ compat-
ible with the latter and with σ(6) = 6 is the ordering (4, 3, 2, 5, 1, 6), i.e. γ =
(t3, t2, t1, 1, 0,∞).

In the following, we consider orderings (6) (01 cyclic structure γ ) of the set⋃N
i=1{zi } = {0, t1, . . . , tN−3, 1,∞} with the elements z1 = 0 and zN−1 = 1 being

consecutive, i.e. γ = (0, 1, ρ) with ρ ∈ SN−2 some ordering of the N − 2 points
{t1, . . . , tN−3,∞}. The corresponding cell–function is given by

ωρ = z−1
ρ(2)

N−2∏

i=3

(
zρ(i) − zρ(i−1)

)−1
dt1 ∧ . . . ∧ dtN−3 , ρ ∈ SN−2 , (13)

it is called 01 cell–function [16] and its associated N–gon, inwhich the edge referring
to 0 appears next to that referring to 1, is depicted in Fig. 1. The (N − 2)! 01 cell–
functions (13) generate the top–dimensional cohomology group HN−3(M0,N ) of
M0,N by constituting a basis of HN−3(M0,N ,Q), i.e. [16]:

dim HN−3(M0,N ,Q) = (N − 2)! . (14)

As a consequence the cohomology group HN−3(M0,N ) is canonically isomorphic
to the subspace of polygons having the vertex (edge) 0 adjacent to edge 1 [16].

Generically, in terms of cells a period (9) onM0,N may be defined as the integral
[16] ∫

β

ωγ (15)

over the cell β in M0,N (R) and the cell–form ωγ with the pair (β, γ ) referring to
some polygon pair. Therefore, generically the cell–forms (10) integrated over cells
(5) give rise to periods on M0,N , which are Q–linear combinations of MZV. By
changing variables the period integral (15) can be brought into an integral over the
standard cell δ parameterized in (8). To obtain a convergent integral (15) in [16]
certain linear combinations of 01 cell–forms (13) (called insertion forms) have been
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constructed with the properties of having no poles along the boundary of the standard
cell δ and converging on the closure δ. Example in the case of M0,5 the cell–form
ωγ corresponding to the cell γ = (0, 1, t1,∞, t2) can be integrated over the compact
standard cell δ defined in (8)

∫

δ

ωγ =
∫

0≤t1≤t2≤1

dt1dt2
(1 − t1) t2

= ζ2 , (16)

with the period ζ2 following from the general definition for theRiemann zeta function:

ζa =
∞∑

k=1

k−a , a ∈ N, a ≥ 2 . (17)

3 Volume Form and Period Matrix on M0,N

For a regular algebraic (N − 3)–form ωδ on M0,N conditions exist for the integral
(9) over the standard cell δ to converge. The set of all regular (N − 3)–forms can be
written in terms of the canonical cyclically invariant form [15]:

ωδ = dt1 ∧ . . . ∧ dtN−3

t2 (t3 − t1) (t4 − t2) · . . . · (tN−3 − tN−5) (1 − tN−4)
. (18)

(Up to multiplication by Q+) this form is the canonical volume form on M0,N (R)

without zeros or poles along the standard cell (8). An algebraic volume form Ω on
M0,N (R)may be supplemented by the PSL(2,C) invariant factor

∏N−1
i< j |zi − z j |si j

(subject to (1) andwith some conditions on the parameter si j , which turn into physical
conditions, cf. (100)) as

Ω = dt1 ∧ . . . ∧ dtN−3

t2 (t3 − t1) (t4 − t2) · . . . · (tN−3 − tN−5) (1 − tN−4)

⎛

⎝
N−1∏

i< j

|zi − z j |si j
⎞

⎠ ,

(19)
with si j ∈ Z. The form (19) gives rise to the family of periods

∫
δ
Ω of M0,N

Iδ(a, b, c) =
∫

δ

dt1 · . . . · dtN−3

N−3∏

i=1

taii (1 − ti )
bi

∏

1≤i< j≤N−3

(ti − t j )
ci j , (20)

for suitable choices of integers ai , bi , ci j ∈ Z such that the integral converges. The
latter refers to the compactified standard cell δ defined in (8). It has been shown
by Brown and Terasoma, that integrals of the form (20) yield linear combina-
tions of MZVs with rational coefficients. In cubical coordinates x1 = t1

t2
, x2 =

t2
t3
, . . . , xN−4 = tN−4

tN−3
, xN−3 = tN−3 parameterizing the integration region (8) as

tk = ∏N−3
l=k xl , k = 1, . . . , N − 3 with 0 < xi < 1, the integral (20) becomes
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Iδ(a
′, b′, c′) =

(
N−3∏

i=1

∫ 1

0
dxi

)
N−3∏

j=1

x
a′
j

j (1 − x j )
b′
j

N−3∏

l= j+1

⎛

⎝ 1 −
l∏

k= j

xk

⎞

⎠

c′
jl

,

(21)
with some integers a′

i , b
′
i , c

′
i j ∈ Z.

Moreover, the form (19) can be generalized to the family of real period integrals∫
δ
Ω on δ, with si j ∈ R. Then, Taylor expanding (19) w.r.t. si j at integral points

si j ∈ Z+ yields coefficients representing period integrals of the form (20). Similar
observations have been made in [39, 43] when computing α′–expansions of string
amplitudes which can be described by integrals of the type (21). In this setup the
additional PSL(2,C) invariant factor

∏N−1
i< j |zi − z j |α′si j represents the so–called

Koba–Nielsen factor with the parameter α′ being the inverse string tension and the
kinematic invariants si j specified in (100).

Similarly to (19) in the following let us consider all the (N − 2)!01 cell–forms (13)
supplemented by the PSL(2,C) invariant factor

∏N−1
i< j |zi − z j |α′si j and integrated

over the standard cell δ inM0,N (R), i.e.:

∫

δ

⎛

⎝
N−1∏

i< j

|zi − z j |α
′si j

⎞

⎠ ωρ =
∫

δ

dt1 ∧ . . . ∧ dtN−3

zρ(2)
N−2∏

i=3

(
zρ(i) − zρ(i−1)

)

⎛

⎝
N−1∏

i< j

|zi − z j |α
′si j

⎞

⎠ , ρ ∈ SN−2 .

(22)
Integration by part allows to express the (N − 2)! integrals (22) in terms of a basis
of (N − 3)! integrals, i.e.:

dim HN−3(M0,N ,R) = (N − 3)! . (23)

For a given cell π in M0,N (R) we can choose the 01 cell–form ωγ with γ =
(0, 1,∞, ρ), ρ ∈ SN−3 and the following basis (subject to (1)) [12]

Zρ
π := Zπ (1, ρ(2, 3, . . . , N − 2), N , N − 1) (24)

=
∫

π

(
N−2∏

i=2

dzi

)
N−1∏

i< j
|zi j |α′si j

z1ρ(2)zρ(2),ρ(3) . . . zρ(N−3),ρ(N−2)
, π, ρ ∈ SN−3 ,

with
zi j := zi − z j , (25)

and ρ describing some ordering of the N − 3 points
⋃N−2

i=2 {zi } = {t1, . . . , tN−3}
along the N–gon depicted in Fig. 2. The iterated integrals (24) represent generalized
Euler (Selberg) integral and integrate to multiple Gaussian hypergeometric functions
[39]. Furthermore, the integrals (24) can also be systematized within the framework
of Aomoto-Gelfand hypergeometric functions or GKZ structures [26].
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zρ(2)z1

zρ(N−2) zρ(N−3)

zN

zN−1 zρ(3)

Fig. 2 N–gon describing the cyclic structure γ = (0, 1,∞, ρ)

The integrals (24) can be Taylor expanded w.r.t. α′ around the point α′ = 0, e.g.:

∫

δ

(
3∏

l=2

dzl

)
4∏

i< j
|zi j |α′si j

z12 z23 z41

= α′−2

(
1

s12s45
+ 1

s23s45

)
+ ζ2

(
1 − s34

s12
− s12

s45
− s23

s45
− s51

s23

)
+ O(α′) .

(26)

Techniques for computing α′ expansions for the type of integrals (24) have been
exhibited in [39, 43], systematized in [12], and pursued in [40]. In fact, the lowest
order contribution of (24) in the Taylor expansion around the point α′ = 0 is given
by

Z |α′3−N = (−1)N−3 S−1 , (27)

with the kernel4 [3, 7, 34]

S[ρ|σ ] := S[ ρ(2, . . . , N − 2) | σ(2, . . . , N − 2) ] = α′N−3
N−2∏

j=2

(
s1, jρ +

j−1∑

k=2

θ( jρ, kρ) s jρ ,kρ

)
,

(28)
with jρ = ρ( j) and θ( jρ, kρ) = 1 if the ordering of the legs jρ, kρ is the same
in both orderings ρ(2, . . . , N − 2) and σ(2, . . . , N − 2), and zero otherwise. The
matrix elements S[ρ|σ ] are polynomials of the order N − 3 in the parameters (100).

A natural object to define is the (N − 3)! × (N − 3)!–matrix

Fπσ = (−1)N−3
∑

ρ∈SN−3

Zπ (ρ) S[ρ|σ ] , (29)

4The matrix S with entries Sρ,σ = S[ρ|σ ] is defined as a (N − 3)! × (N − 3)! matrix with
its rows and columns corresponding to the orderings ρ ≡ {ρ(2), . . . , ρ(N − 2)} and σ ≡
{σ(2), . . . , σ (N − 2)}, respectively. The matrix S is symmetric, i.e. St = S.
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which according to (27) satisfies:

F |α′3−N = 1 . (30)

The matrix F has rank

rk(F) = (N − 3)! (31)

and represents the period matrix of M0,N [32].
In [41] it has been observed, that F can be written in the following way5

F = P Q : exp
{

∑

n≥1

ζ2n+1 M2n+1

}

: , (32)

with the Riemann zeta–functions (17). This decomposition is guided by its organi-
zation w.r.t. multiple zeta values (MZVs) ζn1,...,nr as

M2n+1 = F |ζ2n+1
,

P2n = F |ζ n
2

,
(33)

with:

P = 1 +
∑

n≥1

ζ n2 P2n , (34)

Q = 1 +
∑

n≥8

Qn = 1 + 1

5
ζ3,5 [M5, M3] +

{
3

14
ζ 25 + 1

14
ζ3,7

}
[M7, M3]

+
{
9 ζ2 ζ9 + 6

25
ζ 22 ζ7 − 4

35
ζ 32 ζ5 + 1

5
ζ3,3,5

}
[M3, [M5, M3]] + · · · . (35)

MZVs are generalizations of single zeta functions (17)

ζn1,...,nr := ζ(n1, . . . , nr ) =
∑

0<k1<...<kr

r∏

l=1

k−nl
l , nl ∈ N+ , nr ≥ 2 , (36)

with r specifying its depth and w = ∑r
l=1 nl denoting its weight. Hence, all the

information is kept in the matrices P and M and the particular form of Q. The
entries of the matrices M2n+1 are polynomials in si j of degree 2n + 1 (and hence
of the order α′2n+1), while the entries of the matrices P2n are polynomials in si j of
degree 2n (and hence of the order α′2n). Example for N = 5 we have

5The ordering colons : . . . : are defined such that matrices with larger subscript multiply matrices

with smaller subscript from the left, i.e. : Mi Mj :=
{
Mi Mj , i ≥ j ,

Mj Mi , i < j .
The generalization to

iterated matrix products : Mi1Mi2 . . . Mip : is straightforward.
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P = α′2
(−s34s45 + s12 (s34 − s51) s13 s24
s12 s34 (s12 + s23) (s23 + s34) − s45s51

)
, (37)

and

M3 = α′3
(
m11 m12

m21 m22

)
, (38)

with:

m11 = s34 [ −s12 (s12 + 2s23 + s34) + s34s45 + s245 ] + s12s51 (s12 + s51) ,

m12 = −s13 s24 (s12 + s23 + s34 + s45 + s51) ,

m21 = s12 s34 [ s12 + s23 + s34 − 2 (s45 + s51) ] ,

m22 = (s23 + s34) [ (s12 + s23)(s12 + s34) − 2 s12s45 ]
−[ 2s12s34 − s245 + 2s23 (s34 + s45) ]s51 + s45s251 .

(39)

As we shall see in Sect. 5 the form (32) is bolstered by the algebraic structure of
motivicMZVs. The form (32) exactly appears in F. Browns decomposition ofmotivic
MZVs [17]. In Sect. 6 we shall demonstrate, that the period matrix F has also a
physical meaning describing scattering amplitudes of open and closed strings.

4 Motivic and Single–valued Multiple Zeta Values

MZVs (36) can be represented as period integrals. With the iterated integrals of the
following form

Iγ (a0; a1, . . . , an; an+1) =
∫

Δn ,γ

dz1
z1 − a1

. . .
dzn

zn − an
, (40)

with γ a path in M = C/{a1, . . . , an} with endpoints γ (0) = a0 ∈ M, γ (1) =
an+1 ∈ M and Δn,γ a simplex consisting of all ordered n–tuples of points
(z1, . . . , zn) on γ and for the map

ρ(n1, . . . , nr ) = 10n1−1 . . . 10nr−1 , (41)

with nr ≥ 2 Kontsevich observed that

ζn1,...,nr = (−1)r Iγ (0; ρ(n1 . . . nr ); 1)
= (−1)r

∫

0≤t1≤...≤tn≤1

dt1
t1 − a1

. . .
dtn

tn − an
, (42)
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with the sequence of numbers (a1, . . . , an) given by (1, 0n1−1, . . . , 1, 0nr−1). Note,
that the integral (42) defines a period. Furthermore, the numbers (36) arise as coef-
ficients of the Drinfeld associator Z(e0, e1) [24]. The latter is a function in terms of
the generators e0 and e1 of a free Lie algebra g and is given by the non–commutative
generating series of (shuffle–regularized) MZVs [36]

Z(e0, e1) =
∑

w∈{e0,e1}×
ζ(w) w , (43)

with the symbol w ∈ {e0, e1}× denoting a non–commutative word w1w2 . . . in
the letters wi ∈ {e0, e1}. Furthermore, we have the shuffle product ζ(w1)ζ(w2) =
ζ(w1 � w2) and ζ(e0) = 0 = ζ(e1) and ζ(e1e

n1−1
0 . . . e1e

nr−1
0 ) = ζn1,...,nr . Explicitly,

(43) becomes:

Z(e0, e1) =
∑

w∈{e0,e1}×
ζ(w) w = 1 + ζ2 [e0, e1] + ζ3 ( [e0, [e0, e1]] − [e1, [e0, e1] )

+ ζ4

(
[e0, [e0, [e0, e1]]] − 1

4
[e1, [e0, [e0, e1]]] + [e1, [e1, [e0, e1]]] + 5

4
[e0, e1]2

)

+ ζ2 ζ3

(
([e0, [e0, e1]] − [e1, [e0, e1]) [e0, e1] + [e0, [e1, [e0, [e0, e1]]]]

− [e0, [e1, [e1, [e0, e1]]]]
)

+ ζ5

(
[e0, [e0, [e0, [e0, e1]]]]

− 1

2
[e0, [e0, [e1, [e0, e1]]]] − 3

2
[e1, [e0, [e0, [e0, e1]]]] + (e0 ↔ e1)

)
+ · · · . (44)

The set of integral linear combinations of MZVs (36) is a ring, since the product
of any two values can be expressed by a (positive) integer linear combination of
the other MZVs [50]. There are many relations over Q among MZVs. We define
the (commutative) Q–algebra Z spanned by all MZVs over Q. The latter is the
(conjecturally direct) sum over the Q–vector spaces ZN spanned by the set of
MZVs (36) of total weight w = N , with nr ≥ 2, i.e. Z = ⊕

k≥0 Zk . For a given
weight w ∈ N the dimension dimQ(ZN ) of the space ZN is conjecturally given by
dimQ(ZN ) = dN , with dN = dN−2 + dN−3, N ≥ 3 and d0 = 1, d1 = 0, d2 = 1
[50]. Starting at weight w = 8 MZVs of depth greater than one r > 1 appear in
the basis. By applying stuffle, shuffle, doubling, generalized doubling relations
and duality it is possible to reduce the MZVs of a given weight to a minimal
set. Strictly speaking this is explicitly proven only up to weight 26 [8]. For Dw,r

being the number of independent MZVs at weight w > 2 and depth r , which
cannot be reduced to primitive MZVs of smaller depth and their products, it is
believed, that D8,2 = 1, D10,2 = 1, D11,3 = 1, D12,2 = 1 and D12,4 = 1 [11]. For
Z = Z>0

Z>0·Z>0
withZ>0 = ⊕w>0Zw the graded space of irreducible MZVs we have:

dim(Zw) ≡ ∑
r Dw,r = 1, 0, 1, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5 for w = 3, . . . , 16,

respectively [8, 11].
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An important question is how to decompose aMZV of a certain weightw in terms
of a given basis of the same weight w. Example for the decomposition

ζ4,3,3 = 4336

1925
ζ 5
2 + 1

5
ζ 2
2 ζ 2

3 + 10 ζ2ζ3ζ5 − 49

2
ζ 2
5 − 18 ζ3ζ7 − 4 ζ2ζ3,5 + ζ3,7 (45)

we wish to find a method to determine the rational coefficients. Clearly, this question
cannot be answered within the space of MZVZ as we do not know how to construct
a basis of MZVs for any weight. Eventually, we seek to answer the above question
within the space H of motivic MZVs with the latter serving as some auxiliary
objects for which we assume certain properties [17]. For this purpose the actual
MZVs (36) are replaced by symbols (or motivic MZVs), which are elements of a
certain algebra. We lift the ordinary MZVs ζ to their motivic versions6 ζm with the
surjective projection (period map) [19, 31]:

per : ζm −→ ζ . (46)

Furthermore, the standard relations among MZV (like shuffle and stuffle relations)
are supposed to hold for the motivic MZVs ζm. In particular, H is a graded Hopf
algebra7 H with a coproduct Δ, i.e.

H =
⊕

n≥0

Hn , (47)

and for each weight n the Zagier conjecture is assumed to be true, i.e. dimQ(Hn) =
dn . To explicitly describe the structure of the space H one introduces the (trivial)
algebra–comodule:

U = Q〈 f3, f5, . . .〉 ⊗Q Q[ f2] . (48)

The multiplication on

U ′ = U
/
f2U = Q〈 f3, f5, . . .〉 (49)

is given by the shuffle product�

fi1 . . . fir � fir+1 . . . fir+s =
∑

σ∈Σ(r,s)

fiσ(1) . . . fiσ(r+s) , (50)

6In [19, 31] motivic MZVs ζm are defined as elements of a certain graded algebra H equipped
with a period homomorphism (46).
7A Hopf algebra is an algebra A with multiplication μ : A ⊗ A → A , i.e. μ(x1 ⊗ x2) = x1 · x2
and associativity. At the same time it is also a coalgebra with coproduct Δ : A → A ⊗ A and
coassociativity such that the product and coproduct are compatible: Δ(x1 · x2) = Δ(x1) · Δ(x2),
with x1, x2 ∈ A .
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Σ(r, s) = {σ ∈ Σ(r + s) |σ−1(1) < . . . < σ−1(r) ∩ σ−1(r + 1) < . . . < σ−1(r +
s)}. The Hopf–algebra U ′ is isomorphic to the space of non–commutative polyno-
mials in f2i+1. The element f2 commutes with all f2r+1. Again, there is a grading
Uk on U , with dim(Uk) = dk . Then, there exists a morphism φ of graded algebra–
comodules

φ : H −→ U , (51)

normalized8 by:
φ
(
ζm
n

) = fn , n ≥ 2 . (52)

Furthermore, (51) respects the shuffle multiplication rule (50):

φ(x1x2) = φ(x1)� φ(x2) , x1, x2 ∈ H . (53)

Themap (51) is defined recursively from lower weight and sends everymotivicMZV
ξ ∈ HN+1 of weight N + 1 to a non–commutative polynomial in the fi . The latter
is given as series expansion up to weight N + 1 w.r.t. the basis { f2r+1}

φ(ξ) = cN+1 fN+1 +
∑

3≤2r+1≤N

f2r+1 ξ2r+1 ∈ UN+1 , (54)

with the coefficients ξ2r+1 ∈ UN−2r being of smaller weight than ξ and computed
from the coproduct as follows. The derivation Dr : Hm → Ar ⊗ Hm−r , with A =
H /ζ2H takes only a subset of the full coproduct, namely the weight (r,m − r)–
part. Hence, D2r+1ξ gives rise to a weight (2r + 1, N − 2r)–part x2r+1 ⊗ yN−2r ∈
A2r+1 ⊗ HN−2r and ξ2r+1 := cφ

2r+1(x2r+1) · φ(yN−2r ) The operator cφ

2r+1(x2r+1),
with x2r+1 ∈ A2r+1 determines the rational coefficient of f2r+1 in the monomial
φ(x2r+1) ∈ U2r+1. Note, that the right hand side of ξ2r+1 only involves elements
from H≤N for which φ has already been determined. On the other hand, the coef-
ficient cN+1 cannot be determined by this method unless we specify9 a basis B and
compute φ for this basis giving rise to the basis dependent map φB . Example for
the basis B = {ζm

2 ζm
3 , ζm

5 } we have φB(ζm
2 ζm

3 ) = f2 f3 and φB(ζm
5 ) = f5, while

φB(ζm
2,3) = 3 f3 f2 + c f5 with c undetermined.

8Note, that there is no canonical choice of φ and the latter depends on the choice of motivic
generators of H .
9The choice of φ describes for each weight 2r + 1 the motivic derivation operators ∂

φ
2r+1 acting on

the space of motivic MZVs ∂
φ
2r+1 : H → H [17] as:

∂
φ
2r+1 = (cφ

2r+1 ⊗ id) ◦ D2r+1 , (55)

with the coefficient function cφ
2r+1.
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To illustrate the procedure for computing themap (51) and determining the decom-
position let us consider the case of weight 10. First, we introduce a basis of motivic
MZVs

B10 = { ζm
3,7, ζm

3 ζm
7 , (ζm

5 )2, ζm
3,5 ζm

2 , ζm
3 ζm

5 ζm
2 , (ζm

3 )2 (ζm
2 )2, (ζm

2 )5 } , (56)

with dim(B10) = d10. Then for each basis element we compute (51):

φB
(
ζm
3,7

) = −14 f7 f3 − 6 f5 f5, φB
(
ζm
3 ζm

7

) = f3 � f7 ,

φB
(
(ζm

5 )2
) = f5 � f5, φB

(
ζm
3,5ζ

m
2

) = −5 f5 f3 f2 ,

φB
(
ζm
3 ζm

5 ζm
2

) = f3 � f5 f2, φB
(
(ζm

3 )2(ζm
2 )2

) = f3 � f3 f
2
2 ,

φB
(
(ζm

2 )5
) = f 52 .

(57)

The above construction allows to assign a Q–linear combination of monomials
to every element ζm

n1,...,nr . The map (51) sends every motivic MZV of weight less or
equal to N to a non–commutative polynomial in the fi ’s. Inverting the map φ gives
the decomposition of ζm

n1,...,nr w.r.t. the basis Bn of weight n, with n = ∑r
l=1 nl . We

construct operators acting on φ(ξ) ∈ U to detect elements in U and to decompose
any motivic MZV ξ into a candidate basis B. The derivation operators ∂2n+1 : U →
U are defined as [17]:

∂2n+1( fi1 . . . fir ) =
{
fi2 . . . fir , i1 = 2n + 1 ,

0 , otherwise ,
(58)

with ∂2n+1 f2 = 0. Furthermore, we have the product rule for the shuffle product:

∂2n+1(a � b) = ∂2n+1a � b + a � ∂2n+1b , a, b ∈ U ′ . (59)

Finally, cn2 takes the coefficient of f n2 . By first determining the map (51) for a given
basis Bn we then can construct the motivic decomposition operator ξn such that it
acts trivially on this basis. This is established for the weight ten basis (57) in the
following.

With the differential operator (58) we may consider the following operator

ξ10 = a0 (ζm
2 )5 + a1 (ζm

2 )2 (ζm
3 )2 + a2 ζm

2 ζm
3 ζm

5 + a3 (ζm
5 )2

+ a4 ζm
2 ζm

3,5 + a5 ζm
3 ζm

7 + a6 ζm
3,7

(60)

with the operators

a1 = 1
2 c22 ∂2

3 , a2 = c2 ∂5∂3, a3 = 1
2 ∂2

5 + 3
14 [∂7, ∂3]

a4 = 1
5 c2 [∂5, ∂3], a5 = ∂7∂3, a6 = 1

14 [∂7, ∂3] (61)

acting on φB(ξ10). Clearly, for the basis (57) we exactly verify (60) to a be a decom-
position operator acting trivially on the basis elements.
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Let us now discuss a special class ofMZVs (36) identified as single–valuedMZVs
(SVMZVs)

ζsv(n1, . . . , nr ) ∈ R (62)

originating from single–valued multiple polylogarithms (SVMPs) at unity [14]. The
latter are generalization of the Bloch–Wigner dilogarithm:

D(z) = � {L i2(z) + ln |z| ln(1 − z) } . (63)

Thus, e.g.:
ζsv(2) = D(1) = 0 . (64)

SVMZVs represent a subset of the MZVs (36) and they satisfy the same double
shuffle and associator relations than the usual MZVs and many more relations [20].
SVMZVs have recently been studied by Brown in [20] from a mathematical point of
view. They have been identified as the coefficients in an infinite series expansion of
the Deligne associator [23] in two non–commutative variables. The latter is defined
through the equation [20]

W (e0, e1) = Z(−e0,−e′
1)

−1 Z(e0, e1) , (65)

with the Drinfeld associator (44) and e′
1 = We1W−1. The equation (65) can system-

atically be worked out at each weight yielding [46]:

W (e0, e1) = 1 + 2 ζ3 ([e0, [e0, e1]] − [e1, [e0, e1]) + 2 ζ5

(
[e0, [e0, [e0, [e0, e1]]]]

− 1
2 [e0, [e0, [e1, [e0, e1]]]] − 3

2 [e1, [e0, [e0, [e0, e1]]]] + (e0 ↔ e1)
)

+ · · · .

(66)
Strictly speaking, the numbers (62) are established in theHopf algebra (47) ofmotivic
MZVs ζm. In analogy to the motivic version of the Drinfeld associator (44)

Zm(e0, e1) =
∑

w∈{e0,e1}×
ζm(w) w (67)

in Ref. [20] Brown has defined the motivic single–valued associator as a generating
series

Wm(e0, e1) =
∑

w∈{e0,e1}×
ζm
sv (w) w , (68)

whose period map (46) gives the Deligne associator (65). Hence, for the motivic
MZVs there is a map from themotivicMZVs to SVMZVs furnished by the following
homomorphism

sv : H → H sv , (69)
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with:
sv : ζm

n1,...,nr �→ ζm
sv (n1, . . . , nr ) . (70)

In the algebra H the homomorphism (69) together with

ζm
sv (2) = 0 (71)

can be constructed [20]. The motivic SVMZVs ζm
sv (n1, . . . , nr ) generate the subal-

gebraH sv of the Hopf algebraH and satisfy all motivic relations between MZVs.
In practice, themap sv is constructed recursively in the (trivial) algebra–comodule

(48)with the first factor given by (49) and generated by all non–commutativewords in
the letters f2i+1. We haveH � U , in particular ζm

2i+1 � f2i+1. The homomorphism

sv : U ′ −→ U ′ , (72)

with
w �−→

∑

uv=w

u � ṽ , (73)

and
sv( f2) = 0 (74)

maps the algebra of non–commutative words w ∈ U to the smaller subalgebraU sv,
which describes the space of SVMZVs [20]. In Eq. (73) the word ṽ is the reversal of
the word v and� is the shuffle product. For more details we refer the reader to the
original reference [20] and subsequent applications in [46]. With (73) the image of
sv can be computed very easily, e.g.:

sv( f2i+1) = 2 f2i+1 . (75)

Eventually, the period map (46) implies the homomorphism

sv : ζn1,...,nr �→ ζsv(n1, . . . , nr ) , (76)

and with (73) we find the following examples (cf. Ref. [46] for more examples):

sv(ζ2) = ζsv(2) = 0 , (77)

sv(ζ2n+1) = ζsv(2n + 1) = 2 ζ2n+1 , n ≥ 1 , (78)

sv(ζ3,5) = −10 ζ3 ζ5 , sv(ζ3,7) = −28 ζ3 ζ7 − 12 ζ 2
5 , (79)

sv(ζ3,3,5) = 2 ζ3,3,5 − 5 ζ 2
3 ζ5 + 90 ζ2 ζ9 + 12

5
ζ 2
2 ζ7 − 8

7
ζ 3
2 ζ 2

5 , . . . . (80)
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5 Motivic Period Matrix Fm

Themotivic version Fm of the period matrix (32) is given by passing from theMZVs
ζ ∈ Z to their motivic versions ζm ∈ H as

Fm = Pm Qm : exp
{

∑

n≥1

ζm
2n+1 M2n+1

}

: , (81)

with
Pm = P|ζ2→ζm

2
, Qm = Q|ζn1 ,...,nr →ζm

n1,...,nr
, (82)

and thematrices P, M and Q defined in (33) and (35), respectively. Extracting e.g. the
weight w = 10 part of (81)

Fm
∣∣
ζm
3 ζm

7
= M7 M3 ,

Fm
∣
∣
ζm
3,7

= 1

14
[M7, M3] ,

Fm
∣∣
(ζm

5 )2
= 1

2
M2

5 + 3

14
[M7, M3] ,

Fm
∣∣
ζm
2 ζm

3 ζm
5

= P2 M5 M3 ,

Fm
∣∣
ζm
2 ζm

3,5
= 1

5
P2 [M5, M3] ,

Fm
∣∣
(ζm

2 )2(ζm
3 )2

= 1

2
P4 M2

3 ,

Fm
∣∣
(ζm

2 )5
= P10 , (83)

and comparing with the motivic decomposition operators (61) yields a striking exact
match in the coefficients and commutator structures by identifying themotivic deriva-
tion operators with the matrices (33) as:

∂2n+1 � M2n+1 , n ≥ 1 ,

ck2 � P2k , k ≥ 1 . (84)

This agreement has been shown to exist up to the weightw = 16 in [41] and extended
through weight w = 22 in [12]. Hence, at least up to the latter weight the decompo-
sition of motivic MZVs w.r.t. to a basis of MZVs encapsulates the α′–expansion of
the motivic period matrix written in terms of the same basis elements (81).

In the following we shall demonstrate, that the isomorphism (51) encapsulates
all the relevant information of the α′–expansion of the motivic period matrix (81)
without further specifying the latter explicitly in terms of motivic MZVs ζm. In the
sequel we shall apply the isomorphism φ to Fm. The action (51) of φ on the motivic
MZVs is explained in the previous section. The first hint of a simplification under φ
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occurs by considering the weight w=8 contribution to Fm, where the commutator
term [M5, M3] from Qm

8 together with the prefactor 1
5ζ

m
3,5 conspires10 into (with

φB(ζm
3,5) = −5 f5 f3):

φB
(
ζm
3 ζm

5 M5M3 + Qm
8

) = f3 f5 M5M3 + f5 f3 M3M5 . (85)

The right hand side obviously treats the objects f3, M3 and f5, M5 in a democratic
way. The effect of the map φ is, that in the Hopf algebraU , every non–commutative
word of odd letters f2k+1 multiplies the associated reverse product ofmatricesM2k+1.
Powers f k2 of the commuting generator f2 are accompanied by P2k , which multiplies
all the operators M2k+1 from the left. Most notably, in contrast to the representation
in terms of motivic MZVs, the numerical factors become unity, i.e. all the rational
numbers in (35) drop out.Our explicit results confirm, that the beautiful structurewith
the combination of operators Mip . . . Mi2Mi1 accompanying the word fi1 fi2 . . . fi p ,
continues to hold through at least weightw = 16. To this end, we obtain the following
striking and short form for the motivic period matrix Fm [41]:

φB(Fm) =
( ∞∑

k=0

f k2 P2k

) ⎛

⎜
⎝

∞∑

p=0

∑

i1 ,...,i p
∈2N++1

fi1 fi2 . . . fi p Mip . . . Mi2Mi1

⎞

⎟
⎠ . (86)

In (86) the sum over the combinations fi1 fi2 . . . fi p Mip . . . Mi2Mi1 includes all pos-
sible non–commutative words fi1 fi2 . . . fi p with coefficients Mip . . . Mi2Mi1 graded
by their length p. Matrices P2k associated with the powers f k2 always act by left
multiplication. The commutative nature of f2 w.r.t. the odd generators f2k+1 ties in
with the fact that in the matrix ordering the matrices P2k have the well–defined place
left of all matrices M2k+1. Alternatively, we may write (86) in terms of a geometric
series:

φB(Fm) =
( ∞∑

k=0

f k2 P2k

) (

1 −
∞∑

k=1

f2k+1 M2k+1

)−1

. (87)

Thus, under the map φ the motivic period matrix Fm takes a very simple structure
φB(Fm) in terms of the Hopf–algebra.

After replacing in (86) the matrices (33) by the operators as in (84) the operator
(86) becomes the canonical element inU ⊗ U ∗, which maps any non–commutative
word inU to itself. In this representation (86) gives rise to a group like action onU .
Hence, the operators ∂2n+1 and ck2 are dual to the letters f2n+1 and f k2 and have the
matrix representations M2n+1 and P2k , respectively. By mapping the motivic MZVs
ζm of the period matrix Fm to elements φB(ζm) of the Hopf algebra U the map
φ endows Fm with its motivic structure: it maps the latter into a very short and
intriguing form in terms of the non–commutative Hopf algebra U . In particular,

10Note the useful relation φB(Qm
8 ) = f5 f3 [M3, M5] for Qm

8 = 1
5 ζm

3,5 [M5, M3].
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the various relations among different MZVs become simple algebraic identities in
the Hopf algebra U . Moreover, in this representation the final result (86) for period
matrix does not depend on the choice of a specific set11 of MZVs as basis elements.
In fact, this feature follows from the basis–independent statement in terms of the
motivic coaction (subject to matrix multiplication) [25]

ΔFm = Fa ⊗ Fm , (88)

with the superscripts a and m referring to the algebras A and H , respectively.
Furthermore with [13]

∂2n+1F
m = Fm M2n+1 (89)

one can explicitly prove (86).
It has been pointed out in [21] that the simplification occurring in (86) can be

interpreted as a compatibility between the motivic period matrix and the action of
the Galois group of periods. Let us introduce the free graded Lie algebraF over Q,
which is freely generated by the symbols τ2n+1 of degree 2n + 1. Ihara has studied
this algebra to relate the Galois Lie algebra G of the Galois group G to the more
tractable object F [33]. The dimension dim(Fm) can explicitly given by [49]

dim(Fm) =
∑

d|m

1

d
μ(d)

∑

� m
3d �≤n≤� m−d

2d �

1

n

(
n

m
d − 2n

)
, (90)

with the Möbius function μ. Alternatively, we have [33]

dim(Fm) = 1

m

∑

d|m
μ

(m
d

) (
3∑

i=1

αd
i − 1 − (−1)d

)

, (91)

with αi being the three roots of the cubic equation α3 − α − 1 = 0. The graded space
of irreducible (primitive) MZVs Z = Z>0

Z>0·Z>0
with Z>0 = ⊕w>0Zw is isomorphic

to the dual of F , i.e. dim(Zm) = dim(Fm) [28, 29]. This property relates linearly
independent elementsF in the α′–expansion of (32) or (81) to primitive MZVs. The
linearly independent algebra elements of F and irreducible (primitive) MZVs (in
lines of [8]) at each weight m are displayed in the Table1 through weight m = 22.

11For instance instead of taking a basis containing the depth one elements ζm
2n+1 one also could

choose the set of Lyndon words in the Hoffman elements ζm
n1,...,nr , with ni = 2, 3 and define the

corresponding matrices (33).
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Table 1 Linearly independent elements in Lm and primitive MZVs for m = 1, . . . , 22

m dim(Fm) linearly independent elements at α′m irreducible MZVs

1 0 − −
2 0 − −
3 1 τ3 ζ3

4 0 − −
5 1 τ5 ζ5

6 0 − −
7 1 τ7 ζ7

8 1 [τ5, τ3] ζ3,5

9 1 τ9 ζ9

10 1 [τ7, τ3] ζ3,7

11 2 τ11, [τ3, [τ5, τ3]] ζ11, ζ3,3,5

12 2 [τ9, τ3], [τ7, τ5] ζ3,9 , ζ1,1,4,6

13 3 τ13, [τ3, [τ7, τ3]], [τ5, [τ5, τ3]] ζ13, ζ3,3,7, ζ3,5,5

14 3 [τ11, τ3], [τ9, τ5], [τ3, [τ3, [τ5, τ3]]] ζ3,11, ζ5,9, ζ3,3,3,5

15 4 τ15, [τ3, [τ9, τ3]], [τ5, [τ7, τ3]],
[τ7, [τ5, τ3]]

ζ15, ζ5,3,7, ζ3,3,9, ζ1,1,3,4,6

16 5 [τ13, τ3], [τ11, τ5], [τ9, τ7], ζ3,13, ζ5,11, ζ1,1,6,8,

[τ3, [τ5, [τ5, τ3]]], [τ3, [τ3, [τ7, τ3]]] ζ3,3,3,7, ζ3,3,5,5

17 7 τ17, [τ3, [τ3, [τ3,
[τ5, τ3]]]], [τ7, [τ7, τ3]], [τ5, [τ7, τ5]],

ζ17, ζ3,3,3,3,5, ζ1,1,3,6,6, ζ5,5,7,

[τ3, [τ11, τ3]], [τ9,
[τ5, τ3]], [τ5, [τ9, τ3]]

ζ3,3,11, ζ5,3,9, ζ3,5,9

18 8 [τ15, τ3], [τ13, τ5], [τ11, τ7], ζ3,15, ζ5,13, ζ1,1,6,10,

[τ5, [τ5, [τ5, τ3]]],
[τ3, [τ3, [τ7, τ5]]],

ζ3,5,5,5, ζ5,3,3,7,

[τ5, [τ3, [τ7, τ3]]], [τ3, [τ3, [τ9, τ3]]],
[τ3, [τ5, [τ7, τ3]]]

ζ3,3,3,9, ζ3,5,3,7, ζ1,1,3,3,4,6

19 11 τ19, [τ3, [τ13, τ3]],
[τ7, [τ9, τ3]], [τ9, [τ7, τ3]],

ζ19, ζ3,3,13, ζ7,3,9, ζ1,1,3,6,8,

[τ5, [τ11, τ3]], [τ11, [τ5, τ3]],
[τ5, [τ9, τ5]], [τ7, [τ7, τ5]],

ζ5,3,11, ζ3,5,11, ζ5,5,9,

ζ1,1,5,6,6,

[τ3, [τ3, [τ5, [τ5, τ3]]]], [τ5, [τ3, [τ3,
[τ5, τ3]]]],

ζ3,3,5,3,5, ζ3,3,3,5,5,

[τ3, [τ3, [τ3, [τ7, τ3]]]] ζ3,3,3,3,7

20 13 [τ17, τ3], [τ15, τ5], [τ13, τ7], [τ11, τ9], ζ7,13, ζ5,15, ζ3,17, ζ1,1,8,10,

[τ3, [τ3, [τ3, [τ3, [τ5, τ3]]]]], ζ3,3,3,3,3,5,

[τ5, [τ5, [τ7, τ3]]], [τ3, [τ5, [τ7, τ5]]],
[τ3, [τ3, [τ9, τ5]]],

ζ5,5,3,7, ζ3,5,5,7, ζ5,3,3,9,

[τ3, [τ7, [τ7, τ3]]], [τ3, [τ5, [τ9, τ3]]],
[τ3, [τ3, [τ11, τ3]]],

ζ3,3,7,7, ζ3,5,3,9, ζ3,3,3,11,

[τ5, [τ3, [τ7, τ5]]], [τ5, [τ3, [τ9, τ3]]] ζ1,1,3,3,4,8, ζ1,1,5,3,4,6,

(continued)
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Table 1 (continued)

m dim(Fm) linearly independent elements at α′m irreducible MZVs

21 17 τ21, [τ9, [τ9, τ3]],
[τ7, [τ11, τ3]], [τ7, [τ9, τ5]],

ζ21, ζ3,9,9, ζ1,1,3,6,10, ζ7,5,9,

[τ5, [τ13, τ3]], [τ5, [τ11, τ5]], [τ5, [τ9,
τ7]],

ζ5,3,13, ζ1,1,5,4,10, ζ1,1,5,6,8,

[τ3, [τ15, τ3]], [τ3, [τ13, τ5]], [τ3, [τ11,
τ7]],

ζ3,3,15, ζ3,5,13, ζ7,3,11,

[τ7, [τ3, [τ3, [τ5, τ3]]]], [τ5, [τ3, [τ5,
[τ5, τ3]]]],

ζ3,5,3,3,7, ζ3,5,3,5,5,

[τ5, [τ3, [τ3, [τ7, τ3]]]], [τ3, [τ5, [τ5,
[τ5, τ3]]]],

ζ5,3,3,3,7, ζ3,3,5,5,5,

[τ3, [τ3, [τ3, [τ7, τ5]]]], [τ3, [τ5, [τ3,
[τ7, τ3]]]],

ζ3,3,5,3,7, ζ1,1,3,3,3,4,6,

[τ3, [τ3, [τ3, [τ9, τ3]]]] ζ3,3,3,3,9

22 21 [τ19, τ3], [τ17, τ5], [τ15, τ7], [τ13, τ9] ζ3,19, ζ5,17, ζ7,15, ζ1,1,8,12

[τ3, [τ3, [τ13, τ3]]] ζ3,3,3,13

[τ11, [τ3, [τ5, τ3]]], [τ3, [τ5, [τ11, τ3]]],
[τ3, [τ11, [τ5, τ3]]]

ζ5,3,3,11, ζ3,5,3,11, ζ3,3,5,11

[τ9, [τ3, [τ7, τ3]]], [τ7, [τ3, [τ9, τ3]]],
[τ3, [τ9, [τ7, τ3]]]

ζ3,7,3,9, ζ1,1,7,3,2,8, ζ1,1,3,3,6,8

[τ7, [τ5, [τ7, τ3]]], [τ7, [τ7, [τ5, τ3]]]],
[τ5, [τ7, [τ7, τ3]]]]

ζ5,3,7,7, ζ3,7,5,7, ζ1,1,3,5,6,6

[τ5, [τ9, [τ5, τ3]]], [τ5, [τ5, [τ9, [τ3]]]]],
[τ3, [τ5, [τ9, τ5]]]

ζ5,3,5,9, ζ3,5,5,9, ζ5,5,3,9

[τ5, [τ5, [τ7, τ5]]] ζ1,1,5,5,4,6

[τ3, [τ3, [τ3, [τ5, [τ5, τ3]]]]],
[τ3, [τ5, [τ3, [τ3, [τ5, τ3]]]]]

ζ3,3,3,5,3,5, ζ3,3,3,3,5,5

[τ3, [τ3, [τ3, [τ3, [τ7, τ3]]]]] ζ3,3,3,3,3,7

The generators M2n+1 defined in (33) are represented as (N − 3)! × (N − 3)!–
matrices and enter the commutator structure

[Mn2 , [Mn3 , . . . , [Mnr , Mn1 ]] . . .] (92)

in the expansion of (32) or (81). These structures can be related to a graded Lie
algebra over Q

L =
⊕

r≥1

Lr , (93)

which is generated by the symbols M2n+1 with the Lie bracket (Mi , Mj ) �→
[Mi , Mj ]. The grading is defined by assigning M2n+1 the degree 2n + 1. More pre-
cisely, the algebra L is generated by the following elements:
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M3, M5, M7, [M5, M3], M9, [M7, M3], M11, [M3[M5, M3]], [M9, M3], [M7, M5], . . . .

(94)
However, this Lie algebra L is not free for generic matrix representations M2i+1

referring to any N ≥ 5. Hence, generically L �� F . In fact, for N = 5 at weight
w = 18 we find the relation [M3, [M5, [M7, M3]]] = [M5, [M3, [M7, M3]]] leading
to dim(L18) = 7 in contrast to dim(F18) = 8.

For a given multiplicity N the generators M2n+1, which are represented as
(N − 3)! × (N − 3)!–matrices, are related to their transposed Mt

l by a similarity
(conjugacy) transformation S0

S−1
0 Mt

l S0 = Ml , (95)

i.e. Ml and Mt
l are similar (conjugate) to each other. The matrix S0 is symmetric

and has been introduced in [41]. The relation (95) implies, that the matrices Ml are
conjugate to symmetric matrices. An immediate consequence is the set of relations

S0 Q(r) + (−1)r Qt
(r)S0 = 0 , (96)

for any nested commutator of generic depth r

Q(r) = [Mn2 , [Mn3 , . . . , [Mnr , Mn1 ]] . . .] , r ≥ 2 .

As a consequence any commutator Q2r is similar to an anti–symmetric matrix and
any commutatorQ2r+1 is similar to a symmetric and traceless matrix. Depending on
themultiplicity N the relations (96) impose constraints on the number of independent
generators at a givenweightm given in theTable1. Example for N = 5 the constraints
(96) imply12:

r1 + r2 ∈ 2Z+ : [ Q(r1), Q̃(r2) ] = 0 , (97)

r1 + r2 ∈ 2Z+ + 1 : { Q(r1), Q̃(r2) } = 0 . (98)

As a consequence, for N = 5 the number of independent elements at a given weight
m does not agreewith the formulae (90) nor (91) starting atweightw = 18. The actual
number of independent commutator structures at weight w is depicted in Table2.

Therefore, for N = 5 an other algebraL (5) rather thanF is relevant for describ-
ing the expansion of (32) or (81). For N ≥ 6 we expect the mismatch dim(Fm) �=
dim(Lm) to show up at higher weights m. This way, for each N ≥ 5 we obtain a

12The relation (96) implies, that any commutator Q(2) is similar to an anti–symmetric
matrix, and hence (97) implies [ [Ma, Mb], [Mc, Md ] ] = 0, which in turn as a result of the
Jacobi relation yields the following identity: [Ma, [Mb, [Mc, Md ]]] − [Mb, [Ma, [Mc, Md ]]] =
[ [Ma, Mb], [Mc, Md ] ] = 0. Furthermore, (96) implies that the commutator Q(3) is similar to
a symmetric and traceless matrix. As a consequence from (98), we obtain the following anti–
commutation relation: { [Ma, Mb], [Mc, [Md , Me] } = 0. Relations for N = 5 between different
matrices M2i+1 have also been discussed in [9].
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Table 2 Linearly independent elements in F ,L
(5)
m and primitive MZVs for m = 18, . . . , 23 for

N = 5

m dim(Fm) dim(L
(5)
m ) irreducible MZVs

18 8 7 7

19 11 11 11

20 13 11 11

21 17 16 16

22 21 16 16

23 28 25 25

different algebra L (N ), which is not free. However, we speculate that for N large
enough, the matrices M2k+1 should give rise to the free Lie algebra F , i.e.:

lim
N→∞L (N ) � F . (99)

6 Open and Closed Superstring Amplitudes

The world–sheet describing the tree–level scattering of N open strings is depicted
in Fig. 3. Asymptotic scattering of strings yields the string S–matrix defined by the
emission and absorption of strings at space–time infinity, i.e. the open strings are
incoming and outgoing at infinity. In this case the world–sheet can conformally be
mapped to the half–sphere with the emission and absorption of strings taking place
at the boundary through some vertex operators. Source boundaries representing the
emission and absorption of strings at infinity become points accounting for the vertex
operator insertions along the boundary of the half–sphere (disk).After projection onto
the upper half plane C+ the strings are created at the N positions zi , i = 1, . . . , N
along the (compactified) real axis RP1. By this there appears a natural ordering
Π ∈ SN of open string vertex operator insertions zi along the boundary of the disk
given by zΠ(1) < . . . < zΠ(N ). To conclude, the topology of the string world–sheet
describing tree–level scattering of open strings is a disk or upper half plane C+.
On the other hand, the tree–level scattering of closed strings is characterized by a
complex sphere P1 with vertex operator insertions on it.

At the N positions zi massless strings carrying the external four–momenta ki , i =
1, . . . , N and other quantumnumbers are created, subject tomomentumconservation
k1 + · · · + kN = 0. Due to conformal invariance one has to integrate over all vertex
operator positions zi in any amplitude computation. Therefore, for a given orderingΠ

open string amplitudesA o(Π) are expressed by integrals along the boundary of the
world–sheet disk (real projective line) as iterated (real) integrals on RP1 giving rise
to multi–dimensional integrals on the spaceM0,N (R) defined in (4). The N external
four–momenta ki constitute the kinematic invariants of the scattering process:
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C
+

Disk

z z1 2 zNzN−1

1

2

N

conformal
transformation

Fig. 3 World–sheet describing the scattering of N open strings

si j = (ki + k j )
2 = 2ki k j . (100)

Out of (100) there are 1
2N (N − 3) independent kinematic invariants involving N

external momenta ki , i = 1, . . . , N . Any amplitude analytically depends on those
independent kinematic invariants si j .

A priori there are N ! orderings Π of the vertex operator positions zi along the
boundary. However, string world–sheet symmetries like cyclicity, reflection and par-
ity give relations between different orderings. In fact, by using monodromy prop-
erties on the world–sheet further relations are found and any superstring amplitude
A o(Π) of a given ordering Π can be expressed in terms of a minimal basis of
(N − 3)! amplitudes [6, 44]:

A o(σ ) := A o(1, σ (2, . . . , N − 2), N − 1, N ) , σ ∈ SN−3 . (101)

The amplitudes (101) are functions of the string tension α′. Power series expansion
in α′ yields iterated integrals (20) multiplied by some polynomials in the parameters
(100).

On the other hand, closed string amplitudes are given by integrals over the com-
plex world–sheet sphere P1 as iterated integrals integrated independently on all
choices of paths.While in theα′–expansion of open superstring tree–level amplitudes
generically the whole space of MZVs (36) enters [39, 41, 45], closed superstring
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tree–level amplitudes exhibit only a subset of MZVs appearing in their α′–expansion
[41, 45]. This subclass can be identified [46] as the single–valuedmultiple zeta values
(SVMZVs) (62).

The open superstring N–gluon tree–level amplitude Ao
N in type I superstring

theory decomposes into a sum

Ao
N = (goYM)N−2

∑

Π∈SN /Z2

Tr(T aΠ(1) . . . T aΠ(N ) ) A o(Π(1), . . . ,Π(N )) (102)

over color ordered subamplitudes A o(Π(1), . . . ,Π(N )) supplemented by a group
trace over matrices T a in the fundamental representation. Above, the YM coupling
is denoted by goYM , which in type I superstring theory is given by goYM ∼ eΦ/2 with
the dilaton field Φ. The sum runs over all permutations SN of labels i = 1, . . . , N
modulo cyclic permutations Z2, which preserve the group trace. The α′ → 0 limit
of the open superstring amplitude (102) matches the N–gluon scattering amplitude
of super Yang–Mills (SYM):

A o(Π(1), . . . ,Π(N ))
∣∣
α′=0 = A(Π(1), . . . , Π(N )) . (103)

As a consequence from (101) also in SYM one has a minimal basis of (N − 3)!
independent partial subamplitudes [4]:

A(σ ) := A(1, σ (2, . . . , N − 2), N − 1, N ) , σ ∈ SN−3 . (104)

Hence, for the open superstring amplitude we may consider a vector A o with its
entriesA o

σ = A o(σ ) describing the (N − 3)! independent open N–point superstring
subamplitudes (101), while for SYM we have another vector A with entries Aσ =
A(σ ):

A o = (N − 3)! dimensional vector encompassing

all independent superstring subamplitudes A o
σ = A o(σ ), σ ∈ SN−3 ,

A = (N − 3)! dimensional vector encompassing

all independent SYM subamplitudes Aσ = A(σ ), σ ∈ SN−3 .

The two linear independent (N − 3)!–dimensional vectors A and A are related by
a non–singular matrix of rank (N − 3)!. An educated guess is the following relation

A o = F A , (105)

with the period matrix F given in (29). Note, that with (30) the Ansatz (105) matches
the condition (103). In components the relation (105) reads:

A o(π) =
∑

σ∈SN−3

Fπσ A(σ ) , π ∈ SN−3 . (106)
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In fact, an explicit string computation proves the relation (105) [37, 38].
Let us now move on to the scattering of closed strings. In heterotic string vacua

gluons are described by massless closed strings. Therefore, we shall consider the
closed superstring N–gluon tree–level amplitude Ac

N in heterotic superstring theory.
The string world–sheet describing the tree–level scattering of N closed strings has
the topology of a complex sphere with N insertions of vertex operators. The closed
string has holomorphic and anti–holomorphic fields. The anti–holomorphic part is
similar to the open string case and describes the space–time (or superstring) part.
On the other hand, the holomorphic part accounts for the gauge degrees of freedom
through current insertions on the world–sheet. As in the open string case (102), the
single trace part decomposes into the sum

Ac
N , s.t. = (gHETYM )N−2

∑

Π∈SN /Z2

tr(T aΠ(1) . . . T aΠ(N ) ) A c(Π(1), . . . ,Π(N )) (107)

over partial subamplitudesA c(Π) times a group trace over matrices T a in the vector
representation. In the α′ → 0 limit the latter match the N–gluon scattering subam-
plitudes of SYM

A c(Π(1), . . . ,Π(N ))
∣∣
α′=0 = A(Π(1), . . . ,Π(N )) , (108)

similarly to open string case (103). Again, the partial subamplitudes A c(Π) can be
expressed in terms of a minimal basis of (N − 3)! elementsA c(ρ), ρ ∈ SN−3. The
latter have been computed in [47] and are given by

A c(ρ) = (−1)N−3
∑

σ∈SN−3

∑

ρ∈SN−3

J [ρ | ρ] S[ρ|σ ] A(σ ) , ρ ∈ SN−3 , (109)

with the complex sphere integral13

J [ρ | ρ] := V−1
CKG

⎛

⎜
⎝

N∏

j=1

∫

z j∈C
d2z j

⎞

⎟
⎠

N∏

i< j

|zi j |2α
′si j 1

z1ρ(2)zρ(2),ρ(3) . . . zρ(N−2),N−1zN−1,N zN ,1

× 1

z1ρ(2)zρ(2),ρ(3) . . . zρ(N−3),ρ(N−2)zρ(N−2),N zN ,N−1 zN−1,1
, (110)

the kernel S introduced in (28) and the SYM amplitudes (104). In (110) the rational
function comprising the dependence on holomorphic and anti–holomorphic vertex
operator positions shows some pattern depicted in Fig. 4. Based on the results [46]
the following (matrix) identity has been established in [47]

J = sv(Z) , (111)

13The factor VCKG accounts for the volume of the conformal Killing group of the sphere after
choosing the conformal gauge. It will be canceled by fixing three vertex positions according to (1)
and introducing the respective c–ghost factor |z1,N−1z1,N zN−1,N |2.
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zρ(2)z1

zρ(N−2) zρ(N−3)

zN

zN−1 zρ(3)

z2z1

zN−1

zN−2 zN−3

zN z3

Fig. 4 N–gons describing the cyclic structures of holomorphic and anti–holomorphic cell forms

relating the complex integral (110) to the real iterated integral (24). The holomorphic
part of (110) simply turns into the corresponding integral ordering of (24). As a
consequence of (111) we find the following relation between the closed (109) and
open (106) superstring gluon amplitude [47]:

A c(ρ) = sv
(
A o(ρ)

)
, ρ ∈ SN−3 . (112)

To conclude, the single trace heterotic gauge amplitudesA c(ρ) referring to the color
orderingρ are simply obtained from the relevant open string gauge amplitudesA o(ρ)

by imposing the projection sv introduced in (73). Therefore, the α′–expansion of the
heterotic amplitudeA c(ρ) can be obtained from that of the open superstring ampli-
tudeA o(ρ) by simply replacing MZVs by their corresponding SVMZVs according
to the rules introduced in (73). The relation (112) between the heterotic gauge ampli-
tudeA c and the type I gauge amplitude Ao establishes a non–trivial relation between
closed string and open string amplitudes: the α′–expansion of the closed superstring
amplitude can be cast into the same algebraic form as the open superstring amplitude:
the closed superstring amplitude is essentially the single–valued (sv) version of the
open superstring amplitude.

Also closed string amplitudes other than the heterotic (single–trace) gauge ampli-
tudes (109) can be expressed as single–valued image of some open string amplitudes.
From (111) the closed string analog of (27) follows:

J |α′=0 = (−1)N−3 S−1 . (113)

Hence, the set of complex world–sheet sphere integrals (110) are the closed string
analogs of the open stringworld–sheet disk integrals (24) and serve as building blocks
to construct any closed string amplitude.After applying partial integrations to remove
double poles, which are responsible for spurious tachyonic poles, further performing
partial fraction decompositions and partial integration relations all closed superstring
amplitudes can be expressed in terms of the basis (110), which in turn through (111)
can be related to the basis of open string amplitudes (24). As a consequence the
α′–dependence of any closed string amplitude is given by that of the underlying
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open string amplitudes. This non–trivial connection between open and closed string
amplitudes at the string tree–level points into a deeper connection between gauge
and gravity amplitudes than what is implied by Kawai–Lewellen–Tye relations [34].

7 Complex Versus Iterated Integrals

Perturbative open and closed string amplitudes seem to be rather different due to their
underlying differentworld–sheet topologieswith orwithout boundaries, respectively.
On the other hand, mathematical methods entering their computations reveal some
unexpected connections. Aswe have seen in the previous section a new relation (111)
between open (24) and closed (110) string world–sheet integrals holds.

Open string world–sheet disk integrals (24) are described as real iterated integrals
on the spaceM0,N (R) defined in (4), while closed stringworld–sheet sphere integrals
(110) are given by integrals on the spaceM0,N (C) defined in (3). The latter integrals,
which can be considered as iterated integrals on P1 integrated independently on all
choices of paths, are more involved than the real iterated integrals appearing in open
string amplitudes. The observation (111) that complex integrals can be expressed as
real iterated integrals subject to the projection sv has exhibited non–trivial relations
between open and closed string amplitudes (112). In this section we shall elaborate
on these connections at the level of the world–sheet integrals.

The simplest example of (111) arises for N = 4 yielding the relation

∫

C
d2z

|z|2s |1 − z|2u
z (1 − z) z

= sv

(∫ 1

0
dx xs−1 (1 − x)u

)
, (114)

with s, u ∈ R such that both integrals converge. While the integral on the l.h.s. of
(114) describes a four–point closed string amplitude the integral on the r.h.s. describes
a four–point open string amplitude. Hence, the meaning of (114) w.r.t. to the cor-
responding closed versus open string world–sheet diagram describing four–point
scattering (112) can be depicted as Fig. 5.

= sv

Fig. 5 Relation between closed and open string world–sheet diagram describing four–point scat-
tering
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After performing the integrations the relation (114) becomes (with s + t +
u = 0):

Γ (s) Γ (u) Γ (t)

Γ (−s) Γ (−u) Γ (−t)
= sv

(
Γ (1 + s) Γ (1 + u)

Γ (1 + s + u)

)
. (115)

Essentially, this equality (when acting on [e0, e1]) represents the relation between the
Deligne (66) and Drinfeld (44) associators in the explicit representation of the limit
mod(g′)2 with (g′)2 = [g, g]2, s = −ade1 , u = ade0 and adx y = [x, y], i.e. dropping
all quadratic commutator terms [25, 46]. Note, that applying Kawai–Lewellen–Tye
(KLT) relations [34] to the complex integral of (114) rather yields

∫

C
d2z

|z|2s |1 − z|2u
z (1 − z) z

= sin(πu)

(∫ 1

0
dx xs−1 (1 − x)u−1

) (∫ ∞
1

dx xt−1 (1 − x)u
)

,

(116)
expressing the latter in terms of a square of real iterated integrals instead of a single
real iterated integral as in (114). In fact, any direct computation of this complex
integral by means of a Mellin representation or Gegenbauer decomposition ends up
at (116).

Similar (114) explicit and direct correspondences (111) between the complex
sphere integrals J and the real disk integrals Z can be made for N ≥ 5. In order to
familiarize with the matrix notation let us explicitly write the case (111) for N = 5
(with (1)):

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

∫

z2,z3∈C
d2z2 d

2z3

4∏

i< j
|zi j |2α′si j

z12z23z34 z12z23

∫

z2,z3∈C
d2z2 d

2z3

4∏

i< j
|zi j |2α′si j

z12z23z34 z13z32

∫

z2,z3∈C
d2z2 d

2z3

4∏

i< j
|zi j |2α′si j

z13z32z24 z12z23

∫

z2,z3∈C
d2z2 d

2z3

4∏

i< j
|zi j |2α′si j

z13z32z24 z13z32

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

= sv

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

∫

0<z2<z3<1

dz2 dz3

4∏

i< j
|zi j |α′si j

z12z23

∫

0<z2<z3<1

dz2 dz3

4∏

i< j
|zi j |α′si j

z13z32

∫

0<z3<z2<1

dz2 dz3

4∏

i< j
|zi j |α′si j

z12z23

∫

0<z3<z2<1

dz2 dz3

4∏

i< j
|zi j |α′si j

z13z32

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

(117)

In (117) we explicitly see how the presence of the holomorphic gauge insertion
in the complex integrals results in the projection onto real integrals involving only
the right–moving part. Similar matrix relations can be extracted from (111) beyond
N > 5.
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From (111) it follows that the α′–expansion of the closed string amplitude can
be obtained from that of the open superstring amplitude by simply replacing MZVs
by their corresponding SVMZVs according to the rules introduced in (76). Hence,
closed string amplitudes use only the smaller subspace of SVMZVs. From a physical
point of view SVMZVs appear in the computation of graphical functions (positive
functions on the punctured complex plane) for certain Feynman amplitudes [42].
In supersymmetric Yang–Mills theory a large class of Feynman integrals in four
space–time dimensions lives in the subspace of SVMZVs or SVMPs. As pointed
out by Brown in [20], this fact opens the interesting possibility to replace general
amplitudes with their single–valued versions (defined in (76) by the map sv), which
should lead to considerable simplifications. In string theory this simplification occurs
by replacing open superstring amplitudes by their single–valued versions describing
closed superstring amplitudes.

Acknowledgements We wish to thank the organizers (especially José Burgos, Kurush Ebrahimi-
Fard, and Herbert Gangl) of the workshop Research Trimester on Multiple Zeta Values, Multiple
Polylogarithms, and Quantum Field Theory and the conference Multiple Zeta Values, Modular
Forms and Elliptic Motives II at ICMAT, Madrid for inviting me to present the work exhibited in
this publication and creating a stimulating atmosphere.

References

1. Arkani-Hamed, N., Bourjaily, J.L., Cachazo, F., Goncharov, A.B., Postnikov, A., Trnka, J.:
Scattering amplitudes and the positive grassmannian. arXiv:1212.5605 [hep-th]

2. Arkani-Hamed, N., Trnka, J.: The Amplituhedron. JHEP 1410, 30 (2014). arXiv:1312.2007
[hep-th]

3. Bern, Z., Dixon, L.J., Perelstein, M., Rozowsky, J.S.: Multileg one loop gravity amplitudes
from gauge theory. Nucl. Phys. B 546, 423 (1999). [hep-th/9811140]

4. Bern, Z., Carrasco, J.J.M., Johansson, H.: New relations for gauge-theory amplitudes. Phys.
Rev. D 78, 085011 (2008). arXiv:0805.3993 [hep-ph]

5. Beukers, F.: Algebraic A-hypergeometric functions. Invent. Math. 180, 589–610 (2010)
6. Bjerrum-Bohr, N.E.J., Damgaard, P.H., Vanhove, P.: Minimal basis for gauge theory ampli-

tudes. Phys. Rev. Lett. 103, 161602 (2009). arXiv:0907.1425 [hep-th]
7. Bjerrum-Bohr, N.E.J., Damgaard, P.H., Sondergaard, T., Vanhove, P.: The momentum kernel

of gauge and gravity theories. JHEP 1101, 001 (2011). arXiv:1010.3933 [hep-th]
8. Blümlein, J., Broadhurst, D.J., Vermaseren, J.A.M.: Themultiple zeta value datamine. Comput.

Phys. Commun. 181, 582 (2010). arXiv:0907.2557 [math-ph]
9. Boels, R.H.: On the field theory expansion of superstring five point amplitudes. Nucl. Phys. B

876, 215 (2013). arXiv:1304.7918 [hep-th]
10. Bogner, C., Weinzierl, S.: Periods and Feynman integrals. J. Math. Phys. 50, 042302 (2009).

arXiv:0711.4863 [hep-th]
11. Broadhurst, D.J., Kreimer, D.: Association of multiple zeta values with positive knots via

Feynman diagrams up to 9 loops. Phys. Lett. B 393, 403 (1997). [hep-th/9609128]
12. Broedel, J., Schlotterer, O., Stieberger, S.: Polylogarithms, multiple zeta values and superstring

amplitudes. Fortsch. Phys. 61, 812 (2013). arXiv:1304.7267 [hep-th]
13. Broedel, J., Schlotterer, O., Stieberger, S., Terasoma, T.: Notes on Lie Algebra structure of

Superstring Amplitudes. unpublished
14. Brown, F.: Single-valued multiple polylogarithms in one variable. C.R. Acad. Sci. Paris, Ser.

I 338, 527–532 (2004)

http://arxiv.org/abs/1212.5605
http://arxiv.org/abs/1312.2007
http://arxiv.org/abs/0805.3993
http://arxiv.org/abs/0907.1425
http://arxiv.org/abs/1010.3933
http://arxiv.org/abs/0907.2557
http://arxiv.org/abs/1304.7918
http://arxiv.org/abs/0711.4863
http://arxiv.org/abs/1304.7267


Periods and Superstring Amplitudes 75

15. Brown, F.: Multiple zeta values and periods of moduli spaces M0,n(R). Ann. Sci. Ec. Norm.
Sup. 42, 371 (2009). arXiv:math/0606419 [math.AG]

16. Brown, F.C.S., Carr, S., Schneps, L.: Algebra of cell-zeta values. Compositio Math. 146, 731–
771 (2010)

17. Brown, F.: On the decomposition of motivic multiple zeta values. Galois-Teichmüller Theory
Arithmetic Geometry Adv. Stud. Pure Math. 63, 31–58 (2012). arXiv:1102.1310 [math.NT]

18. Brown, F.C.S., Levin, A.: Multiple Elliptic Polylogarithms. arXiv:1110.6917 [math.NT]
19. Brown, F.: Mixed tate motives over Z . Ann. Math. 175, 949–976 (2012)
20. Brown, F.: Single-valued Motivic periods and multiple zeta values. SIGMA 2, e25 (2014)

arXiv:1309.5309 [math.NT]
21. Brown, F.: Periods and Feynman amplitudes. arXiv:1512.09265 [math-ph]
22. Brown, F.: A class of non-holomorphic modular forms I. arXiv:1707.01230 [math.NT]
23. Deligne, P.: Le groupe fondamental de la droite projective moins trois points. In: Galois groups

overQ, Springer, MSRI publications 16 (1989), 72-297; “Periods for the fundamental group,”
Arizona Winter School (2002)

24. Drinfeld, V.G.: On quasitriangular quasi-Hopf algebras and on a group that is closely connected
with Gal(Q, Q). Alg. Anal. 2, 149: English translation: leningrad Math. J. 2(1991), 829–860
(1990)

25. Drummond, J.M., Ragoucy, E.: Superstring amplitudes and the associator. JHEP 1308, 135
(2013). arXiv:1301.0794 [hep-th]

26. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Generalized Euler integrals and A-
hypergeometric functions. Adv. Math. 84, 255–271 (1990)

27. Golden, J., Goncharov, A.B., Spradlin, M., Vergu, C., Volovich, A.: Motivic amplitudes and
cluster coordinates. JHEP 1401, 091 (2014). arXiv:1305.1617 [hep-th]

28. Goncharov, A.B.: Multiple zeta-values, Galois groups, and geometry of modular varieties.
arXiv:math/0005069v2 [math.AG]

29. Goncharov, A.B.: Multiple polylogarithms and mixed Tate motives. arXiv:math/ 0103059v4
[math.AG]

30. Goncharov, A., Manin, Y.: Multiple ζ -motives and moduli spaces M 0,n . Compos. Math. 140,
1–14 (2004). arXiv:math/0204102

31. Goncharov,A.B.:Galois symmetries of fundamental groupoids and noncommutative geometry.
Duke Math. J. 128, 209–284 (2005). arXiv:math/0208144v4 [math.AG]

32. Goncharov, A.B.: Private communication
33. Ihara, Y.: Some arithmetic aspects of Galois actions in the pro-p fundamental group of P1 −

{0, 1,∞}. In: Arithmetic Fundamental Groups and Noncommutative Algebra. Proceedings of
Symposia in Pure Mathematics 70 (2002)

34. Kawai, H., Lewellen, D.C., Tye, S.H.H.: A relation between tree amplitudes of closed and open
strings. Nucl. Phys. B 269, 1 (1986)

35. Kontsevich, M., Zagier, D.: Periods. In: Engquist, B., Schmid, W. (eds.) Mathematics
unlimited—2001 and beyond, Berlin, pp. 771–808. Springer, New York (2001)

36. Le, T.Q.T., Murakami, J.: Kontsevich’s integral for the Kauffman polynomial. Nagoya Math.
J. 142, 39–65 (1996)

37. Mafra, C.R., Schlotterer, O., Stieberger, S.: Complete N-point superstring disk amplitude I.
Pure spinor computation. Nucl. Phys. B 873, 419 (2013). arXiv:1106.2645 [hep-th]

38. Mafra, C.R., Schlotterer, O., Stieberger, S.: Complete N-point superstring disk amplitude
II. Amplitude and hypergeometric function structure. Nucl. Phys. B 873, 461 (2013).
arXiv:1106.2646 [hep-th]

39. Oprisa, D., Stieberger, S.: Six gluon open superstring disk amplitude, multiple hypergeometric
series and Euler-Zagier sums. [hep-th/0509042]

40. Puhlfürst, G., Stieberger, S.: Differential equations, associators, and recurrences for ampli-
tudes. Nucl. Phys. B 902, 186 (2016) arXiv:1507.01582 [hep-th]. A feynman integral and its
recurrences and associators. Nucl. Phys. B 906, 168 (2016). arXiv:1511.03630 [hep-th]

41. Schlotterer, O., Stieberger, S.:Motivic multiple zeta values and superstring amplitudes. J. Phys.
A 46, 475401 (2013). arXiv:1205.1516 [hep-th]

http://arxiv.org/abs/math/0606419
http://arxiv.org/abs/1102.1310
http://arxiv.org/abs/1110.6917
http://arxiv.org/abs/1309.5309
http://arxiv.org/abs/1512.09265
http://arxiv.org/abs/1707.01230
http://arxiv.org/abs/1301.0794
http://arxiv.org/abs/1305.1617
http://arxiv.org/abs/math/0005069v2
http://arxiv.org/abs/math/
http://arxiv.org/abs/math/0204102
http://arxiv.org/abs/math/0208144v4
http://arxiv.org/abs/1106.2645
http://arxiv.org/abs/1106.2646
http://arxiv.org/abs/1507.01582
http://arxiv.org/abs/1511.03630
http://arxiv.org/abs/1205.1516


76 S. Stieberger

42. Schnetz, O.: Graphical functions and single-valued multiple polylogarithms. Commun. Num.
Theor. Phys. 08, 589 (2014). arXiv:1302.6445 [math.NT]

43. Stieberger, S., Taylor, T.R.: Multi-gluon scattering in open superstring theory. Phys. Rev. D 74,
126007 (2006). [hep-th/0609175]

44. Stieberger, S.:Open&Closed vs. PureOpenStringDiskAmplitudes. arXiv:0907.2211 [hep-th]
45. Stieberger, S.: Constraints on tree-level higher order gravitational couplings in superstring

theory. Phys. Rev. Lett. 106, 111601 (2011). arXiv:0910.0180 [hep-th]
46. Stieberger, S.: Closed superstring amplitudes, single-valued multiple zeta values and the

Deligne associator. J. Phys. A 47, 155401 (2014). arXiv:1310.3259 [hep-th]
47. Stieberger, S., Taylor, T.R.: Closed string amplitudes as single-valued open string amplitudes.

Nucl. Phys. B 881, 269 (2014). arXiv:1401.1218 [hep-th]
48. Terasoma, T.: Selberg integrals and multiple zeta values. Compos. Math. 133, 1–24 (2002)
49. Tsunogai, H.: On ranks of the stable derivation algebra and Deligne’s problem. Proc. Japan

Acad. Ser. A 73, 29–31 (1997)
50. Zagier, D.: Values of zeta functions and their applications. In: Joseph, A., et al. (eds.) First

European Congress of Mathematics (Paris, 1992), vol. II, pp. 497–512. Basel, Birkhäuser
(1994)

http://arxiv.org/abs/1302.6445
http://arxiv.org/abs/0907.2211
http://arxiv.org/abs/0910.0180
http://arxiv.org/abs/1310.3259
http://arxiv.org/abs/1401.1218


The Number Theory of Superstring
Amplitudes

Oliver Schlotterer

Abstract The following article is intended as a survey of recent results at the inter-
face of number theory and superstring theory. We review the expansion of scattering
amplitudes—central observables in field and string theory—in the inverse string
tension where elegant patterns of multiple zeta values occur. More specifically, the
Drinfeld associator and the Hopf algebra structure of motivic multiple zeta values are
shown to govern tree-level amplitudes of the open superstring. Partial results on the
quantum corrections are discussed where elliptic analogues of multiple zeta values
play a central rôle.

Keywords Scattering amplitudes · Superstring theory · Multiple zeta values ·
Hopf algebras

1 Introduction

Around 1970, string theorywas born out of an attempt to describe pion scattering, see
[1] for a recent historic account. Even though the rôle of string theory has changed
a lot over the past 45 years—most notably from a model of hadrons and mesons
to a candidate framework for quantum gravity—its scattering amplitudes have been
of constant interest. On the one hand, they provide fertile testing grounds for string
dualities [2] or possible phenomenological signatures of string theory [3–5] in con-
nection with a low string scale [6, 7]. On the other hand, string amplitudes are a
prominent tool to obtain a novel viewpoint on interacting quantum field theories and
perturbative gravity which arise in the limit where strings shrink to point particles.
In many instances, the hidden simplicity of and relations between gauge-theory and
gravity amplitudes are invisible to conventional methods (Lagrangians or Feynman
diagrams) but follow naturally from string theory, see for instance [8–11].
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In this work, we review recent encounters of string amplitudes with modern topics
in number theory. In the “tree-level” approximation, open-string amplitudes depend
on the strings’ fundamental length scale through iterated integrals in the unit interval
and therefore involve multiple zeta values (MZVs). As we will see, the rich math-
ematical patterns of the MZVs’ appearance can be understood from the Drinfeld
associator [12, 13] and the Hopf algebra structure of motivic MZVs [14]. We also
report on tree-level amplitudes of the closed-string [14, 15] as well as recent results
[16] on the leading quantum corrections, “one-loop amplitudes”. In the open-string
sector, the latter are governed by iterated integrals on a genus-one surface and thus
involve elliptic analogues of MZVs as studied by Enriquez [17, 18].

1.1 The Disk Amplitude

Tree-level scattering amplitudes of open superstring states are given by iterated inte-
grals along the boundary of a disk. The integrand is a correlation function of vertex
operators which insert the degrees of freedom of the external states onto a world-
sheet of disk topology. Using the pure spinor formulation of the superstring [19], the
correlator has been evaluated recently for any number of massless external legs [20],

A(1, 2, . . . , n;α′) =
∑

σ∈Sn−3

Fσ (si j )AYM(1, σ (2, 3, . . . , n−2), n−1, n) , (1)

where the labels 1, 2, . . . , n on the left hand side refer to the polarizations and
momenta of the external gauge bosons or their supersymmetry partners. Their order-
ing specifies a cyclic arrangement of punctures along the disk boundary, and the
additional argument α′ denotes the inverse string tension or the squared string length
scale. On the right hand side, AYM(1, σ (2, 3, . . . , n−2), n−1, n) are partial tree
amplitudes in the super Yang-Mills theory obtained in the point particle limit α′ → 0
[8]. They encode sums of Feynman diagrams obtained in degeneration limits of the
disk worldsheet (see Fig. 1) and also depend on the external states in a cyclic ordering
which is governed by (n − 3)! permutations σ ∈ Sn−3.

The objects of central interest to this work are the integrals Fσ (si j ) in (1), we will
report on the results of [13, 14] on their expansion in α′. In a parametrization of the
disk boundary through real coordinates z j ∈ R with zi j ≡ zi − z j [20],

Fσ (si j ) ≡ (−1)n−3
∫

0≤z2≤z3≤...≤zn−2≤1

dz2 dz3 . . . dzn−2

⎛

⎝
n−1∏

i< j

|zi j |si j
⎞

⎠ σ
{ n−2∏

k=2

k−1∑

m=1

smk

zmk

}
. (2)

We have fixed the SL(2) symmetry on the disk by choosing z1 = 0, zn−1 = 1 and
zn = ∞. The permutation σ ∈ Sn−3 is understood to act on the labels 2, 3, . . . , n − 2
in the curly bracket while leaving σ(1) = 1. The integrals in (2) carry the entire α′-
dependence of the disk amplitude through dimensionless combinations
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Fig. 1 The disk worldsheet describing open-string scattering at tree level degenerates to Feynman
diagrams in the point-particle or field-theory limit α′ → 0, where the ellipsis refers to further
representatives of Feynman diagrams

si j ≡ α′(ki + k j )
2 (3)

of the external momenta ki which are vectors of the D-dimensional Lorentz group.
Momentum conservation

∑n
i=1 ki = 0 and the on-shell condition (ki )2 = 0 for mass-

less particles leave n
2 (n − 3) independent Mandelstam variables si j . As we will

demonstrate, the integrals in (2) reduce as follows in the field-theory limit α′ → 0,

lim
α′→0

Fσ (si j ) =
{
1 : σ(2, 3, . . . , n − 2) = 2, 3, . . . , n − 2
0 : otherwise

, (4)

i.e. their Taylor expansion w.r.t. si j in (3) encodes the string-corrections to super
Yang-Mills theory. The expansionw.r.t. si j and therebyα′ turns out to exhibit uniform
transcendentality1: The w’th order in α′ is accompanied by MZVs of transcendence
weight w.

In the following sections, we will describe two organizing principles underlying
the α′-expansion of the Fσ (si j ). More specifically,

• A matrix representation of the Drinfeld associator generates the Taylor expansion
in si j in a recursive manner w.r.t. the multiplicity n [13], see Sect. 2.

• Motivic MZVs and their Hopf algebra structure allow to extract the complete
information on Fσ (si j ) from its coefficients along with primitive MZVs ζw [14],
see Sect. 3.

In Sect. 4, we conclude with a brief discussion of generalizations to closed strings or
quantum corrections and raise open questions.

2 The α′-Expansion from the Drinfeld Associator

In this section, we review the recursion in [13] to obtain the α′-expansion of the
integrals in (2) from the Drinfeld associator [21, 22]. This is achieved by establish-
ing a Knizhnik-Zamolodchikov (KZ) equation for a deformation of the integrals in
question through an auxiliary worldsheet puncture z0. Certain boundary values of

1The terminology here and in later places relies on the commonly trusted conjectures on the tran-
scendentality of MZVs.
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the deformed integrals as z0 → 0 and z0 → 1 are found to yield the original Fσ (si j )
at multiplicity n − 1 and n, respectively. Recalling that the superscript σ denotes
permutations of the legs 2, 3, . . . , n − 2, one can write the resulting recursion as
[13]

Fσi =
(n−3)!∑

j=1

[
Φ(e0, e1)

]
i j F

σ j
∣∣
kn−1=0 , (5)

where the kinematic regime kn−1 = 0 on the right hand side gives rise to (n − 1)-
point integrals,

Fσ(23...n−2)
∣∣
kn−1=0 =

{
Fσ(23...n−3) if σ(n−2) = n−2

0 otherwise
. (6)

The expressions for and derivation of the matrices e0 and e1 will be discussed in the
subsequent.

2.1 Background on MZVs and the Drinfeld Associator

Before setting up the construction of the integrals Fσ (si j ), we shall review the con-
vention for MZVs and selected properties of the Drinfeld associator. MZVs of tran-
scendental weight w ∈ N0 can be defined through iterated integrals labelled by a
word in the two-letter alphabet v j ∈ {0, 1},

ζ{v1v2...vw} ≡ (−1)
∑w

j=1 v j

∫

0≤z1≤z2≤...≤zw≤1

dz1
z1 − v1

dz2
z2 − v2

. . .
dzw

zw − vw
, (7)

where v1 = 1 and vw = 0 ensure convergence. Divergent integrals arising for v1 = 0
or vw = 1 can be addressed using the shuffle regularization prescription [23],

ζ{0} = ζ{1} = 0 , ζ{v} · ζ{u} = ζ{v�u} , (8)

with the standard shuffle product � on words v = v1v2 . . . and u ≡ u1u2 . . . . The
representation of MZVs as nested sums can be recovered from the above integrals
via

ζn1,n2,...,nr ≡
∞∑

0<k1<k2<...<kr

k−n1
1 k−n2

2 . . . k−nr
r = ζ{10 . . . 0︸ ︷︷ ︸

n1

10 . . . 0︸ ︷︷ ︸
n2

······ 10 . . . 0︸ ︷︷ ︸
nr

} ,

(9)

such that for example ζ{10} = −ζ{01} = ζ2.
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The Drinfeld associator governs the universal monodromy of the KZ equation2

with z0 ∈ C\{0, 1} and Lie-algebra generators e0, e1:

dF̂(z0)

dz0
=
(
e0
z0

+ e1
1 − z0

)
F̂(z0) . (10)

The solution F̂(z0) of the KZ equation lives in the vector space the representation
of e0 and e1 acts upon. This general setup will later on be specialized to (n − 2)!-
component realizations of F̂(z0) closely related to the disk integrals Fσ .

Given the singularities of the differential operator in (10) as z0 → 0 and z0 → 1,
non-analytic behaviour as ze00 and (1 − z0)−e1 has to be compensated when consid-
ering boundary values,

C0 ≡ lim
z0→0

z−e0
0 F̂(z0) , C1 ≡ lim

z0→1
(1 − z0)

e1 F̂(z0) . (11)

As a defining property of the Drinfeld associator, it relates the regularized boundary
values in (11) via [21, 22]

C1 = Φ(e0, e1)C0 . (12)

At the same time, the Drinfeld associator in (12) can be written as a generating series
of MZVs. In terms of their integral representation (7), we have [24]

Φ(e0, e1) =
∑

v∈{0,1}×
ev1ev2 . . . ev j . . . ζ{...v j ...v2v1} (13)

= 1 + ζ2[e0, e1] + ζ3[e0 − e1, [e0, e1]] + · · · .

Hence, the Drinfeld associator plays a two-fold rôle as a generating series for MZVs
in (13) and the universal monodromy of the KZ equation as in (12). Like this, it will
be shown to hold the key to the recursion in (5) for disk integrals.

2.2 Deforming the Disk Integrals

In order to relate the disk integrals (2) to the Drinfeld associator, we will follow
the lines of [25] and study a deformation that satisfies the KZ equation (10). In
addition to an additional disk puncture z0 ∈ [0, 1], auxiliary Mandelstam invariants
s02, . . . , s0,n−2 ∈ R as well as an integer parameter ν = 1, 2, . . . , n − 2 are intro-
duced in

2The sign convention for e1 varies in the literature.
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F̂σ
ν (si j , s0k, z0) ≡ (−1)n−3

∫

0≤z2≤z3≤...≤zn−2≤z0

dz2 dz3 . . . dzn−2

⎛

⎝
n−1∏

i< j

|zi j |si j
⎞

⎠ (14)

×
(
n−2∏

k=2

|z0k |s0k
)

σ
{ ν∏

l=2

l−1∑

m=1

sml

zml

n−2∏

p=ν+1

n−1∑

q=p+1

spq
z pq

}
.

The integration domain for z2, . . . , zn−2 reduces to the original one in (2) if z0 → 1
and sends all integration variables to zero if z0 → 0. As a consequence of the extra
Mandelstam invariants s0k , different values of ν = 1, 2, . . . , n − 2 yield inequiv-
alent integrals3 such that the (n − 3)! permutations σ ∈ Sn−3 together with the
range of ν yield a total of (n − 2)! functions in (14). It will be convenient to com-
bine these objects to an (n − 2)!-component vector whose entries are ordered as
F̂ = (F̂n−2, F̂n−3, . . . , F̂1).

The (n − 2)! components in (14) exceeding the number of (n − 3)! desired inte-
grals in (2) are required to ensure that the deformed vector F̂ satisfies the KZ equation
(10). Clearly, the variables e0, e1 therein become (n − 2)! × (n − 2)! matrices, and
it will be illustrated by the later examples that their entries are linear in the Mandel-
stam variables si j as well as their auxiliary counterparts s0k . Hence, the regularized
boundary values (11) of F̂ will be related as in (12) by a (n − 2)! × (n − 2)! matrix
representation of the Drinfeld associator. As is explained in more detail in [13], the
components in (14) give rise to regularized boundary values

C0

∣∣
s0k=0 = (Fσ

∣∣
kn−1=0, 0(n−3)(n−3)!)t , C1

∣∣
s0k=0 = (Fσ , . . .)t (15)

upon setting the auxiliary Mandelstam invariants s0k to zero. The (n − 3)(n − 3)!
components of C1 in the ellipsis do not need to be evaluated. In (15) and many
subsequent equations, the dependence on si j is suppressed. With the regularized
boundary values in (15), the relation (12) becomes

(
Fσ

...

)
= [Φ(e0, e1)

]
(n−2)!×(n−2)!

(
Fσ
∣∣
kn−1=0

0(n−3)(n−3)!

)
(16)

3In the original disk integrals (2), rearranging the curly bracket of the integrand as

n−2∏

l=2

l−1∑

m=1

sml

zml
→

ν∏

l=2

l−1∑

m=1

sml

zml

n−2∏

p=ν+1

n−1∑

q=p+1

spq
z pq

amounts to adding total derivatives w.r.t. z2, . . . , zn−2 which vanish in presence of theKoba-Nielsen
factor

∏n−1
i< j |zi j |si j . Tentative boundary contributions at z j = z j±1 are manifestly suppressed by

|z j − z j±1|s j, j±1 for positive real part of s j, j±1 which propagates to generic complex values by
analytic continuation.
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upon taking s0k → 0, and the zeros in the vector on the right hand side reduce the
recursion (16) to the form given in (5). From the linearity of e0 and e1 in si j (and
therefore α′), two central properties of Fσ (si j ) stated above can be easily verified:

• The α′ → 0 limit of the disk integrals in (4) follows from the fact that the only
contribution of the associator to this order is Φ(e0, e1) = 1 + O(α′).

• Uniform transcendentality follows from the expansion (13) of the associator where
MZVs of weight w are accompanied by w powers of e0, e1 and, by their linearity
in si j , w powers of α′.

2.3 Four- and Five-Point Examples

In this subsection, we firstly illustrate the recursion (5) by examples with n = 4, 5
external states and secondly explain the mechanisms leading to a KZ equation for
the functions in (14) as well as the explicit form of e0, e1 at various multiplicities.
As a convenient shorthand, we introduce

Xi j ≡ si j
zi j

. (17)

n=4 points:

Here, the auxiliary vector made of (14) has two components

(
F̂ (2)
2

F̂ (2)
1

)
=
∫ z0

0
dz2 |z12|s12 |z23|s23 zs0202

(
X21

X32

)
, (18)

where the derivative w.r.t. z0 introduces a factor of
s02
z02

into the integrand.4 Given the
SL(2)-fixing (z1, z3, z4) = (0, 1,∞), the extra dependence on z0 can be rearranged
into factors of 1

z01
= 1

z0
and 1

z03
= 1

z0−1 via partial fraction (z12z02)−1 = (z12z01)−1 −
(z01z02)−1 and integration by parts:

0 = −
∫ z0

0
dz2

d

dz2
|z12|s12 |z23|s23 zs0202 (19)

=
∫ z0

0
dz2 |z12|s12 |z23|s23 zs0202

(
s02
z02

+ s12
z12

− s23
z23

)
.

4The derivative w.r.t. z0 directly acts at the level of the integrand since the boundary contribution
from the z0-dependence in the upper limit is suppressed as limzn−2→z0 (z0 − zn−2)

s0,n−2 = 0. As
before, the limit is obvious if s0,n−2 has a positive real part and otherwise follows from analytic
continuation.
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These manipulations lead to

d

dz0
F̂ (2)
2 = 1

z0

[
(s12 + s02)F̂

(2)
2 − s12 F̂

(2)
1

]
(20)

d

dz0
F̂ (2)
1 = 1

1 − z0

[
s23 F̂

(2)
2 − (s23 + s02)F̂

(2)
1

]
, (21)

which allow to read off the following 2 × 2 matrix representations for e0, e1 upon
setting s02 → 0:

e0 =
(
s12 −s12
0 0

)
, e1 =

(
0 0
s23 −s23

)
. (22)

Given the regularized boundary values (15), the main result (5) specializes to
(
F (2)

...

)
= [Φ(e0, e1)

]
2×2

(
1
0

)
. (23)

Note that the explicit form of the matrices (22) renders any nested commutator
adk0ad

l
1[e0, e1] with k, l ∈ N0 and adi x ≡ [ei , x] proportional to the nilpotent matrix(

1 −1
1 −1

)
. As a consequence, the MZVs in

[
Φ(e0, e1)

]
2×2 can be expressed in terms of

primitives ζw and are consistent with

F (2) = Γ (1 + s12)Γ (1 + s23)

Γ (1 + s12 + s23)
= exp

( ∞∑

n=2

ζn

n
(−1)n

[
sn12 + sn23 − (s12 + s23)

n
])

,

(24)
see [12] for a connectionwith a quotient of the associator.While the expression in (24)
ismore suitable tomanifest theMZV-content of the four-point amplitude as compared
to (23), the construction of the Fσ from the associator becomes significantly more
rewarding at n ≥ 5.

n=5 points:

At five-points, the auxiliary vector built from (14) has six components,

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

F̂ (23)
3

F̂ (32)
3

F̂ (23)
2

F̂ (32)
2

F̂ (23)
1

F̂ (32)
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=
∫ z0

0
dz3

∫ z3

0
dz2

4∏

i< j

|zi j |si j zs0202 z
s03
03

⎛

⎜⎜⎜⎜⎜⎜⎝

X12(X13+X23)

X13(X12+X32)

X12X34

X13X24

(X23+X24)X34

(X32+X34)X24

⎞

⎟⎟⎟⎟⎟⎟⎠
. (25)

Following the methods from the n = 4 case, the z0-derivatives can be cast into the
form (10) using a sequence of partial fraction relations and integrations by parts. After
setting s0k → 0, we can read off the resulting 6 × 6 matrix representation (with the
shorthand si jk ≡ si j + sik + s jk):
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e0 =

⎛

⎜⎜⎜⎜⎜⎜⎝

s123 0 −s13 − s23 −s12 −s12 s12
0 s123 −s13 −s12 − s23 s13 −s13
0 0 s12 0 −s12 0
0 0 0 s13 0 −s13
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
(26)

e1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
s34 0 −s34 0 0 0
0 s24 0 −s24 0 0
s34 −s34 s23 + s24 s34 −s234 0

−s24 s24 s24 s23 + s34 0 −s234

⎞

⎟⎟⎟⎟⎟⎟⎠
. (27)

The regularized boundary values in (15) then imply the following associator con-
struction for the functions Fσ in the five-point amplitude:

⎛

⎜⎝
F (23)

F (32)

...

⎞

⎟⎠ = [Φ(e0, e1)
]
6×6

⎛

⎝
F (2)

0
04

⎞

⎠ (28)

Note that the five-point α′-expansion in (28) can also be obtained from the represen-
tation of F (23) and F (32) in terms of the hypergeometric functions 3F2 [26–30].

2.4 Higher Multiplicity

The techniques to establish the KZ equation of F̂(z0) and to determine the matrices
e0, e1 are universal to any value of n. Expressions for e0, e1 are straightforward to
compute and additionally take a suggestive form; the resulting instances up to n = 9
can be downloaded from the website [31]. While the results for n = 6, 7 reproduce
the α′-expansions in [27, 28, 32] as well as [33] to the orders tested, the associator-
based method firstly makes high multiplicities n > 7 accessible. Even though the
setup in [33] based on polylogarithms does not impose any limitations on n, its
growing manual effort (e.g. in the treatment of poles) suggests to preferably rely on
the Drinfeld associator at large multiplicities.

3 Motivic MZVs and the α′-Expansion

The main result (5) of the previous section together with the expressions for e0 and
e1 in (22), (26), (27) as well as [31] make the si j -dependence of the disk integrals
fully explicit. The MZVs originate from the Drinfeld associator as in (13) and carry
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redundancies in view of the relations over Q among the iterated integrals ζ{v} with
v ∈ {0, 1}×. In this section, we investigate the structure of the α′-expansion once
the MZVs are reduced to their conjectural bases over Q. In a conjectural model for
MZVs using non-commutative generators f3, f5, f7, . . . and a commutative variable
f2 [34], the end result for Fσ is captured by the neat expression [14]

( ∞∑

k=0

f k2 P2k

) ∞∑

n=0

(
f3M3 + f5M5 + f7M7 + · · ·

)n
, (29)

where Mw and Pw are (n − 3)! × (n − 3)! matrices to be specified below. Most
importantly, the coefficients P2k and M2i+1 of the primitives f k2 and f2i+1 com-
pletely determine the α′-dependence along with compositions such as f2 f2i+1 and
f2i+1 f2 j+1.

3.1 Matrix-Valued Approach to Disk Amplitudes

In order to see the aforementioned relations between the coefficients of various basis
MZVs over Q, it is convenient to promote the disk integrals in (2) to a (n − 3)! ×
(n − 3)! matrix

Fτ
σ (si j ) ≡ (−1)n−3

∫

0≤zτ(2)≤zτ(3)≤···≤zτ(n−2)≤1

dz2 dz3 · · · dzn−2

⎛

⎝
n−1∏

i< j

|zi j |si j
⎞

⎠ σ
{ n−2∏

k=2

k−1∑

m=1

smk

zmk

}
.

(30)
The additional index τ refers to permutations in Sn−3 of the integration variables
2, 3, . . . , n − 2 and distinguishes different integration domains 0 ≤ zτ(2) ≤ zτ(3) ≤
. . . ≤ zτ(n−2) ≤ 1. The matrix of disk integrals in (30) allows to simultaneously
address an (n − 3)! family of different tree-level subamplitudes,

A(1, τ (2, 3, . . . , n − 2), n − 1, n;α′) =
∑

σ∈Sn−3

Fτ
σ (si j )AYM(1, σ (2, 3, . . . , n−2), n−1, n) .

(31)
They furnish a basis of arbitrary string subamplitudes A(π(1, 2, . . . , n);α′) with
π ∈ Sn [10, 11] in the same way as the AYM(. . .) on the right hand side are a basis
of field-theory subamplitudes [35].

In principle, it suffices to knowa single line of (30)with fixed τ since the remaining
entries of the matrix can be generated by relabeling of the si j and corresponding
changes in σ and τ . The description of disk integrals through a square matrix F(si j )
as in (30) is useful in view ofmatrixmultiplication. Let Pw andMw denote (n − 3)! ×
(n − 3)! matrices whose entries are degree w polynomials in Mandelstam invariants
with rational coefficients, then a reduction of MZVs to their conjectural Q-bases at
weight w ≤ 8 yields
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F(si j ) = 1(n−3)!×(n−3)! + ζ2P2 + ζ3M3 + ζ 2
2 P4 + ζ2ζ3P2M3 + ζ5M5

+ ζ 3
2 P6 + 1

2
ζ 2
3 M3M3 + ζ7M7 + ζ2ζ5P2M5 + ζ 2

2 ζ3P4M3 (32)

+ ζ 4
2 P8 + ζ3ζ5M5M3 + 1

2
ζ2ζ

2
3 P2M3M3 + 1

5
ζ3,5[M5, M3] + O(α′9) .

Remarkably, the matrix product P2M3 along with the weight-five product ζ2ζ3 is
determined by the coefficients P2 and M3 of ζ2 and ζ3, respectively. The different
parental letters Pw, Mw for matrices of even and odd order w in α′ goes back to
the different nature of the associated primitives: At even weight, ζ2n ∈ Qπ2n can
be reduced to powers of ζ2 = π2

6 with rational prefactors while no relations among
ζ2n+1 of different odd weight5 and powers of π are known or expected. Also, only
a single left-multiplicative matrix factor of Pw is seen in each term of the expansion
in (32) and its generalization to higher weight.

The depth-two MZVs ζ3,5 in the last line of in (32) is accompanied by a matrix
commutator [M5, M3] = M5M3 − M3M5, but its rational prefactor 1

5 is less intuitive
than the lower-weight counterparts. The even more dramatic proliferation of rational
prefactors at weight eleven,

F(si j )
∣∣
(α′)11 = ζ11M11 + 1

2
ζ 23 ζ5M5M

2
3 + 1

6
ζ2ζ

3
3 P2M

3
3 + ζ2ζ9P2M9

+ ζ 22 ζ7P4M7 + ζ 32 ζ5P6M5 + ζ 42 ζ3P8M3 + 1

5
ζ3,5ζ3[M5, M3]M3 (33)

+
(
9ζ2ζ9 + 6

25
ζ 22 ζ7 − 4

35
ζ 32 ζ5 + 1

5
ζ3,3,5

)
[M3, [M5, M3]] ,

calls for a systematic understanding of how the matrix commutators enter at generic
weight, see [14] for the analogous expressions at weightw ≤ 16. The required math-
ematical framework will be introduced in the following subsection.

3.2 Motivic MZVs

The basis MZVs over Q in the α′-expansion (32) and (33) have been chosen as in
[38], following the guiding principle of preferring short and simple representatives.
An alternative handle on the choice of basis can be obtained by switching to a
conjecturally equivalent language for MZVs: a Hopf algebra comodule, which is
composed from words

f2i1+1 . . . f2ir+1 f k2 , with r, k ≥ 0 and i1, . . . , ir ≥ 1 (34)

5Also, none of the odd ζ -values has been proven to be transcendental so far: the only known
facts are the irrationality of ζ3 as well as the existence of an infinite number of odd irrational ζ ’s
[36, 37].
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and graded by their weight w = 2(i1 + · · · + ir ) + r + 2k. The non-commutative
generators f2i+1 of odd weight by themselves furnish a Hopf algebra, and the addi-
tional commutative variable f2 extend it to a Hopf algebra comodule [34]. At each
weight, the enumeration of all non-commutative words of the form in (34) yields the
same basis dimension over Q as conjectured for MZVs of the same weight [39].

The mapping of MZVs to non-commutative words in (34) is slightly involved
and relies on (commonly trusted) conjectures such as the exclusion of additional
algebraic relations between MZVs beyond the known double-shuffle identities. In
order to circumvent the currently intractable challenges to prove the outstanding
conjectures, one lifts MZVs ζ to so-called motivic MZVs ζm whose more elaborate
definition [34, 40–42] will not be reviewed in the subsequent. As a key property of
motivic MZVs, they obey the same shuffle and stuffle product formulæ as theMZVs,
e.g. (8) carries over to ζm

{v}ζ
m
{u} = ζm

{v�u}. The transition from MZVs to their motivic
counterparts, ζn1,...,nr → ζm

n1,...,nr , has the advantage that many of the desirable, but
currently unproven facts about MZVs are in fact proven for motivic MZVs. In par-
ticular, the commutative algebra of motivic MZVs is graded by definition, and the
motivic coaction, first written down byGoncharov [40] and further studied by Brown
[34, 41, 43], is well-defined.

In the framework ofmotivicMZVs, one can construct an isomorphismφ of graded
algebra comodules which map any ζm

n1,...,nr to non-commutative words of the form
(34), see [43] for a thorough description. Once the normalization is fixed as

φ(ζm
w ) = fw , f2k ≡ ζ2k

(ζ2)k
f k2 , (35)

the map φ can be largely determined by demanding compatibility with the algebraic
structures:

φ(ζm
n1,...,nr ζ

m
m1,...,mr

) = φ(ζm
n1,...,nr )� φ(ζm

m1,...,mr
) (36)

Δφ(ζm
n1,...,nr ) = φ(Δζm

n1,...,nr ) . (37)

While the motivic coaction on the right hand side of (37) [40] can become combi-
natorically involved at higher weights, the coaction on the non-commutative words
from (34) is given by simple deconcatenation

Δ( f k2 fi1 fi2 . . . fir ) =
r∑

j=0

( f k2 fi1 fi2 . . . fi j ) ⊗ ( fi j+1 . . . fir ) , i j ∈ 2N + 1 . (38)

In combination with (37), this largely determines the φ-image of higher-depthMZVs
such as
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φ(ζm
3,5) = −5 f3 f5 , φ(ζm

3,7) = −14 f3 f7 − 6 f5 f5 (39)

φ(ζm
3,3,5) = −5 f3 f3 f5 + 4

7
f5 f

3
2 − 6

5
f7 f

2
2 − 45 f9 f2 , (40)

see [43] for an efficient algorithm based on an infinitesimal version of the coaction.
However, the insensitivity of the coaction constraint (37) to primitives introduces

an ambiguity of adding rational multiples of f 42 , f 52 and f11 to the right hand sides
of (39) and (40). The absence of such primitives in the above expressions reflects
a specific choice of the isomorphism φ. It is convenient to tailor the φ-map to the
choice ofQ-basis for motivic MZVs at weight w by suppressing fw in the φ-images
of all basis elements except for (35). The φ-images at weights w ≤ 16 displayed in
[14] rely on reference bases of motivic MZVs over Q as in [38].

3.3 Cleaning up the α′-Expansion

The language of non-commutative words as in (34) turns out to reveal the pattern of
MZVs in the α′-expansions in (32) and (33). Upon passing to a motivic version of
the matrix F(si j ) in (30),

Fm(si j ) ≡ F(si j )
∣∣
ζn1 ,...,nr →ζm

n1 ,...,nr
, (41)

the above expansions (with weights w = 9, 10 restored) translate into the following
φ-image under (39) and (40):

φ(Fm(si j )) = (1(n−3)!×(n−3)! + f2P2 + f 22 P4 + f 32 P6 + f 42 P8 + f 52 P10)

× (1(n−3)!×(n−3)! + f3M3 + f5M5 + f3 f3M
3
3 + f7M7 + f3 f5M3M5 + f5 f3M5M3

+ f9M9 + f3 f3 f3M
3
3 + f5 f5M

2
5 + f3 f7M3M7 + f7 f3M7M3 (42)

+ f11M11 + f3 f3 f5M3M3M5 + f3 f5 f3M3M5M3 + f5 f3 f3M5M3M3) + O(α′12) .

The coefficients P2k of the commutative variables f k2 build up a left-multiplicative
matrix factor and can be cleanly disentangled from the odd-weight contributions
involving f2i+1 and M2i+1. Within the odd-weight sector, the democratic appearance
of any non-commutative word in f2i+1M2i+1 with unit coefficient motivates the
following generalization to arbitrary weight [14]:

φ(Fm(si j )) =
( ∞∑

k=0

f k2 P2k

) ∞∑

p=0

∑

i1 ,i2 ,...,i p
∈2N+1

fi1 fi2 . . . fi p Mi1Mi2 . . . Mip . (43)

This all-order expression remains a conjecture beyond weights ≤ 21, 9, 7 at multi-
plicity n = 5, 6, 7 where explicit checks have been performed in [33]. It is tempting
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to rewrite the right-multiplicative factor made of f2i+1M2i+1 as a formal geometric
series,

∞∑

p=0

∑

i1 ,i2 ,...,i p
∈2N+1

fi1 fi2 . . . fi p Mi1Mi2 . . . Mip = 1

1 − ( f3M3 + f5M5 + f7M7 + · · · ) ,

(44)
whose equivalence to (43) and (29) relies on the expansion (1 − x)−1 =∑∞

n=0 x
n

under certain assumptions on the infinite series x ≡ f3M3 + f5M5 + f7M7 + · · · .
Given the disappearance of the exotic rational prefactors 6

25 or − 4
35 in (33), the

striking simplicity of (43) is manifested by the language based on words in f2, f2i+1

where the coaction (38) takes a more intuitive form as compared toΔζm
n1,...,nr . Hence,

the understanding of the pattern in the α′-expansion can ultimately be attributed to
the Hopf algebra structure of motivic MZVs.

Even though the coefficients of fn1+n2+···+np in a given φ(ζm
n1,n2,...,np

) and thereby
Pw, Mw depend on the choice of basis MZVs, the form of the end result (43) is
universal. Explicit expressions for the matrices Pw, Mw at various weights w and
multiplicities n are available for download at [31], they are associated with the MZV
bases of [38]. At multiplicity n = 4, they become scalars such that the vanishing of
any commutator [Mi , Mj ] ensures the absence of depth ≥ 2 MZVs in the four-point
amplitude. The closed-form expressions

M2i+1

∣∣
n=4 = − 1

2i+1

[
s2i+1
12 +s2i+1

23 +s2i+1
13

]
, P2k

∣∣
n=4 = ζ2k

2k(ζ2)k
[
s2k12+s2k23−s2k13

]

(45)
with s13 = −s12 − s23 can be inferred from the representation of F (2) in (24).

We emphasize that the complete information on Fm(si j ) in contained in (43)
since φ can be inverted to recover motivic MZVs from fw. More importantly, only
one matrix Pw, Mw along with fw needs to be specified at each weight: The matrix-
multiplicative pattern in (43) determines the coefficients of any other word in f2
and f2i+1 of the same weight from matrices seen at lower weight. Given that the
conjectural number [39] of linearly independent weight-wMZVs overQ grows with
the order of

(
4
3

)w
, this amounts to an enormous compression of information.

As firstly pointed out in [12], the form of the α′-expansion in (43) implies a simple
expression for the motivic coaction,

ΔFm(si j ) = Fm(si j ) ⊗ Fm(si j )
∣∣
ζm
2 =0 , (46)

where matrix multiplication is understood between the two sides of the tensor prod-
uct. This resembles the coaction of the motivic Drinfeld associator Φm(e0, e1) ≡
Φ(e0, e1)

∣∣
ζn1 ,...,nr →ζm

n1 ,...,nr
[12]

ΔΦm(e0, e1) = Φm(e0, e1)

⊗ Φm(e0, e1)

∣∣
ζm
2 =0 , (47)
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where the operation 
 on top of the tensor product denotes the Ihara action among
the words in e0 and e1 on the two sides. The expansion of the Drinfeld associator in
a conjectural basis of MZVs over Q takes a form analogous to (43) where matrix
multiplication among Pw and Mw is replaced by Ihara products among elementary
words [12].

4 Further Directions and Open Questions

In the previous sections, we have described the mathematical structure of tree-level
amplitudes (1) among any number of massless open-superstring states. The string-
corrections to the corresponding gauge-theory amplitudes are governed by the disk
integrals in (2) whose α′-expansion exhibits elegant patterns of MZVs. As elabo-
rated in Sect. 2, the Drinfeld associator generates the dependence on dimensionless
kinematic invariants α′ki · k j in a recursive fashion, see in particular (5). Once the
resulting MZVs are cast into their (conjectural) basis over Q, their coefficients are
related by matrix multiplication as displayed in (29). The systematics discussed in
Sect. 3 only become fully apparent if the MZVs are translated into a language based
on non-commutative words. This dictionary is guided by the Hopf algebra struc-
ture, most notably by the coaction, and its mathematical validity relies on the use of
motivic MZVs.

A couple of natural follow-up questions have already been addressed in the lit-
erature, so we shall conclude with a sketch of the subsequent developments before
pointing out open problems.

4.1 The Closed String at Genus Zero and Single-Valued
MZVs

Tree-level scattering of closed strings is described byworldsheets of sphere topology.
The integrations over vertex operator positions can be deformed in a way described
in [9] such that closed-string tree amplitudes are composed from squares of open-
string subamplitudes. This so-called “KLT-formula” [9] relies on the fact that the
closed-string spectrum is contained in the tensor product of open-string excitations.
At the massless level, for instance, closed-string excitations furnish a supersym-
metry multiplet containing the graviton which arises from doubling gauge-boson
supermultiplets in the open-string sector.

Once the (n − 3)!-element basis of open-string subamplitudes [10, 11] is orga-
nized as in (31), the n-point closed-string tree amplitude Mn takes the form

Mn(α
′) =

∑

τ,σ,ρ,π∈Sn−3

ÃYM(1, τ, n − 1, n)Fρ
τ (si j )S

ρ,π

α′ (si j )Fπ
σ (si j )AYM(1, σ, n − 1, n) ,

(48)
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by the KLT-formula [9]. We use shorthands ÃYM(1, τ, n−1, n) and AYM(1, σ,

n−1, n) for the two independent gauge-theory factors ÃYM(1, τ (2, . . . , n−2),
n−1, n) and AYM(1, σ (2, . . . , n−2), n−1, n), respectively. The entries of the (n −
3)! × (n − 3)!matrixS ρ,π

α′ (si j ) are degree (n − 3)! polynomials in sin(πsi j ), see [9,
44, 45] for more details and various representations. Their α′-expansion is based on
sin(πsi j ) = πsi j

∑∞
n=1

(−1)n(πsi j )2n

(2n+1)! and clearly interferes with the “even-zeta” sector
represented by f2 and P2k in the φ-image (43) of disk integrals. In supergravity
amplitudes obtained from the field-theory limit α′ → 0 of (48), the sine functions
are reduced to their argument, leaving behind

Sρ,π
0 (si j ) ≡ S ρ,π

α′ (si j )
∣∣
sin(πsi j )→πsi j

. (49)

It turns out that the properties of the matrices P2k andS
ρ,π

α′ (si j ) lead to the striking
cancellation of f2 in the φ-image of the closed-string amplitude (48) [14],

( ∞∑

k=0

f k2 P
t
2k

)
Sα′(si j )

( ∞∑

l=0

f l2 P2l

)
= S0(si j ) , (50)

which is tested to very high orders in α′ (21, 9 and 7 at n = 5, 6 and 7) but remains
conjectural beyond that. Another observational identity on the same footing concerns
the matrices M2i+1 [14],

Mt
2i+1S0(si j ) = S0(si j )M2i+1 , (51)

which leads to additional cancellations among MZVs in the “odd-zeta” sector repre-
sented by the f2i+1 in the open-string α′-expansion. Taking both of (50) and (51) into
account, the motivic version of the closed-string amplitude (48) defined in analogy
to (41) can be simplified to [14]

φ(Mm
n (α′)) = ÃYMS0(si j )

∞∑

p=0

∑

i1,i2,...,i p
∈2N+1

Mi1Mi2 . . . Mip

p∑

j=0

fi1 fi2 . . . fi j � fi p . . . fi j+1 AYM .

(52)

In all of (50) to (52), we have suppressed the Sn−3-“indices” present in (49) since
the pattern of their summation is clear from the relative ordering of the matrices and
vectors.

As pointed out in [15], the arrangement of the odd-weight variables f2i+1 in (52)
implements the single-valued projection of MZVs [42, 46],

sv : fi1 fi2 . . . fi p →
p∑

j=0

fi1 fi2 . . . fi j � fi p . . . fi j+1 . (53)
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On these grounds, the α′-expansion in the representation (52) of the closed-string
amplitude canbe tracedback to the single-valuedversionof the open-string amplitude
(43) [15]

Mn(α
′) = ÃYMS0(si j )sv[A(α′)] , (54)

where the (n − 3)! components of the vector A(α′) on the right hand side are spelt
out in (31). As detailed in [47], analogous statements hold for tree-level amplitudes
of the heterotic string.

At the level of the associators, the single-valued projection (53) maps the Drin-
feld associator to the Deligne associator [42] which therefore captures the structure
of the closed-string amplitude [15]. It would be of central importance to find the
closed-string counterpart of the recursive associator construction in Sect. 2 [13]. The
emergence of the single-valued projection in (52) and (54) could be rigorously proven
from a direct derivation of the closed-string integrals from the Deligne associator and
would not rely on the empirical properties of the matrices Pw and Mw in (50) and
(51) which remain conjectural beyond certain orders.

4.2 The Open String at Genus One and Elliptic MZVs

Apart from their implications for the closed string, the above results on open-string
tree amplitudes call for a generalization to their quantum corrections and thereby to
Riemann surfaces of higher genus. At the one-loop order of superstring perturbation
theory, the worldsheet topologies relevant to open-string scattering are cylinder and
Moebius-strip diagrams. For appropriate choice of the gauge group, these topologies
conspire in a way to cancel infinities in the amplitudes considered in this section,
and infinity cancellation in more general situations additionally involves the Klein-
bottle topology [48]. Even though the cylindrical topology allows for insertions of
vertex operators on both boundaries (see [49, 50] for the implications on anomaly
cancellations), we shall now report on recent studies [16] of the “planar” cylinder
where the iterated integration is performed on a single boundary.

4.2.1 Definition and Properties of Elliptic MZVs

The mathematical framework for worldsheet integrals in planar one-loop amplitudes
of the open superstring in known under the name of elliptic MZVs (eMZVs) [17,
18]. In the same way as MZVs can be defined as the expansion coefficients of the
Drinfeld associator, see (13), eMZVs are defined [17] as the expansion coefficients of
the elliptic Knizhnik-Zamolodchikov-Bernard (KZB) associator [18] which governs
the regularized monodromy of the universal elliptic KZB equation. This definition
identifies eMZVs as iterated integrals on an elliptic curve C

Z+τZ
with �(τ ) > 0, in

agreement with the approach via elliptic polylogarithms [51, 52]. The two homology
cycles of the elliptic curve parametrized through the paths from [0, 1] and [0, τ ] give
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rise to two types of eMZVs, namely A-elliptic and B-elliptic MZVs. They descend
from the two components (A(τ ), B(τ )) of the elliptic KZB associator describing the
monodromies of the elliptic KZB equation w.r.t. the paths [0, 1] and [0, τ ] and are
related through the modular transformation τ → − 1

τ
.

We will focus on A-elliptic MZVs associated with the homology cycle [0, 1] ⊂ R

and, given that modular transformations restore the information on B-elliptic MZVs,
refer to the former as eMZVs for simplicity. In this context, the definition of MZVs
in (7) via iterated integrals generalizes to

ω(n1, n2, . . . , nr ; τ) ≡
∫

0≤z1≤z2≤...≤zr≤1

dz1 f (n1)(z1, τ ) dz2 f (n2)(z2, τ ) . . . dzr f (nr )(zr , τ )

(55)
with n j ∈ N0 for j = 1, 2, . . . , r . Instead of a two-letter alphabet { dzz , dz

1−z } of differ-
ential forms seen at genus zero, eMZVs in (55) exhibit an infinity of doubly-periodic
functions f (n) which can be defined from their generating series

exp
(
2π iα

�(z)

�(τ )

)θ ′(0, τ )θ(z + α, τ)

θ(z, τ )θ(α, τ )
=

∞∑

n=0

αn−1 f (n)(z, τ ) , (56)

for instance f (0)(z, τ ) = 1 and f (1)(z, τ ) = ∂
∂z ln θ(z, τ ) + 2π i �(z)

�(τ )
. The

non-negative integers r and w = n1 + n2 + · · · + nr in (55) are referred to as the
length and the weight of an eMZV. The tick along with θ ′(0, τ ) in (56) denotes a
derivative of the odd Jacobi θ function w.r.t. its first argument z. Performing the
integrals in the definition of eMZVs (55) yields a Fourier series in q ≡ e2π iτ whose
coefficients are MZVs along with integer powers of 2π i [17, 18].

By their definition (55) as iterated integrals, eMZVs satisfy shuffle relations

ω(n1, n2, . . . , nr ; τ)ω(k1, k2, . . . , ks; τ) = ω
(
(n1, n2, . . . , nr )� (k1, k2, . . . , ks); τ

)
,

(57)

and the parity properties f (n)(−z, τ ) = (−1)n f (n)(z, τ ) following from θ(−z, τ ) =
−θ(z, τ ) and (56) imply the reflection identities

ω(n1, n2, . . . , nr−1, nr ; τ) = (−1)n1+n2+···+nr ω(nr , nr−1, . . . , n2, n1; τ) . (58)

The combination of (57) and (58) is particularly constraining if the length r and
the weight w are both even or odd, i.e. if r + w is even. In these cases, shuffle- and
reflection identities can be used to express any such eMZV in terms of products of
lower-length eMZVs [53].

As a higher-genus analogue of partial-fraction relations 1
z(z−1) = 1

z−1 − 1
z among

the genus-zero forms in MZVs (7), the doubly-periodic functions f (n) obey Fay
relations [16, 52]
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f (n1)(z − x, τ ) f (n2)(z, τ ) =
n2∑

j=0

(
n1 − 1 + j

j

)
f (n2− j)(x, τ ) f (n1+ j)(z − x, τ )

+
n1∑

j=0

(
n2 − 1 + j

j

)
(−1)n1+ j f (n1− j)(x, τ ) f (n2+ j)(z, τ )

− (−1)n1 f (n1+n2)(x, τ ) , (59)

which play a central rôle in deriving the subsequent α′-expansion of open-string one-
loop amplitudes. Together with the shuffle- and reflection identities (57) and (58),
the Fay relations were observed to generate all identities between eMZVs across a
wide range of weights and lengths [53].

4.2.2 Elliptic MZVs in Open-String Amplitudes

The simplest non-vanishing one-loop amplitude of the open superstring involves
four external massless states [8]. In the aforementioned planar cylinder topology, the
four-point amplitude

A1-loop(1, 2, 3, 4;α′) = s12s23AYM(1, 2, 3, 4)
∫ ∞

0
dt I1234(τ = i t, si j ) (60)

is governed by the following iterated integral,

I1234(τ, si j ) ≡
∫ 1

0
dz4

∫ z4

0
dz3

∫ z3

0
dz2

4∏

i< j

esi j G(zi−z j ,τ ) , (61)

with z1 = 0 and (τ ) = 0. The Mandelstam variables si j are defined in (3), and the
bosonic Green function G(zi − z j , τ ) satisfies

∂

∂z
G(z, τ ) = f (1)(z, τ ) , G(z, τ ) =

∫ z

0
dx f (1)(x, τ ) , (62)

reflecting a regularization prescription for its zero mode that amounts to
G(0, τ ) → 0. Like this, the integral in (61) can be related to eMZVs in (55) and
expanded at fixed values of τ [16],

I1234(τ, si j ) = ω(0, 0, 0; τ) − 2ω(0, 1, 0, 0; τ) (s12 + s23)

+ 2ω(0, 1, 1, 0, 0; τ)
(
s212 + s223

) − 2ω(0, 1, 0, 1, 0; τ) s12s23 (63)

+ β5(τ ) (s312+2s12s23(s12+s23)+s323) + β2,3(τ ) s12s23(s12+s23) + O(α′4) ,
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with shorthands

β5(τ ) = 4

3

[
ω(0, 0, 1, 0, 0, 2; τ) + ω(0, 1, 1, 0, 1, 0; τ)

− ω(2, 0, 1, 0, 0, 0; τ) − ζ2ω(0, 1, 0, 0; τ)
]

(64)

β2,3(τ ) = ζ3

12
+ 8ζ2

3
ω(0, 1, 0, 0; τ) − 5

18
ω(0, 3, 0, 0; τ) .

At the third order in α′, the Fay identities (59) are crucial to express the iterated
integrals over three powers of the Green function (62) in terms of eMZVs. In an
equivalent parametrization of the cylinder boundary via z ∈ [0, τ ] instead of z ∈
[0, 1] as chosen in (61), the A-elliptic MZVs in (63) are traded for their B-elliptic
analogues. In contrast toA-ellipticMZVs, however, B-ellipticMZVs are not periodic
w.r.t. τ → τ+1 and do not have Fourier expansion such as

ω(0, 1, 0, 0; τ) = ζ3

4π2
+ 3

2π2

∞∑

m,n=1

1

m3
qmn (65)

for the A-elliptic MZV along with first α′-correction in (63). The Fourier expansion
of the cylinder integral admitted by the parametrization in (61) has been exploited to
check [16] that (63) reproduces the expected tadpole divergence [54]. The latter arises
from the integration region t → ∞ in (60) and eventually cancels upon combination
with the Moebius-strip diagram [48].

The polarization-dependence of the four-point amplitude (60) is represented by
AYM(1, 2, 3, 4) and thereby follows the organization principle (1) of tree-level n-
point amplitudes in terms of an (n − 3)!-basis of subamplitudes AYM(. . .) [10, 11,
35]. Similarly, the five-point one-loop amplitude can be written as [16, 55]

A1-loop(1, 2, 3, 4, 5;α′) =
∫ ∞

0
dt
∑

σ∈S2
I1σ(23)45(τ = i t, si j )AYM(1, σ (2, 3), 4, 5) ,

(66)
see Sect. 5.1 of [16] for more details on the integrals I12345 and I13245. At higher
multiplicity n ≥ 6, a gauge invariant sector of open-string one-loop amplitudes has
been reduced to field-theory subamplitudes as well [55]. However, the cancellation
mechanism of the hexagon anomaly [49, 50] requires additional kinematic structures
in (n ≥ 6)-point amplitudes,6 so it remains an open problem to identify a suitable
generalization of gauge-theory tree amplitudes to carry the polarization dependence
of the string amplitude.

6In the pure spinor framework [19], kinematic building blocks suitable to describe the anomaly
sector have been constructed in [56], see [57] for their appearance in the integrand of ten-dimensional
field-theory amplitudes.
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4.2.3 Bases of Elliptic MZVs over Q

Starting from the third subleading order in α′, the increasing length and complexity
of the eMZV-coefficients (64) calls for a systematic study of relations among eMZVs
over Q and guiding principles to select a suitable basis. This has been done in [53],
also see [58] for a particularly elaborate treatment of the length-two case. The number
of independent eMZVs at given weight and length is bounded by their differential
equation

2π i
d

dτ
ω(n1, . . . , nr ; τ) = n1Gn1+1(τ )ω(n2, . . . , nr ; τ) − nrGnr+1(τ )ω(n1, . . . , nr−1; τ)

+
r∑

i=2

{
(−1)ni (ni−1+ni )Gni−1+ni+1(τ )ω(n1, . . . , ni−2, 0, ni+1, . . . , nr ; τ) (67)

−
ni−1+1∑

k=0

(ni−1−k)

(
ni+k−1

k

)
Gni−1−k+1(τ )ω(n1, . . . , ni−2, k + ni , ni+1, . . . , nr ; τ)

+
ni+1∑

k=0

(ni−k)

(
ni−1+k−1

k

)
Gni−k+1(τ )ω(n1, . . . , ni−2, k + ni−1, ni+1, . . . , nr ; τ)

}

with Gn(τ ) denoting holomorphic Eisenstein series

Gn(τ ) =

⎧
⎪⎨

⎪⎩

∑

k,m∈Z
(k,m)�=(0,0)

1

(k + τm)n
: n > 0

−1 : n = 0 .

(68)

As a consequence of (67), eMZVs can be expressed in terms of iterated integrals
over Eisenstein series, special cases of iterated Shimura integrals [59, 60]. In this
picture, the iterated integration is carried out over the argument τ , and the counting
of (shuffle-independent) iterated Eisenstein integrals sets an upper bound on the
numbers of independent eMZVs.

On top of that, selection rules on the admissible Eisenstein integralswithin eMZVs
are encoded in an algebra of derivations [61–64] which appear in the differential
equation of the elliptic KZB associator [17, 18], the generating series of eMZVs. In
view of the central rôle of the Drinfeld associator for tree-level amplitudes seen in
Sect. 2, the elliptic associator is expected to carry essential information on one-loop
open-string amplitudes including the α′-expansion (63).

A careful bookkeeping of eMZV relations within the above framework leads to
the numbers N (r,w) of indecomposable eMZVs7 of length r and weight w as shown
in Table 1 [53]. The data in the table is compatible with the all-weight formulæ [53]

7A set of indecomposable eMZVs of weightw and length r is a minimal set of eMZVs such that any
other eMZV of the same weight and length can be expressed as a linear combination of elements
from this set as well as products of eMZVs with strictly positive weights and eMZVs of lengths
smaller than r or weight lower thanw. The coefficients are understood to compriseMZVs (including
rational numbers) and integer powers of 2π i .
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Table 1 Numbers N (r,w) of indecomposable eMZVs at length r and weight w

N (2,w) = 1 , N (3,w) =
⌈
1

6
w

⌉
, N (4,w) =

⌊
1

2
+ 1

48
(w + 5)2

⌋
, (69)

which only hold for odd values of r + w and remain conjectural at r = 4.
Across a variety of lengths and weights, the decomposition of eMZVs in terms

of such bases can be downloaded from [65], this website also contains new relations
in the derivation algebra.

4.3 The Closed String at Higher Genus

Closed-string amplitudes at one loop originate from a worldsheet of torus topol-
ogy. Again, the simplest non-vanishing superstring amplitude involves four mass-
less external states [8], and the study of its α′-expansion has a rich history as well
as strong motivation from S-duality of type-IIB superstring theory [66–68]. The
α′-dependence stems from the worldsheet integral in the second line of

M
1-loop
4 (α′) = s212s

2
23AYM(1, 2, 3, 4) ÃYM(1, 2, 3, 4) (70)

×
∫

F

d2τ

(�(τ ))5

∫

(T τ )3
d2z2 d

2z3 d
2z4

4∏

i< j

esi j G(zi−z j ,τ ) ,

analogous to (61) for the open string. The integration domain Tτ is specified by the
complex parametrization of the torus through a parallelogram with corners 0, 1, τ +
1, τ . The Green function in the exponent is defined in (62) and ensures modular
invariance of the τ -integrand in (70) withF denoting the fundamental domain.

The integration over τ leads to branch cuts in the dependence of the closed-
string amplitude (70) on the Mandelstam variables si j , as required by unitarity. A
procedure to reconcile the associated logarithmic dependence on si j with the naive
Taylor expansion of the integral (70) has been described in [69], see [70] for recent
updates. The discontinuity structure of the open-string one-loop amplitude follows
the same principles and can be traced back to the integration over t in (60).
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•

•

↔ E2 ,

•

•

• ↔ C2,1,1 .

• •

• •

↔ E4 ,

•

•

• ↔ E3 ,

Fig. 2 Graphical organization of several sample contributions to (70): Vertices represent the punc-
tures zi , i = 1, 2, 3, 4 and edges between the vertices for zi and zi are associated with a factor of
G(zi − z j , τ ). The integrals over z2, z3, z4 become elementary in a Fourier expansion of the Green
functions and yield the modular invariant lattice sums in (71) and (72)

The systematic α′-expansion of the integrals arising from Taylor expanding
esi j G(zi−z j ,τ ) in (70) has been initiated in [71] and pursued in [69, 70]. In a rep-
resentation of Green functions G(zi − z j , τ ) as an edge between vertices i and j ,
intuitive graphical methods have been developed in these references, see [72, 73]
for an extension to the five-point one-loop amplitude. Since the zero mode of the
Green function decouples from (70), only one-particle irreducible graphs contribute
to the α′-expansion. The simplest class of such graphs have the topology of an n-gon,
see Fig. 2, and the integration over z2, z3, z4 in (70) gives rise to non-holomorphic
Eisenstein series

En(τ ) ≡
∑

k,m∈Z
(k,m)�=(0,0)

(�(τ ))n

πn |k + mτ |2n , n ∈ N , n ≥ 2 . (71)

Beyond that, an infinite family of modular invariants has been classified and inves-
tigated in [70] (also see [74]), starting with the function

C2,1,1(τ ) ≡
∑

k1 ,k2 ,m1 ,m2∈Z
(k1 ,m1),(k2 ,m2)�=(0,0)
(k1+k2 ,m1+m2)�=(0,0)

(�(τ ))4

π4 |k1 + m1τ |2 |k2 + m2τ |2 |k1 + k2 + (m1 + m2)τ |4

(72)
associated with the two-loop graph depicted in Fig. 2.

The central rôle played by Laplace eigenvalue equations in the discussions of [70]
such as

(Δ − n(n − 1))En(τ ) = 0 , (Δ − 2)C2,1,1(τ ) = 9E4(τ ) − E2
2(τ ) (73)

withΔ = 4(�(τ ))2 ∂
∂τ

∂
∂τ̄

bears similarities to the methods of [17, 18, 53] to compute
eMZVs from their differential equation in τ . It appears promising to investigate
the parallels in the expansion of the open-string integral (61) and its closed-string
counterpart (70) and to exploit cross-fertilizations of the methods used. Ultimately,
it is tempting to hope for a one-loop generalization of the single-valued projection
which was seen in (52) and (54) to map tree-level amplitudes of the open string to
those of the closed string [15].
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Certainly, the above structures deserve an investigation on higher-genus surfaces
on the long run.While higher-genus generalizations of eMZVs have not yet appeared
in the literature, the α′-expansion of the two-loop closed-string amplitude has been
pushed beyond the leading order [75, 76] and led to a connection with mathematics
literature on the so-called Zhang-Kawazumi invariant [77, 78]

ϕ(Ω) ≡
∫

�2
G (z,w,Ω)

∑

I,J,K ,L
=1,2

[
2(�Ω)−1

I L (�Ω)−1
J K − (�Ω)−1

I J (�Ω)−1
K L

]

× ωI (z)ωJ (z)ωK (w)ωL(w) . (74)

The arguments z,w of the genus-two Green function G (z,w,Ω) are integrated over
a genus-two Riemann surface with 2 × 2 period matrix Ω , and {ωI (z) : I = 1, 2}
is a canonically normalized basis of holomorphic one forms. The Zhang-Kawazumi
invariant ϕ in (74) can be viewed as the simplest two-loop analogue of the non-
holomorphic Eisenstein series (71) and the modular invariants for more involved
graph topologies in the one-loop α′-expansion.

It is not unlikely that string-theory questions at higher order in loops and α′
encourage and even inspire the development of new mathematical structures.
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Overview on Elliptic Multiple Zeta
Values

Nils Matthes

Abstract We give an overview of some work on elliptic multiple zeta values. First
defined byEnriquez as the coefficients of the ellipticKZB associator, ellipticmultiple
zeta values are also special values of multiple elliptic polylogarithms in the sense
of Brown and Levin. Common to both approaches to elliptic multiple zeta values is
their representation as iterated integrals on a once-punctured elliptic curve. Having
compared the two approaches, we survey various recent results about the algebraic
structure of elliptic multiple zeta values, as well as indicating their relation to iterated
integrals of Eisenstein series, and to a special algebra of derivations.

Keywords Elliptic multiple zeta values · Elliptic KZB equation · Multiple elliptic
polylogarithms

1 Introduction

The purpose of this article is twofold. The first goal is to unify two different ap-
proaches to elliptic multiple zeta values in the literature: the approach of Enriquez,
using elliptic associators [21, 22] on one hand, and the approach of Brown and
Levin, using multiple elliptic polylogarithms [15] on the other. Comparing the two
approaches also highlights the analogy between elliptic multiple zeta values and
multiple zeta values. The second goal is to collect various results on the structure of
the algebra of A-elliptic multiple zeta values, which appeared in work of the author
[36], as well as in joint work [5, 6].1

1See also Sect. 1.4.
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1.1 Multiple Zeta Values

Multiple zeta values are defined by nested sums

ζ(n1, . . . , nr ) =
∑

0<k1<...<kr

1

kn11 . . . knrr
∈ R, (1)

for integers n1, . . . , nr ≥ 1, with nr ≥ 2. The weight of ζ(n1, . . . , nr ) is n1 + · · · +
nr , and its depth is r . For r = 1, they are the values of the Riemann zeta function at
positive integers. Multiple zeta values appear in mathematics and physics in many
different contexts, for example in the context of periods andmotives [9, 19, 26]. Also,
multiple zeta values arise naturally in the study of theKnizhnik-Zamolodchikov (KZ)
equation from conformal field theory [20, 29], which in turn is important in both
knot theory [30], as well as quantum groups [20] and associators [23]. On the side
of mathematical physics, multiple zeta values occur in the computation of Feynman
integrals in renormalizable quantum field theories [4], and in the computation of
superstring amplitudes at tree-level [7, 8, 40].

In all of these contexts, a central problem is to find a complete description of
allQ-linear relations between multiple zeta values. TheQ-vector subspaceZ ⊂ R,
spanned by the multiple zeta values is aQ-subalgebra ofR. Conjecturally, the weight
is a grading on Z , while the depth defines an ascending filtration on Z . Set

DdZN = 〈ζ(n1, . . . , nr ) ∈ Z | n1 + · · · + nr = N , r ≤ d〉Q. (2)

The Broadhurst–Kreimer conjecture [4] gives a formula for the dimensions of the
associated graded DN ,d = dimQ grDd (ZN ) := Dd(ZN )/Dd−1(ZN ), and suggests a
relation between multiple zeta values and modular forms for SL2(Z) [11, 12, 24,
25]. Work of Zagier [45] and Goncharov [25] implies that the Broadhurst–Kreimer
formula gives an upper bound in depths d ≤ 3, for arbitrary N .

1.2 The Algebra of A-elliptic Multiple Zeta Values

In [22], Enriquez introduced an elliptic analogue of multiple zeta values, which has
found recent applications in superstring theory [5]. Elliptic multiple zeta values are
defined by integrating the elliptic Knizhnik–Zamolodchikov–Bernard (KZB) con-
nection [16] along paths on a once-punctured elliptic curve E×

τ = C/(Z + Zτ) \ {0}
with τ ∈ H. There are essentially two choices of paths on E×

τ , corresponding to the
two natural homology cycles α and β on the elliptic curve, giving rise to two alge-
bras of elliptic multiple zeta values, namely A- and B-elliptic multiple zeta values.
The two types of elliptic multiple zeta values are related to each other by a modular
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transformation formula [22] and, for simplicity, we will only consider A-elliptic
multiple zeta values.

The Q-vector space spanned by A-elliptic multiple zeta values is a Q-subalgebra
EZ A of the C-algebra O(H) of holomorphic functions on the upper half-plane H.
The analogous notions of weight and depth for multiple zeta values are the weight
and the length for A-elliptic multiple zeta values. Denote by EZ A

N ⊂ EZ A the
subspace spanned by A-elliptic multiple zeta values of weight N . The analogue of
the weight grading conjecture for multiple zeta values is:

Conjecture 1 The weight defines a grading on EZ A, i.e.

EZ A =
⊕

N≥0

EZ A
N . (3)

Similar to the case of multiple zeta values, the length defines an ascending filtration
L•(EZ A

N ), and we denote by grL• (EZ A
N ) the associated graded. In light of the

Broadhurst–Kreimer conjecture for multiple zeta values, it is natural to pose:

Problem 1 Compute the dimension

Dell
N ,l = dimQ grLl (EZ A

N ) (4)

of the space of A-elliptic multiple zeta values of weight N and length l, for all
N , l ≥ 0.

A first step towards a solution to this problem is taken in [36].

Theorem 1 We have

Dell
N ,0 = δN ,0, Dell

N ,1 =
{
1 N ≥ 2 even

0 else,
(5)

and

Dell
N ,2 =

{
0 N even

� N
3 	 + 1 Nodd.

(6)

Also, we have the weight grading in lengths 0, 1 and 2, i.e., for l = 0, 1, 2, we have

Ll(EZ
A) =

⊕

N≥0

Ll(EZ
A
N ). (7)

The proof uses a linear independence result for a certain family of elliptic multiple
zeta values, as well some basic invariant theory. For more details, see Sect. 4.3, and
also [6], in particular Sect. 4.5 for related work in higher lengths.
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1.3 Structure of the Article

In Sect. 2, we give a very brief overview on multiple zeta values, multiple polylog-
arithms and the Drinfeld associator. This section is primarily intended to make the
analogy with elliptic multiple zeta values transparent. In Sect. 3, we introduce elliptic
multiple zeta values, comparing the works of Enriquez and of Brown and Levin. The
main ingredient in both approaches, namely the universal elliptic KZB equation [16,
32], is introduced in Sect. 3.1.

In Sect. 4, we begin the study of A-elliptic multiple zeta values. All of the results
of this section can be found in [5, 6, 36], and are primarily concerned with explicit
algebraic relations between A-elliptic multiple zeta values. Finally, in Sect. 5, we
draw the connection between A-elliptic multiple zeta values, iterated integrals of
Eisenstein series, and a special algebra of derivations ugeom on a free Lie algebra on
two generators [13, 16, 32, 37].

1.4 Note Added in Print

This article was written in 2015 and therefore does not reflect more recent progress
on the subject of elliptic multiple zeta values. See in particular [33] for a study of
double shuffle relations in the context of elliptic multiple zeta values and the author’s
PhD thesis [35] for a more detailed discussion of elliptic multiple zeta values.

2 Multiple Polylogarithms and the Drinfeld Associator

Multiple zeta values can be defined either as special values of multiple polyloga-
rithms, or equivalently as the coefficients of Drinfeld’s associator. A common theme
of the two definitions is the theory of iterated integrals on P1 \ {0, 1,∞}. Of partic-
ular importance is the concept of homotopy invariance of iterated integrals, because
of the connection to the unipotent fundamental group of P1 \ {0, 1,∞}.

2.1 Iterated Integrals

We begin with a brief reminder on iterated integrals. More background can be found
for example in [17, 27].

Let M be a smooth manifold over k, where k denotes either the field of real or
complex numbers, γ : [0, 1] → M a piecewise smooth path, and (ω1, . . . , ωr ) an r-
tuple of smooth differential one-forms on M . Write fi (t)dt for the pullback γ ∗(ωi )

of ωi along γ . Then we define
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∫

γ

ω1 . . . ωr =
∫ 1

0
f1(t1)

∫ t1

0
f2(t2) . . .

∫ tr−1

0
fr (tr )dtr . . . dt2dt1, (8)

and call this integral an iterated integral. If r = 0, then we define
∫
γ

≡ 1. Many
properties of iterated integrals are known, for example the shuffle product formula
[39] ∫

γ

ω1 . . . ωr

∫

γ

ωr+1 . . . ωr+s =
∑

σ∈Σr,s

∫

γ

ωσ−1(1) . . . ωσ−1(r+s), (9)

where Σr,s denotes the set of all (r, s)-shuffles, i.e. Σr,s consists of all permutations
on the set {1, . . . , r + s}, which preserve the order of the first r elements and the
order of the last s elements.

Now let PM denote the set of all piecewise smooth paths on M . Fixing an r -tuple
(ω1, . . . , ωr ) of differential forms as above, we obtain a function

∫
ω1 . . . ωr : PM → k

γ �→
∫

γ

ω1 . . . ωr .

(10)

We call
∫

ω1 . . . ωr a homotopy invariant iterated integral, if (10) depends only on
the homotopy class of γ , i.e., if for every pair γ0, γ1 ∈ PM of paths, which are
homotopic relative to their extremal points, we have

∫
γ0

ω1 . . . ωr = ∫
γ1

ω1 . . . ωr .
The importance of homotopy invariant iterated integrals can be seen from Chen’s
π1 de Rham theorem: the affine ring of functions on the unipotent completion of the
fundamental group of a smooth manifold M is given by the ring of all homotopy
invariant iterated integrals on M [17, 27].

Finally, the following shorthand will come in useful later on. Denote by C〈〈x, y〉〉
the C-algebra of formal power series in non-commuting variables x, y, equipped
with the concatenation product and let I ⊂ C〈〈x, y〉〉 be the augmentation ideal, i.e.
the two-sided ideal generated by x and y. For a differential one-form ω with values
in I , we set

exp

[ ∫

γ

ω

]
= 1 +

∑

k≥1

∫

γ

ωk ∈ C〈〈x, y〉〉, (11)

where ωk := ω . . . ω︸ ︷︷ ︸
k−t imes

.

2.2 Multiple Polylogarithms

From now on, we work over the field C of complex numbers.
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2.2.1 Sum Representation

For integers n1, . . . , nr ≥ 1, define the multiple polylogarithm to be

Lin1,...,nr (z) =
∑

0<k1<...<kr

zkr

kn11 . . . knrr
. (12)

The sum converges absolutely and locally uniformly for all z ∈ C with |z| < 1, thus
defines an analytic function on the open unit disk. Moreover, if nr ≥ 2, then (12)
also converges for z = 1, and in that case, Lin1,...,nr (1) is equal to the multiple zeta
value ζ(n1, . . . , nr ) (1).

2.2.2 Integral Representation

It follows directly from (12) that multiple polylogarithms satisfy the differential
equation

∂

∂z
Lin1,...,nr (z) =

{
1
z Lin1,...,nr−1(z) nr ≥ 2
1

1−z Lin1,...,nr−1(z) nr = 1.
(13)

As a consequence multiple polylogarithms can be represented by iterated integrals.
Consider the holomorphic differential one-forms ω0 = dz

z and ω1 = dz
1−z on P

1 \
{0, 1,∞}. Then for |z| < 1, one has

Lin1,...,nr (z) =
∫ z

0
ω
nr−1
0 ω1 . . . ω

n1−1
0 ω1, (14)

where the path of integration is the straight line path from 0 to z. Note that although
ω0 has a pole at 0, the iterated integral is still well-defined, since the integration
starts with ω1, which is analytic at z = 0. Moreover, if nr ≥ 2, then (14) gives a
representation of multiple zeta values as iterated integrals, namely

ζ(n1, . . . , nr ) =
∫ 1

0
ω
nr−1
0 ω1 . . . ω

n1−1
0 ω1. (15)

The integral representation shows also that multiple polylogarithms can be extended
to multi-valued functions on P

1 \ {0, 1,∞}. For many more properties of multiple
polylogarithms, see for example the lecture notes [10].
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2.3 The Drinfeld Associator

Now we let C′ be the set of complex numbers with the two half-lines (−∞, 0] and
[1,∞) removed. There exists a unique solutionG0 : C′ → C〈〈x, y〉〉 to theKnizhnik-
Zamolodchikov equation (KZ-equation for short)

∂

∂z
g(z) =

(
x

z
+ y

z − 1

)
· g(z), (16)

which satisfies G0(z) ∼ zx as z → 0 on C
′ [20]. Similarly, there exists a unique

solutionG1 : C′ → C〈〈x, y〉〉 to the KZ-equation such thatG1(z) ∼ (1 − z)y as z →
1 on C

′. The quotient

Φ(x, y) = G−1
1 (z)G0(z) ∈ C〈〈x, y〉〉, (17)

which does not depend on z, is called theDrinfeld associator. An explicit formula in
terms of iterated integrals can be given as follows (cf. [41], Sect. 2). Let ΩKZ denote
the C〈〈x, y〉〉-valued one-form given by

ΩK Z = ω0 · x − ω1 · y. (18)

Then

Φ(x, y) = lim
t→0

e− log(t)y exp

[ ∫ 1−t

t
ΩK Z

]
elog(t)x , (19)

where the iterated integration is performed along the straight-line path from t to
1 − t , and exp was defined in (11). The coefficient of the word xnr−1y . . . xn1−1y in
(19) is given by (−1)rζ(n1, . . . , nr ), as can be seen from the integral representation
of multiple zeta values (15).

3 Multiple Elliptic Polylogarithms and the Elliptic KZB
Associator

Both multiple polylogarithms and the Drinfeld associator possess elliptic analogues.
In the case of polylogarithms, one obtains (multiple) elliptic polylogarithms as func-
tions on the once-punctured elliptic curve E×

τ
∼= (C∗/qZ) \ {1} by averaging the

ordinary polylogarithms along the spiral qZ, where q = e2π iτ with τ in the upper
half-plane. This definition of elliptic polylogarithms was pioneered by Bloch [3]
in the case of the single-valued dilogarithm, and later extended by Zagier [43] to
all single-valued polylogarithms. After that, Levin, [31], following earlier joint work
with Beilinson, introduced (multivalued) elliptic polylogarithms. Finally, Brown and
Levin treated the case of multi-valued multiple polylogarithms [15]. Furthermore,
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they also established a representation of multiple elliptic polylogarithms as homo-
topy invariant iterated integrals, thus paralleling the dichotomy between the sum and
the integral representation of multiple polylogarithms (cf. Sect. 2.2). While the inte-
grands formultiple zeta valueswere given by theKnizhnik-Zamolodchikov equation,
the integrands of themultiple elliptic polylogarithms are constructed from the elliptic
Knizhnik–Zamolodchikov–Bernard (KZB) differential equation [16, 32].

On the other hand, Enriquez introduced the notion of an elliptic associator in
the context of an elliptic version of Drinfeld’s version of Grothendieck-Teichmüller
theory [21]. Furthermore, he constructs an explicit elliptic associator (Φ, A(τ ), B(τ ))

from the regularized monodromy of the KZB equation. Here,Φ denotes the Drinfeld
associator, and A(τ ), B(τ ) are certain group-like elements of exp(̂t1,2) (where t̂
denotes the completion of the elliptic braid Lie algebra on two strands), depending
holomorphically on the coordinate τ in the upper half-plane. The group-likeness
implies that the coefficients of the series A(τ ) and B(τ ) give rise to Q-algebras
EZ A and EZ B, which are called the algebra of A-elliptic multiple zeta values and
B-elliptic multiple zeta values respectively.

3.1 An Elliptic Analogue of the KZ-Equation

The starting point for the construction of both multiple elliptic polylogarithms and
the elliptic KZB associator is an elliptic analogue of the KZ-equation (16), namely
the universal elliptic KZB equation [16, 32]. It is defined by a connection on a certain
vector bundle over the universal elliptic curve.We will consider only its restriction to
a fiber of the universal elliptic curve, and moreover work with a certain real analytic
trivialization of this restricted bundle, which was introduced in [15].

3.1.1 A Meromorphic Jacobi Form

Let H = {z ∈ C | �(z) > 0} denote the upper-half plane, and fix a point τ ∈ H. We
consider the following Jacobi theta function

θτ (ξ) =
∑

n∈Z
(−1)nq

1
2 (n+ 1

2 )2e(n+ 1
2 )2π iξ , q = e2π iτ . (20)

Definition 1 We define a meromorphic function on C × C by the formula

Fτ (ξ, α) = θ ′
τ (0)θτ (ξ + α)

θτ (ξ)θτ (α)
. (21)

Following [15], we call Fτ (ξ, α) the Kronecker function, [42]. The terminology for
(21) varies in the literature. In [44], it is called “a meromorphic Jacobi form”, while
in [1], it is referred to as “the Kronecker theta function”.



Overview on Elliptic Multiple Zeta Values 113

Since Fτ is meromorphic, it has a Laurent expansion in α. In what follows, wewill
consider Fτ (ξ, α) as a formal series in α, whose coefficients are functions in ξ (with
τ being fixed). Note that the Kronecker function has simple poles for ξ ∈ Z + Zτ ,
and is holomorphic outside of that lattice.

3.1.2 Differential Forms on a Punctured Elliptic Curve

Now consider the complex elliptic curve Eτ = C/(Z + Zτ) with canonical coordi-
nate ξ = s + rτ , where r, s ∈ R. Write E×

τ for Eτ with the origin 0 removed. Since
the Kronecker function is quasi-periodic

Fτ (ξ + 1, α) = Fτ (ξ, α), Fτ (ξ + τ,w) = e−2π i �(ξ)

�(τ )
αFτ (ξ, α), (22)

(cf. [15], Proposition 5), the smooth differential one-form (where α is viewed as a
formal variable)

Ωτ(ξ, α) = e2π irαFτ (ξ, α)dξ (23)

descends to E×
τ .

Definition 2 (Brown-Levin) Define a family {ω(k)}k≥0 of real analytic, differential
one-forms on E×

τ by

Ωτ(ξ, α) =
∑

k≥0

ω(k)αk−1. (24)

3.1.3 The Elliptic KZB Equation

With the differential formΩτ(ξ, α) in hand, we can nowwrite down the elliptic KZB
equation, following [15], Proposition 23. It is defined by a differential form JKZB,
which takes values in the lower central series completion L̂C(x, y) of the free Lie
algebra LC(x, y) overC, which we will now describe. LetU ⊂ C be an open subset.

Definition 3 For a function g : U → C, the elliptic KZB equation is the differential
equation

dg(ξ) = JKZB · g(ξ), (25)

with
JKZB = −2π idr · x + ad(x)Ωτ (ξ, ad(x))(y). (26)

An important property of the form ωKZB is that it satisfies the flatness condition

d JKZB + JKZB ∧ JKZB = 0, (27)

which is straightforward to verify.
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3.2 The Elliptic KZB Associator

Having described an elliptic analogue of multiple polylogarithms, we now turn to an
elliptic analogue of the Drinfeld associator, the elliptic KZB associator [21]. Again,
fix τ ∈ H. The starting point for the definition of the elliptic KZB associator is also
the elliptic KZB equation

dg(ξ) = −JKZB · g(ξ), (28)

here with an additional minus sign, where g : S → C〈〈x, y〉〉 is defined on the simply
connected domain S = {u + vi ∈ C | u, v ∈ (0, 1)} ⊂ C. This equation has a unique
solutionG defined on S, which satisfiesG(ξ) ∼ (−2π iξ)− ad(x)(y), where the branch
of the logarithm is chosen such that log(±i) = ±π i

2 . The following definition can
be found in [21], Sect. 5.

Definition 4 (Enriquez) The elliptic KZB associator is the triple (Φ, A(τ ), B(τ )),
where Φ denotes the Drinfeld associator and A(τ ), B(τ ) ∈ C〈〈x, y〉〉 are formal se-
ries, defined by the formulae

A(τ ) = G(ξ)−1G(ξ + 1), B(τ ) = G(ξ)−1G(ξ + τ). (29)

By the same reasoning as for the Drinfeld associator, neither A(τ ) nor B(τ ) depend
on the variable ξ . Since G(ξ) can be expressed as an iterated integral

G(ξ) = lim
ε→0

exp

[ ∫ ε

ξ

JKZB

]
(−2π iε)− ad(x)(y), (30)

one obtains explicit formulae for A(τ ) and B(τ )

A(τ ) = eπ iad(x)(y) lim
ε→0

(−2π iε)ad(x)(y) exp

[ ∫ 1−ε

ε

−J op
KZB

]
(−2π iε)− ad(x)(y), (31)

B(τ ) = e−π iad(x)(y) lim
ε→0

(−2π iε)ad(x)(y) exp

[ ∫ (1−ε)τ

ετ

−J op
KZB

]
(−2π iε)− ad(x)(y).

(32)

where JKZB is now considered as a C〈〈x, y〉〉op-valued formal differential form, i.e.
multiplication of words in x, y has been reversed.

The series A(τ ) and B(τ ) have a number of interesting properties, first found by
Enriquez. They satisfy a number of functional equations, which relate them to elliptic
braid Lie algebras, and as τ → i∞, they degenerate to the Drinfeld associator. For
all these properties and much more on elliptic associators in general, see [21].
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3.3 Multiple Elliptic Polylogarithms

Multiple elliptic polylogarithms give a second perspective on elliptic multiple zeta
values.

3.3.1 Series Representation

Roughly speaking, multiple elliptic polylogarithms are obtained frommultiple poly-
logarithms by averaging along the spiral qZ, where q = e2π iτ . This uses the Jacobi
uniformization Eτ

∼= C
∗/qZ given by ξ �→ z = e2π iξ , and yields functions of the

schematic form ∑

n∈Z
Lin1,...,nr (q

nz). (33)

In order to make this approach rigorous, one has to employ a delicate regularization
process, which in particular requires extensive knowledge about the singularities of
(multi-variable) multiple polylogarithms. We cannot give the technical details here,
and refer instead to Sects. 6 and 7 of [15].

3.3.2 Integral Representation

In [15], one also finds an approach to multiple elliptic polylogarithms via iterated
integrals. Consider the formal series of iterated integrals on E×

τ

T = exp

[ ∫
JKZB

]
∈ Hom(PE×

τ , L̂C(x, y)), (34)

where Hom(PE×
τ ,C) denotes the set of complex-valued functions on the set PE×

τ

of piecewise smooth paths on E×
τ , and the tensor product is completed. The flatness

of (27) implies that in fact every coefficient of T , viewed as a power series in x, y,
is a homotopy invariant iterated integral. One of the main results of [15] is:

Theorem 2 (Brown-Levin)Every homotopy invariant iterated integral on E×
τ arises

as aC-linear combination of coefficients of T .Moreover, theQ-vector space spanned
by the coefficients of T is equal to theQ-vector space spanned by the multiple elliptic
polylogarithms, as subspaces of theQ-vector space of multi-valued functions on E×

τ .

In this way, one obtains a complete description of multiple elliptic polylogarithms in
terms of homotopy invariant iterated integrals on a once-punctured complex elliptic
curve, which is the elliptic analogue of the iterated integral representation of the
classical multiple polylogarithms (14).
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3.3.3 Elliptic Associators via Elliptic Polylogarithms

The relation between [15] and the work of Enriquez is established by the fact that
the series A(τ ) and B(τ ) are restrictions of (34) to certain natural paths on E×

τ .
This follows from the explicit description of the KZB-associator (31), (32). The
construction of the elliptic KZB-associator using the function T has the advantage
that elliptic multiple zeta values are exhibited as restrictions of homotopy invariant
iterated integrals,which is a necessary prerequisite for any sort of relation to unipotent
fundamental groups [18]. It also tightens the analogywithmultiple zeta values, which
are given by homotopy invariant iterated integrals on P

1 \ {0, 1,∞}.

4 The Algebra of A-elliptic Multiple Zeta Values

In the last section,we have given a very short introduction tomultiple elliptic polylog-
arithms and the elliptic KZB associator, indicating how the two objects are related.
On the other hand, in Sect. 2, we saw that multiple zeta values can be defined as
special values of multiple polylogarithms, or equivalently as coefficients of the Drin-
feld associator. In light of this fact we are lead to a definition of elliptic analogues
of multiple zeta values as special values of multiple elliptic polylogarithms or as
coefficients of the series A(τ ) and B(τ ). However, we proceed slightly differently,
first giving a direct definition of A-elliptic multiple zeta values as iterated integrals
IA(n1, . . . , nr ; τ) over the differential forms ω(k) (24). That this Q-vector space of
iterated integrals is equal to the Q-vector space spanned by the coefficients of (a
slight variation of) the series A(τ ) was shown in [36].

4.1 Definition of A-elliptic Multiple Zeta Values

Definition 5 We define IA(n1, . . . , nr ; τ) to be the shuffle-regularized2 iterated in-
tegral

IA(n1, . . . , nr ; τ) =
∫

α

ω(nr ) . . . ω(n1). (35)

We call IA(n1, . . . , nr ; τ) an A-elliptic multiple zeta value. It is said to have
weight n1 + · · · + nr and length r . The Q-vector space EZ A spanned by the
IA(n1, . . . , nr ; τ) will be called the space of A-elliptic multiple zeta values.

By the shuffle product formula for iterated integrals, it follows that EZ A is a Q-
subalgebra of the C-algebra of holomorphic functions O(H) onH. In particular, the

2Iterated integrals starting or ending with ω(1) diverge, and need to be regularized, such that the
shuffle product formula remains valid. See [22, 36] for details on this regularization procedure.
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rational number 1 ∈ Q is an A-elliptic multiple zeta value of weight and length equal
to zero, in accordance with our conventions for the empty iterated integral.

It is known that the algebra of multiple zeta values is also the Q-vector space
spanned by the coefficients of the Drinfeld associator. There is an analogous result
for A-elliptic multiple zeta values. Write

Ã(τ ) = e−π iad(x)(y)A(τ ) =
∑

w∈〈x,y〉
Ã(τ )w · w. (36)

Note that the constant pre-factor e−π iad(x)(y), which ismultiplied to A(τ ), is an artifact
of the difference between the regularization procedure for the KZB-associator, and
the regularization of the iterated integrals (34).

Proposition 1 We have an equality of vector spaces

EZ A = 〈 Ã(τ )w | w ∈ 〈x, y〉〉Q. (37)

Proof See [36], Proposition 2.3.

4.2 Relations Between A-elliptic Multiple Zeta Values

Recall that A-elliptic multiple zeta values are defined as iterated integrals over the
differential formsω(k), which in turn are the coefficients of the Kronecker differential
form ∑

k≥0

ω(k)αk−1 = Ωτ(ξ, α) = e2π irα
θ ′
τ (0)θτ (ξ + α)

θτ (ξ)θτ (α)
dξ, (38)

where ξ = s + rτ .

4.2.1 Shuffle Relations

From (9), one deduces a shuffle product formula for A-elliptic multiple zeta values,
which is conveniently expressed using the generating series

I A(X1, X2, . . . , Xr ; τ) =
∞∑

n1,...,nr=0

IA(n1, . . . , nr ; τ)Xn1−1
1 Xn2−1

2 . . . Xnr−1
r ,

(39)
of A-elliptic multiple zeta values of length r , for r ≥ 0. Explicitly, we have
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I A(X1, . . . , Xl; τ)I A(Xl+1, . . . , Xn; τ) =
∑

σ∈Σl,n−l

I A(Xσ−1(1), . . . , Xσ−1(n); τ),

(40)
where Σl,n−l denotes the set of (l, n − l)-shuffles. For example, in small lengths we
get

I A(X1; τ)I A(X2; τ) = I A(X1, X2; τ) + I A(X2, X1; τ), (41)

I A(X1; τ)I A(X2, X3; τ) = I A(X1, X2, X3; τ) + I A(X2, X1, X3; τ)

+ I A(X2, X3, X1; τ).
(42)

4.2.2 Reflection Relations

Further relations between A-elliptic multiple zeta values can be inferred from func-
tional equations for Ωτ , for example, the symmetry equation (cf. [44], Theorem.(i)
in Sect. 3)

Ωτ(−ξ,−α) = Ωτ(ξ, α). (43)

Writingω(k) = f (k)dξ , for some real-analytic function f (k) : E×
τ → C, (43) implies

f (k)(−ξ) = (−1)k f (k)(ξ). (44)

Using (44) and the reversal of paths formula for iterated integrals, one obtains the
reflection relation for A-elliptic multiple zeta values (cf. [6], Eq. (2.13))

IA(n1, . . . , nr ; τ) = (−1)n1+···+nr IA(nr , . . . , n1; τ), (45)

which, on the level of generating series, simply becomes the functional equation

I A(X1, . . . , Xr ; τ) = I A(−Xr , . . . ,−X1; τ). (46)

4.2.3 Fay Relations

The second, more interesting, functional equation satisfied by Ωτ is the Fay identity
(cf. [15], Proposition 4)

Ωτ(ξ1, α1) ∧ Ωτ(ξ2, α2) = Ωτ(ξ1 − ξ2, α1) ∧ Ωτ(ξ2, α1 + α2)

+ Ωτ(ξ2 − ξ1, α2) ∧ Ωτ(ξ1, α1 + α2).
(47)

The Fay identity for Ωτ(ξ, α) implies quadratic relations for the functions f (k),
namely
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f (m)(ξ1) f
(n)(ξ2) = − (−1)n f (m+n)(ξ1 − ξ2)

+
n∑

r=0

(
m + r − 1

m − 1

)
f (n−r)(ξ2 − ξ1) f

(m+r)(ξ1)

+
m∑

r=0

(
n + r − 1

n − 1

)
f (m−r)(ξ1 − ξ2) f

(n+r)(ξ2).

(48)

The Fay identity also yields Q-linear relations between A-elliptic multiple zeta val-
ues, which are again most conveniently expressed as functional equations for the
generating series I A. In length two, we have (cf. [36], Eq. (2.40))

I A(X,Y ; τ) + I A(X + Y,−Y ; τ) + I A(−X − Y, X; τ) = 3ζ(2). (49)

Observe that the right hand side of (49) corresponds to a subset of divergent A-elliptic
multiple zeta values, such as IA(1, 1; τ), which require a regularization procedure.
While A-elliptic multiple zeta values have been regularized in a way compatible
with the shuffle product, one can ask whether there is a “Fay-regularization” for a
priori divergent A-elliptic multiple zeta values. In a similar vein, note that the stuffle
regularization for multiple zeta values differs from the shuffle regularization, and
that there is an explicit formula for the difference between the two regularizations
(cf. [38], Proposition 2.4.14). For A-elliptic multiple zeta values, for example, the
first equation in (49) suggests the convention

I A
∗ (X,Y ; τ) := I A(X,Y ; τ) − ζ(2) = I A(X,Y ; τ) + 1

2
IA(2; τ), (50)

such that I A∗ (X,Y ; τ) + I A∗ (X + Y,−Y ; τ) + I A∗ (−X − Y, X; τ) = 0. See also
[6], Sect. 2.2, for Fay relations in higher lengths.

4.3 The Dimension of the Space of A-elliptic Multiple Zeta
Values

Now that we have seen that there are many relations between A-elliptic multiple zeta
values, it is a natural next step to try and count these relations, in order to get upper
bounds on the dimensions of the space of A-elliptic multiple zeta values. To arrive
at a more precise formulation, consider for non-negative integers N , l the Q-vector
subspace

Ll(EZ
A
N ) = 〈IA(n1, . . . , nr ; τ) ∈ EZ A | n1 + · · · + nr = N , r ≤ l〉Q ⊂ EZ A,

(51)
spanned by A-elliptic multiple zeta values of weight N and length at most l. From
(40), it is clear that the length filtration is compatible with the algebra structure of
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EZ A, and that therefore EZ A is a filtered Q-algebra. Denote by grLl (EZ A
N ) =

Ll(EZ
A
N )/Ll−1(EZ

A
N ) the associated graded. Since there are only finitely many

A-elliptic multiple zeta values of a given weight and length, grLl (EZ A
N ) is a finite-

dimensionalQ-vector space, and as outlined in Problem 1, we would like to compute
the dimension

Dell
N ,l = dimQ grLl (EZ A

N ), (52)

for all N , l ≥ 0.
The case l = 0 is of course trivial: we have Dell

N ,0 = δN ,0, since the empty iterated
integral

∫
γ

= 1 has weight zero, by definition. In the cases l = 1, 2, a complete
solution to Problem 1 has been obtained in [36], on which we will report briefly in
the rest of this section.

4.3.1 Elliptic Zeta Values

We begin our investigation of Problem 1 in length l = 1. It is clear from Definition
5 that for a given weight N , there is only one A-elliptic multiple zeta value of length
one, namely IA(N ; τ). Thus Dell

N ,1 ≤ 1.
Now by (45), we have

IA(N ; τ) = (−1)N IA(N ; τ), (53)

which immediately yields IA(N ; τ) = 0, if N is odd, hence Dell
N ,1 = 0 in that case.

In Sect. 5.4, we will see that for even N ≥ 0

IA(N ; τ) = −2ζ(N ), (54)

and we obtain a complete solution of Problem 1 in the length one case

Dell
N ,1 =

{
0 N = 0 or N odd

1 else.
(55)

Also, note that since the even zeta values ζ(2n) are linearly independent over Q,
it follows that the space of elliptic zeta values L1(EZ

A) = ∑
N≥0 L1(EZ

A
N ) is

graded for the weight, i.e.

L1(EZ
A) =

⊕

N≥0

L1(EZ
A
N ). (56)
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4.3.2 Elliptic Double Zeta Values of Even Weight

We now investigate the case l = 2 and N even, i.e. A-elliptic multiple zeta values of
length two and even weight. From (41) together with (54) and the fact that ζ(N ) ∈
〈(2π i)N 〉Q, if N is even, we know that

IA(n1, n2; τ) + IA(n2, n1; τ) = IA(n1; τ)IA(n2; τ) ∈ 〈(2π i)n1+n2 〉Q ⊂ L1(EZ
A
n1+n2 ). (57)

On the other hand, if the weight N = n1 + n2 is even, then it follows from (45) that

IA(n1, n2; τ) + IA(n2, n1; τ) = 2IA(n1, n2; τ), (58)

and therefore in that case, by (54),

IA(n1, n2; τ) =
{
0 n1, n2 odd

2ζ(n1)ζ(n2) n1, n2 even.
(59)

In particular, Dell
N ,2 = 0, if N is even.

4.3.3 Elliptic Double Zeta Values of Odd Weight

So far, we have seen that both the elliptic zeta values IA(n; τ), as well as the elliptic
double zeta values IA(n1, n2; τ)of evenweight are constant as functions in τ , and that
they are equal to rational multiples of powers of (2π i)N , where N is the weight. If the
weight is odd, this is no longer true, since in that case (45) gives no new information
about elliptic double zeta values of odd weight. Indeed, since the product of two
elliptic zeta values of weights of different parities necessarily vanishes, the shuffle
product formula becomes

IA(n1, n2; τ) + IA(n2, n1; τ) = 0, (60)

which is also precisely the reflection relation in the case of odd weight.
In order to attack Problem 1 in the odd weight case, we first count the number of

linearly independent Fay and shuffle relations. For this, we denote by V̂N ⊂ Q(X,Y )

theQ-vector space of rational functions P(X,Y ) in the variables X and Y , such that
the product XY · P is a homogeneous polynomial of degree N + 2.

Definition 6 We define the length two Fay-shuffle space FSh2(N ) of weight N to be
the subspace FSh2(N ) ⊂ V̂N of elements, satisfying the Fay and shuffle equations

P(X,Y ) + P(X + Y,−Y ) + P(−X − Y, X) = 0, P(X,Y ) + P(Y, X) = 0.
(61)

In particular, since in the length two case the right hand side of (49) and the left hand
side of (41) vanish in grL2 (EZ A), as both are contained inL1(EZ

A) by (54)), we
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see that the elliptic double zeta values satisfy the defining equations of FSh2(N ),
modulo elliptic zeta values. As a consequence, we have:

Proposition 2 ([36], Proposition 3.10) The dimension of the Fay-shuffle space gives
an upper bound for Dell

N ,2, i.e.

Dell
N ,2 ≤ dimQ FSh2(N − 2), (62)

for all N ≥ 0.

The dimensions on the right hand side can in fact be computed using invariant theory.

Theorem 3 ([36], Theorem 3.11) We have

dimQ FSh2(N ) =
{
0 if N is even⌊
N
3

⌋ + 1 if N is odd.
(63)

It remains to show that Dell
N ,2 ≥ � N

3 	 + 1 for odd N , and this follows from:

Theorem 4 ([36], Theorem 3.15) Let N ≥ 1 be odd. The family of elliptic double
zeta values

{IA(r, N − r; τ) | 0 ≤ r ≤ �N/3	} (64)

is linearly independent over Q.

The proof uses an explicit representation of elliptic double zeta values as indefinite
integrals of Eisenstein series (87). Using in addition the fact that there are no non-
trivial relations between elliptic double zeta values of different weights (cf. [36],
Theorem 3.6), the two preceding theorems also imply that every relation between
elliptic double zeta values is a consequence of Fay and shuffle relations.

5 Elliptic Multiple Zeta Values and Iterated Eisenstein
Integrals

In this section, we will discuss the relation between A-elliptic multiple zeta val-
ues and indefinite iterated integrals of Eisenstein series [12, 34]. This relation has
first been established by Enriquez [21, 22], who showed that the derivative of an
A-elliptic multiple zeta value of length r can be expressed using A-elliptic multiple
zeta values of length r − 1 and Eisenstein series. Moreover, the boundary condition
for Enriquez’s differential equation is given explicitly in terms of multiple zeta val-
ues. Using Enriquez’s ideas as a starting point, one finds in [6] completely explicit
formulae for A-elliptic multiple zeta values as linear combinations of iterated inte-
grals of Eisenstein series and multiple zeta values. It turns out that the precise linear
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combinations of iterated Eisenstein integrals, which appear as elliptic multiple zeta
values are controlled by a certain well-studied Lie algebra ugeom of derivations of a
free Lie algebra on two generators [13, 16, 32, 37].

5.1 Reminder on Iterated Eisenstein Integrals

For k ≥ 1, define the Eisenstein series Gk(τ ) to be

G2k(τ ) =
∑

(m,n)∈Z\{(0,0)}

1

(m + nτ)k
, (65)

where for k = 1, 2, we use Eisenstein summation for double series, i.e.

∑

(m,n)∈Z\{(0,0)}
am,n = lim

N→∞ lim
M→∞

N∑

n=−N

M∑

m=−M

am,n . (66)

We also set G0(τ ) ≡ −1. It is well-known that the Eisenstein series G2k(τ ), k ≥ 1,
can be expanded as a Fourier series in q = e2π iτ

G2k(τ ) = 2ζ(2k) + 2
(2π i)2k

(2k − 1)!
∑

n≥1

σ2k−1(n)qn, (67)

where σk(n) = ∑
d|n dk denotes the sum of the k-th powers of the divisors of n.

In [12], one finds a definition of iterated integrals of Eisenstein series (and even
of iterated integrals of more general modular forms, the so-called iterated Eichler or
iterated Shimura integrals)

G (k1, . . . , kr ; τ) =
∫ i∞

τ

Gk1(τ1)dτ1 . . .Gkr (τr )dτr , (68)

where the integral has to be regularized suitably at the boundary i∞. Since the
Eisenstein series are holomorphic functions on a one-dimensional complexmanifold,
the iterated integral (81) is independent of the choice of path from τ to i∞. We refer
to [12], Sect. 4, for the precise regularization scheme, which involves tangential base
points, and confine ourselves with giving explicit formulae in lengths one and two:

G (k; τ) = − 1

2π i

(
2ζ(k) log q + 2(2π i)k

(k − 1)!
∞∑

m,n=1

mk−2

n
qmn

)
, (69)

and
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G (k1, k2; τ) = 1

(2π i)2

(
2ζ(k1)ζ(k2)(log q)2

+ 2ζ(k2)
2(2π i)k1

(k1 − 1)! log q
∞∑

m,n=1

mk1−2

n
qmn

+ 2ζ(k1)
2(2π i)k2

(k2 − 1)!
∞∑

m,n=1

mk2−3

n2
qmn

− 2ζ(k2)
2(2π i)k1

(k1 − 1)!
∞∑

m,n=1

mk1−3

n2
qmn

+ 4(2π i)k1+k2

(k1 − 1)!(k2 − 1)!
∞∑

mi ,ni=1

mk1−1
1 mk2−2

2
(m1n1 + m2n2)n2

qm1n1+m2n2
)

,

(70)
which both follow from [12] Example 4.10, and from (67). Note that

∂G (k; τ)

∂τ
= −Gk(τ ),

∂G (k1, k2; τ)

∂τ
= −Gk1(τ )G (k2; τ), (71)

which can be verified directly, and generalizes to

∂G (k1, . . . , kr ; τ)

∂τ
= −Gk1(τ )G (k2, . . . , kr ; τ), (72)

using a general property of iterated integrals (cf. [12], Proposition 4.7, for the case
of iterated Eichler integrals).

5.2 The Differential Equation for A-elliptic Multiple Zeta
Values

As proved by Enriquez (cf. [22], Théorème 3.10), A-elliptic multiple zeta values
satisfy a differential equation involving Eisenstein series. This differential equation is
most convenientlywritten down in terms of the generating seriesI A(X1, . . . , Xr ; τ)

of A-elliptic multiple zeta values of length r (39).

Theorem 5 (Enriquez) For all r ≥ 0, we have

2π i
∂

∂τ
I A(X1, . . . , Xr ; τ) = ℘∗

τ (X1)I
A(X2, . . . , Xr ; τ) − ℘∗

τ (Xr )I
A(X1, . . . , Xr−1; τ)

+
r−1∑

i=1

(℘∗
τ (Xi+1) − ℘∗

τ (Xi ))I
A(X1, . . . , Xi,i+1, . . . , Xr ; τ),

(73)

where Xi, j := Xi + X j and ℘∗
τ (α) = ∑∞

k=0(2k − 1)G2k(τ )α2k−2. �
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Note that ℘∗
τ is related to the Weierstrass ℘τ -function by the formula ℘∗

τ (α) =
℘τ (α) + G2(τ ). The proof of Theorem 5 uses special properties of the Kronecker
function, in particular that it satisfies themixed heat equation (cf. [15], Proposition 4).
The upshot is that the derivative of an A-elliptic multiple zeta value of length r can
be expressed using A-elliptic multiple zeta values of lengths r − 1 and Eisenstein
series. This in turn identifies A-elliptic multiple zeta values as iterated integrals of
Eisenstein series of length r − 1, up to a constant term, the reconstruction of which
we turn to next.

5.3 Restoring the Constant Terms of A-elliptic Multiple Zeta
Values

By definition, the generating series of A-elliptic multiple zeta values is given by a
version of Enriquez’s A-associator [22, 36]

Ã(τ ) =
∑

r≥0

(−1)r
∑

n1,...,nr≥0

IA(n1, . . . , nr ; τ) adnr (x)(y) . . . adn1(x)(y). (74)

From [21], Proposition 5.4, it follows that Ã(τ ) satisfies Ã(τ + 1) = Ã(τ ) and that it
is holomorphic at infinity. Thus, it possesses a Fourier expansion in q = e2π iτ , and the
same is true for every A-elliptic multiple zeta value. Moreover, Enriquez has shown
that the coefficients of the Fourier expansion of A-elliptic multiple zeta values are
essentially given bymultiple zeta values.We state this result as a proposition (cf. [22],
Proposition 5.2).

Proposition 3 (Enriquez) Every A-elliptic multiple zeta values can be written as a
Fourier series ∑

n≥0

anq
n, (75)

where an ∈ Z [(2π i)−1], andZ ⊂ R denotes theQ-algebra spanned by themultiple
zeta values.

An immediate consequence of the last proposition is that the constant term IA0 of anA-
elliptic multiple zeta value can be retrieved as the limit limτ→i∞ IA(n1, . . . , nr ; τ).
In order to compute this limit, we use the following result of Enriquez (cf. [22],
Eq. (7)).

Theorem 6 (Enriquez) The generating series of A-elliptic multiple zeta values sat-
isfies

lim
τ→i∞ Ã(τ ) = eπ i tΦ(ỹ, t)e2π i ỹΦ(ỹ, t)−1, (76)

where t = − ad(x)(y), ỹ = − ad(x)
e2π iad(x)−1 (y) and Φ denotes the Drinfeld associator.
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We end this section by giving a few examples of constant terms of A-elliptic multiple
zeta values (cf. [6], Sect. 2.3). If all of the indices n1, . . . , nr �= 1, then a closed
formula for the constant term IA0 (n1, . . . , nr ) of IA(n1, . . . , nr ; τ) is easy to give,
since in that case, only the factor e2π i ỹ in (76) yields a non-trivial contribution, and
therefore

IA0 (n1, n2, . . . , nr )
∣∣∣
ni �=1

=

⎧
⎪⎨

⎪⎩

0 at least one ni is odd and all ni �= 1
1

r !
r∏

i=1

(−2ζ(ni )) all ni even.

(77)

On the other hand, if several of the ni are equal to one, then the formulae becomemore
cumbersome to write down, since in that case the extraction of the relevant terms
from (76) combined with the translation from the {ỹ, t} alphabet (in which (76) is
expressed) to the x, y alphabet (which is used for A-elliptic multiple zeta values)
requires manymore steps. An implementation of this procedure, usingMathematica,
yields for example

IA0 (1, 0) = − iπ

2
, IA0 (1, 0, 0) = − iπ

4
, IA0 (1, 0, 0, 0) = − iπ

12
+ ζ(3)

(2π i)2
, (78)

which generalizes to

IA0 (1, 0, . . . , 0︸ ︷︷ ︸
r

) = − 2π i

4(r − 1)! +
�r/2	−1∑

k=1

1

(r − (2k + 1))!
ζ(2k + 1)

(2π i)2k
, (79)

and shows that every odd Riemann zeta value arises as the constant term of some
linear combination ofA-ellipticmultiple zeta value.Also,multiple zeta values,which
cannot be written as polynomials in Riemann zeta values are found to appear as
constant terms of higher length A-elliptic multiple zeta values. Conjecturally, the
first such multiple zeta value appears in weight 8, for example ζ(3, 5), and we have

IA0 (1, 0, 0, 1, 0, 0, 0, 0, 0) = 1

(2π i)6

(
− ζ(3, 5) − 2ζ(2)ζ(3)2 − 1

15
iπ5ζ(3)

+ ζ(5)ζ(3) + 2iπ3ζ(5) − 21

2
iπζ(7) + π8

945

)
,

(80)

which casts ζ(3, 5) as the constant term of some linear combination of A-elliptic
multiple zeta values.
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5.4 Explicit Formulae for A-elliptic Multiple Zeta Values

We now combine the results of the last two sections to write down explicit formu-
lae for A-elliptic multiple zeta values in terms of iterated Eisenstein integrals and
multiple zeta values. Denote by (cf. [6], Eq. (4.2))

γ (k1, k2, . . . , kr ; τ) = (2π i)−rG (kr , . . . , k2, k1; τ) (81)

the shuffle-regularized iterated integral of the Eisenstein series Gk1 , . . . ,Gkr as in
Sect. 5.1 (the scaling factor (−2π i)−r is adapted to the differential equation satisfied
by A-elliptic multiple zeta values (73)).

5.4.1 Length One

Let us begin by completely giving all A-elliptic multiple zeta values of length one.
Comparing coefficients on both sides of (73), one sees that

2π i
∂

∂τ
IA(n; τ) = 0. (82)

Thus IA(n; τ) is constant, and the precise value can be obtained from (77) as

IA(n; τ) =
{

−2ζ(n) n even

0 else,
(83)

in accordance with the results of Sect. 4.3.

5.4.2 Length Two

We nowmove on to the length two case. In even weight, we already know the answer
by the results of Sect. 4.3.2: it is

IA(n1, n2; τ) =
{
0 n1, n2 odd

2ζ(n1)ζ(n2) n1, n2 even.
(84)

Alternatively, this result could have also been obtained by a similar method as in the
length one case, using the differential equation (73) and the constant term procedure
(76). In the odd weight case, we encounter non-trivial iterated Eisenstein integrals
for the first time: By (73), we see that for odd n

2π i
∂

∂τ
IA(0, n; τ) = −2nζ(n + 1)G0(τ ) − nGn+1(τ ). (85)
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Together with (76), this gives, all in all

IA(0, n; τ) = δ1,n
π i

2
+ n

(
γ (n + 1; τ) + 2ζ(n + 1)γ (0; τ)

)
. (86)

The general case of an A-elliptic multiple zeta value of length two and odd weight
can be reduced to this case, using the formula

IA(n1, n2; τ) = (−1)n1 IA(0, n1 + n2; τ)

+ 2δn1,1ζ(n2)I
A(0, 1; τ) − 2δn2,1ζ(n1)I

A(0, 1; τ)

+ 2

� 1
2 (n2−3)�∑

p=1

(
n1 + n2 − 2p − 2

n1 − 1

)
ζ(n1 + n2 − 2p − 1)IA(0, 2p + 1; τ)

− 2

� 1
2 (n1−3)�∑

p=1

(
n1 + n2 − 2p − 2

n2 − 1

)
ζ(n1 + n2 − 2p − 1)IA(0, 2p + 1; τ) ,

(87)
(cf. [6], Eq. (2.33)). This identifies A-elliptic multiple zeta values of length two as
certain linear combinations of products of Eisenstein integrals and powers of 2π i .

5.4.3 Length Three

We end this section by giving explicit formulae for A-elliptic multiple zeta values of
length three. Given the simplicity of (86), it is natural to first compute IA(0, 0, n; τ)
in terms of iterated integrals of Eisenstein series. Using again the differential equation
together with the constant term procedure, one finds

IA(0, 0, n; τ) =

⎧
⎪⎨

⎪⎩

δ1,n
π i
4 + n

( 1
2γ (n + 1; τ) + ζ(n + 1)γ (0; τ)

)
n odd

− 1
3 ζ(n) − n(n + 1)(γ (n + 2, 0; τ) + 2ζ(n + 2)γ (0, 0; τ)) n even.

(88)

Using reflection and shuffle product formulae, the A-elliptic multiple zeta values
IA(0, n, 0; τ) and IA(n, 0, 0; τ) are readily expressed using IA(0, 0, n; τ) and prod-
ucts of A-elliptic multiple zeta values of lower length:

IA(n, 0, 0; τ) = (−1)n IA(0, 0, n; τ), (89)

IA(0, n, 0; τ) = IA(0, n; τ)IA(0; τ) − IA(0, 0, n; τ) − IA(n, 0, 0; τ). (90)

Moreover, up to and including weight 7, every A-elliptic multiple zeta value of
weight n can be expressed as linear combinations of IA(0, 0, n; τ) and products,
homogeneous of weight n, of powers of 2π i and A-elliptic multiple zeta values of
lower length (cf. [6], Sect. 2.2).
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However, beginning with weight 8, the situation changes. For example,

IA(0, 3, 5; τ) = − 405γ (10, 0; τ) − 75γ (6, 4; τ) − ζ(6)(150γ (0, 4; τ) + 90γ (4, 0; τ))

− 1008ζ(10)γ (0, 0; τ),

(91)
and since γ (6, 4; τ) appears in (91), but neither in (88), nor in any Q-linear com-
bination of A-elliptic multiple zeta values of lengths one or two, this shows that
IA(0, 3, 5; τ) cannot be expressed using IA(0, 0, 8; τ) and lower length A-elliptic
multiple zeta values alone.

5.5 A Special Algebra of Derivations

It turns out that the precise linear combinations of iterated Eisenstein integrals, which
appear in any linear combination of A-elliptic multiple zeta values are controlled by
a special algebra of derivations ugeom of the free Lie algebra L(x, y) over Q on two
generators, which we describe next.

Consider the Lie algebra DerΘ L(x, y) of derivations of L(x, y), which map the
commutator [x, y] to zero. There exist distinguished elements ε2k ∈ DerΘ(x, y), for
k ≥ 0, which satisfy

ε2k(x) = ad2k(x)(y), (92)

and their value on y is uniquely determined by demanding that they be homogeneous
for the bigrading (∗, ∗) on L(x, y), under which x has bidegree (1, 0) and y has
bidegree (0, 1). Explicitly (cf. [37], Eq. (2))

ε0(y) = 0 (93)

ε2k(y) =
∑

0≤ j<k

(−1) j [ad j (x)(y), ad2k−1− j (x)(y)]. (94)

Definition 7 Define ugeom ⊂ DerΘ L(x, y) to be the Lie subalgebra spanned by the
ε2k .

The derivations ε2k occur for example in [2, 16, 32, 37]. They are related to universal
mixed elliptic motives [28], as well as to polar solutions of the linearized double
shuffle equations [13, 14].

By work of Pollack [37], the derivations ε2k satisfy many relations, which are
linked to the existence of cusp forms for SL2(Z). In [6], Sect. 4.3, it is described
how relations between ε2k constrain the linear combinations of iterated Eisenstein
integrals which can possibly appear as A-elliptic multiple zeta values. The starting
point is the generating series of A-elliptic multiple zeta values

e−π i[x,y]A(τ ) = Ã(τ ) =
∑

r≥0

(−1)r
∑

n1,...,nr≥0

IA(n1, . . . , nr ; τ) adnr (x)(y) . . . adn1(x)(y).

(95)
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By [22], Eq. (7), and since every ε2k annihilates [x, y], this series satisfies the differential
equation

2π i
∂

∂τ
Ã(τ ) = −

∑

k≥0

(2k − 1)G2k(τ )ε2k
(
Ã(τ ))

)
, (96)

which is in fact equivalent to Theorem 5, as shown in [22], Sect. 4. Note that in (96),
the derivation ε2k is coupled to the Eisenstein series G2k(τ ). Iteratively integrating
this differential equation leads to a coupling of iterated integrals of Eisenstein series
of length r and commutators of derivations ε2k of depth r .

As a simple example, consider the “Ihara-Takao relation” in ugeom

[ε10, ε4] − 3[ε8, ε6] = 0, (97)

whose existence can be traced back to the unique, up to a scalar, cusp form for
SL2(Z) of weight 12 [37]. It implies that the iterated Eisenstein integrals γ (10, 4; τ)

and γ (8, 6; τ) only appear in a special ratio. More precisely, it follows from the
differential equation (96) and from (97) that the only linear combination of the two
double Eisenstein integrals, which appears as an A-elliptic multiple zeta value is,
up to a scalar, given by

81γ (10, 4; τ) + 35γ (8, 6; τ). (98)

If one introduces a different normalization of iterated Eisenstein integrals, namely

γ (k1, . . . , kr ; τ) =
r∏

i=1

(ki − 1)γ (k1, . . . , kr ; τ), (99)

then (98) becomes
3γ (10, 4; τ) + γ (8, 6; τ). (100)

Viewing γ (k1, k2; τ) as dual to [εk1 , εk2 ], we see that (100) is orthogonal to the
relation (97). In this way, the linear combinations of iterated Eisenstein integrals
which appear in elliptic multiple zeta values are orthogonal to relations between
commutators of the ε2k (see also [12], Sect. 12). For much more detailed treatments
of the relation between ugeom and elliptic multiple zeta values, see [6, 33, 35].
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The Elliptic Sunrise

Luise Adams, Christian Bogner and Stefan Weinzierl

Abstract In this talk, we discuss our recent computation of the two-loop sunrise
integralwith arbitrary non-zero particlemasses in the vicinity of the equalmass point.
In two space-time dimensions, we arrive at a result in terms of elliptic dilogarithms.
Near four space-time dimensions, we obtain a result which furthermore involves
elliptic generalizations of Clausen and Glaisher functions.

Keywords Feynman integrals · Special functions · Elliptic polylogarithms

1 Introduction

In the computation of many Feynman integrals the use of multiple polylogarithms1

[1]

Li(s1, ..., sk )(z1, ..., zk) =
∑

n1>n2...>nk≥1

zn11 ...znkk
ns11 ...nskk

, si ≥ 1, |zi | < 1

is very advantageous. In particular, these functions, shown as nested sums here, also
have representations as iterated integrals, given by the classes of hyperlogarithms
[2, 3] or by iterated integrals on moduli spaces of curves of genus zero (see [4]).

1Our summation convention is widely used in the physics literature, including our previous work.
Notice that it differs from the convention in [1].
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Apparently, it is not possible to express every Feynman integral in terms of this
framework of functions. This problem is expected to affect an entire class of massive
integrals (see e.g. [5]) and was furthermore pointed out for certain massless integrals,
arising inN = 4 supersymmetric Yang-Mills theory [6, 7].

One of the simplest Feynman integrals where multiple polylogarithms are not
sufficient to express the result is the massive two-loop sunrise integral

S(D, t) =
∫

dDk1dDk2
(
iπ D/2

)2
1(−k21 + m2

1

) (−k22 + m2
2

) (− (p − k1 − k2)
2 + m2

3

) .

In this talk, we consider this integral as a function of the three particle masses
satisfying 0 < m1 ≤ m2 ≤ m3 < m1 + m2 and of the squared momentum t = p2.
The condition m3 < m1 + m2 ensures that all pseudo-thresholds are positive. We
omit an explicitmass-scale parameterμ in our equations.We discuss the computation
of this Feynman integral at D = 2 and D = 4 dimensions in terms of the Laurent
expansions

S(2 − 2ε, t) = S(0)(2, t) + S(1)(2, t)ε + O
(
ε2

)
,

S(4 − 2ε, t) = S(−2)(4, t)ε−2 + S(−1)(4, t)ε−1 + S(0)(4, t) + O(ε).

In the case of D = 2, the integral is finite and our result is the coefficient S(0)(2, t).
In the case of D = 4, we compute the coefficient S(0)(4, t). The pole terms were
already known and read

S(−2)(4, t) = −1

2

(
m2

1 + m2
2 + m2

3

)
,

S(−1)(4, t) = 1

4
t − 3

2

(
m2

1 + m2
2 + m2

3

) +
3∑

i=1

m2
i ln

(
m2

i

)
.

In order to obtain S(0)(4, t), we compute the ε-coefficient S(1)(2, t) of the two-
dimensional case and relate S(2 − 2ε, t) with S(4 − 2ε, t) by Tarasov’s dimension
shift relations [8, 9]. Our work on these integrals is motivated by the search for
classes of functions beyond multiple polylogarithms, which are appropriate for the
computation of Feynman integrals.

In Sect. 2 we briefly comment on three computational approaches which fail to
provide a result in terms of multiple polylogarithms for the massive sunrise integral.
We begin our computation with the integral in two dimensions and discuss our first
solution of the differential equation for S(0)(2, t) in Sect. 3. In Sect. 4 we express this
result in terms of an elliptic dilogarithm. Section5 introduces further elliptic gener-
alizations of polylogarithms, understood as elliptic generalizations of Clausen and
Glaisher functions, which arise in our results for S(1)(2, t) and S(0)(4, t). Section6
contains the conclusions of this talk.
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2 Basic Properties of the Massive Sunrise Integral

The massive sunrise integral was extensively studied in the past [5, 10–28]. Let us
recall some important aspects.

Firstly, in [15] the integral S(D, t) is expressed as a linear combination of gener-
alized hypergeometric functions of Lauricella type C, which are functions of t , of the
squared particle masses and of the dimension D. While a wide range of generalized
hypergeometric functions can be expanded in terms of multiple polylogarithms with
today’s methods, this has not been achieved for the mentioned result so far.

Secondly, one may attempt to compute the integral by integration over Feynman
parameters. In terms of Feynman parameters, the integral in D = 2 dimensions reads

S(2, t) =
∫

σ

ω

F
,

with ω = x1dx2 ∧ dx3 + x2dx3 ∧ dx1 + x3dx1 ∧ dx2 and σ = {[x1 : x2 : x3]
∈ P

2|xi ≥ 0, i = 1, 2, 3} while the second Symanzik polynomial is given as

F = −x1x2x3t + (
x1m

2
1 + x2m

2
2 + x3m

2
3

)
(x1x2 + x2x3 + x1x3) .

For an attempt to iteratively build up the result in terms of the mentioned iterated
integrals which represent the multiple polylogarithms, the polynomial F would
have to satisfy the criterion of linear reducibility [29]. The latter is a sufficient but
not necessary criterion to obtain multiple polylogarithms in the result. However, the
polynomial fails this criterion and a change of variables to restore linear reducibility
for a new set of integration variables is unknown for this case.

Thirdly, the integral S(D, t) for generic space-time dimension satisfies an inho-
mogeneous fourth-order differential equation in t :

(
P4

d4

dt4
+ P3

d3

dt3
+ P2

d2

dt2
+ P1

d1

dt1
+ P0

)
S (D, t) = c12T12 + c13T13 + c23T23

(1)

where the Ti j = T
(
m2

i , D
)
T

(
m2

j , D
)
are products of tadpole integrals

T (m2, D) =
∫

dDk

iπ
D
2

1(−k2 + m2
) = Γ

(
1 − D

2

) (
m2

) D
2 −1

.

All coefficients Pk and ci j are polynomials in m2
1, m

2
2, m

2
3, t, D. Their explicit

expressions are provided in appendix A of [30]. Each of the functions S(0)(2, t),
S(1)(2, t), S(0)(4, t) satisfies an inhomogeneous differential equation of second or
higher order. If any of these operators would factorize into differential operators of
first order the corresponding coefficient could be obtained as an iterated integral in
a straightforward way (see e.g. Sect. 2 of [31]). However, this is not the case for any
of these operators.
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All of these points give rise to the expectation, that we need functions beyond
multiple polylogarithms to express the integrals S(0)(2, t), S(1)(2, t), S(0)(4, t).
This expectation is confirmed by our results for these functions.

3 The Differential Equation in Two Dimensions

We follow the approach of differential equations and beginwith the Feynman integral
in D = 2 dimensions. For the case of equal masses m1 = m2 = m3, a differential
equation of second order was already given in [14]. A full solution in terms of
integrals over elliptic integrals was obtained in [19].

For the case of arbitrary masses, a differential equation of second order was found
later in [23]:

L2 S(2, t) = p3(t),

L2 = p2(t)
d2

dt2
+ p1(t)

d

dt
+ p0(t), (2)

where p0(t), p1(t), p2(t) are polynomials in t and in the m2
i and where p3(t) fur-

thermore involves ln(m2
i ), i = 1, 2, 3. We take this equation as the starting point of

our computation and make the classical ansatz

S(2, t) = C1ψ1(t) + C2ψ2(t) +
∫ t

0
dt1

p3(t1)

p0(t1)W (t1)
(−ψ1(t)ψ2(t1) + ψ2(t)ψ1(t1))

(3)
where ψ1, ψ2 are solutions of the homogeneous equation, C1, C2 are constants and

W (t) = ψ1(t)
d

dt
ψ2(t) − ψ2(t)

d

dt
ψ1(t)

is the Wronski determinant.
At this point, it is useful to consider the zero-set of the second Symanzik poly-

nomial F . This cubical curve intersects the integration domain σ of the Feynman
integral at the three points

P1 = [1 : 0 : 0], P2 = [0 : 1 : 0], P3 = [0 : 0 : 1].

We choose one of these points Pi as the origin and transform the curve toWeierstrass
normal form

y2z − x3 − g2(t)xz
2 − g3(t)z

3 = 0. (4)
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By this transformation, the chosen origin is mapped to the point [x : y : z] =
[0 : 1 : 0]. In this way, we obtain three elliptic curves EF ,i according to the three
points Pi , i = 1, 2, 3.

In the chart z = 1 we write Eq.4 as

y2 = 4(x − e1)(x − e2)(x − e3),

which defines the three roots e1, e2, e3 with e1 + e2 + e3 = 0. These provide the
boundaries of the period integrals

ψ1 = 2
∫ e3

e2

dx

y
= 4

D̃
1
4

K (k), ψ2 = 2
∫ e3

e1

dx

y
= 4i

D̃
1
4

K (k ′)

of the elliptic curve. Here the polynomial D̃ is given as

D̃ = (t − (m1 + m2 − m3)
2)(t − (m1 − m2 + m3)

2)(t − (−m1 + m2 + m3)
2)(t − (m1 + m2 + m3)

2)

and we have obtained the complete elliptic integral of the first kind

K (x) =
∫ 1

0
dt

1√
(1 − t2)(1 − x2t2)

with moduli k =
√

e3−e2
e1−e2

, k ′ = √
1 − k2 =

√
e1−e3
e1−e3

. These period integrals ψ1, ψ2

are solutions of the homogeneous equation associated to Eq.3.
We still have to fix the constants. It can be shown that C2 has to vanish while

the other constant C1 is derived from a known result [32–34] for the zero-mass limit
S(2, 0). Now all pieces of our ansatz in Eq.3 are determined. In order to simplify
the integrand of the particular solution, we furthermore make use of the remaining
two associated period integrals of EF ,i . In conclusion, we obtain a result [31] of the
form

S(2, t) = S(2, 0) + ψ1(t)

π2

∫ t

0
dt1ρ(t1) (5)

where the integrand ρ involves elliptic integrals of the first and second kind.

4 The Massive Sunrise Integral in Two Dimensions

The general shape of our result of Eq.5 has a disadvantage. While the involved
elliptic integrals are well-studied functions, nicely related to the underlying elliptic
curve of the problem, the integral over these functions in not a known function. This
integral might remind us vaguely of an iterated integral, but in this form, it can not
be recognized as a generalization of a polylogarithm. However, for the equal-mass
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case, it was shown more recently in [24], that the integral can be expressed in terms
of an elliptic dilogarithm. Various notions of elliptic polylogarithms were previosly
introduced in the mathematical literature [35–40].

Before we apply an elliptic generalization of a polylogarithm to the sunrise inte-
gral with arbitrary masses, let us briefly recall the basic concept of an elliptic func-
tion. With respect to a lattice L = Z + τZ with τ ∈ C and Im(τ ) > 0, a function
f is said to be elliptic, if it satisfies f (x) = f (x + λ) for λ ∈ L . Accordingly, the
corresponding function f̃ (z) of z ∈ C

� defined by f̃ (e2π i x ) = f (x) is elliptic, if

f̃ (z) = f̃ (z · qλ) , qλ ∈ e2π iλ for λ ∈ L . (6)

Recall that a cell of the lattice with τ = ψ2

ψ1
is isomorphic to an elliptic curve with

the periods ψ1, ψ2.

A crucial idea for the construction of such elliptic functions is to consider sums of
the form

∑
n∈Z g (z · qn) over some function g. If a sum of this type is well-defined,

it clearly satisfies the condition of Eq.6 by construction. This concept can serve for
definitions of elliptic generalizations of polylogarithms. For example in [39] it is
used to define the class of multiple elliptic polylogarithms. The elliptic dilogarithm
in this framework reads

Ẽ2(z; u; q) =
∑

m∈Z
umLi2(q

mz)

where u is a sufficiently small damping parameter to guarantee the convergence of
the function.

Based on the same basic idea, we define the class of functions [41]

ELin;m(x; y; q) =
∞∑

j=1

∞∑

k=1

x j

j n
yk

km
q jk =

∞∑

k=1

yk

km
Lin(q

kx),

En;m(x; y; q) =
{

1
i

( 1
2Lin(x) − 1

2Lin(x
−1) + ELin;m(x; y; q) − ELin;m(x−1; y−1; q)

)
,

1
2Lin(x) + 1

2Lin(x
−1) + ELin;m(x; y; q) + ELin;m(x−1; y−1; q)

(7)
with the first line for n + m even and the second line for n + m odd. Note that our
elliptic dilogarithm

E2; 0(x; y; q) = 1

i

⎛

⎝1

2
Li2 (x) − 1

2
Li2

(
x−1) +

∞∑

i=1

yiLi2
(
qi x

)
−

∞∑

j=1

y− jLi2
(
q j x−1

)
⎞

⎠

is closely related to the above function Ẽ2. We obtain
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E2; 0(x; y; q) = 1

i

(
Ẽ2(x; y; q) − 1

2

1 + y

1 − y
ζ(2) − 1

4

1 + y

1 − y
ln2(−x)

− y

(1 − y)2
ln(−x) ln(q) − 1

2

y (1 + y)

(1 − y)3
ln2(q)

)

in the region of parameters given by x ∈ C\[0, ∞[, |y| > 1 and real-valued q in the

range 0 ≤ q < min
(
|x |, 1

|x | , |y|, 1
|y|

)
.

Using the function E2; 0, we express our result for the massive sunrise integral in
two space-time dimensions in a very compact way as2

S (2, t) = ψ1(q)

π

3∑

i=1

E2; 0(wi (q); −1; −q) where q = eπ i ψ2(t)
ψ1(t) . (8)

Note that the dependence on t is now implicitly expressed in terms of q, which is
defined by the periods of the elliptic curve. The arguments w1, w2, w3 are functions
of q and of the squared particle masses. They are directly obtained from the three
intersection points P1, P2, P3 by the consecutive transformations on the elliptic
curves EF ,i , i = 1, 2, 3, indicated above. In this sense, every piece of the compact
result Eq. 8 is nicely related to the underlying elliptic curves EF ,i .

In the case of equal masses, the result simplifies to

S (2, t) = 3
ψ1(q)

π
E2; 0 (exp (2π i/3) ; −1; −q) .

5 The Massive Sunrise Integral Around Four Dimensions

By use of dimension shift relations [8, 9], we express the coefficient S(0)(4, t) of the
sunrise integral near D = 4 dimensions in terms of coefficients of the D = 2 case
[30]. We obtain S(0)(4, t) as a linear combination of terms S(0)(2, t), ∂

∂m2
i
S(0)(2, t),

S(1)(2, t), ∂

∂m2
i
S(1)(2, t), i = 1, 2, 3. Therefore, our remaining task is the compu-

tation of S(1)(2, t).
From Eq.1 we obtain the differential equation

L1,a L1,b L2 S
(1)(2, t) = I1(t). (9)

Here L1,a and L1,b are differential operators of first order,

L1,a = p1,a
d

dt
+ p0,a and L1,b = p1,b

d

dt
+ p0,b,

2By a slight abuse of notation, we denote with ψ1 the above function of t and the corresponding
function of q.
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where p0,a, p1,a are rational functions of t and the squared particle masses and
p0,b, p1,b are polynomials in these variables. The homogeneous solutions ψa, ψb of
these operators, defined by

L1,a ψa(t) = 0 and L1,b ψb(t) = 0

are easily obtained.
The operator L2 in Eq.9 is the one of Eq.2 which already appeared in the differ-

ential equation of the two-dimensional case. The inhomogeneous term I1 of Eq.9 is
a combination of certain differentiations of our result S(0)(2, t), of logarithms in the
squared particle masses and of a polynomial in the squared masses and in t.

Solving Eq.9 for the combination L2 S(1)(2, t), we obtain

L2 S
(1)(2, t) = I2(t) (10)

with

I2(t) = C̃1ψb(t) + C̃2ψb(t)
∫ t

0

ψa(t1)dt1
p1,b(t1)ψb(t1)

+ ψb(t)
∫ t

0

ψa(t1)dt1
p1,b(t1)ψb(t1)

∫ t1

0

I1(t2)dt2
p1,a(t2)ψa(t2)

where C̃1, C̃2 are integration constants.
Now with Eq.10 we have to solve a similar differential equation as in the two-

dimensional case, with the only difference that the inhomogeneous part is more
complicated. However, we can make a similar ansatz and we have the same period
integrals ψ1, ψ2 of EF ,i as solutions of the homogeneous equation. Therefore, it
is useful to introduce the variable q again in the same way as in Eq.8. In terms of
integrals over q, we obtain

S(1)(2, t) = C3ψ1 + C4ψ2 − ψ1

π

∫ q

0

dq1
q1

∫ q1

0

dq2
q2

I2 (q2) ψ1 (q2)
3

πp2 (q2)W (q2)
2 .

The integration constantsC3, C4 are determined from boundary conditions. Expand-
ing the integrand, we can perform the integrations order by order and obtain a
q−expansion of S(1)(2, t) to high orders. This step finally allows us to find a result
for S(1)(2, t) in closed form,which can be confirmed to satisfy the differential Eq.10.

Let us refer to [30] for the explicit result and just highlight some of its properties
here. Apart from classical (multiple) polylogarithms, the result involves the functions
E1; 0(x; y; q), E2; 0(x; y; q), E3; 1(x; y; q) as defined in Eq.7 and furthermore a
quadruple sum of the form

�(x1, x2; y1, y2; −q) =
∞∑

j1=1

∞∑

k1=1

∞∑

j2=1

∞∑

k2=1

k21 (−q) j1k1+ j2k2

j2 ( j1k1 + j2k2)
2

(
x
j1
1 y

k1
1 − x

− j1
1 y

−k1
1

) (
x
j2
2 y

k2
2 + x

− j2
2 y

−k2
2

)
.
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For the arguments of these functions, we have y, y1, y2 ∈ {−1, 1} and x, x1, x2 ∈
{w1, w2, w3} , where the wi again are the arguments obtained from the intersection
points mentioned above.

The appearance of the functions E1; 0(x; y; q), E2; 0(x; y; q), E3; 1(x; y; q)

shows that the framework of Eq.7, set up for the coefficient S(0)(2, t), is also useful
for S(1)(2, t) and hence also for the four-dimensional case. Furthermore, these func-
tions can be viewed as elliptic generalizations of Clausen and Glaisher functions.
Recall that the Clausen functions are defined by

Cln (ϕ) =
{

1
2i

(
Lin

(
eiϕ

) − Lin
(
e−iϕ

))
for even n,

1
2

(
Lin

(
eiϕ

) + Lin
(
e−iϕ

))
for odd n,

and the Glaisher functions are given as

Gln (ϕ) =
{

1
2

(
Lin

(
eiϕ

) + Lin
(
e−iϕ

))
for even n,

1
2i

(
Lin

(
eiϕ

) − Lin
(
e−iϕ

))
for odd n.

We therefore obtain as ‘non-elliptic limits’ of our functions:

limq→0E1; 0
(
eiϕ; y; q) = Cl1 (ϕ) ,

limq→0E2; 0
(
eiϕ; y; q) = Cl2 (ϕ) ,

limq→0E3; 1
(
eiϕ; y; q) = Gl3 (ϕ) .

As a final remark, let us mention that S(1)(2, t) is a function of mixed weight. It
shares this property with the function E3; 1(x; y; q) which has parts of weight three
and of weight four.

6 Conclusions

We discussed the computation of the massive sunrise integral in two and around four
space-time dimensions. We started with the computation of the O

(
ε0

)
-part of the

integral in two dimensions and expressed our result in terms of an elliptic dilogarithm.
In this form, the result is very compact and every part of it is nicely related to the
underlying elliptic curve, given by the second Symanzik polynomial of the Feynman
graph.

We continued with the computation of the O
(
ε1

)
-part in two dimensions. Apart

from the elliptic dilogarithm, this result involves further elliptic generalizations of
(multiple) polylogarithms, which can be understood as elliptic generalizations of
Clausen and Glaisher functions. Due to well-known dimension shift relations, these
results provide the O

(
ε0

)
-part of the Feynman integral in four dimensions.



142 L. Adams et al.

Together with the results of [24, 42], our results give rise to the hope, that elliptic
(multiple) polylogarithms may serve as an appropriate class of functions to compute
further Feynman integrals beyond multiple polylogarithms. Some of our functions
can be related to the functions of [39], where also a framework of iterated integrals,
already applied in a different physics context [43], is provided.
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Polylogarithm Identities, Cluster
Algebras and theN = 4
Supersymmetric Theory

Cristian Vergu

Abstract Scattering amplitudes in N = 4 super-Yang Mills theory can be com-
puted to higher perturbative orders than in any other four-dimensional quantum field
theory. The results are interesting transcendental functions. By a hidden symmetry
(dual conformal symmetry) the arguments of these functions have a geometric inter-
pretation in terms of configurations of points in CP

3 and they turn out to be cluster
coordinates. We briefly introduce cluster algebras and discuss their Poisson structure
and the Sklyanin bracket. Finally, we present a 40-term trilogarithm identity which
was discovered by accident while studying the physical results.

Keywords Scattering amplitudes · Polylogarithms · Cluster algebras · Twistors

1 Introduction

There is no doubt that quantum field theory and mathematics are deeply connected.
There are many examples where field theory intuition helped formulate mathemat-
ical conjectures or even theorems (Seiberg-Witten theory in topology [62], Wilson
loops in Chern-Simons theory for knot theory [61]). Similarly, progress in mathe-
matics has stimulated progress in field theory (as a prime example we have ADHM
construction [8] of instantons, but also work in index theory [7] which helped in the
understanding of field theory anomalies). And these are just a few of many examples.

In this review we will focus on one of the many connecting bridges between
quantum field theory and number theory: polylogarithms. In quantum field theory
polylogarithms and the closely relatedmultiple zeta values are ubiquitous. They arise
in the perturbative computations of various quantities.
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There are many quantities one may attempt to compute and, moreover, there
are many different quantum field theories. Many results are already available but
frequently the complexity of the final answers (not to mention the complexity of the
computation) is forbidding. We are then naturally led to ask which field theories and
what quantities are most likely to be understood in simple terms.

These questions, while very natural, are not at all obvious, but in recent years an
answer has began to emerge. As we will explain, the answer is somewhat surprising.
The textbook example for the simplest interacting field theory is called the φ4 theory.
This is a theory of a single scalar field with a four-point interaction. The Feynman
diagrams in this theory have internal vertices of degree four. Many results are known
in this theory see, for example, Ref. [20, 59]. However, it has recently emerged that
there is a better candidate for study, which we will discuss below.

Relativistic field theories are symmetric under the Poincaré group. The Poincaré
group has the Lorentz group O(1, 3) as a subgroup and particles are in correspon-
dencewith irreducible representations of these symmetry groups. The scalar particles
transform in the trivial representation of O(1, 3) so they realize the relativistic sym-
metry in the simplest possible way. As mentioned above, the φ4 theory is a theory of
scalar (or spin zero) fields.

Other representations of the Lorentz symmetrymay appear: fermionswhich trans-
form as a representation of the covering group Spin(1, 3), gauge fields which are
vectors of O(1, 3), the graviton which is rank two tensor representation, etc. In the
case of the gauge fields and of the graviton the formulation of the quantum theory is
complicated by the fact that states are defined modulo gauge transformations. This
also complicates the computations since one has to make a choice of gauge (or a
choice of representative in the equivalence class).

Despite these technical complications, in many cases the final results, when
expressed in terms of appropriate variables, turn out to be strikingly simple (the
computation of Parke and Taylor in Ref. [57] being a prime example). Then, we are
led to suspect that there should be more efficient ways to find these answers.

We have briefly discussed the theories but we still haven’t specified the types of
quantities we are going to compute. We turn to this question next. The quantities
which will be most relevant in the following discussion are scattering amplitudes.
Let us give a rough definition of scattering amplitudes. A field theory of the kind we
will consider is defined by a functional S[φ] called action, depending of functions
φ(x, t) called fields (here t is time, x is a three-dimensional vector and φ is a generic
name for a field; in general the theory can contain several fields with different O(1, 3)
transformations). From this functional we can obtain by variational methods partial
differential equations (called equations of motion) for the fields of the theory. Now,
given some boundary conditions φ± at t = ±∞ for the fields, from the solution φ0 to
the equation of motion satisfying these boundary conditions one can build a complex
number exp(i S[φ0]) which is called the tree level amplitude of transition between
φ− and φ+ (if there is no solution for the prescribed boundary conditions, then the
amplitude is defined to be zero). The name ‘tree’ is due to the fact that this quantity
can be computed as a sum of tree-shaped Feynman diagrams.
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The computation using the definition can be tedious in general, especially for
gauge theories where one has to make an arbitrary choice of gauge (in the final result
the dependence on this arbitrary choice must cancel; when this happens we call the
answer ‘gauge invariant’). The tree level amplitudes have two important properties:
analyticity (in a certain domain) and factorization.1 Factorization here means that the
amplitude has certain poles whose residues are products of simpler amplitudes. The
requirement of factorization is a very powerful constraint; using it, the BCFW [19]
recursion relations allow the computation of all tree-level amplitudes of the N = 4
theory we will describe in the next section.

In the quantum theory graphs with loops appear as well. Graphs with loops corre-
spond to non-trivial integrals, which yield mathematically interesting results. It is an
empirical observation that the transcendentality of an �-loop result is bounded from
above by 2�; for a one-loop quantity the most complicated part can be expressed in
terms of dilogarithms.

For theories relevant experimentally, like Quantum Chromodynamics (QCD), a
one-loop answer will contain not only dilogarithms, but also logarithms and even
rational terms. The transcendentality of the answer is not uniform. However, for the
special case ofN = 4, the answers are of uniform transcendentality. In some cases,
see Ref. [52], theN = 4 answer can be obtained from the uniform transcendentality
of the more complicated QCD result.

2 The Maximally Supersymmetric Theory

We mentioned previously that the theories with spin are in some sense simpler than
theories of scalar (spinless) particles. Even so, there are many possible theories
of particles with spin. Supersymmetry is a remarkable symmetry which can trans-
form between particles of different spins. The maximal supersymmetry of a non-
gravitational theory in three space and one time dimensions is called N = 4 super-
symmetry. The reason for the name is that N = 1 supersymmetry is the minimal
supersymmetry and the maximal supersymmetry has four times as many supersym-
metries as the minimal one.

In Ref. [24], Coleman and Mandula proved a theorem about the possible symme-
tries of a relativistic theory.Under certain assumptions they showed that the symmetry
group has the structure of a product between the Lorentz and some other ‘internal’
symmetry group. Later, Haag et al. [47] showed that a non-trivial symmetry structure
is possible, but it has to be a supergroup symmetry, not a Lie group symmetry. A
supergroup is obtained by exponentiating Lie superalgebra elements, where a Lie
superalgebra is a Z2-graded algebra with a bracket satisfying graded commutativity
and a graded version of Jacobi identity. The supergroup has a usual Lie group as

1Analyticity survives after adding quantum corrections, but factorization becomes more subtle in
case there are infrared divergences (see Ref. [13]). Since scattering amplitudes in gauge theories
are infrared divergent, exploiting factorization at loop level seems to be much harder.
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a subgroup and, somewhat surprisingly, this is also enlarged with respect to a typ-
ical relativistic theory. In a relativistic theory the symmetry group is the Poincaré
group, which now gets enhanced to a SO(2, 4) group, also known as the conformal
group. The new symmetries are the dilatation D and four conformal transformations
K0, . . . , K3.

The theorywithmaximal supersymmetrywas constructed shortly after inRef. [18]
by Brink, Schwarz and Scherk. This theory is uniquely defined by its symmetry. It is
a theory of a connection A on an SU(N ) principal bundle over Minkowski spaceM,
together with fermionic field Ψ and scalar fields Φ. The action functional is given
by the Yang-Mills term together with other terms dictated by supersymmetry, which
we do not write explicitly since they will not be important in the following

S[A, Ψ,Φ] = 1

2g2

∫
M

tr(F ∧ ∗F + · · · ). (1)

Here the trace is taken in the fundamental representation of SU(N ) and g2 is a real
number, called coupling constant. F = d A + A ∧ A is the curvature of the connec-
tion A and ∗F is the Hodge dual. The scattering amplitudes, can be expanded as a
power series in g.

Terms in the perturbative expansion are computed by summing Feynman graphs.
The contribution of a Feynman graph can be factored in two different types of terms:
the kinematic part, depending on the positions (or on the momenta after Fourier
transform) and the ‘color’ part which depends on the Lie algebra su(N ) of the
gauge group SU(N ). The observables can then be decomposed on a basis of su(N )

invariants whose coefficients depend on N and g. If we select invariants which can
be written as a single trace and, for these terms, we select the dominant behavior
when N → ∞, then the topology of the contributing graphs simplifies. We find that
only planar graphs contribute. The way to select the planar graph contributions is to
reorganize the perturbation theory as an expansion in λ = g2N around λ = 0, with
N → ∞ and g2 → 0. This is the well-known ’t Hooft limit [49].

From his study of the large N limit, ’t Hooft conjectured that the result in the
’t Hooft limit is the genus zero term in an expansion of a theory which sums over
surfaces. A theorywhich sums over surfaces is a string theory (in a theory of particles,
one sums2 over particle paths, as instructed by the Feynman path integral). The
conjecture also stated that subleading terms in N correspond to sums over surfaces
of higher genera.

This conjecture of ’t Hooft is very general, and was initially proposed for QCD,
where the gauge group SU(3) was to be replaced by SU(N ). It was hoped that
understanding N → ∞ case could shed some light on the N = 3 case. If instead
of QCD we consider the N = 4 supersymmetric theory, the conjecture was sharp-
ened by the AdS/CFT correspondence of Maldacena (see Ref. [53]). The AdS/CFT

2The sum over particle histories is not well-defined mathematically. Nevertheless, we can use it
formally to compute the perturbative expansion. A similar statement holds for a string theory, where
we sum over string histories also called worldsheets.
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correspondence identifies the precise measure on the space of surfaces. In fact, we
should use super-strings, but if we set the fermions to zero we obtain a theory of a
string moving in an AdS5 × S

5 geometry. Here CFTmeans Conformal Field Theory,
which in this case is a theory with a symmetry group containing SO(2, 4). The AdS5
space is the five-dimensional hyperbolic space with a non-definite metric, which
can be obtained by analytically continuing some coordinates to imaginary values
(a procedure called Wick rotation in the Quantum Field Theory literature). This is
similar to the relation between Euclidean space R

4 and Minkowski space M. The
isometry group of AdS5 is again SO(2, 4). In fact, the full PSU(2, 2|4) symmetry
groups match on both sides of the correspondence.

The AdS/CFT duality describes a physical system in two different ways. When
the ’t Hooft coupling λ is small, the field theory perturbative expansion in powers
of λ is reliable. When the ’t Hooft coupling is large, instead, one should use string
theory on the AdS5 × S

5 background. In this case, the expansion variable is λ−1/2.
Therefore, the duality is of strong-weak type; the strong coupling (λ → ∞) in the
CFT can be mapped to a weakly coupled description in the dual string theory.

The computation of the scattering amplitudes can also be done in the dual string
theory, as described in Ref. [1]. In the dual string theory scattering amplitudes are
given by the exponential of a minimal surface in AdS5 which ends on the boundary
of AdS5 on a polygon whose sides are the momenta of the scattered particles (the
polygon closes by momentum conservation).

3 Kinematics

In this section we describe the kinematics of a scattering process in terms of configu-
rations of points inCP3. This was initiated in Ref. [48] for tree-level amplitudes, later
extended to superspace in Ref. [54] and further studied in Ref. [6]. The usefulness of
these variables for loop amplitudes was emphasized in Ref. [4] and also in Ref. [46]
for an explicit two-loop result.

Consider an n-particle scattering process. The particle labeled by i is described
by the on-shell momentum pi (with p2i = 0, where the norm is computed using the
Minkowski metric), its helicity si and a gauge algebra generator ti ∈ su(N ). The
helicity labels the representation under the compact subgroup U(1) of the Lorentz
group O(1, 3) which preserves the momentum pi . In fact, if our theory contains
fermions we need to pass to the covering group Spin(1, 3) of part of the Lorentz
group connected to the identity. In the end, the representations turn out to be labeled
by s ∈ Z/2.

As we discussed above, in the ’t Hooft limit N → ∞, g2N = λ fixed, only single-
trace terms survive in the scattering amplitudes. If we look at one of these single-trace
terms, we see that the scattered particles are cyclically ordered. We can therefore
introduce a dual space with coordinates x such that the momenta pi are expressed as
pi = xi−1 − xi . The xi coordinates are only defined up to a translation xi ∼ xi + a.
We denote by M̃ the space parametrized by dual coordinates x .
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The N = 4 super-Yang-Mills theory is superconformal invariant. Besides this
superconformal symmetry, theN = 4 super-Yang-Mills theory also has a surprising
dual superconformal symmetry,whose bosonic subgroup acts on the dual coordinates
x . In the followingwewillmostly be interested in the conformal subgroup of this dual
superconformal group. The dual superconformal symmetry is a hidden symmetry,
which only arises in the ’t Hooft limit. In particular, it can not be verified on the
Lagrangian of the theory.

Historically, this symmetry arose as follows. First, the authors of Ref. [34] noticed
that integrals appearing in the perturbative computations of Refs. [2, 15] have a
curious inversion property in the dual space. Together with the obvious Lorentz
symmetry, this generates the conformal group. This symmetry was then confirmed,
and in fact used to guide the computations, at higher loop orders and for larger
numbers of external particles in Refs. [10, 11, 14]. In a parallel development [1],
Alday and Maldacena showed how to compute scattering amplitudes in the dual
string theory. This turned out to be closely related to the computation of a Wilson
loop (in a language more familiar to mathematicians, a Wilson loop is the trace of
the holonomy of the connection A around a curve). The strong coupling compu-
tation leads us to believe that there is a connection between scattering amplitudes
and a Wilson loop around a polygonal contour with vertices xi . This was confirmed
also at weak coupling in several papers [12, 17, 31, 32, 35]. Under the duality the
scattering amplitudes map to Wilson loops and the dual conformal symmetry of
scattering amplitudes maps to the conformal symmetry of the Wilson loops. Refer-
ence [33] showed that in fact the scattering amplitudes enjoy a dual super-conformal
symmetry. This corresponds in the dual side to the superconformal symmetry of a
Wilson super-loop, which is the trace of the holonomy of a superconnection in super-
space along a polygonal contour. The corresponding super-loops were first defined in
Refs. [23, 55].

The dual space M̃ is noncompact and it does not have an action of the conformal
group since some points are sent to infinity under conformal transformations. This
problem can be solved by compactifying M̃ is a way compatible with the action of
the conformal group. Moreover, M̃ comes with a Minkowski signature. It is more
convenient to use complex coordinates instead and to impose reality conditions when
needed. Doing this, we can treat both the cases of Lorentz signature and of split
signature. The complexified and compactified dual space can be represented as the
G(2, 4) Grassmannian of two-planes in C4 containing the origin. Therefore, to each
point in dual space M̃ we can associate a two-plane in C4. Two points in dual space
are light-like separated if their corresponding planes intersect in a line (it is easy
to check that this imposes one constraint). If we projectivize this construction, to a
line through the origin in C4 corresponds a point in CP3 and to a two-plane through
the origin in C

4 corresponds a projective line in CP
3. We can do this for all pairs

of points (xi−1, xi ) and associate to each of them a point Zi ∈ CP
3. So instead of

describing the kinematics by giving the momenta pi subject to on-shell conditions
p2i = 0 and momentum conservation

∑n
i=1 pi = 0, we can describe it by giving n
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points Zi ∈ CP
3. The variables Zi are known as momentum twistors3 and were

introduced in Ref. [48]. Unlike for the variables pi or xi , the momentum twistors are
unconstrained.

The complexified dual conformal group acts as SL(4,C) on the momentum
twistors [Z ] → [MZ ], where M is an SL(4,C) matrix and we have denoted by
[Z ] the homogeneous coordinates of the point Z . The SL(4,C) is the double cover
of the complexified orthogonal group SO(6,C). There is a small subtlety here. We
defined the Lorentz group to beO(1, 3) and its complexification is O(4,C). However,
the parity transformation in O(4,C) does not embed in SO(6,C), nor in its double
cover SL(4,C). Then, the question is how does this discrete parity transformation
act on the momentum twistor space. The answer is as follows. There is another space
which, for lack of a better name, we call conjugate momentum twistor space whose
points we label byWi . There is a pairing between points in these two spaces, defined
up to rescaling which we denote by W · Z . Then we impose the rescaling invariant
constraints Wi · Zi = 0 and Wi−1 · Zi = Wi+1 · Zi = 0 (here i ± 1 are considered
modulo n, the number of particles in the scattering process). Given the Zi , the Wi

are determined up to a rescaling. Then, parity acts as the discrete transformation
Zi ↔ Wi .

The translation of the kinematics to momentum twistor language makes it easy
to build conformal invariants. In order to make SL(4,C) invariants, we can form
four-brackets 〈i jkl〉 = Vol(vi , v j , vk, vl), where vi is a vector in C

4 corresponding
to Zi and Vol is a volume form which is preserved by the action of SL(4,C).

So we have established that we can describe the kinematics of a scattering process
by giving a configuration of n ordered points Zi in CP

3. The homogeneous coordi-
nates of these points fit in a 4 × n matrix. The conformal invariants are built from
the 4 × 4 minors of this 4 × n matrix.

The description above is very similar to the description of coordinates on a Grass-
mannian. For k ≤ n, theGrassmannianG(k, n) of k-planes in an n-dimensional space
can be described as the space of k × n matrices of full rank modulo the left action by
GL(k). Given such a k × n matrix, we can form

(n
k

)
minors of type k × k. They can

be labeled by k integers i1, . . . , ik ∈ {1, . . . , n}, corresponding to the columns of the
initial k × n matrix. We will denote the determinants of these minors by 〈i1, . . . , ik〉.
These determinants are also known as Plücker coordinates, and satisfy Plücker rela-
tions

〈i, k, I 〉〈 j, l, I 〉 = 〈i, j, I 〉〈k, l, I 〉 + 〈 j, k, I 〉〈i, l, I 〉, (2)

where I is a multi-index with k − 2 entries. The Plücker relations define an embed-
ding, called Plücker embedding, of the Grassmannian into a projective space of
dimension

(n
k

)
.

In the next section we will show that the Plücker relations in Eq. (2) are the
same as the exchange relations in a cluster algebra (see Eq. (5, for example). This
will also provide a way to build more complicated coordinates starting from simple

3A similar construction can be done for Minkowski space M instead, in which case we obtain the
Penrose’s twistor space (see Ref. [58]).
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minors. Such combinations naturally appear in expressions for scattering amplitudes
in N = 4.

Grassmannians have the important property of duality which identifies G(k, n)

with G(n − k, n). This is useful since it allows to simplify the geometric picture (as
has been done in Refs. [41, 46]). Consider first the case n = 6. The kinematics is
described by a configuration of six ordered points in CP

3 or by the Grassmannian
G(4, 6). By Grassmannian duality this is the same as G(2, 6) which then can be
translated to a configuration of six ordered points in CP

1, a much simpler-looking
(though equivalent) geometric configuration.

A similar simplification can be performed for the case of n = 7, where a config-
uration of seven points in CP

3 can be mapped to a configuration of seven points in
CP

2. In general, this means that the configurations of n ordered points in CPk−1 are
the same as configurations of n ordered points inCPn−k−1. Therefore we can restrict
to 2 ≤ k ≤ � n−1

2  without loss of generality.

4 Introduction to Cluster Algebras

In this section we present some useful facts about cluster algebras. In the next section
we will make the connection with Grassmannians and Plücker coordinates. Clus-
ter algebras have been introduced in a series of papers [9, 37–39] by Fomin and
Zelevinsky.

Since the formal definition is a bit complicated, we will content ourselves with an
informal description. Cluster algebras are characterized as follows: they are commu-
tative algebras constructed from distinguished generators (called cluster variables)
which are grouped into non-disjoint sets of constant cardinality (called clusters). The
clusters are constructed recursively by an operation called mutation from an initial
cluster. The number of variables in a cluster is called the rank of the cluster algebra.

Let us consider an example. The A2 cluster algebra is defined by the following
data:

• cluster variables: xm, m ∈ Z

• clusters: {xm, xm+1}
• initial cluster: {x1, x2}
• rank: 2
• exchange relations: xm−1xm+1 = 1 + xm
• mutation: {xm−1, xm} → {xm, xm+1}.

Using the exchange relations we find that

x3 = 1 + x2
x1

, x4 = 1 + x1 + x2
x1x2

, x5 = 1 + x1
x2

, x6 = x1, x7 = x2, . . . .

(3)
Therefore, the sequence xm is periodic with period five and the number of cluster
variables is finite.



Polylogarithm Identities, Cluster Algebras … 153

When expressing the cluster variables xm in terms of the variables (x1, x2), we
encounter two unexpected features (which hold in general for arbitrary cluster alge-
bras). First, the denominators of the cluster variables are always monomials. In
general, we expect the cluster variables to be rational fractions of the initial cluster
variables, but in fact the denominator is always a monomial. This is known under
the name of “Laurent phenomenon” (see [37]). The second observation is that the
numerator is a polynomial with positive coefficients.

As we alluded to before, this construction has a connection with Plücker rela-
tions. If we set x1 = 〈23〉〈14〉

〈12〉〈34〉 and x2 = 〈13〉〈45〉
〈34〉〈15〉 , where 〈i j〉 are coordinates of the

Grassmannian G(2, 5), we can compute the rest of cluster variables by using the
Plücker identities 〈ik〉〈 jl〉 = 〈i j〉〈kl〉 + 〈il〉〈 jk〉, to obtain

x1 = 〈23〉〈14〉
〈12〉〈34〉 , x2 = 〈13〉〈45〉

〈34〉〈15〉 , x3 = 〈12〉〈35〉
〈15〉〈23〉 , x4 = 〈25〉〈34〉

〈23〉〈45〉 , x5 = 〈15〉〈24〉
〈12〉〈45〉 .

In the following we will use a description of cluster algebras starting with quiver.
We now describe how to obtain a cluster algebra from a quiver. A quiver is an oriented
graph which we will require to be connected, finite, without loops (arrows with the
same origin and target) and two-cycles (pairs of arrows going in opposite directions
between two vertices).

Starting with a quiver with a given vertex k we define a new quiver obtained by
mutating at vertex k. The new quiver is obtained by applying the following operations
on the initial quiver:

• for each path i → k → j we add an arrow i → j ,
• reverse all the arrows on the edges incident with k,
• remove all the two-cycles that may have formed.

The mutation at k is an involution; when applied twice in succession we obtain the
initial cluster.

Each quiver of the restricted type defined above is in one-to-one correspondence
with skew-symmetric matrices, once we fix an ordering of the vertices. The skew-
symmetric matrix b is such that bi j is the difference between the number of arrows
i → j and the number of arrows j → i . Since only one of the terms above is non-
vanishing, bi j = −b ji . Under a mutation at vertex k the matrix b transforms to b′
given by

b′
i j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−bi j , if k ∈ {i, j},
bi j , if bikbk j ≤ 0,

bi j + bikbk j , if bik, bkj > 0,

bi j − bikbk j , if bik, bkj < 0

. (4)

If we start with a quiver with n vertices and associate to each vertex i a variable xi ,
we can use the skew-symmetric matrix b to define a mutation relation at the vertex
k by
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xkx
′
k =

∏
i |bik>0

xbiki +
∏

i |bik<0

x−bik
i , (5)

with the understanding that an empty product is set to one. The mutation at k changes
xk to x ′

k defined by Eq. (5) and leaves the other cluster variables unchanged.
The A2 cluster algebra can be expressed by a quiver x1 → x2. Then, a mutation

at x1 replaces it by x ′
1 = 1+x2

x1
≡ x3 and reverses the arrow. A mutation at x2 replaces

it by x ′
2 = 1+x1

x2
≡ x5. In the diagram (6) below we represent the quivers and the

mutations for the A2 cluster algebra (the arrows between quivers are labeled by the
mutated variable).

x3 ← x2

x3 → x4x5 ← x4

x5 → x1

x1 → x2

x2

x1

x3

x4

x5
(6)

5 The Cluster Algebra for G(k, n)

The Grassmannian G(k, n) has a cluster algebra structure which was described in
Ref. [40] (this construction is also reviewed in Ref. [51]).

For k < n we consider the description of the GrassmannianG(k, n) as the equiva-
lence classes of k × n matrices of full rank, where twomatrices are equivalent if they
differ by the left action of a GL(k)matrix. If the leftmost k × k minor is non-singular,
i.e. 〈1, . . . , k〉 �= 0 then, by left multiplication with an appropriate GL(k) matrix, we
can transform it to the identity matrix. After this operation the representative k × n
matrix has the form (1k,Y ), where 1k is the k × k identity matrix and Y is a k × l
matrix with l = n − k. The entries yi j , 1 ≤ i ≤ k, 1 ≤ j ≤ l of the matrix Y are
coordinates on the cell of the Grassmannian where 〈1, . . . , k〉 �= 0.

Now we define a matrix Fi j for 1 ≤ i ≤ k, 1 ≤ j ≤ l, which is the biggest square
matrix which fits inside Y and whose lower-left corner is at position (i, j) inside Y .
Then we define l(i, j) = min(i − 1, n − j − k) and

fi j = (−1)(k−i)(l(i, j)−1) det Fi j . (7)

According to Ref. [40], the initial quiver for the G(k, n) cluster algebra is given
by4

4Here we are presented a flipped version of the quiver and with the arrows reversed with respect to
the quivers of Refs. [40, 51].
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f1l · · · f13 f12 f11

f2l · · · f23 f22 f21

...
...

...
...

...

fkl · · · fk3 fk2 fk1

(8)

The quiver above has two types of vertices, boxed andunboxed. The boxedvertices
are special and called frozen vertices.Wedonot allowmutations in the frozenvertices.
The associated variables to the frozen vertices are called coefficients instead of cluster
variables. We define the principal part of such a quiver to be the quiver obtained by
erasing the frozen vertices and the edges incident with them.

For the case n = 5 and k = 2, we can compute f11 = 〈23〉, f12 = 〈24〉, f13 =
〈25〉, f21 = 〈34〉, f22 = 〈45〉, f23 = 〈15〉. Then, the the initial quiver diagram looks
like below

25 24 〈23〉

〈34〉〈45〉〈15〉

〈12〉 (9)

where we have also included explicitly a frozen variable 〈12〉 which is equal to unity
in the special parametrization we chose (on the part of the Grassmannian where
〈12〉 �= 0).

After doing amutation on the node 〈14〉, we obtain a similar quiver diagramwhere
the frozen vertex 〈15〉 is special instead of 〈34〉. Just like in the four-point case the
arrows containing the mutated node get reversed and the link between 〈13〉 and 〈34〉
gets deleted and replaced with a link 〈13〉 → 〈15〉. It is easy to see that by mutating
one gets the five similar quivers and nothing more.

The principal part of the quiver for configurations of five points in CP
1 is the

same as the Dynkin diagram of A2 Lie algebra. Indeed, this is the A2 cluster algebra
we discussed in Sect. 4. The appearance of the A2 Dynkin diagram provides the
motivation for the name. We can define scaling invariant cross-ratios associated to
any unfrozen node by taking the ratio of the product of coordinates in the quiverwhich
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can be reached by going against the arrows going in by the product of coordinates
in the quiver which can be reached by following the arrows going out. For example,
the cross-ratio corresponding to 〈13〉 in the quiver (9) is given by 〈12〉〈34〉

〈14〉〈23〉 . A mutation
reverses the arrows and therefore transforms these ratios to their inverse. These cross-
ratios are the cluster variables of the A2 algebra, and the exchange relations following
from the quiver description can be shown to be the same as the exchange relations
of the A2 algebra.

More complicated cases appear for six points in CP
2, where we obtain a D4

Dynkin diagram. We can start with an initial quiver at the left below and mutate at
vertex 〈236〉 to obtain the principal part of the quiver shown at right, which is the
same as the Dynkin diagram of D4.

〈236〉

〈136〉

〈126〉 〈156〉

〈356〉

〈235〉 〈234〉

〈345〉

〈456〉

〈123〉

•

• •

•

(10)

We should note that for the quiver in (10), the cross-ratio corresponding to the
entry 〈356〉 is given by 〈136〉〈235〉〈456〉

〈156〉〈236〉〈345〉 . This is more complicated than the cross-ratios
which were obtained previously and it has some interesting properties. It appeared
already in [45] (before the cluster algebras were discovered), in connection with
functional equations for the trilogarithm. For a geometrical interpretation of this
quantity see Sect. 7 and Figs. 4, 5 and 6.

In Ref. [38], Fomin and Zelevinsky showed that a cluster is of finite type (i.e.
it has a finite number of cluster variables), if the principal part of its quiver can be
transformed to a Dynkin diagram by a sequence of mutations. Furthermore, if the
principal part of the quiver contains a subgraph which is an affine Dynkin diagram,
then the cluster algebra is of infinite type. Using this characterization, one can show
that the cluster algebras arising from G(2, n) and G(3, 6), G(3, 7) and G(3, 8) are
of finite type. In Ref. [60], Scott has shown that all the otherG(k, n) with 2 ≤ k ≤ n

2
are of infinite type.

This has striking implications for scattering amplitudes in N = 4 super-Yang-
Mills theory which, as we have reviewed, are based on Grassmannians G(4, n), for
n ≥ 6. If n = 6 we obtain G(4, 6) = G(2, 6) which is of finite type. If n = 7 we
obtain G(4, 7) = G(3, 7) which is again of finite type. However, starting at eight-
point the cluster algebras are not of finite type anymore.
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Notice that the seeds we have been using break the cyclic symmetry of the con-
figuration of points. In order to see that the cyclic symmetry is preserved we need to
show that two quivers whose labels are permuted by one unit are linked by a sequence
of mutations. This can be shown in full generality (see Ref. [41] for details).

So far the most studied cases were G(4, n) for n = 6, 7. The case n = 8 is more
complicated also because the cluster algebra is infinite. In the remainder of this
section we will list a few of the cluster coordinates appearing forG(4, 8) and discuss
their properties. By using mutations, one encounters

〈12(345) ∩ (678)〉 ≡ 〈1345〉〈2678〉 − 〈2345〉〈1678〉. (11)

Here, the ∩ notation emphasizes the following geometrical fact: the composite
bracket 〈12(345) ∩ (678)〉 vanishes whenever the projective line (345) ∩ (678)
obtained by intersecting two projective planes (345) and (678) and the points 1
and 2 lie in the same projective plane. This notation has been introduced in Ref. [4].

Already for n = 7 we encounter 〈12(345) ∩ (567)〉, when expressed in CP3 lan-
guage. In previous work (see Ref. [45]) a different notation has been used for this
quantity. First, a transformation to CP2 language was performed. Points in CP2 can
be represented as vectors in C

3, modulo rescalings. For two three-vectors v1, v2 we
have a notion of vector product v1 × v2 which is the vector orthogonal to the plane
spanned by v1 and v2. Then, the composite brackets containing ∩ can be translated
to

〈v1 × w1, v2 × w2, v3 × w3〉 = 〈v1v2w2〉〈w1v3w3〉 − 〈w1v2w2〉〈v1v3w3〉. (12)

Above, the right-hand side does not have the same manifest symmetry as the left-
hand side so more equivalent expressions can be found by applying permutations to
the vector labels. Notice that the left-hand side vanishes when v1 × w1 and v2 × w2

differ by a rescaling. This is equivalent to the statement that the planes spanned by
(v1, w1) and (v2, w2) are identical. Hence, 〈v1v2w2〉 = 0 and 〈v2w1w2〉 = 0 so the
right-hand side vanishes as well.

Since the G(4, 8) cluster algebra is infinite, we are bound to find more and more
complicated expressions. One remarkable feature of the mutations is that the denom-
inator can always be canceled by the numerator, after using Plücker identities. There-
fore, these coordinates always seem to be polynomials in the Plücker coordinates.
This is an analog of the Laurent phenomenon, but this time we obtain polynomials.5

As an example in G(4, 8), we have the following identity

〈1237〉〈1245〉〈1678〉 + 〈1278〉〈45(671) ∩ (123)〉
〈1267〉 = 〈45(781) ∩ (123)〉. (13)

Here the left-hand side is the expression obtained following a mutation, while the
right-hand side is the expression where the denominator has been canceled.

5This holds in many explicit examples, but I have not found a proof in the literature.
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Even more complicated coordinates can be generated. As an example, we also
find

〈(123) ∩ (345), (567) ∩ (781)〉. (14)

This vanisheswhen the lines (123) ∩ (345) and (567) ∩ (781) intersect. Equivalently,
we can say that the lines (345) ∩ (567) and (781) ∩ (123) intersect.

6 Poisson Brackets

One can define a Poisson bracket on the cluster coordinates. It is enough to define
the Poisson bracket between the coordinates in a given cluster. If Xi , X j belong to
the same cluster, i.e. they are vertices in the same quiver, then their Poisson bracket
is defined as

{Xi , X j } = bi j Xi X j , (15)

where bi j = −b ji is the b matrix of the cluster. The Poisson bracket is compatible
with mutations. That is,

{X ′
i , X

′
j } = b′

i j X
′
i X

′
j , (16)

where X ′
i and b′

i j are obtained by a mutation from Xi and bi j , respectively.
The Poisson structure is easiest to understand for G(2, n) cluster algebras (see

Ref. [36] for a discussion). To a configuration of n points inCP1 with a cyclic ordering
we associate a convex polygon. Each of the vertices of this polygon corresponds to
one of the n points.

Then consider a complete triangulationof the polygon.Eachof then − 3diagonals
in this triangulation determines a quadrilateral and therefore four points in CP

1.
Suppose a diagonal E determines a quadrilateral with vertices i, j, k, l where the
ordering is the same as the ordering of the initial polygon. Using these four points
we can form a cross-ratio r(i, j, k, l) = zi j zkl

z jk zil
. We have r(i, j, k, l) = r(k, l, i, j)

which implies that the cross-ratio is uniquely determined by the diagonal E and we
don’t have to chose an orientation.

Ifweflip the diagonal E then the initial cross-ratio goes to its inverse, but the cross-
ratios corresponding to neighboring quadrilaterals change in amore complicatedway.
In fact, they transform in the same way as the cluster coordinates, if the matrix bi j is
defined as follows. Two diagonals E and F in a given triangulation are called adjacent
if they are the sides of one of the triangles of the triangulation. If the diagonals
are adjacent we set bEF = 1 if the diagonal E comes before F when listing the
diagonals at the common vertex in clockwise order. Otherwise we set bEF = −1. If
two diagonals E and F are not adjacent we set εEF = 0.

In general, it is hard to compute the Poisson bracket between two coordinates in
different clusters. One approach is to express the second coordinate in terms of the
coordinates of a cluster containing the first one. Then, we can use the definition. In
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general this is hard. Another approach is to use the Sklyanin bracket (see Ref. [40]).
To explain this, we restrict again to the part of the Grassmannian G(k, n) where
〈1, . . . , k〉 �= 0 and we use a representative under the left GL(k) action which is
(1k,Y ), where Y is a k × l, l = n − k matrix. We denote the entries of the matrix Y
by yi j , i = 1, . . . k, j = 1, . . . , l. On these coordinates we introduce a bracket called
Sklyanin bracket given by

{yi j , yαβ}S = (sgn(α − i) − sgn(β − j))yiβ yα j . (17)

In general, Sklyanin bracket is defined using an R-matrix, which is a solution of a
modified classical Yang-Baxter equation (see Ref. [40] for details).

Now, we can extend the Sklyanin bracket to arbitrary functions of the variables
y, in the usual way

{ f, g}S =
∑

i, j,α,β

∂ f

∂yi j
{yi j , yαβ}S ∂g

∂yαβ
. (18)

This bracket satisfies the Jacobi identity, as can be shownbydirect computation, using
the identity sgn(x) sgn(y) + sgn(y) sgn(z) + sgn(z) sgn(x) = −1 for x + y + z =
0 and xyz �= 0.

The cluster coordinates can be expressed in terms of variables y and their bracket
can be computed using the formula above. As an example, consider the case of the
A2 algebra again. There we have the cluster coordinates

X1 = (12)(45)

(15)(24)
= − y12y23 − y13y22

y12y23
, X2 = (25)(34)

(23)(45)
= y13(y11y22 − y12y21)

y11(y12y23 − y13y22)
.

(19)
The computation of the bracket {X1, X2}S is a bit tedious, but straightforward. We
find

{X1, X2}S = 2X1X2. (20)

Up to a factor of 2, we obtain the answer expected from the definition in terms
of the b matrix of the quiver. Now, we can compute Poisson brackets between any
cluster coordinates, even if they don’t belong to the same cluster. Most of the Poisson
brackets between coordinates which don’t belong to the same cluster will be very
complicated, but sometimes one obtains zero. This information combined with other
physical requirements, can uniquely determine some parts of the amplitudes, as done
for example in Ref. [44].



160 C. Vergu

a
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d

O

α β
γ

δ

ρ

Fig. 1 The cross-ratio of four lines in CP2

7 Elements of Projective Geometry

It is very useful to understand the cross-ratios geometrically. For example, the A2

cluster algebra described above involves the geometry of five points on CP1.
The simplest type of cross-ratio is the cross-ratio of four points (a, b, c, d) in

CP
1. If the points have have coordinates (za, zb, zc, zd), then their cross-ratio is

r(a, b, c, d) = zabzcd
zbczda

, (21)

with zab = za − zb. In the followingwewill try to reducemore complicated situations
to configurations of four points on a projective line.

By duality, a point inCP2 is in correspondence with a line inCP2. A configuration
of four points on a projective line in CP

2 dualizes to a configuration of four lines
intersecting in a point. Therefore, we can talk about the cross-ratio of four lines in
CP

2 (see Fig. 1).
The cross-ratios of four lines (α,β, γ, δ) containing a point O can be related to

the cross-ratio of four points by taking an arbitrary line ρ (not containing the point O)
and computing the intersection points a = ρ ∩ α, b = ρ ∩ β, c = ρ ∩ γ, d = ρ ∩ δ.
Then, the cross-ratio of the points (a, b, c, d) on ρ is independent on ρ and is equal
to the cross-ratio of the lines (α,β, γ, δ)

r(α,β, γ, δ) = r(a, b, c, d). (22)

If the lines are defined by pairs of points α = (OA), β = (OB), γ = (OC),
δ = (OD), as in Fig. 2, then the cross-ratio of the four lines is

r(α,β, γ, δ) = r(a, b, c, d) = (O|A, B,C, D) ≡ 〈OAB〉〈OCD〉
〈OBC〉〈ODA〉 , (23)

where 〈XY Z〉 is proportional to the oriented area of the triangle Δ(X,Y, Z).
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a

b

c

d

O

A

B

C
D

Fig. 2 The cross-ratio of four lines determined by their common intersection point O and another
point on each on of them

A

B

C

D

X

C

Fig. 3 The cross-ratio of points A, B, C , D with respect to the conic C

If the four points A, B, C , D do not belong to a line we can’t generically define
their cross-ratio. However, given a conic C such that A, B, C , D belong6 to C, then
we can define their cross-ratio as follows: pick a point X on the conic C. Then,
by Chasles’ theorem the cross-ratio of the lines (X A), (XB), (XC) and (XD) is
independent on the point X and is defined to be the cross-ratio of the points A, B,
C , D (with respect to the conic C). See Fig. 3.

Let us now discuss the triple ratio of six points in CP
2 which was introduced by

Goncharov. We take the six points to be A, B, C , X , Y , Z . Numerically, this triple
ratio is given by

r3(A, B,C; X,Y, Z) = 〈ABX〉〈BCY 〉〈CAZ〉
〈ABY 〉〈BCZ〉〈CAX〉 . (24)

It turns out that this ratio has several geometrical interpretations. Consider first the
situation in Fig. 4. There, we have four lines which are dashed and blue: α = (CB),
β = (Cb), γ = (Cc), δ = (Cd), where b = (AX) ∩ (BY ), c = A and d = (CZ) ∩
(AX). Their cross-ratio, obtained by intersecting with the line (AX), is given by

6Any conic is determined by five points. Given four points there is an infinity of conics which
contain them.
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A = cX

B

Y

C

Z

a b d

Fig. 4 Triple ratio, expressed as a cross-ratio of points on the line (AX)

AX

B = a′

Y

C

Z

b′

d′

c′

Fig. 5 Triple ratio, expressed as a cross-ratio of points on the line (BY )

r(α,β, γ, δ) = r(a, b, c, d) = (C |B, (AX) ∩ (BY ), A, Z). (25)

But, instead of considering the intersections of the lines (α,β, γ, δ) with the line
(AX) as above, we can consider the intersection with the line (BY ). The intersection
points are

a′ = α ∩ (BY ) = B, (26)

b′ = β ∩ (BY ) = b = (AX) ∩ (BY ), (27)

c′ = γ ∩ (BY ) = (CA) ∩ (BY ), (28)

d ′ = δ ∩ (BY ) = (CZ) ∩ (BY ). (29)

The corresponding figure is Fig. 5. If we denote by α′ = (AB), β′ = (AX), γ′ =
(AC), δ′ = (Ad ′), we have

r(a, b, c, d) = r(α,β, γ, δ) = r(a′, b′, c′, d ′) =
= r(α′,β′, γ′, δ′) = (A|B, X,C, (BY ) ∩ (CZ)). (30)



Polylogarithm Identities, Cluster Algebras … 163

AX

B

Y
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Z

a′′

b′′

d′′

Fig. 6 Triple ratio, expressed as a cross-ratio of points on the line (CZ)

Now we can repeat the previous procedure. We compute the cross-ratio r(α′,β′,
γ′, δ′) by considering the intersection with (CZ). The intersection points are

a′′ = α′ ∩ (CZ) = (AB) ∩ (CZ), (31)

b′′ = β′ ∩ (CZ) = (AX) ∩ (CZ), (32)

c′′ = γ′ ∩ (CZ) = C, (33)

d ′′ = δ′ ∩ (CZ) = (BY ) ∩ (CZ). (34)

See Fig. 6 for a geometrical representation. If we define the lines α′′ = (BA), β′′ =
(Bb′′), γ′′ = (BC), δ′′ = (Bd ′′), we have

(B|A, (CZ) ∩ (AX),C, Y ) = r(α′′,β′′, γ′′, δ′′) = r(a′′, b′′, c′′, d ′′) = r(α′, β′, γ′, δ′).
(35)

We have therefore shown that

(A|B, X,C, (BY ) ∩ (CZ)) = (B|A, (CZ) ∩ (AX),C, Y ) = (C |B, (AX) ∩ (BY ), A, Z).

(36)
Notice that this is also implied by the symmetry r3(A, B,C; X,Y, Z) = r3(B,C, A;
Y, Z , X).

Let us now show that the invariant (A|B, X,C, (BY ) ∩ (CZ)) has the same zeros
and poles as r3(A, B,C; X, Y, Z). Form the definition, we know that (A|B, X,C,

(BY ) ∩ (CZ)) vanishes when 〈ABX〉 = 0 or 〈AC(BY ) ∩ (CZ)〉 = 0. The sec-
ond three-bracket vanishes if 〈BCY 〉 = 0 or 〈CAZ〉 = 0. In the first case B,C,Y
are collinear and therefore (BY ) ∩ (CZ) = C so we have 〈AC(BY ) ∩ (CZ)〉 =
〈ACC〉 = 0. In the second case, when 〈CAZ〉 = 0 we have that A ∈ (CZ), C ∈
(CZ) and P ≡ (BY ) ∩ (CZ) ∈ (CZ). Since all the entries of the three-bracket are
collinear, we find that 〈AC(BY ) ∩ (CZ)〉 = 0. We have shown that (A|B, X,C,

(BY ) ∩ (CZ)) vanishes if 〈ABX〉 = 0 or 〈BCY 〉 = 0 or 〈CAZ〉 = 0 which is the
same as the numerator of r3(A, B,C; X,Y, Z). In order to find the poles we reason
in the same way.
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8 Polylogarithm Identities

In this section we provide some more mathematical details on transcendental func-
tions and explain how to partially integrate them. We denote by Ln the Abelian
group (under addition) of transcendental functions of transcendentality weight n. An
important character in this story is the Bloch group Bn , also called the classical poly-
logarithm group: it is the subgroup of Ln generated by the classical polylogarithm
functions Lin and their products.

Consider first the simplest kind of transcendental function, the logarithm. If we are
working modulo 2πi , then we have that ln z + lnw = ln(zw), for any z, w ∈ C

∗. In
order to express this simple functional relation formally, define Z[C∗] to be the free
Abelian group generated by {z}, with integer coefficients and z non-zero complex
numbers. Concretely, elements of this group are quantities like {z} + {w} and the
group operation is defined in the obvious way. Then, we can quotient this group by
the relations satisfied by the logarithm to obtain the logarithm group B1,

B1 = Z[C∗]/({z} + {w} − {zw}). (37)

This group is isomorphic to the multiplicative group of complex numbers, C×.
The next simplest transcendental functions are the dilogarithms, Li2. The dilog-

arithms satisfy a simple five-term functional relation. One way to express this func-
tional relation is to consider five points on CP

1 with coordinates z1, . . . , z5. From
any four such points we can form a cross-ratio r(z1, . . . , ẑi , . . . z5), where the hatted
argument is missing. We use the definition r(i, j, k, l) = zi j zkl

z jk zli
with zi j = zi − z j .

Then the five-term identity can be written as

5∑
i=1

(−1)i Li2(−r(z1, . . . , ẑi , . . . , z5)) = logs, (38)

where we have denoted by logs the terms which can be written uniquely in terms of
logarithms. There is a theorem (see Ref. [16]) that all the relations between dilog-
arithms are consequences of the five-term relations. We can now define the Bloch
group B2 by analogy to the logarithm case.We first defineZ[C] to be the free Abelian
group generated by {z}2, where z is a complex number. Then, we quotient be the
five-term relations and the quotient is denoted by B2

B2 = Z[C]/(five-term relations). (39)

In this case we have a group morphism δ, B2
δ−→ Λ2

C
∗ which is defined by

δ({z}2) = (1 − z) ∧ z. To check that this is a group morphism we need to show
that δ(five-term relation) = 0 or
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5∑
i=1

(−1)i (1 + r(z1, . . . , ẑi , . . . , z5)) ∧ r(z1, . . . , ẑi , . . . , z5) = 0, (40)

which can be done by a short computation.
Let us now discuss Li3 functions. There is a theorem stating that all transcenden-

tality three functions can be written as a linear combination of Li3 and products of
lower transcendentality functions (see Ref. [45]).

Just like in the previous cases, we first need to find the functional relations satisfied
by Li3 functions. The identity satisfied by Li3 is very similar to the one satisfied by
Li2 and can be described in terms of configurations of seven points on CP

2. It is
convenient to describe each of these points in terms of their homogeneous vi ∈ C

3

coordinates, with i = 1, . . . , 7. For three such vectors vi , v j , vk we can define a three-
bracket 〈·, ·, ·〉 : C3 × C

3 × C
3 → C by the volume of the parallelepiped generated

by them 〈i, j, k〉 = Vol(vi , v j , vk).
Given six points in CP3, we can form a cross-ratio

r3(1, 2, 3, 4, 5, 6) = 〈124〉〈235〉〈316〉
〈125〉〈236〉〈314〉 . (41)

Such cross-ratios have been introduced and extensively used in Ref. [45] and we also
discuss their geometric interpretation in Sect. 5. The Li3 functional relations can be
expressed in terms of this cross-ratio as

7∑
i=1

(−1)i Alt6 Li3(−r3(1, . . . , î, . . . , 7)) ≈ 0, (42)

where Alt6 mean antisymmetrization in the six points on which r3 depends and ≈
means that we have omitted the terms which are products of lower transcendentality
functions.

Now we define
B3 = Z[C]/(seven-term relations). (43)

There is a morphism δ : B3 → B2 ⊗ C
∗, δ({x}3) = {x}2 ⊗ x . In order to show that

this morphism is well-defined, we need to show that that δ annihilates the seven-term
relations.

It may seem that we can continue in the same way to higher transcendentality.
However, this is not the case. At transcendentality four there are new functions
which can not be expressed in terms of Li4 and products of lower transcendentality
functions. We can define Bn for n ≥ 4 in the same way as before, but there is a bigger
group Ln which is the Abelian group related to weight n polylogs, some of which
are not classical polylogs.

We defined Bn to be the Abelian groups generated by classical polylogs andLn to
be the Abelian groups of all polylogs of weight n. Nowwewant to characterize them.
The most mathematically concise way to describe their (conjectural!) connection is
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by an exact sequence, which for n = 4 reads

0 → B4 → L4 → Λ2B2 → 0. (44)

An exact sequence is a sequence of maps between spaces such that the image of a
map falls in the kernel of the next one. In the example above, the first arrow says
that B4 maps to L4 injectively, which is obvious since B4 is contained in L4. The
last arrow says that the map L4 → Λ2B2 is surjective. This is less obvious, but it
means that for any element of Λ2B2 one can find a weight four polylog with that
Λ2B2 projection.

Finally, the rest of the sequence means that ker(L4 → Λ2B2) = B4. This means
that if a weight four polylog has zero Λ2B2 projection, which is to say it belongs to
ker(L4 → Λ2B2), then it is a classical polylog, and vice versa.

Notice that in Fig. 4, we have five points (a, b, X, c, d) on the line (AX). From
five points (z1, . . . , z5) in CP

1 we can produce a dilogarithm identity

5∑
i=1

(−1)i {−r(z1, . . . , ẑi , . . . , z5)}2 = 0. (45)

This motivates us to find the expressions in terms of three-brackets for the other
cross-ratios that can be constructed from these five points on (AX) (see Fig. 4):

r(b, X, A, d) = 〈BXY 〉〈ACZ〉
〈A × X, B × Y,C × Z〉 , (46)

r(a, X, A, d) = (C |B, X, A, Z), (47)

r(a, b, A, d) = r3(A, B,C; X,Y, Z), (48)

r(a, b, X, d) = r3(X, B,C; A,Y, Z), (49)

r(a, b, X, A) = (B|C,Y, X, A). (50)

This provides a geometric proof for the following dilogarithm identity

−
{ 〈BXY 〉〈ACZ〉

〈A × X, B × Y,C × Z〉
}
2

+
{ 〈CBX〉〈CAZ〉

〈CX A〉〈CZB〉
}
2

−
{ 〈ABX〉〈BCY 〉〈CAZ〉

〈ABY 〉〈BCZ〉〈CAX〉
}
2

+
{ 〈XBA〉〈BCY 〉〈CXZ〉

〈XBY 〉〈BCZ〉〈CX A〉
}
2

−
{ 〈BCY 〉〈BX A〉

〈BY X〉〈BAC〉
}
2

= 0. (51)

Here is a 40-term trilogarithm identity which was discovered when analyzing
results of two-loop computations in N = 4 theory.
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{
−〈125〉〈134〉

〈123〉〈145〉
}
3

+
{
−〈126〉〈145〉

〈124〉〈156〉
}
3

+
{
−〈126〉〈145〉〈234〉

〈123〉〈146〉〈245〉
}
3

+
1

3

{
− 〈136〉〈145〉〈235

〈123〉〈156〉〈345〉
}
3

+ (cyclic permutations)−
(anti-cyclic permutations) = 0. (52)

In order to check that the B2 ∧ C
∗ projection of the 40-term trilogarithm identity

is zero we need some dilogarithm identities. For example, one of the dilogarithm
identities which is useful is

−
{
− 〈123〉〈456〉

〈1 × 2, 3 × 4, 5 × 6〉
}
2

−
{
−〈125〉〈134〉

〈123〉〈145〉
}
2

−
{
−〈123〉〈156〉〈345〉

〈125〉〈134〉〈356〉
}
2

+
{
−〈124〉〈156〉〈345〉

〈125〉〈134〉〈456〉
}
2

−
{
−〈156〉〈345〉

〈135〉〈456〉
}
2

= 0.

(53)

It can be interpreted geometrically as five points (3, 4, (15) ∩ (34), (12) ∩ (34),
(34) ∩ (56)) on the line (34).

The second useful dilogarithm identity is

{
− 〈156〉〈234〉

〈1 × 2, 3 × 4, 5 × 6〉
}
2

−
{
−〈136〉〈234〉

〈123〉〈346〉
}
2

−
{
−〈156〉〈236〉

〈126〉〈356〉
}
2

+
{
−〈123〉〈156〉〈346〉

〈126〉〈134〉〈356〉
}
2

−
{
−〈123〉〈256〉〈346〉

〈126〉〈234〉〈356〉
}
2

= 0.

(54)

It can be interpreted geometrically as five points (1, 2, (12) ∩ (34), (12) ∩ (36),
(12) ∩ (56)) on the line (12).

The third useful dilogarithm identity is

−
{
− 〈156〉〈234〉

〈1 × 2, 3 × 4, 5 × 6〉
}
2

+
{
−〈145〉〈234〉

〈124〉〈345〉
}
2

+
{
−〈156〉〈245〉

〈125〉〈456〉
}
2

−
{
−〈124〉〈156〉〈345〉

〈125〉〈134〉〈456〉
}
2

+
{
−〈124〉〈256〉〈345〉

〈125〉〈234〉〈456〉
}
2

= 0.

(55)

It can be interpreted geometrically as five points (1, 2, (12) ∩ (34), (12) ∩ (45),
(12) ∩ (56)) on the line (12).

The fourth useful dilogarithm identity is
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{
− 〈123〉〈456〉

〈1 × 2, 3 × 4, 5 × 6〉
}
2

+
{
−〈125〉〈234〉

〈123〉〈245〉
}
2

+
{
−〈123〉〈256〉〈345〉

〈125〉〈234〉〈356〉
}
2

−
{
−〈124〉〈256〉〈345〉

〈125〉〈234〉〈456〉
}
2

+
{
−〈256〉〈345〉

〈235〉〈456〉
}
2

= 0.

(56)

It can be interpreted geometrically as five points (3, 4, (12) ∩ (34), (25) ∩ (34),
(34) ∩ (56)) on the line (34).

The identities above are the identities needed to show the vanishing of terms of
type ∗ ⊗ 〈123〉 in the projection to B2 ⊗ C

∗ of the 40-term trilogarithm identity. For
the terms of type ∗ ⊗ 〈124〉 the same identities are sufficient, but there is another,
simpler identity too, written below

−
{
−〈126〉〈145〉

〈124〉〈156〉
}
2

+
{
−〈126〉〈245〉

〈124〉〈256〉
}
2

−
{
−〈146〉〈245〉

〈124〉〈456〉
}
2

+
{
−〈156〉〈245〉

〈125〉〈456〉
}
2

−
{
−〈156〉〈246〉

〈126〉〈456〉
}
2

= 0.

(57)

This identity is special because it does not depend on point 3 at all. It can be more
geometrically written as

{(1|2654)}2 + {(2|1456)}2 + {(4|1652)}2 + {(5|1246)}2 + {(6|1542)}2 = 0. (58)

Curiously, this simple-looking identity has a slightly more obscure geometrical
interpretation. Through the five points 1, 2, 4, 5, 6 passes a unique conic C. The
cross-ratio (1|2654) is the cross-ratio of the points (2, 6, 5, 4) with respect to the
conic C. But we can pick another point X ∈ C and we have, by Chasles’ theorem,
that (X |2654) = (1|2654). Then the previous identity becomes

{(X |2456)}2 − {(X |1456)}2 + {(X |1256)}2 − {(X |1246)}2 + {(X |1245)}2 = 0,
(59)

which is the usual form of the dilogarithm identity, where the cross-ratios are cross-
ratios of the lines (X1), (X2), (X4), (X5), (X6).

9 Open Questions

The scattering amplitudes inN = 4 theory split into sub-sectorswhich are not related
by supersymmetry transformations. Scattering amplitudes in the simplest sectors are
called MHV (maximally helicity violating) amplitudes, for historical reasons. More
complicated sectors are called NMHV (next to MHV), etc. The six-point MHV
amplitude has transcendentality four but, surprisingly, can be expressed in terms of
classical polylogarithms only, as found in Ref. [46]. The next simplest amplitudes
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are the six-point NMHV, or the seven point MHV, which can not be written in terms
of classical polylogarithms, since their B2 ∧ B2 projection does not vanish.

Consider the Λ2B2 projection of the seven-point MHV amplitude computed in
Ref. [21]. In CP2 language it is given by

−
{

− 〈2 × 3, 4 × 6, 7 × 1〉
〈167〉〈234〉

}
2

∧
{

− 〈7 × 1, 2 × 3, 4 × 5〉
〈127〉〈345〉

}
2

−
{

− 〈2 × 3, 4 × 6, 7 × 1〉
〈167〉〈234〉

}
2

∧
{

− 〈234〉〈456〉
〈246〉〈345〉

}
2

−
{

− 〈2 × 3, 4 × 6, 7 × 1〉
〈167〉〈234〉

}
2

∧
{

− 〈146〉〈567〉
〈167〉〈456〉

}
2

−
{

− 〈2 × 3, 4 × 6, 7 × 1〉
〈167〉〈234〉

}
2

∧
{

− 〈5 × 6, 7 × 1, 2 × 3〉
〈123〉〈567〉

}
2

+
{

− 〈137〉〈467〉
〈167〉〈347〉

}
2

∧
{

− 〈123〉〈347〉
〈137〉〈234〉

}
2

−
{

− 〈137〉〈467〉
〈167〉〈347〉

}
2

∧
{

− 〈347〉〈456〉
〈345〉〈467〉

}
2

+ cyclic permutations of 1, 2, . . . , 7. (60)

Goncharov suggested to look at the Poisson bracket x, y for any {−x}2 ∧ {−y}2 ∈
Λ2B2. This is well-defined since {−x}2 ∧ {−y}2 = −{−y}2 ∧ {−x}2 and a similar
sign change appears from the Poisson bracket.

It is not understood why, but we find that these Poisson brackets are zero. We
can show that for every term {−x}2 ∧ {−y}2 ∈ Λ2B2 listed above there is at least
one cluster containing x and y. In order to prove this, for every pair (x, y) we need
to exhibit a quiver graph which contains them and which is such that there are no
arrows between x and y. Alternatively, one can compute the Sklyanin bracket as in
Sect. 6.

As mentioned in the introduction, scattering amplitudes have the property of
factorization (see Ref. [3]). Formulating this precisely and studying its implications
for the cluster algebra structure would be very interesting. A complete discussion
would take us too far, but wewant tomention only one important aspect: factorization
only works if the transcendental functions satisfy some identities.

In mathematics one prefers to work with some real analytic functions, like

L2(z) = � (Li2(z) + ln |z| ln(1 − z)) , (61)

L3(z) = �
(
Li3(z) − ln |z|Li2(z) − 1

3
ln2 |z| ln(1 − z)

)
, (62)

which have simple functional relations (modulo some additive constants, one can
simply replace {z}2 → L2(z) and {z}3 → L3(z)) to obtain an identity for functions.
However, for physics we need to have complex analytic functions instead. Therefore,
it is not yet clear what are the best building blocks for the scattering amplitudes.

The reader might be puzzled by the following fact: we have a big symmetry group
PSU(2, 2|4) but in terms of Grassmannians only the conformal group SU(2, 2) or the
complexified SL(4) is visible. How to make the rest of the symmetry visible? This
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is not known at present. Maybe recent developments like the definition of cluster
superalgebras in Ref. [56] hold the key to further progress.

Are there other polylogarithm identities of cluster type? As we have reviewed,
the dilogarithm identity contains arguments which form an A2 (or G(2, 5) cluster
algebra, while the trilogarithm identity contains arguments which form a D4 (or
G(3, 6) cluster algebra. A computer search for a Li4 identity with arguments in finite
cluster algebra did not find anything. It is possible that there are such identities for
infinite cluster algebras.

Before ending this brief review, let us point out some references which discuss
complementary details. Cluster algebras appeared in Ref. [5] in connection with
scattering amplitudes, but in a different way than we reviewed here. Reference [42]
also reviews the connection between scattering amplitudes and cluster algebras, with
an emphasis on the combinatorics of Stasheff polytopes. Reference [50] reviews the
case of a three-dimensional analog of the N = 4 theory which we described here.

Many results were obtained by applying the bootstrap method (see Refs. [22,
25–30, 43, 44]).
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and q-Analogues of Multiple
Zeta Values

Henrik Bachmann

Abstract This work is an example driven overview article of recent works on the
connection of multiple zeta values, modular forms and q-analogues of multiple zeta
values given by multiple Eisenstein series.

Keywords Multiple zeta values · q-analogues of multiple zeta values · Multiple
Eisenstein series · Modular forms

1 Introduction

We study a specific connection of multiple zeta values and modular forms given
by multiple Eisenstein series. This work is an example driven overview article and
summary of the results obtained in the works [3, 6, 7, 9].

Multiple zeta values are real numbers that are natural generalizations of the
Riemann zeta values. These are defined for integers s1 ≥ 2 and s2, . . . , sl ≥ 1 by

ζ(s1, . . . , sl) :=
∑

n1>n2>···>nl>0

1

ns11 . . . nsll
.

Such real numbers were already studied by Euler in the l = 2 case in the 18th
century. Because of its occurrence in various fields of mathematics and theoretical
physics these real numbers had a comeback in themathematical and physical research
community in the late 1990s due to works by several people such as D. Broadhurst,
F. Brown, P. Deligne, H. Furusho, A. Goncharov,M. Hoffman,M. Kaneko, D. Zagier
et al.. Denote the Q-vector space of all multiple zeta values of weight k by

Z k := 〈
ζ(s1, . . . , sl)

∣∣ s1 + · · · + sl = k and l > 0
〉
Q
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and writeZ for the space of all multiple zeta values. One of the main interests is to
understand the Q-linear relations between these numbers. The first one is given by
ζ(2, 1) = ζ(3) and there are several different ways to prove this relation [11]. Using
the representation of multiple zeta values as an ordered sum, their product can be
written as a linear combination of multiple zeta values of the same weight, i.e. the
space Z has the structure of a Q-algebra. For example it is

ζ(2) · ζ(3) = ζ(2, 3) + ζ(3, 2) + ζ(5) , (1)

ζ(3) · ζ(2, 1) = ζ(3, 2, 1) + ζ(2, 3, 1) + ζ(2, 1, 3) + ζ(5, 1) + ζ(2, 4) . (2)

This way to express the product, which will be studied in Section 1 in more detail,
is called the stuffle product (also named harmonic product). Besides this, a repre-
sentation of multiple zeta values as iterated integrals yields another way to express
the product of two multiple zeta values, which is called the shuffle product. For the
above examples, this is given by

ζ(2) · ζ(3) = ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1) , (3)

ζ(3) · ζ(2, 1) =ζ(2, 1, 3) + ζ(2, 2, 2) + 2ζ(2, 3, 1) + 2ζ(3, 1, 2)

+ 5ζ(3, 2, 1) + 9ζ(4, 1, 1) .
(4)

Since (1) and (3) are two different expressions for the product ζ(2) · ζ(3) we obtain
the linear relation ζ(5) = 2ζ(3, 2) + 6ζ(4, 1). These relations are called the double
shuffle relations.Conjecturally allQ-linear relations betweenmultiple zeta values can
be provenbyusing an extendedversion of these types of relations [24].Often relations
between multiple zeta values are not proven by using double shuffle relations, since
there are easier ways to prove them in some cases. The relation ζ(4) = ζ(2, 1, 1) for
example, has an easy proof using the iterated integral expressions for multiple zeta
values. A famous result by Euler is, that every even zeta value ζ(2k) is a rational
multiple of π2k and in particular we have, for example,

ζ(2)2 = 5

2
ζ(4) , ζ(4)2 = 7

6
ζ(8) , ζ(6)2 = 715

691
ζ(12) . (5)

The relations (5) can also be proven with the double shuffle relations, but for general
k there is no explicit proof of Eulers relations using only double shuffle relations so
far.

Since the double shuffle relations just give relations in a fixed weight it is conjec-
tured that the space Z is a direct sum of the Z k , i.e. there are no relations between
multiple zeta values with different weight.

Surprisingly there are several connections of these numbers to modular forms
for the full modular group. Recall, modular forms are holomorphic functions in the
complex upper half-plane fulfilling certain functional equations. One of the most
famous connection is the Broadhurst-Kreimer conjecture.
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Conjecture 1 (Broadhurst-Kreimer conjecture [15]) The generating series of for
the dimension dimQ

(
Z k,l

)
of weight k multiple zeta values of length l modulo lower

lengths can be written as

∑

k≥0
l≥0

dimQ

(
Z k,l

)
XkY l = 1 + E(X)Y

1 − O(X)Y + S(X)Y 2 − S(X)Y 4
,

where

E(X) = X2

1 − X2
, O(X) = X3

1 − X2
, S(X) = X12

(1 − X4)(1 − X6)
.

The connection to modular forms arises here, since

S(X) =
∑

k≥0

dim Sk(SL2(Z))Xk

is the generating function of the dimensions of cusp forms for the full modular group.
In the formula of the Broadhurst-Kreimer conjecture one can see, that cusp forms
give rise to relations between double zeta values, i.e. multiple zeta values in the
length l = 2 case. For example in weight 12, the first weight where non-trivial cusp
forms exist, there is the following famous relation

5197

691
ζ(12) = 168ζ(5, 7) + 150ζ(7, 5) + 28ζ(9, 3) . (6)

Even though we are not focused on this conjecture, the concept of obtaining rela-
tions of multiple zeta values by cusp forms also appears in our context of multiple
Eisenstein series and q-analogues of multiple zeta values. It is known that every
modular form for the full modular group can be written as a polynomial in classical
Eisenstein series. These are for even k > 0 given by

Gk(τ ) = 1

2

∑

(m,n)∈Z2

(m,n)�=(0,0)

1

(mτ + n)k
= ζ(k) + (−2πi)k

(k − 1)!
∞∑

n=1

σk−1(n)qn ,

where τ ∈ H is an element in the upper half-plane, q = exp(2πiτ ) and σk(n) =∑
d|n dk denotes the classical divisor-sum. In [19] the authors introduced a direct

connection of modular forms to double zeta values following ideas of Don Zagier
introduced in [37]. They defined double Eisenstein series Gs1,s2 ∈ C[[q]] which are
a length two generalization of classical Eisenstein series and which are given by a
double sum over ordered lattice points. These functions have a Fourier expansion
given by sums of products ofmultiple zeta values and certain q-series with the double
zeta value ζ(s1, s2) as their constant term. In [2] the author treated the multiple cases
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and calculated the Fourier expansion of multiple Eisenstein series Gs1,...,sl ∈ C[[q]].
The result of [2] was that the Fourier expansion of multiple Eisenstein series is again
a Z -linear combination of multiple zeta values and the q-series gt1,...,tm ∈ C[[q]]
defined by gt1,...,tm (τ ) := (−2πi)t1+···+tm [t1, . . . , tm] with q = e2πiτ and

[t1, . . . , tm] :=
∑

u1>···>um>0
v1,...,vm>0

vt1−1
1 . . . vtm−1

m

(t1 − 1)! . . . (tm − 1)! · qu1v1+···+umvm .

Theorem 2 ([2]) For s1, . . . , sl ≥ 2 the Gs1,...,sl can be written as aZ -linear com-
bination of the above functions gt1,...,tm .

For example:

G3,2,2(τ ) = ζ(3, 2, 2) +
(
54

5
ζ(2, 3) + 51

5
ζ(3, 2)

)
g2(τ ) + 16

3
ζ(2, 2)g3(τ )

+ 3ζ(3)g2,2(τ ) + 4ζ(2)g3,2(τ ) + g3,2,2(τ ) .

The starting point of the thesis [4] was the fact that there are more multiple
zeta values than multiple Eisenstein series, since ζ(s1, . . . , sl) exists for all s1 ≥
2, s2, . . . , sl ≥ 1 and the Gs1,...,sl just exists when all s j ≥ 2. The main objective was
to answer the following question.

Question 1 What is a “good” definition of a “regularized”multipleEisenstein series,
such that for each multiple zeta value ζ(s1, . . . , sl) with s1 > 1, s2, . . . , sl ≥ 1 there
is a q-series

Greg
s1,...,sl = ζ(s1, . . . , sl) +

∑

n>0

anq
n ∈ C[[q]]

with this multiple zeta value as the constant term in its Fourier expansion and which
equals the multiple Eisenstein series in the cases s1, . . . , sl ≥ 2?

By “good” we mean that these regularized multiple Eisenstein series should have
the same, or at least as close as possible, algebraic structure similar to multiple zeta
values. Our answer to this question was approached in several steps which will be
described in the following (i)–(iii). First (i) the algebraic structure of the functions
g was studied. During this investigation it turned out, that these objects, or more
precisely the q-series [s1, . . . , sl ] are very interesting objects in their own rights.
It turned out that in order to understand their algebraic structure it was necessary
to study a more general class of q-series, called bi-brackets in (ii). The results on
bi-brackets and brackets then were used, together with a beautiful connection of the
multiple Eisenstein series to the coproduct structure of formal iterated integrals, to
answer the above question in (iii).

(i)To answerQuestion1 the algebraic structure of the functions g ormoreprecisely
the algebraic structure of the q-series [s1, . . . , sl] was studied in [6]. It turned out
that these q-series, whose coefficients are given by weighted sums over partitions
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of n, are, independently to their appearance in the Fourier expansion of multiple
Eisenstein series, very interesting objects.Wewill denote theQ-vector space spanned
by all these brackets and 1 byMD . Since we also include the rational numbers, the
normalized Eisenstein series G̃k(τ ) := (−2πi)−kGk(τ ) are contained in MD . For
example we have

G̃2 = − 1

24
+ [2] , G̃4 = 1

1440
+ [4] , G̃6 = − 1

60480
+ [6] .

The algebraic structure of the space MD was studied in [6] and one of the main
result was the following

Theorem 3 ([6]) The Q-vector space spanned by all brackets equipped with the
usual multiplication of formal q-series is a Q-algebra, with the algebra of modular
forms with rational coefficients as a subalgebra.

In fact, the product fulfills a quasi-shuffle product and the notion of quasi-shuffle
products will be made precise in Sect. 4.1. Roughly speaking, this means that the
product of two brackets can be expressed as a linear combination of brackets similar
to the stuffle product (1), (2) of multiple zeta values. For example we will see that

[2] · [3] = [3, 2] + [2, 3] + [5] − 1

12
[3] ,

[3] · [2, 1] = [3, 2, 1] + [2, 3, 1] + [2, 1, 3] + [5, 1] + [2, 4]
+ 1

12
[2, 2] − 1

2
[2, 3] − 1

12
[3, 1] ,

i.e. up to the lower weight term − 1
12 [3] and 1

12 [2, 2] − 1
2 [2, 3] − 1

12 [3, 1] this looks
exactly like (1) and (2). One might ask if there is also something which corresponds
to the shuffle product (3) of multiple zeta values. It turned out that for the lowest
length case, this has to do with the differential operator d = q d

dq . In [6] it was shown
that

[2] · [3] = [2, 3] + 3[3, 2] + 6[4, 1] − 3[4] + d[3] , (7)

which, again up to the term −3[4] + d[3], looks exactly like the shuffle product (3)
of multiple zeta values. In particular it follows that d[3] is again in the space MD
and in general it was shown that

Theorem 4 ([6]) The operator d = q d
dq is a derivation on MD .

(ii) Equation (7) abovewas themotivation to study a larger class of q-series, which
will be called bi-brackets. While the quasi-shuffle product of brackets also exists in
higher length, the second expression for the product, corresponding to the shuffle
product, does not appear in higher length if one just allows derivatives as “error
terms”. The bi-brackets can be seen as a generalization of the derivative of brackets.
For s1, . . . , sl ≥ 1, r1, . . . , rl ≥ 0 we define these bi-brackets by
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[
s1, . . . , sl
r1, . . . , rl

]
:=

∑

u1>···>ul>0
v1,...,vl>0

ur11
r1! . . .

urll
rl ! · vs1−1

1 . . . vsl−1
l

(s1 − 1)! . . . (sl − 1)! · qu1v1+···+ul vl .

In the case r1 = · · · = rl = 0 these are just ordinary brackets. The products of these
seemingly larger class of q-series have two representations similar to the stuffle
and shuffle product of multiple zeta values in arbitrary length. For our example, the
analogue of the shuffle product (4) for brackets can now be expressed as

[3] · [2, 1] = [2, 1, 3] + [2, 2, 2] + 2[2, 3, 1] + 2[3, 1, 2] + 5[3, 2, 1] + 9[4, 1, 1]
+
[
2, 3

0, 1

]
+ 2

[
3, 2

0, 1

]
+ 3

[
4, 1

1, 0

]
− [2, 3] − 2[3, 2] − 6[4, 1] .

Wewill see in Sect. 5.2 that these double shuffle structure can be described, using the
so called partition relation, in a nice combinatorial way. This gives a large family of
linear relations between bi-brackets. In fact numerical calculations show, that there
are so many relations, that we have the following surprising conjecture.

Conjecture 5 ([3]) Every bi-bracket can be written in terms of brackets, i.e.

MD = BD .

Using the algebraic structure of the space of bi-brackets we now review the defini-
tion of shuffle brackets [s1, . . . , sl ]� and stuffle [s1, . . . , sl]∗ version of the ordinary
brackets as certain linear combination of bi-brackets as introduced in [3]. These
objects fulfill the same shuffle and stuffle products as multiple zeta values respec-
tively. Both constructions use the theory of quasi-shuffle algebras first developed
by Hoffman in [21] and later generalized in [22]. We summarize the results in the
following Theorem.

Theorem 6 ([3])

(i) The spaceBD spanned by all bi-brackets
[s1,...,sl
r1,...,rl

]
forms a Q-algebra with the

space of (quasi-)modular forms and the spaceMD of brackets as subalgebras.
There are two ways to express the product of two bi-brackets which correspond
to the stuffle and shuffle product of multiple zeta values.

(ii) There are two subalgebrasMD� ⊂ BD andMD∗ ⊂ MD spanned by ele-
ments [s1, . . . , sl]� and [s1, . . . , sl ]∗ which fulfill the shuffle and stuffle prod-
ucts, respectively, and which are in the length one case given by the bracket
[s1].

For example, similarly to the relation between multiple zeta values above we have

[2, 3]∗ + [3, 2]∗ + [5] = [2] · [3] = [2, 3]� + 3[3, 2]� + 6[4, 1]� .
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(iii) A particular reason for studying the [s1, . . . , sl]� is due to their use in the
regularization of multiple Eisenstein series, i.e. they are needed in the answer of the
original Question1. This was implicitly done in [9] by proving an explicit connection
of the Fourier expansion of multiple Eisenstein series to the coproduct on formal iter-
ated integrals introduced by Goncharov in [20]. This connection was already known
to the authors of [19] in the length two case. Without knowing this connection it
was then rediscovered independently by the authors of [9] during a research stay
of the second author at the DFG Research training Group 1670 at the University of
Hamburg in 2014. The result of this research stay was the work [9], in which the
authors used this connection to give a definition of the shuffle regularized multiple
Eisenstein series. Later, the present author combined the result of [9] and the alge-
braic structure of bi-brackets to give a more explicit definition of shuffle regularized
multiple Eisenstein series using bi-brackets in [3].

Formal iterated integrals are symbols I (a0; a1, . . . , an; an+1)with a j ∈ {0, 1} that
fulfill identities like real iterated integrals. We will write I (3, 2) for I (1; 00101; 0)
and we will see that the elements of the form I (s1, . . . , sl), obtained in the same
way as I (3, 2), form a basis of the space of formal iterated integrals in which we
are interested. The space of these integrals has a Hopf algebra structure with the
multiplication given by the shuffle product and the coproduct Δ given by an explicit
formula which we will review in Sect. 6.1. For example it is

Δ(I (3, 2)) = 1 ⊗ I (3, 2) + 3I (2) ⊗ I (3) + 2I (3) ⊗ I (2) + I (3, 2) ⊗ 1 .

Compare this with the Fourier expansion of the double Eisenstein series G3,2

G3,2(τ ) = ζ(3, 2) + 3g2(τ )ζ(3) + 2g3(τ )ζ(2) + g3,2(τ ) .

Since Δ(I (s1, . . . , sl)) exists for all s1, . . . , sl ≥ 1 this comparison suggested a def-
inition of shuffle regularized multiple Eisenstein series G�s1,...,sl by sending the first
component of the coproduct of I (s1, . . . , sl) to a (−2πi)-multiple of the shuffle
bracket and the second component to shuffle regularized multiple zeta values. In [9]
it was proven that this construction gives back the original multiple Eisenstein series
in the cases s1, . . . , sl ≥ 2. Together with the results on the shuffle brackets in [3]
we obtain the following

Theorem 7 ([3, 9]) For all s1, . . . , sl ≥ 1 there exist shuffle regularized multiple
Eisenstein series G�s1,...,sl ∈ C[[q]] with the following properties:

(i) They are holomorphic functions on the upper half-plane (by setting
q = exp(2πiτ )) having a Fourier expansion with the shuffle regularized mul-
tiple zeta values as the constant term.

(ii) They fulfill the shuffle product.
(iii) They can be written as a linear combination of multiple zeta values, powers of

(−2πi) and shuffle brackets [. . . ]� ∈ BD .
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(iv) For integers s1, . . . , sl ≥ 2 they equal the multiple Eisenstein series

G�s1,...,sl (τ ) = Gs1,...,sl (τ )

and therefore they fulfill the stuffle product in these cases.

We now study the Q-algebra spanned by the G� and its relation to multiple zeta
values. Theorem7 (iv) gives a subset of the double shuffle relations between the G�,
since the stuffle product is just fulfilled for the case s1, . . . , sl ≥ 2. A natural question
is, if they also fulfill the stuffle product when some indices s j are equal to 1. For
some cases this was proven in [3]. For example it was shown, that

G�2 · G�2,1 = G�2,1,2 + 2G�2,2,1 + G�2,3 + G�4,1 . (8)

The method to prove this was to introduce stuffle regularized multiple Eisenstein
series G∗

s1,...,sl , which fulfill by construction the stuffle product and which equal the
classical multiple Eisenstein series in the s1, . . . , sl ≥ 2 cases. Since both G∗ and
G� can be written in terms of multiple zeta values and bi-brackets it was possible to
compare these two regularization. Itwas shown that allG� appearing in (31) equal the
G∗ ones, from which this equation followed. In contrast to the shuffle regularized
multiple Eisenstein series the stuffle regularized ones could not be defined for all
s1, . . . , sl ≥ 1, but we have the following results:

Theorem 8 ([3])For all s1, . . . , sl ≥ 1 and M ≥ 1 there exists G∗,M
s1,...,sl ∈ C[[q]]with

the following properties

(i) They are holomorphic functions on the upper half-plane (by setting
q = exp(2πiτ )) having a Fourier expansion with the stuffle regularized multi-
ple zeta values as the constant term.

(ii) They fulfill the stuffle product.
(iii) In the case where the limit G∗

s1,...,sl := limM→∞ G∗,M
s1,...,sl exists, the functions

G∗
s1,...,sl are a linear combination of multiple zeta values, powers of (−2πi)

and bi-brackets.
(iv) For s1, . . . , sl ≥ 2 the G∗

s1,...,sl exist and equal the classical multiple Eisenstein
series

Gs1,...,sl (τ ) = G∗
s1,...,sl (τ ) .

It is still an open question which extended double shuffle relations of multiple zeta
values are also fulfilled for the G�. Or equivalently, under what circumstances the
product of two G� can be expressed using the stuffle product formula. Clearly there
are some double shuffle relations which can’t be fulfilled by multiple Eisenstein
series. For example not all of the Euler relations (5) are fulfilled since G2

2 is not a
multiple of G4 as G2 is not modular and G2

6 is not a multiple of G12 as there are cusp
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forms in weight 12. In Sect. 6.3 we will explain this failure in terms of the double
shuffle relations which are fulfilled by multiple Eisenstein series.

After the discussion above, we believe that Question1 got a satisfying answer
given by the regularized multiple Eisenstein series G� and G∗. To go back from
multiple Eisenstein series to multiple zeta values one can consider the projection to
the constant term. But there is another direct connection of brackets, and therefore
also of the subalgebra of modular forms, to multiple zeta values. The brackets can be
seen as a q-analogue of multiple zeta values. A q-analogue of multiple zeta values is
said to be a q-series which gives back multiple zeta values in the case q → 1. Define
for k ∈ N the map Zk : Q[[q]] → R ∪ {∞} by

Zk( f ) = lim
q→1

(1 − q)k f (q) .

Proposition 9 ([6, Proposition 6.4])For s1 ≥ 2 and s2, . . . , sl ≥ 1 the map Zk sends
a bracket to the corresponding multiple zeta value, i.e.

Zk ([s1, . . . , sl]) =
{

ζ(s1, . . . , sl) , s1 + · · · + sl = k,
0 , s1 + · · · + sl < k .

Since every relation of multiple zeta values in a given weight k is, by Proposition9,
in the kernel of the map Zk , this kernel was studied in [6] with the following result.

Theorem 10 ([6, Theorem 1.13])

(i) For any f ∈ MD which can be written as a linear combination of brackets
with weight ≤ k − 2 we have d f ∈ ker Zk.

(ii) Any cusp form for SL2(Z) of weight k is in the kernel of Zk.

Wegive an example for Theorem10 (ii): Using the theory of brackets (Corollary4.13)
we can prove for the cusp form Δ = q

∏
n>0 (1 − qn)24 ∈ S12(SL2(Z)) the repre-

sentation

− 1

26 · 5 · 691Δ = 168[5, 7] + 150[7, 5] + 28[9, 3]

+ 1

1408
[2] − 83

14400
[4] + 187

6048
[6] − 7

120
[8] − 5197

691
[12] . (9)

Letting Z12 act on both sides of (9) one obtains a new proof for the relation (6), i.e.,

5197

691
ζ(12) = 168ζ(5, 7) + 150ζ(7, 5) + 28ζ(9, 3) .

Another reason for studying the enlargement of the brackets given by the bi-brackets
is the following: In weight 4 one has the following relation of multiple zeta values
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ζ(4) = ζ(2, 1, 1), i.e. it is [4] − [2, 1, 1] ∈ ker Z4. But this element can’t be written
as a linear combination of cusp forms, lower weight brackets or derivatives. But one
can show, by using the double shuffle relations of bi-brackets, that

[4] − [2, 1, 1] = 1

2
(d[1] + d[2]) − 1

3
[2] − [3] +

[
2, 1

1, 0

]
(10)

and
[2,1
1,0

] ∈ ker Z4. Todescribe the kernel of themap Zk was in fact our firstmotivation
to study the bi-brackets. Equation (10) is also an example for the above mentioned
Conjecture5, since it shows that the bi-bracket

[2,1
1,0

]
can be written as brackets and

therefore is an element inMD .

2 Outlook and Related Work

In the following paragraphs (a)–(g) we want to mention some related works and give
an outlook to open questions.

(a) There are still a lot of open questions concerning multiple Eisenstein series
as well as the space of (bi-)brackets. After the above mentioned works [3, 6, 9] we
now have a good definition of regularized multiple Eisenstein series given by the
G�. For the structure of the space spanned by these series there are still several open
questions.

(i) What exactly is the failure of the stuffle product for the G� and when does it
hold?

(ii) Forwhich indices s1, . . . , sl ∈ N dowe haveG�s1,...,sr (τ ) = G∗
s1,...,sr (τ )? Is there

an explicit connection between these two regularizations similar to the regu-
larized multiple zeta values given by the map ρ in [24]?

(iii) What is the dimension of the space of (shuffle) regularised multiple Eisenstein
series? Is there an explicit basis similar to theHoffmanbasis ofmultiple zeta val-
ues (Which is given by all multiple zeta values ζ(s1, . . . , sl) with s j ∈ {2, 3})?

(iv) Which linear combinations of multiple Eisenstein series are modular forms for
SL2(Z)? Is there an explicit way to describe the modular defect?

(v) Is the space of multiple Eisenstein series closed under the derivative
d = q d

dq ? Meanwhile this question was also already addressed in [5].
(vi) What is the kernel of the projection to the constant term? Does it consist of

more than derivatives and cusp forms?
(vii) Is there a general theory behind the connection of the Fourier expansion of

multiple Eisenstein series and the Goncharov coproduct? Can we equip the
space of multiple Eisenstein series with a coproduct structure in an useful
way?

Especially the last questions seems to be interesting since the connection to the
coproduct of formal iterated integrals is quite mysterious and it seems that there
might be a geometric interpretation for this connection.



Multiple Eisenstein Series and q-Analogues of Multiple Zeta Values 183

(b) Several q-analogues of multiple zeta values were studied in recent years.
The first works on this area are [14, 28, 31, 38]. Possible double shuffle structures
are discussed for example in [18, 32, 33, 39], where the last one gives also a nice
overview of various different q-analogue models. Often these q-analogues have a
product structure similar to the stuffle product of multiple zeta values. To obtain
something which corresponds to the shuffle product one usually needs to modify the
space and add extra elements (like derivatives) or consider index sets (s1, . . . , sr )
with s j ∈ Z or s j ≥ 0. The picture is similar for bi-brackets, where we consider
double indices

[s1,...,sl
r1,...,rl

]
to obtain an analogue for both products in a very natural way.

This gives a lot of linear relations similar to the double shuffle relations. Numerical
experiments suggest, that every bi-bracket can be written as a linear combination
of brackets and therefore (conjecturally) every relation of bi-brackets gives rise to
relations between multiple zeta values by applying the map Zk .

(c) In the case of multiple zeta values one way to give upper bounds for the
dimension is to study the double shuffle space [24, 25]. Similarly, one can study the
partition shuffle space

PS(k − l, l) = {
f ∈ Q[X1, .., Xl , Y1, .., Yl ]

∣∣ deg f = k − l, f
∣∣
P − f = f

∣∣
Sh j

= 0 ∀ j
}
,

for bi-brackets, where |P is the involution given by the partition relation (see Sect. 5.1,
(23)) and |Sh j is given by the sum of all shuffles of type j similar to the one in [25].
Counting the number of these polynomials it is possible to give upper bounds for
the dimensions of the space of bi-brackets. This approach therefore enabled us to
prove the conjecture MD = BD up to weight 7 in a current work in progress
[8]. Therefore, considering the space PS(k − l, l) in more detail might be crucial to
understand the structure of bi-brackets.

(d) In this work we were interested in modular forms for the full modular group
and therefore studied the level 1 case. In [26] the authors studied double Eisenstein
series and double zeta values of level 2. They also derive the Fourier expansion of
these series which involves similar calculation as in the level 1 case. One result is,
that they derive the dimension of the space of double Eisenstein series and give also
an upper bound for the dimension of double zeta values of level 2, which involves
the dimension of the spaces of cusp forms of level 2. Beside the work on Level 2
double Eisenstein series there are also work for level N double Eisenstein series of
Yuan and Zhao in [34]. Later these authors also considered a level N version of the
brackets in [35].

(e) At the end of [26] the authors give a proof for an upper bound of the dimension
of double zeta values in even weight.Wewant to recall this result, since the presented
results in the presentworkmight be able to use these ideas for higher lengths.Consider
the space spanned by all normalized double Eisenstein series (−2πi)−r−sGr,s(τ ) in
even weight k = r + s. Denote by πi the projection of this space to the imaginary
part. Using the Fourier expansion of double Eisenstein series the authors can write
down the matrix representation of πi explicitly. Together with well known results on
period polynomials they obtain
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dimQ〈ζ(r, k − r) | 2 ≤ r ≤ k − 1〉Q ≤ k

2
− 1 − dim Sk .

Due to the Broadhurst-Kreimer Conjecture1 it is conjectured that this is actually an
equality. The key fact here is, that it is possible to write down an explicit basis of
the imaginary part and the matrix representation of πi . To also obtain upper bounds
for the dimensions of multiple zeta values in higher lengths, one might try to use
the exact same method as in the length two case. The imaginary part of the (again
normalized with the factor (−2πi)−k) multiple Eisenstein series is more complicated
since it involves the functions g in different length, where it is known that they are not
linearly independent anymore. But the algebraic structure of the g or more precisely
of the brackets [..] are subject of the current work. It is quite possible that the results
on the brackets enable one to study the projection of the imaginary part of multiple
Eisenstein series to obtain upper bounds for the Broadhurst-Kreimer conjecture.

(f) The multiple Eisenstein series and the bi-brackets itself also have connections
to counting problems in enumerative geometry:

(i) In [1, 30] the author studies q-series Ak(a) ∈ Q[[q]] which arises in counting
certain types of hyperelliptic curves. One of the results is, that the Ak(q) are
contained in the ring of quasi-modular forms. The connection to the brackets
is given by the fact that Ak(q) = [2, . . . , 2︸ ︷︷ ︸

k

]. The results of [1] can also be

obtained by using an explicit calculation of the Fourier expansion of G2,...,2.
(ii) In [27, 29] the authors connect certain q-analogues of multiple zeta values to

Hilbert schemes of points on surfaces. These q-analogues are just particular
linear combinations of brackets as explained in [7] and Sect. 7.2.

(iii) The coefficients of bi-brackets also occur naturally when counting flat surfaces
[40], i.e. certain covers of the torus.

(g) There also exists different “multiple”-versions of classical Eisenstein series.
One of them is treated in [10], where the authors discuss the series defined by

G2p1,...,2pr (τ ) =
∑

m∈Z

∑

n1∈Z
(m,n1)�=(0,0)

· · ·
∑

nr ∈Z
(m,nr )�=(0,0)

r∏

j=1

1

(m + n jτ )2p j

for r ∈ N≥2 and p1, . . . , pr ∈ N and prove (Theorem 2) that for r ∈ N≥2 and
p1, . . . , pr ∈ N,

τ 2(p1+···+pr )G2p1,...,2pr (τ ) ∈ Q
[
τ 2, π2, G2(τ ), G4(τ ), G6(τ )

]
.

The methods used to prove these statements are similar to the methods used in
the calculation of the Fourier expansion of multiple Eisenstein series. But besides
this there does not seem to be a direct connection to the multiple Eisenstein series
presented here.
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3 Multiple Eisenstein Series

In this section we are going to introduce multiple zeta values and present the multiple
Eisenstein series and their Fourier expansion. Especially the construction of the
Fourier expansion of multiple Eisenstein series in Sect. 3.2 was rewritten for this
survey. It will be a shortened version of the construction given in [2] using results by
Bouillot obtained in [12]. This section is not part of the works [6, 7, 9]. Before we
discuss multiple Eisenstein series, we give a short review of multiple zeta values and
their algebraic structure given by the stuffle and shuffle product. In order to describe
these two products we will use quasi-shuffle algebras, introduced by Hofmann in
[21], which will also be needed later when we deal with the generating series of
multiple divisor-sums (brackets) and their generalizations given by the bi-brackets.

3.1 Multiple Zeta Values and Quasi-shuffle Algebras

Multiple zeta values are natural generalizations of the Riemann zeta values that are
defined1 for integers s1 > 1 and si ≥ 1 for i > 1 by

ζ(s1, . . . , sl) :=
∑

n1>n2>···>nl>0

1

ns11 . . . nsll
.

We denote the Q-vector space of all multiple zeta values of weight k by

Z k := 〈
ζ(s1, . . . , sl)

∣∣ s1 + · · · + sl = k and l > 0
〉
Q
.

It is well known that the product of two multiple zeta values can be written as a linear
combination of multiple zeta values of the same weight by using the stuffle or shuffle
relations (See for example [24, 42]). Thus they generate a Q-algebra Z . There are
several connections of these numbers to modular forms for the full modular group.
In the smallest length the stuffle product reads

ζ(s1) · ζ(s2) =
∑

n1>0

1

ns11

∑

n2>0

1

ns22

=
∑

n1>n2>0

1

ns11 n
s2
2

+
∑

n2>n1>0

1

ns11 n
s2
2

+
∑

n1=n2>0

1

ns1+s2
1

= ζ(s1, s2) + ζ(s2, s1) + ζ(s1 + s2) .

1Some authors use the opposite convention 0 < n1 < · · · < nl in the definition of multiple zeta
values. This is in particular the case for the work [9], where this opposite convention is used for
multiple zeta values and multiple Eisenstein series.
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For length 1 times length 2 the same argument gives

ζ(s1) · ζ(s2, s3) = ζ(s1, s2, s3) + ζ(s2, s1, s3) + ζ(s2, s3, s1)

+ ζ(s1 + s2, s3) + ζ(s2, s1 + s3) .

The second expression for the product, the shuffle product, comes from the iterated
integral expression of multiple zeta values. For example it is

ζ(2, 3) =
∫

1>t1>···>t5>0

dt1
t1

· dt2
1 − t2︸ ︷︷ ︸
2

· dt3
t3

· dt4
t4

· dt5
1 − t5︸ ︷︷ ︸

3

.

Multiplying two of these integrals one obtains again a linear combination of multiple
zeta values as for example

ζ(2) · ζ(3) = ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1) .

More generally the smallest length case is given by

ζ(s1) · ζ(s2) =
∑

a+b=s1+s2
a>1

((
a − 1

s1 − 1

)
+
(
a − 1

s2 − 1

))
ζ(a, b) . (11)

To describe these two product structures precisely we will use the language of quasi-
shuffle algebras as introduced in [21, 22].

Definition 3.1 Let A (the alphabet) be a countable set of letters, QA the Q-vector
space generated by these letters and Q〈A〉 the noncommutative polynomial algebra
over Q generated by words with letters in A. For a commutative and associative
product� onQA, a, b ∈ A andw, v ∈ Q〈A〉we define onQ〈A〉 recursively a product
by 1 � w = w � 1 = w and

aw � bv := a(w � bv) + b(aw � v) + (a � b)(w � v) . (12)

By a result of Hoffman [22, Theroem 2.1] (Q〈A〉,�) is a commutative Q-algebra
which is called a quasi-shuffle algebra.

To describe the stuffle and the shuffle product for multiple zeta values we need
to deal with two different alphabets Axy and Az . The first alphabet is given by
Axy := {x, y} and we setH = Q〈Axy〉 andH1 = 1 · Q + Hy, with 1 being the empty
word. It is easy to see thatH1 is generated by the elements z j = x j−1ywith j ∈ N, i.e.
H1 = Q〈Az〉 with the second alphabet Az := {z1, z2, . . . }. Additionally, we define
H0 = 1Q + xHy.
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(i) OnH1 we have the following quasi-shuffle product with respect to the alphabet
Az , called the stuffle product. We denote it by ∗ and define it as the quasi-shuffle
product with z j � zi = z j+i . For a, b ∈ N and w, v ∈ H1 we therefore have:

zaw ∗ zbv = za(w ∗ zbv) + zb(zaw ∗ v) + za+b(w ∗ v) .

By (H1, ∗) we denote the corresponding Q-algebra.
(ii) On the alphabet Axy we define the shuffle product as the quasi-shuffle product

with � ≡ 0, and by (H1,�) we denote the corresponding Q-algebra.

It is easy to check that H0 is closed under both products ∗ and � and therefore we
have also the two algebras (H0, ∗) and (H0,�).

By the definition of multiple zeta values as an ordered sum and by the iterated
integral expression one obtains algebra homomorphisms Z : (H0, ∗) → Z and Z :
(H0,�) → Z by sending w = zs1 . . . zsl to ζ(w) = ζ(s1, . . . , sl), since the words in
H0 correspond exactly to the indices for which the multiple zeta values are defined.
It is a well known fact, that these algebra homomorphisms can be extended to H1:

Proposition 3.2 ([24, Proposition 1]) There exist algebra homomorphisms

Z∗ : (H1, ∗) −→ Z and Z� : (H1,�) −→ Z ,

which are uniquely determined by Z∗(w) = Z�(w) = ζ(w) for w ∈ H0 and by their
images on the word z1, which we set 0 here, i.e. Z∗(z1) = Z�(z1) = 0.

3.2 Multiple Eisenstein Series and the Calculation of Their
Fourier Expansion

The Riemann zeta values appear as the constant term in the Fourier expansion of
classical Eisenstein series. These series are defined for τ ∈ H by

Gk(τ ) = 1

2

∑

(m,n)∈Z2

(m,n)�=(0,0)

1

(mτ + n)k
. (13)

where k > 2 is the called the weight. Splitting the summation into the parts m = 0
and m ∈ Z\0 we obtain for even k

Gk(τ ) = 1

2

∑

n �=0

1

nk
+

∞∑

m=1

(
∑

n∈Z

1

(mτ + n)k

)
.
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To calculate the Fourier expansion of the sum on the right, one uses the well known
Lipschitz summation formula (q = e2πiτ )

∑

d∈Z

1

(τ + d)k
= (−2πi)k

(k − 1)!
∞∑

m=1

mk−1qm , (14)

which is valid for k > 1. With (14) we obtain

Gk(τ ) = ζ(k) + (−2πi)k

(k − 1)!
∞∑

m=1

∞∑

n=1

nk−1qmn = ζ(k) + (−2πi)k

(k − 1)!
∞∑

n=1

σk−1(n)qn ,

(15)

where σk(n) = ∑
d|n dk denote the divisor-sum. Formula (15) also makes sense for

odd k but does not give a modular form, since there are no non trivial modular forms
of odd weight. The sum in (13) vanishes for odd k, therefore instead of summing
over the whole lattice, we restrict the summation to the positive lattice points, with
positivity coming from an order on the lattice Zτ + Z. This in turn will also enable
us to give an multiple version of the Eisenstein series in an obvious way.

Let Λτ = Zτ + Z be a lattice with τ ∈ H := {x + iy ∈ C | y > 0}. An order �
on Λτ is defined by setting (see [19])

λ1 � λ2 :⇔ λ1 − λ2 ∈ P

for λ1,λ2 ∈ Λτ and the following set P , which we call the set of positive lattice
points

P := {lτ + m ∈ Λτ | l > 0 ∨ (l = 0 ∧ m > 0)} = U ∪ R

l

m R

U

The set P for the case τ = i .

Definition 3.3 For s1 ≥ 3, s2, . . . , sl ≥ 2 the multiple Eisenstein series is defined
by
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Gs1,...,sl (τ ) :=
∑

λ1�···�λl�0
λi∈Λτ

1

λs1
1 . . . λsl

l

.

With k = s1 + · · · + sl we denote the weight and with l its length.

It is easy to see that these are holomorphic functions in the upper half-plane and that
they fulfill the stuffle product, i.e. for example

G3(τ ) · G4(τ ) = G4,3(τ ) + G3,4(τ ) + G7(τ ) .

By definition it is Gs1,...,sl (τ + 1) = Gs1,...,sl (τ ), i.e. there exists a Fourier expansion
of Gs1,...,sl in q = e2πiτ . To write down the Fourier expansion of multiple Eisenstein
series we need to introduce the following q-series which will be studied in detail in
Sect. 4.1. For s1, . . . , sl ≥ 1 we define

[s1, . . . , sl ] :=
∑

u1>···>ul>0
v1,...,vl>0

vs1−1
1 . . . vsl−1

l

(s1 − 1)! . . . (sl − 1)! · qu1v1+···+ul vl ∈ Q[[q]] .

andwrite gs1,...,sl (τ ) := (−2πi)s1+···+sl [s1, . . . , sl ], which is an holomorphic function
in the upper half-plane by setting q = e2πiτ .

Theorem 3.4 ([2], Fourier expansion) For s1 ≥ 3, s2, . . . , sl ≥ 2 the Gs1,...,sl (τ ) can
be written as a Z -linear combination of the functions g. More precisely there are
rational numbers λr, j ∈ Q, for r = (r1, . . . , rl) and 1 ≤ j ≤ l − 1, such that (with
k = s1 + · · · + sl )

Gs1,...,sl (τ ) = ζ(s1, . . . , sl) +
∑

1≤ j≤l−1
r1+···+rl=k

λr, j · ζ(r1, . . . , r j ) · gr j+1,...,rl (τ ) + gs1,...,sl (τ ) .

Even though the proof of this statement is the main result of [2] we will give a
shortened version of it in the following.

The condition s1 ≥ 3 is necessary for the absolute convergence of the sum. Nev-
ertheless we can also allow the case s1 = 2 by using the Eisenstein summation as
it was done in [9] Definition 2.1. This corresponds to the usual way of defining the
quasi-modular form G2 in length one. Since the construction of the Fourier expan-
sion described below uses exactly this Eisenstein summation the Theorem3.4 is also
valid for s1 ≥ 2.

For example the triple Eisenstein series G3,2,2 can be written as

G3,2,2(τ ) = ζ(3, 2, 2) +
(
54

5
ζ(2, 3) + 51

5
ζ(3, 2)

)
g2(τ ) + 16

3
ζ(2, 2)g3(τ )

+ 3ζ(3)g2,2(τ ) + 4ζ(2)g3,2(τ ) + g3,2,2(τ ) .
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To derive the Fourier expansion we introduce the following functions, that can be
seen as a multiple version of the term

∑
n∈Z

1
(x+n)k

appearing in the calculation of
the Fourier expansion of classical Eisenstein series.

Definition 3.5 For s1, . . . , sl ≥ 2 we define the multitangent function of length l by

Ψs1,...,sl (x) =
∑

n1>···>nl
ni∈Z

1

(x + n1)s1 . . . (x + nl)sl
.

In the case l = 1 we also refer to these as monotangent function.

These functions were introduced and studied in detail in [12]. One of the main results
there, which is crucial for the calculation of the Fourier expansion presented here, is
the following theorem which reduces the multitangent functions into monotangent
functions.

Theorem 3.6 ([12, Theroem 3], Reduction of multitangent into monotangent func-
tions) For s1, . . . , sl ≥ 2 and k = s1 + · · · + sl the multitangent function can be
written as a Z -linear combination of monotangent functions, more precisely there
are ck,h ∈ Z k−h such that

Ψs1,...,sl (x) =
k∑

h=2

ck−hΨh(x) .

Proof An explicit formula for the coefficients ck is given in Theorem 3 in [12]. The
proof uses partial fraction and a non trivial relation between multiple zeta values to
argue that the sum starts at h = 2. For example in length two it is

Ψ3,2(x) =
∑

m1>m2

1

(x + m1)
3(x + m2)

2

=
∑

m1>m2

(
1

(m1 − m2)
2(x + m1)

3 + 2

(m1 − m2)
3(x + m1)

2 + 3

(m1 − m2)
4(x + m1)

)

+
∑

m1>m2

(
1

(m1 − m2)
3(x + m2)

2 − 3

(m1 − m2)
4(x + m2)

)

= 3ζ(3)Ψ2(x) + ζ(2)Ψ3(x) .

(16)

The connection between the functions g and the monotangent functions is given
by the following

Proposition 3.7 For s1, . . . , sr ≥ 2 the functions g can be written as an ordered
sum of monotangent functions

gs1,...,sl (τ ) =
∑

m1>···>ml>0

Ψs1(m1τ ) . . . Ψsr (mrτ ) .
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Proof This follows directly from the Lipschitz formula (14) and the definition of
the functions g.

Preparation for the Proof of Theorem3.4: We will now recall the construction of
the Fourier expansion ofmultiple Eisenstein series introduced in [2], in order to prove
Theorem3.4. To calculate the Fourier expansion we rewrite the multiple Eisenstein
series as

Gs1,...,sl (τ ) =
∑

λ1�···�λl�0

1

λs1
1 . . . λsl

l

=
∑

(λ1,...,λl )∈Pl

1

(λ1 + · · · + λl)s1(λ2 + · · · + λl)s2 . . . λsl
l

.

Wedecompose the set of tuples of positive lattice points Pl into the 2l distinct subsets
A1 × · · · × Al ⊂ Pl with Ai ∈ {R,U } and write

GA1...Al
s1,...,sl (τ ) :=

∑

(λ1,...,λl )∈A1×···×Al

1

(λ1 + · · · + λl )s1 (λ2 + · · · + λl)s2 . . .λsl
l

this gives the decomposition

Gs1,...,sl =
∑

A1,...,Al∈{R,U }
GA1...Al

s1,...,sl .

In the following we identify the A1 . . . Al with words in the alphabet {R,U }. In
length l = 1 we have Gk(τ ) = GR

k (τ ) + GU
k (τ ) and

GR
k (τ ) =

∑

m1=0
n1>0

1

(0τ + n1)k
= ζ(k) ,

GU
k (τ ) =

∑

m1>0
n1∈Z

1

(m1τ + n1)k
=

∑

m1>0

Ψk(m1τ ) ,

where Ψk is the monotangent function given by

Ψk(x) =
∑

n∈Z

1

(x + n)k
.

To calculate the Fourier expansion of GU
k one uses the Lipschitz formula (14). In

general the GUl

s1,...,sl can be written as
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GUl

s1,...,sl (τ ) =
∑

m1>···>ml>0
n1,...,nl∈Z

1

(m1τ + n1)s1 . . . (mlτ + nl)sl

=
∑

m1>···>ml>0

Ψs1(m1τ ) . . . Ψsl (mlτ )

= (−2πi)s1+···+sl

(s1 − 1)! . . . (sl − 1)!
∑

m1>···>ml>0
d1,...,dl>0

ds1−1
1 . . . dsl−1

l qm1d1+···+mldl

= gs1,...,sl (τ ) .

The other special case GRl

s1,...,sl can also be written down explicitly:

GRl

s1,...,sl (τ ) =
∑

m1=···=ml=0
n1>···>nl>0

1

(0τ + n1)s1 . . . (0τ + nl)sl
= ζ(s1, . . . , sl) .

In length 2 we have Gs1,s2 = GRR
s1,s2 + GUR

s1,s2 + GRU
s1,s2 + GUU

s1,s2 and

GUR
s1,s2 =

∑

m1>0,m2=0
n1∈Z,n2>0

1

(m1τ + n1)s1(0τ + n2)s1

=
∑

m1>0

Ψs1(m1τ )
∑

n2>0

1

ns22
= gs1(τ )ζ(s2) ,

GRU
s1,s2(τ ) =

∑

m1=0,m2>0
n1>n2
ni∈Z

1

(m1τ + n1)s1(m1τ + n2)s2
=
∑

m>0

Ψs1,s2(mτ ).

In the case GUR we saw that we could write it as GU multiplied with a zeta value.
In general, having a word w of length l ending in the letter R, i.e. there is a word w′
ending in U with w = w′Rr and 1 ≤ r ≤ l we can write

Gw
s1,...,sl (τ ) = Gw′

s1,...,sl−r
(τ ) · ζ(sl−r+1, . . . , sl) .

Example: GRUURR
3,4,5,6,7 = GRUU

3,4,5 · ζ(6, 7)
Hence one can concentrate on the words ending in U when calculating the Fourier
expansion of a multiple Eisenstein series. Let w be a word ending in U then there
are integers r1, . . . , r j ≥ 0 with w = Rr1URr2U . . . Rr jU . With this one can write

Gw
s1,...,sl (τ ) =

∑

m1>···>m j>0

Ψs1,...,sr1+1(m1τ ) · Ψsr1+2,...(m2τ ) . . . Ψsl−r j ,...,sl
(m jτ ) .
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Example: w = RU RRU

GRURRU
s1,...,sl =

∑

m1>m2>0

Ψs1,s2(m1τ )Ψs3,s4,s5(m2τ )

m

n
λ5

λ4 λ3

λ2

λ1

A summand of GRURRU
s1,...,sl .

Proof of Theorem3.4: For s1, . . . , sl ≥ 2 the Fourier expansion of the multiple
Eisenstein series Gs1,...,sl can be computed in the following way

(i) Split up the summation into 2l distinct parts Gw
s1,...,sl where w are a words in

{R,U }.
(ii) For w being a word ending in R one can write Gw

s1,...,sl as G
w′
s1,... · ζ(. . . , sl)with

a word w′ ending in U .
(iii) For w being a word ending in U one can write Gw

s1,...,sl as

Gw
s1,...,sl (τ ) =

∑

m1>···>ml>0

Ψs1,...(m1τ ) . . . Ψ...,sl (mlτ ) .

(iv) Using the Theorem3.6 we can write the multitangent functions in (iii) as a
Z -linear combination of monotangents. We therefore just haveZ -linear com-
binations with sums of the form∑

m1>···>m j>0

Ψk1 (m1τ ) . . . Ψk j (m j τ ) = gk1,...,k j (τ ) = (−2πi)k1+···+k j [k1, . . . , k j ] .

�
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An explicit formula for the Fourier expansion of the multiple Eisenstein series
for arbitrary length can be found in [9] Proposition2.4. (with a reversed order of
indices). Here we just give the Fourier expansion for the length 2 and 3. For this we
define for n1, n2, k > 0 the numbers Ck

n1,n2 by

Ck
n1,n2 = (−1)n2

(
k − 1

n2 − 1

)
+ (−1)k−n1

(
k − 1

n1 − 1

)
.

Proposition 3.8 (i) ([2, 9, 19, Formula (52)]) For s1, s2 ≥ 2 the Fourier expan-
sion of the double Eisenstein series is given by

Gs1,s2(τ ) = ζ(s1, s2) + ζ(s2)gs1(τ ) +
∑

k1+k2=s1+s2
k1,k2≥2

Ck2
s1,s2ζ(k2)gk1(τ ) + gs1,s2(τ ) .

(ii) ([2, 9]) For s1, s2, s3 ≥ 2 and k = s1 + s2 + s3 the Fourier expansion of the
triple Eisenstein series can be written as

Gs1,s2,s3(τ ) = ζ(s1, s2, s3) + ζ(s2, s3)gs1(τ ) + ζ(s3)gs1,s2(τ ) + gs1,s2,s3(τ )

+ ζ(s3)
∑

k1+k2=s1+s2

Ck1
s1,s2ζ(k1)gk2(τ )

+
∑

k1+k2=s1+s2

Ck2
s1,s2ζ(k2)gk1,s3(τ ) +

∑

k1+k2=s2+s3

Ck2
s2,s3ζ(k2)gs1,k1(τ )

+
∑

k1+k2+k3=k

(−1)s2+s3

(
k2 − 1

s2 − 1

)(
k3 − 1

s3 − 1

)
ζ(k3, k2)gk1(τ )

+
∑

k1+k2+k3=k

(−1)s1+s2+k2+k3

(
k2 − 1

k3 − 1

)(
k3 − 1

s2 − 1

)
ζ(k3, k2)gk1(τ )

+ (−1)s1+s3
∑

k1+k2+k3=k

(−1)k2
(
k2 − 1

s1 − 1

)(
k3 − 1

s3 − 1

)
ζ(k3)ζ(k2)gk1(τ ) ,

where in the sums we sum over all ki ≥ 2.

Wefinish this section with a closer look at the stuffle product of two Eisenstein series.
Since the product of multiple Eisenstein series can be written in terms of the stuffle
product it is G2 · G3 = G2,3 + G3,2 + G5. On the other hand we have

G2 · G3 = (ζ(2) + g2) (ζ(3) + g3) = ζ(2)ζ(3) + ζ(3)g2 + ζ(2)g3 + g2 · g3 .

and by Proposition3.8 it is
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G2,3 = ζ(2, 3) − 2ζ(3)g2 + ζ(2)g3 + g2,3 ,

G3,2 = ζ(3, 2) + 3ζ(3)g2 + ζ(2)g3 + g3,2 .

In conclusion, we obtain a relation for the product of the g’s namely g2 · g3 = g3,2 +
g2,3 + g5 + 2ζ(2)g3 and dividing out (−2πi)5 we get

[2] · [3] = [3, 2] + [2, 3] + [5] − 1

12
[3] .

We conclude that a product of the q-series [s1, . . . , sl] ∈ Q[[q]] has an expression
similar to the stuffle product and that conversely, a product structure on these q-series
could be used, together with the Fourier expansion, to explain the stuffle product for
multiple Eisenstein series.

One might now ask, if the multiple Eisenstein series also “fulfill” the shuffle
product. As we saw above the shuffle product of ζ(2) and ζ(3) reads

ζ(2) · ζ(3) = ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1) (17)

and since there is no definition of G4,1 this question does not make sense when
replacing ζ by G in (17). We will see that the understanding of the product structure
of the brackets, explained in the next two sections, togetherwith theFourier expansion
of multiple Eisenstein series will help to answer this question. This will be done by
introducing shuffle regularized multiple Eisenstein series G� in Sect. 6.2. There we
will see that we can replace the ζ in (17) by G� and that the G� are given by the
original G, for the cases in which they are defined.

4 Multiple Divisor-Sums and Their Generating Functions

The classical divisor-sums σr (n) = ∑
d|n dr have a long history in number theory.

They are well-known examples for multiplicative functions and appear in the Fourier
expansion of Eisenstein series. This section is devoted to a larger class of functions,
that can be seen as a multiple version of the divisor-sums and are therefore called
multiple divisor-sums. For natural numbers r1, . . . , rl ≥ 0 they are defined by

σr1,...,rl (n) =
∑

u1v1+···+ul vl=n
u1>···>ul>0

vr11 . . . vrll . (18)

Even though the definition of these arithmetic functions is not complicated and
somehow canonical, the author could not find any results on these functions before
he started studying them in his master thesis [2]. As mentioned in the introduction,
the motivation to study them was due to their appearance in the Fourier expansion
of multiple Eisenstein series, but as it turned out later in [6], they are very nice and



196 H. Bachmann

interesting objects in their own rights. Similar to multiple zeta values they fulfill a
lot of relations. For example it is

1

2
σ2(n) = σ1,0(n) − 1

2
σ1(n) + nσ0(n) . (19)

Having objects of this type it is natural to consider their generating functions, which
we denote by

[s1, . . . , sl] := 1

(s1 − 1)! . . . (sl − 1)!
∑

n>0

σs1−1,...,sl−1(n)qn

and which are, just for the sake of short notations, called brackets. The factorial
factors and the “shift” of −1 are natural if one thinks about the Fourier expansion of
Eisenstein series. With this notation the relation (19) reads as

[3] = [2, 1] − 1

2
[2] + q

d

dq
[1] , (20)

which can be seen as a counterpart of the relation ζ(3) = ζ(2, 1) between multiple
zeta values.2

In this section, we want to focus on the algebraic structure of the space spanned
by all brackets, which we will denote byMD . This algebraic structure was studied
in [6]. We will see that the space MD has the structure of a Q-algebra and that the
product of two brackets can be expressed in terms of brackets in a way that looks
similar to the stuffle product of multiple zeta values. The operator d = q d

dq which
appears in (20) plays an important role in the theory of (quasi-)modular forms. We
will see that the spaceMD is closed under this operator and that this gives a second
way of expressing the product of two brackets in length one similarly to the shuffle
product of multiple zeta values. This second product expression in higher length will
be discussed in Sect. 5.

4.1 Brackets

Definition 4.1 For any integers s1, . . . , sl > 0 we define the generating function for
the multiple divisor sum σs1−1,...,sl−1 by the formal power series

2Further, one can prove the relation ζ(3) = ζ(2, 1) between multiple zeta values by multiplying
both sides in (20) with (1 − q)3 and then take the limit q → 1. We will discuss this in Sect. 7.
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[s1, . . . , sl ] := 1

(s1 − 1)! . . . (sl − 1)!
∑

n>0

σs1−1,...,sl−1(n)qn

=
∑

u1>···>ul>0
v1,...,vl>0

vs1−1
1 . . . vsl−1

l

(s1 − 1)! . . . (sl − 1)! · qu1v1+···+ul vl ∈ Q[[q]] .

In the first section, we saw that these series, by setting q = exp(2πiτ ), appear in
the Fourier expansion of the multiple Eisenstein series but in this section we just
view them as formal power series. We refer to these generating functions of multiple
divisor sums as brackets and define the vector space MD to be the Q vector space
generated by 1 ∈ Q[[q]] and all brackets [s1, . . . , sl ]. It is important to notice that we
also include the constants in the space MD .

Example 4.2 We give a few examples:

[2] = q + 3q2 + 4q3 + 7q4 + 6q5 + 12q6 + 8q7 + 15q8 + · · · ,

[4, 2] = 1

6

(
q3 + 3q4 + 15q5 + 27q6 + 78q7 + 135q8 + · · · ) ,

[4, 4, 4] = 1

216

(
q6 + 9q7 + 45q8 + 190q9 + 642q10 + 1899q11 + · · · ) ,

[3, 1, 3, 1] = 1

4

(
q10 + 2q11 + 8q12 + 16q13 + 43q14 + 70q15 + · · · ) ,

[1, 2, 3, 4, 5] = 1

288

(
q15 + 17q16 + 107q17 + 512q18 + 1985q19 + · · · ) .

Notice that the first non vanishing coefficient of qn in [s1, . . . , sl] appears at
n = l(l+1)

2 , because it belongs to the “smallest” possible partition

l · 1 + (l − 1) · 1 + · · · + 1 · 1 = n ,

i.e. u j = j and v j = 1 for 1 ≤ j ≤ l. The number k = s1 + · · · + sl is called the
weight of [s1, . . . , sl ] and l denotes the length.

We want to show that the brackets are closed under multiplication by proving that
their product structure is an example for a quasi-shuffle product. To do this we first
introduce some notations and quote some results which are needed for this.

Recall that for s, z ∈ C, |z| < 1 the polylogarithm Lis(z) of weight s is given by
Lis(z) = ∑

n>0
zn

ns . For s ∈ N the Li−s(z) are rational functions in z with a pole in
z = 1. More precisely for |z| < 1 they can be written as

Li−s(z) =
∑

n>0

nszn = zPs(z)

(1 − z)s+1

where Ps(z) is the s-th Eulerian polynomial. Such a polynomial is given by
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Ps(X) =
s−1∑

n=0

As,n X
n ,

where the Eulerian numbers As,n are defined by

As,n =
n∑

i=0

(−1)i
(
s + 1

i

)
(n + 1 − i)s .

For our purpose we write

L̃i1−s(z) := Li1−s(z)

(s − 1)! .

Lemma 4.3 ([6, Lemma 2.5]) For s1, . . . , sl ∈ N we have

[s1, . . . , sl ] =
∑

n1>···>nl>0

L̃i1−s1

(
qn1

)
. . . L̃i1−sl

(
qnl

)

= 1

(s1 − 1)! . . . (sl − 1)!
∑

n1>···>nl>0

l∏

j=1

qn j Ps j−1 (qn j )

(1 − qn j )s j
.

Remark 4.4 (i) The second expression in terms of Eulerian Polynomials will be
important for the interpretation of these series as q-analogues of multiple zeta
values in Sect. 7.

(ii) This representation is also used for a fast implementation of these q-series in
Pari GP. By doing so, the authors in [6] were able to give various results on the
dimensions of the (weight and length filtered) spaces of MD . These results
can be found in Sect. 5 of [6].

The product of [s1] and [s2] can thus be written as

[s1] · [s2] =
⎛

⎝
∑

n1>n2>0

+
∑

n2>n1>0

⎞

⎠ L̃i1−s1

(
qn1

)
L̃i1−s2

(
qn

) +
∑

n1=n2>0

L̃i1−s1

(
qn1

)
L̃i1−s2

(
qn1

)

= [s1, s2] + [s2, s1] +
∑

n>0

L̃i1−s1

(
qn

)
L̃i1−s2

(
qn

)
.

In order to prove that this product is an element of MD the product L̃i1−s1 (qn)

L̃i1−s2 (qn)must be a rational linear combination of L̃i1− j (qn)with 1 ≤ j ≤ s1 + s2.
We therefore need the following

Lemma 4.5 For a, b ∈ N we have

L̃i1−a(z) · L̃i1−b(z) =
a∑

j=1

λ
j
a,bL̃i1− j (z) +

b∑

j=1

λ
j
b,aL̃i1− j (z) + L̃i1−(a+b)(z) ,
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where the coefficient λ j
a,b ∈ Q for 1 ≤ j ≤ a is given by

λ
j
a,b = (−1)b−1

(
a + b − j − 1

a − j

)
Ba+b− j

(a + b − j)! ,

with Bk being the k-th Bernoulli number.3

Proof We prove this by using the generating function

L(X) :=
∑

k>0

L̃i1−k(z)X
k−1 =

∑

k>0

∑

n>0

nk−1zn

(k − 1)! X
k−1 =

∑

n>0

enX zn = eX z

1 − eX z
.

With this one can see by direct calculation that

L(X) · L(Y ) = 1

eX−Y − 1
L(X) + 1

eY−X − 1
L(Y ) .

By the definition of the Bernoulli numbers

X

eX − 1
=
∑

n≥0

Bn

n! X
n

this can be written as

L(X) · L(Y ) =
∑

n>0

Bn
n! (X − Y )n−1L(X) +

∑

n>0

Bn
n! (Y − X)n−1L(Y ) + L(X) − L(Y )

X − Y
.

The statement then follows by calculating the coefficient of Xa−1Y b−1 in this equa-
tion.

Now we are able to interpret the product structure of brackets as an example for
a quasi-shuffle product. We equip H1 with a third product, beside the stuffle product
∗ and the shuffle product�. This product will be denoted �, since it can be seen as
a “bracket version” of the stuffle product ∗. For a, b ∈ N and w, v ∈ H1 we define
recursively the product

zaw � zbv = za(w � zbv) + zb(zaw � v) + za+b(w � v) +
a∑

j=1

λ
j
a,bz j (w � v)

+
b∑

j=1

λ
j
b,az j (w � v) ,

3For convenience we recall that the Bernoulli numbers Bk are defined by X
eX−1

=: ∑k≥0
Bk
k! X

k .
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where the coefficients λ
j
a,b ∈ Q are the same as in Lemma4.5. We equip MD with

the usual multiplication of formal q-series and obtain the following:

Theorem 4.6 ([6, Prop 2.10]) For the linear map [ . ] : (H1,�) −→ (MD, ·)
defined on the generators w = zs1 . . . zsl by [w] := [s1, . . . , sl] we have

[w � v] = [w] · [v]

and therefore MD is a Q-algebra and [ . ] an algebra homomorphism.

Example 4.7 The first products of brackets are given by

[1] · [1] = 2[1, 1] + [2] − [1] ,
[1] · [2] = [1, 2] + [2, 1] + [3] − 1

2
[2] ,

[1] · [2, 1] = [1, 2, 1] + 2[2, 1, 1] − 3

2
[2, 1] + [2, 2] + [3, 1] ,

[2] · [3] = [3, 2] + [2, 3] + [5] − 1

12
[3] ,

[3] · [2, 1] = [3, 2, 1] + [2, 3, 1] + [2, 1, 3] + [5, 1] + [2, 4] + 1

12
[2, 2] − 1

2
[2, 3] − 1

12
[3, 1] .

We end this section by some notations which are needed for the rest of this paper.

Definition 4.8 On MD we have the increasing filtration FilW• given by the weight
and the increasing filtration FilL• given by the length. For a subset A ⊂ MD we
write4

FilWk (A) := 〈[s1, . . . , sl] ∈ A
∣∣ l ≥ 0 , s1 + · · · + sl ≤ k

〉
Q

,

FilLl (A) := 〈[s1, . . . , sr ] ∈ A
∣∣ 0 ≤ r ≤ l

〉
Q

.

If we consider the length and weight filtration at the same time, we use the short
notation FilW,L

k,l := FilWk FilLl .

Remark 4.9 As it can be seen by Theorem4.6, the multiplication of two brackets
respects these filtrations, i.e.

FilW,L
k1,l1

(MD) · FilW,L
k2,l2

(MD) ⊂ FilW,L
k1+k2,l1+l2

(MD).

4.2 Derivatives and Subalgebras

In this section we want to give an overview of interesting subalgebras of the space
MD and discuss the differential structure with respect to the differential d = q d

dq .
One of the main results in [6] is the following

4We set [s1, . . . , sl ] = 1 for l = 0.
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Theorem 4.10 ([6, Theroem 1.7]) The operator d = q d
dq is a derivation on MD ,

it maps FilW,L
k,l (MD) to FilW,L

k+2,l+1(MD).

The proof of Theorem4.10 uses generating functions of the brackets. It gives explicit
formulas for the derivatives d[s1, . . . , sl ] for all l which we omit here, since they are
complicated. For example we have

d[2, 1, 1] = −1

6
[2, 1, 1] + 1

2
[2, 1, 2] − [2, 1, 2, 1] + [2, 1, 3] + 3

2
[2, 2, 1]

− 2 [2, 2, 1, 1] + [2, 3, 1] + 6[3, 1, 1] − 8[3, 1, 1, 1] + [4, 1, 1].

In the following we give a list of subalgebras and review the results on whether they
are also closed under d or not.

(i) (quasi-)modular forms: Next to the connection to modular forms due to their
appearance in the Fourier expansion of multiple Eisenstein series, the brackets have
a direct connection to quasi-modular forms for SL2(Z) with rational coefficients. In
the case l = 1 we get the divisor sums σk−1(n) = ∑

d|n dk−1 and

[k] = 1

(k − 1)!
∑

n>0

σk−1(n)qn .

These simple brackets appear in the Fourier expansion of classical Eisenstein series
with rational coefficients G̃k(τ ) := (−2πi)−kGk(τ ) since we also included the ratio-
nal numbers inMD . For example we have

G̃2 = − 1

24
+ [2] , G̃4 = 1

1440
+ [4] , G̃6 = − 1

60480
+ [6] .

Denote byMQ(SL2(Z)) = Q[G4,G6] and M̃Q(SL2(Z)) = Q[G2,G4,G6] the alge-
bras of modular forms and quasi-modular forms with rational coefficients.

It is a well-known fact that the space M̃Q(SL2(Z)) is closed under the operator
d = q d

dq .
(ii) Admissible brackets: We define the set of all admissible brackets qMZ as

the span of all brackets [s1, . . . , sl ] with s1 > 1 and 1. This space is a subalgebra
of MD [6, Theorem 2.13] and every bracket can be written as a polynomial in the
bracket [1] with coefficients in qMZ :

Theorem 4.11 ([6, Theorem 2.14, Proposition 3.14])

(i) We have MD = qMZ [ [1] ].
(ii) The algebraMD is a polynomial ring over qMZ with indeterminate [1], i.e.

MD is isomorphic to qMZ [ T ] by sending [1] to T .
(iii) The space qMZ is closed under d.

The elements in qMZ are the ones, where the corresponding multiple zeta values
exist. It will be reviewed in more detail in Sect. 7, when we consider the brackets as
q-analogues of multiple zeta values.
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(iii) Even brackets and brackets with no 1’s: Denote by MD even the space
spanned by 1 and all [s1, . . . , sl] with s j even for all 0 ≤ j ≤ l and by MD � the
space spanned by 1 and all [s1, . . . , sl ] with s j > 1. Both spacesMD even andMD �

are subalgebras ofMD [6, Proposition 2.15]. It is expected, that the spaceMD even

is not closed under d, since numerical calculation suggest, that for example d[4, 2] /∈
MD even. Whether the space MD � is closed under this operator is an open and
interesting question. In [7] it is shown, that this is actually equivalent to one part of
Conjecture 1 in [27] given by Okounkov.

To summarize, we have the following inclusion of Q-algebras

MQ(SL2(Z)) M̃Q(SL2(Z)) MD ev MD# qMZ MD

d

d

d?

d?
d d

The dashed arrows indicate the conjectured behavior of the map d, whereas the other
arrows are all known to be correct.

Though in length l = 1 we derive not just one but several expressions for d[s]
given by the following Proposition.

Proposition 4.12 ([6, Proposition 3.3]) For s1, s2 with s1 + s2 > 2 and s = s1 +
s2 − 2 we have the following expression for d[s]:
(

s

s1 − 1

)
d[s]
s

= [s1] · [s2] +
(

s

s1 − 1

)
[s + 1] −

∑

a+b=s+2

((
a − 1

s1 − 1

)
+
(
a − 1

s2 − 1

))
[a, b] .

If you compare this formula with the shuffle product of multiple zeta values (11) in
the length one times length one case you notice that Proposition4.12 basically states
that the brackets fulfill the shuffle product up to the term

( s
s1−1

) d[s]
s − ( s

s1−1

)[s + 1].
We end this section by using these formulas to prove the following identity

Proposition 4.13 The unique normalized cusp form Δ in weight 12 can be written
as

− 1

26 · 5 · 691Δ = 168[5, 7] + 150[7, 5] + 28[9, 3]

+ 1

1408
[2] − 83

14400
[4] + 187

6048
[6] − 7

120
[8] − 5197

691
[12] .

Proof With the Eisenstein series G̃6 and G̃12 given by

G̃6 = (−2πi)−6ζ(6) + [6] = − 1

60480
+ [6] ,

G̃12 = (−2πi)−12ζ(12) + [12] = 691

2615348736000
+ [12] ,
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the cusp form Δ can be written as Δ = −3316800G2
6 + 3432000G12. Using quasi-

shuffle product of brackets one can derive

Δ = 3455

198
[2] − 691

6
[4] + 6910

21
[6] + 115200[12] − 6633600[6, 6] .

and therefore

− 1

26 · 5 · 691Δ = 30[6, 6] − 1

12672
[2] + 1

1920
[4] − 1

672
[6] − 360

691
[12] .

(21)

Using Proposition4.12 for (s1, s2) = (4, 8), (5, 7), (6, 6) we get the following three
expressions for d[10]

d[10] = − 1

3
[5, 7] − 5

6
[6, 6] − 5

3
[7, 5] − 35

12
[8, 4] − 16

3
[9, 3] − 10[10, 2] − 20[11, 1]

− 1

4790016
[2] + 1

403200
[4] − 1

36288
[6] + 1

8640
[8] + 10[11] + 1

12
[12] ,

d[10] = − 5

21
[6, 6] − 5

7
[7, 5] − 2[8, 4] − 14

3
[9, 3] − 10[10, 2] − 20[11, 1]

+ 1

4790016
[2] − 1

604800
[4] + 1

127008
[6] + 10[11] + 1

21
[12] ,

d[10] = − 10

21
[7, 5] − 5

3
[8, 4] − 40

9
[9, 3] − 10[10, 2] − 20[11, 1]

− 1

4790016
[2] + 1

725760
[4] − 1

381024
[6] + 10[11] + 5

126
[12] .

Summing them up as 0 = −504 d[10] + 1890 d[10] − 1386 d[10] we get

0 =168[5, 7] − 30[6, 6] + 150[7, 5] + 28[9, 3]
+ 5

6336
[2] − 181

28800
[4] + 7

216
[6] − 7

120
[8] − 7[12] (22)

Combining (22) and (21), in order to eliminate the occurrence of [6, 6], we obtain
the desired identity.

5 Bi-Brackets and a Second Product Expression
for Brackets

In the previous section we have seen that the spaceMD of brackets has the structure
of a Q-algebra and that there is an explicit formula to express the product of two
brackets as a linear combination of brackets similarly to the stuffle product ofmultiple
zeta values. In this section we want to present a larger class of q-series, called
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bi-brackets. The quasi-shuffle product of brackets extend to this larger class and
therefore the space of bi-brackets is also a Q-algebra. The beautiful feature of bi-
brackets is, that there is a relation, which we call partition relation, which enables
one to express the product of two bi-brackets in a second different way. These two
product expressions then give a large class of linear relations, similar to the double
shuffle relations of multiple zeta values. A variation of the bi-brackets were also
studied in [41]. Later, the bi-brackets will be used to define regularized multiple
Eisenstein series in Sect. 6. All results in this section were studied and introduced
in [3].

5.1 Bi-Brackets and Their Generating Series

As motivated in the introduction of this section we want to study the following
q-series:

Definition 5.1 For r1, . . . , rl ≥ 0, s1, . . . , sl > 0 and we define the following q-
series

[
s1, . . . , sl
r1, . . . , rl

]
:=

∑

u1>···>ul>0
v1,...,vl>0

ur11
r1! . . .

urll
rl ! · vs1−1

1 . . . vsl−1
l

(s1 − 1)! . . . (sl − 1)! · qu1v1+···+ul vl ∈ Q[[q]]

which we call bi-brackets of weight r1 + · · · + rk + s1 + · · · + sl , upper weight s1 +
· · · + sl , lower weight r1 + · · · + rl and length l. By BD we denote the Q-vector
space spanned by all bi-brackets and 1.

The factorial factors in the definition of bi-brackets will become natural when
considering generating functions of bi-brackets and the connection to multiple zeta
values.

For r1 = · · · = rl = 0 the bi-brackets are just the brackets

[
s1, . . . , sl
0, . . . , 0

]
= [s1, . . . , sl ]

as defined in Sect. 4. Similarly to the Definition4.8 of the filtration for the spaceBD
we write for a subset A ∈ BD

FilWk (A) := 〈[s1, . . . , sl
r1, . . . , rl

]
∈ A

∣∣ 0 ≤ l ≤ k , s1 + · · · + sl ≤ k
〉
Q

FilDk (A) := 〈[s1, . . . , sl
r1, . . . , rl

]
∈ A

∣∣ 0 ≤ l ≤ k , r1 + · · · + rl ≤ k
〉
Q

FilLl (A) := 〈[s1, . . . , st
r1, . . . , rt

]
∈ A

∣∣ t ≤ l
〉
Q

.
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and again if we consider the length and weight filtration at the same time we use the
short notation FilW,L

k,l := FilWk FilLl and similar for the other filtrations.

Proposition 5.2 ([3, Proposition 4.2]) Let d := q d
dq , then we have

d

[
s1, . . . , sl
r1, . . . , rl

]
=

l∑

j=1

(
s j (r j + 1)

[
s1 , . . . , s j−1 , s j + 1 , s j+1, . . . , sl
r1 , . . . , r j−1 , r j + 1 , r j+1 , . . . , rl

])

and therefore d
(
FilW,D,L

k,d,l (BD)
)

⊂ FilW,D,L
k+1,d+1,l(BD).

Proof This is an easy consequence of the definition of bi-brackets and the fact that
d
∑

n>0 anq
n = ∑

n>0 nanq
n .

Proposition5.2 suggests that the bi-brackets can be somehow viewed as partial
derivatives of the brackets with total differential d.

In the following we now want to discuss the algebra structure of the space BD .
For this we extend the quasi-shuffle product� ofH1 to a larger space of words. Since
we have double indices we replace the alphabet Az = {z1, z2, . . . } by Abi

z := {zs,r |
s ≥ 1 , r ≥ 0}.

We consider on QAbi
z the commutative and associative product

zs1,r1 � zs2,r2 =
(
r1 + r2

r1

) s1∑

j=1

λ j
s1,s2 z j,r1+r2 +

(
r1 + r2

r1

) s2∑

j=1

λ j
s2,s1 z j,r1+r2

+
(
r1 + r2

r1

)
zs1+s2,r1+r2

and on Q〈Abi
z 〉 the commutative and associative quasi-shuffle product

zs1,r1w � zs2,r2v = zs1,r1(w � zs2,r2v) + zs2,r2(zs1,r1w � v) + (zs1,r1 � zs2,r2)(w � v) ,

where the the numbers λ
j
a,b ∈ Q for 1 ≤ j ≤ a are the same as before, i.e.

λ
j
a,b = (−1)b−1

(
a + b − j − 1

a − j

)
Ba+b− j

(a + b − j)! .

Theorem 5.3 ([3, Theroem 3.6]) The map
[
.
] : (Q〈Abi

z 〉,�) → (BD, ·) given by

w = zs1,r1 . . . zsl ,rl �−→ [w] =
[
s1, . . . , sl
r1, . . . , rl

]

fulfills [w � v] = [w] · [v] and therefore BD is a Q-algebra.
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Definition 5.4 For the generating function of the bi-brackets we write

∣∣∣∣
X1, . . . , Xl

Y1, . . . ,Yl

∣∣∣∣ :=
∑

s1,...,sl>0
r1,...,rl>0

[
s1 , . . . , sl

r1 − 1 , . . . , rl − 1

]
Xs1−1
1 . . . Xsl−1

l · Y r1−1
1 . . . Y rl−1

l .

These are elements in the ringBDgen = lim−→ j
BD[[X1, . . . , X j ,Y1, . . . ,Y j ]] of all

generating series of bi-brackets.

To derive relations between bi-brackets we will prove functional equations for their
generating functions. The key fact for this is that there are two different ways of
expressing these given by the following Theorem.

Theorem 5.5 ([3, Theroem 2.3]) For n ∈ N set

En(X) := enX and Ln(X) := eXqn

1 − eXqn
∈ Q[[q, X ]] .

Then for all l ≥ 1 we have the following two different expressions for the generating
functions:

∣∣∣∣
X1, . . . , Xl

Y1, . . . ,Yl

∣∣∣∣ =
∑

u1>···>ul>0

l∏

j=1

Eu j (Y j )Lu j (X j )

=
∑

u1>···>ul>0

l∏

j=1

Eu j (Xl+1− j − Xl+2− j )Lu j (Y1 + · · · + Yl− j+1)

(with Xl+1 := 0). In particular the partition relations5 holds:

∣∣∣∣
X1, . . . , Xl

Y1, . . . ,Yl

∣∣∣∣
P=
∣∣∣∣
Y1 + · · · + Yl , . . . ,Y1 + Y2,Y1
Xl , Xl−1 − Xl, . . . , X1 − X2

∣∣∣∣ . (23)

Remark 5.6 A nice combinatorial explanation for the partition relation (23) is the
following: By a partition of a natural number nwith l parts we denote a representation
of n as a sum of l distinct natural numbers, i.e. 15 = 4 + 4 + 3 + 2 + 1 + 1 is a
partition of 15 with the 4 parts given by 4, 3, 2, 1. We identify such a partition with a
tuple (u, v) ∈ Nl × Nl where the u j ’s are the l distinct numbers in the partition and
the v j ’s count their appearance in the sum. The above partition of 15 is therefore given
by the tuple (u, v) = ((4, 3, 2, 1), (2, 1, 1, 2)). By Pl(n) we denote all partitions of
n with l parts and hence we set

Pl(n) := {
(u, v) ∈ Nl × Nl | n = u1v1 + · · · + ulvl and u1 > · · · > ul > 0

}

5The bi-brackets and their generating series also give examples of what is called a bimould by
Ecalle in [16]. In his language the partition relation (23) states that the bimould of generating series
of bi-brackets is swap invariant.
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((4,3,2,1),(2,1,1,2)) = −−−−−−−−−−→ = ((6,4,3,2),(1,1,1,1))

Fig. 1 The conjugation of the partition 15 = 4 + 4 + 3 + 2 + 1 + 1 is given by
ρ(((4, 3, 2, 1), (2, 1, 1, 2))) = ((6, 4, 3, 2), (1, 1, 1, 1)) which can be seen by reflection the
corresponding Young diagram at the main diagonal

On the set Pl(n) one has an involution given by the conjugation ρ of partitions which
can be obtained by reflecting the corresponding Young diagram across the main
diagonal (Fig. 1).

On the set Pl(n) the conjugation ρ is explicitly given by ρ((u, v)) = (u′, v′)where
u′
j = v1 + · · · + vl− j+1 and v′

j = ul− j+1 − ul− j+2 with ul+1 := 0, i.e.

ρ :
(
u1, . . . , ul
v1, . . . , vl

)
�−→

(
v1 + · · · + vl , . . . , v1 + v2, v1
ul , ul−1 − ul, . . . , u1 − u2

)
. (24)

By the definition of the bi-brackets its clear that with the above notation they can be
written as

[
s1, . . . , sl
r1, . . . , rl

]
:= 1

r1!(s1 − 1)! . . . rl !(sl − 1)!
∑

n>0

⎛

⎝
∑

(u,v)∈Pl (n)

ur11 v
s1−1
1 . . . urll v

sl−1
l

⎞

⎠ qn .

The coefficients are given by a sum over all elements in Pl(n) and therefore it is
invariant under the action of ρ. As an example, consider [2, 2] and apply ρ to the
sum. Then we obtain

[2, 2] =
∑

n>0

⎛

⎝
∑

(u,v)∈P2(n)

v1 · v2
⎞

⎠ qn =
∑

n>0

⎛

⎝
∑

ρ((u,v))=(u′,v′)∈P2(n)

u′
2 · (u′

1 − u′
2)

⎞

⎠ qn

=
∑

n>0

⎛

⎝
∑

(u′,v′)∈P2(n)

u′
2 · u′

1

⎞

⎠ qn −
∑

n>0

⎛

⎝
∑

(u′,v′)∈P2(n)

u′2
2

⎞

⎠ qn =
[
1, 1

1, 1

]
− 2

[
1, 1

0, 2

]
.

(25)

This is exactly the relation one obtains by using the partition relation.

Corollary 5.7 ([3, Corollary 2.5]) (Partition relation in length one and two) For
r, r1, r2 ≥ 0 and s, s1, s2 > 0 we have the following relations in length one and two
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[
s

r

]
=
[
r + 1

s − 1

]
,

[
s1, s2
r1, r2

]
=

∑

0≤ j≤r1
0≤k≤s2−1

(−1)k
(
s1 − 1 + k

k

)(
r2 + j

j

)[
r2 + j + 1 , r1 − j + 1

s2 − 1 − k , s1 − 1 + k

]
.

Remark 5.8 (i) If we replace in the generating series in Definition5.4 the
bi-brackets by the corresponding bi-words in and enforce the partition rela-
tion (23) for this power series, we obtain an involution

P : Q〈Abi
z 〉 → Q〈Abi

z 〉 .

By Corollary5.7 it is for example P(zs,r ) = zr+1,s−1. This will be needed to
describe the second product structure in the next section.

(ii) In [41] the author introduces multiple q-zeta brackets Z
[s1,...,sr
r1,...,rl

]
, which can be

written in terms of bi-brackets and vice versa. For these objects the partition
relation has the nice form

Z

[
s1, . . . , sr
r1, . . . , rl

]
= Z

[
rl, . . . , r1
sl, . . . , s1

]
,

which can be interpreted in terms of duality. This is also used in [41] to describe
the second product structure for theZ. Similarly in [17] the authors use a duality
by Zhao [39] to describe a second product structure for another model of
q-analogues.

5.2 Double Shuffle Relations for Bi-Brackets

The partition relation together with the quasi-shuffle product can be used to obtain
a second expression for the product of two bi-brackets. Before giving the general
explanation this second product expression we illustrate it in two examples.

Example 5.9 (i) We want to given a second product expression for the product
[2] · [3]. By the partition relation we know that [2] = [1

1

]
, [3] = [1

2

]
and using

the quasi-shuffle product we have

[
1

1

]
·
[
1

2

]
=
[
1, 1

1, 2

]
+
[
1, 1

2, 1

]
− 3

[
1

3

]
+ 3

[
2

3

]
.

The partition relations for the length two bi-brackets on the right is given by
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[
1, 1

1, 2

]
=
[
3, 2

0, 0

]
+ 3

[
4, 1

0, 0

]
= [3, 2] + 3[4, 1] ,

[
1, 1

2, 1

]
=
[
2, 3

0, 0

]
+ 2

[
3, 2

0, 0

]
+ 3

[
4, 1

0, 0

]
= [2, 3] + 2[3, 2] + 3[4, 1] .

Combining all of this we obtain

[
2

0

]
·
[
3

0

]
=
[
1

1

]
·
[
1

2

]

=
[
1, 1

1, 2

]
+
[
1, 1

2, 1

]
− 3

[
1

3

]
+ 3

[
2

3

]

= [2, 3] + 3[3, 2] + 6[4, 1] + 3

[
4

1

]
− 3[4] .

Compare this to the shuffle product of multiple zeta values

ζ(2)ζ(3) = ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1) .

Since d[3] = 3
[4
1

]
this example exactly coincides with the formula in Proposi-

tion4.12 for the derivative d[k].
(ii) In higher length, expressing the product of two bi-brackets in a similar way as

in i) becomes interesting, since then the extra terms can’t be expressed with the
operator d anymore. Doing the same calculation for the product [3] · [2, 1], i.e.
using the partition relation, the quasi-shuffle product and again the partition
relation we obtain

[3] · [2, 1] =
[
1

2

]
·
[
1, 1

0, 1

]

=
[
1, 1, 1

2, 0, 1

]
+
[
1, 1, 1

0, 2, 1

]
+
[
1, 1, 1

0, 1, 2

]
+ 3

[
1, 2

0, 3

]
+
[
2, 1

2, 1

]
− 3

[
1, 1

0, 3

]
−
[
1, 1

2, 1

]

= [2, 1, 3] + [2, 2, 2] + 2[2, 3, 1] + 2[3, 1, 2] + 5[3, 2, 1] + 9[4, 1, 1]
+
[
2, 3

0, 1

]
+ 2

[
3, 2

0, 1

]
+ 3

[
4, 1

1, 0

]
− [2, 3] − 2[3, 2] − 6[4, 1] .

This product can be seen as the analogue of the shuffle product

ζ(3) · ζ(2, 1) = ζ(2, 1, 3) + ζ(2, 2, 2) + 2ζ(2, 3, 1) + 2ζ(3, 1, 2) + 5ζ(3, 2, 1) + 9ζ(4, 1, 1) .

Here the bi-brackets, which are not given as brackets, can not be written in terms of
the operator d in an obvious way.

This works for arbitrary lengths and yields a natural way to obtain the second product
expression for bi-brackets. To be more precise, denote by P : Q〈Abi

z 〉 → Q〈Abi
z 〉 the

involution defined in Remark i. Using this convention the second product expression
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for bi-brackets canbewritten inQ〈Abi
z 〉 for twowordsu, v ∈ Q〈Abi

z 〉 as P (P(u) � P(v)),
i.e. the two product expressions of bi-brackets which correspond to the stuffle and
shuffle product of multiple zeta values are given by

[u] · [v] = [u � v] , [u] · [v] = [P (P(u) � P(v))] . (26)

In contrast to multiple zeta values these two product expression are the same for
some cases, as one can check for the example [1] · [1, 1]. In the smallest length case,
we have the following explicit formulas for the two products expressions.

Proposition 5.10 ([2, Proposition 3.3]) For s1, s2 > 0 and r1, r2 ≥ 0 we have the
following two expressions for the product of two bi-brackets of length one:

(i) (“Stuffle product analogue for bi-brackets”)

[
s1
r1

]
·
[
s2
r2

]
=
[
s1, s2
r1, r2

]
+
[
s2, s1
r2, r1

]
+
(
r1 + r2

r1

)[
s1 + s2
r1 + r2

]

+
(
r1 + r2

r1

) s1∑

j=1

(−1)s2−1Bs1+s2− j

(s1 + s2 − j)!
(
s1 + s2 − j − 1

s1 − j

)[
j

r1 + r2

]

+
(
r1 + r2

r1

) s2∑

j=1

(−1)s1−1Bs1+s2− j

(s1 + s2 − j)!
(
s1 + s2 − j − 1

s2 − j

)[
j

r1 + r2

]

(ii) (“Shuffle product analogue for bi-brackets”)

[
s1
r1

]
·
[
s2
r2

]
=

∑

1≤ j≤s1
0≤k≤r2

(
s1 + s2 − j − 1

s1 − j

)(
r1 + r2 − k

r1

)
(−1)r2−k

[
s1 + s2 − j, j

k, r1 + r2 − k

]

+
∑

1≤ j≤s2
0≤k≤r1

(
s1 + s2 − j − 1

s1 − 1

)(
r1 + r2 − k

r1 − k

)
(−1)r1−k

[
s1 + s2 − j, j

k, r1 + r2 − k

]

+
(
s1 + s2 − 2

s1 − 1

)[
s1 + s2 − 1

r1 + r2 + 1

]

+
(
s1 + s2 − 2

s1 − 1

) r1∑

j=0

(−1)r2 Br1+r2− j+1

(r1 + r2 − j + 1)!
(
r1 + r2 − j

r1 − j

)[
s1 + s2 − 1

j

]

+
(
s1 + s2 − 2

s1 − 1

) r2∑

j=0

(−1)r1 Br1+r2− j+1

(r1 + r2 − j + 1)!
(
r1 + r2 − j

r2 − j

)[
s1 + s2 − 1

j

]

Having these two expressions for the product of bi-brackets we obtain a large
family of linear relations between them. Computer experiments suggest that actually
every bi-bracket can be written in terms of brackets and that motivates the following
surprising conjecture.
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Conjecture 5.11 The algebra BD of bi-brackets is a subalgebra of MD and in
particular we have

FilW,D,L
k,d,l (BD) ⊂ FilW,L

k+d,l+d(MD) .

The results towards this conjecture, beside the computer experiments which have
been done up to weight 8, are the following

Proposition 5.12 ([3, Proposition 4.4]) For l = 1 the Conjecture5.11 is true.

In [8] it will be shown, that Conjecture5.11 is also true for all length up to weight 7.
For higher weights and lengths there are no general statements. The only general
statement for the length two case is given by the following Proposition.

Proposition 5.13 ([3, Proposition 5.9]) For all s1, s2 ≥ 1 it is

[
s1, s2
1, 0

]
,

[
s1, s2
0, 1

]
∈ FilW,L

s1+s2+1,3(MD)

5.3 The Shuffle Brackets

We now want to define a q-series which is an element in BD and whose products
can be written in terms of the “real” shuffle product of multiple zeta values. For
e1, . . . , el ≥ 1 we generalize the generating function of bi-brackets to the following

∣∣∣∣∣
X1, ... , Xl
Y1, ... , Yl
e1, ... , el

∣∣∣∣∣ =
∑

u1>···>ul>0

l∏

j=1

Eu j (Y j )Lu j (X j )
e j . (27)

In particular for e1 = · · · = el = 1 these are the generating functions of the
bi-brackets. To show that the coefficients of these series are in BD for arbitrary
e j we need to define the differential operator DY

e1,...,el := DY1,e1DY2,e2 . . . DYl ,el with

DYj ,e =
e−1∏

k=1

(
1

k

(
∂

∂Yl− j+1
− ∂

∂Yl− j+2

)
− 1

)
.

where we set ∂
∂Yl+1

= 0.

Lemma 5.14 LetA be an algebra spanned by elements as1,...,sl with s1, . . . , sl ∈ N,
let H(X1, . . . , Xl) = ∑

s j
as1,...,sl X

s1−1
1 . . . Xsl−1

1 be the generating functions of these
elements and define for f ∈ Q[[X1, . . . , Xl ]]

f �(X1, . . . , Xl) = f (X1 + · · · + Xl , X2 + · · · + Xl, . . . , Xl) .

Then the following two statements are equivalent.
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(i) The map (H1,�) → A given by zs1 . . . zs j �→ as1,...,sl is an algebra
homomorphism.

(ii) For all r, s ∈ N it is

H �(X1, . . . , Xr ) · H �(Xr+1, . . . , Xr+s) = H �(X1, . . . , Xr+s)|sh(r+s)
r

,

where sh(r+s)
r = ∑

σ∈�(r,s) σ in the group ring Z[Sr+s] and the symmetric
group Sr acts on Q[[X1, . . . , Xr ]] by ( f

∣∣σ)(X1, . . . , Xr ) = f (Xσ−1(1), . . . ,

Xσ−1(r)) .

Proof This can be proven by induction over l together with Proposition 8 in [23].

Theorem 5.15 ([3, Theroem 5.7]) For s1, . . . , sl ∈ N define [s1, . . . , sl ]� ∈ BD
as the coefficients of the following generating function

H�(X1, . . . , Xl) =
∑

s1,...,sl≥1

[s1, . . . , sl]�Xs1−1
1 . . . Xsl−1

l

:=
∑

1≤m≤l
i1+···+im=l

1

i1! . . . im !D
Y
i1,...,im

∣∣∣∣
X1, Xim+1, Xim−1+im+1, . . . , Xi2+···+im+1

Y1, . . . , Yl

∣∣∣∣∣∣Y=0

.

Then we have the following two statements

i) The [s1, . . . , sl ]� fulfill the shuffle product, i.e.

H �
�

(X1, . . . , Xr ) · H �
�

(Xr+1, . . . , Xr+s) = H �
�

(X1, . . . , Xr+s)|sh(r+s)
r

.

ii) For s1 ≥ 1, s2, . . . , sl ≥ 2 we have [s1, . . . , sl ]� = [s1, . . . , sl ].
For low lengths we obtain the following examples:

Corollary 5.16 It is [s1]� = [s1] and for l = 2, 3, 4 the [s1, . . . , sl ]�are given by6

(i) [s1, s2]� = [s1, s2] + δs2,1 · 1
2

([
s1
1

]
− [s1]

)
,

(ii) [s1, s2, s3]� = [s1, s2, s3] + δs3,1 · 1
2

([
s1, s2
0, 1

]
− [s1, s2]

)

+ δs2,1 · 1
2

([
s1, s3
1, 0

]
−
[
s1, s3
0, 1

]
− [s1, s3]

)

+ δs2·s3,1 · 1
6

([
s1
2

]
− 3

2

[
s1
1

]
+ [s1]

)
,

6Here δa,b denotes the Kronecker delta, i.e δa,b is 1 for a = b and 0 otherwise.
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(iii) [s1, s2, s3, s4]� = [s1, s2, s3, s4] + δs4,1 · 1
2

([
s1, s2, s3
0, 0, 1

]
− [s1, s2, s3]

)

+δs3,1 · 1
2

([
s1, s2, s4
0, 1, 0

]
−
[
s1, s2, s4
0, 0, 1

]
+ [s1, s2, s4]

)

+δs2,1 · 1
2

([
s1, s3, s4
1, 0, 0

]
−
[
s1, s3, s4
0, 1, 0

]
+ [s1, s3, s4]

)

+δs2·s4,1 · 1
4

([
s1, s3
1, 1

]
− 2

[
s1, s3
0, 2

]
−
[
s1, s3
1, 0

]
+ [s1, s3]

)

+δs3·s4,1 · 1
6

([
s1, s2
0, 2

]
− 3

2

[
s1, s2
0, 1

]
+ [s1, s2]

)

+δs2·s3,1 · 1
6

([
s1, s4
0, 2

]
−
[
s1, s4
1, 1

]
+ 3

2

[
s1, s4
0, 1

]
+
[
s1, s4
2, 0

]
− 3

2

[
s1, s4
1, 0

]
+ [s1, s4]

)

+δs2·s3·s4,1 · 1

24

([
s1
3

]
− 2

[
s1
2

]
+ 11

6

[
s1
1

]
− [s1]

)
.

Proof This follows by calculating the coefficients of the seriesG� in Theorem5.15.

The shuffle brackets will be used to define shuffle regularized multiple Eisenstein
series in the next section.

6 Regularizations of Multiple Eisenstein Series

This section is devoted to Question1 in the introduction, which was to find a regular-
ization of the multiple Eisenstein series. We want to present two type of regulariza-
tion: The shuffle regularized multiple Eisenstein series [3, 9] and stuffle regularized
multiple Eisenstein series [3].

The definition of shuffle regularized multiple Eisenstein series uses a beautiful
connection of the Fourier expansion of multiple Eisenstein series and the coproduct
of formal iterated integrals. The other regularization, the stuffle regularized multiple
Eisenstein series uses the construction of the Fourier expansion ofmultiple Eisenstein
series together with a result on regularization of multitangent functions by Bouillot
[12].

We start by reviewing the definition of formal iterated integrals and the coprod-
uct defined by Goncharov. An explicit example in length two will make the above
mentioned connection of multiple Eisenstein series and this coproduct clear. After
doing this, we give the definition of shuffle and stuffle regularized multiple Eisen-
stein series as presented in [3, 9]. At the end of this section we compare these two
regularizations with a help of a few examples.
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6.1 Formal Iterated Integrals

Following Goncharov (Sect. 2 in [20]) we consider the algebra I generated by the
elements

I(a0; a1, . . . , aN ; aN+1), ai ∈ {0, 1}, N ≥ 0.

together with the following relations

(i) For any a, b ∈ {0, 1} the unit is given by I(a; b) := I(a; ∅; b) = 1.
(ii) The product is given by the shuffle product�

I(a0; a1, . . . , aM ; aM+N+1)I(a0; aM+1, . . . , aM+N ; aM+N+1)

=
∑

σ∈shM,N

I(a0; aσ−1(1), . . . , aσ−1(M+N ); aM+N+1),

where shM,N is the set of σ ∈ SM+N such that σ(1) < · · · < σ(M) and
σ(M + 1) < · · · < σ(M + N ).

(iii) The path composition formula holds: for any N ≥ 0 and ai , x ∈ {0, 1}, one has

I(a0; a1, . . . , aN ; aN+1) =
N∑

k=0

I(a0; a1, . . . , ak; x)I(x; ak+1, . . . , aN ; aN+1).

(iv) For N ≥ 1 and ai , a ∈ {0, 1} it is I(a; a1, . . . , aN ; a) = 0.
(v) The path inversion is satisfied:

I(a0; a1, . . . , aN ; aN+1) = (−1)N I(aN+1; aN , . . . , a1; a0) .

Definition 6.1 (Coproduct) Define the coproduct Δ on I by

Δ(I(a0; a1, . . . , aN ; aN+1)) :=
∑

⎛

⎝I(a0; ai1 , . . . , aik ; aN+1) ⊗
k∏

p=0

I(aip ; aip+1, . . . , aip+1−1; aip+1)

⎞

⎠ ,

where the sum on the right runs over all i0 = 0 < i1 < · · · < ik < ik+1 = N + 1
with 0 ≤ k ≤ N .

Proposition 6.2 ([20, Proposition 2.2]) The triple (I ,�,Δ) is a commutative
graded Hopf algebra over Q.

To calculate Δ(I(a0; a1, . . . , a8; a9)) one sums over all possible diagrams of the
following form (Fig. 2).
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Fig. 2 One diagram for the
calculation of
Δ (I(a0; a1, . . . , a8; a9)). It
gives the term
I (a0; a1, a4, a7; a9) ⊗
I (a0; a1)I (a1; a2, a3; a4)I
(a4; a5, a6; a7)I (a7; a8; a9)

a8

a7

a6

a5a4
a3

a2

a1

a0 a9

I(a
7 ;a

8 ;a
9 )

I(a4 ;a5 ,a6 ;a7)

I(a
1;
a 2
,a 3

;a 4
)

I(
a 0
;a

1
)

For our purpose it will be important to consider the quotient space7

I 1 = I /I(1; 0; 0)I .

Let us denote by
I (a0; a1, . . . , aN ; aN+1)

an image of I(a0; a1, . . . , aN ; aN+1) in I 1. The quotient map I → I 1 induces
a Hopf algebra structure on I 1, but for our application we just need that for any
w1,w2 ∈ I 1, one has Δ(w1 � w2) = Δ(w1) � Δ(w2). The coproduct on I 1

is given by the same formula as before by replacing I with I . For integers n ≥
0, s1, . . . , sr ≥ 1, we set

In(s1, . . . , sr ) := I (1; 0, 0, . . . , 1︸ ︷︷ ︸
s1

, . . . , 0, 0, . . . , 1︸ ︷︷ ︸
sr

, 0, . . . , 0︸ ︷︷ ︸
n

; 0).

In particular, we write8 I (s1, . . . , sr ) to denote I0(s1, . . . , sr ).

Proposition 6.3 ([9, Eqs. (3.5), (3.6) and Proposition 3.5])

(i) We have In(∅) = 0 if n ≥ 1 or 1 if n = 0.
(ii) For integers n ≥ 0, s1, . . . , sr ≥ 1,

In(s1, . . . , sr ) = (−1)n
∗∑( r∏

j=1

(
k j − 1

s j − 1

))
I (k1, . . . , kr ) ,

7If one likes to interpret the integrals as real integrals, then the passage from I to I 1 regularizes
these integrals such that “− log(0) = ∫

1>t>0
dt
t := 0”.

8This notion fits well with the iterated integral expression of multiple zeta values. Recall that

ζ(2, 3) =
∫

1>t1>···>t5>0

dt1
t1

· dt2
1 − t2︸ ︷︷ ︸
2

· dt3
t3

· dt4
t4

· dt5
1 − t5︸ ︷︷ ︸

3

.

This corresponds to I (2, 3) (but is of course not the same since the I are formal symbols).
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where the sum runs over all k1 + · · · + kr = s1 + · · · + sr + n with k1, . . . ,
kr ≥ 1.

(iii) The set {I (s1, . . . , sr ) | r ≥ 0, si ≥ 1} forms a basis of the space I 1.

We give an example for ii): In I 1 it is I (1; 0; 0) = 0 and therefore

0 = I (1; 0; 0)I (1; 0, 1; 0)
= I (1; 0, 0, 1; 0) + I (1; 0, 0, 1; 0) + I (1; 0, 1, 0; 0)
= 2I (3) + I1(2)

which gives I1(2) = −2I (3) = (−1)1
(2
1

)
I (3).

Remark 6.4 Statement (iii) in Proposition6.3 basically states that we can identify
I 1 with H1 by sending I (s1, . . . , sl) to zs1 . . . zsl . In other words we can equip H1

with the coproduct Δ. Instead of working with I we will use this identification in
the next section, when defining the shuffle regularized multiple Eisenstein series.

Example 6.5 In the following we are going to calculate Δ(I (3, 2)) = Δ(I (1; 0, 0,
1, 0, 1; 0)). Therefore we have to determine all possible markings of the diagram

where the corresponding summand in the coproduct does not vanish. For simplicity
we draw ◦ to denote a 0 and • to denote a 1. We will consider the 4 = 22 ways
of marking the two • in the top part of the circle separately. As mentioned in the
introduction, we want to compare the coproduct to the Fourier expansion of multiple
Eisenstein series. Therefore, in this case we also calculate the expansion of G3,2(τ )

using the construction described in Sect. 3.2. Recall that we also had the 4 different
parts GRR

3,2 , G
UR
3,2 , G

RU
3,2 and GUU

3,2 . We will see that the number and positions of the
marked • correspond to the number and positions of the letterU in the wordw ofGw.

(i) Diagrams with no marked •:

Corresponding sum in the coproduct:

I (0; ∅; 1) ⊗ I (1; 0, 0, 1, 0, 1; 0) = 1 ⊗ I (3, 2) .

The part of the Fourier expansion of G3,2 which is associated to this, is the one
with no U “occurring”, i.e. GRR

3,2 (τ ) = ζ(3, 2).
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(ii) Diagrams with the first • marked:

Corresponding sum in the coproduct:

I (1; 0, 0, 1; 0) ⊗ (
I (1; 0) · I (0; 0) · I (0; 1) · I (1; 0, 1; 0)) = I (3) ⊗ I (2) .

The associated part of the Fourier expansion ofG3,2 isGUR
3,2 (τ ) = g3(τ ) · ζ(2).

(iii) Diagrams with the second • marked:

Corresponding sum in the coproduct:

I (1; 0, 1; 0) ⊗ (
I (1; 0, 0, 1; 0) · I (0; 1) · I (1; 0))

+I (1; 0, 1; 0) ⊗ (
I (1; 0) · I (0; 0, 1, 0; 1) · I (1; 0))

+I (1; 0, 0, 1; 0) ⊗ (
I (1; 0) · I (0; 0) · I (0; 1, 0; 1) · I (1; 0))

= I (2) ⊗ I (3) − I (2) ⊗ I1(2) + I (3) ⊗ I (2) ,

whereweused I (0, 0, 1, 0; 1) = −I1(2) and I (0; 1, 0; 1) = (−1)2 I (1; 0, 1; 0)
= I (2). Together with I1(2) = −2I (3) this gives

3I (2) ⊗ I (3) + I (3) ⊗ I (2) .

Also the associated part of the Fourier expansion is the most complicated
one. We had GRU

3,2 (τ ) = ∑
m>0 Ψ3,2(mτ ) and with (16) we derived Ψ3,2(x) =

3Ψ2(x) · ζ(3) + Ψ3(x) · ζ(2), i.e.

GRU
3,2 (τ ) = 3g2(τ ) · ζ(3) + g3(τ ) · ζ(2) .

(iv) Diagrams with both • marked:

Corresponding sum in the coproduct: I (3, 2) ⊗ 1. The associated part of the
Fourier expansion of G3,2 is GUU

3,2 (τ ) = g3,2(τ ).
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Summing all 4 parts together we obtain for the coproduct

Δ(I (3, 2)) = 1 ⊗ I (3, 2) + 3I (2) ⊗ I (3) + 2I (3) ⊗ I (2) + I (3, 2) ⊗ 1

and for the Fourier expansion of G2,3(τ ):

G3,2(τ ) = ζ(3, 2) + 3g2(τ )ζ(3) + 2g3(τ )ζ(2) + g3,2(τ ) .

This shows that the left factors of the terms in the coproduct corresponds to the
functions g and the right factors side to the multiple zeta values. We will use this in
the next section to define shuffle regularized multiple Eisenstein series.

6.2 Shuffle Regularized Multiple Eisenstein Series

In this section we present the definition of shuffle regularized multiple Eisenstein
series as itwas done in [9] togetherwith the simplificationdeveloped in [3].Weuse the
observation of the section before and use the coproductΔ of formal iterated integrals
to define these series. Asmentioned inRemark6.4we can equip the spaceH1 with the
coproduct Δ instead of working with the spaceI 1. Denote byMZB ⊂ C[[q]] the
space of all formal power series inq which can bewritten as aQ-linear combination of
products of multiple zeta values, powers of (−2πi) and bi-brackets. In the following,
we set q = exp(2πiτ ) with τ being an element in the upper half-plane. Since the
coefficient of bi-brackets just have polynomials growth, the elements in MZB
and BD can be viewed as holomorphic functions in the upper half-plane with this
identification.

In analogy to the map Z� : (H1,�) → Z of shuffle regularized multiple zeta
values (Proposition3.2), the map g� : (H1,�) → Q[2πi][[q]] defined on the gener-
ators zt1 . . . ztl by

g�(zt1 . . . ztm ) = g�t1,...,tm (τ ) := (−2πi)t1+···+tm [t1, . . . , tm]� ,

is also an algebra homomorphism by Theorem5.15.
With this notation we can recall the definition of G� from [3] (which is a variant

of the definition in [9], where the authors did not use bi-brackets and the shuffle
bracket).

Definition 6.6 For integers s1, . . . , sl ≥ 1, define the functions G�s1,...,sl (τ ) ∈
MZB, called shuffle regularized multiple Eisenstein series, as

G�s1,...,sl (τ ) := m
(
(g� ⊗ Z�) ◦ Δ

(
zs1 . . . zsl

))
,

where m denotes the multiplication given by m : a ⊗ b �→ a · b and Z� denotes the
map for shuffle regularized multiple zeta values given in Proposition3.2.
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We can view G� as an algebra homomorphism G� : (H1,�) → MZB such that
the following diagram commutes

(H1,�)
Δ ��

G�

��

(H1,�) ⊗ (H1,�)

g�⊗Z�

��
MZB Q[2πi][[q]] ⊗ Zm

��

Theorem 6.7 ([3, Theroem 6.5 ], [9, Theroem 1.1, 1.2]) For all s1, . . . , sl ≥ 1 the
shuffle regularized multiple Eisenstein series G�s1,...,sl have the following properties:

(i) They are holomorphic functions on the upper half-plane having a Fourier
expansion with the shuffle regularized multiple zeta values as the constant
term.

(ii) They fulfill the shuffle product.
(iii) For integers s1, . . . , sl ≥ 2 they equal the multiple Eisenstein series

G�s1,...,sl (τ ) = Gs1,...,sl (τ )

and therefore they fulfill the stuffle product in these cases.

Parts (i) and (ii) in this theorem follow directly by definition. The important part here
is (iii), which states that the connection of the Fourier expansion and the coproduct, as
illustrated in Example6.5, holds in general. It also proves that the shuffle regularized
multiple Eisenstein series fulfill the stuffle product in many cases. Though the exact
failure of the stuffle product of these series is unknown so far.

6.3 Stuffle Regularized Multiple Eisenstein Series

Motivated by the calculation of the Fourier expansion of multiple Eisenstein series
described in Sect. 3.2 we consider the following construction.

Construction 6.8 Given a Q-algebra (A, ·) and a family of homomorphism

{w �→ fw(m)}m∈N

from (H1, ∗) to (A, ·), we define for w ∈ H1 and M ∈ N

Fw(M) :=
∑

1≤k≤l(w)
w1...wk=w

M>m1>···>mk>0

fw1(m1) . . . fwk (mk) ∈ A ,

where l(w) denotes the length of the word w and w1 . . .wk = w is a decomposition
of w into k words in H1.
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Proposition 6.9 ([3, Proposition 6.8]) For all M ∈ N the assignment w �→ Fw(M),
described above, determines an algebra homomorphism from (H1, ∗) to (A, ·). In
particular {w �→ Fw(m)}m∈N is again a family of homomorphism as used in Con-
struction6.8.

For a word w = zs1 . . . zsl ∈ H1 we also write in the following fs1,...,sl (m) :=
fw(m) and similarly Fs1,...,sl (M) := Fw(M).

Example 6.10 Let fw(m) be as in Construction6.8. In small lengths the Fw are given
by

Fs1 (M) =
∑

M>m1>0

fs1 (m1) , Fs1,s2 (M) =
∑

M>m1>0

fs1,s2 (m1) +
∑

M>m1>m2>0

fs1 (m1) fs2 (m2)

and one can check directly by the use of the stuffle product for the fw that

Fs1 (M) · Fs2 (M) =
∑

M>m1>0

fs1 (m1) ·
∑

M>m2>0

fs2 (m2)

=
∑

M>m1>m2>0

fs1 (m1) fs2 (m2) +
∑

M>m2>m1>0

fs2 (m2) fs1 (m1) +
∑

M>m1>0

fs1 (m1) fs2 (m1)

=
∑

M>m1>m2>0

fs1 (m1) fs2 (m2) +
∑

M>m2>m1>0

fs2 (m2) fs1 (m1)

+
∑

M>m1>0

(
fs1,s2 (m1) + fs2,s1 (m1) + fs1+s2 (m1)

)

= Fs1,s2 (M) + Fs2,s1 (M) + Fs1+s2 (M) .

Let us now give an explicit example for maps fw in which we are interested.
Recall (Definition3.5) that for integers s1, . . . , sl ≥ 2 we defined the multitangent
function by

Ψs1,...,sl (z) =
∑

n1>···>nl
n j∈Z

1

(z + n1)s1 · · · (z + nl)sl
.

In [12], where these functions were introduced, the author uses the notation
T es1,...,sl (z)which corresponds to our notationΨs1,...,sl (z). It was shown there that the
series Ψs1,...,sl (z) converges absolutely when s1, . . . , sl ≥ 2. These functions fulfill
(for the cases they are defined) the stuffle product. As explained in Sect. 3.2 the mul-
titangent functions appear in the calculation of the Fourier expansion of the multiple
Eisenstein series Gs1,...,sl , for example in length two it is

Gs1,s2(τ ) =ζ(s1, s2) + ζ(s1)
∑

m1>0

Ψs2(m1τ ) +
∑

m1>0

Ψs1,s2(m1τ )

+
∑

m1>m2>0

Ψs1(m1τ )Ψs2(m2τ ) .
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One nice result of [12] is a regularization of the multitangent function to get a
definition of Ψs1,...,sl (z) for all s1, . . . , sl ∈ N. We will use this result together with
the above construction to recover the Fourier expansion of the multiple Eisenstein
series.

Theorem 6.11 ([12]) For all s1, . . . , sl ∈ N there exist holomorphic functions
Ψs1,...,sl on H with the following properties

(i) Setting q = e2πiτ for τ ∈ H the map w �→ Ψw(τ ) defines an algebra homomor-
phism from (H1, ∗) to (C[[q]], ·).

(ii) In the case s1, . . . , sl ≥ 2 the Ψs1,...,sl are given by the multitangent functions
in Definition3.5.

(iii) The monotangents functions have the q-expansion given by

Ψ1(τ ) = π

tan(πτ )
= (−2πi)

(
1

2
+
∑

n>0

qn

)

and for k ≥ 2 by

Ψk(τ ) = (−2πi)k

(k − 1)!
∑

n>0

nk−1qn .

(iv) (Reduction intomonotangent function) EveryΨs1,...,sl (τ ) can bewritten as aZ -
linear combination of monotangent functions. There are explicit εs1,...,sli,k ∈ Z
s.th.

Ψs1,...,sl (τ ) = δs1,...,sl +
l∑

i=1

si∑

k=1

εs1,...,sli,k Ψk(τ ) ,

where δs1,...,sl = (πi)l

l! if s1 = · · · = sl = 1 and l even and δs1,...,sl = 0 otherwise.
For s1 > 1 and sl > 1 the sum on the right starts at k = 2, i.e. there are no
Ψ1(τ ) appearing and therefore there is no constant term in the q-expansion.

Proof This is just a summary of the results in Section 6 and 7 of [12]. The last
statement (iv) is given by Theorem 6 in [12].

Due to iv) in the Theorem the calculation of the Fourier expansion of multiple Eisen-
stein series, where ordered sums ofmultitangent functions appear, reduces to ordered
sums of monotangent functions. The connection of these sums to the brackets, i.e.
to the functions g, is given by the following fact which can be seen by using iii) of
the above Theorem. For n1, . . . , nr ≥ 2 it is

gs1,...,sr (τ ) =
∑

m1>···>ml>0

Ψs1(m1τ ) . . . Ψsl (mlτ ) .

For w ∈ H1 we now use the Construction6.8 with A = C[[q]] and the family of
homomorphism {w �→ Ψw(nτ )}n∈N (see Theorem6.11 (i) ) to define
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g∗,M(w) := (−2πi)|w| ∑

1≤k≤l(w)
w1...wk=w

∑

M>m1>···>mk>0

Ψw1(m1τ ) . . . Ψwk (mkτ ) .

From Proposition6.9 it follows that for all M ∈ N the map g∗,M is an algebra homo-
morphism from (H1, ∗) to C[[q]].

To define stuffle regularized multiple Eisenstein series we need the following: For
an arbitrary quasi-shuffle algebraQ〈A〉 define the following coproduct for a word w

ΔH (w) =
∑

uv=w

u ⊗ v .

Then it is known due to Hoffman ([21]) that the space (Q〈A〉,�,ΔH ) has the struc-
ture of a bialgebra. With this we try to mimic the definition of the G� and use the
coproduct structure on the space (H1, ∗,ΔH ) to define for M ≥ 0 the function G∗,M

and then take the limit M → ∞ to obtain the stuffle regularized multiple Eisenstein
series. For this we consider the following diagram

(H1, ∗)
ΔH ��

G∗,M

��

(H1, ∗) ⊗ (H1, ∗)

g∗,M⊗ Z∗

��
C[[q]] C[[q]] ⊗ Zm

��

with the above algebra homomorphism g∗,M : (H1, ∗) → C[[q]] and the map Z∗ for
stuffle regularized multiple zeta values given in Proposition3.2.

Definition 6.12 For integers s1, . . . , sl ≥ 1 and M ≥ 1, we define the q-series
G∗,M

s1,...,sr ∈ C[[q]] as the image of the word w = zs1 . . . zsl ∈ H1 under the algebra
homomorphism (g∗,M ⊗ Z∗) ◦ ΔH :

G∗,M
s1,...,sl (τ ) := m

(
(g∗,M ⊗ Z∗) ◦ ΔH

(
w
)) ∈ C[[q]] .

For s1, . . . , sl ≥ 2 the limit

G∗
s1,...,sl (τ ) := lim

M→∞ G∗,M
s1,...,sl (τ ) (28)

exists and we have Gs1,...,sl = G∗
s1,...,sl = G�s1,...,sl ([3, Proposition 6.13]).

Remark 6.13 The open question is for what general s1, . . . , sl the limit in (28) exists.
It is believed that this is exactly the case for s1 ≥ 2 and s2, . . . , sl ≥ 1 as explained
in Remark 6.14 in [3]. This would be the case if Ψ1,...,1 are the only multitangent
functions with a constant term in the decomposition of Theorem6.11 (iv). That this
is the case is remarked, without a proof, in [13] in the last sentence of page 3.

Theorem 11 ([3]) For all s1, . . . , sl ∈ N and M ∈ N the G∗,M
s1,...,sl ∈ C[[q]] have the

following properties:
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(i) Their product can be expressed in terms of the stuffle product.
(ii) In the case where the limit G∗

s1,...,sl := limM→∞ G∗,M
s1,...,sl exists, the functions

G∗
s1,...,sl are elements inMZB.

(iii) For s1, . . . , sl ≥ 2 the G∗
s1,...,sl exist and equal the classical multiple Eisenstein

series
Gs1,...,sl (τ ) = G∗

s1,...,sl (τ ) .

6.4 Double Shuffle Relations for Regularized Multiple
Eisenstein Series

By Theorem6.7 we know that the product of two shuffle regularized multiple Eisen-
stein series G�s1,...,sl with s1, . . . , sl ≥ 1 can be expressed by using the shuffle product
formula. This means we can for example replace every ζ byG� in the shuffle product
(4) of multiple zeta values and obtain

G�2 · G�3 = G�2,3 + 3G�3,2 + 6G�4,1 . (29)

Due to Theorem6.7 (iii) we know that G�s1,...,sl = Gs1,...,sl whenever s1, . . . , sl ≥ 2.
Since the product of two multiple Eisenstein series Gs1,...,sl can be expressed using
the stuffle product formula we also have

G�2 · G�3 = G2 · G3 = G2,3 + G3,2 + G5

= G�2,3 + G�3,2 + G�5 .
(30)

Combining (29) and (30) we obtain the relation G�5 = 2G�3,2 + 6G�4,1. In the follow-
ing we will call these relations, i.e. the relations obtained by writing the product of
two G�s1,...,sl with s1, . . . , sl ≥ 2 as the stuffle and shuffle product, restricted double
shuffle relations.

We know that multiple zeta values fulfill even more linear relations, in particular
we can express the product of two multiple zeta values ζ(s1, . . . , sl) in two different
ways whenever s1 ≥ 2 and s2, . . . , sl ≥ 1. A natural question therefore is, in which
cases the G� also fulfill these additional relations. The answer to this question is
that some are satisfied and some are not, as the following will show.

In [3, Example 6.15] it is shown thatG�2,1,2 = G∗
2,1,2 ,G

�

2,1 = G∗
2,1,G

�

2,2,1 = G∗
2,2,1

and G�4,1 = G∗
4,1. Since the product of two G∗ can be expressed using the stuffle

product we obtain

G�2 · G�2,1 = G∗
2 · G∗

2,1

= G∗
2,1,2 + 2G∗

2,2,1 + G∗
4,1 + G∗

2,3

= G�2,1,2 + 2G�2,2,1 + G�4,1 + G�2,3 .

(31)

Using also the shuffle product to express G�2 · G�2,1 we obtain a linear relation in
weight 5 which is not covered by the restricted double shuffle relations. This linear
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relation was numerically observed in [9] but could not be proven there. So far it is not
known exactly which products of the G� can be written in terms of stuffle products.

We end this section by comparing different versions of the double shuffle relations
and explain, why multiple Eisenstein series can’t fulfill every double shuffle relation
of multiple zeta values. For this we write for words u, v ∈ H1

ds(u, v) := u � v − u ∗ v ∈ H1 .

Recall that by H0 we denote the algebra of all admissible words, i.e. H0 = 1 · Q +
xHy. Additionally we set H2 = Q〈{z2, z3, . . . }〉 to be the span of all words in H1

with no z1 occurring, i.e. the words for which the multiple Eisenstein series G exists.
These are also the words for which the product of two multiple Eisenstein series can
be expressed as the shuffle and stuffle product by Theorem6.7. Denote by |w| ∈ H1

the length of the word w with respect to the alphabet {x, y} and define

edsk := {
ds(u, v) ∈ H0 | |u| + |v| = k, u ∈ H0, v ∈ H0 ∪ {z1}

}
,

fdsk := {
ds(u, v) ∈ H0 | |u| + |v| = k, u, v ∈ H0

}
,

rdsk := {
ds(u, v) ∈ H0 | |u| + |v| = k, u, v ∈ H2

}
.

Also set eds = ⋃
k>0 edsk and similarly fds and rds. These spaces can be seen as

the words in H0 corresponding to the extended9-, finite- and the restricted double
shuffle relations. We have the inclusions

rdsk ⊂ fdsk ⊂ edsk .

View ζ as a map H0 → Z by sending the word zs1 . . . zsl to ζ(s1, . . . , sl). It is
known ([24, Theroem 2]), that edsk is in the kernel of the map ζ and it is expected
(Statement (3) after Conjecture 1 in [24]) that actually edsk = ker(ζ). Viewing G�

in a similar way as amapH0 → MZB, we know that rdsk is contained in the kernel
of this map (Theorem6.7 (iv)). But due to (31) we also have ds(z2, z2z1) ∈ ker(G�)

which is not an element of rds5. In [2] Example 6.15 ii) it is shown that there are
also elements in fdsk ⊂ edsk , that are not in the kernel of G�. We therefore expect

rds � ker G� � eds

and the above examples show, that it seems to be crucial to understand for which
indices we have G� = G∗ to answer these questions.

We now discuss applications of the extended double shuffle relations to the classi-
cal theory of (quasi-)modular forms. As we have seen in the introduction it is known
due to Euler that

9In [24] the authors introduced the notion of extended double shuffle relations. We use this notion
here for smaller subset of these relations given there as the relations described in statement (3) on
page 315.
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ζ(2)2 = 5

2
ζ(4) , ζ(4)2 = 7

6
ζ(8) , ζ(6)2 = 715

691
ζ(12) . (32)

In the following, wewant to show how to prove these relations using extended double
shuffle relations and argue why for multiple Eisenstein series the second is fulfilled
but the first and the last equation of (32) are not.

(i) The relation ζ(2)2 = 5
2ζ(4) can be proven in the followingway by using double

shuffle relations. It is z2 ∗ z2 = 2 ds(z3, z1) − 1
2 ds(z2, z2) + 5

2 z4, since

ds(z3, z1) = z3z1 + z2z2 − z4 ,

ds(z2, z2) = 4z3z1 − z4 ,

z2 ∗ z2 = 2z2z2 + z4 .

Applying the map ζ we therefore deduce

ζ(2)2 = ζ(z2 ∗ z2) = ζ

(
2 ds(z3, z1) − 1

2
ds(z2, z2) + 5

2
z4

)
= 5

2
ζ(4) .

This relation is not true for Eisenstein series. Though ds(z2, z2) is in the kernel
of G� the element ds(z3, z1) is not. In fact, using the explicit formula for the
Fourier expansion of G�3,1 and G�2,2 together with Proposition4.12 for d[2] we
obtain G�(ds(z3, z1)) = 6ζ(2) dG2, where as before d = q d

dq . Using this we
get

G2
2 = G�(z2 ∗ z2) = G�

(
2 ds(z3, z1) − 1

2
ds(z2, z2) + 5

2
z4

)
= 12ζ(2) dG2 + 5

2
G4 .

This is a well-known fact in the theory of quasi-modular forms ([36]).
(ii) Similarly to the above example one can prove the relation ζ(4)2 = 7

6ζ(8) by
checking that

z4 ∗ z4 = 2

3
ds(z4, z4) − 1

2
ds(z3, z5) + 7

6
z8

and since ds(z4, z4), ds(z3, z5) ∈ rds8 ⊂ ker G� we also derive G4
2 = 7

6G8

by applying the map G� to this equation.
(iii) To prove the relation ζ(6)2 = 715

691ζ(12) in addition to the double shuffles of
the form ds(za, zb) double shuffles of the form ds(zazb, zc) are needed as well.
This follows indirectly from the results obtained in [19]. Using the computer
one can check that

z6 ∗ z6 = 2z6z6 + z12 = 715

691
z12 + 1

22 · 19 · 113 · 691 · (R + E)

with R ∈ rds12 and E ∈ eds12 \ rds12 being the quite complicated elements
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R = 2005598 ds(z6, z6) − 8733254 ds(z7, z5) + 8128450 ds(z8, z4) + 5121589 ds(z9, z3)

+ 16364863 ds(z10, z2) + 2657760 ds(z2z8, z2) + 5220600 ds(z3z7, z2)

+ 12711531 ds(z4z6, z2) + 10460184 ds(z5z5, z2) + 18601119 ds(z6z4, z2)

+ 33877826 ds(z7z3, z2) + 39496002 ds(z8z2, z2) − 13288800 ds(z2z2, z8)

− 5220600 ds(z2z7, z3) − 5734750 ds(z3z6, z3) − 84659 ds(z4z5, z3)

+ 2820467 ds(z5z4, z3) − 5486485 ds(z6z3, z3) + 8462489 ds(z7z2, z3)

− 6067131 ds(z2z6, z4) − 7532671 ds(z3z5, z4) − 10879336 ds(z4z3, z5)

− 5151234 ds(z4z4, z4) + 3440519 ds(z5z3, z4) − 1458819 ds(z6z2, z4)

+ 2259096 ds(z5z2, z5) − 4319105 ds(z3z4, z5) − 778598 ds(z5z2, z5)

+ 7609581 ds(z2z4, z6) + 13064898 ds(z3z3, z6) − 1281420 ds(z3z2, z7) ,

E = −22681134 ds(z11, z1) + 10631040 ds(z3z8, z1) + 4241200 ds(z7z1, z4)

+ 31893120 ds(z4z7, z1) + 58185960 ds(z5z6, z1) + 78309000 ds(z6z5, z1)

+ 77976780 ds(z7z4, z1) + 44849700 ds(z8z3, z1) − 13288800 ds(z9z2, z1)

− 15946560 ds(z10z1, z1) + 75052824 ds(z9z1, z2) + 19477164 ds(z8z1, z3)

− 12951740 ds(z6z1, z5) − 10631040 ds(z2z1, z9)

Here the elements E and R are in the kernel of ζ but E , in contrast to R, is not
in the kernel of G�. The defect here is given by the cusp form Δ in weight 12
as one can derive

G�(E) = −2147

1200
(−2πi)12Δ .

It is still an open problem how to derive these Euler relations in general by using
double shuffle relations. The last example shows that this also seems to be very
complicated. But as the examples above show, this might be of great interest to
understand the connection of modular forms and multiple zeta values. This together
with the question which double shuffle relations are fulfilled by multiple Eisenstein
series will be considered in upcoming works by the author.

7 q-Analogues of Multiple Zeta Values

In general, a q-analogue of an mathematical object is a generalization involving a
new parameter q that returns the original object in the limit as q → 1. The easiest
example of such an generalization is the q-analogue of a natural number n ∈ N given
by

[n]q := 1 − qn

1 − q
= 1 + q + · · · + qn−1 .

Clearly this gives back the original number n as limq→1[n]q = n.
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Several differentmodels for q-analogues ofmultiple zeta values have been studied
in recent years. A good overview of them can be found in [39]. There are different
motivations to study q-analogues of multiple zeta values.

That our brackets can be seen as q-analogue of multiple zeta values somehow
occurred by accident since their original motivation was their appearance in the
Fourier expansion of multiple Eisenstein series. But as turned out, seeing them as
q-analogues gives a direct connection to multiple zeta values. In this section we first
show how the brackets can be seen as a q-analogue of multiple zeta values and then
discuss how one can obtain relations between multiple zeta values using the results
obtained in [6]. The second section will be devoted to connecting the brackets to
other q-analogues.

7.1 Brackets as q-Analogues of MZV and the Map Zk

Define for k ∈ N the map Zk : Q[[q]] → R ∪ {∞} by

Zk( f ) = lim
q→1

(1 − q)k f (q) .

Since we have seen that the brackets can be written as

[s1, . . . , sl ] = 1

(s1 − 1)! . . . (sl − 1)!
∑

n1>···>nl>0

l∏

j=1

qn j Ps j−1 (qn j )

(1 − qn j )s j

and using Pk−1(1) = (k − 1)! and interchanging the summation and the limit we
derive ([6, Proposition 6.4]), that for s1 > 1, i.e. [s1, . . . , sl] ∈ qMZ

Zk ([s1, . . . , sl]) =
{

ζ(s1, . . . , sl) , k = s1 + · · · + sl,
0 , k > s1 + · · · + sl .

Due toMD = qMZ [ [1] ] (Theorem4.11) we can define a well-defined map10 on
the whole space MD by

Zalg
k : FilWk (MD) → R[T ]

Zalg
k

⎛

⎝
k∑

j=0

g j [1]k− j

⎞

⎠ =
k∑

j=0

Z j (g j )T
k− j ∈ R[T ]

where g j ∈ FilWj (qMZ ).

10This map is similar to the evaluation map Z∗ : H1 → R[T ], of stuffle regularized multiple zeta
values, given in Proposition 1 in [24]. We used this map in the previous sections (Proposition3.2)
with T = 0.
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Every relation between multiple zeta values of weight k is contained in the kernel
of the map Zk . Therefore the kernel of Zk was studied in [6].

Theorem 7.1 ([6, Theroem 1.13]) For the kernel of Zalg
k ∈ FilWk (MD) we have

(i) If for [s1, . . . , sl] it holds s1 + · · · + sl < k, then Zalg
k [s1, . . . , sl ] = 0.

(ii) For any f ∈ FilWk−2(MD) we have Zalg
k d( f ) = 0, i.e., d FilWk−2(MD) ⊆

ker Zk.
(iii) If f ∈ FilWk (MD) is a cusp form for SL2(Z), then Zalg

k ( f ) = 0.

Example 7.2 We illustrate some applications for Theorem7.1. For this we recall
identities for the derivatives and relations of brackets as they were given in [6]. All
of them can be obtained by using the results explained in Sect. 4.

d[1] = [3] + 1

2
[2] − [2, 1] , (33)

d[2] = [4] + 2[3] − 1

6
[2] − 4[3, 1] , (34)

d[2] = 2[4] + [3] + 1

6
[2] − 2[2, 2] − 2[3, 1] , (35)

d[1, 1] = [3, 1] + 3

2
[2, 1] + 1

2
[1, 2] + [1, 3] − 2[2, 1, 1] − [1, 2, 1] , (36)

[8] = 1

40
[4] − 1

252
[2] + 12[4, 4] . (37)

Using Theorem7.1 as immediate consequences and without any difficulties we
recover the following well-known identities for multiple zeta values.

(i) If we apply Z3 to (33) we deduce ζ(3) = ζ(2, 1).
(ii) If we apply Z4 to (34) and (35) we deduce ζ(4) = 4ζ(3, 1) = 4

3ζ(2, 2).
(iii) The identity (36) reads in qMZ [ [1] ] as

d[1, 1] =
(

[3] − [2, 1] + 1

2
[2]

)
· [1] + 2[3, 1] − 1

2
[4] − 1

2
[2, 1] − 1

2
[3] + 1

3
[2] .

Applying Zalg
4 we deduce again the two relations ζ(3) = ζ(2, 1) and 4ζ(3, 1) =

ζ(4), since by Theorem7.1 we have

Zalg
4 (d[1, 1]) = (ζ(3) − ζ(2, 1)) T − 1

2
ζ(4) + 2ζ(3, 1) = 0 .

(iv) If we apply Z8 to (37) we deduce ζ(8) = 12ζ(4, 4).
(v) As we have seen in Proposition4.13 the cusp form Δ can be written as
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− 1

26 · 5 · 691Δ = 168[5, 7] + 150[7, 5] + 28[9, 3]

+ 1

1408
[2] − 83

14400
[4] + 187

6048
[6] − 7

120
[8] − 5197

691
[12] .

(38)

Letting Z12 act on both sides of (38) one obtains the relation (6)

5197

691
ζ(12) = 168ζ(5, 7) + 150ζ(7, 5) + 28ζ(9, 3) .

But asmentioned in the introduction there are also elements in the kernel of Zk that
are not covered byTheorem7.1. Inweight 4 one has the following relation ofmultiple
zeta values ζ(4) = ζ(2, 1, 1), i.e. it is [4] − [2, 1, 1] ∈ ker Z4. But this element can’t
bewritten as a linear combination of cusp forms, lowerweight brackets or derivatives.
But using the double shuffle relations for bi-brackets described in Sect. 5.2 one can
prove11 that

[4] − [2, 1, 1] = 1

2
(d[1] + d[2]) − 1

3
[2] − [3] +

[
2, 1

1, 0

]
. (39)

Another way to see that many of the bi-brackets of weight k are in the ker-
nel of the map Zk is the following. Assume that s1 > r1 + 1 and s j ≥ r j + 1 for
j = 2, . . . , l, then using again the representation with the Eulerian polynomials (See
also Proposition 1 [41]) we get

Zs1+···+sl

([
s1, . . . , sl
r1, . . . , rl

])
= 1

r1! . . . rl !ζ(s1 − r1, . . . , sl − rl)

and in particular with this assumption it is
[s1,...,sl
r1,...,rl

] ∈ ker Zs1+···+sl+1.
The study of the kernel Zk is of great interest since it contains every relation of

weight k. We expect that every element in the kernel of Zk can be described using
bi-brackets of a “certain kind” and it seems to be a really interesting question to
specify this “certain kind” explicitly. To determine which bi-brackets are exactly
in the kernel of the map Zk and also which bi-brackets can be written in terms of
brackets in qMZ is an open problem. The naive guess, that exactly the bi-brackets

11That the last term
[2,1
1,0

]
in (39) is in the kernel of Z4 can be proven in the following way: In

Proposition 7.2 [6] it is shown, that an element f = ∑
n>0 anq

n with an = O(nm) and m < k − 1
is in the kernel of Zk . Here we have

[
2, 1

1, 0

]
=

∑

u1>u2>0
v1,v2>0

v1u1q
v1u1+v2u2 <

∑

u1,u10
v1,v2>0

v1u1q
v1u1+v2u2 = d[1] · [1] ,

where the < is meant to be coefficient wise. Since the coefficients of d[1] · [1] grow like n2 log(n)2

we conclude
[2,1
1,0

] ∈ ker Z4.
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[s1,...,sl
r1,...,rl

]
where at least one r j > 0 are elements in the kernel of Zs1+···+sl+r1+···+rl is

wrong, since for example

lim
q→1

(1 − q)3
[
1, 1

1, 0

]
= ∞ .

7.2 Connection to Other q-Analogues

In [39] the author gives an overview over several different q-analogues of multiple
zeta values. Here we complement his work and focus on aspects related to our
brackets. To compare the brackets to other q-analogues we first generalize the notion
of a q-analogue of multiple zeta values as it was done in [7]. This notion of a
q-analogue does cover many but not all q-analogues described in [39].

In the following we fix a subset S ⊂ N, which we consider as the support for
index entries, i.e. we assume s1, . . . , sl ∈ S. For each s ∈ S we let Qs(t) ∈ Q[t] be
a polynomial with Qs(0) = 0 and Qs(1) �= 0. We set Q = {Qs(t)}s∈S . A sum of the
form

ZQ(s1, . . . , sl) :=
∑

n1>···>nl>0

l∏

j=1

Qsj (q
n j )

(1 − qn j )s j
(40)

with polynomials Qs as before, defines a q-analogue of a multiple zeta-value of
weight k = s1 + · · · + sl and length l. Observe only because of Qs1(0) = 0 this
defines an element ofQ[[q]]. That these objects are in fact a q-analogue of a multiple
zeta-value is justified by the following calculation.

lim
q→1

(1 − q)k ZQ(s1, . . . , sl) =
∑

n1>···>nl>0

l∏

j=1

lim
q→1

(
Qsj (q

n j )
(1 − q)s j

(1 − qn j )s j

)

= Qs1(1) . . . Qsl (1) · ζ(s1, . . . , sl) .

Here we used that lim
q→1

(1 − q)s/(1 − qn)s = 1/ns and with the same arguments as

in [6] Proposition 6.4, the above interchange of the limit with the sum can be justified
for all (s1, ..., sl) with s1 > 1. Related definitions for q-analogues of multiple zeta
values are given in [14, 28, 33, 42]. It is convenient to define ZQ(∅) = 1 and then
we denote the vector space spanned by all these elements by

Z(Q, S) := 〈
ZQ(s1, . . . , sl)

∣∣ l ≥ 0 and s1, . . . , sl ∈ S
〉
Q

. (41)

Note by the above convention we have, that Q is contained in this space.

Lemma 7.3 ([7, Lemma 2.1]) If for each r, s ∈ S there exists numbers λ j (r, s) ∈ Q

such that
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Qr (t) · Qs(t) =
∑

j∈S
1≤ j≤r+s

λ j (r, s)(1 − t)r+s− j Q j (t) , (42)

then the vector space Z(Q, S) is a Q-algebra.

Theorem 7.4 ([7, Theroem 2.4]) Let Z(Q,N>1) be any family of q-analogues of
multiple zeta values as in (41), where each Qs(t) ∈ Q is a polynomial with degree
at most s − 1, then

Z(Q,N>1) = MD� ,

whereMD � was the in Sect.4.2 defined subalgebra ofMD spanned by all brackets
[s1, . . . , sl ] with s j ≥ 2. Therefore, all such families of q-analogues of multiple zeta
values are Q-subalgebras of MD .

The following proposition allows one to write an arbitrary element in Z(Q,N>1) as
an linear combination of [s1, . . . , sl ] ∈ MD�.

Proposition 7.5 ([7, Proposition 2.5]) Assume k ≥ 2. For 1 ≤ i, j ≤ k − 1 define
the numbers bki, j ∈ Q by

k−1∑

j=1

bki, j
j ! t

j :=
(
t + k − 1 − i

k − 1

)
.

With this it is for 1 ≤ i ≤ k − 1 and QE
j (t) = 1

( j−1)! t Pj (t)

t i =
k∑

j=2

bki, j−1(1 − t)k− j QE
j (t) .

We give some examples of q-analogues of multiple zeta values, with some being
of the above type.

(i) To write the brackets in the above way we choose QE
s (t) = 1

(s−1)! t Ps−1(t),
where the Ps(t) are the Eulerian polynomials defined earlier by

t Ps−1(t)

(1 − t)s
=

∞∑

d=1

ds−1td

for s ≥ 0. With this we have for all s1, . . . , sl ∈ N

[s1, ..., sl ] :=
∑

n1>...>nl>0

l∏

j=1

QE
sj (q

n j )

(1 − qn j )s j
.

and MD = Z({QE
s (t))}s,N).
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(ii) The polynomials QT
s (t) = t s−1 are considered in [33, 42] and sums of the

form (40) with s1 > 1 and s2, . . . , sl ≥ 1 are studied there. Using Proposition7.5
every q-analogue of this type can be written explicitly in terms of brackets.

(iii) Okounkov chooses the following polynomials in [27]

QO
s (t) =

{
t

s
2 s = 2, 4, 6, . . .

t
s−1
2 (1 + t) s = 3, 5, 7, . . . .

and defines for s1, . . . , sl ∈ S = N>1

Z(s) =
∑

n1>···>nl>0

l∏

j=0

QO
sj (q

n j )

(1 − qn j )s j
.

We write for the space of the Okounkov q-multiple zetas

qMZV = Z({QO
s (t)}s,N>1) .

Due to Theorem7.4 we have qMZV = MD�. In [27] Okounkov conjectures,
that the space qMZV is closed under the operator d. In length 1 this is proven in
Proposition 2.9 [7].

(iv) There are also q-analogues which are not of the type as in (40). For example,
the model introduced in [28] and further studied in [18]. For s1, . . . , sl ≥ 1 they are
define by

zq(s1, . . . , sl) =
∑

n1>···>nl>0

qn1

(1 − qn1)s1 . . . (1 − qnl )sl
.

It is easy to see, that every zq(s1, . . . , sl) can be written in terms of bi-brackets. For
example

zq(2, 1) =
∑

n1>n2>0

qn1

(1 − qn1)2(1 − qn2)
=

∑

n1>n2>0

qn1(qn2 + 1 − qn2)

(1 − qn1)2(1 − qn2)

=
∑

n1>n2>0

qn1qn2

(1 − qn1)2(1 − qn2)
+

∑

n1>n2>0

qn1

(1 − qn1)2

= [2, 1] +
∑

n1>0

(n1 − 1)qn1

(1 − qn1)2
= [2, 1] +

[
2

1

]
− [2] .

Similarly one can prove zq(2, 1, 1) = [2, 1, 1] − 2[2, 1] + [2,1
1,0

] + [2
2

] − 3
2

[2
1

] + [2].
For higher weights this also works as illustrated in the following
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zq(2, 2) =
∑

n1>n2>0

qn1

(1 − qn1)2(1 − qn2)2
=

∑

n1>n2>0

qn1(qn2 + 1 − qn2)

(1 − qn1)2(1 − qn2)2

= [2, 2] + zq(2, 1) = [2, 2] + [2, 1] +
[
2

1

]
− [2] .

Using again Proposition7.5 it becomes clear for arbitrary weights s1, . . . , sl ≥ 2 we
can write zq(s1, . . . , sl) in terms of bi-brackets.

Writing any q-analogue in terms of bi-brackets enables us to use the double shuffle
structure explained in Sect. 5 to obtain linear relations for all of these q-analogues.
Though it might be difficult to compare our double shuffle relations to the double
shuffle relations of other models. For example in the case of zq(s1, . . . , sl) the authors
in [18] consider s1, . . . , sl ∈ Z to describe their double shuffle relations. See [8] for
further details on the comparison between different models of q-analogues and bi-
brackets.
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A Dimension Conjecture for q-Analogues
of Multiple Zeta Values

Henrik Bachmann and Ulf Kühn

Abstract We study a class of q-analogues of multiple zeta values given by certain
formal q-series with rational coefficients. After introducing a notion of weight and
depth for these q-analogues ofmultiple zeta values we present dimension conjectures
for the spaces of their weight- and depth-graded parts, which have a similar shape as
the conjectures of Zagier and Broadhurst-Kreimer for multiple zeta values.

Keywords Multiple zeta values · q-Analogues of multiple zeta values · Modular
forms · Dimension conjecture

1 Introduction

Multiple zeta values are real numbers appearing in various areas of mathematics
and theoretical physics. By a q-analogue of these numbers one usually understands
q-series, which degenerate to multiple zeta values as q → 1. The algebraic structure
of several models of q-analogues has been the subject of recent research (see [28]
for an overview). Besides a conjecture of Okounkov in [17] for the dimension of the
weight-graded spaces for a specific such model, no conjectures for the dimensions
of the spaces of any of these q-analogues in a given weight and depth have occurred
in the literature. The purpose of this work is to introduce a space of q-series which
contains a lot of these models and to present conjectures on the dimensions of their
weight- and depth-graded parts. For natural numbers s1 ≥ 2, s2, . . . , sl ≥ 1 define
the multiple zeta value (MZV)
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ζ(s1, . . . , sl) =
∑

n1>···>nl>0

1

ns11 . . . nsll
.

By s1 + · · · + sl we denote its weight, by l its depth and we write Z for the Q-
vector space spanned by all MZVs. It is a well-known fact that the space Z is a
Q-algebra and that there are two different ways, known as the stuffle and shuffle
product formulas respectively, to express the product of two MZVs as a Q-linear
combination of MZVs. These two ways of writing the product give a large family
of Q-linear relations between MZVs in a fixed weight, known as the double shuffle
relations.Conjecturally all relations betweenMZVs follow from this typeof relations.
In particular it is conjectured that the algebra Z is graded by the weight. Let Zk

denote the Q-vector space spanned by the MZVs of weight k, then there is the
following famous dimension conjecture due to Zagier:

Conjecture 1 (Zagier [26])We have the following generating series

∑

k≥0

dimQ (Zk) x
k = 1

1 − x2 − x3
.

A stronger version of this conjecture was later proposed by Hoffman [13], which
states that the ζ(s1, . . . , sl) with s j ∈ {2, 3} form a basis of Z . So far it is only
known, due to a result of Brown [7], that these MZVs span the spaceZ . Conjecture
1 has a refinement byBroadhurst andKreimerwho proposed the following conjecture
on the dimension of the weight- and depth-graded parts.

Conjecture 2 (Broadhurst-Kreimer [6]) The generating series of the dimensions of
the weight- and depth-graded parts of multiple zeta values is given by

∑

k,l≥0

dimQ

(
grDl Zk

)
xk yl = 1 + E2(x)y

1 − O3(x)y + S(x)y2 − S(x)y4
,

where

E2(x) = x2

1 − x2
, O3(x) = x3

1 − x2
, S(x) = x12

(1 − x4)(1 − x6)
.

Observe thatE2(x) (resp.O3(x)) is the generating series of the number of even (resp.
odd) zeta values and S(x) is the generating series for the dimensions of cusp forms
for SL2(Z). Furthermore, by setting y = 1 on the right-hand side of the Broadhurst-
Kreimer conjecture one obtains precisely the right-hand side in the Zagier conjecture.
We are interested in conjectures similar to the above in the context of q-analogues of
multiple zeta values. There are various different models of q-analogues for multiple
zeta values. For most of these models the algebraic setup, i.e. analogues of the stuffle
and the shuffle product, is well understood (See for example [3, 9, 20, 21, 28]).
The problem of understanding the dimension of the weight-graded spaces has been
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considered in [3, 4, 9, 17, 20, 21, 28]. On the other hand possible analogues of the
Broadhurst-Kreimer conjecture for these q-analogues have not been proposed yet.

Now we will define the q-analogues of multiple zeta values we consider in this
paper. For s1, . . . , sl ≥ 1 and polynomials Q1(t) ∈ tQ[t] and Q2(t) . . . , Ql(t) ∈
Q[t] we define

ζq(s1, . . . , sl; Q1, . . . , Ql) =
∑

n1>···>nl>0

Q1(qn1) . . . Ql(qnl )

(1 − qn1)s1 · · · (1 − qnl )sl
. (1)

This series can be seen as a q-analogue1 of ζ(s1, . . . , sl), since we have for s1 > 1

lim
q→1

(1 − q)s1+···+sl ζq(s1, . . . , sl; Q1, . . . , Ql) = Q1(1) . . . Ql(1) · ζ(s1, . . . , sl) .

Weonly consider the casewhere deg(Q j ) ≤ s j and consider the followingQ-algebra:

Zq :=
〈
ζq(s1, . . . , sl; Q1, . . . , Ql)

∣∣ l ≥ 0, s1, . . . , sl ≥ 1, deg(Q j ) ≤ s j
〉

Q

.

Contrary to the case of MZVs, the number s1 + · · · + sl does not give a good notion
of weight for the ζq , since for example ζq(s; Q) = ζq(s + 1, Q · (1 − t)). Also the
number l will not be used to define the depth. Instead we will consider a class of
q-series which also span the space Zq and use these series to define a weight and a
depth filtration onZq . For s1, . . . , sl ≥ 1, r1, . . . , rl ≥ 0 these q-series are given by

[
s1, . . . , sl
r1, . . . , rl

]
:=

∑

u1>···>ul>0
v1,...,vl>0

ur11
r1! . . .

urll
rl ! · v

s1−1
1 . . . v

sl−1
l

(s1 − 1)! . . . (sl − 1)! · qu1v1+···+ulvl ∈ Q[[q]] .

(2)

We refer to these q-series as bi-brackets of depth l and weight s1 + · · · + sl + r1 +
· · · + rl . They were introduced by the first author in [1] and their algebraic structure
is well-understood and described in the papers [1–3, 31]. The bi-brackets have a
natural connection to quasi-modular forms (for SL2(Z)), since for even k the Fourier
expansion of the classical Eisenstein series Gk of weight k is given by

[k
0

]
plus

an appropriate constant term. In particular the space of quasi-modular forms with
rational coefficients, which is given byQ[G2,G4,G6], is a sub-algebra of the space
Zq .

As we will see in Theorem 1 the bi-brackets span the spaceZq and therefore we
can define a weight and a depth filtration by using the notion of weight and depth
of bi-brackets. We point out the fact that Zq is not graded by the weight, i.e. the
weight graded spaces grWk Zq are in general not isomorphic to the Q-vector spaces

1These type of series are often calledmodified q-analogues of multiple zeta values, since one needs
to multiply by (1 − q)s1+···+sl before taking the limit q → 1.
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spanned by bi-brackets of weight k. In analogy to the Zagier and Broadhurst-Kreimer
conjecture we conjecture the following.

Conjecture 3 (i) The dimension of the weight graded parts of Zq is given by

∑

k≥0

dimQ

(
grWk Zq

)
xk = 1

1 − x − x2 − x3 + x6 + x7 + x8 + x9
.

(ii) The dimension of the weight and depth graded parts of Zq is given by

∑

k,l≥0

dimQ

(
grW,D

k,l Zq

)
xk yl = 1 + D(x)E2(x)y + D(x)S(x)y2

1 − a1(x) y + a2(x) y2 − a3(x) y3 − a4(x) y4 + a5(x) y5
,

where D(x) = 1/(1 − x2), O1(x) = x/(1 − x2) and E2(x),S(x) are as in
Conjecture 2 and

a1(x) = D(x) O1(x) , a2(x) = D(x)
∑

k≥1

dimQ(Mk(SL2(Z))2 xk ,

a3(x) = a5(x) = O1(x) S(x) , a4(x) = D(x)
∑

k≥1

dimQ(Sk(SL2(Z))2 xk .

Here Mk(SL2(Z)) and Sk(SL2(Z)) denote the spaces of modular forms and
cusp forms for SL2(Z) of weight k.

Note that setting y = 1 in (ii) implies (i). This holds because of the formula

∑

k≥0

dimQ(Mk(SL2(Z))2 xk = 1 + x12

(1 − x4)(1 − x6)(1 − x12)
,

which is straightforward to prove.2

In the Broadhurst-Kreimer conjecture the numerator 1 + E2(x)y can be inter-
preted as the generating series of dimQ grW,D

k,l Q[ζ(2)], i.e.
∑

k,l≥0

dimQ grW,D
k,l (Q[ζ(2)]) xk yl = 1 + E2(x)y .

As we will see in Proposition 1 the numerator in Conjecture 3 (ii) is essentially the
generating series for the weight- and depth-graded dimensions of the quasi-modular
forms, since D(x)E2(x) counts the number of Eisenstein series and their deriva-
tives and D(x)S(x) corresponds to the number of cusp forms and their derivatives.

2Recall the series expansion 1
(1−x)2

= 1 + 2x + 3x2 + 4x3 + . . . and 1
(1−x)2

1+x
1−x = 1 + 4x +

9x2 + 16x3 + . . . . Now, since we have
∑

k≥0 dimQ(Mk(SL2(Z)) xk = 1
(1−x4)(1−x6)

= (1 + x4 +
x6 + x8 + x10 + x14) 1

(1−x12)2
, the claim follows by replacing x by x12 in the second series expan-

sion.
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Therefore it is reasonable to expect that

∑

k,l≥0

dimQ grW,D
k,l (Q[G2,G4,G6]) xk yl

?= 1 + D(x)E2(x)y + D(x)S(x)y2 .

In some sense the quasi-modular forms in the context of q-analogues of multiple
zeta values play the role of the even single zeta values (see also [11, 29]).

For k ≤ 15 we determined, by calculating a large number of coefficients, lower
bounds for dimQ

(
grWk Zq

)
, which equal the expected dimensions in Conjecture 3

(i). Furthermore, Conjecture 3 (i) actually holds for k ≤ 7 by Theorem 2 below.
For the refined Conjecture 3 (ii) our computer experiments provide us with lower
bounds, which again equal the expected dimensions, in the range given by Table4 on
page 18.

2 q-analogues of MZVs and Bi-Brackets

Usually a function f (q) is called a q-analogue of multiple zeta value, if lim
q→1

f (q) is a

multiple zeta value. There are various differentmodels ofq-analogues in the literature
(See [28] for a nice overview). One of the first models was studied by Bradley [5]
and Zhao [27] independently. This model is given for s1 ≥ 2, s2, . . . sl ≥ 1 by the
q-series

∑

n1>···>nl>0

q(s1−1)n1 . . . q(sl−1)nl

{n1}s1q · · · {nl}slq , (3)

with {n}q = 1−qn

1−q being the usual q-integer. Taking the limit q → 1 in above sum
one obtains ζ(s1, . . . , sl). For a cleaner description of the algebraic structure and
(in our case) a connection to modular forms it is convenient to consider a modified
version of (3) by removing the factor (1 − q)s1+···+sl , i.e. to consider the series

ζBZ
q (s1, . . . , sl) =

∑

n1>···>nl>0

q(s1−1)n1 . . . q(sl−1)nl

(1 − qn1)s1 · · · (1 − qnl )sl
, (4)

which then satisfies lim
q→1

(1 − q)s1+···+sl ζq(s1, . . . , sl) = ζ(s1, . . . , sl).

In a greater generality we will consider, for s1, . . . , sl ≥ 1 and polynomials
Q1(t) ∈ tQ[t] and Q2(t) . . . , Ql(t) ∈ Q[t], sums of the form

ζq(s1, . . . , sl; Q1, . . . , Ql) =
∑

n1>···>nl>0

Q1(qn1) . . . Ql(qnl )

(1 − qn1)s1 · · · (1 − qnl )sl
. (5)
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The condition Q1(t) ∈ tQ[t] ensures that this is an element inQ[[q]]. In contrast to
(4) we also allow s1 = 1 in our setup, i.e., we also include q-analogues of the non-
convergent multiple zeta values. In the case s1 > 1 we can (by the same arguments as
in [4] Proposition 6.4) again take the limit q → 1 aftermultiplying by (1 − q)s1+···+sl ,
which gives

lim
q→1

(1 − q)s1+···+sl ζq(s1, . . . , sl; Q1, . . . , Ql) = Q1(1) . . . Ql(1) · ζ(s1, . . . , sl) .

Almost all models of q-analogues in the literature are given by sums of the form (5).
In the following we always set ζq(s1, . . . , sl; Q1, . . . , Ql) = 1 for the case l = 0.
We will consider the following spaces spanned by the series (5) of a particular kind

Zq =
〈
ζq(s1, . . . , sl; Q1, . . . , Ql)

∣∣ l ≥ 0, s1, . . . , sl ≥ 1, deg(Q j ) ≤ s j
〉

Q

,

where as before we always assume Q1(t) ∈ tQ[t] and Q2(t) . . . , Ql(t) ∈ Q[t]. As
we will see below Zq is the space in which we are interested the most. For d ≥
0 we define the subspace Zq,d =

〈
ζq(s1, . . . , sl; Q1, . . . , Ql) ∈ Zq

∣∣ deg(Q j ) ≤
s j − d

〉

Q

. So in particular we have Zq = Zq,0 and Zq,d+1 ⊂ Zq,d . We also restrict

to the case in which all polynomials Q j (not just Q1) have no constant terms and
therefore are elements in tQ[t]. The resulting space is denoted by

Z ◦
q =

〈
ζq(s1, . . . , sl; Q1, . . . , Ql) ∈ Zq

∣∣ Q1, . . . , Ql ∈ tQ[t]
〉

Q

.

For the spaces Z ◦
q,d given by Z ◦

q ∩ Zq,d it holds Z ◦
q = Z ◦

q,0 and Z ◦
q,d+1 ⊂ Z ◦

q,d .
Notice that all of these spaces are closed under multiplication. In depth one for
example we have

ζq (s1; Q1) · ζq (s2; Q2) = ζq (s1, s2; Q1, Q2) + ζq (s2, s1; Q2, Q1) + ζq (s1 + s2; Q1 · Q2) ,

and clearly deg Q1 · Q2 ≤ s1 + s2 − d if deg Q j ≤ s j − d for j = 1, 2.
In [28] Zhao considers for s1, . . . , sl , d1, . . . , dl ∈ Z the series

zd1,...,dlq (s1, . . . , sl) =
∑

n1>···>nl>0

qn1d1 . . . qnldl

(1 − qn1)s1 · · · (1 − qnl )sl
, (6)

which gives an even more general setup than our ζq . Especially these series can be
seen as natural generators of the spaces Zq,d and Z ◦

q,d by choosing the appropriate
conditions on the d j . We will now give a short overview of different q-analogues of
multiple zeta values, which can be written in terms of the ζq and relate them to the
spaces Zq,d and Z ◦

q,d .
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(i) The space spanned by the Bradley-Zhao model ζBZ
q = ζq(s1, . . . , sl; t s1−1, . . . ,

t sl−1), defined in (4), is given by3

Zq,1 = 〈
ζBZ
q (s1, . . . , sl) | l ≥ 0 , s1 ≥ 2, s2, . . . , sl ≥ 1

〉
Q .

(ii) Another interesting case is the Schlesinger-Zudilin model. These q-analogues
are for s1 ≥ 1, s2, . . . , sl ≥ 0 defined by

ζ SZ
q (s1, . . . , sl) =

∑

n1>···>nl>0

qn1s1 . . . qnl sl

(1 − qn1)s1 · · · (1 − qnl )sl

= ζq(s1, . . . , sl; t s1 , . . . , t s j ) .

(7)

The space spanned by these series is, using the same argument as in (i), given
by

Zq = 〈
ζ SZ
q (s1, . . . , sl)

∣∣ l ≥ 0, s1 ≥ 1, s2, . . . , sl ≥ 0
〉
Q

.

Originally defined by Schlesinger [18] and Zudilin [30] for the cases s1 ≥
2, s2, . . . , sl ≥ 1, it was observed in [20] and further discussed in [9] that the
algebraic setup for this model, especially the shuffle product analogue, can be
described nicely by allowing s1 ≥ 1, s2, . . . , sl ≥ 0. Restricting to s1, . . . , sl ≥
1 we get the subspace

Z ◦
q = 〈

ζ SZ
q (s1, . . . , sl)

∣∣ l ≥ 0, s1, . . . , sl ≥ 1
〉
Q

.

(iii) In [22] Ohno, Okuda and Zudilin define for s1, . . . , sl ∈ Z the series

ζOOZ
q (s1, . . . , sl) =

∑

n1>···>nl>0

qn1

(1 − qn1)s1 · · · (1 − qnl )sl
. (8)

In the case s1, . . . , sl ≥ 1 these can be written as ζq(s1, . . . , sl; t, 1, . . . , 1) ∈
Zq , but the space spanned by (8) for s1, . . . , s j ≥ 1 is a priori not given by one
of the Zq,d or Z ◦

q,d .
(iv) For s1, . . . , sl ≥ 2 Okounkov chooses the following polynomials in [17]

QO
j (t) =

{
t
s j
2 s j = 2, 4, 6, . . .

t
s j−1

2 (1 + t) s j = 3, 5, 7, . . . .

3This follows easily from the fact that t j−1(1 − t)s− j with j = 1, . . . , s (resp. j = 2, . . . , s) forms
a basis of {Q ∈ Q[t] | deg Q ≤ s − 1} (resp. {Q ∈ tQ[t] | deg Q ≤ s − 1}).
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and defines Z(s1, . . . , sl) = ζq(s1, . . . , sl; QO
1 , . . . , QO

l ). With the same argu-
ments as before (see also the proof of Theorem 1 (iii)) the span of these series
is given by

Z ◦
q,1 = 〈

Z(s1, . . . , sl)
∣∣ l ≥ 0, s1, . . . , sl ≥ 2

〉
Q

.

Although the space Zq seems to be much larger than the space Z ◦
q , we expect

that they both coincide (Conjecture 5 (B2) below) and therefore every ζ SZ
q should

be expressible as a linear combination of ζ SZ
q (s1, . . . , sl) with s1, . . . , sl ≥ 1. In [9]

(Theorem 5.5) such an expression for ζOOZ
q in terms of ζ SZ

q is given, which in turn
can be seen as a special case of that conjecture.

Remark 1 As seen in the example above, the polynomials Q j often depend just on s j .
For these types of q-analogues one can also define subspaces ofZq in the following
way: Suppose that {Qs}s≥1 is a family of polynomials, where for all s1, s2 ≥ 1 there
exists numbers λ

s1,s2
j ∈ Q with j ≥ 1 and λ

s1,s2
j = 0 for almost all j , such that

Qs1(t) · Qs2(t) =
∞∑

j=1

λ
s1,s2
j Q j (t)(1 − t)s1+s j− j .

Then the space spanned by all ζq(s1, . . . , sl; Qs1 , . . . , Qsl ) is a sub-algebra of Zq .
This also gives an example of a so called quasi-shuffle algebra as described in [14].
For this one can define for a, b ≥ 1 the product za 
 zb = ∑∞

j=1 λ
a,b
j z j with the same

notation as used in the first section of [14]. This was for example done in [4] for the
space Z ◦

q .

2.1 Bi-Brackets as q-Analogues of MZVs

In this section we will consider the q-series from the introduction in more detail and
explain their connection to q-analogues of multiple zeta values in the section before.

Definition 1 (i) For s1, . . . , sl ≥ 1, r1, . . . , rl ≥ 0 we define the following q-
series

[
s1, . . . , sl
r1, . . . , rl

]
:=

∑

u1>···>ul>0
v1,...,vl>0

ur11
r1! . . .

urll
rl ! · v

s1−1
1 . . . v

sl−1
l

(s1 − 1)! . . . (sl − 1)! · qu1v1+···+ulvl ∈ Q[[q]] .

We refer to these q-series as bi-brackets of depth l and of weight s1 + · · · +
sl + r1 + · · · + rl .

(ii) For r1 = · · · = rl = 0 we write

[s1, . . . , sl] :=
[
s1, . . . , sl
0, . . . , 0

]
.

http://dx.doi.org/10.1007/978-3-030-37031-2_5
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The series [s1, . . . , sl], which we call brackets, were introduced and studied
in [4].

The bi-brackets also have an alternative form, which we will use now. For this
recall that the Eulerian polynomials (cf. [10, (3.2)]) are defined by

t Ps−1(t)

(1 − t)s
=

∞∑

d=1

ds−1td .

For s > 1 the polynomials t Ps−1(t) have degree s − 1 and in the case s = 1 we have
t P0(t) = t . By definition of the bi-brackets it is then clear that

[
s1, . . . , sl
r1, . . . , rl

]
=

∑

n1>···>nl>0

l∏

j=1

(
n
r j
j

r j ! · qn j Ps j−1(qn j )

(s j − 1)! · (1 − qn j )s j

)
. (9)

We will now see that the spaces spanned4 by the bi-brackets and brackets are
exactly given by the spaces Zq and Z ◦

q respectively.

Theorem 1 The following equalities hold

(i) Zq =
〈[s1, . . . , sl
r1, . . . , rl

] ∣∣ l ≥ 0, s1, . . . , sl ≥ 1, r1, . . . , rl ≥ 0
〉

Q

.

(ii) Z ◦
q = 〈[s1, . . . , sl ] | l ≥ 0 , s1, . . . , sl ≥ 1

〉
Q .

(iii) Z ◦
q,1 = 〈[s1, . . . , sl] | l ≥ 0 , s1, . . . , sl ≥ 2

〉
Q .

Proof Since for all s ≥ 1 we have Ps−1(1) �= 0 the polynomials t Pj−1(t)(1 − t)s− j

with j = 1, . . . , s form a basis of the space {Q ∈ tQ[t] | deg Q ≤ s}. In particular
for every polynomial Q in this space there exist coefficients α j ∈ Q with

Q(t)

(1 − t)s
=

s∑

j=1

α j
t Pj−1(t)

(1 − t) j
, (10)

fromwhich the statement (ii) follows. Also (iii) follows, since for d = 1 the condition
Q j (t) ∈ tQ[t] and deg Q j ≤ s j − 1 implies s j ≥ 2 for all j = 1, . . . , l. One can also
see that

〈[s1, . . . , sl ] | l ≥ 0 , s1, . . . , sl ≥ 2
〉
Q = 〈

ζBZ
q (s1, . . . , sl) | l ≥ 0 , s1, . . . , sl ≥ 2

〉
Q .

To prove (i) we will first show the inclusion ’⊆’ , i.e. that every ζq(s1, . . . , sl;
Q1, . . . , Ql) can be written in terms of bi-brackets. For this we need to see what
happens if one of the Q2, . . . , Ql has a constant term. Without loss of generality we
can, by the proof of (ii), focus on the cases Qi (t) = 1 for a 2 ≤ i ≤ l . Since for all
s ≥ 1 we have

4In the articles [1, 2, 4] these spaces were denoted BD and MD .
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1

(1 − t)s
= 1 +

s∑

m=1

t

(1 − t)m
,

we can write

∑

n1>···>nl>0

l∏

j=1

Q j (qn j )

(1 − qn j )s j
=

∑

n1>···>nl>0

l∏

j=1
j �=i

Q j (qn j )

(1 − qn j )s j
+

∑

n1>···>nl>0
1≤m≤si

qni

(1 − qni )m

l∏

j=1
j �=i

Q j (qn j )

(1 − qn j )s j
.

For the the second sum on the right-hand side we can again use (10). For the first
sum we obtain (by setting nl+1 = 0)

∑

n1>···>nl>0

l∏

j=1
j �=i

Q j (q
n j )

(1 − qn j )
s j

=
∑

n1>···>ni−1>ni+1>···>nl>0

(ni−1 − ni+1 − 1)
l∏

j=1
j �=i

Q j (q
n j )

(1 − qn j )
s j

.

Repeating this for all 2 ≤ i ≤ l with Qi (t) = 1 we obtain sums of the form (9) from
which we deduce ‘⊆’.

Now to prove ‘⊇’ we first define for m ≥ 0 the polynomials pm(n) by p0(n) = 1
and

pm(n) =
∑

n>N1>···>Nm>0

1 =
(
n − 1

m

)
. (11)

The pm(n) is a polynomial in n of degreem and therefore we can always find cm(r) ∈
Q with nr = ∑r

m=0 cm(r) pm(n). The idea is now to replace n
r j
j in the definition of

the bi-brackets by
∑r j

m j=0 cm j (r j ) pm j (n j ) and then use (11) to get sums which can
be written in terms of the ζq . We illustrate this in the depth two case from which the
general case becomes clear. We have with κ = (s1 − 1)!(s2 − 1)!r1!r2!

κ ·
[
s1, s2
r1, r2

]
=

∑

n1>n2>0

nr11 q
n1 Ps1−1(qn1 )

(1 − qn1 )s1
nr22 q

n2 Ps2−1(qn2 )

(1 − qn2 )s2

=
∑

0≤m2≤r2

cm2 (r2)
∑

n1>n2>N1>···>Nm2>0

nr11 q
n1 Ps1−1(qn1 )

(1 − qn1 )s1
qn2 Ps2−1(qn2 )

(1 − qn2 )s2

=
∑

0≤m1≤r1
0≤m2≤r2

cm1 (r1)cm2 (r2)
∑

n1>n2>N1>···>Nm2>0
n1>N ′

1>···>N ′
m1

>0

qn1 Ps1−1(qn1 )

(1 − qn1 )s1
qn2 Ps2−1(qn2 )

(1 − qn2 )s2
.

Now considering all the possible shuffles, and possible equalities of the N and the
N ′ it is clear that this sum can be written as a linear combination of ζq by interpreting
appearing 1 as (1 − qN )(1 − qN )−1. For general depth l the idea is the same and
therefore we obtain ’⊇’ from which (i) follows.
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As an example of how to write a bi-bracket in terms of ζq , we give the following.

[
1, 1

0, 1

]
=

∑

n1>n2>0

qn1

(1 − qn1)

n2qn2

(1 − qn2)

=
∑

n1>n2>0

qn1

(1 − qn1)

qn2

(1 − qn2)
+

∑

n1>n2>n3>0

qn1

(1 − qn1)

qn2

(1 − qn2)

1 − qn3

(1 − qn3)

= ζq(1, 1; t, t) + ζq(1, 1, 1; t, t, 1 − t) .

(12)

2.2 Bi-Brackets and Quasi-modular Forms

We now define the weight and the depth filtration for the space Zq by writing for a
subset A ⊆ Zq

FilWk (A) := 〈[s1, . . . , sl
r1, . . . , rl

]
∈ A

∣∣ 0 ≤ l ≤ k , s1 + · · · + sl + r1 + · · · + rl ≤ k
〉
Q

FilDl (A) := 〈[s1, . . . , st
r1, . . . , rt

]
∈ A

∣∣ t ≤ l
〉
Q

.

If we consider the depth and weight filtration at the same time we use the short nota-
tion FilW,D

k,l := FilWk FilDl and similar for the other filtrations. The associated graded

spaces will be denoted by grWk and grW,D
k,l

Remark 2 (i) We point to the fact that the filtration by depth coming from bi-
brackets is different from the naive notion of depth for the ζq(s1, . . . , sl),
given as the number of variables si . For example, as indicated by (12), the
ζq(1, 1, 1; t, t, 1 − t) is an element in FilD2 (Zq).

(ii) As seen before the Schlesinger-Zudilin model ζ SZ
q (s1, . . . , sl), defined in (7)

for s1 ≥ 1, s2, . . . , sl ≥ 0, span the space Zq and therefore we also obtain a
depth and weight filtration for these series. By the proof of Theorem 1 we see
that ζ SZ

q (s1, . . . , sl) ∈ FilW,D
K ,L (Zq) with K = s1 + · · · + sl + z and L = l + z,

where z = #{ j | s j = 0} is the number of s j which are zero.

For several reasons one should consider these filtrations to be the natural ones.
First of all the multiplication inZq respects the depth as well as the weight grading.
Secondly, on Zq we have the derivation given by q d

dq , which increases the weight
by 2 and keeps the depth, since we obtain directly from the definition that

q
d

dq

[
s1, . . . , sl
r1, . . . , rl

]
=

l∑

j=1

(
s j (r j + 1)

[
s1 , . . . , s j−1 , s j + 1 , s j+1, . . . , sl
r1 , . . . , r j−1 , r j + 1 , r j+1 , . . . , rl

])
.
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Thirdly, the classical Eisenstein series are contained in Z ◦
q ⊂ Zq . For example we

have

G2 = − 1

24
+ [2] , G4 = 1

1440
+ [4] , G6 = − 1

60480
+ [6] ,

since in depth one we have for k > 0

[k] =
∑

u>0
v>0

vk−1

(k − 1)!q
uv = 1

(k − 1)!
∑

n>0

∑

d|n
dk−1qn = 1

(k − 1)!
∑

n>0

σk−1(n)qn .

The space of quasi-modular forms for SL2(Z)with rational coefficients is given by
M̃(SL2(Z))Q = Q[G2,G4,G6] (see [16]) and therefore it is a sub-algebra ofZ ◦

q and
Zq . It is graded by the weight, in the classical sense, and obviously M̃k(SL2(Z))Q ⊂
FilWk (Zq). The derivation q d

dq increases the weight by 2, i.e.

q
d

dq
: M̃k(SL2(Z))Q → M̃k+2(SL2(Z))Q.

The space of quasi-modular forms has the decomposition

M̃k(SL2(Z))Q = 〈
Gk , q

d

dq
Gk−2, . . . ,

(
q
d

dq

)k/2−1
G2

〉
Q

⊕
k/2⊕

i=0

(
q
d

dq

)i
Sk−2i (SL2(Z))Q ,

(13)

which follows from [16] Proposition 1 together with the fact that q d
dq respects the

decomposition Mk(SL2(Z))Q = GkQ ⊕ Sk(SL2(Z))Q.

Proposition 1 Set M̃(x, t) = 1 + D(x)E2(x) t + D(x)S(x) t2, then the generating
series for the weight- and depth-graded dimensions of M̃(SL2(Z))Q ⊂ Zq satisfies
the coefficient-wise inequality

∑

k,l≥0

dimQ grW,D
k,l (M̃(SL2(Z))Q)xktl ≤ M̃(x, t) . (14)

Proof The Eisenstein series and their derivatives are in the depth one subspaces. For
the space of cusp forms of weight k we have

Sk(SL2(Z))Q ⊂ 〈
Gk−aGa |a = 0, . . . , k/2

〉
Q

⊂ FilW,D
k,2 (Zq).

This consequence of a result of Rankin was observed by Zagier in [25, p. 146].
Finally since q d

dq does not alter the depth we get the claim by the decomposition
(13).

The expected equality in Proposition 1 would hold if the brackets [2, 4, 6] and
the odd brackets [1, 3],.. together with all of their derivatives were algebraically
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independent, but by now only partial results for linear independence are available
[24, 29].

Conjecture 4 We have a decomposition of Q-algebras

Zq
∼= M̃(SL2(Z))Q ⊗ A .

This decomposition is respected by the operator q d
dq . MoreoverA is a free polyno-

mial algebra that is bi-graded with respect to weight and depth compatible with those
ofZq . In particular it equals the graded dual of the universal enveloping algebra of
a bi-graded Lie algebra.5

This decomposition of algebras should be seen as an analogue of [11, Conjecture
1.1. b)] in our context. The conjecture above implies the weaker claim, that the
algebra Zq is isomorphic to a free polynomial algebra graded by the weight. It also
implies that in Proposition 1 the equality holds.

Remark 3 In [17] Okounkov gives the following conjecture for the dimension of the
weight-graded parts of Z ◦

q,1.

∑

k≥0

dimQ

(
grWk Z ◦

q,1

)
xk

?= 1

1 − x2 − x3 − x4 − x5 + x8 + x9 + x10 + x11 + x12
.

(15)

We expect that the decomposition of Conjecture 4 induces also a decomposition for
Z ◦

q,1. Indeed, keeping the previous notation, this is compatible with the factorization

1

1 − x2 − . . . − x5 + x8 + . . . + x12
= M̃(x, 1)

1

1 − D(x)O3(x) + 2D(x)S(x)
.

Our Conjecture 3 (i) for Zq yields with E4(x) = x4/(1 − x2)

1

1 − x − x2 − x3 + x6 + . . . + x9
= M̃(x, 1)

1

1 − D(x)O1(x) + D(x)
(
E4(x) + 2S(x)

) .

Thus we may think of the Lie algebra behind Zq compared to that behind Z ◦
q,1 as

having additional generators induced by the derivatives of a generator in weight 1
and having additional relations being counted by the number of Eisenstein series for
SL2(Z) and their derivatives.

5Some authors prefer to denote this as the symmetric algebra of a Lie algebra.
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3 Computational Evidences for the Conjectures

In this section we want to describe how to implement the bi-brackets to obtain the
numerical results, which were used to obtain Conjecture 3 in the introduction and
further conjectures stated below. A similar method to perform such calculations has
been communicated to us by Don Zagier.

Using (9) we define for a fixed N ∈ N an approximate version of bi-brackets by

[
s1, . . . , sl
r1, . . . , rl

]

N

:=
∑

N≥n1>···>nl>0

l∏

j=1

(
n
r j
j

r j ! · qn j Ps j−1(qn j )

(s j − 1)! · (1 − qn j )s j

)
∈ Q[[q]]. (16)

Observe that
[s1,...,sl
r1,...,rl

]
N

= 0 for N < l. It is clear that at least the first N coefficients
of these approximate versions are identical to the bi-brackets, i.e.

[
s1, . . . , sl
r1, . . . , rl

]

N

≡
[
s1, . . . , sl
r1, . . . , rl

]
mod qN+1.

To calculate the first N coefficients of the bi-brackets we use the following recur-
sive formula for these approximate versions.

Lemma 1 For all s1, . . . , sl , r1, . . . , rl and N ≥ l we have

[
s1, . . . , sl
r1, . . . , rl

]

N

=
[
s1, . . . , sl
r1, . . . , rl

]

N−1

+ Nr1

r1!
qN Ps1−1(qN )

(s1 − 1)! · (1 − qN )
s1

[
s2, . . . , sl
r2, . . . , rl

]

N−1

,

where we set
[s2,...,sl
r2,...,rl

]
N−1

= 1 for l = 1.

Proof This follows by splitting up the summation N ≥ n1 > · · · > nl > 0 into the
parts where N > n1 and N = n1 to get the first and the second term respectively.

We implemented an algorithm based on Lemma 1 in parallel PARI/GP [23]. On a
computer with 32 cores it takes several hours to obtain each of the following Tables1
and 2:

In fact for these tables we calculated approximated bi-brackets with coefficients
modulo some large prime and determined the dimension they span at least. Exper-
imentally the choice of a sufficiently large prime does not alter these dimensions.6

We have similar tables for various subspaces like the positive bi-brackets

Z +
q = 〈[s1, . . . , sl

r1, . . . , rl

]
∈ Zq

∣∣ l ≥ 0, s1 > r1, . . . , sl > rl
〉
Q

6More precisely, we checked this for a few primes between k and 10007.
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Table 1 lower bounds filnumk,l (Zq ) for dimQ FilW,D
k,l (Zq ) with depth ≤ 14

k\l 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 0 0 0 0 0 0 0 0 0 0 0 0 0

2 3 4 0 0 0 0 0 0 0 0 0 0 0 0

3 5 7 8 0 0 0 0 0 0 0 0 0 0 0

4 7 12 14 15 0 0 0 0 0 0 0 0 0 0

5 10 19 25 27 28 0 0 0 0 0 0 0 0 0

6 13 30 41 48 50 51 0 0 0 0 0 0 0 0

7 17 44 68 81 89 91 92 0 0 0 0 0 0 0

8 21 65 106 138 153 162 164 165 0 0 0 0 0 0

9 26 90 167 223 264 281 291 293 294 0 0 0 0 0

10 31 126 249 366 439 490 509 520 522 523 0 0 0 0

11 37 167 376 571 738 830 892 913 925 927 928 0 0 0

12 43 222 537 905 1190 1418 1531 1605 1628 1641 1643 1644 0 0

13 50 285 778 1364 1948 2344 2645 2781 2868 2893 2907 2909 2910 0

14 57 368 1075 2090 3051 3923 4453 4840 5001 5102 5129 5144 5146 5147

or the space of 123-brackets given by

〈[s1, . . . , sl ]
∣∣ l ≥ 0, s1, . . . , sl ∈ {1, 2, 3} 〉

Q
⊂ Z ◦

q

and for sub-algebras like Z ◦
q or Z ◦

q,1. This lead us to the following conjectures

Conjecture 5 (B1) Every bi-bracket equals a linear combination of positive bi-
brackets

(B1*) More precisely, the space of positive bi-brackets Z +
q satisfies

FilW,L
w,l (Z +

q ) = FilW,L
w,l (Zq) .

(B2) Every bi-bracket equals a linear combination of brackets, i.e. Z ◦
q = Zq .

(B3) Every bracket equals a linear combination of 123-brackets.

Although our experiments support conjectures (B1) and (B3), we were not able to
prove the weaker claims that the positive bi-brackets respectively the 123-brackets
generate sub-algebras ofZq . In [1] the conjecture (B2) was stated the first time and
therein examples which complement those in [9] (Theorem 5.5) were given.

Theorem 2 For all weights k ≤ 7 the coefficients on both sides of Conjecture 3 (i)
coincide and the Conjectures 5 (B1), (B2) and (B3) hold for these weights.

We will give a proof of this theorem at the end of this section.

http://dx.doi.org/10.1007/978-3-030-37031-2_5
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The Conjecture 3 is based on the assumption that the above lower bounds were
the actual dimensions. In other words, for the quantities

grnumk,l = filnumk,l (Zq) − filnumk,l−1(Zq) − filnumk−1,l(Zq) + filnumk−1,l−1(Zq)

we expect the equalities grnumk,l = dimQ grW,D
k,l (Zq). Now we check if the generating

series of the weight- and depth-graded parts of Zq can be of the shape implied
by the conjectures. For example, if we assume that there is a decomposition Zq

∼=
M̃(SL2(Z)) ⊗ A , where the algebraA is a free polynomial algebra, then there must
hold an equation of the form

∑

k,l≥0

dimQ(grk,l(Zq)) x
k yl = M̃(x, y) ·

∏

k,l≥1

1

(1 − xk yl)gk,l
,

where the gk,l equal the number of generators ofA in weight k and depth l. Solving
such an equation with with grnumk,l on the left-hand side, give us numerical gnumk,l and
within the range of our experiments (See Table3 on page 18) these are positive and
satisfy a parity pattern.

If we assume that there is a decomposition Zq
∼= M̃(SL2(Z)) ⊗ A , where the

algebra A is the graded dual to the universal enveloping algebra of a bi-graded Lie
algebra, then there must hold an equation of the form

∑

k,l≥0

dimQ(grW,D
k,l (Zq)) x

k yl = M̃(x, y) · 1

1 − ∑
k,l≥1 bk,l x

k yl

with bk,l ∈ Z. Solving such an equation with with grnumk,l (Zq) on the left-hand side,
give us numerical bnumk,l . Within the range of our experiments (See Table4 on page
18) these are as expected in Conjecture 3 (ii).

Whereas it is known that the numbers from Zagier’s conjecture give upper bound
for the dimensions in question, the knowledge about the Broadhurst-Kreimer con-
jecture is very little. The only known results are the following:

Theorem 3 (Euler, Ihara-Kaneko-Zagier, Goncharov, Ihara-Ochiai) For 1 ≤ l ≤ 3
the numbers gk,l of generators for Z of weight k and depth l are not bigger than
implied by the Broadhurst-Kreimer conjecture.

The proof of this result for l = 1 is a trivial consequence of Euler’s formula
for even zeta values. For l = 2, 3 one can bound the number of generators by the
dimension of the so called double shuffle spaces, see e.g. [11, 12, 15] .

We now want to use a similar technique to obtain upper bounds of the number of
algebra generators for bi-brackets.



254 H. Bachmann and U. Kühn

Table 3 Evidence for A being a free polynomial algebra

grnumk\l 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0 0 0 0 0 0

3 2 1 1 0 0 0 0 0 0 0 0 0 0 0

4 2 3 1 1 0 0 0 0 0 0 0 0 0 0

5 3 4 4 1 1 0 0 0 0 0 0 0 0 0

6 3 8 5 5 1 1 0 0 0 0 0 0 0 0

7 4 10 13 6 6 1 1 0 0 0 0 0 0 0

8 4 17 17 19 7 7 1 1 0 0 0 0 0 0

9 5 20 36 24 26 8 8 1 1 0 0 0 0 0

10 5 31 46 61 32 34 9 9 1 1 0 0 0 0

11 6 35 86 78 94 41 43 10 10 1 1 0 0 0

12 6 49 106 173 118 136 51 53 11 11 1 1 0 0

13 7 56 178 218 299 168 188 62 64 12 12 1 1 0

14 7 76 214 429 377 476 229 251 74 76 13 13 1 1

gnumk\l 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 2 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 1 0 0 0 0 0 0 0 0 0 0 0 0

5 3 0 1 0 0 0 0 0 0 0 0 0 0 0

6 0 2 0 1 0 0 0 0 0 0 0 0 0 0

7 4 0 3 0 1 0 0 0 0 0 0 0 0 0

8 0 7 0 3 0 1 0 0 0 0 0 0 0 0

9 5 0 8 0 4 0 1 0 0 0 0 0 0 0

10 0 12 0 11 0 4 0 1 0 0 0 0 0 0

11 6 0 22 0 14 0 5 0 1 0 0 0 0 0

12 0 20 0 31 0 17 0 5 0 1 0 0 0 0

13 7 0 47 0 44 0 21 0 6 0 1 0 0 0

14 0 31 0 81 0 58 0 25 0 6 0 1 0 0

Table 4 Evidence for A being a symmetric algebra of a Lie algebra

l 1 2 3 4 5 6 7 8 9 10 11 12 13 14

k ≤ 63 31 21 19 15 14 14 14 14 14 14 14 14 14
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For the generating function of the bi-brackets we write

∣∣∣∣
X1, . . . , Xl

Y1, . . . ,Yl

∣∣∣∣ :=
∑

s1,...,sl>0
r1,...,rl>0

[
s1 , . . . , sl

r1 − 1 , . . . , rl − 1

]
Xs1−1
1 . . . Xsl−1

l · Y r1−1
1 . . . Y rl−1

l .

As shown in [1] this satisfies the partition relation

∣∣∣∣
X1, . . . , Xl

Y1, . . . ,Yl

∣∣∣∣ =
∣∣∣∣
X1, . . . , Xl

Y1, . . . ,Yl

∣∣∣∣

∣∣∣∣
P

,

with f (X1, . . . , Xl ,Y1, . . . ,Yl)
∣∣
P = f (Y1 + · · · + Yl , . . . ,Y1 + Y2,Y1, Xl , Xl −

Xl−1, . . . , X2 − X1). Up to terms of depth less than l their product is given by

∣∣∣∣
X1, . . . , X j

Y1, . . . ,Y j

∣∣∣∣ ·
∣∣∣∣
X j+1, . . . , Xl

Y j+1, . . . ,Yl

∣∣∣∣ =
∣∣∣∣
X1, . . . , Xl

Y1, . . . ,Yl

∣∣∣∣

∣∣∣∣
Sh j,l

+ . . . ,

where, if � j,l ⊂ �n denotes the shuffles of ordered sets with j and l − j elements,
we have

f (X1, . . . , Xl , Y1, . . . , Yl )
∣∣
Sh j,l

=
∑

σ∈� j,l

f (Xσ−1(1), . . . , Xσ−1(l), Yσ−1(1), . . . , Yσ−1(l)) .

Hence we get modulo products and lower depth bi-brackets

∣∣∣∣
X1, . . . , Xl

Y1, . . . ,Yl

∣∣∣∣ ≡
∑

α

αFα(X1, . . . , Xl ,Y1, . . . ,Yl) ,

where α runs through a vector space basis of the depth l algebra generators of Zq

and Fα is a polynomial in the partition shuffle space, which is defined as follows.

Definition 2 Define for l, k ≥ 0 the partition shuffle space by

PS(k − l, l) = { f ∈ Q[x1, .., xl , y1, .., yl ]| deg f = k − l, f
∣∣
P − f = f

∣∣
Sh j

= 0 ∀ j} .

Using the same argument as in [12] the above discussion leads to the following
upper bounds.

Corollary 1 The number gk,l of generators of weight k and depth l for theQ-algebra
Zq is bounded by

gk,l ≤ dimQ PS(k − l, l).

The bounds obtained via the partition shuffle spaces for the number of generators
in depth 1 and even weights are not optimal, as it is well-known that the ring of
quasi-modular forms is generated in weight 2, 4 and 6. We view this as the analogue
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Table 5 pk,l = dimQ PS(k − l, l)

pl\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1 1 2 1 3 1 4 0 5 0 6 0 7 0 8 0 9

1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9

2 – 0 0 1 0 2 0 8 0 14 0 23 0 38 0 58 0

3 – – 0 0 1 0 3 0 9 0 27 0 62 0 125 0 238

4 – – – 0 0 1 0 3 0 12 0 37 ? ? ? ? ?

5 – – – – 0 0 1 0 4 0 15 ? ? ? ? ? ?

6 – – – – – 0 0 1 ? ? ? ? ? ? ? ? ?

to the fact that Euler’s relation for even zeta values is not seen by the depth 1 double
shuffle spaces as defined in [12].

Proof of Theorem 2 Using the structure of the ring of quasi-modular forms and the
data of Table5 we get the coefficient-wise upper bounds

∑

k≥0

dimQ FilWk (Zq )x
k ≤ 1

1 − x

1

(1 − x2)(1 − x4)(1 − x6)

x

(1 − x2)2
·

∏

k,l≥2

1

(1 − xk)pk,l

≤ 1 + 2 x + 4 x2 + 8 x3 + 15 x4 + 28 x5 + 51 x6 + 92 x7 + 166 x8 + . . .

In addition, since “123-brackets” ⊆ Z ◦
q ⊆ Zq , we get by the data of our tables

1 + 2 x + 4 x2 + 8 x3 + 15 x4 + 28 x5 + 51 x6 + 92 x7 + 165 x8 + . . .

≤
∑

k≥0

dimQ FilWk ("123-brackets")xk ≤
∑

k≥0

dimQ FilWk (Zq)x
k .

The claim of the theorem follows as the lower and upper bounds coincide for
k ≤ 7. �

Remark 4 In contrast to the multiple zeta values we expect that the upper bounds
for the number of generators obtained by the partition shuffle spaces are not optimal
for all l ≥ 2, i.e. we don’t expect equality in Corollary 1. We think that this reflects
the existence of cusp forms as distinguished elements in depth 2, whereas even zeta
values just live in depth 1. By work of Ecalle we know that there is a Lie algebra
structure on the partition shuffle spaces, see, for e.g., [8] or [19]. In forthcoming
work we will study a sub Lie algebra which conjecturally has the algebra A as its
symmetric algebra, which might give another explanation of this effect. Another
optimistic hope is that a coproduct structure onZq , which allows to mimic Brown’s
proof in order to obtain conjecture (B3), exists.

Acknowledgements We would like to thank N. Matthes and the referees for their careful reading
of our manuscript and their valuable comments. The first author would also like to thank the Max-
Planck Institute for Mathematics in Bonn for hospitality and support.



A Dimension Conjecture for q-Analogues of Multiple Zeta Values 257

References

1. Bachmann,H.: The algebra of bi-brackets and regularizedmultiple Eisenstein series. J. Number
Theory 200, 260–294 (2019)

2. Bachmann, H.: Multiple Eisenstein series and q-analogues of multiple zeta values, In this
volume

3. Bachmann,H.:Double shuffle relations for q-analogues ofmultiple zeta values, their derivatives
and the connection to multiple Eisenstein series. RIMS Kôyûroku No. 2017, 22–43 (2015)

4. Bachmann, H., Kühn, U.: The algebra of generating functions for multiple divisor sums and
applications to multiple zeta values. Ramanujan J. 40, 605–648 (2016)

5. Bradley, D.M.: Multiple q-zeta values. J. Algebra 283, 752–798 (2005)
6. Broadhurst, D., Kreimer, D.: Association of multiple zeta values with positive knots via Feyn-

man diagrams up to 9 loops. Phys. Lett. B 393, 403–412 (1997)
7. Brown, F.: Mixed Tate motives over Z. Ann. Math. (2) 175, 949–976 (2012)
8. Ecalle, J.: The flexion structure and dimorphy: flexion units, singulators, generators, and the

enumeration of multizeta irreducibles. Asymptotics in dynamics, geometry and PDEs, gener-
alized Borel summation II, 27–211 (2011)

9. Ebrahimi-Fard, K., Manchon, D., Singer, J.: Duality and (q-)multiple zeta values. Adv. Math.
298, 254–285 (2016)

10. Foata,D.: Eulerian polynomials: fromEuler’sTime to thePresent, The legacyofAlladiRamakr-
ishnan in the mathematical sciences, pp. 253–273. Springer, New York (2010)

11. Goncharov, A.B.: Multiple ζ -values, Galois groups and geometry of modular varieties. Progr.
Math. 201, 361–392 (2001)

12. Ihara, K., Kaneko, M., Zagier, D.: Derivation and double shuffle relations for multiple zeta
values. Compositio Math. 142, 307–338 (2006)

13. Hoffman, M.E.: The algebra of multiple harmonic series. J. Algebra 194, 477–495 (1997)
14. Hoffman, M.E., Ihara, K.: Quasi-shuffle products revisited. J. Algebra 481, 293–326 (2017)
15. Ihara, K., Ochiai, H.: Symmetry on linear relations for multiple zeta values. Nagoya Math. J.

189, 49–62 (2008)
16. Kaneko, M., Zagier, D.: A generalized Jacobi theta function and quasimodular forms, The

moduli space of curves. Progr. Math. 129, 165–172 (1995)
17. Okounkov, A.: Hilbert schemes and multiple q-zeta values. Funct. Anal. Appl. 48, 138–144

(2014)
18. Schlesinger, K.: Some remarks on q-deformed multiple polylogarithms. arXiv:math/0111022

[math.QA]
19. Schneps, L.: ARI, GARI, Zig and Zag: An introduction to Ecalle’s theory of multiple zeta

values. arXiv:1507.01534 [math.NT]
20. Singer, J.: On q-analogues of multiple zeta values. Funct. Approx. Comment. Math. 53, 135–

165 (2015)
21. Takeyama, Y.: The algebra of a q-analogue of multiple harmonic series. SIGMA 9 Paper 061,

1–15 (2013)
22. Ohno, Y., Okuda, J., Zudilin, W.: Cyclic q- MZSV sum. J. Number Theory 132, 144–155

(2012)
23. The PARI Group, PARI/GP version 2.10.0, Univ. Bordeaux (2017). http://pari.math.u-

bordeaux.fr/
24. Pupyrev, Y.: On the linear and algebraic independence of q-zeta values, (Russian. Russian

summary) Mat. Zametki 78(4), 608–613 (2005); translation in Math. Notes 78(3–4), 563–568
(2005)

25. Zagier, D.:Modular formswhose Fourier coefficients involve zeta-functions of quadratic fields.
Modular functions of one variable VI, Lecture Notes in Math. 627, Springer, Berlin, 105–169
(1977)

26. Zagier, D.: Values of zeta functions and their applications. First European Congress of Math-
ematics, Volume II, Progress in Math. 120, Birkhäuser-Verlag, Basel, 497–512 (1994)

http://arxiv.org/abs/math/0111022
http://arxiv.org/abs/1507.01534
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/


258 H. Bachmann and U. Kühn

27. Zhao, J.: Multiple q-zeta functions and multiple q-polylogarithms. Ramanujan J. 14(2), 189–
221 (2007)

28. Zhao, J.: Uniform approach to double shuffle and duality relations of various q-analogs of
multiple zeta values via Rota-Baxter algebras. arXiv:1412.8044 [math.NT]

29. Zudilin, W.: Diophantine problems for q-zeta values, (Russian) Mat. Zametki 72(6), 936–940
(2002); translation in Math. Notes 72, 858–862 (2002)

30. Zudilin, W.: Algebraic relations for multiple zeta values. Russian Math. Surveys 58(1), 1–29
(2003)

31. Zudilin, W.: Multiple q-zeta brackets, Mathematics 3:1, special issue Mathematical physics,
119–130 (2015)

http://arxiv.org/abs/1412.8044


Uniform Approach to Double Shuffle
and Duality Relations of Various
q-Analogs of Multiple Zeta Values via
Rota–Baxter Algebras

Jianqiang Zhao

Abstract The multiple zeta values (MZVs) have been studied extensively in recent
years. Currently there exist a few different types of q-analogs of the MZVs (q-
MZVs) defined and studied by mathematicians and physicists. In this paper, we give
a uniform treatment of these q-MZVs by considering their double shuffle relations
(DBSFs) and duality relations. The main idea is a modification and generalization
of the one used by Castillo Medina et al. to a few other types of q-MZVs including
the one defined by the author in 2003. With different approach, Takeyama already
studied this type by “regularization” and observed that there exist a new family of
Q-linear relations which are not consequences of the DBSFs. We call these duality
relations in this paper and generalize them to all other types of q-MZVs. Since there
are still some missing relations we further define the most general type of q-MZVs
together with a new kind of relations called P-R relations which are used to lower
the deficiencies further. As an application, we will confirm a conjecture of Okounkov
on the dimensions of certain q-MZV spaces, either theoretically or numerically, for
the weight up to 12. Some relevant numerical data are provided at the end.

Keywords Multiple zeta values · q-analog of multiple zeta values · Double
shuffle relations · Duality relations · Rota-Baxter algebras

1 Introduction

The multiple zeta values are iterated generalizations of the Riemann zeta values to
the multiple variable setting. Euler [8] first studied the double zeta values in the 18th
century. Hoffman [13] and Zagier [28] independently considered systematically the
following more general form in the early 1990’s. LetN be the set of positive integers.
For any d ∈ N and s = (s1, . . . , sd) ∈ Nd with s1 ≥ 2 one defines the multiple zeta
values (MZVs) as the d-fold sum
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ζ(s) =
∑

k1>···>kd>0

1

ks11 · · · ksdd
.

In 1980s, Ecalle studied some quite general mathematical objects called “moulds”
(functions with variable number of variables) of which the MZVs are one of the
examples [9, p. 429]. He even mentioned their iterated integral representation [9,
p. 431, Remark 4] without explicitly producing it.

A lot of important and sometimes surprising applications of MZVs have been
found in many areas in mathematics and theoretical physics in recent years; see [4,
5, 10, 18, 19]. One of the most powerful ideas is to consider the so-called double
shuffle relations (DBSFs). The stuffle relations are obtained directly by using the
above series definition when multiplying twoMZVs. The other, the shuffle relations,
can be produced bymultiplying their integral representations and usingChen’s theory
of iterated integrals [6]. The interested reader is referred to the seminal paper [16]
for more details.

Lagging behind the above development for about a decade, a few q-analogs were
proposed and studied by different mathematicians and physicists. All of these q-
analogs enjoy the property that when q → 1 one can recover the ordinary MZVs
defined in the above if no divergence occurs. In this paper, by modifying and gener-
alizing an idea in [7] we give a uniform treatment of these q-analogs by using some
suitable Rota–Baxter algebras which reflect the properties of Jackson’s iterated inte-
gral representations of these q-analogs.

Recall that for any fixed q with 0 < q < 1 one can define the q-analog of positive
integers by setting [k] = [k]q := 1 + q + · · · + qk−1 = (1 − qk)/(1 − q) for all k ∈
N. To summarize the various versions of q-analog of MZVs (q-MZVs for abbrevia-
tion), we first define a general type of q-MZVof 2d variables s1, . . . , sd , a1, . . . , ad ∈
Z by

ζ aq [s] :=
∑

k1>···>kd>0

qk1a1+···+kdad

[k1]s1 · · · [kd ]sd = (1 − q)|s|
∑

k1>···>kd>0

qk1a1+···+kdad

(1 − qk1 )s1 · · · (1 − qkd )sd
, (1)

where |s| = s1 + · · · + sd is called the weight and d the depth. The variables of a are
called auxiliary variables. Also, it is often convenient to study its modified form by
dropping the power of 1 − q, i.e.,

zaq [s] :=
∑

k1>···>kd>0

qk1a1+···+kdad

(1 − qk1)s1 · · · (1 − qkd )sd
,

In the following table, we list a few different versions of q-MZVs that have
been studied so far by different authors, except for one new type (type IV in the
table). We only write down their modified form although sometimes the original
authors considered only ζq . We note that in 2004, Bradley [3] apparently defined
ζ (s1−1,...,sd−1)
q [s1, . . . , sd ] independently, and later, Okuda and Takeyama also studied
some of the relations among this type of q-MZVs in [22]. Additionally, it is not hard
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Table 1 A time line of different versions of q-MZVs. �= this paper

Type Year Authors q-MZV DBSF

2001 Schlesinger [23] z
(0,...,0)
q [s1, . . . , sd ] See (2)

I 2002 Kaneko et al. [17] z
(s−1)
q [s] (depth=1) N/A

I 2003 Zhao [29] z
(s1−1,...,sd−1)
q [s1, . . . , sd ] [25], [26], �

II 2003 Zudilin [30] z
(s1,...,sd )
q [s1, . . . , sd ] [24], �

III 2012 Ohno et al. [20] z
(1,0,...,0)
q [s1, . . . , sd ] [7], �

IV 2014 Zhao � z
(s1−1,s2,...,sd )
q [s1, . . . , sd ] �

BK 2013 Bachmann & Kühn [1] zBKq [s1, . . . , sd ] [31]

O 2014 Okounkov [21] zOq [s1, . . . , sd ], s j ≥ 2 �

G 2003 Zhao [29] z
(a1,...,ad )
q [s1, . . . , sd ] �

to see that Schlesinger’s version diverges when |q| < 1 but can converge if |q| > 1.
In fact, for s ∈ Zd

z
(0,...,0)
q−1 [s1, . . . , sd ] = (−1)s1+···+sd z

(s1,...,sd )
q [s1, . . . , sd ] = (−1)s1+···+sd zIIq [s1, . . . , sd ]. (2)

So it suffices to consider type II in order to understand Schlesinger’s q-MZVs. The
last column of Table1 provides the references where DBSFs are considered sys-
tematically (not only the stuffle), some of which are apparently different from our
approach in this paper.

In this paper, we will use suitable Rota–Baxter algebras to study types I-IV q-
MZVs listed in Table1 in details. We also briefly consider the general type G and
Okounkov’s type O q-MZVs. Note that the numerators inside the summands of ζBK

q

and ζO
q are not exact powers of q, but some polynomials of q enjoying nice properties.

Further, for ζO
q the polynomial numerator is at worst a sum of two q-powers so our

method can still work. See Corollary 6.6. It may be difficult to use the approach
here to study the Bachmann and Kühn type since the numerators are much more
complicated.

In the classical setting, the so-called regularized DBSFs play extremely impor-
tant roles in discovering and proving Q-linear relations among the MZVs. The first
serious attempt to discover the DBSFs among q-MZVs was carried out by the author
in [29] by using Jackson’s iterated q-integrals. However, the computation there was
too complicated so only very few relations were found successfully. The real break-
through camewith Takeyama’s successful application ofHoffman’s algebras to study
type I q-MZVs in [26]. However, his approach to the shuffle relations relies on some
auxiliary multiple polylogarithm functions and consequently it is very hard to see
why these relations should hold.

The situation looks much better with the appearance of the recent paper [7] by
Castillo Medina, Ebrahimi-Fard andManchon who generalized Chen’s iterated inte-
grals to Jackson’s iterated q-integrals to study type III q-MZVs by using Rota–Baxter
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algebra techniques. Later, Singer [24, 25] adopted the algebraic setup of the DBSFs
to study type I and type II q-MZVs. Motivated by this new idea, in this paper we will
consider all the q-MZVs of type I, II, III and IV by finding/using their correct realiza-
tions in terms of Jackson’s iterated q-integrals. Then by combining the Rota–Baxter
algebra technique and Hoffman’s algebra of words we are able to study the DBSFs
of all of these q-MZVs.

When one considers the Q-linear relations among the ordinary MZVs, the main
difficulty lies in the insufficiency of DBSFs produced by only admissible arguments.
In the q-analog setting, the situation is only partially similar and sometimes much
more complicated.

For type Iq-MZVs, our computation shows that theDBSFsCANprovide all theQ-
linear relations. However, in order to study these relations, as Takeyama noticed first,
one has to enlarge the set of type Iq-MZVs to somethingwe call type Ĩ q-MZVswhich
are a kind of “regularized” q-MZVs in the sense that one needs to consider some
convergent versions of q-MZVs when s1 = 1 by modifying the auxiliary variables
of a. But for these type Ĩ q-MZVs themselves, DBSFs are insufficient to provide all
the Q-linear relations and a certain “Resummation Identity” defined by Takeyama
is required. In this paper, we will adopt the term “duality” due to its similarity
to the duality relations of the ordinary MZVs. Moreover, for type Ĩ q-MZVs of
weight bounded by w there are often still missing relations even after we consider
both DBSFs and duality relations within the same weight and depth range. These
missing relations can be recovered only after we increase the weight and depth. This
phenomenon is not unique to type Ĩ q-MZVs. We have recorded this fact by using
the “deficiency” numbers listed in the tables in the last section of this paper.

Similar to type I, we find that type IV q-MZVs also need to be “regularized”
when s1 = 1. Again, we achieve this by introducing some convergent versions of the
q-MZVs by modifying the auxiliary variables in a.

It turns out that type II q-MZVs behave the most regularly and enjoy some prop-
erties closest to those of the classical MZVs. For example, their duality relations
(see Theorem 8.4) have the cleanest form. Moreover, every other type of q-MZVs
considered in this paper can be converted to type II. But still, there are relations that
cannot be proved by DBSFs and dualities, at least when one is confined within the
same weight and depth range. In fact, we find three independent Q-linear relations
in weight 4 that can only be proved when we consider weight 5 DBSFs and dualities.

All type III q-MZVs are convergent, even for negative arguments. For simplicity,
in this paper we consider only those with nonnegative arguments s1, . . . , sd with
s1 ≥ 1. In this case, the DBSFs are still insufficient. In the last section, we will see
that in weight 3 there is already a missing relation which can be recovered by the
duality. Essentially because of the need to apply the duality relations, we have to
modify the original Jackson’s iterated integral representation given in [7]. See the
remarks after Theorem 6.1. In contrast to the other types of q-MZVs, we cannot
suppress the deficiency for type III even if we consider more DBSFs and duality
relations by increasing the weight and depth. This might be caused by our restriction
of only nonnegative arguments and thus further investigations are called for.
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On the other hand, we can improve the above situation by considering the more
general type G values. All the missing relations are thus proved up to and including
weight 4 and at the same time both deficiencies are decreased in weight 5 and 6. The
key idea here is to convert all type G values to type II values by using a new kind of
relations called P-R relations.

We point out that our method can be easily adapted to study q-MZVs of the
following general forms:

z(s1−a1,...,sd−ad )
q [s1, . . . , sd ], z(a1,...,ad )q [s1, . . . , sd ],

where a1 ≥ a2 ≥ · · · ≥ ad ≥ 0 are all fixed integers. Furthermore, when the weight
is not too large, our method can be programmed to compute all the relations among
q-MZVs of the general form zaq [s] when a is taken within a certain range. This will
be carried out in Sect. 9.

As an application, for small weight cases it is possible to confirm Okounkov’s
conjecture [21] on the dimension of the q-MZVs zOq [s] usingCorollary 6.6.We do this
numerically up to weight 12 and give rigorous proof up to weight 6 (both inclusive).

Throughout the paper we will use the modified form zq most of the time. All the
results can be translated into the standard form ζq by inserting the correct powers of
(1 − q)w, where w is the corresponding weight, into the formulas.

2 Convergence Domain for q-MZVs

We need the following result to find the convergence domain for different types of
q-MZVs. It is Proposition 2.2 of [29] where the order of the indices in the definition
of ζ (a1,...,ad )

q [s1, . . . , sd ] (denoted by fq(sd , . . . , s1; ad , . . . , a1) in loc. cit.) is opposite
to this paper.

Proposition 2.1 The function ζ (a1,...,ad )
q [s1, . . . , sd ] converges if Re(a1 + · · · + a j )

> 0 for all j = 1, . . . , d. It can be analytically continued to a meromorphic function
over C2d via the series expansion

ζ
(a1,...,ad )
q [s1, . . . , sd ] = (1 − q)|s|

∞∑

b1,...,bd=0

d∏

j=1

[(
s j + b j − 1

b j

)
q(d+1− j)(b j+a j )

1 − qb1+a1+···+b j+a j

]
. (3)

It has the following (simple) poles: a1 + · · · + a j ∈ Z�0 + 2π i
log q Z for j = 1, . . . , d.

Corollary 2.2 Let s = (s1, . . . , sd) ∈ Zd . Then

(i) ζ I
q [s] converges if s1 + · · · + s j > j for all j = 1, . . . , d.

(ii) ζ II
q [s] converges if s1 + · · · + s j > 0 for all j = 1, . . . , d.

(iii) ζ III
q [s] always converges.

(iv) ζ IV
q [s] converges if s1 + · · · + s j > 1 for all j = 1, . . . , d.
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Definition 2.3 For convenience, a composition s ∈ Z≥0 is said to be type
τ -admissible if s satisfies the condition for type τ q-MZVs in the corollary. Here and
in what follows, τ = I, II, III, or IV.

3 Rota–Baxter Algebra

In this section we briefly review some fundamental facts of Rota–Baxter algebras
which will be crucial in the study of the q-analog of shuffle relations for all of q-
MZVs considered in this paper. For a good introduction to the Rota–Baxter algebras,
see [11].

Definition 3.1 Fix an algebra A over a commutative ring R and an element λ ∈ R.
We call A a Rota–Baxter R-algebra and P a Rota–Baxter operator of weight λ if
the operator P satisfies the following Rota–Baxter relation of weight λ:

P(x)P(y) = P(P(x)y) + P(xP(y)) + λP(xy) ∀x, y ∈ A. (4)

Recall that for any continuous function f (x) on [α, β], Jackson’s q-integral is
defined by

∫ β

α

f (x) dq x :=
∑

k≥0

f
(
α + qk(β − α)

)
(qk − qk+1)(β − α). (5)

Taking α = 0 and β = t in (5), we set

J[ f ](t) := (1 − q)
∑

k≥0

f (qkt)qkt = (1 − q)
∑

k≥0

Ek[M[ f ]](t) = (1 − q)P
[
M[ f ]](t) (6)

where the multiplication operator M[ f ](t) := t f (t),

E[ f ](t) := Eq [ f ](t) := f (qt), and P[ f ](t) := Pq [ f ](t) := f (t) + f (qt) + f (q2t) + · · ·

are the q-expanding and the (principle) q-summation operators, respectively. We
also need to define the (remainder) q-summation operator

R[ f ](t) := Rq [ f ](t) := f (qt) + f (q2t) + · · · = (P[ f ] − f )(t).

So, P is the principle part (i.e. the whole thing) while R is the remainder (i.e.,
without the first term). Clearly, P = R + I where, as an operator, I[ f ] = f . This
implies PR = RP.
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Let tQ[[t, q]] be the ring of formal series in two variables with t > 0. Then J, E,
P and R are all Q[[q]]-linear endomorphisms of tQ[[t, q]]. We can further define the
inverse to P which is called the q-difference operator:

D := I − E. (7)

The following results extend those of [7, (21)–(23)]. In the final computation
we will not need D since we will consider only nonnegative arguments in all the
q-MZVs. But in the theoretical part of this paper we do need to use D for type III
q-MZVs.

Proposition 3.2 For any f, g ∈ tQ[[t, q]] we have

P[ f ]P[g] = P
[
P[ f ]g]+ P

[
f P[g]]− P[ f g], (8)

R[ f ]R[g] = R
[
R[ f ]g]+ R

[
fR[g]]+ R[ f g], (9)

R[ f ]P[g] = R
[
R[ f ]g]+ R

[
fR[g]]+ R[ f ]g + R[ f g], (10)

J[ f ]J[g] = J
[
J[ f ]g]+ J

[
f J[g]]− (1 − q)J

[
I f g

]
, (11)

= J
[
f J[g]]+ qJ

[
J
[
E[ f ]]g], (12)

D[ f ]D[g] = D[ f ]g + fD[g] − D[ f g], (13)

D[ f ]P[g] = D
[
f P[g]]+ D[ f ]g − f g, (14)

D[ f ]R[g] = D
[
fR[g]]+ D[ f g] − f g, (15)

DP = PD = I, PR = RP. (16)

Proof The identities (8), (13) and (14) are just (21), (23) and (26) of [7], respectively.
All the others follow from R = P − I easily.

By Proposition 3.2 we see that P and R are both Rota–Baxter operators on
tQ[[t, q]] (of weight −1 and 1, respectively) but D is not. In fact, D satisfies the
condition (13) of a differential Rota–Baxter operator [12]. Moreover, it is invertible
in the sense that Rota–Baxter operator P and the differential D are mutually inverse
by (16).

We end this section with an identity which will be used to interpret Takeyama’s
Resummation Identity in [26]. For any n ∈ N, set

Pn = P ◦ · · · ◦ P︸ ︷︷ ︸
n times

and Rn = R ◦ · · · ◦ R︸ ︷︷ ︸
n times

.

Theorem 3.3 Let d ∈ N and α j , β j ∈ N for all j = 1, . . . , d. Let y(t) = t
1−t . Then

we have

Rα1yβ1 · · ·Rα	yβ	(t) =
∑

j1≥β1,..., j	≥β	

k1≥α1,..., k	≥α	

	∏

r=1

[(
jr − 1

βr − 1

)(
kr − 1

αr − 1

)
qkr

∑	
s=r js t jr

]
. (17)
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Proof First we show that

Rα(t j ) = qα j t j

(1 − q j )α
. (18)

Indeed, if α = 1 then

R(t j ) =
∑

k≥1

qkj t j = q j t j

1 − q j
.

So (18) can be proved easily by induction.
Now we proceed to prove that for any integer m ≥ 0

Rα1yβ1 · · ·Rα	

(
yβ	 (t) · tm

)
=

∑

j1≥β1,..., j	≥β	
k1≥α1,..., k	≥α	

tm
	∏

r=1

[(
jr − 1

βr − 1

)(
kr − 1

αr − 1

)
qkr (m+∑	

s=r js )t jr
]
.

(19)
If 	 = 1 then we have

Rα
(
yβ(t) · tm

)
=Rα

(( t

1 − t

)β

tm
)

= Rα
∑

j≥0

(
β + j − 1

j

)
tm+β+ j

=Rα
∑

j≥β

(
j − 1

β − 1

)
tm+ j

=
∑

j≥β

(
j − 1

β − 1

)
qα(m+ j)tm+ j

(1 − qm+ j )α
(by (18))

=
∑

j≥β

(
j − 1

β − 1

)∑

k≥0

(
α + k − 1

k

)
q(α+k)(m+ j)tm+ j

=
∑

j≥β

∑

k≥α

(
j − 1

β − 1

)(
k − 1

α − 1

)
qk(m+ j)tm+ j .

This proves (19) when 	 = 1. In general

Rα1yβ1 · · ·Rα	−1

(
yβ	−1(t)

(
Rα	

(
yβ	(t) · tm

)))

=
∑

j	≥β	

∑

k	≥α	

(
j	 − 1

β	 − 1

)(
k	 − 1

α	 − 1

)
qk	(m+ j	)Rα1yβ1 · · ·Rα	−1

(
yβ	−1(t) · tm+ j	

)
.

So (19) follows immediately by induction.We can nowfinish the proof of the theorem
by taking m = 0.

Corollary 3.4 Let d ∈ N and α j , β j ∈ N for all j = 1, . . . , d. Then we have

Rα1yβ1 · · ·Rα	yβ	(1) = Rβ	yα	 · · ·Rβ1yα1(1). (20)
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Proof In (17) we use the substitutions jr ↔ k	+1−r for all r = 1, . . . , 	. Then the
power of q in the term of (17) indexed by ( j1, ..., j	, k1, ..., k	) is equal to

	∑

r=1

	∑

s=r

jskr −→
	∑

r=1

	∑

s=r

j	+1−r k	+1−s =
	∑

s=1

s∑

r=1

j	+1−r k	+1−s

=
	∑

s=1

	+1−s∑

r=1

j	+1−r ks =
	∑

s=1

	∑

r=s

jr ks =
	∑

r=1

kr

	∑

s=r

js .

which follows from the substitution s ↔ 	 + 1 − s followed by r ↔ 	 + 1 − r and
r ↔ s. This proves the corollary.

4 q-Analogs of Hoffman algebras

Weknow that (regularized) DBSFs lead tomany (and conjecturally all)Q-linear rela-
tions among the MZVs. The key idea here was first suggested by Hoffman [14] who
used some suitable algebra of words to codify both the stuffle (also called harmonic
shuffle [27] or quasi-shuffle [15]) relations coming from the series representation
of MZVs and the shuffle relations coming from the iterated integral expressions of
MZVs. The detailed regularization process can be found in [16]. To study similar
relations of the q-MZVs we should modify the Hoffman algebras in the q-analog
setting.

The following definition for type I q-MZVs was first proposed by Takeyama [26].
We adopt different notations here in hoping to give a uniform and more transparent
presentation for all types of q-MZVs.

First we consider some algebras which will be used to define the stuffle relations
later.

Definition 4.1 Let X∗
θ be the set of words on the alphabet Xθ = {a, a−1, b, θ}.

Denote by Aθ = Q〈a, a−1, b, θ〉 the noncommutative polynomial Q-algebra of
words from X∗

θ . Set

γ := b − θ, zs := as−1b, z′
s := as−1θ, s ∈ Z.

Let YĨ := {θ} ∪ {zk}k≥1, YII := {z′
k}k≥0, YIII := {zk}k∈Z and YĨV := YII. We point out

that z0, z′
0 �= 1where 1 is the empty word.We put a tilde on top of both I and IV since

we need to consider some kind of regularization due to convergence issues involved
in type I and IV q-MZVs. This is realized by the introduction of the letter θ . Again,
we use Y ∗

τ to denote the set of words generated on Yτ for any type τ .
Let A1

Ĩ
, A1

II, AIII and AĨV be the subalgebras of Aθ freely generated by the sets YĨ ,
YII, YIII and YĨV, respectively. Set
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A1
III := Q1 +

∑

k∈Z
z′
kAIII �⊂ AIII, A1

ĨV := Q1 + θAĨV +
∑

k≥1

zkAĨV �⊂ AĨV.

Here, all integer subscripts are allowed in YIII because type III q-MZVs converge for
all integer arguments. Further, we define the following subalgebras corresponding to
the convergent values:

A0
I := Q1 +

∑

k≥2

zkA
1
Ĩ
, A0

Ĩ
:= Q1 + θA1

Ĩ
+
∑

k≥2

zkA
1
Ĩ

� A1
Ĩ
,

A0
II := Q1 +

∑

k≥1

z′
kA

1
II � A1

II, A0
III := A1

III,

A0
IV := Q1 +

∑

k≥2

zkAĨV, A0
ĨV := Q1 + θAĨV +

∑

k≥2

zkAĨV � A1
ĨV.

For each type τ the words in A0
τ are called type τ -admissible. This is consistent with

Definition 2.3 since we consider only non-negative compositions s.

Definition 4.2 To define the stuffle product for type τ = Ĩ and II, similar to theMZV
case, we define a commutative product [−,−]τ first:

[zk, zl ]Ĩ = zk+l + zk+l−1, [θ, zk]Ĩ = zk+1, [θ, θ ]Ĩ = z2 − θ, [z′
k, z

′
l ]II = z′

k+l
(21)

for all k, l ≥ 1. Now we define the stuffle product ∗τ on A1
τ inductively as follows.

For any words u, v ∈ A1
τ and letters α, β ∈ Yτ , we set 1 ∗τ u = u = u ∗τ 1 and

(αu) ∗τ (βv) = α(u ∗τ βv) + β(αu ∗τ v) + [α, β]τ (u ∗τ v). (22)

Remark 4.3 (i). The definition for ∗Ĩ is the same as in [26].
(ii). One can check that ∗τ is well-defined for τ = Ĩ and II. Namely, u ∗τ v ∈ A1

τ

if u, v ∈ A1
τ .

(iii). It is not hard to check that for τ = Ĩ and II, (A0
τ , ∗τ ) ⊂ (A1

τ , ∗τ ) as subalge-
bras.

(iv). In the following, we will need to define stuffle product ∗ord on AIII by setting
τ = ord and [zr , zs]ord = zr+s for all r, s ∈ Z in (22).

In [7], the stuffle product�- for type III q-MZVs is defined. We will modify this in
the following way (see the remarks after Theorem 6.1). Our modified stuffle product
for type III q-MZVs will be denoted by ∗III.

Definition 4.4 Wenowdefine a stuffle product∗III onA1
III. First,we define an injective

shifting operator S− on any word of A1
III by acting on the first letter:

S−(z′
nw) := znw − zn−1w ∈ AIII for all n ∈ Z and w ∈ Y ∗

III. (23)

For any k, l ∈ Z and any u, v ∈ Y ∗
III, define the stuffle product ∗III by
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1 ∗III 1 = 1, 1 ∗III z
′
ku = z′

ku ∗III 1 = z′
ku,

z′
ku ∗III z

′
lv = z′

k

(
u ∗ord S−(z′

lv)
)+ z′

l

(
S−(z′

ku) ∗ord v
)+ (z′

k+l − z′
k+l−1)(u ∗ord v).

Here ∗ord is the ordinary stuffle defined in Remark 4.3 (iv).

For type ĨV, we provide a definition similar to type III.

Definition 4.5 We now define a stuffle product ∗ĨV onA1
ĨV
. First, we define a shifting

operator S+ similar to (23) by

S+(znw) := z′
nw + z′

n−1w ∈ AĨV for all n ∈ N and w ∈ Y ∗̃
IV.

Then, for any k, l ≥ 1 and any u, v ∈ Y ∗̃
IV
we set

1 ∗ĨV 1 = 1, 1 ∗ĨV zku = zku ∗ĨV 1 = zku,

zku ∗ĨV zlv = zk
(
u ∗II S+(zlv)

)+ zl
(
S+(zku) ∗II v

)+ (zk+l + zk+l−1)(u ∗II v),

zku ∗ĨV θv = θv ∗ĨV zku = zk
(
u ∗II θv

)+ θ
(
S+(zku) ∗II v

)+ zk+1(u ∗II v),

θu ∗ĨV θv = θ
(
u ∗II θv

)+ θ
(
θu ∗II v

)+ (z2 − θ)(u ∗II v),

where ∗II is the stuffle product on A1
II = AĨV defined in Definition 4.2.

Lemma 4.6 The stuffle products ∗III and ∗ĨV are both well-defined. Namely, if u, v ∈
A1

τ then u ∗τ v ∈ A1
τ for τ = III or ĨV.

Proof We prove the lemma for type ĨV only. Type III is similar but simpler.
First we note that k + l − 1 ≥ 1 if k, l ≥ 1. So the first letter of each of the terms

of u ∗ĨV v has the right form, i.e., either θ or zk for k ≥ 1. We need to show that after
truncating the first letter each term lies in AĨV. Notice thatS+(zlv),S+(zku) ∈ AĨV
and ∗II does not decrease the size the subscripts (which are all non-negative). The
lemma is now proved.

Proposition 4.7 Let τ = Ĩ, II, III or ĨV. Then the stuffle algebras (A1
τ , ∗τ ) are all

commutative and associative.

Proof This follows from the fact that the product [−,−]τ are all commutative and
associative which can be verified easily.

We now turn to the shuffle algebra which is an analog of the corresponding algebra
for MZVs reflecting the properties of their representations using iterated integrals.

Definition 4.8 Let Xπ = {π, δ, y} be an alphabet and X∗
π be the set of words gener-

atedby Xπ .DefineAπ = Q〈π, δ, y〉 to be thenoncommutative polynomialQ-algebra
of words of X∗

π . We may embed Aθ defined by Definition 4.1 as a subalgebra of Aπ

in two different ways: put ρ = π − 1 and let
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(A) a := π, a−1 := δ, b := πy, θ = ρy =⇒ γ := y,

(B) a := ρ, a−1 := −, b := πy, θ = ρy =⇒ γ := y.

We denote the image of the embedding by A
(A)
θ and A

(B)
θ , respectively. The dash −

for the image of a−1 in (B) means it does not matter what image we choose since a−1

appears only when we consider type III q-MZVs using (A). We will use embedding
(B) for the other three types for which a−1 will not be utilized essentially because of
convergence issues.

5 q-Stuffle relations

First we define the Q-linear realization maps zq : A0
τ → C (τ = Ĩ, II) by zq [1] = 1

and
zq [yτ

1 . . . yτ
d ] :=

∑

k1>···>kd>0

Mτ
k1(y

τ
1 ) . . . Mτ

kd (y
τ
d ),

for every admissible word yτ
1 . . . yτ

d ∈ A0
τ where the Q-linear maps

M Ĩ
m(θ) := qm

1 − qm
, M Ĩ

m(zs) := q(s−1)m

(1 − qm)s
, M II

m(z′
s) := qsm

(1 − qm)s
,

for all m ∈ N. Note that M Ĩ
k(γ ) = M Ĩ

k(z1 − θ) = 1. For example, we have

zq [z2z5γ 2z1] = z(1,4,0,0,0)q [2, 5, 0, 0, 1], zq [θ z7θ z4] = z(1,6,1,3)q [1, 7, 1, 4],

which are not q-MZVs of type I.
For type τ = III or ĨV, we similarly define theQ-linear realizationmaps zq : A0

τ →
C by zq [1] = 1 and

zq [yτ
1 . . . yτ

d ] :=
∑

k1>···>kd>0

M1,τ
k1

(yτ
1 )M

τ
k2(y

τ
2 ) . . . Mτ

kd (y
τ
d ),

for every admissible word yτ
1 . . . yτ

d ∈ A0
τ where the Q-linear maps

M1,III
m (z′s) := qm

(1 − qm)s
, M III

m (zs) := 1

(1 − qm)s
,

M ĨV
m (θ) = M1,ĨV

m (θ) := qm

1 − qm
, M1,ĨV

m (zs) := qm(s−1)

(1 − qm)s
, M ĨV

m (z′s) := qsm

(1 − qm)s
,

for all m ∈ N.
The following theorem is parallel to [7, Proposition 9] and includes [26, Theorem

1].
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Theorem 5.1 Let τ = Ĩ, II, III or ĨV. For any uτ , vτ ∈ A0
τ we have

zq [uτ ∗τ vτ ] = zq [uτ ]zq [vτ ]. (24)

Proof Since type Ĩ case is just [26, Theorem 1], we only need to consider the other
three types. The proof is basically the same as that of [26, Theorem 1]. In fact, it
suffices to observe that

M II
m(z′k)M II

m(z′l ) = M II
m(z′k+l ), M1,III

m (z′k)M III
m (zl ) = M III

m (zk+l − zk+l−1),

M III
m (zk)M

III
m (zl ) = M III

m (zk+l ), M1,III
m (z′k)M

1,III
m (z′l ) = M1,III

m (z′k+l − z′k+l−1),

M ĨV
m (z′k)M ĨV

m (z′l ) = M ĨV
m (z′k+l ), M1,ĨV

m (zk)M
ĨV
m (z′l ) = M ĨV

m (z′k+l + z′k+l−1),

M ĨV
m (θ)M ĨV

m (z′k) = M ĨV
m (z′k+1), M1,ĨV

m (zk)M
1,ĨV
m (zl ) = M1,ĨV

m (zk+l + zk+l−1),

M1,ĨV
m (θ)M ĨV

m (z′k) = M ĨV
m (z′k+1), M ĨV

m (θ)M ĨV
m (θ) = M1,ĨV

m (θ)M ĨV
m (θ) = M ĨV

m (z′2),

M1,ĨV
m (θ)M1,ĨV

m (zk) = M1,ĨV
m (zk+1), M1,ĨV

m (θ)M1,ĨV
m (θ) = M1,ĨV

m (z2 − θ),

for all k, l ≥ 0, m ≥ 1. Of course, we need to assume k, l ≥ 2 for M1,ĨV
m (zk) and

M1,ĨV
m (zl).

6 Jackson’s Iterated q-Integrals

Set

x0 := x0(t) = 1

t
, x1 := x1(t) = 1

1 − t
, y := y(t) = t

1 − t
.

Recall that fora = x0(t)dt andb = x1(t)dt , we can expressMZVsbyChen’s iterated
integrals:

ζ(s1, . . . , sd) =
∫ 1

0
as1−1b · · · asd−1b.

Replacing the Riemann integrals by Jackson’s q-integrals (6) one gets

Theorem 6.1 ([7, (29)]) For s = (s1, . . . , sd) ∈ Nd set w = |s| and

ζ̃ III
q [s; t] := J

[
c1J
[
c2 · · · J[cw] · · · ]

]
(t),

where ci = x1 if i ∈ {u1, u2, . . . , ud}, u j := s1 + s2 + · · · + s j , and ci = x0 other-
wise. Or, equivalently, set w = π s1 yπ s2 y . . . π sd y and

z̃IIIq [w; t] := Ps1
[
y · · ·Psd [y] · · · ](t).
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Then
zIIIq [s] = z̃IIIq [w; q]

However, the representation of ζ III
q [s] using z̃IIIq in Theorem 6.1 is not ideal in the

sense that one has to evaluate t at q. We would like to use Corollary 3.4 so we need to
set t = 1. This leads to the idea of replacing the first factor Ps1 by Ps1−1R and, more
generally, the following two generalizations. For any a = (a1, . . . , ad) ∈ (Z≥0)

d ,
define

zq [ρa1 y . . . ρad y; t] := Ra1
[
yRa2 [y · · ·Rad [y] · · · ]](t).

Theorem 6.2 Let s = (s1, . . . , sd) ∈ Nd and a = (a1, . . . , ad) ∈ (Z≥0)
d . Put w =

|s| and w = wa(s) = ρa1π s1−a1 y . . . ρadπ sd−ad y. Then

zq [wa(s); t] := Ra1
[
Ps1−a1 [yRa2 [Ps2−a2 [y · · ·Rad [Psd−ad [y]] · · · ]]]](t). (25)

Suppose a1 + · · · + a j > 0 for all j = 1, . . . , d. Then we have

ζ a
q [s] = (1 − q)wzq [wa(s); 1], zaq [s] = zq [wa(s)] := zq [wa(s); 1]. (26)

Proof First we observe three important facts: for any k ≥ 1 we have

P(tk) =
∑

j≥0

qk j tk = tk

1 − qk
, D(tk) = tk(1 − qk), and R(tk) =

∑

j≥1

qk j tk = qktk

1 − qk

by the definition of the two summation operators and the difference operator. Repeat-
edly applying this we get

Pm(t k) = P
(

t k

(1 − qk)m−1

)
= t k

(1 − qk)m
, ∀m ∈ Z, (27)

Rm(t k) = R

((
qk

1 − qk

)m−1

t k
)

= qmktk

(1 − qk)m
∀m ∈ Z≥0. (28)

Thus

P
(
y(t) · t k) =

∑

j≥0

q j (k+1)t k+1

1 − q j t
=
∑

j≥0

∑

	≥0

q j (k+	+1)t k+	+1 =
∑

	>k

t	

1 − q	
.

Similarly, we have

D
(
y(t) · t k) = t k+1

1 − t
− qk+1t k+1

1 − qt
=
∑

	≥0

(1 − qk+	+1)t k+	+1 =
∑

	>k

(1 − q	)t	,

and
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R
(
y(t) · t k) =

∑

j≥1

q j (k+1)t k+1

1 − q j t
=
∑

j≥1

∑

	≥0

q j (k+	+1)t k+	+1 =
∑

	>k

q	t	

1 − q	
.

It follows from (27) and (28) that

Pm
(
y(t) · t k) =

∑

	>k

t	

(1 − q	)m
∀m ∈ Z, (29)

Rm
(
y(t) · t k) =

∑

	>k

qm	t	

(1 − q	)m
∀m ∈ Z≥0. (30)

We now prove by induction on the the depth d that for all s = (s1, . . . , sd) ∈ Nd ,

zq [wa(s); t] =
∑

k1>···>kd>0

t k1qk1a1 . . . qkdad

(1 − qk1)s1 · · · (1 − qkd )sd
. (31)

When d = 1, i.e., s = s, then by (29) followed by (28)

zq [wa(s); t] = RaPs−a[y](t) =
∑

k>0

Ra
(
t k
)

(1 − qk)s−a
=
∑

k>0

qaktk

(1 − qk)s
.

This proof works even when s = a because of (30) (take k = 0 and m = a there).
Turning to the general case, we let d ≥ 2 and assume (31) holds for smaller depths.

Then by the inductive assumption

zq [wa(s); t] =Ra1Ps1−a1
[
yRa2Ps2−a2 [y · · ·RadPsd−ad [y] · · · ]](t)

=
∑

k2>···>kd>0

Ra1Ps1−a1
(
y(t) · t k2)qk2a2 . . . qkdad

(1 − qk2)s2 · · · (1 − qkd )sd

=
∑

k1>···>kd>0

Ra1
(
t k1
)
qk2a2 . . . qkdad

(1 − qk1)s1−a1(1 − qk2)s2 · · · (1 − qkd )sd
(by (29))

=
∑

k1>···>kd>0

t k1qk1a1 . . . qkdad

(1 − qk1)s1 · · · (1 − qkd )sd

by (28). Again, if s1 = a1 the proof is still valid. This completes the proof of (31).
Setting t = 1 we arrive at (26).

By change of variables a j → s j − a j for all j = 1, . . . , d we immediately obtain
the next result. Observe that by (25), we have

zq [ws−a(s); t] := Rs1−a1
[
Pa1 [yRs2−a2 [Pa2 [y · · ·Rsd−ad [Pad [y]] · · · ]]]](t),

where s − a = (s1 − a1, . . . , sd − ad).
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Theorem 6.3 Let s = (s1, . . . , sd) ∈ Nd , a = (a1, . . . , ad) ∈ (Z≥0)
d , and w = |s|.

Suppose s1 + · · · + s j > a1 + · · · + a j for all j = 1, . . . , d. Then we have

ζ s−a
q [s] = (1 − q)wzq [ws−a(s); 1], zs−a

q [s] = zq [ws−a(s)] := zq [ws−a(s); 1].
(32)

By specializing the preceding two theorems to the four types of q-MZVs in Table1
we quickly find the following corollary. For future reference, we will say wτ has the
typical type τ form for each type τ .

Corollary 6.4 For s = (s1, . . . , sd) ∈ Nd , we set

wI(s) := ρs1−1πy . . . ρsd−1πy = zs1 . . . zsd ∈ A
(B)
θ ⊂ Aπ y (s1 ≥ 2),

wII(s) := ρs1 y . . . ρsd y = z′
s1 . . . z′

sd ∈ A
(B)
θ ⊂ Aπ y,

wIII(s) := π s1−1ρyπ s2 y . . . π sd y = z′
s1 zs2 . . . zsd ∈ A

(A)
θ ⊂ Aπ y,

wIV(s) := ρs1−1πyρs2 y . . . ρsd y = zs1 z
′
s2 . . . z′

sd ∈ A
(B)
θ ⊂ Aπ y (s1 ≥ 2),

and

zq [wI(s); t] :=Rs1−1
[
P[yRs2−1[P[y · · ·Rsd−1[P[y]] · · · ]]]](t),

zq [wII(s); t] :=Rs1
[
yRs2 [y · · ·Rsd [y] · · · ]](t),

zq [wIII(s); t] :=Ps1−1
[
R
[
y[Ps2 [y[Ps3 [y · · ·Psd [y] · · · ]]]]]

]
(t),

zq [wIV(s); t] :=Rs1−1
[
P
[
yRs2 [yRs3 [y · · ·Rsd [y] · · · ]]]

]
(t).

Then for all the types τ = I, II, III and IV, we have

ζ τ
q [s] = (1 − q)wzq [wτ (s); 1], zτq [s] = zq [wτ (s)] := zq [wτ (s); 1].

Moreover, similar results hold for type Ĩ and ĨV q-MZVs. We may replace any of
the consecutive strings ρs j−1π by a single ρ in wĨ(s) and wĨV(s), and replace the
corresponding operator string Ps j−1R by a single R.

We now apply the above to Okounkov’s q-MZVs. For any n ∈ N we let n− and
n+ be the two nonnegative integers such that

n − 1

2
≤ n− ≤ n

2
≤ n+ ≤ n + 1

2
.

Clearly we have n+ + n− = n always, n+ = n− if n is even, and n+ = n− + 1 if n
is odd. We can now define a variation of Okounkov’s q-MZVs. Let s ∈ (Z≥2)

d . Then

ζO
q [s] :=

∑

k1>···>kd>0

d∏

j=1

qk j s
+
j + qk j s

−
j

[k j ]s j = (1 − q)|s|
∑

k1>···>kd>0

d∏

j=1

qk j s
+
j + qk j s

−
j

(1 − qk j )s j
.



Uniform Approach to Double Shuffle and Duality Relations … 275

Again, its modified form is:

zOq [s] :=
∑

k1>···>kd>0

d∏

j=1

qk j s
+
j + qk j s

−
j

(1 − qk j )s j
.

Remark 6.5 The above variation is equal to Okounkov’s original q-MZVs up to a
suitable 2-power.More precisely, the power is given by the number of even arguments
in s.

Corollary 6.6 For s = (s1, . . . , sd) ∈ Nd , we set

wO(s) = (ρs−
1 π s+

1 + ρs+
1 π s−

1 )y . . . (ρs−
d π s+

d + ρs+
d π s−

d )y ∈ A
(B)
θ ⊂ Aπ y

and

zq [wO(s); t] = (Rs−
1 Ps+

1 + Rs+
1 Ps−

1 )
[
y · · · (Rs−

d Ps+
d + Rs+

d Ps−
d )[y] · · · ](t).

Then we have

ζO
q [s] = (1 − q)wzq [wO(s); 1], zOq [s] = zq [wO(s)] := zq [wO(s); 1].

It is possible to obtain the shuffle relations among zOq [s]-values usingCorollary 6.6.
The stuffle relations among zOq [s] is mentioned implicitly in Okounkov’s original
paper. For our modified version, they can be derived from the following fact (cf.
Proposition 2.2 (ii) of [2]). Let FO

n (t) = (tn
+ + tn

−
)/(1 − t)n for all n ≥ 2. Then for

all r, s ∈ Z≥2, we have

FO
r (t) · FO

s (t) =
{
2FO

r+s(t), if r or s is even;
2FO

r+s(t) + 1
2 F

O
r+s−2(t), if r and s are odd.

For example,

zOq [2, 3]zOq [2] = 2zOq [2, 2, 3] + zOq [2, 3, 2] + 2zOq [4, 3] + 2zOq [2, 5],
zOq [2, 3]zOq [3] = 2zOq [2, 3, 3] + zOq [3, 2, 3] + 2zOq [5, 3] + 2zOq [2, 6] + 1

2
zOq [2, 4].

7 q-Shuffle Relations

In contrast to theMZVcase, theq-shuffle product ismuchmore difficult to define than
the q-stuffle product. In this section we will use the Rota–Baxter algebra approach
to define this for type Ĩ, II, III, and ĨV q-MZVs. Note that this has been done for type
III q-MZVs in [7] which we recall first.
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The q-shuffle product onAπ (see Definition 4.8) is defined recursively as follows:
for any words u, v ∈ X∗

π we define 1� u = u� 1 = u and

(yu)� v =u� (yv) = y(u� v), (33)

πu� πv = π(u� πv) + π(πu� v) − π(u� v), (34)

δu� δv =u� δv + δu� v − δ(u� v), (35)

δu� πv = πv� δu = δ(u� πv) + δu� v − u� v (36)

for any words u, v ∈ X∗
π . Equation (33) reflects the fact that when y(t) is multiplied

in front of either of the two factors in a product, it can be multiplied after taking the
product. Equations (34)–(36) formalize (8), (13) and (14), respectively.

Corollary 7.1 For any words u, v ∈ X∗
π , we have

ρu� ρv = ρ(u� ρv) + ρ(ρu� v) + ρ(u� v), (37)

ρu� πv = πv� ρu = ρ(ρu� v) + ρ(u� ρv) + ρu� v + ρ(u� v), (38)

δu� ρv = ρv� δu = δ(u� πv) − u� v = δ(u� ρv) + δ(u� v) − u� v.
(39)

Proof These follows easily from (33)–(36) and the relation ρ = π − 1.

Corollary 7.2 For j = 1, 2 let X ( j)
θ and X ( j),∗

θ be the embedding of Xθ and X∗
θ into

X∗
π , respectively, by Definition 4.8. For any α, β ∈ X ( j)

θ and u, v ∈ X ( j),∗
θ , we have

1� u = u� 1 = u and

αu� βv = α(u� βv) + β(αu� v) + [α, β] j (u� v),

where [α, β] j is determined by [a, b]1 = [b, a]1 = −b, [a, b]2 = [b, a]2 = 0 and

[a, a] j = (−1) j a, [b, b] j = −bγ, [α, γ ] j = [γ, α] j = −αγ. (40)

Proof All of these identities follow from straightforward computation using (33)–
(39). For example,

bu� bv = πyu� πyv = π(yu� πyv) + π(πyu� yv) − π(yu� yv)

= πy(u� πyv) + πy(πyu� v) − πyy(u� v)

= b(u� bv) + b(bu� v) − bγ (u� v).

(41)

Similarly,

θu� θv = ρyu� ρyv = ρ(yu� ρyv) + ρ(ρyu� yv) + ρ(yu� yv)

= ρy(u� ρyv) + ρy(ρyu� v) + ρyy(u� v)

= θ(u� θv) + θ(θu� v) + θγ (u� v).

(42)
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The rest of the proof is left to the interested reader.

Proposition 7.3 The algebra (Aπ ,�) is commutative and associative.

Proof See [7, Theorem 7].

The following corollary generalizes [26, Proposition 1].

Corollary 7.4 For j = 1 or 2 the algebras (A
( j)
θ ,�) are commutative and

associative.

Proof This follows immediately from Proposition 7.3 since (A
( j)
θ ,�) are sub-

algebras of (Aπ ,�) if� for A( j)
θ is defined as in Corollary 7.2.

Our next theorem shows that we may use the shuffle algebra structure defined
above to describe the q-shuffle relations among different types of q-MZVs. Before
doing so, we need to show that the q-shuffle products really make sense for all the
types.

Proposition 7.5 Embed A0
Ĩ
,A0

II,A
0
ĨV

⊂ A
(B)
θ and A0

III ⊂ A
(A)
θ . Then for each type τ ,

if the two words u, v ∈ A0
τ have the typical type τ form listed in Corollary 6.4 then

there is an algorithm to express u� v using only those words in the same form.

Proof The case for type Ĩ is proved by [26, Proposition 2].
Type II is in fact the easiest since we can restrict ourselves to use only (33) and

(37) to compute the shuffle and therefore π never comes into the picture. Clearly all
such words must start with ρ and end with y.

For type III let’s assumeu = π s1−1ρyπ s2 y . . . π sd y andv = πa1−1ρyπa2 y . . . πad y.
If we use the definition (34) repeatedly then in each word appearing in u� v the
first ρ always appears before all the y’s. Such a word can be written in the form
π sρr y · · · for some s ∈ Z and r ≥ 1 (notice that if ρ and π are commutative). Now
we can rewrite this as π s(π − 1)r−1ρy · · · and replace all the ρ’s after the first y by
π − 1. This produces a word of typical type III form.

Type ĨV is similar to type III except that we need to take θ into account. Notice
that by definition if w ∈ A0

ĨV
then it can be written as θw′, or zkw′ (k ≥ 2, w′ ∈ Y ∗̃

IV
)

or a finite linear combination of these. So we have three cases to check. First, we
prove that for all k, l ≥ 2 and u, v ∈ Y ∗̃

IV

zku� zlv ∈ A0
ĨV. (43)

Indeed, putting k = r + 1 and l = s + 1 we have

ρrπyu� ρsπyv

= ρ(ρr−1πyu� ρsπyv) + ρ(ρrπyu� ρs−1πyv) + ρ(ρr−1πy � ρs−1πyv).

Now inside each of the three parentheses we replace every π by ρ + 1 and use
only (33) and (37) to expand (recall that θ = ρy). We see that every term in the
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expansion has the form ρn yw for some n ≥ 1 and w ∈ Y ∗̃
IV
. If n = 1 then we have

ρn yw = θw ∈ A0
ĨV

. If n ≥ 2 we can write it as

ρn−1(π − 1)yw =
n−1∑

j=1

(−1) j−1ρn− jπyw + (−1)n−1θw ∈ A0
ĨV (44)

with each word of typical type ĨV form.
Now we assume k = r + 1 ≥ 2 and u, v ∈ Y ∗̃

IV
. Then

zku� θv =ρrπyu� ρyv

= ρ(ρr−1πyu� ρyv) + ρy(ρrπyu� v) + ρy(ρr−1πy � v) ∈ A0
IV

since ρy = θ and the first term can be dealt with as in the proof of (43).
Finally,

θu� θv ∈ A0
ĨV

follows from (42) immediately. This completes the proof of the proposition.

The following theorem generalizes [26, Theorem 2] but it does not contain [7,
Theorem 7] since our word representation of type III q-MZVs is different from that
given in [7].

Theorem 7.6 EmbedA0
Ĩ
,A0

II,A
0
ĨV

⊂ A
(B)
θ andA0

III ⊂ A
(A)
θ . Then for each type τ and

for any uτ , vτ ∈ A0
τ , we have

zq [uτ ]zq [vτ ] = zq [uτ � vτ ]. (45)

Proof For each type τ weobserve that zq [wτ ; t] satisfies (45) because of the identities
in Proposition 3.2. Then the theorem follows from the fact that zq [wτ ] = zq [wτ ; 1]
for any word wτ ∈ A0

τ by Corollary 6.4.

8 Duality Relations

The DBSFs do not contain all linear relations among the various types of q-MZVs.
In [26], Takeyama discovered the following relations which provides some of the
missing relations for type Ĩ q-MZVs, at least in the small weight cases. He called
them Resummation Identities. We would rather call them “duality” relations because
of their similarity to the duality relations for the classical MZVs.

Theorem 8.1 ([26, Theorem 4]) For a positive integer k, set
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ϕk := (−1)k

⎛

⎝
k∑

j=2

(−1) j z j − θ

⎞

⎠ ,

where ϕ1 = θ = ρy ∈ A
(B)
θ . Let 	 ∈ N and α j , β j ∈ Z≥0 for all j = 1, . . . , 	. Then

we have
zĨq [ϕα1+1γ

β1 · · ·ϕα	+1γ
β	 ] = zĨq [ϕβ	+1γ

α	 · · · ϕβ1+1γ
α1 ]. (46)

We can use the Rota–Baxter algebra approach to give a new proof of this result.

Proof Notice that γ = y, z j = ρ j−1πy and θ = ρy with the embeddingA0
Ĩ

⊂ A
(B)
θ .

Since π = ρ + 1, for all k ≥ 1, we have (cf. (44))

ϕk = (−1)k

⎛

⎝
k∑

j=2

(−1) jρ j−1(ρ + 1)y − ρy

⎞

⎠

= (−1)k

⎛

⎝
k∑

j=2

(−1) jρ j y +
k∑

j=2

(−1) jρ j−1y − ρy

⎞

⎠ = ρk y.

(47)

Thus the theorem follows from Corollaries 3.4 and 6.4 easily.

Remark 8.2 Although not mentioned explicitly in [26], there is a subtle point in
applying Theorem 8.1. Notice that in the expression of ϕk the letter θ appears. How-
ever, q-MZVs of the form such as ζ I

q [θγ z2γ ] = ζ I
q [ρy2ρ2πy] is not really defined.

In fact, it should be denoted by ζ Ĩ
q [θγ z2γ ] = ζ (1,0,1,0)

q [1, 0, 2, 0] (and such values
always converge by Proposition 2.1 because of the leading 1 in the auxiliary variable
a). But, suitable Q-linear combinations of (46) may lead to identities in which only
zk’s appear. Then all terms can be written as honest ζ I

q -values. This explains the use

of two admissible structures Ĥ0 and H0 in [26]. For an illuminating example, see the
proof of Proposition 7 of op. cit. This remark also applies to Theorem 8.5 for the
duality of type ĨV q-MZVs.

Similar relations for type II q-MZVs have the most aesthetic appeal and is the
primary reason why we prefer to call it by the name “duality”.

Theorem 8.3 Let 	 ∈ N and α j , β j ∈ N for all j = 1, . . . , 	. Then we have

zIIq [ρα1 yβ1 · · · ρα	 yβ	 ] = zIIq [ρβ	 yα	 · · · ρβ1 yα1 ].

Proof This follows from Corollaries 3.4 and 6.4 immediately.

Of course we may apply the same idea to type III and ĨV q-MZVs.

Theorem 8.4 Let 	 ∈ N and α j , β j ∈ N for all j = 1, . . . , 	. Then we have
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zIIIq [(π − 1)α1−1ρyβ1(π − 1)α2 yβ2 · · · (π − 1)α	 yβ	 ]
= zIIIq [(π − 1)β	−1ρyα	(π − 1)β	−1 yα	−1 · · · (π − 1)β1 yα1 ].

Proof Since ρ = π − 1 this follows from Corollaries 3.4 and 6.4 easily.

Theorem 8.5 Let 	 ∈ N and α j , β j ∈ N for all j = 1, . . . , 	. Then we have

zĨVq [ϕα1 y
β1−1ρα2 yβ2 · · · ρα	 yβ	 ] = zĨVq [ϕβ	

yα	−1ρβ	−1 yα	−1 · · · ρβ1 yα1 ].

Here ϕ1 = θ = ρy ∈ A
(B)
θ .

Proof This follows from (47), Corollaries 3.4 and 6.4.

9 The General Type G q-MZVs

All of the q-MZVs of type Ĩ, II, III and ĨV considered in the above are some special
forms of the q-MZVs z(a1,...,ad )q [s1, . . . , sd ] where 1 ≤ a1 ≤ s1, 0 ≤ a j ≤ s j for all
j ≥ 2, all of which are convergent by Proposition 2.1. We call these type G q-MZVs.
Similar to the first four types, we may use words to encode these values according
to Theorem 6.2. Namely, we can define

zq [ρa1 yρa2 y · · · ρad y; t] := Ra1y
[
Ra2y[· · · [Rady] · · · ]](t).

By the relation π = ρ + 1 and P = R + I, we get

zq [ρa1πb1 yρa2πb2 y · · · ρadπbd y; t] = Ra1
[
Pb1 [yRa2 [Pb2 [y · · ·Rad [Pbd [y]] · · · ]]]](t).

Thus we have

zq [wa(s)] := zq [wa(s); 1] = z(a1,...,ad )q [s1, . . . , sd ],

where wa(s) = ρa1π s1−a1 y · · · ρadπ sd−ad y ∈ X∗
π . The shuffle product structure is

reflected by (X∗
π ,�) where the� is defined by (33), (34), (37) and (38).

We observe that there is often more than one way to express a type G q-MZV
using words because of the relation π = ρ + 1. For example, using the relations

π2ρy = πρ2y + πρy = ρ3y + 2ρ2y + ρy

we get immediately the relations

z(1)q [3] = z(2)q [3] + z(1)q [2] = z(3)q [3] + 2z(2)q [2] + z(1)q [1].

We call all such relations P-R relations.
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Proposition 9.1 For all u, v ∈ A0
G, we have u� v ∈ A0

G.

Proof Notice that admissible words in A0
G must end with y and have at least one ρ

before the first y. Moreover, the converse is also true. This is rather straightforward
if we use the P-R relations repeatedly to get rid of all the π ’s.

Now, by using the definition of� it is not hard to see that u� v ends with y and
and has at least one ρ before the first y if both u and v are admissible. So u� v ∈ A0

G
and the proposition is proved.

To define the stuffle product we let

YG = {za,s | a, s ∈ Z≥0, a ≤ s},

and let AG be the the noncommutative polynomial Q-algebra of words of Y ∗
G built

on the alphabet YG. Define the type G-admissible words as those in

A0
G =

⋃

1≤a≤s

za,sAG.

We can regard AG as a subalgebra of X∗
π by setting zta,s = ρaπ s−a y. Then stuffle

product ∗G onA0
G can be defined inductively as follows. For anywordsu, v ∈ A0

G and
letters za,s, za′,s ′ ∈ YG with 1 ≤ a ≤ s and 1 ≤ a′ ≤ s ′ we set 1 ∗G u = u = u ∗G 1
and

(za,su) ∗G (za′,s ′v) = za,s(u ∗G za′,s ′v) + za′,s ′(za,su ∗G v) + za+a′,s+s ′(u ∗G v).

It is easy to show that (A0
G, ∗G) is a commutative and associative algebra.

We leave the proof of the following theorems to the interested readers. The first
result clearly provides the DBSFs of type G q-MZVs.

Theorem 9.2 For any u, v ∈ A0
G ⊂ X∗

π we have

zq [u ∗G v] = zq [u� v] = zq [u]zq [v]. (48)

The duality relations are given in the cleanest form by Theorem 8.4 which can be
translated into the following.

Theorem 9.3 Let 	 ∈ N and α j , β j ∈ N for all j = 1, . . . , 	. Set

s = (α1, 0
β1−1, α2, 0

β2−1, . . . , α	, 0
β	−1),

s∨ = (β	, 0
α	−1, β	−1, 0

α	−1−1, . . . , β1, 0
α1−1).

Then we have
zsq [s] = zs

∨
q [s∨].
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Remark 9.4 We point out that the duality in Theorem 9.3 cannot be used to derive
any relation amongMZVs. For example, when 	 = 1 theMZV ζ(α, 0β−1) converges
if α > β while the MZV ζ(β, 0α−1) converges if β > α.

10 Numerical Data

In this last section, we compute the Q-linear relations among various types of q-
MZVs of small weight by using the DBSFs and the duality relations. Most of the
computation is carried out with the computer algebra system MAPLE, version 16.
My laptop has Intel Core i7 with CPU speed at 2.4GHz and 16GB RAM.

For each type τ we will define the set of type τ -admissible wordsWτ
�w with both

weight and depth bounded by w. This is necessary since we allow 0 in some types of
q-MZVs. We have to control the number of 0’s occurring as arguments in q-MZVs
since otherwise the dimensions to be considered becomes infinite. Another reason
that the depth has to be bounded is because the duality essentially swaps the depth
and the weight.

We denote by Zτ
�w the Q-space generated by q-MZVs of type τ corresponding

to the type τ -admissible wordsWτ
�w, DS

τ
�w the space generated by the DBSFs, and

DUτ
�w the space generated by the duality relations. Hence DUτ

�w \ DSτ
�w gives the

duality relations that are not contained in DSτ
�w.

Type I. We have seen that it is necessary to consider q-MZVs of the form zaq(s)
with (a j , s j ) = (s j − 1, s j ) or (a j , s j ) = (1, 1). The latter case corresponds to the
words containing the letter θ . We have called all of these values type Ĩ q-MZVs.

Proposition 10.1 Let F−1 = 0, F0 = 1, F1 = 1, ... be the Fibonacci sequence. Then
for all w ≥ 1 we have

�WI
�w = 2w−1 − 1 and �WĨ

�w = F2w − 1.

Proof The first equation follows from the same argument as that for MZVs. It is
given by the number of integer solutions to the inequality

s1 + · · · + sd ≤ w, d ≥ 1, s1 ≥ 2, s2, . . . , sd ≥ 1.

Or, more directly and perhaps much easier, we can count the corresponding admis-
sible words. Clearly, there are 2w−1 ways to form a word consisting of w − 1 letters
where the letters can be either ρ or π . Let Sw be the set of such words. We now show
that there is a one-to-one correspondence between Sw and the set Aw of admissible
word of weight w. First, from each word w ∈ Sw we can obtain a word in Aw by
inserting a letter y after each π in w and attach πy at the end. On the other hand, for
each word in Aw we may chop off the ending πy and removing all the y’s to get a
word in w. This establishes the one-to-one correspondence.
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Table 2 Dimension of q-MZVs of type Ĩ

w 2 3 4 5 6 7

�WĨ
�w 4 12 33 88 232 609

Lower bound of dim ZĨ
�w 3 7 14 27 50 91

dimDSĨ
�w 1 4 17 56 171 497

dimDUĨ
�w \ DSĨ

�w 0 0 1 2 3 6

Deficiency 0 1,0 1,0 3 8 15

We now prove the second equation. Let an (resp. bn) be the number of type Ĩ
q-MZVs of weight n beginning with (a j , s j ) = (1, 1) (resp. (a j , s j ) = (s j − 1, s j )).
Let’s call the twodifferent beginnings 1-initial and2-initial, respectively.Thena1 = 1
and b1 = 0. Now to produce weight n + 1 1-initials one can attach (t, s) = (1, 1)
to the beginning of any weight n type Ĩ q-MZVs. Moreover, one can change the
beginning of any weight n 1-initial to (t, s) = (0, 1) and then attach (t, s) = (1, 1).
Thus an+1 = 2an + bn . To obtain 2-initials of weight n + 1 one either changes a 1-
initial of weight n to begin with (t, s) = (1, 2) or changes a 2-initial value of weight
n to begin with (s, s + 1) from (s − 1, s) (i.e., increases the first argument by 1).
Hence bn+1 = an + bn . Thus it is easy to see that an = F2n−2 and bn = F2n−3 for all
n ≥ 1. Therefore

�WĨ
�w =

2w−2∑

n=0

Fn = F2w − 1

which can be proved easily by induction.

We find up to weight 3 the following identity (49) cannot be proved by DBSFs
and dualities up to weight 3. Let 1n denote the string where 1 is repeated n times.
Then

z(1,1)q [2, 1] = z(1,1)q [1, 1] − z(13)q [13] + z(1,1,0)q [13]. (49)

Interestingly, (49) can be proved using weight 4 DBSFs and dualities. This is why
we put 0 as the final deficiency (Table2).

Having proved (49), we find, up to weight 4, the only one missing relation is

z(2,1)q [3, 1] =z(1,0,1)q [13] − 2z(13)q [1, 2, 1] + z(12,0)q [1, 2, 1]
+z(13)q [2, 12] − z(1,0,1)q [2, 12] − z(13,0)q [14] + z(12,02)q [14].

(50)

In weight 5, there are three missing relations:

z
(14)
q [13, 2] = z

t1
q [14] − z

t2
q [14] − z

(14)
q [s1] − z

t1
q [13, 2] − 2zt3q [15] − 2zt4q [s2] + 2zt5q [15],

z
t4
q [14] = z

(13)
q [2, 12] − z

t2
q [s1] − 2z(14)q [s1] − z

t6
q [s2] + z

(14)
q [s2] + z

t7
q [15] − z

t1
q [14]

−z
(13)
q [2, 1, 2] − z

t5
q [15] + z

t8
q [14] + 2zt2q [14] − z

t2
q [2, 13] − z

t8
q [2, 13],
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Table 3 Dimension of q-MZVs of type I

w 2 3 4 5 6 7 8 9

�WI
�w 1 3 7 15 31 63 127 255

Lower bound of dim ZI
�w 1 2 4 7 11 18 27 42

dimDSI
�w 0 1 3 8 20 45

dimDUI
�w \ DSI

�w 0 0 0 0 0 0

Deficiency 0 0 0 0 0 0

z
(14)
q [13, 2] = 3z(13)q [2, 12] − 3z(13)q [2, 1, 2] − 3zt4q [14] + z

t2
q [14] − z

t3
q [15]

−z
(14)
q [s1] − z

t4
q [s1] − 2zt2q [s1] − z

(13,02)
q [15] − 2z(14)q [s2] + z

t4
q [s2]

+z
t4
q [2, 13] + 2zt1q [14] + z

t1
q [13, 2] + 2z(12,02,1)q [15],

where s1 = (1, 2, 12), s2 = (12, 2, 1), t1 = (1, 0, 12), t2 = (12, 0, 1), s3 = (t2, 0),
t4 = (13, 0), t5 = (1, 02, 12), t6 = (1, 0, 1, 0), t7 = (1, 03, 1), and t8 = (1, 02, 1).

Equation (50) was initially verified numerically. Even with all the DBSFs and
dualities from weight 5 and 6 this still would not follow. Fortunately, we will see in
a moment that this relation can be proved using type G q-MZVs. However, the three
missing relations in weight 5 are only proved numerically, since, unfortunately, there
are too many type G q-MZVs of weight 5 so the computer computation requires too
much memory to provide a solution at the moment.

Using the relations obtained above for type Ĩ q-MZVs we can compute the fol-
lowing data for type I q-MZVs (Table3).

It is consistent with Takeyama’s computation at the end of [26]. However, our
computation shows that the DBSFs from type Ĩ q-MZVs already imply all the rela-
tions among type I q-MVZs, at least when the weight is less than 8. We thus can
think these type Ĩ DBSFs as “regularized” DBSFs for type I q-MVZs.

Conjecture 10.2 All the Q-linear relations of type I q-MZVs can be derived by the
regularized DBSFs, i.e., by the DBSFs for type Ĩ q-MZVs.

Type II. For each fixed weight w ≥ 1 we collect all the type II-admissible words
of the following form since we want to use the duality relations to its maximal utility.
Such admissible words must consist of letters ρ and y only, begin with ρ, end with
y, and the occurrence of ρ and y is at most w each. For example, we have the duality

zIIq(ρ
3y2ρy4) = zIIq(ρ

4yρ2y3) =⇒ zIIq(3, 0, 1, 03) = zIIq(4, 2, 02)

when we consider weight 6.

Proposition 10.3 For all w ≥ 1, the number of type II-admissible words is
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Table 4 Dimension of q-MZVs of type II

w 1 2 3 4 5 6

�WII
�w 1 5 19 69 251 923

Lower bound of dim ZII
�w 1 3 12 30 73 173

dimDSII
�w 0 1 5 28 124 536

dimDUII
�w \ DSII

�w 0 1 2 8 35 127

Deficiency 0 0 0 3,0 19,6 87

�WII
�w =

w−1∑

i=0

w−1∑

j=0

(
i + j

j

)
=
(
2w

w

)
− 1.

Remark 10.4 This is the sequence A030662 according to the On-Line Encyclopedia
of Integer Sequences http://oeis.org.

Proof For thefirst equality, note that if i + 1 (resp. j + 1) is the number of occurrence
of ρ (resp. y) in an admissible word ofWII

�w then we can put one ρ at the beginning
and one y at the end, then put i of the other ρ’s and j of the other y’s in between in
arbitrary order. Thus, by a well-known binomial identity

1 + �WII
�w = 1 +

w−1∑

i=0

w−1∑

j=0

(
i + j

j

)
= 1 +

w−1∑

i=0

(
w + i

w − 1

)
=

w∑

i=0

(
w + i − 1

i

)
=
(
2w

w

)
.

This completes the proof of the proposition.

Up to weight 4, the following three independent relations cannot be proved using
DBSFs and dualities up to weight 4 (Table4).

zIIq [1, 0, 3] = zIIq [2, 2] + 3zIIq [12, 2] + 2zIIq [1, 0, 2, 0] − 2zIIq [12, 0, 1]
+ zIIq [12, 0, 2] + zIIq [12, 1, 0] − zIIq [1, 2, 0, 1] + 2zIIq [2, 0, 12],

zIIq [3, 0] = zIIq [2, 2] − 2zIIq [3, 1] + zIIq [1, 0, 2, 0] − 2zIIq [12, 0, 1] + 2zIIq [12, 1, 0]
− zIIq [2, 0, 2, 0] + zIIq [3, 02, 0] + 2zIIq [3, 02, 1] − zIIq [3, 0, 1, 0] + 2zIIq [3, 1, 02],

zIIq [1, 0, 3] = zIIq [2, 2] + 2zIIq [3, 1] + zIIq [12, 2] + 4zIIq [12, 0, 1] + zIIq [12, 0, 2]
+ zIIq [12, 1, 0] + zIIq [1, 2, 0, 1] + 4zIIq [2, 0, 1, 0] + 2zIIq [2, 1, 0, 1] + 2zIIq [2, 12, 0].

But using DBSFs and dualities in weight 5, these can all be verified. In weight 5,
we have to use the relations from weight 6 to push the deficiency from 19 down to 6.
It is very likely that relations from weight 7 (or even higher) can reduce this further
down to 0. But our computer runs out of memories so this is not proved.

Type III. The set of type III-admissible wordsWIII
�w up to weightw consist of those

of the form π s1−1ρyπ s2 y · · · π sd y with d ≤ w, |s| ≤ w, s1 ≥ 1 and s2, . . . , sd ≥ 0.
First we have

http://oeis.org
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Table 5 Dimension of q-MZVs of type III

w 1 2 3 4 5 6

�WIII
�w 1 5 19 69 251 923

Lower bound of dim ZIII
�w 1 4 12 30 73 173

dimDSIII
�w 0 1 5 28 124 536

dimDUIII
�w \ DSIII

�w 0 0 1 1 5 4

Deficiency 0 0 1,0 10,0 49,6 210,87

Proposition 10.5 For all w ≥ 1, we have

�WIII
�w =

(
2w

w

)
− 1.

Proof Notice there is an onto map from WIII
�w to WII

�w by changing the all the
π ’s to ρ. For the inverse map, we can change all the ρ’s to π except for the one
immediately before the first y. Thus this is a one-to-one correspondence and therefore
the proposition follows from Proposition 10.3.

We find that the deficiency is not zero when the weight w = 3, 4, 5, 6. Moreover,
none of these missing Q-linear relations can be recovered even if we consider all the
DBSFs and dualities of weight up to 6.

The only missing relation in weight 3 that cannot be proved is

zIIIq [1, 0, 1] = 2zIIIq [1, 1, 0] − zIIIq [1, 2, 0] − zIIIq [2, 0, 0] + zIIIq [2, 0, 1]. (51)

Up to weight 4 there are 10 missing, up to weight 5, 49, and up to weight 6, 210.
Below, we will see that all of the 10 missing relations up to weight 4 including (51)
can be proved using type G q-MZVs. Similarly, the deficiency up to weight 5 and 6
can be reduced to 6 and 87, respectively.

Type IV. To study type IV q-MZVs z(s1−1,s2,...,sd )
q [s1, . . . , sd ] we have used the

special type II values zIIq [1, s2, . . . , sd ] to facilitate us (which can be thought as a kind
of regularization). Type IV q-MZVs together with these values have been called type
ĨV q-MZVs.

Proposition 10.6 For all w ≥ 1, we have

�WIV
�w =

(
2w − 1

w

)
− 1, �WĨV

�w =
(
2w

w

)
− 1.

Remark 10.7 The first number gives the sequence A010763 according to the On-
Line Encyclopedia of Integer Sequences http://oeis.org.

Proof Notice that type IV-admissible q-MZVs are in one-to-one correspondence
to the set {(x1, . . . , xl) ∈ (Z≥0)

l |x1 + · · · + xl = j, 0 ≤ j ≤ w − 2, 1 ≤ l ≤ w}. For

http://oeis.org
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Table 6 Dimension of q-MZVs of type ĨV

w 1 2 3 4 5 6

�WĨV
�w 1 5 19 69 251 923

Lower bound of dim ZĨV
�w 1 4 12 30 73 173

dimDSĨV
�w 0 1 5 28 124 536

dimDUĨV
�w \ DSĨV

�w 0 0 1 1 4 4

Deficiency 0 0 1,0 10,0 50,6 210,87

each fixed j we see that the number of nonnegative integer solutions of x1 + · · · +
xl = j is given by

(l+ j−1
l−1

)
. But

w∑

l=1

(
l + j − 1

l − 1

)
=
(
w + j

w − 1

)

by a well-known binomial identity. By the proof similar to that of Proposition 10.3
we see that

�WIV
�w =

w−2∑

j=0

(
w + j

w − 1

)
=
(
2w − 1

w

)
− 1.

For the second equation, we note that in the word form we have the additional
contribution of the following words: ρy and ρyρs1 y . . . ρsd y, |s| < w, 1 ≤ d < w.
The number of such words is given by (i = number of ρ’s, j = number of y’s)

1 +
w−2∑

j=0

w−1∑

i=0

(
i + j

i

)
= 1 +

w−2∑

j=0

(
w + j

w − 1

)
= 1 + �WIV

�w.

Therefore

�WĨV
�w = 1 + 2�WIV

�w = 2

(
2w − 1

w

)
− 1 =

(
2w

w

)
− 1.

The proposition is now proved.

Type ĨV q-MZVs are similar to type II and III in the sense that the deficiency is
often nonzero, at least when the weight is less than 6. For example, in weight 3 we
have the following identity which cannot be proved using the DBSFs and dualities
if we only restrict to type ĨV q-MZVs of weight and depth no greater than 3.

zIVq [2, 0, 1] = zIIq [1, 0, 1] + zIIq [1, 2, 0]

However this identity follows from weight 4 DBSFs and dualities.
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Table 7 Dimension of q-MZVs of type IV

w 2 3 4 5 6

�WIV
�w 2 9 34 125 461

Lower bound of dim ZIV
�w 2 7 20 55 141

dimDSIV
�w 0 7 9 51 205

dimDUIV
�w \ DSIV

�w 0 0 0 2 24

Deficiency 0 0 5,0 17,0 91,56

Comparing Tables5 and 6 we observe that there should be some hidden relations
between type III and ĨV q-MZVs. Although the dimensions seem to be the same, at
least for lower weight, the deficiencies are very different. But using the most general
type G values to be considered in amoment, we canmake all the deficiencies smaller.

We can now use all of the relations among type ĨV q-MZVs to deduce those for
type IV and collect the data in Table7. Furthermore, by converting all the missing
relations using type II values we can reduce all the deficiencies up to weight 5 to 0.
For weight 6, using type II values we can only reduce the deficiency from 91 to 56.
It is possible that this can be further reduced to 0 using weight 7 relations of type II
values.

Type G. To study the general type G q-MZVs z(a1,...,ad )q [s1, . . . , sd ] we need all of
the following relations we have defined so far: DBSFs, P-R and duality relations.

Proposition 10.8 For all w ≥ 1, we have

�WG

�w =
∑

1≤d≤k≤w

∑

x1+···+xd=d+k−1
x1,...,xd≥1

x1x2 · · · xd .

Proof For each fixed depth d and weight k ≤ w, let z(a1,...,ad )q [s1, . . . , sd ] be a type
G-admissible q-MZV satisfying s1 + · · · + sd = k, 1 ≤ a1 ≤ s1, 0 ≤ a j ≤ s j for all
j ≥ 2. When s1, . . . , sd are fixed and a1, . . . , ad vary, the number of such values is
given by

s1(s2 + 1)(s3 + 1) · · · (sd + 1).

Hence the proposition follows by setting x1 = s1, x2 = s2 + 1, . . . , xd = sd + 1.

Let P-RG
�w be the space generated by all the P-R relations of weight bounded by

w. Then we see that DBSFs are far from enough and both P-R relations and duality
relations contribute non-trivially. Table8 provides our computational data for the
lower weight cases. One can see that the number of admissible words increases very
fast so that it is very difficult to prove relations of other type q-MZVs by first finding
all the relations for type G q-MZVs. This is possible theoretically, but not feasible
with our current computer powers.
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Table 8 Dimension of q-MZVs of type G

w 1 2 3 4 5 6

�WG
�w 1 8 49 294 1791 11087

Lower bound of dim ZG
�w 1 4 12 30 73 173

dimDSG
�w 0 1 8 76 ≤608

dim P-RG
�w \

(
DSG

�w
⋃

DUG
�w

)
0 3 27 177 ≤1540

dimDUG
�w\ (

P-

RG
�w

⋃
DSG

�w

) 0 0 2 8 ≤219

Deficiency 0 0 0 3, 0

Table 9 Dimension of type O q-MZVs, proved rigorously for w ≤ 6 and numerically for w ≤ 12

w 2 3 4 5 6 7 8 9 10 11 12

�WO
�w 1 2 4 7 12 20 33 54 88 143 232

Lower bound of dim ZO
�w 1 2 4 7 11 18 27 42 63 95 142

dimDSO
�w ∪ DUO

�w 0 0 0 0 1 2 6 12 25 48 90

Fortunately, by using P-R relations, all the type G q-MZVs can be converted to
Q-linear combinations of type II values. Therefore, the three missing relations in
weight 4 must be provable using weight 5 DBSFs, P-R and duality relations.

Hence, as we expected, the missing relation (51) for type III q-MZVs of weight
3 and the 9 missing relations of weight 4 can now be proved. And furthermore, the
only one missing relation (50) for type Ĩ q-MZVs of weight 4 can now be proved.
We can also obtain the lower bound of dim ZG

�w from that of type II q-MZVs.
Type O. Using Corollary 6.6 we may regard Okounkov’s q-MZVs as Q-linear

combinations of the q-MZVs zaq [s] for suitable auxiliary variable a. Further by using
the P-R relations we may further reduce this to type II q-MZVs where we don’t need
the letter π (Table9).

Applying the same idea as above it is possible to verify the following Okounkov’s
dimension conjecture, at least when the weight is small.

Conjecture 10.9 Let ZO
w be the Q-vector space generated by zOq [s], |s| ≤ w. Then

∞∑

w=0

tw dimZO
�w = 1

1 − t − t2 + t6 + t8 − t13
− 1

1 − t

= t2 + 2t3 + 4t4 + 7t5 + 11t6 + 18t7 + 27t8 + 42t9 + 63t10 + 95t11 + 142t12 + O(t13).

For example,wehave verified all of the followingQ-linearly independent relations
in the lower weight cases up to q100, and we can rigorously prove the first identity
(52) involving only weight 4 and 6 values by using the relations we have found for
type II q-MZVs: (z = zOq )
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4z[6] = z[2, 2] + 12z[3, 3] − 6z[4, 2], (52)

4z[7] = z[2, 3] + z[3, 2] + 8z[3, 4] + 6z[4, 3] − 4z[5, 2],
z[8] = z[2, 4] − z[6] + 2z[3, 3] + 6z[4, 4],
9z[8] = z[6] − 6z[3, 3] + 3z[4, 2] + 20z[3, 5] + 16z[5, 3] − 10z[6, 2],
z[8] = 2z[2, 6] − z[6] + 2z[3, 3] + 4z[3, 5] − 16z[5, 3]

−6z[2, 3, 3] + 3z[2, 4, 2] − 6z[3, 2, 3] − 3z[4, 2, 2],
4z[3, 6] = z[2, 5] + 4z[5, 2] + 3z[3, 4] + 6z[4, 5] + 8z[5, 4] + 2z[7, 2],
8z[9] = z[3, 4] − 5z[2, 5] − 8z[5, 2] − 30z[4, 5] − 2z[4, 3] − 36z[5, 4] − 10z[6, 3],

6z[4, 2] = 10z[6] + 42z[8] − 60z[2, 6] − 12z[3, 3] − 120z[3, 5] + 312z[5, 3]
−15z[2, 2, 2] + 180z[2, 3, 3] − 90z[2, 4, 2] + 180z[3, 2, 3] + 60z[3, 3, 2],

72z[9] = 62z[5, 2] + 40z[2, 5] − 4z[3, 4] + 40z[3, 6] − 2z[4, 3] + 240z[4, 5]
+264z[5, 4] − 5z[2, 2, 3] − 60z[3, 3, 3] − 30z[4, 2, 3],

16z[9] = 2z[3, 4] − 10z[2, 5] − 12z[2, 7] − 8z[5, 2] − 60z[4, 5] − 24z[5, 4]
+4z[2, 3, 2] + 4z[3, 2, 2] + 3z[2, 2, 3] + 24z[2, 3, 4] + 18z[2, 4, 3]
+12z[3, 3, 3] − 12z[2, 5, 2] + 24z[3, 2, 4] + 6z[4, 3, 2],

64z[9] = 40z[2, 5] + 20z[2, 7] − 8z[3, 4] + 44z[5, 2] + 20z[3, 6] − 4z[4, 3]
+240z[4, 5] + 168z[5, 4] − 5z[2, 3, 2] − 5z[2, 2, 3] − 40z[2, 3, 4] − 30z[2, 4, 3]
+20z[2, 5, 2] − 5z[3, 2, 2] − 40z[3, 2, 4] − 100z[3, 3, 3] + 10z[3, 4, 2],

56z[9] = 30z[2, 5] + 20z[2, 7] + 26z[5, 2] − z[3, 4] + 40z[3, 6] − 6z[4, 3]
+180z[4, 5] + 112z[5, 4] − 5z[2, 2, 3] − 5z[2, 3, 2] − 5z[3, 2, 2] − 40z[2, 3, 4]
+20z[5, 2, 2] − 40z[3, 2, 4] − 30z[2, 4, 3] + 20z[2, 5, 2] − 140z[3, 3, 3].

Therefore, Conjecture 10.9 is proved rigorously up to weight 6 (inclusive), and
verified numerically up to weight 12 (inclusive). The list of relations for weight 10
to 12 is too long to be presented here.

11 Conclusions

We have studied various q-analogs of MZVs in this paper using the uniform method
of Rota–Baxter algebras. Among these q-MZVs, there are many Q-linear relations,
most of which can be proved using DBSFs, P-R and duality relations.

From the data collected in Sect. 10, we have seen that for all of the type Ĩ, II, III and
ĨV q-MZVs duality relations are necessary to generate someQ-linear relations among
q-MZVs that are missed by the DBSFs, at least when the weight is large enough.
However, the combination of all the DBSFs and dualities are often not exhaus-
tive yet. Sometimes, this difficulty can be overcome by increasing the weight and
depth. But this seems to fail in some other cases, for example, for type Ĩ q-MZVs of
weight 4.
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We can improve the above situation by considering the more general type G
values. The advantage is that we have the new P-R relations which provide a lot of
new relations between type G q-MZVs, much more than the DBSFs and dualities
combined. The disadvantage is that there are too many type G values so that even
when the weight is 5 our computer power is too weak to produce all the necessary
relations. However, by using P-R relations all type G values can be converted to
Q-linear combinations of type II values which can be handled by computer a lot
easier.

As we mentioned in the introduction our method can be easily adapted to study
the q-MZVs of the following forms:

z(a1,...,ad )q [s1, . . . , sd ], z(s1−a1,...,sd−ad )
q [s1, . . . , sd ],

where a1 ≥ a2 ≥ · · · ≥ ad ≥ 0 are all integers. The monotonicity guarantees that
a good stuffle structure can be defined. For z(a1,...,ad )q [s1, . . . , sd ], we need to use
embedding (A) together with shifting operator S− in defining the stuffle and, for
z(s1−a1,...,sd−ad )
q [s1, . . . , sd ], we need (B) together withS+.
As an application, we are able to prove Okounkov’s Conjecture 10.9 rigorously

up to weight 6 (inclusive), and verify it numerically up to weight 12 (inclusive).
It would be more effective if one can define a shuffle structure for type O values
themselves and find a relation to the differential operator q d

dq which should play an
important role in the study of these values.
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q-Analogues of Multiple Zeta Values
and Their Application in
Renormalization

Johannes Singer

Abstract In this paper we report on recent developments on q-analogues ofmultiple
zeta values (MZVs), which are power series in a formal parameter q that reduce to
classical MZVs in the limit q → 1. First of all, we systematically develop the double
shuffle relations of three q-models, whose shuffle products rely on a description of
iterated Rota–Baxter operators. In the second part we use two of these q-models
to construct solutions to the renormalization problem of MZVs, i.e., a systematic
extension of MZVs to negative integers. In one case the renormalized MZVs satisfy
the quasi-shuffle relations and in the other case the shuffle relations are verified.

Keywords q-Analogues of multiple zeta values · Rota–Baxter operators ·
Renormalization

1 Introduction

The multiple zeta function is defined by the nested series

ζn(s1, . . . , sn) :=
∑

m1>···>mn>0

1

ms1
1 · · · msn

n
(1)

for s1, . . . , sn ∈ C with
∑ j

i=1 Re(si ) > j , j = 1, . . . , n [26]. In the special case n =
1 we obtain the well-known Riemann zeta function given by the Dirichlet series

ζ1(s) :=
∑

m>0

1

ms
=

∏

p prime

1

1 − p−s
(2)
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for s ∈ Cwith Re(s) > 1. The first study of this function can be traced back to Euler,
e.g., he calculated the explicit formula for ζ1 at even positive integers

ζ1(2k) = − (2π i)2k B2k

2(2k)! (k ∈ N),

where Bm ∈ Q denotes the m-th Bernoulli number defined by the generating series

tet

et − 1
=

∑

m≥0

Bm
tm

m! .

Furthermore the Riemann zeta function can be meromorphically continued to C

with a single pole in s = 1. It is a well-known fact that for s ∈ C \ {0, 1} we have
the following identity

ζ1(s) = 2sπ s−1 sin
(πs

2

)
Γ (1 − s)ζ1(1 − s),

which is known as the functional equation of the Riemann zeta function, where Γ (s)
denotes the meromorphic continuation of the Gamma function. As an immediate
consequence we deduce for k ∈ N0 that ζ1(−k) = −Bk+1/(k + 1), which unveils
the trivial zeros of the Riemann zeta function at −2,−4,−6, . . ., since B2k+1 = 0
for k ∈ N. In contrast to this only very few results on the arithmetic nature of the
Riemann zeta function at odd positive integers are known. For example, Apéry
proved that ζ1(3) is irrational [3], Zudilin showed that at least one of the four values
ζ1(5), ζ1(7), ζ1(9), ζ1(11) is irrational [38] and Ball and Rivoal proved that for in-
finitely many k ∈ N the value ζ1(2k + 1) is irrational [4]. It is even conjectured that
for any k ∈ N and any non-zero polynomial p ∈ Q[T1, . . . , Tk]

p(π, ζ1(3), ζ1(5), . . . , ζ1(2k − 1)) �= 0.

Essentially, thiswould imply that there are no interestingQ-algebraic relations among
the positive Riemann zeta values.

However, regarding multiple zeta values (MZVs)—which are the functional char-
acteristics of themultiple zeta function at positive integer arguments—the situation is
completely different from the one-dimensional case. Subsequently, we denoteMZVs
by

ζ(k1, . . . , kn) := ζn(k1, . . . , kn)

for k1, . . . , kn ∈ N with k1 ≥ 2 and call n the length and k1 + · · · + kn the weight.
Let M denote the Q-vector space spanned by the MZVs. First of all one observes
that M is an algebra. For instance, multiplying the sums
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∑

m>0

1

ma

∑

n>0

1

nb
=

∑

m>n>0

1

manb
+

∑

n>m>0

1

nbma
+

∑

m>0

1

ma+b
(3)

leads toNielsen’s reflexion formula ζ(a)ζ(b) = ζ(a, b) + ζ(b, a) + ζ(a + b)which
exemplifies the so called quasi-shuffle product (also called harmonic or stuffle
product).

TheMZVs are in the spotlight of several far-reaching conjectures which underline
their significance. Let w ∈ N≥2. Then Mw denotes the Q-subspace of M spanned
by all MZVs of weight w. The dimension of Mw is denoted by dw.

Conjecture 1 (Zagier)

(a) The weight defines a graduation of M , i.e.,

M =
⊕

w≥2

Mw.

(b) For w ≥ 3 we have dw = dw−2 + dw−3, where d0 := 1, d1 := 0 and d2 := 1.

The previous conjecture has also very strong implications on the arithmetic nature
of the Riemann zeta values, e.g., as an immediate consequence of (a) we can deduce
that ζ(k) (k ≥ 2) is transcendental which implies the irrationality of all odd positive
zeta values. Currently, a proof of these properties seems to be out of range [9].
Moreover Hoffman conjectured a basis for the space of MZVs.

Conjecture 2 The numbers ζ(k1, . . . , kn) with n ≥ 1 and ki ∈ {2, 3} form a Q-basis
of M .

It is known by a theorem of Brown [7, 35] that M is spanned by ζ(k1, . . . , kn)

with n ≥ 1 and ki ∈ {2, 3}.
Furthermore there is also a geometric interpretation of MZVs. The following

theorem of Kontsevich shows that MZVs are periods:

Theorem 1 For k1 ≥ 2 and k2, . . . , kn ≥ 1 we have

ζ(k1, . . . , kn) =
∫

1>t1>···>tk>0

ω1(t1) · · · ωk(tk), (4)

where k := k1 + · · · + kn andωi (t) := dt/(1 − t) if i ∈ {k1, k1 + k2, . . . , k1 + · · · +
kn} and ωi (t) := dt/t otherwise.

The motivic aspects of MZVs are based on this geometric interpretation which
turned out to be very fruitful (see [7, 8]).

The integral representation (4) ofMZVs induces a second product on theQ-vector
space M , which is called shuffle product. For example we obtain by decomposing
the domain
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1 > t1 > t2 > 0, 1 > t̃1 > t̃2 > 0

into six disjoint domains that

ζ(2)2 =
∫

1>t1>t2>0
1>t̃1>t̃2>0

dt1
t1

dt2
1 − t2

dt̃1
t̃1

dt̃2
1 − t̃2

= 4ζ(3, 1) + 2ζ(2, 2). (5)

Combining the quasi-shuffle relations induced by (3) and the shuffle relations
induced by (4)we obtain the so-called double shuffle relations. As a concrete example
we observe from (3) and (5) the relation ζ(4) = 4ζ(3, 1). It is conjectured that all
Q-linear relations among MZVs are obtained by (extended) double shuffle relations
[23].MoreoverMZVs and their generalizations, i.e., multiple polylogarithms, appear
to play an important role in quantum field theory [6, 30].

In this paper we study q-analogues of multiple zeta values (q-MZVs). The
paramount aim is always to achieve a better understanding of a classical object—in
our case the MZVs—by considering a functional analogue of it in the form of a
formal power series. In a first step one has to identify suitable q-analogues of MZVs.
The following general requirements are seen to be reasonable:

(A) In the limit q → 1 the q-MZVs, which are power series in q, should always
reduce to the MZVs, which are real numbers.

(B) The algebraic structure, which is one of the dominating properties of MZVs,
should be reflected by an appropriate q-model.

(C) The q-MZVs should emphasis particular properties of MZVs, e.g., an intrinsic
regularization or algebraic aspect, which lead to new insights into the theory of
MZVs.

Item (C) supports the view that it is not the primary aim to find the “true” q-
analogue of MZVs. In fact it is more beneficial to have several different q-models at
hand and finally the specific choice of the model should then depend on the particular
properties of the classical object one is interested in.

Following this philosophy we regard three different q-models. We always assume
0 < q < 1. A q-analogue of the positive integer m ∈ N can be defined by

[m]q := 1 − qm

1 − q
= 1 + q + · · · + qm−1.

All the models we consider have the same basic structure. In the denominator
of the defining series (1) of MZVs the summation variables mi are replaced by the
corresponding q-integer [mi ]q . Then we define

ζ •
q (k1, . . . , kn) :=

∑

m1>···>mn>0

f •
q (m1, . . . , mn; k1, . . . , kn)

[m1]k1
q · · · [mn]kn

q

(6)
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where • ∈ {BZ,SZ,OOZ}. The only difference lies in the choice of the function f •
q

in the numerator of the defining nested sum, which is defined for the

• Bradley–Zhao (BZ) model [5, 36] by

f BZq (m1, . . . , mn; k1, . . . , kn) := qm1(k1−1)+···+mn(kn−1);

• Schlesinger–Zudilin (SZ) model [31, 39] by

f SZq (m1, . . . , mn; k1, . . . , kn) := qm1k1+···+mnkn ;

• Ohno–Okuda–Zudilin (OOZ) model [29] by

f OOZq (m1, . . . , mn; k1, . . . , kn) := qm1 .

Now we discuss the previously stated requirements on q-analogues. Item (A)
is verified by all models. Since limq→1[m]q = m and limq→1 f •

q (m1, . . . , mn;
k1, . . . , kn) = 1 we easily observe for integers k1 ≥ 2, k2, . . . , kn ≥ 1 that

lim
q→1

ζ •
q (k1, . . . , kn) = ζ(k1, . . . , kn).

Addressing the above stated item (B) we first remark that all three q-models
presented here exhibit a natural quasi q-shuffle product which is directly induced by
their defining series. In order to establish double q-shuffle relations an appropriate
q-analogue of the shuffle product is necessary. We will borrow ideas from [11]—
where the authors provided q-shuffle products for the OOZ-model using techniques
from Rota–Baxter algebra—to derive q-shuffle relations for the BZ- and SZ-model.
Therefore all q-models discussed here reflect the double shuffle structure of the
MZVs as requested in (B).

We discuss the requirement (C) separately for each model. We will see that the
different choices of the function f •

q lead to very specific algebraic properties concern-
ing the quasi q-shuffle and q-shuffle relations as well as their intrinsic regularization
properties.

• The motivation for the introduction of the BZ-model is based on an analytical
observation concerning the Riemann zeta function. In [25] Kaneko, Kurokawa
and Wakayama considered the one-parameter function

fq(s, t) :=
∑

n≥1

qnt

[n]s
q

.

For Re(s) > 1 and Re(t) > 0 one has limq→1 fq(s, t) = ζ1(s). Regarding the
meromorphic continuation of fq(s, t), they proved that limq→1 fq(s, s − 1) =
ζ1(s) for any s ∈ C. Like the Riemann zeta function, fq(s, s − 1) has only a pole
at one on any compact set in the C-plane if q < 1 is sufficiently large. This is only
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true for the case t = s − 1. Therefore this one-dimensional model is distinguished
from others. Hence, the BZ-model is then considered as the natural extension to
higher length.

• The characteristic property of the SZ-model lies in its quasi-shuffle structure. It
is easily seen that ζ SZ

q can be directly obtained from ζ by the substitution mi �→
[mi ]q/qmi in Eq. (1) (i = 1, . . . , n). Hence, the quasi-shuffle relations of these
q-MZVs and the classical MZVs coincide. Moreover the q-series of this model
is convergent even if we allow k1 = 1. Therefore we observe better convergence
properties than for classical multiple zeta values.

• Since f OOZq is independent of k1, . . . , kn it is easily verified that the OOZ q-MZVs
are convergent for arbitrary integer arguments. Additionally, Castillo-Medina,
Ebrahimi-Fard and Manchon constructed in [11] a q-shuffle product that is also
defined for negative and mixed sign integer arguments. Therefore these q-MZVs
occupy an intrinsic regularization in contrast to the classical MZVs and exhibit a
compatible q-shuffle structure.

The second part of this paper deals with the values of the multiple zeta function at
negative integer arguments. As we have seen in the case of the Riemann zeta function
the meromorphic continuation completely determines all Riemann zeta values at
negative integers. In contrast to this the meromorphic continuation of the multiple
zeta function (1) only partially describes the values for negative integer arguments
because most of them are points of indeterminacy due to poles (see Sect. 4). This
raises the question of how to systematically extend the MZVs to negative integer
arguments. On the one hand the extension should verify the values obtained by the
meromorphic continuation whenever it is defined. Therefore there is a certain degree
of freedom concerning the extension of the MZVs. Since the algebraic aspects of
MZVs play a decisive role it is reasonable to additionally expect that the extended
MZVs should at least verify certain algebraic properties, e.g., the quasi-shuffle or
shuffle relations. The extension problem is called the renormalization problem of
MZVs (Problem 1). In order to construct solutions to this problem we exploit the
aforementioned specific properties of the SZ- and OOZ-model. The key observation
is that we can interpret q-analogues as a natural q-perturbation of MZVs to which
we apply renormalization methods from perturbative quantum field theory. Here we
realize that the specific algebraic structures of the corresponding q-models carry over
to the extended MZVs: For the quasi-shuffle case we will use the SZ-model because
its quasi-shuffle product coincides with that of classicalMZVs. In the shuffle case we
work with the OOZ-model since it exhibits a natural shuffle product also for negative
integer arguments.

The paper is organized as follows. In Sect. 2 we review the main aspects of the
algebraic theory of MZVs. Section3 is devoted to the study of the double q-shuffle
relations of q-MZVs. This section essentially relies on the works [11, 32, 33]. In
Sect. 4 we regard two q-models as natural q-perturbations of MZVs and implement
a renormalization procedure which was carried out in the papers [14, 15] as a joint
project with K. Ebrahimi-Fard and D. Manchon.
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2 Linear Relations Among Multiple Zeta Values

In this section we review the essential aspects of the theory of Q-linear relations
among MZVs. Following [21] it is convenient to introduce a polynomial algebra in
two non-commutative variables x0 and x1 which is denoted by h := Q〈x0, x1〉. The
empty word 1 is the unit of h. The subalgebra h1 := Q ⊕ hx1 consists of all words
not ending in x0. Furthermore we denote by h0 := Q ⊕ x0hx1 the linear span of all
words not beginning with x1 and not ending in x0. Note that the subalgebra h1 is
generated by words with letters uk := xk−1

0 x1 (k ∈ N) and h0 is generated by words
uk1 · · · ukn with k1 ≥ 2, k2, . . . , kn ≥ 1.

On h0 we define an evaluation map ζ : h0 → R by ζ(1) := 1 and

ζ(uk1 · · · ukn ) := ζ(k1, . . . , kn). (7)

2.1 Double Shuffle Relations

As remarked in the introduction the double shuffle relations of MZVs rely on two
non-compatible products: the quasi-shuffle product and the shuffle product. In this
section we review their algebraic structure in terms of the polynomial algebra h1

introduced above [21, 34].
Generalizing Nilsen’s reflexion formula (3) to arbitrary depth we define the quasi-

shuffle product ∗: h1 ⊗ h1 → h1, iteratively by

(i) 1 ∗ w := w ∗ 1 := w,
(ii) umv ∗ unw := um(v ∗ unw) + un(umv ∗ w) + um+n(v ∗ w)

for words v, w ∈ h1 and m, n ∈ N. For example

ua ∗ ub = uaub + ubua + ua+b. (8)

Furthermore the deconcatenation coproduct Δ : h1 → h1 ⊗ h1 is defined byΔ(1) :=
1 ⊗ 1 and

Δ(uk1 · · · ukn ) := 1 ⊗ uk1 · · · ukn + uk1 · · · ukn ⊗ 1 +
n−1∑

l=1

uk1 · · · ukl ⊗ ukl+1 · · · ukn .

Then the triple (h1, ∗,Δ) forms a bialgebra. Since the bialgebra is connected and
filtered it is automatically a Hopf algebra which is called the quasi-shuffle Hopf
algebra. The antipode S is given by the following iterative formula:

S(w) = −w −
∑

(w)

S(w′) ∗ w′′,
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where we use Sweedler’s notation Δ̃(w) := Δ(w) − 1 ⊗ w − w ⊗ 1 = ∑
(w)

w′ ⊗ w′′. The quasi-shuffle Hopf algebra will be of great importance in view of
Theorem 11.

Now we address the shuffle product of MZVs. For this we define multiple poly-
logarithms (MPLs) in a single variable for k1, . . . , kn ∈ N by

Lik1,...,kn (z) :=
∑

m1>···>mn>0

zm1

mk1
1 · · · mkn

n

, (9)

generalizing z �→ − log(1 − z) for k1 = 1 and n = 1, where z is a complex number.
The function Lik1,...,kn (z) is of depth dpt(k) := n ≥ 1 and weight wt(k) := k1 +
· · · + kn , for k := (k1, . . . , kn). It is analytic in the open unit disk and, in the case
k1 > 1, continuous on the closed unit disk. In this case we observe the connection
of MPLs andMZVs ζ(k1, . . . , kn) = Lik1,...,kn (1). Equivalently, we can define MPLs
by induction on the weight wt(k) as follows:

z
d

dz
Lik1,...,kn (z) = Lik1−1,k2,...,kn (z) if k1 > 1, (10)

(1 − z)
d

dz
Li1,k2,...,kn (z) = Lik2,...,kn (z) if n > 1, (11)

Lik1,...,kn (0) = 0. (12)

Therefore we observe an integral formula for MPLs using iterated Chen integrals.
Indeed, setting

ω0(t) := dt

t
and ω1(t) := dt

1 − t
(13)

the differential equations (10), (11) and the initial conditions (12) lead to

Lik1,...,kn (z) =
∫ z

0
ω

k1−1
0 ω1 · · ·ωkn−1

0 ω1,

using the convention Li∅(z) = 1. Here

∫ y

x
ϕ1 · · · ϕp :=

∫ y

x
ϕ1(t)

∫ t

x
ϕ2 · · · ϕp

is defined for complex-valued differential 1-forms ϕ1, . . . , ϕp on a compact interval
and real numbers x and y. This representation proves Theorem 1 and gives rise to the
well-known shuffle products of MPLs and MZVs. The shuffle product counterpart
of Nielsen’s reflexion formula (3) is Euler’s decomposition formula
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ζ(a)ζ(b) =
a−1∑

l=0

(
b + l − 1

b − 1

)
ζ(b + l, a − l) +

b−1∑

l=0

(
a + l − 1

a − 1

)
ζ(a + l, b − l)

(14)

for a, b ≥ 2, which solely relies on the integral representation ofMZVs. Based on the
integral representation (4) we introduce, by imitating the integration by parts formula
for iterated Chen integrals, the shuffle product � : h1 ⊗ h1 → h1 inductively by

(i) 1� w := w� 1 := w,
(ii) av� bw := a(v� bw) + b(av� w)

for words v, w ∈ h1 and a, b ∈ {x0, x1}. For example, we observe

x0x1 � x0x1 = 4x2
0 x2

1 + 2x0x1x0x1. (15)

Theorem 2 ([22, 23]) We have:

(a) The evaluation maps ζ : (h0, ∗) → R and ζ : (h0,�) → R are morphisms of
algebras.

(b) The regularized double shuffle relations hold, i.e.,

ζ(v ∗ w − v� w) = 0 and ζ(u1 ∗ w − x1 � w) = 0

for any words v, w ∈ h0.

Using the previous theorem, Eq. (8) immediately implies Nielsen’s reflexion for-
mula stated in (3). Together with Eq. (15) we obtain the following double shuffle
relation:

0 = ζ(u2 ∗ u2 − x0x1 � x0x1) = ζ(4) − 4ζ(3, 1).

In addition, in [23] the authors conjecture that all linear relations among MZVs
follow from the regularized double shuffle relations.

2.2 Duality and Derivation Relations

Another way to deduce linear relations among MZVs is given in terms of duality.
These relations can be deduced from the integral representation (4) by a transforma-
tion of variables.We start with the algebraic description. Define an antiautomorphism
τ : h0 → h0 by τ(1) := 1 and

τ(x0) := x1 and τ(x1) := x0.
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For example we have τ(x2
0 x3

1 x0x1) = x0x1x3
0 x2

1 . The transformation of variables
given by Ψ (t1, . . . , tn) := (1 − tn, . . . , 1 − t1) applied to the integral (4) implies
the following theorem:

Theorem 3 ([21]) For any word w ∈ h0 we have ζ(w) = ζ(τ (w)).
For instance Euler’s relation ζ(3) = ζ(2, 1) can be deduced from τ(x2

0 x1) =
x0x2

1 .
Finally, we consider the so-called derivation relations, which also give rise to

linear relations among MZVs. For n ∈ N we introduce the derivation ∂n : h0 → h0

with respect to the concatenation product on the generators of h0 by

∂n(x0) := x0(x0 + x1)
n−1x1 and ∂n(x1) := −x0(x0 + x1)

n−1x1.

The following theorem shows that the image of words under the derivation lies in the
kernel of ζ :

Theorem 4 ([23]) For any w ∈ h0 and n ∈ N we have ζ(∂n(w)) = 0.

In Sect. 3.3 we show a surprising connection between derivation and the duality
relations in terms of a dual product.

3 q-Analogues of Multiple Zeta Values

Now we study the algebraic properties of the q-analogues introduced in Sect. 1. In
the q-case we are confronted with some specific phenomenons.

As shown in Sect. 2.1 the quasi-shuffle and shuffle product of MZVs always pre-
serve the weight. This is also in accordance with Conjecture 1. However, considering
q-MZVs the situation is different. For example we observe for the BZ-model for
a, b ≥ 2

∑

m>0

qm(a−1)

(1 − qm )a

∑

n>0

qn(b−1)

(1 − qn)b
=

∑

m>n>0

qm(a−1)+n(b−1)

(1 − qm )a(1 − qn)b
+

∑

n>m>0

qn(b−1)+m(a−1)

(1 − qn)b(1 − qm )a

+
∑

m>0

qm(a+b−1)

(1 − qm )a+b
+

∑

m>0

qm(a+b−2)

(1 − qm )a+b−1
.

Multiplying this equation by (1 − q)a+b we obtain

ζBZ
q (a)ζBZ

q (b) = ζBZ
q (a, b) + ζBZ

q (b, a) + ζBZ
q (a + b) + (1 − q)ζBZ

q (a + b − 1).

Hence, the last summand shows that a decrease of weight arises. In the limit q → 1
we rediscover the classical Nilsen reflexion formula (3) since the last terms vanishes
because of the prefactor (1 − q). The loss of weight occurs also for the q-shuffle
product. Similar phenomenons are visible for the OOZ- and SZ-model.
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In order to establish the regularized double shuffle relations for MZVs
(Theorem 2) it is necessary to identify the divergent zeta value “ζ(1)” with a formal
variable T (see [23]). But in contrast to classical MZVs the q-MZV ζ •

q (1) is con-
vergent for • ∈ {SZ,OOZ}. Therefore the double q-shuffle relations for those two
models have intrinsically implemented the regularized double shuffle relations.

The last observation addresses the integral representation of MZVs (Theorem 1)
which encodes the geometric information of MZVs. At the first glance there is no
obvious substitute in the q-case. Aswewill show in the next paragraph one can define
an appropriate analogue in terms of Rota–Baxter operators (RBO). Structurally, the
integral operator, which is a RBO of weight 0, can be substituted by a RBO of weight
unequal to 0. This naturally induces a q-shuffle product for the q-models which we
describe in the next section.

3.1 From Jackson’s Integral to Rota–Baxter Operators

In this paragraph we motivate the Rota–Baxter operator characterization of q-MZVs
by imitating the integral representation of classical MZVs (4) for the OOZ q-model
by the ordinary Riemann integral. See [11] for more details. The Jackson integral

Iq [ f ](t) :=
∫ t

0
f (x) dq x := (1 − q)

∑

n≥0

f (qnt)qnt,

is the q-analogue of the classical integral operator I [ f ](t) := ∫ t
0 f (x) dx in the sense

that under appropriate regularity conditions on f wehave I [ f ](t) = limq→1 Iq [ f ](t),
[24].

The key observation of [10, 11] was that the OOZ-model is related to an iteration
of Jackson integrals. Recall the differential one-forms introduced in (13). In analogy
to this we define the functions

ω̃0(t) := 1

t
and ω̃1(t) := 1

1 − t
.

Replacing the integral operator I by its q-analogue Iq in Eq. (4) we obtain for positve
integers k1, . . . , kn ∈ N

ζOOZ
q (k1, . . . , kn) = Iq [α1 Iq [α2 · · · Iq [αk1+···+kn ] · · · ]](q), (16)

where αi := ω̃1 if i ∈ {k1, k1 + k2, . . . , k1 + · · · + kn} and αi := ω̃0 otherwise. For
classical MZVs the product rule of iterated Chen integrals naturally induces the
shuffle product. In the q-case this role is transferred to a modified Jackson integral
in terms of a Rota–Baxter operator. Therefore we shortly review the main aspects of
Rota–Baxter algebra [18].
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Let k be a ring, A a k-algebra and λ ∈ k. A Rota–Baxter operator (RBO) of
weight λ on A over k is a k-vector space endomorphism L of A which satisfies

L(x)L(y) = L(x L(y)) + L(L(x)y) + λL(xy) (17)

for any x, y ∈ A . A Rota–Baxter k-algebra of weight λ is a pair (L ,A ) with a
k-algebra A and a RBO of weight λ on A over k.

Next we provide several examples of Rota–Baxter algebras, which will be impor-
tant in the context of this work.

(a) LetC(R) denote the algebra of continuous functions fromR toR. The integration
operator

I : C(R) → C(R), I [ f ](t) :=
∫ t

0
f (x) dx

is a RBO of weight 0, which is an obvious consequence of the integration by
parts formula.

(b) We regard the C-algebra

P≥1 :=
{

f (z) :=
∑

k≥1

ak zk : R f ≥ 1

}
⊆ zC[[z]]

of power series with non-constant terms and radius of convergence of at least 1.
OnP≥1 we define the operator

J : P≥1 → P≥1, J [ f ](z) :=
∫ z

0
f (t)

dt

t
.

Again, the integration by parts formula implies that (J,P≥1) is a Rota–Baxter
algebra of weight 0.

(c) The vector space tC[[t, q]] of power series in two variables t, q and strictly
positive valuation in t can interpreted as the C[[q]]-algebra tC[[t, q]], which we
denote by A . The operator

Pq : A → A , Pq [ f ](t) :=
∑

n>0

f (qnt)

is a RBO of weight 1.
(d) Furthermore, on the same algebra A we define the operator

Pq : A → A , Pq [ f ](t) :=
∑

n≥0

f (qnt),

which is a RBO of weight −1.
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(e) On the algebra C[z−1, z]] of Laurent series the projector π : C[z−1, z]] →
C[z−1, z]] given by

π

( ∞∑

n=−l

anzn

)
:=

−1∑

n=−l

anzn

with the convention that the empty sum is zero is a RBO of weight −1.
(f) The operator

Dq : A → A , Dq [ f ](t) := f (t) − f (qt)

is a weight −1 differential RBO [19], i. e., for any f, g ∈ A

Dq [ f g] = Dq [ f ]g + f Dq [g] − Dq [ f ]Dq [g].

Let us return to the iterated Jackson integral (16), which characterizes the OOZ
q-MZVs. Now we show that the iterated Jackson integrals are replaced by an inter-
leaving of Rota–Baxter operators. The Jackson integral operator and the previously
defined RBO Pq are related by

Ĩq [ f ](t) :=
∫ t

0

f (x)

x
dq x = (1 − q)Pq [ f ](t).

Therefore (16) leads to

ζOOZ
q (k1, . . . , kn) = (1 − q)k1+···+kn P

k1
q [y P

k2
q [y · · · P

kn

q [y] · · · ]](q), (18)

where y(t) := t/(1 − t). In the light of the prefactor (1 − q)k1+···+kn in Eq. (18) it is
reasonable to introduce modified q-MZVs in the sense

ζ
•

q (k1, . . . , kn) := (1 − q)−(k1+···+kn)ζ •
q (k1, . . . , kn)

with • ∈ {BZ,SZ,OOZ}.
Example 1 For instance, using the defining Rota–Baxter relation for Pq , Eq. (18)
implies

ζ
OOZ
q (1)ζ

OOZ
q (1) = Pq [y]Pq [y]∣∣t=q = 2Pq [y Pq [y]]∣∣t=q − Pq [y2]|t=q

= 2ζ
OOZ
q (1, 1) − ζ

OOZ
q (1, 0).

In contrast to this we observe using the defining series of the q-MZVs
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ζ
OOZ
q (1)ζ

OOZ
q (1)

= 2
∑

m>n>0

qm+n

(1 − qm)(1 − qn)
+

∑

m>0

q2m

(1 − qm)2

= 2
∑

m>n>0

qm

(1 − qm)(1 − qn)
− 2

∑

m>n>0

qm

1 − qm
+

∑

m>0

qm

(1 − qm)2
−

∑

m>0

qm

(1 − qm)

= 2ζ
OOZ
q (1, 1) − 2ζ

OOZ
q (1, 0) + ζ

OOZ
q (2) − ζ

OOZ
q (1).

Therefore we obtain the following linear relations among q-MZVs:

ζ
OOZ
q (1, 0) = ζ

OOZ
q (2) − ζ

OOZ
q (1).

Even though the Rota–Baxter operator description of the OOZ-model is directly
related to the integral representation of MZVs by replacing the integral operator by
its q-analogue, we extend this framework to MPLs as well as to the other q-models
introduced above.

Proposition 1 ([11, 15, 32, 33]) Let n ∈ N and y(t) := t
1−t ∈ tQ[[t]]. Then we have

(a) for k := (k1, . . . , kn) ∈ Z
n and |z| < 1

Lik(z) = J k1 [y J k2 [y · · · J kn [y] · · · ]](z),

where J−1 = t d
dt ;

(b) for k := (k1, . . . , kn) ∈ N
n
0 with k1 > 0

ζ
SZ
q (k) = Pk1

q [y Pk2
q [y · · · Pkn

q [y] · · · ]](1);

(c) for k := (k1, . . . , kn) ∈ Z
n

ζ
OOZ
q (k) = P

k1
q [y P

k2
q [y · · · P

kn

q [y] · · · ]](q),

where P
−1
q = Dq;

(d) for k := (k1, . . . , kn) ∈ N
n with k1 > 1

ζ
BZ
q (k) = Pk1−1

q Pq [y Pk2−1
q Pq [y · · · Pkn−1

q Pq [y] · · · ]](1).

Since for theOOZ-model the operators Pq , Dq and for theBZ-model the operators
Pq , Pq interact, we need the following compatibility relations:

Lemma 1 ([33]) For the mixed products we have

Pq [ f ]Pq [g] = Pq [Pq [ f ]g] + Pq [ f Pq [g]],
Dq [ f ]Pq [g] = Dq [ f Pq [g]] + Dq [ f ]g − f g

for any f, g ∈ A .
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3.2 Algebraic Setting of Double Shuffle Structure

In this paragraph we translate the operator theoretic setting of Proposition 1 and
Lemma 1 into an algebraic framework which allows us to describe the double
q-shuffle relations for all these models.

3.2.1 Schlesinger–Zudilin Model

Let R := Q〈p, y〉 be the polynomial algebra with two non-commutative variables
p and y. The empty word is denoted by 1. The subalgebra of words not ending in p
is denoted by R1 := Q ⊕ Ry. Moreover the subalgebra R0 := Q ⊕ pRy consists
of all words not beginning with y and not ending with p. Note that R1 is generated
by words with letters uk := pk y with k ∈ N0.

We define an evaluation map ζ
SZ
q : R0 → Q[[q]] by ζ

SZ
q (1) := 1 and

ζ
SZ
q (uk1 · · · ukn ) := ζ

SZ
q (k1, . . . , kn).

The quasi q-shuffle product ∗SZ : R1 ⊗ R1 → R1 is defined recursively by

(i) w ∗SZ 1 := 1 ∗SZ w := w,
(ii) usv ∗SZ ut w := us(v ∗SZ ut w) + ut (usv ∗SZ w) + us+t (v ∗SZ w)

for all words v, w ∈ R1 and s, t ∈ N0.
The q-shuffle product�SZ : R1 ⊗ R1 → R1 is defined iteratively by

(i) 1�SZ w := w�SZ 1 := w,
(ii) yv�SZ w := v�SZ yw := y(v�SZ w),
(iii) pv�SZ pw := p(v�SZ pw) + p(pv�SZ w) + p(v�SZ w)

for any words v, w ∈ R1. Note that item (iii) reflects the RBO-property of the oper-
ator Pq . We have the following result:

Theorem 5 ([32]) We have:

(a) (R0, ∗SZ) and (R0,�SZ) are commutative and associative algebras.

(b) The maps ζ
SZ
q : (R0, ∗SZ) → Q[[q]] and ζ

SZ
q : (R0,�SZ) → Q[[q]] are mor-

phisms of algebras. Especially we have double q-shuffle relations given by

ζ
SZ
q (v ∗SZ w − v�SZ w) = 0

for any v, w ∈ R0.
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For example we observe

u2 ∗SZ u1 = u2u1 + u1u2 + u3,

p2y �SZ py = 2p2ypy + pyp2y + p2y2 + pypy

and Theorem 5 implies

ζ
SZ
q (u3 − u2u1 − u2u0 − u1u1) = 0.

Multiplying the previous equation with (1 − q)3 we obtain

ζ SZ
q (3) = ζ SZ

q (2, 1) + (1 − q)ζ SZ
q (2, 0) + (1 − q)ζ SZ

q (1, 1),

which descends in the limit q → 1 to the well-known Euler relation ζ(3) = ζ(2, 1).

3.2.2 Ohno–Okuda–Zudilin Model

The particular feature of this model is that it is defined for any integer arguments.
This is also reflected by the shuffle product.

Let R denote the polynomial algebra with respect to the non-commutative vari-
ables p, d and y subject to pd = dp = 1. Further let R1 := Q ⊕ Ry be the subal-
gebra of R consisting of word not ending in p or d. Note that R1 is generated by
words consisting of letters uk := pk y with k ∈ Z where p−1 := d.

The evaluation map ζ
OOZ
q : R1 → Q[[q]] is defined by ζ

OOZ
q (1) := 1 and

ζ
OOZ
q (uk1 · · · ukn ) := ζ

OOZ
q (k1, . . . , kn). (19)

The quasi q-shuffle product ∗OOZ : R1 ⊗ R1 → R1 is defined recursively

(i) w ∗OOZ 1 := 1 ∗OOZ w := w,
(ii) usv ∗OOZ ut w := us(v ∗ ut w) + ut (usv ∗ w) − us(v ∗ ut−1w) − ut (us−1

v ∗ w) + (us+t − us+t−1)(v ∗ w)

for all words v, w ∈ R1 and s, t ∈ Z. Note that ∗ denotes the ordinary quasi-shuffle
product of MZVs introduced in Sect. 2.1 with the natural extension to non-positive
integers.

The q-shuffle product�OOZ : R1 ⊗ R1 → R1 is defined iteratively by

(i) 1�OOZ w := w�OOZ 1 := w,
(ii) yv�OOZ w := v�OOZ yw := y(v�OOZ w),
(iii) pv�OOZ pw := p(v�OOZ pw) + p(pv�OOZ w) − p(v�OOZ w),
(iv) dv�OOZ dw := v�OOZ dw + dv�OOZ w − d(v�OOZ w),
(v) dv�OOZ pw := pw�OOZ dv := d(v�OOZ pw) + dv�OOZ w − v�OOZ w

for any words v, w ∈ R1.
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Remark 1 In the previous definition item (iii) reflects the RBO-property of the op-
erator Pq and (iv) the differential RBO-property of Dq . The compatibility relation
of Pq and Dq stated in the second equation of Lemma 1 corresponds to (v).

We have the following result:

Theorem 6 ([11]) We have:

(a) (R1, ∗OOZ) and (R1,�OOZ) are commutative and associative algebras.

(b) The maps ζ
OOZ
q : (R1, ∗OOZ) → Q[[q]] and ζ

OOZ
q : (R1,�OOZ) → Q[[q]] are

morphisms of algebras. Especially we have double q-shuffle relations given by

ζ
OOZ
q (v ∗OOZ w − v�OOZ w) = 0

for any v, w ∈ R1.

As shown in [15] this algebraic framework is closely relate to the classical shuffle
product by Proposition 1 (a) which will be used in Sect. 4.2.

3.2.3 Bradley–Zhao Model

The algebraic description of theBZ-model ismore involved sincewehave to establish
an appropriate algebra extension.Wemotivate the extensionby the example ofEuler’s
decomposition formula. As previously remarked, Euler’s decomposition formula of
MZVs (14) is solely related to the integral representation of MZVs and therefore
of pure shuffle nature. For the BZ-model the corresponding Euler decomposition
formula is

ζ
BZ
q (a)ζ

BZ
q (b) =

a−1∑

s=0

a−1−s∑

t=0

(
s + b − 1

b − 1

)(
b − 1

t

)
ζ
BZ
q (b + s, a − s − t)

+
b−1∑

s=0

b−1−s∑

t=0

(
s + a − 1

a − 1

)(
a − 1

t

)
ζ
BZ
q (a + s, b − s − t)

−
min(a,b)∑

s=1

(a + b − s − 1)!
(a − s)!(b − s)!(s − 1)!ϕq(a + b − s),

for a, b ≥ 2, where

ϕq(k) :=
∑

n>0

(n − 1)q(k−1)n

(1 − qn)k
=

∑

n>0

nq(k−1)n

(1 − qn)k
− ζ

BZ
q (k).

Therefore, for a coherent algebraic framework, an extension of the model is nec-
essary. Kronecker’s delta is denoted by δ0, i.e., δ0(0) = 1 and δ0(k) = 0 for k �= 0.
We regard
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ζ
BZ,ex
q (k1, . . . , kn) :=

∑

m1>···>mn>0

q(k1−1)m1+(k2−1+δ0(k2))m2+···+(kn−1+δ0(kn))mn

(1 − qm1)k1 . . . (1 − qmn )kn
(20)

for k1 ≥ 2, k2, . . . , kn ≥ 0. In order to derive a q-shuffle product we need a corre-
sponding analogue of Proposition 1 (d).

Lemma 2 ([33]) Let n ∈ N. Then we have

ζ
BZ,ex
q (k) = Pk1−1

q Pq [y Pk2−1+δ0(k2)
q P

1−δ0(k2)
q [y · · · Pkn−1+δ0(kn)

q P
1−δ0(kn)

q [y] · · · ]](1)
(21)

for k := (k1, . . . , kn) ∈ N
n
0 with k1 > 1 and y(t) := t/(1 − t).

Obviously, we recognize that ϕq(k) = ζ
BZ,ex
q (k, 0) for k > 1. Therefore in the

light of the extended BZ-model all terms in the q-analogue of Euler’s decomposition
formula have a natural explanation. Again, we translate Lemma 2 in an algebraic
framework.

The polynomial algebra with three non-commutative variables p and p, y is de-
fined by R := Q〈p, p, y〉 with empty word 1. The subalgebra generated by words
with letters of the form uk := pk−1+δ0(k) p1−δ0(k)y with (k ∈ N0) is denoted by R1.
Additionally we regard the following subalgebra of R1:

R0 := Q ⊕
⊕

k≥2

ukR
1.

Now we define an evaluation map ζ
BZ
q : R0 → Q[[q]] by ζ

BZ
q (1) := 1 and

ζ
BZ
q (uk1 · · · ukn ) := ζ

BZ,ex
q (k1, . . . , kn).

Now we define the quasi q-shuffle product ∗BZ : R1 ⊗ R1 → R1 recursively by

(i) w ∗BZ 1 := 1 ∗BZ w := w,
(ii) usv ∗BZ ut w := us(v ∗BZ ut w) + ut (usv ∗BZ w) + 〈us, ut 〉(v ∗BZ w)

forwordsv, w ∈ R1 and s, t ∈ N0,where 〈us, u0〉 := us for all s ∈ N0 and 〈us, ut 〉 :=
us+t + us+t−1 for s, t > 0.

The q-shuffle product�BZ : R1 ⊗ R1 → R1 is defined iteratively by

(i) 1�BZ w := w�BZ 1 := w,
(ii) yv�BZ w := v�BZ yw := y(v�BZ w),
(iii) av�BZ bw := a(v�BZ bw) + b(av�BZ w) + [a, b]a(v�BZ w)

for words v, w ∈ R1 and a, b ∈ {p, p}, where [p, p] := −[p, p] := 1 and [p, p] :=
[p, p] := 0.
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Remark 2 Note that the definition of [·, ·] exactly reflects the RBO properties
of Pq and Pq as well as their compatibility relation stated in the first equation of
Lemma 1.

All in all we have the following result:

Theorem 7 ([33]) We have:

(a) (R0, ∗BZ) and (R0,�BZ) are commutative and associative algebras.

(b) The maps ζ
BZ
q : (R0, ∗BZ) → Q[[q]] and ζ

BZ
q : (R0,�BZ) → Q[[q]] are mor-

phisms of algebras. Especially we have double q-shuffle relations given by

ζ
BZ
q (v ∗BZ w − v�BZ w) = 0

for any v, w ∈ R0.

3.3 Duality and q-Shuffle

The previous paragraph illustrated that the Rota–Baxter operator approach for the
q-shuffle product is a very powerful tool and can be generalized to many different
models. Following an idea of [40], in some cases theq-shuffle product can be obtained
by a duality construction. We shortly present this approach for the SZ-model, where
it turns out to be equivalent to the RBO approach.

Using the algebraic framework introduced in Paragraph 3.2.1 we define an an-
tiautomorphism τq : R0 → R0 by τq(1) := 1, τq(p) := y and τq(y) := p. Similar
to the duality theorem for classical MZVs (Theorem 3) we have a corresponding
q-version at hand:

Theorem 8 ([37]) For any w ∈ R0 we have ζ
SZ
q (w) = ζ

SZ
q (τq(w)).

Now we define a dual product �SZ : R0 ⊗ R0 → R0 in terms of the antiauto-
morphism τ and the quasi q-shuffle product ∗SZ such that the following diagram
commutes:

R0 ⊗ R0

τq⊗τq

�SZ
R0

R0 ⊗ R0 ∗SZ
R0

τq

Due to Theorems 5 and 8 the map ζ
SZ
q : (R0,�SZ) → Q[[q]] is an algebra mor-

phism. Finally, we obtain:

Theorem 9 ([13])The products�SZ : R0 ⊗ R0 → R0 and�SZ : R0 ⊗ R0 → R0

coincide.
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Remark 3 A similar construction can also be applied to the OOZ-model. However,
the duality approach is limited to non-negative argumentswhereas theRBOapproach
applies to arbitrary integer arguments which will be exploited in the next section.

Moreover we explore the dual product in the classical case. As in the q-case above
for MZVs a duality theorem (Theorem 3) and a quasi-shuffle product (Sect. 2.1) are
available.Again,wedefine the dual product� : h0 ⊗ h0 → h0 such that the following
diagram commutes:

h0 ⊗ h0

τ⊗τ

�
h0

h0 ⊗ h0
∗

h0

τ

It has already been remarked by Zudilin [40] that the dual product � does not
coincidewith the shuffleproduct.Nevertheless it can be related to a derivation relation
(recall Sect. 2.2) of MZVs:

Theorem 10 ([13]) For w ∈ h0 we have

∂2(w) = w�u2 − w ∗ u2.

Remark 4 This result should be compared with an identify of Hoffman and Ohno
[22]. They proved that

∂1(w) = w� u1 − w ∗ u1

for w ∈ h0. For more details the reader is referred to [13].

4 q-Renormalization of Multiple Zeta Values

In this section we discuss the renormalization problem of multiple zeta values. The
defining series (1) of the MZVs ζ(k1, . . . , kn) is convergent if k1 + · · · + k j > j for
j = 1, . . . , n. Hence, this raises the question of how to extend the MZVs to non-
positive integer arguments. In length one this question can be easily answered by
using the meromorphic continuation of the Riemann zeta function which leads to
ζ1(−k) = −Bk+1/(k + 1) for k ∈ N0. Although the multiple zeta function ζn can be
meromorphically continued to C

n as shown in [1] the situation is more involved than
in the dimension one case. The subvariety Sn of singularities of ζn is given by the
hyperplanes
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s1 = 1,

s1 + s2 = 2, 1, 0,−2,−4, . . . ,

s1 + · · · + s j ∈ Z≤ j (3 ≤ j ≤ n).

Hence, in contrast to the length one case, we observe for k1, k2 ∈ N0 with k1 + k2
odd that

ζ2(−k1,−k2) = 1

2

(
1 + δ0(k2)

) Bk1+k2+1

k1 + k2 + 1
,

whereas for k1 + k2 even we do not have any information due to the existence of
poles in the points (−k1,−k2). In length greater than two there are solely points
of indeterminacy for any non-positive integer arguments, i.e., (Z≤0)

n ⊆ Sn , n ≥ 3.
Hence, the meromorphic continuation does not prescribe all values of the MZVs at
non-positive integers. However, the vector spaceM of MZVs is an algebra with two
non-compatible products. Therefore it is reasonable to expect the extended MZVs to
satisfy at least the quasi-shuffle or the shuffle relations.

These requirements give rise to the so-called renormalization problem of MZVs.

Problem 1 (Renormalization problem of MZVs) How to extend the MZVs such
that

(A) the meromorphic continuation and
(B) the quasi-shuffle or the shuffle relations

are verified?

Remark 5 The requirement (B) of the previous problem needs some comments.
On the one hand the quasi-shuffle product is induced by the series representation of
MZVs. Therefore the combinatorics is essentially the same as for positive arguments,
e.g., if we interpret (1) as a formal series we still observe

ζ(−a)ζ(−b) = ζ(−a,−b) + ζ(−b,−a) + ζ(−a − b)

fora, b ∈ N0. Similarly, the definition of the quasi-shuffle product in Sect. 2.1 extends
to negative arguments. On the other hand a characterization of the shuffle product
at non-positive integers is a crucial point. The shuffle product for positive indices is
induced by the integral representation (4) which encodes the geometric aspects of
MZVs.The combinatorics behind this product comes from the shufflingof integration
variables. It could be illustrated by the shuffling of two decks of cards, say a deck of
red and blue cards, each consecutively numbered such that the internal numbering
of red and blue cards is preserved. In this approach, however, it is unclear how to
handle non-positive arguments, which correspond to a non-positive number of cards.
To overcome this difficulty wemake use of the RBO characterization ofMZVs given
in Proposition 1 (a). Since the corresponding RBO J is invertible we obtain a shuffle
product for non-positive argumentswhich is naturally induced by the inverse operator
of J .
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There are several approaches aiming at obtaining explicit values at points of
indeterminacy. The first one was presented by Akiyama et al. [2]. It describes a
limiting process to defineMZVs at non-positive integer arguments. However, it turns
out that the values depend on the order of conducting the limits. Additionally, the
quasi-shuffle relations are not verified.

Furusho et al. proposed in [17] an approach called desingularisation of MZVs.
They showed that certain finite sums of multiple zeta functions display non-trivial
cancellations of all singularities involved, which therefore provide entire functions.
This yields finite values for any tuple of integer arguments. Albeit, questions con-
cerning the algebraic properties have not been addressed.

Furthermore there are two approaches that provide solutions for Problem 1. In
[20] Guo and Zhang introduced directional regularized MZVs and Manchon and
Paycha [28] discussed a specific cut of procedure for MZVs to obtain renormalized
MZVs. Both sets of values satisfy the quasi-shuffle relation of MZVs and verify the
meromorphic continuation.

The primary aim of this section is to construct explicit solutions to Problem 1.
In Sect. 4.1 we provide a one-parameter family of solutions satisfying the quasi-
shuffle relations. Our ansatz essentially relies on the Schlesinger–Zudilin q-model.
In contrast to the works [20] and [28] the parameter q allows a very clear and
transparent setting. Moreover in Sect. 4.2 we derive a set of numbers satisfying the
shuffle relations.

Subsequently we sketch our construction principle. Both approaches apply the
following factorization theorem of Connes and Kreimer:

Theorem 11 ([12, 27]) Let (H , mH ,Δ) be a graded, connected (or filtered) Hopf
algebra and (A , mA ) a commutative unital algebra equipped with a renormalization
scheme A = A− ⊕ A+ and the corresponding idempotent Rota–Baxter operator
π , where A− = π(A ) and A+ = (Id−π)(A ). Further let ψ : H → A be a Hopf
algebra character, i.e., a multiplicative linear map fromH toA . Then the character
ψ admits a unique decomposition

ψ = ψ
�(−1)
− � ψ+ (22)

called algebraic Birkhoff decomposition, in which ψ− : H → Q ⊕ A− and
ψ+ : H → A+ are characters. The product on the right hand side of (22) is the
convolution product defined on the vector space L(H ,A ) of linear maps from the
H to A by φ � ψ := mA ◦ (φ ⊗ ψ) ◦ Δ.

Recall that the vector space L(H ,A ) together with the convolution product
φ � ψ := mA ◦ (φ ⊗ ψ) ◦ Δ : H → A , where φ,ψ ∈ L(H ,A ), is an unital as-
sociative algebra. The set of characters is denoted by GA and forms a (pro-unipotent)
group for the convolution product with (pro-nilpotent) Lie algebra gA of infinites-
imal characters. The latter are linear maps ξ ∈ L(H ,A ) such that for elements
x, y ∈ H , both different from 1, ξ(xy) = 0. The exponential map exp� restricts to
a bijection between gA and GA . The inverse of a character ψ ∈ GA is given by
composition with the Hopf algebra antipode S : H → H , e.g., ψ�(−1)

− = ψ− ◦ S.
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The maps ψ+ and ψ− of Eq. (22) are recursively given by

ψ−(x) = −π

⎛

⎝ψ(x) +
∑

(x)

ψ−(x ′)ψ(x ′′)

⎞

⎠ , (23)

ψ+(x) = (Id−π)

⎛

⎝ψ(x) +
∑

(x)

ψ−(x ′)ψ(x ′′)

⎞

⎠ (24)

for x ∈ H ∩ ker(ε), where ε denotes the counit of the graded (or filtered) Hopf
algebra H and ψ± ∈ GA . Note that we used Sweedler’s notation for the reduced
coproduct Δ′(x) := ∑

(x) x ′ ⊗ x ′′ := Δ(x) − 1 ⊗ x − x ⊗ 1.
Using Theorem 11 we proceed as follows:

First we have to construct a Hopf algebra (H , mH ,Δ). In the quasi-shuffle
case the deconcatenation coproduct leads to a Hopf algebra which can be naturally
extended to negative integer arguments. For the renormalization with respect to the
shuffle product one of the main tasks is the construction of a Hopf algebra which
reflects the algebraic structure induced by Proposition 1 (a).

The next step addresses the construction of a regularized character ψ . For this
we provide a deformation of the MZV-character (7), which is a priori defined on
the algebra h0. In our approach the regularization relies on the q-deformation of
the Schlesinger–Zudilin model and the MPLs in the quasi-shuffle and shuffle case
respectively. After substituting the respective regulator q or z by ez this defines an
algebra morphism for all words related to negative integers which takes values in
the commutative unital Rota–Baxter algebra of Laurent seriesA := C[z−1, z]]. The
corresponding projector π : A → A−, which is a RBO of weight −1, is defined by
minimal subtraction

π

( ∞∑

n=−l

anzn

)
:=

−1∑

n=−l

anzn,

where A− := z−1
C[z−1] and A+ := C[[z]].

Then we apply the algebraic Birkhoff decomposition of Theorem 11, which is
a systematic subtraction method to eliminate the pole terms of the deformed MZV
characters, in order to obtain a character ψ+. Finally, we have to ensure that the
values extracted from ψ+ verify the meromorphic continuation.

4.1 Quasi-shuffle Renormalization Problem

In this section we construct a one-parameter family of extensions of MZVs to
negative integer arguments satisfying the quasi-shuffle relations and verifying the
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meromorphic continuation. Therefore there exist infinitely many solutions to Prob-
lem 1. Our approach is based on a very concrete and transparent construction using
a modification of the Schlesinger–Zudilin q-model. The main feature we exploit is
the fact that the SZ-model satisfies the ordinary quasi-shuffle relations of MZVs.

We define the regularised Schlesinger–Zudilin model by

ζq(k1, . . . , kn) :=
∑

m1>···>mn>0

q |k1|m1+···+|kn |mn

[m1]k1
q · · · [mn]kn

q

∈ Q[[q]]

for k1, . . . , kn ∈ Z with k1 �= 0. This permits us to consider the q-parameter as a
natural regulator in view of ordinary multiple zeta values which assures convergence
of the corresponding sums.

Let D := {s ∈ C : Re(s) > 0}. For t ∈ D we define a one-parameter family of
modified Schlesinger–Zudilin q-MZVs by

ζ
(t),∗
q (k1, . . . , kn) :=

∑

m1>···>mn>0

q(|k1|m1+···+|kn |mn)t

(1 − qm1)k1 · · · (1 − qmn )kn
. (25)

For 0 < q < 1 and t ∈ D, convergence of the previous series is always ensured for
any k1, . . . , kn ∈ Z with k1 �= 0.

The key observation is the fact that the quasi-shuffle product carries over to the
one-parameter family of modified Schlesinger–Zudilin q-MZVs. Indeed, the series
of nested sums in (25) satisfy the quasi-shuffle relations if all arguments are either
strictly positive or strictly negative integers. For example the corresponding Nielsen
reflexion formula for the one-parameter family of modified Schlesinger–Zudilin q-
MZVs defined in (25) for negative integers is

ζ
(t),∗
q (−a)ζ

(t),∗
q (−b) = ζ

(t),∗
q (−a,−b) + ζ

(t),∗
q (−b,−a) + ζ

(t),∗
q (−a − b)

for a, b ∈ N. One should note that the quasi-shuffle product is not preserved if we
allow integer arguments with mixed signs in (25).

It is easily seen that the quasi-shuffle product ∗ defined in Sect. 3.2.1 extends to
words with letters Y := {un : n ∈ Z}. As stated in Theorem 2 the map ζ : (h0, ∗) →
(R, ·) is an algebra morphism. Let h− := Q〈Y −〉 with Y − := {un : n ∈ Z<0}. Then
the map ζ

(t)
q : (h−, ∗) → (C[[q]], ·) defined by ζ

(t)
q (1) := 1 and

ζ
(t)
q (uk1 · · · ukn ) := ζ

(t),∗
q (k1, . . . , kn)

for any k1, . . . , kn ∈ Z<0 and t ∈ D is a morphism of algebras. Furthermore the
deconcatenation coproduct defined inSect. 2.1 extends to arbitrary integer arguments,
i.e., we have Δ : Q〈Y 〉 → Q〈Y 〉 ⊗ Q〈Y 〉
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Δ(w) =
∑

uv=w

u ⊗ v (26)

for w ∈ Y ∗. Together with the quasi-shuffle product (Q〈Y 〉, ∗,Δ) becomes a Hopf
algebra. This construction directly applies to Y − and h− and therefore the triple
(h−, ∗,Δ) is a filtered, connected Hopf algebra, in which the filtration is given by
the depth, i.e., the number of letters of a word. Furthermore we use the notation
|k| := k1 + · · · + kn for k := (k1, . . . , kn) ∈ Z

n .
For the Hopf algebra (h−, ∗,Δ) we construct a character ψ(t) : h− → C[z−1, z]]

using the one-parameter family of modified Schlesinger–Zudilin q-MZVs defined in
(25).

The map ψ(t) : (h−, ∗) → C[z−1, z]] is defined by the following composition of
maps:

(h−, ∗) −→ (C[[q]], ·) −→ (C[z−1, z]], ·) −→ (C[z−1, z]], ·)
uk1 · · · ukn �−→ ζ

(t)
q (uk1 · · · ukn ) �−→ ζ

(t)
ez (uk1 · · · ukn ) �−→ (−z)|k|ζ (t)

ez (uk1 · · · ukn ),

where k1, . . . , kn ∈ Z<0 or equivalently for k1, . . . , kn ∈ N

ψ(t)(u−k1 · · · u−kn )(z) := (−1)k1+···+kn

zk1+···+kn
ζ

(t)
ez (u−k1 · · · u−kn ). (27)

Since all the maps involved in the previous composition are algebra morphisms,ψ(t)

is a character. Therefore we are in the position to apply Theorem 11. The algebraic
Birkhoff decomposition (22) leads to an algebra morphism ψ

(t)
+ : (h−, ∗) → C[[z]].

Hence, ζ (t)
+ defined by

ζ
(t)
+ (−k1, . . . ,−kn) := lim

z→0
ψ

(t)
+ (u−k1 · · · u−kn )(z)

is well-defined for any k1, . . . , kn ∈ N. We call ζ (t)
+ (−k1, . . . ,−kn) the renormalized

MZVs.
Now we can state the main result of this section:

Theorem 12 ([14]) Let t ∈ D.

(a) The renormalized MZVs ζ
(t)
+ satisfy the quasi-shuffle product.

(b) The renormalized MZVs ζ
(t)
+ verify the meromorphic continuation of MZVs , i.e.,

for any k ∈ (Z<0)
n \ Sn we have ζ

(t)
+ (k) = ζ(k) ∈ Q.

(c) The renormalized MZVs ζ
(t)
+ are rational functions in t over Q without singu-

larities in D.

Proof Theorem 11 ensures the algebraic properties of the renormalized MZVs.
Therefore (a) is verified. For (b) we have to check that ζ (t)

+ coincides with the values
given by the meromorphic continuation of MZVs in length two with odd weight.
For this one has to perform an explicit calculation using the formulas (23) and (24).
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Finally, one verifies that all coefficients of the power seriesψ(t) are rational functions
in t over Q without singularities in D. Since the algebraic Birkhoff decomposition
is calculated by multiplying and adding these coefficients, (c) follows. �

As a consequence we obtain:

Corollary 1 (a) Let t ∈ D ∩ Q. Then ζ
(t)
+ (k) ∈ Q for any k ∈ (Z<0)

n, n ∈ N.
(b) Let t ∈ D ∩ R be transcendental over Q. Then there exists a k ∈ (Z<0)

n such
that ζ

(t)
+ (k) ∈ R \ Q.

Proof The first claim follows fromTheorem 12 c). Since not all renormalizedMZVs
ζ

(t)
+ are constant as a rational function in t over Q (see Eqs. (28) and (29)) the choice
of a transcendental t ∈ D leads to irrational values for ζ

(t)
+ which proves (b). �

In Table1 we list the renormalized MZVs in the case t = 1 for depth two. For
depth one the renormalized MZVs are always rational as well as for k1, k2 ∈ N with
k1 + k2 odd, due to Theorem 12 (b). Because of the quasi-shuffle relation

ζ
(t)
+ (−k)ζ

(t)
+ (−k) = 2ζ (t)

+ (−k,−k) + ζ
(t)
+ (−2k)

for k ∈ N the diagonal entries ζ
(t)
+ (−k,−k) are also always rational and do not

depend on the parameter t . The first case for which we obtain a non-constant rational
function in t over Q is the case ζ

(t)
+ (−1,−3). The quasi-shuffle product implies

ζ
(t)
+ (−1)ζ (t)

+ (−3) = ζ
(t)
+ (−1,−3) + ζ

(t)
+ (−3,−1) + ζ

(t)
+ (−4).

Therefore a priori ζ
(t)
+ (−1,−3) and ζ

(t)
+ (−3,−1) are not explicitly given by that

relation. They only have to satisfy ζ
(t)
+ (−1,−3) + ζ

(t)
+ (−3,−1) = ζ

(t)
+ (−1)ζ (t)

+ (−3).
Using (23) and (24) we find

ζ
(t)
+ (−1,−3) = 1

8064

166t2 + 166t + 31

(4t + 3)(4t + 1)
, (28)

ζ
(t)
+ (−3,−1) = − 1

40320

1278t2 + 1278t + 239

(4t + 3)(4t + 1)
. (29)

4.2 Shuffle Renormalization Problem

Now we address Problem 1 where we demand for (B) the verification of the shuffle
product relations. In the first step we need an appropriate deformation of the MZV
character. For the classical case we choose the MPL in a single variable defined
in (9) and for the q-case we take the modified OOZ-model defined in (19). This is
motivated by the fact that—as shown in Proposition 1 (a) and (c)—bothmodels admit
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Table 1 The renormalized MZVs ζ
(1)
+ (k1, k2)

k1�k2 −1 −2 −3 −4 −5

−1 1
288 − 1

240
121

94080
1

504 − 31093
17740800

−2 − 1
240 0 1

504 − 48529
66528000 − 1

480

−3 − 559
282240

1
504

1
28800 − 1

480
941347763

1150753443840

−4 1
504

48529
66528000 − 1

480 0 1
264

−5 110879
53222400 − 1

480 − 979401779
1150753443840

1
264

1
127008

a characterization via iterated RBOs where the corresponding RBOs are invertible.
This is a natural approach to attack the shuffle problem described in Remark 5. The
geometric properties of the given models, which are encoded in terms of iterated
integrals, are translated to an algebraic property. Therefore we convert Proposition 1
(a) and (c) into an appropriate word algebraic setting. The superordinate aim is then
to construct a graded, connected Hopf algebra to which we apply Theorem 11.

Let L := {d, y} be the set of letters, L∗ the set of words with empty word 1
and Q〈L〉 the free polynomial algebra with to non-commutative variables d, y.
The subspace of Q〈L〉 spanned by non-admissible words is denoted by T :=
〈{wd : w ∈ L∗}〉Q and the set of admissible words by W := L∗y ∪ {1}. Let w ∈ W .
Then we define the weight wt(w) by the number of letters of w and the depth dpt(w)

by the number of y in w.
We establish an algebraic framework for the shuffle product at non-positive in-

tegers. In order to provide a uniform presentation we introduce a parameter λ ∈ Q.
The case λ = 0 corresponds to classical MZVs and the case λ = −1 to the OOZ
q-model.

Based on Proposition 1 (a) and (b) we define the product �λ : Q〈L〉 ⊗ Q〈L〉 →
Q〈L〉 iteratively by

(P1) 1 �λ w := w �λ 1 := w,
(P2) yu �λ v := u �λ yv := y(u �λ v),

(P3) du �λ dv :=
{

1
λ

(d(u �λ v) − du �λ v − u �λ dv) λ �= 0,

d(u �0 dv) − u �0 d2v λ = 0,

for words u, v, w ∈ L∗.

Remark 6

• By induction on the number of letters it is easily seen that �λ defines a product
for λ �= 0. The case λ = 0 is more involved. We shift ds from the left to the right
until we hit a y or 1. Using the rule (P1) and (P2) we can go on iteratively.

• Note that for λ = −1 the above shuffle product �−1 coincides for non-positive
arguments with the product�OOZ introduced in Sect. 3.2.2.

• For λ = 0, (P3) reflects the Leibniz rule since the inverse of J is given by the
Euler derivation. The map �0 is a magma and therefore a priori not necessarily
associative and commutative.
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In the next step we prove that the non-admissible words form an ideal with respect
to �λ .

Lemma 3 ([15]) For λ ∈ Q the subspace T is a two-sided ideal of (Q〈L〉, �λ ).

As state in Remark 6 themap�0 is amagma. In order to obtain a product structure
we establish an ideal-theoretic variant of the Leibniz rule. ByL0 we denote the ideal
of (Q〈L〉,�0) generated by the elements

d(u �0 v) − du �0 v − u �0 dv), u, v ∈ L∗

and stable under left concatenation with d, i.e., dL0 ⊆ L0. For λ �= 0 we define
Lλ := {0}.

On a corresponding quotient space we obtain the desired product structure for any
λ ∈ Q:

Lemma 4 ([15]) For λ ∈ Q we define Hλ := Q〈L〉/(T + Lλ). Then (Hλ, �λ ) is
an associative and commutative algebra.

After establishing the shuffle product structure for non-positive integers we pro-
vide a corresponding coalgebra structure onHλ. In contrast to the product structure
we do not have to distinguish between λ = 0 and λ �= 0.

We define the coproduct Δλ : Q〈L〉 → Q〈L〉 ⊗ Q〈L〉 by
(C1) Δλ(1) := 1 ⊗ 1,
(C2) Δλ(y) := 1 ⊗ y + y ⊗ 1,
(C3) Δλ(d) := 1 ⊗ d + d ⊗ 1 + λd ⊗ d,

which extends uniquely to an algebra morphism (with respect to concatenation) on
the free algebra Q〈L〉. In the next lemma we prove that the idealsT andLλ are also
compatible with the coproduct Δλ:

Lemma 5 ([15]) For λ ∈ Q the double (Q〈L〉,Δλ) is a cocommutative coalgebra.
The subspaces T and Lλ are coideals of Q〈L〉.

The algebra and coalgebra onHλ form a Hopf algebra which is the first main step
in the construction of shuffle renormalized multiple zeta values:

Theorem 13 ([15]) Let λ ∈ Q. Then (Hλ, �λ ,Δλ) is a graded, connected Hopf
algebra with

Δλ([w]) := Δλ(w) mod ((T + Lλ) ⊗ Q〈L〉 + Q〈L〉 ⊗ (T + Lλ))

for any word w ∈ W .

After the construction of the shuffleHopf algebraHλ weneed to specify characters
Ψ c and Ψ q which deform the divergent (q-)MZVs to Laurent series in Q[z−1, z]].
For this we define the following maps:
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Ψ c : (H0,�0) −→ (Q[[t]], ·) −→ (Q[z−1, z]], ·)
[dk1 y · · · dkn y] �−→ Li−k1,...,−kn (t) �−→ Li−k1,...,−kn (e

z)

and

Ψ q : (H−1,�−1) −→ (Q[[q]], ·) −→ (Q[z−1, z]], ·)
[dk1 y · · · dkn y] �−→ ζ

OOZ
q (−k1, . . . ,−kn) �−→ ζ

OOZ
ez (−k1, . . . ,−kn)

Lemma 6 ([15]) The maps Ψ c : (H0,�0) → (Q[z−1, z]], ·) and Ψ q : (H−1,�−1)

→ (Q[z−1, z]], ·) are well-defined and morphisms of algebras.

Now we are in the position to apply the algebraic Birkhoff decomposition of
Theorem 11 to Ψ c and Ψ q . Hence, we define for k1, . . . , kn ∈ N0 renormalized
MZVs by

ζ+(−k1, . . . ,−kn) := lim
z→0

Ψ c
+([dk1 y · · · dkn y])(z)

and renormalized q-MZVs by

ζOOZ
+ (−k1, . . . ,−kn) := lim

z→0

(−1)k1+···+kn

zk1+···+kn
Ψ

q
+([dk1 y · · · dkn y])(z). (30)

Remark 7 A priori Ψ q
+ takes values in Q[[z]]. However, the subsequent Theorem 14

together with an explicit computation of Ψ
q
+ in the length one case ensures that (30)

is well-defined.

Further we obtain a factorization theoremwhich plays a key role on the conceptual
level of the shuffle renormalization.

Theorem 14 (Shuffle factorization, [15]) Let λ ∈ Q. Then for all w ∈ W we have

�λ ◦ Δλ([w]) = 2dpt([w])[w].

This theorem shows that any (q-)MZV related to non-positive arguments, which
is given by a certain equivalence class [w], can be written as a linear combination of
factorizations of (q-)ZVs with respect to the shuffle product �λ . The factorization
is described by the coproduct Δλ.

All in all we have the following main result:

Theorem 15 ([15])

(a) The renormalization process is compatible with the meromorphic continuation,
i.e., ζ+ coincides with the meromorphic continuation ζn whenever it is defined.

(b) The map ζ+ satisfies the shuffle product�0.
(c) The map ζOOZ+ is well-defined and for anyk ∈ (Z≤0)

n we have ζ+(k) = ζOOZ+ (k).
(d) For any k ∈ (Z≤0)

n we have ζ+(k) ∈ Q.
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Table 2 The renormalized MZVs ζ+(k1, k2)

k1�k2 0 −1 −2 −3

0 1
4

1
24 0 − 1

240

−1 1
12

1
144 − 1

240 − 1
1440

−2 1
72 − 1

240 − 1
720

1
504

−3 − 1
120 − 1

360
1

504
107

100800

(e) For any character ψ : (H0,�0) → (Q[z−1, z]], ·) with

lim
z→0

ψ+([dk y])(z) = ζ1(−k)

for k ∈ N0 we have

ζ+(−k1, . . . ,−kn) = lim
z→0

ψ+([dk1 y · · · dkn y])(z)

for k1, . . . , kn ∈ N0.

In Table2 we provide some numerical examples for ζ+ in depth 2.

4.3 Comparison of Different Solutions
to the Renormalization Problem

In a nutshell the structure of the solutions to the renormalization problem is very
different depending on whether we demand the verification of the shuffle or quasi-
shuffle product. Theorem 15 (e) shows that for the shuffle product �0 a unique
solution to Problem 1 exists. In contrast to this the one-parameter family of renor-
malized MZVs constructed in Sect. 4.1 exemplifies that there are infinitely many
solutions to Problem 1 in the quasi-shuffle case. Additionally there are the solutions
presented in [20] and [27].

Therefore naturally the question of the relations between different renormalized
MZVs in the quasi-shuffle case arises.A comprehensive answer is given byEbrahimi-
Fard,Manchon, Zhao and the author in terms of a transitive and free group action [16].
LetH := Q〈uk : k ∈ Z〉 be the non-commutative polynomial algebra generated by
the letters uk , k ∈ Z. It is easily seen that (H , ∗,Δ) is a Hopf algebra, where ∗ and
Δ denote the natural extensions of the quasi-shuffle product and the deconcatenation
coproduct, respectively (see Sect. 2.1). We call a word w := uk1 · · · ukn ∈ H non-
singular if

k1 �= 1 and k1 + k2 /∈ {2, 1, 0, −2, −4, . . .} and k1 + · · · + k j /∈ Z≤ j ( j = 3, . . . , n).
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We denote with N ⊆ H the vector space spanned by non-singular words. Moreover
we recall that GC denotes the set of quasi-shuffle characters fromH to C. Then the
set of all solutions to Problem 1 is given by

XC,ζ := {φ ∈ GC : φ|N = ζ } ,

where ζ denotes the meromorphic continuation of the multiple zeta function. Fur-
thermore we define the renormalization group

TC := {φ ∈ GC : φ|N = 0} .

Theorem 16 ([16]) We have:

(a) The set TC is a subgroup of (GC, �).
(b) The set XC,ζ is a TC-principal homogenous space. More precisely, the left group

action

TC × XC,ζ −→ XC,ζ ,

(α, φ) �−→ α � φ

is free and transitive.
(c) The set XC,ζ is of infinite cardinality.

Therefore geometrically speaking, all solutions to the renormalization problem
lie on the same orbit of the previously defined group action. By restricting the Hopf
algebra (H , ∗,Δ) to words consisting only of non-positive or negative letters, we
can compare all the values obtained in Sect. 4.1 with those of [20, 28] by restricting
them to the corresponding Hopf subalgebra. The reader is referred to [16] for more
details.

A further natural question concerns a possible double shuffle structure of renor-
malizedMZVs. Currently this question is still open. Two observations indicate prob-
lems which have to be overcome. First of all, the quasi-shuffle relation

ζ(0)2 = 2ζ(0, 0) + ζ(0)

implies ζ(0, 0) = 3/8 since the meromorphic continuation of the Riemann zeta
function forces ζ1(0) = −1/2. As we observe from Table2 in the shuffle case we
have ζ(0, 0) = 1/4. Therefore these structures are superficially in conflict with each
other. Maybe this point can be resolved by a transformation map between shuffle and
quasi-shuffle renormalized MZVs similar to that used for multiple polylogarithms
in several variables. However, this poses a second problem. Although Theorem 16
clarifies the relation between all different quasi-shuffle renormalized MZVs it is not
clear which element of the set XC,ζ should be chosen to compare with the shuffle
renormalized MZVs.
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Vertex Algebras and Renormalization

Nikolay M. Nikolov

Abstract TheOperator Product Expansion (OPE) andRenormalizationGroup (RG)
are two of the most advanced and sophisticated structures in Quantum Field Theory
(QFT).With this work we aim to show that the complexity in those areas is contained
in one and the same universal operad structure. In more detail, this is a symmetric
operad (with derivations) and its universality means that it is model independent
within a large class of QFT models. The latter operad we call expansion operad.
In the context of renormalization theory we find an isomorphic operad, which we
call renormalization operad. The applications of the latter are for the description of
the so called renormalization group and its action on the space of physical coupling
constants via formal diffeomorphisms.

Keywords Quantum Field Theory · Vertex Algebras · Operads · Renormalization
Group

This paper is organized as follows. In the first two sections we outline the notion of a
vertex algebra and its generalization to an OPE algebra. In the third section we start
with a brief introduction of the notion of operad. The remaining part of the paper
contains the new ideas, which in many cases are given in sketch and are published
in a final form in [19].

1 The General Concept of OPE in the Axiomatic QFT

According to the Wightman axiomatic framework to QFT [8, 22] the quantum fields
are operator valued distributions, i.e., they are distributions taking values that are
operators acting on an invariant dense subspace in a Hilbert space. In particular,
this implies that the product of two local quantum fields φ(x)ψ(y) in general do not
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allow a restriction for coinciding arguments x = y. Here, x and y are points in the
Minkowski space, but later we will use the same notations also for D–dimensional
vectors in the complexified Euclidian space CD , where also the real D–dimensional
Minkowski space can be embedded as a real subspace (hence, D stands for the space–
time dimension). The concept of OPE was introduced byWilson in [23] for studying
the short distance behavior of such products, which further has a relation to the
behaviour of various quantities in QFT at high energies. In more detail, the existence
of OPE means that the product φ(x)ψ(y) posses an (asymptotic)1 expansion at short
distances x − y → 0 of the form

φ(x)ψ(y) ∼
x→ y

∑

A

θA(y)CA(x − y), (1)

for a suitable system of two-point numerical functions (distributions)CA(x − y) that
describe the local behavior of the product; the coefficients θA(y) are again local
fields (the sign ∼

x→ y
stands for the asymptotic, or, other kind of expansions at short

distances). For instance, in perturbative massless QFT one can choose

CA(x − y) = (
(x − y)2

)ν (
(log(x − y))

)�
hm,σ(x − y) , A = (ν, �,m,σ) ,

where ν ∈ R, � ∈ {0, 1, . . . } and {hm,σ(x)}σ is a basis of harmonic homogeneous
polynomials (spherical functions) of degree m = 0, 1, . . . . If we can choose a basic
system of two–point functions {CA(x − y)}A in (1), which is independent of the local
fields φ(x) and ψ(y), as in the latter case, then for every index A we obtain a binary
operation

θA =: φ ∗
A

ψ =⇒ { ∗
A

}
A (2)

in the vector space of all local quantum fields (this space is called “Borchers class”).
Hence, under the above assumptionswe obtain a newkind of algebraic structure in the
space of all local quantum fields, which is defined by the obtained infinite system of
binary products

{ ∗
A

}
A
(2). This structure is generally called an OPE algebra. One of

the main conditions on the system of operations
{ ∗

A

}
A comes from the associativity

of the fields’ products:

φ1(x1)
(
φ2(x2)φ3(x3)

) = (
φ1(x1)φ2(x2)

)
φ3(x3) .

However, in the general case of QFT it is rather nontrivial to derive in an mathemat-
ically rigorous frame the existence of the system of products

{ ∗
A

}
A and formulate

the above associativity in terms of them.

1The analyticity properties of local quantum fields indicate that these expansions have more strong
convergence than as asymptotic series. This is clearly seen in the so called Globally Conformal
Invariant QFT (see [16, Sect. 8] and Sect. 2). It can be achieved even in the most general case of
Wightman QFT [17].
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According to the Wightman axiomatic QFT, any product of Lorentz covariant,
local quantum fields, φ1(x1) · · · φn(xn), acting on the vacuum 1̂ is a boundary value
of an analytic function in the so called forward tume domain (cf. [8, Sect. IV.2]),

φ1(x1) · · · φn(xn) 1̂ = boundary value of
as y1,...,yn → 0

φ1(x1 + iy1) · · · φn(xn + iyn) 1̂ . (3)

There is a slight abuse in the notations in the right hand side of (3) as φ j (x j + iy j )

does not exist as an operator valued function in any domain in CD (� x j + iy j ), but
the product in (3) exists only when it is applied on the vacuum (or, to more general,
suitable, state vectors). Due to this general feature of QFT one can try to derive,
or impose an existence of an asymptotic expansion for the analytically continued
product of fields acting on the vacuum, φ1(z1) · · · φn(zn) 1̂ (z j = x j + iy j ):

φ1(z1) · · · φn(zn) 1̂ ∼
z1 − zn → 0, . . . ,

zn−1 − zn → 0

∞∑

α = 0

Gα(z1 − zn, . . . , zn−1 − zn) θα(zn) 1̂ . (4)

To specify inwhat sense the asymptotic expansion in (4) is understood, one introduces
a grading (or, et least a filtration) in the space of all Lorentz covariant, local fields (the
Borhers class), which we shall call scaling dimension of a field. We shall consider
this grading as a negative integral grading since it will correspond to the scaling
behaviour of a product of fields at short distances in position space.2 Then, the
asymptotic expansion (4) means that there exists K ∈ Z such that if we take the
difference of the left hand side and the partial sum in the right hand side up to α = N
it should follow that the remainder has an asymptotic behaviour at z1 = · · · = zn
bounded by

const · dist(z1, . . . , zn)−K+d1+···+dn+N+1 . (5)

where d1, . . . , dn are the scaling dimensions of the fields φ1, . . . , φn , respectively,
and

dist(z1, . . . , zn) := max
j < k

‖z j − zk‖ , (6)

for some subsidiary norm distance ‖z j − zk‖. Furthermore, each of the resulting
fields θα has a scaling dimension −α and the coefficient function Gα has an asymp-
totic behaviour bounded by

const · dist(z1, . . . , zn)−K+d1+···+dn+α . (7)

2In physics literature the minus scaling dimension corresponds to the so called an energy dimension
of a field.
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The corresponding number −K + d1 + · · · + dn + α in the exponent in (7) we shall
call a scaling degree of Gα and so, the expansion (4) becomes a graded expansion,
i.e., we have

n∑

j = 1

scaling dimension of φ j

= scaling degree of Gα + scaling dimension of θα . (8)

Relying on some general arguments, the main of which being the positivity of the
scalar product in the Hilbert space (reflected by the so called Wightman positivity),
one can expect that the grading by the scaling degree in the space of quantum fields
is finitely degenerated and the only fields of dimension zero are the constant fields.
For the expansion (4) the latter means that the most singular (admissible) term in the
expansion is proportional to the vacuum vector. All the above assumptions (4)–(8)
look sufficiently general and are valid at least within the perturbative QFT. Let us
assume now that for some 1 < m < n we have a similar expansion

φn−m+1(zn−m+1) · · · φn(zn) 1̂ ∼
zn−m+1 − zn → 0, . . . ,

zn−1 − zn → 0

(9)

∼ ∞∑

α = 0

∑

a

G ′′
α,a(zn−m+1 − zn, . . . , zn−1 − zn) θα,a(zn) 1̂ ,

where {θα,a}a is some finite basis of fields of scaling dimension −α, and similarly

φ1(z1) · · · φn−m(zn−m) θβ,b(zn) 1̂ (10)

∼
z1 − zn → 0, . . . ,

zn−m − zn → 0

∞∑

α = 0

∑

a

G ′
α,a;β,b(z1 − zn, . . . , zn−m − zn) θα,a(zn) 1̂ .

Then, we obtain as a consequence of the associativity,

φ1(x1) · · · φn(xn) (11)

= φ1(x1) · · · φn−m(xn−m)
(
φn−m+1(xn−m+1) · · · φn(xn)

)

that the following relation holds:

Gα,a(z1 − zn, . . . , zn−1 − zn) =
∑

β

∑

b

G ′
α,a;β,b(z1 − zn, . . . , zn−m − zn)

× G ′′
β,b(zn−m+1 − zn, . . . , zn−1 − zn) , (12)
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where Gα,a are the corresponding coefficient functions for (4) if we perform an
expansion in the basis θα,a .

Now, the expansion (12)makes sense at the first place again as a kind of asymptotic
expansion but we can consider it also as a formal series expansion, which is graded
with respect to the scaling degree. From now on, we shall replace everywhere the
asymptotic expansion notation ∼ with the equality sign as in (12).

Let us consider in more detail the nature of the expansion (12). To this end we
shall use another property (Osterwalder–Schrader theorem) of the Wightman fields
stating that the scalar product

〈1̂ | φ1(z1) · · · φn(zn) 1̂〉 (13)

(the so called nth Wightman function) admits an analytic continuation to a domain
in (CD)×n which contains as a real subspace the off–diagonal n–point Euclidean
space:

(RD)×n\Δ̃n , (14)

{(x1, . . . , xn) ∈ (RD)×n | x1 = · · · = xn} =: Δn

� Δ̃n := {(x1, . . . , xn) ∈ (RD)×n | x j = xk for some j = k} (15)

(Δn and Δ̃n are the so called small/thin/total diagonal and large diagonal, respec-
tively). As a consequence, one can expect that the functions Gα in (4) will contain
in their analyticity domain also the off–diagonal n–point Euclidean space (14) and
let us further assume that all these functions belong to some algebra of functions

Tr.I.Funcn ⊆ C∞
( (RD)×n\Δ̃n

RD

)
(16)

(n = 2, 3, . . . ), where the quotient is by the translations (since Gα are translation
invariant functions). Further arguments coming from perturbative QFT suggest that
we can replace the scaling degree on Tr.I.Funcn with the more explicit degree of
associate homogeneity,

G ∈ Tr.I.Funcn has a degree of associate homogeneity α iff (17)
(
−α +

n∑

j = 1

z j · ∂z j

)N
G = 0 for a sufficiently large positive integer N ,

where z · ∂z ≡
D∑

μ= 1
zμ ∂

∂zμ is the Euler operator on R
D . We shall call an expan-

sion system (or, OPE functional system) of algebras any sequence of subalgebras
(Tr.I.Funcn)∞n = 2 (16), which allow for every G ∈ Tr.I.Funcn a graded expansion
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G(z1, . . . , zn) (18)

=
∞∑

α = 0

Nα∑

j = 1

G ′
α, j (z1, . . . , z j−1, z j+m−1, . . . , zn)G

′′
α, j (z j , . . . , z j+m−1)

for G ′
α, j ∈ Tr.I.Funcn−m+1 and G ′′

α, j ∈ Tr.I.Funcm , so that (18) is absolutely conver-
gent in the domain where |za − z j+m−1| � |zb − z j+m−1| for a ∈ { j, . . . , j + m −
1} �/ b (note that in (18) we regardG,G ′

α, j andG
′′
α, j as translation invariant functions

without specifying basic differences between the points).
The OPE algebras are, to some extent, a generalization of associative algebras.

Like in the latter case, an OPE algebra can be determined if we know know all the
two–point OPE’s. In particular, if we fix again a basis {θα,a},a of local fields for every
scaling dimension −α one can consider the OPE

θα,a(x)θβ,b(y) =
∑

γ

∑

d

Cγ,d
α,a;β,b(x − y) θγ,d(y) (19)

and regard the two–point functions Cγ,d
α,a;β,b(x − y) as a kind of OPE structure func-

tions (see [5–7]).
Up to this point we did not pay much attention to one of the most important

features of the Wightman fields: the locality. It reflects the fundamental principle
of special relativity that no cause can propagate faster than the speed of light. As a
consequence of this principle it turns out that the analytically continued Wightman
functions (13) are symmetric under the simultaneous exchange of the fields and their
arguments, i.e.,

〈1̂ | φ1(z1) · · · φn(zn) 1̂〉 = 〈1̂ | φσ(1)(zσ(1)) · · · φσ(n)(zσ(n)) 1̂〉 (20)

for any permutations σ. If we combine the latter symmetry with the OPE (4) we
should allow expansions not only around the last (the right) point xn but also around
any other point zs (s = 1, . . . , n),

φ1(z1) · · · φn(zn) 1̂ =
∞∑

α = 0

∑

a

G(s)
α,a(z1 − zs, . . . , zn−1 − zs) θα,a(zs) 1̂ . (21)

Note that one can pass from one center of the expansion (21) to another even on a
level of formal series:
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∞∑

α = 0

∑

a

G(s)
α,a(z1 − zs, . . . , zn−1 − zs) θα,a(zs) 1̂ (22)

=
∞∑

α = 0

∑

a

G(s)
α,a(z1 − zn, . . . , zn−1 − zn) exp

(
(zs − zn) · ∂zn

)
θα,a(zn) 1̂

=
∞∑

α = 0

∑

a

G(n)
α,a(z1 − zn, . . . , zn−1 − zn) θα,a(zn) 1̂ .

Indeed, one first applies the (formal) Taylor expansion θα,a(zs) 1̂ = exp
(
(zs − zn) ·

∂zn

)
θα,a(zn) 1̂. Then, we note that by taking partial derivatives of the fields θα,a we

decrease their scaling dimension,

scaling dimension of ∂xμ1 · · · ∂xμk φ(x) = −k + scaling dimension of φ . (23)

Thus, in order to pass from the system of OPE functions {G(s)
α,a} to the system

{G(n)
α,a} one needs just to reexpress ∂xμ1 · · · ∂xμk φ(x) as a (finite) linear combina-

tion of θα+k,a(x) (of scaling dimension −k − α); then, we can express every G(s)
α,a

by a finite number of G(n)

β,b using a finite number of algebraic operations. In this way,
we see that Eq. (22) indeed makes sense as an equality of formal series.

2 Huygens Locality and Vertex Algebras

In the previous subsection we outlined the general notion of an OPE algebra and we
needed some additional technical assumptions to the Wightman axioms that cannot
be justified from fundamental physical principles. The main justification for the
additional conditions is that they are satisfied for the free field models and for the
models of perturbative QFT. However, in some classes of QFTs with stronger spatial
symmetry, as conformal QFT, one can obtain in a natural way restrictions on the
Wightman functions, which allow then to achieve the OPE conditions. In particular,
one of the strongest conditions of conformal symmetry, called Global Conformal
Invariance implies rationality of all the Wightman functions [21]. As it was shown
in [21], the Global Conformal Invariance leads, at first place, to strengthening the
locality property of the quantum fields to the so called Huygens locality, which is
presented by an algebraic condition:

(
(x − y)2

)N [
φ(x),φ(y)

] = 0 (24)

satisfied for a sufficiently large positive integer N (depending also on the field φ). In
(24), (x − y)2 is the light cone quadric, which in the theory of special relativity is
also call the relativistic interval.
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The Huygens locality (24) is exactly this additional condition to the Wightman
axioms, which implies that all the (analytically continued) Wightman functions in
such a theory are rational functions with light–cone singularities, i.e., they are of the
form

P(z1 − zn, . . . , zn−1 − zn)∏

1� j < k � n

(
(z j − zk)

2
)ν j,k

(25)

for some integers μ j,k . We shall consider the functions (25) on (CD)×n , where we
fix the light cone quadric (z j − zk)2 as

(z j − zk)
2 =

D∑

μ= 1

(zμ
j − zμ

k )
2 (26)

and we stress that this is an analytic function in z j and zk , which is in fact, a homo-
geneous quadratic polynomial, and it should not be mixed with the square of the
(subsidiary) norm distance (that we introduced in Eq. (6)), i.e.,

(z j − zk)
2 = ‖z j − zk‖2 :=

D∑

μ= 1

|zμ
j − zμ

k |2 . (27)

The rationality ofWightman functions iswhat in turn allows us to obtain a nice and
purely algebraic reformulation of QFT with Global Conformal Invariance in terms
of OPE algebras. In this special case the OPE algebras are usually called vertex
algebras and have been considered in [16]. In particular, the Huygens locality and
the rationality allow us to start with formal series expansions for the OPE and achieve
the convergence as a consequence.

Two dimensional conformal QFTs split into tensor products of theories on two
light rays, which are called chiral conformal QFTs. The latter correspond to the
D = 1 case of the vertex algebras based on the Huygens locality (24). Then, the
OPE (1) takes the form3

φ(z)ψ(w) =
∞∑

n = −Nφ,ψ

(
φ(−n−1)ψ

)
(w) · (z − w)n (28)

(z, w ∈ C, Nφ,ψ ∈ N). In Eq. (28) the role of the basic system of two–point functions
{CA(x − y)}A of Eq. (1) is played by {(z − w)n}n ∈Z and according to Eq. (2) one
should denote by φ ∗

n
ψ the field coefficient to the term (z − w)n . However, for some

technical reasons in dimension D = 1 people usually denote φ ∗
n
ψ by φ(−n−1)ψ. The

associativity and further properties of the OPE (28) in this case was first axiomatized

3The series (28) is absolutely convergent on vector states with bounded conformal energy but in
this case it is enough to axiomatize the OPE on a level of formal power series.
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by Borcherds [1] and the resulting structure was called (chiral) vertex algebra4 and
it is widely studied nowadays in mathematics (see [3, 4, 9, 11]; in [9, Chap. 1]
the reader can find a connection with the Wightman axiomatic approach). Before
[16] generalizations of vertex algebras to higher space–time dimensions D (>2)
have been considered in [2] (see also [10, 12]). However, as we pointed out, the
multidimensional generalization of vertex algebras of [16] was introduced within the
context ofQFT. Inmore detail, it has been shown in the latter paper that these algebras
are in one–to–one correspondence with models of Wightman axioms obeying the
Global Conformal Invariance [21, Sect. 9].

Thus, a vertex algebra is a completely fixed mathematical structure, while the
notion of an OPE algebra is still developing. In particular, one of the aims of this
paper is to give an insight to such a notion of an OPE algebra that goes beyond the
case of vertex algebras.

Taking into account the rationality ofWightman functions in Globally Conformal
Invariant QFT one can specify further the OPE algebras (16) as:

Tr.I.Funcn := On := The algebra of rational n–point functions

on R
D � x1, . . . , xn, which are of the form (25). (29)

In this case the grading is provided by the degree of homogeneity.
There is an additional simplification in the theory of vertex algebras provided

by the so called state–field correspondence. As we have pointed out already, any
Wightman field acting on the vacuum φ(x)1̂ posseses an analytic extension in the
forward tube. It turns out that the latter tube domain is a homogeneous space for the
real conformal group and there exists a complex conformal transformation which
maps the whole tube into a bounded open subset ofCD . The resulting coordinates on
C

D are knownas a compact picture in conformalQFT.As the center of the coordinates
is now in the domain of holomorphy of the vector–valued function φ(z)1̂ we can set
z = 0 and in this way we obtain a linear map

{
the space of all
Wightman fields

}
� φ �→ φ(z)1̂

∣∣∣
z= 0

∈
{
the Hilbert space

of states

}
, (30)

which is called the state–field correspondence. As a consequence of the Reeh–
Schlieder theorem from the axiomatic QFT it follows that (30) is an injection, whose
image is dense.

Free massless quantum fields (for example, the free electromagnetic field) obey
the above Huygens locality. Like for the general QFT also in the case of Huygens
local fields there are yet no knownmodels inmore than three space–time dimensions,
which cannot be realized by free fields (models with such a realization physicists call
trivial). The main difficulty for finding nontrivial models of Huygens local fields is
the lack of relation between the theory of vertex algebras in higher dimensions and

4Some authors call them also vertex operator algebras; the adjective “chiral” indicates that the
D = 1 case is ment.
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the theory of infinite dimensional Lie algebras and their representations. The latter
relation is present in two space–timedimensions and it is a rich source for constructing
models. One of the aims of the operadic point of view on vertex algebras is to provide
a substitute for the infinite dimensional Lie algebras and their representations for
creating QFT models in higher dimensions.

3 Operads and OPE Algebras

We aim to consider the vertex algebras, or more generally, the OPE algebras, as
algebras over an operad. Besides one of the first references on this topic [15] we shall
mention one recent book [14], fromwhich we follow the definitions and conventions.

One can think of an operad as a generalized type of algebra. An algebra of a certain
type is determined by introducing a set of n-ary operations for some positive integers
n. In the case of algebraic operads these are multilinear maps over the underlying
vector space of the described algebra. The defining operations can be further subject
to certain identities, in which one uses compositions of the operations, eventually
combined with permutations of the input arguments. Alternatively, one can consider
the spaces of all possible multilinear operations obtained by taking compositions and
actions of permutations, and finally, quotients by the relations. In this way, we obtain
the operad corresponding to the considered type of algebra.

In more detail, an operad includes

• a sequence of vector spaces {M(n)}∞n = 1 (M(2) being the space of binary opera-
tions, ...).

• The structure is provided by various structure maps called operadic compositions,

M(k) ⊗ M( j1) ⊗ · · · ⊗ M( jk) −→ M(n)

μ′′ ⊗ μ′
1 ⊗ · · · ⊗ μ′

k �−→ μ′′ ◦ (μ′
1, . . . ,μ

′
k) ,

(31)

where n = j1 + · · · + jk , and right permutation actions

M(n) × Sn � μ × σ �→ μσ ∈ M(n) , (μσ1)σ2 = μσ1σ2 . (32)

• A prescribed element 1M ∈ M(1) called an operadic unit.

All the above data are subject to three sets of conditions:

• associativity for the operadic compositions;
• equivariance of the operadic compositions with respect to the action of permuta-
tions;

• unit property of the operadic unit with respect to the operadic compositions.

One of the main examples of an operad is the endomorphism operad EndV :

EndV (n) := Hom
(
V⊗ n, V

)
,
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where μ′′ ◦ (μ′
1, . . . ,μ

′
k) is the actual composition of multilinear maps and

μσ(v1, . . . , vn) := μ(vσ1 , . . . , vσn ) .

In this example, the reader who does not have experience in operad theory can try to
recover the above mentioned three sets of axioms as a simple exercise.

Instead of the full set of operadic compositions (31) one can introduce the operad
structure by a smaller piece of data given by the so called partial compositions:

μ ◦ j ν := μ ◦ (1M, . . . , 1M, ν
↑
j

, 1M, . . . , 1M) . (33)

It is easy to see in the example of the operad EndV that one can recover the full
operadic compositions (31) by the partial compositions by the formula:

μ′′ ◦ (μ′
1, . . . ,μ

′
k) = (· · · (( μ′′ ◦1 μ′

1) ◦ j1+1 μ′
2

) ◦ j1+ j2+1 · · · ) ◦ j1+···+ jk−1+1 μ′
k

(for more detail see [14, 5.3.7]).
Morphisms of operads are defined by sequences of linear maps:

{M(n)}∞n = 1 → {N (n)}∞n = 1 ≡ {M(n) → N (n)
}∞
n = 1

plus compatibility with all structure maps (31) and (32). In particular, morphisms
from an operad to the endomorphism operads have a meaning of “representations”
but are called algebras over the corresponding operad:

Representation ≡ Algebra over an operad,

i.e., {M(n)}n → {EndV (n)}n – morphism of operads,

i.e., M(n) → Hom
(
V⊗ n, V

)
.

The reason for using this terminology is because in this way the abstract operations in
M(n) become actual n–linear maps on V that is the underlined space of the algebra.

Example. The Lie operadLie corresponds the class of Lie algebras and is defined as:

Lie(1) = SpanK{1} π1−→ Hom(V, V ) ,

Lie(2) = SpanK{λ} π2−→ Hom(V⊗2, V ) ,

π2(λ)(a, b) = [a, b] ,

Lie(3) = SpanK{λ ◦ (1,λ) , λ ◦ (λ, 1) }
↓ ↓(

λ ◦ (λ, 1)
)(1,3,2) → [[a, c], b] = [a, [b, c]]− [[a, b], c] ,

(
λ ◦ (λ, 1)

)(1,3,2) = λ ◦ (λ, 1) − λ ◦ (1,λ)
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(where μσ , for μ = λ ◦ (λ, 1) and σ = (1, 3, 2), is the (right) permutation
action (32)).

If we drop the symmetry structure (32) from the definition of an operad we obtain
the so called nonsymmetric operad. In this case, following the notations of [14] we
shall denote the operadic spaces by a subscript (i.g.,M = (Mn)

∞
n = 1).

The main construction in this work is based on a particular example of an operad,
which we call the expansion operad E = {E(n)

}
n . It can be defined whenever we

have a sequence of algebras {Tr.I.Funcn}∞n = 2 (16) satisfying the conditions (17) and
(18) and in particular, for the case (29), which corresponds to the vertex algebras.
The expansion operad contains a nonsymmetric suboperad, En.s. = (En.s.

n )∞n = 1, which
is easier to define:

En.s.
n = Tr.I.Func′

n , En.s.
1 := C · 1E , (34)

where Tr.I.Func′
n is the graded dual of Tr.I.Funcn . Then, if

Γ ′ ∈ Tr.I.Func′
n−m+1, Γ

′′ ∈ Tr.I.Func′
m and G ∈ Tr.I.Funcn we set

(
Γ ′ ◦ j Γ ′′)(G) :=

∞∑

α = 0

Γ ′(G ′
α

)
Γ ′′(G ′′

α

)
, (35)

where the sum in the right hand side has only a finite number of nonzero terms
according to the grading conditions (in fact, if G, Γ ′ and Γ ′′ have a fixed grading
then only one term of this sum will contribute).

Now, if we have an OPE algebra with an underlying vector space V and V ′ is the
graded dual of V (with respect to the scaling dimensions) then we obtain a graded
linear map for every n = 2, 3, . . . :

V ′ ⊗ V⊗n −→ Tr.I.Funcn (36)

λ ⊗ φ1 ⊗ · · · ⊗ φn �−→
∞∑

α = 0

∑

a

Gα,a(z1 − zn, . . . , zn−1 − zn)λ(θα,a)

defined under the OPE (4), where the sum in the right hand side of the second row
again has only a finite number of nonzero terms due to the grading condition (8)
(namely, there will be only a finite number of nonzero λ(θα,a)). Hence, dualizing
(36) we get a graded linear map

En.s.
n ≡ Tr.I.Func′

n �−→ (V ′)⊗n ⊗ V ≡ Hom
(
V⊗ n, V

) ≡ EndV (n) , (37)

and the equalities

(
V ′ ⊗ V⊗n

)′ = (V ′)⊗n ⊗ V = Hom
(
V⊗ n, V

)
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are due to the fact that we are working with graded duals and V is supposed to be
graded with finite dimensional subspaces (however, this finite dimensionality is not
crucial to get the map (37)). In this way we obtain a natural candidate for an operadic
morphism, the sequence En.s.

n → EndV (n) (37), whichwould present theOPE algebra
V as an algebra over the (nonsymmetric) operad En.s. (34). The sequence of linear
maps En.s.

n → EndV (n) (37) indeed is an operadic morphism due to the compatibility
relations of type (12) on the one hand, and the definition of the operadic compositions
(35), on the other hand.

Finally, if we want to incorporate the permutation symmetry in the above operadic
construction we have to work with expansions at different base points (not only the
right one), as in (21). To this end, we refine the definition of the OPE algebras
Tr.I.Funcn (16) by explicitly specifying a basic set of point differences around a base
point zs :

Tr.I.Funcn|s := {
G(z1 − zs, . . . , zn − zs) ∈ C∞(

(RD)×(n−1)
)

(38)
∣∣G ∈ Tr.I.Funcn

} ⊆ C∞(
(RD)×(n−1)

)
,

Tr.I.Funcn|n ≡ Tr.I.Funcn ,

for every s = 1, . . . , n. Then, we set

E(n) :=
∞⊕

s = 1

Tr.I.Func′
n|s , (39)

and the operadic compositions go as

− ◦ j − : Tr.I.Func′
n−m+1|s ′ ⊗ Tr.I.Func′

m|s ′′ → Tr.I.Func′
n|s (40)

with s := s ′ + δ j,s ′(s ′′ − 1)

for s ′ = 1, . . . , n − m + 1 and s ′′ = 1, . . . ,m (note that the assignment

− ◦ j − : (
(n − m + 1, s ′) , (m, s ′′)

) �−→ (n, s)

defines a set theoretic operad on the sets of punctured finite sets (n, s) ≡ ({1, . . . , n},
s)). Each of the graded linear maps (40) is provided similarly to (35) by expanding
the elementsG ∈ Tr.I.Funcn|s around the base point zs ′′ in a formal series of products
G ′

αG
′′
α for G ′

α ∈ Tr.I.Func′
n−m+1|s ′ and G ′′

α ∈ Tr.I.Func′′
m|s ′′ .

Remark 1 The sequence of spaces
(
Tr.I.Funcn

)
n ≡ (

Tr.I.Funcn|n
)
n has not only a

structure of a nonsymmetric operad but also of a shuffle operad (for the definition of
the shuffle operads the reader may look at [14, Sect. 8.2] and the references therein).
Indeed, this is achieved if we introduce expansions of the form (18) where the role of
the sequence j, . . . , j + m − 1 is played by an arbitrary sequence 1 � j1 < · · · <

jm � n.
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4 Connection with the Renormalization Theory

Passing to the renormalization let us mention first that the same rational functions
belonging to On (29) appear as “Feynman amplitudes” (=integrands in the Feynman
integrals) inmassless field theories. Here is an example of such a Feynman amplitude
in the φ4–theory:

The above assignment, which maps Feynman graphs to Feynman amplitudes is
called a Feynman rule. The Feynman rules are explained in every QFT textbook that
contains the perturbation theory but the reader who is not familiar with them can find
a concise combinatorial definition in [13, Sect. 4.g].

It is important for the physical applications of the present construction that we
consider the ultraviolet renormalization on configuration space. In terms of Feynman
amplitudes the renormalization is given by a system of linear maps

On → D′ ((RD)×(n−1)
)
,

called renormalization maps and subject to (recursive) conditions (see [18, 20] and
references therein). It is crucial that the latter conditions do not fix completely the
above linear maps On → D′ ((RD)×(n−1)

)
. There is a remaining ambiguity that is

called renormalization ambiguity. It is shown in [18] that, the renormalization ambi-
guity at order n is described by a linear map: On → D′ [0n], where D′ [0n] stands
for the space of distributions on (RD)×(n−1) supported at the origin. More precisely,
given a sequence5 of renormalization maps

{
On → D′ ((RD)×(n−1)

)}∞
n = 1 there is a

map from the the set of all sequences of maps

{
Qn ∈ R(n)

}∞
n = 1

to the set of all sequences of renormalization maps, where we introduced the vector
spaces

R(n) := {
Q : On → D′ [0n]

∣∣ commuting with multiplication by

polynomials
}
, (41)

5All the sequences below are trivial at n = 1, but nevertheless it is convenient to start from n = 1.
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and the defining condition comes from the requirements on the renormalization
maps (as explained in [18, 20]). In this way, one can think of the sequences

{
Qn ∈

R(n)
}∞
n = 1 as “acting”on the set of all sequences of renormalization maps, or, in

other words, that every passage from one sequence
{
On → D′ ((RD)×(n−1)

)}∞
n = 1 of

renormalization maps to another is induced by a sequence
{
Qn ∈ R(n)

}∞
n = 1.

On the other hand, we would like to see the passage from one system of renormal-
ization maps

{
On → D′ ((RD)×(n−1)

)}∞
n = 1 to another as resulting from an action of

a certain group. The latter group is called the renormalization group (of Petermann–
Stückelberg–Bogolubov). Hence, there should be a group structure on the sequence
of vector spaces (41) with a group multiplication coming from the diagram:

{
On → D ′ (RD)×n

)}∞
n=1

↓ {Q′
n}∞

n=1
{
On → D ′ (RD)×n

)}∞
n=1

↓ {Q′′
n}∞

n=1
{
On → D ′ (RD)×n

)}∞
n=1

{Qn
′′′ ∈ R(n)}∞

n=1 ,

{Qn
′′′}∞

n=1 =: {Qn
′′}∞

n=1 • {Qn
′}∞

n=1

Now comes the role of operad theory in renormalization. In [13] (see also [14,
Sect. 5.3.14]) it was constructed a functor

{
Operads

}
−→

{
Groups

}
.

Furthermore, the formula for the group multiplication (42), which was derived in
[18, Sect. 2.6], indicates that it is induced by an operad according to the above func-
tor of [13]. In this way we encounter an operad whose operadic compositions are
schematically given in the following figure:

and its combinatorial version was described in [13]
Thus, the role of the operad R in renormalization theory is that it describes the

Petermann–Stückelberg–Bogolubov renormalization group. Furthermore, in physics
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there is another action of the renormalization group that is on the space of so called
physical coupling constants. The latter are the parameters that characterize a par-
ticular perturbative QFT model and they appear as constants in the Lagrangean of
the model. According to the main theorem of renormalization theory any change
of the renormalization scheme (i.e., the renormalization maps) should be equivalent
to a formal diffeomorphism in the space of physical coupling constants. This is the
renormalization group action. Another application of the functor of [13] is that it
produces the group of formal diffeomorphisms around the zero of a vector space
V when it is applied to EndV and the renormalization group action comes from an
operadic morphismR → EndV .

The bridge between the theory of the vertex algebras and renormalization is based
on an existence of a natural isomorphism [18]

E(n) ∼= R(n) .

Furthermore, this is an isomorphism of operads.
Our conclusion is summarized in the following scheme:

The E − algebras are vertex algebras

↑
Expansion operad E ∼= Renormalization operadR

↓
The group associated toR is the renormalization group

The constructed here operad can be studied with methods of various fields in math-
ematics as: Algebraic Geometry, Differential Algebra and Topology. In this way, we
obtain also a relation to purely mathematical problems, among which is in particu-
lar, the structure of multizeta values and possible their extensions (within the ring of
periods), which are needed for the (analytic) calculations in perturbative QFT.
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Renormalization and Periods
in Perturbative Algebraic Quantum
Field Theory

Kasia Rejzner

Abstract In this paper I give an overview of mathematical structures appearing in
perturbative algebraic quantum field theory (pAQFT) in the case of the massless
scalar field on Minkowski spacetime. I also show how these relate to Kontsevich-
Zagier periods. Next, I review the pAQFT version of the renormalization group flow
and reformulate it in terms of Feynman graphs. This allows me to relate Kontsevich-
Zagier periods to numbers appearing in computing the pAQFT β-function.

Keywords Quantum field theory · Periods · Epstein-Glaser renormalization

1 Introduction

Perturbative AQFT is a mathematically rigorous framework that allows to build
models of physically relevant quantum field theories on a large class of Lorentzian
manifolds. The basic objects in this framework are functionals on the space of field
configurations and renormalization method used is the Epstein-Glaser (EG) renor-
malization [20]. The main idea in the EG approach is to reformulate the renormal-
ization problem, using functional analytic tools, as a problem of extending almost
homogeneously scaling distributions that are well defined outside some partial diag-
onals in R

n . Such an extension is not unique, but it gives rise to a unique “residue”,
understood as an obstruction for the extended distribution to scale almost homoge-
neously. Physically, such scaling violations are interpreted as contributions to the β

function.
The main result of this paper is Proposition 2, where we show how a large class of

residues relevant for computing the β function in the pAQFT framework, is related
to Kontsevich-Zagier periods. Following [35] we define:
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Definition 1 A period is a complex number whose real and imaginary parts are val-
ues of absolutely convergent integrals of rational functions with rational coefficients,
over domains in R

n given by polynomial inequalities with rational coefficients.

A very accessible introduction to periods and their relation to Feynman integrals can
be found for example in [9, 12].

In Sect. 5 we review the main ideas behind the pAQFT renormalization group
(following [4]) and propose a reformulation in terms of Feynman graphs. The latter
allows then to relate the numbers appearing in the computation of the pAQFT β

function to periods discussed in Sect. 4.

2 Functionals

Let M be the D-dimensional Minkowski spacetime, i.e. R
D with the metric

η = diag(1,−1, . . . ,−1
︸ ︷︷ ︸

D−1

) .

Define the configuration space E of the theory as the space of smooth sections of a
vector bundle E overM, i.e.E

.= Γ (E
π−→ M). Fixing E specifies the particle content

of the model under consideration. In this paper we will consider only the scalar field,
i.e. E = C∞(M, R). The field configurations are denoted by ϕ. For future reference,
define D

.= C∞
c (M, R) the space of smooth compactly supported functions on M

and more generally, D(O)
.= C∞

c (O, R), where O is an open subset of R
n .

LetC∞(E , C) denote the space of smooth [2, 36] functionals on E . An important
class of functionals is provided by the local ones.

Definition 2 A functional F ∈ C∞(E , C) is called local (an element ofFloc) if for
each ϕ ∈ E there exists k ∈ N such that

F(ϕ) =
∫

M

f ( j kx (ϕ)) , (1)

where j kx (ϕ) is the k-th jet prolongation of ϕ and f is a density-valued function on
the jet bundle.

The following definition introduces the notion of spacetime localization of a func-
tional.

Definition 3 The spacetime support supp F of a functional F ∈ C∞(E , C) is
defined by

supp F
.= {x ∈ M|∀ neighborhoods U of x ∃ϕ,ψ ∈ E , supp ψ ⊂ U ,

such that F(ϕ + ψ) �= F(ϕ)} .
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Derivatives of smooth compactly-supported functionals are distributions with com-
pact support,1 i.e.

F (n)(ϕ) ∈ E ′(Mn, C) ≡ E ′C(Mn) , ∀ϕ ∈ E , n ∈ N .

If F is local then each F (n)(ϕ) is a distribution supported on the thin diagonal

Dn
.= {(x1, . . . , xn) ∈ M

n, x1 = · · · = xn} . (2)

Local functionals are important, since they are used to model interactions in pertur-
bative QFT. In the Epstein-Glaser approach, interaction is first restricted to a compact
region to avoid the IR problem and subsequently extended by taking the adiabatic
limit. In this work we are interested only in the UV (i.e. short distance) behavior of
the theory, so we leave this last step out.

One can define various important classes of functionals by formulating conditions
on the singularity structure of their derivatives F (n)(ϕ) ∈ E ′C(Mn). A notion used
in this context is that of a wavefront set. For a given distribution u ∈ D ′(Rn), its
wavefront set WF(u) contains information about points in R

n at which u is singular,
but also about directions in the momentum space (i.e. after the Fourier transform)
in which û(k) fails to decay sufficiently fast. In other words, WF(u) characterizes
singular directions of u. For a pedagogical introduction toWF sets see [5]. Knowing
the WF sets of distributions u1, u2 one can apply the criterion due to Hörmander
[28] to check if the pointwise product of u1, u2 is well defined. This motivates using
WF sets of functional derivatives F (n)(ϕ) to distinguish classes of “well-behaving”
functionals. One such class is called microcausal functionals Fμc. For the precise
definition and for possible modifications of this notion see [4, 41]. For the purpose of
this paper, it is enough to know that Floc ⊂ Fμc and that some important algebraic
structures are well defined on this space.

3 The S-Matrix and Time-Ordered Products

In the next step we introduce the S-matrix. Since we work perturbatively, the S-
matrix is understood as a formal power series in the coupling constant λ and a
Laurent series in �, with coefficients in smooth functionals. First we introduce the
time-ordered products.

Definition 4 Time ordered products are multilinear maps T n : F⊗n
loc → Fμc[[�]],

n ∈ N, satisfying:

1Prime always denotes the topological dual, so E ′(Mn) is the space of continuous linear maps from
E (Mn) to R and similarly, E ′(Mn, C) is the space of continuous linear maps to C. E (Mn) is always
understood as equippedwith its natural Fréchet topology. It is a standard result in functional analysis
that the dual of the space of smooth functions is exactly the space of distributions with compact
support.
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1. Causal factorisation property

T n(F1, . . . , Fn) = T k(F1, . . . , Fk) 	 T n−k(Fk+1, . . . , Fn) ,

if the supports supp Fi , i = 1, . . . , k of the first k entries do not intersect the past
of the supports supp Fj , j = k + 1, . . . , n of the last n − k entries. Here 	 is the
operator product of the quantum theory defined by

(F 	 G)(ϕ)
.= e

�

〈

Δ+, δ2

δϕδϕ′
〉

F(ϕ)G(ϕ′)|ϕ′=ϕ ,

where Δ+ is the Wightman 2-point function.
2. T 0 = 1, T 1 = id.
3. Symmetry: For a purely bosonic theory T ns are symmetric in their arguments.

If the fermions are present, T ns are graded-symmetric.
4. Field independence: T n(F1, . . . , Fn), as a functional on E , depends on ϕ only

via the functional derivatives of F1, . . . , Fn , i.e.

δ

δϕ
T n(F1, . . . , Fn) =

n
∑

i=1

T n

(

F1, . . . ,
δFi
δϕ

, . . . , Fn

)

5. ϕ-Locality: T n(F1, . . . , Fn) = T n(F [N ]
1 , . . . , F [N ]

n ) + O(�N ), where F [N ]
i is

the Taylor series expansion of the functional Fi up to the N -th order.
6. Poincaré invariance: Let α ∈ P↑

+ (the proper ortochronous Poincaré group).We
define σα(ϕ)(x)

.= ϕ(α−1x) for ϕ ∈ E , x ∈ M and define the action of α ∈ P↑
+

on functionals using σα(F)
.= F(σα(ϕ)). We require σα ◦ T n ◦ (σ−1

α )⊗n = T n .

We refer to these conditions as the Epstein-Glaser (EG) axioms.

Definition 5 The formal S-matrix is a map from Floc toFμc[[λ]]((�)) defined as

S(λF) =
∞
∑

n=0

(λi)n

n!�n
Tn(F

⊗n) , (3)

With T ns satisfying the EG axioms. Let (Floc)
⊗n
pds denote the subset of F⊗n

loc con-
sisting of functionals with pairwise disjoint supports. On such functionals one can
define the n-fold time-ordered product to be

T n(F1, . . . , Fn) = m ◦ e�
∑

i< j D
i j
F (F1 ⊗ · · · ⊗ Fn) , (4)

where Di j
F

.= 〈ΔF, δ2

δϕi δϕ j
〉,m denotes the pointwisemultiplication andΔF is the Feyn-

man propagator of the free scalar field theory on M. Unfortunately, this definition
doesn’t trivially extend to arbitrary local functionals, due to singularities of the Feyn-
man propagator. Instead, one has to use more sophisticated analytical tools, which
wewill review in the next section.Wewill refer to (4) as the non-renormalized n-fold
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time-ordered product and the problem of extending T n to arbitrary local functional
is referred to as the renormalization problem.

To organize the combinatorics present in the construction of time-ordered prod-
ucts, it is convenient to write them in terms of Feynman graphs. To see how this
comes about, we use the identity

e�
∑

i< j D
i j
F =

∏

i< j

∞
∑

li j=0

(

� Di j
F

)li j

li j ! (5)

to obtain the expansion
T n =

∑

Γ ∈G n

T Γ ,

where Gn is the set of all graphs with n vertices and no tadpoles (i.e. no loops in
the graph-theoretic sense). Let E(Γ ) denote the set of edges and V (Γ ) the set of
vertices of the graph Γ . Contributions from particular graphs are given by

T Γ = 1

Sym(Γ )
m ◦ 〈tΓ , δΓ 〉 , (6)

with

δΓ = δ2 |E(Γ )|
∏

i∈V (Γ )

∏

e:i∈∂e δϕi (xe,i )

and
tΓ =

∏

e∈E(Γ )

�ΔF(xe,i , i ∈ ∂e) (7)

The symmetry factor Sym is the number of possible permutations of lines joining
the same two vertices, Sym(Γ ) = ∏

i< j li j !.
Note that the map δΓ applied to F ∈ F⊗n

loc yields, at any n-tuple of field config-
urations (ϕ1, . . . , ϕn), a compactly supported distribution in the variables xe,i , i ∈
∂e, e ∈ E(Γ ) with support on the partial diagonal

DiagΓ = {xe,i = x f,i , i ∈ ∂e ∩ ∂ f, e, f ∈ E(Γ )} ⊂ M
2|E(Γ )| .

This partial diagonal can be parametrized using the centre of mass coordinates

zv
.= 1

valence(v)

∑

e:v∈∂e

xe,v ,

assigned to each vertex. The remaining relative coordinates are x rele,v = xe,v − zv,
where v ∈ V (Γ ), e ∈ E(Γ ) and v ∈ ∂e. Obviously, we have

∑

e|v∈∂e x
rel
e,v = 0 for all



350 K. Rejzner

v ∈ V (Γ ), so in fact DiagΓ is parametrized by |V (Γ )| − 1 independent variables.
In this parametrization δΓ F can be written as a finite sum

δΓ F =
∑

β

f β∂βδrel ,

where β ∈ N
D(|V (Γ )|−1)
0 , each f β(ϕ1, . . . , ϕn) is a test function on DiagΓ and δrel is

the Dirac delta distribution in relative coordinates, i.e. δrel(g) = g(0, . . . , 0), where
g is a function of (x rele,v, v ∈ V (Γ ), e ∈ E(Γ )).

Let YΓ denote the vector space spanned by derivatives of the Dirac delta distribu-
tions ∂βδrel, where β ∈ N

D(|V (Γ )|−1)
0 and let D(DiagΓ ,YΓ ) denote the graded space

of test functions on DiagΓ with values in YΓ . With this notation we have δΓ F ∈
D(DiagΓ ,YΓ ) and if F ∈ (Floc)

⊗n
pds, then δΓ F is supported onDiagΓ \ DIAG,where

DIAG is the large diagonal:

DIAG = {

z ∈ DiagΓ | ∃v,w ∈ V (Γ ), v �= w : zv = zw
}

.

We can therefore write (6) in the form

1

Sym(Γ )
〈tΓ , δΓ 〉 =

∑

finite

〈

f β∂βδrel, t
Γ
〉

where tΓ is written in terms of centre of mass and relative coordinates. To see that
this expression is well defined, note that we can move all the partial derivatives ∂β

to tΓ by formal partial integration. Then the contraction with δrel is just the pullback
through the diagonal map ρΓ : DiagΓ → M

2|E(Γ )| by

(ρΓ (z))e,v = zv if v ∈ ∂e .

The pullback ρ∗
Γ of each tΓβ

.= ∂β tΓ is a well defined distribution on DiagΓ \DIAG,
so (6) makes sense if F ∈ (Floc)

⊗n
pds.

The renormalization problem to extend T n’s to maps on the full F⊗n
loc is now

reduced to extending distributions ρ∗
Γ t

Γ
β to the diagonal.

In this and the next section we will consider the simplest situation, where the free
theory is the free massless scalar field and the possible interactions are local func-
tionals F1, . . . , Fn that depend on the field itself but not on its derivatives. Without
the loss of generality, we can assume them to be monomials, i.e. of the form

F(ϕ) =
∫

f (x)ϕ(x)ldDx ,

where f ∈ D , l ∈ N. Such a functional can be graphically represented as a vertex of
valence l, decorated by the test function f.
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The distributions we need to extend are then uΓ = ρ∗
Γ t

Γ , where tΓ is given by
(7). We can write the explicit expression for uΓ using the following rules:

1. Choose a vertex of Γ and label it as x0 = 0. Label the remaining vertices with
variables x1, . . . , xn , where n = |V (Γ )| − 1.

2. Assign theFeynmanpropagatorΔF(xi , x j ) to each edge e ∈ E(Γ ), where xi , x j ∈
∂e.

Because of the translational symmetry, the Feynman propagator ΔF(x, y) depends
only on the difference x − y. Explicitly, it is given by

ΔF(x, y) = (−1)
D
2 −1Γ ( D

2 − 1)

4π
D
2

lim
ε→0+

1

((x − y)2 − iε)
D
2 −1

≡ kD

((x − y)2 − i0)
D
2 −1

,

where (x − y)2
.= η(x − y, x − y) is the square with respect to the Minkowski met-

ric and Γ denotes the Gamma function. We use the bold symbol to distinguish this
from the notation we use for graphs. It follows now that

uΓ (x1, . . . , xn−1) = k |E(Γ )|
D

∏

e∈E(Γ )((xs(e) − x f (e))2 − i0)
D
2 −1

, (8)

where {xs(e), x f (e)} = ∂e is the pair of vertices that constitute the boundary of an
edge e and the order of these vertices is irrelevant.

Example 1 Consider the following examples:

1. For the fish graph: uΓ (x) = k2D
(x2−i0)D−2 ,

2. For the triangle graph:

uΓ (x, y) = k3D
(x2 − i0)

D
2 −1(y2 − i0)

D
2 −1((x − y)2 − i0)

D
2 −1

.

We have seen how to reduce the renormalization problem to extension of distri-
butions. The construction of T ns proceeds inductively. Given renormalized time-
ordered products of order k < n, we can use the causal factorisation property to fix
the time-ordered products at order n up to the thin diagonal Dn (see (2)). On the level
of graphs it means that all the distributions uγ corresponding to proper subgraphs
γ ⊂ Γ have been constructed and substituted into uΓ . The renormalization problem
for uΓ is now the extension of a distribution defined everywhere outside the thin
diagonal of the graph Γ understood as the subset of DiagΓ with all the variables
equal. Because of the translation symmetry, this is in fact extension problem for a
distribution defined everywhere outside the origin.
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4 Distributional Residues and Periods

The framework of pAQFT is different from the one of Connes and Kreimer in two
fundamental ways: oneworks in position rather thanmomentum space and themetric
of the underlying spacetime has Lorentzian rather than Euclidean signature. The
latter is the reason for invoking Epstein-Glaser causal approach to renormalization,
as outlined in the previous section.

There has been a lot of work done concerning periods in position space approach
to renormalization. The most recent comprehensive review has been given in [37],
while for historical remarks on the development of the subject, it is worth to look up
[47]. A very detailed analysis of renormalization of Feynman integrals and its relation
to periods and motives has been done in the series of papers [14, 15]. However, the
computations performed in these works are done in Euclidean signature. Another
noteworthy work, focusing on relations between Epstein-Glaser renormalization and
“wonderful compactifications” is [3].

There are some serious technical difficulties arising when changing the signature
to Lorentzian. In the present paper we show how some standard methods used in
Euclidean setting can, nevertheless, be applied also to the Lorentzian case.

Before coming to the main result of this paper, let us recall some basic facts about
the problem of extension of almost homogeneous distributions [4, 7, 23, 31, 37, 45].

Definition 6 We say that a distribution u ∈ D ′(RN \ {0}) scales almost homoge-
neously, if (ρ d

dρ )k+1ραu(ρ.) = 0 for some k ∈ N0 (called scaling order), α ∈ R

(called scaling degree).

The almost homogeneous scaling relation can also be written in terms of the Euler
operator E = ∑d

i=1 x
i ∂
∂xi , namely a distribution with scaling degree α and order k

satisfies
(E + α)k+1u = 0 ,

while (E + α)ku �= 0.

Example 2 For a graph Γ with n vertices the distribution u ≡ uΓ that we need
to extend belongs to D ′(RN \ {0}), where N = (n − 1)D and D is the dimension
of M.

The following result was proven in [26, Proposition 1] (see also [37, section 4.4]):

Proposition 1 Let u be a (Lorentz invariant) almost homogeneously scaling distri-
bution with degree α = N + N0, then there exists a non-unique (Lorentz invariant)
extension ū ∈ D ′(RN ) of u and

(

ρ
d

dρ

)k+1

ρα ū(ρ.)

∣

∣

∣

ρ=1
= (E + α)k+1ū =

∑

|β|=α−N

cβ∂βδ ,

where β ∈ N
N
0 is a multiindex.
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In the proof of the above proposition provided in [26], the coefficients cα are com-
puted by integrating certain (closed) distributional forms over a closed codimension
1 surface enclosing the origin. We will now review the construction of these forms
and it will become clear that these do not depend on the choice of the extension.
Moreover, their closeness is the reason why cαs do not depend on the choice of the
integration surface and hence the homogeneous differential operator

∑

|β|=α−N

cβ∂β (9)

doesn’t depend on the choice of the extension ū. This fact has also been highlighted
in the discussion following formula (4.21) in [37, section 4.4]).

We will call (9) the residue of u and denote it by Res(u), so that

(E + α)k+1ū = Res(u)δ .

Coefficients of the differential operator Res(u) can be explicitly computed using the
construction of ū proposed in [26, eq. (186)] and [37, Theorem 4.8]. Let us outline
the main ideas behind this construction. First, note that the almost homogeneous
scaling implies that the distributional kernel of u can be written as [26, eq. (172)],
[37, eq. (3.12)]

u(r x) =
k
∑

m=0

r−l (log r)
m

m! vm(x) r > 0 , (10)

where vm = (E + α)mu. Let 〈u, f 〉 denote the dual pairing between the distribution u
and the test function f ∈ D(RN \ {0}). This pairing is usually realized as the integral

〈u, f 〉 =
∫

MN

u(x) f (x)dN x . (11)

We rewrite this integral using the representation (10). First, choose a compact
N − 1dimensional hypersurface around theorigin, homoeomorphic to the (Euclidean)
sphere SN−1 that intersects each orbit of the scaling transformation x �→ μx exactly
once. Note that the map R+ × Σ � (r, x̂) �→ r x̂ ∈ R

N \ {0} is a diffeomorphism,
since the surface Σ is transverse to the orbits of dilations in R

N .
Using microlocal analysis techniques [28] one can show that distributions vm

appearing in (10) have well defined restrictions to Σ (see [26], Section3.3, after
eq. (173)). Denote points on Σ by x̂ and write the restriction of vm as vm(x̂). Next,
define for r > 0 the following space

Σr
.= {r x̂ ∈ R

N |x̂ ∈ Σ} .
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Denote the natural inclusion of Σr into R
N by ir . One introduces a (N − 1)-form Ω

on R
N by

Ω(x) =
N
∑

a=1

(−1)a−1xadx1 ∧ · · · ∧ ̂dxa ∧ · · · ∧ dxN ,

where xa are components of x ∈ R
N . The caret symbol̂means that the correspond-

ing factor is omitted. We can now write

dN x = dr

r
∧ i∗r Ω .

Let ρΣ : R
N \ {0} → R+ denote the smooth function defined by the condition

x

ρΣ(x)
∈ Σ .

We obtain a measure on Σ by setting

dσ(x̂) = ρΣ(x)−NΩ(x) ,

and express the pairing (11) as

〈u, f 〉 =
∫ ∞

−∞

k
∑

m=0

θ(r)r N−1−l (log r)
m

m!
(∫

Σ

vm(x̂) f (r x̂)dσ(x̂)

)

dr , (12)

where θ denotes the Heaviside step function. Denote F(r)
.= ∫

Σ
vm(x̂) f (r x̂)dσ(x̂).

Formula (12) makes sense, since the support of the test function f is bounded away
from the origin inR

N and hence F(r) is a test function onR+ (i.e. smooth compactly
supported), whose support is bounded away from r = 0. If we want f to be an
arbitrary test function, then F(r) vanishes for sufficiently large r , but does not vanish
near r = 0 [26, discussion following eq. (184)].

The renormalization problem has therefore been reduced to extension of the dis-
tribution θ(r)r N−1−l(log r)m onR. This is done by various methods, see for example
[22, 24, 25, 37, 43]. The idea that we are going to follow here (proposed by [23]
based on the ideas of [21, 39]) is to consider first the extension of the distribu-
tion θ(r)r N−1−l+ε(log r)m for a complex, non integer N − 1 − l + ε. If we require
the almost homogeneous scaling, then the extension exists and is unique. Next, we
expand the resulting extended distribution in ε and subtract the pole part.

Let us come back to our original extension problem for u ∈ D ′(RN \ {0}). It is
well known in the literature on differential renormalization (see e.g. [26, eq. (186)] or
[37, Thm. 4.8]) that an extension ū of an almost homogeneously scaling distribution
u of order k and degree α to an everywhere-defined distribution can be obtained by
setting
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〈ū, f 〉 .= lim
ε→0

(∫ ∞

0

∫

Σ

r εu(r x̂)
uhe

f (r x̂)dσ(x̂)dr

−
k
∑

m=0

(−1)m+α−N

εm+1

∑

|β|=α−N

1

β!
∫ ∞

0

∫

Σ

vm(x̂) f (r x̂)∂βδ(r x̂)dσ(x̂)dr

⎞

⎠ ,

where . uhe denotes the unique almost homogeneous extension, β ∈ N
N
0 is a multiin-

dex, β! ≡ β1! . . . βN ! and ∂β .= ∂
β1
x1 . . . ∂

βN
xN .

We are now ready to compute the almost homogeneous scaling violation for the
extension ū. The coefficients cβ of Res(u) in formula (9) are obtained from (see e.g.
[26, eq. (92)])

cβ
.= (−1)α−N 1

β!
∫

Σ

x̂βvm(x̂)dσ(x̂)

that manifestly doesn’t depend on the choice of the extension, but only on u. Note
that cβ does not depend on the choice ofΣ because the integrand is a (distributional)
closed form (see [26, eq. (210)] for the proof of closedness).

As a special case we can consider a distribution with scaling degree α = N and
scaling order 0. In this case the residue is given in terms of a complex number

Res(u) = c0 =
∫

Σ

u(x̂)dσ(x̂) . (13)

Definition 7 For a graph Γ with n vertices and no derivatives decorating the edges,
the scaling degree of the distribution uΓ is given by the formula

αΓ = (D − 2)|E(Γ )| .

Definition 8 We define the divergence degree of a graph Γ by

ωΓ = αΓ − (|V (Γ )| − 1)D .

A graph Γ is called superficially divergent if ωΓ ≥ 0.

Hence graphs with αΓ = N are characterized by the condition

(D − 2)|E(Γ )| = (|V (Γ )| − 1)D . (14)

Note that the loop number of a graph (the first Betti number) is given by h1 =
|E(Γ )| − |V (Γ )| + 1, so the above condition can be also expressed as

|E(Γ )| = D

2
h1 .
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In four dimensions (D = 4) this reduces to |E(Γ )| = 2h1. If Γ satisfies (14) and has
no superficially divergent subgraphs (here a subgraph γ ⊂ Γ is specified by choosing
a subset of vertices ofΓ and taking all the edges connecting these), then it has scaling
degree αΓ = N (so the divergence degree vanishes) and scaling order kΓ = 0. Such
graphs coincide with primitive graphs in the Connes-Kreimer approach, if we restrict
to D = 4 and fix the interaction.

Remark 1 The class of primitive graphs in the Epstein-Glaser Hopf algebra [18, 25,
34, 38] differs from the class of primitive graphs in the Connes-Kreimer approach.
As an example consider the two vertex graph, which has |E(Γ )| = 4 and h1 = 3.
This graph is primitive in the Epstein-Glaser Hopf algebra, but not primitive in the
Connes-Kreimer approach.

Consider a graph Γ with |E(Γ )| = D
2 h1 and no superficially divergent subgraphs.

Let Δ be the simplex defined by
∑

e∈E(Γ ) αe = 1 and αe > 0. We introduce the

measure μ(α)
.= δ(1 −∑

e∈E(Γ ) αe)
∏

e∈E(Γ ) α
D
2 −2
e dαe on Δ. Let

Ψ̂Γ (α) =
∑

T spanning
tree

∏

e∈T
αe

be the dual graph polynomial (see e.g. [6, 9, 33, 49]). We define

PΓ
.=
∫

Δ

μ(α)

(Ψ̂Γ (α))D/2
. (15)

If PΓ converges absolutely, then it defines a real period of the graph Γ in the sense
of Definition 36 of [11].

It was shown in [6] that, in D = 4, under assumptions on Γ stated above, PΓ

indeed converges absolutely. For explicit computations of these periods in Euclidean
φ4 theory in 4 dimensions, see for example [42].

It is highly plausible that this result can also be generalized to other dimen-
sions, e.g. D = 6. For an elementary argument, first note that potential singular-
ities of the integrand lie on C

.= XΓ ∩ ∂Δ, the intersection of the hyper-surface
XΓ

.= {α ∈ R
|E(Γ )||Ψ̂Γ (α) = 0} with the boundary ∂Δ. If C is just a collection of

points, one can split the integration region into small neighborhoods of these points
and the rest. For each such neighborhood one parametrizes the integral using spher-
ical coordinates around the point and examines the behaviour of the integrand as the
radius r approaches 0. One can now observe that for each such integral, extra fac-
tors of αe contribute r (|E(Γ )|−1)( D

2 −2), the integration measure contributes r |E(Γ )|−2,
while the denominator contributes r−(|V (Γ )|−2) D

2 . The last assertion follows from the
fact that Ψ̂Γ is a degree |V (Γ )| − 1 polynomial and because we are integrating over
the simplex, the dominant contribution comes from degree |V (Γ )| − 2 terms. Since
|V (Γ )| − 1 = D−2

2 |E(Γ )|, the integrand can be bounded by a constant, as r → 0.
We perform these estimates explicitly in Example 4.
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In proposition 2 we show how periods defined by (15) appear in distributional
residues in Lorentzian signature. Before we do that, it is worth to recall a few facts
concerning graph polynomials (see [9, 13] for a more comprehensive review).

Definition 9 ([44, 48]) The generic graph Laplacian (or Kirchhoff matrix) is the
|V (Γ )| × |V (Γ )| matrix defined by

Li j (α) =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

∑

e∈E(Γ )

vi ,v j ∈∂e

−αe if i �= j,

∑

e∈E(Γ )

vi ∈∂e

αe if i = j,

for all vi , v j ∈ V (Γ ). A sum over the empty set is set to be zero.

Theorem 1 (tree-matrix theorem in [48], thm. VI.29) Let Γ be a graph with N
edges, all of them labelled by the set {α1, . . . , αN } and let vi be an arbitrary vertex
of Γ . LetLΓ (α) be the generic Laplacian and Ψ̂Γ the dual graph polynomial. Then
we have

Ψ̂Γ = Det(LΓ (α)[vi ]) ,

where the notation LΓ (α)[vi ] means the (i, i) minor of the matrixLΓ (α).

We are now ready to prove our main result of this section.

Proposition 2 LetΓ be a graphwith |E(Γ )| = D
2 h1 and such that every proper sub-

graph γ satisfies |E(Γ )| > 2h1. If PΓ converges absolutely, then the distributional
residue Res uΓ is given by

Res uΓ = c0 = 2i (2D−1)(|V |−1)

(4π)|E(Γ )| PΓ .

Proof First recall that the integral (13) doesn’t depend on the choice of Σ . The
simplest choice is the unit Euclidean sphere in R

Dn , where n = |V (Γ )| − 1. Denote

X ≡ (x01 , . . . , x
0
n , . . . , x

D−1
1 , . . . , xD−1

n )

Using the formula (8) we obtain

c0 = (−1)(
D
2 −1)|E(Γ )|

(

Γ ( D
2 − 1)

4π
D
2

)|E(Γ )|
lim

ε→0+

∫

Σ

dσ(X)
∏

e∈E(Γ )((xs(e) − x f (e))2 − iε)
D
2 −1

,

Denote be ≡ (xs(e) − x f (e))
2 − iε, e ∈ E(Γ ). We have �(ibe) = ε > 0, so we can

use the well known Schwinger trick to write
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1
∏

e∈E(Γ ) b
D
2 −1
e

= Γ (( D
2 − 1)|E(Γ )|)

(Γ ( D
2 − 1))|E(Γ )|

∫ 1

0
. . .

∫ 1

0

δ(1 −∑

e∈E(Γ ) αe)

(
∑

e∈E(Γ ) αebe)(
D
2 −1)|E(Γ )|

∏

e∈E(Γ )

α
D
2 −1
e dαe

≡ Γ (( D
2 − 1)|E(Γ )|)

(Γ ( D
2 − 1))|E(Γ )|

∫

Δ

μ(α)

(
∑

e∈E(Γ ) αebe)(
D
2 −1)|E(Γ )| ,

where k = |E(Γ )|. Nowwewant to performa change of variables to put the quadratic
form B ≡ ∑

e∈E(Γ ) αebe into its normal form. We write B = XT MX , where M is a
block diagonal matrix of the form

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

N 0 0 . . . 0
0 −N 0 . . . 0
0 0 −N . . . 0
...

...

0 0 0 . . . −N

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Each block is a (|V (Γ )| − 1)-dimensional symmetric positive semidefinite matrix
(as αe ≥ 0, ∀e ∈ E(Γ ) ), which is in fact the (0, 0) minor of the generic graph
Laplacian LΓ (α) introduced in Definition 9. We can find a non-singular matrix Λ

such that
ΛT NΛ = 1 .

The argument proceeds now exactly the same as in [6, 8]. Defining

S
.=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Λ 0 0 . . . 0
0 Λ 0 . . . 0
0 0 Λ . . . 0
...

...

0 0 0 . . . Λ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

we obtain

ST MS
.=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 . . . 0
0 −1 0 . . . 0
0 0 −1 . . . 0
...

...

0 0 0 . . . −1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

≡ Ξ , (16)

This suggests a change of variables X �→ S−1X that puts the quadratic form B into
the normal form. In order to perform this change of variables we only need to ensure
that in the following formula the order of integration can be interchanged:
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∫

Σ

∫

Δ

1

(
∑

e∈E(Γ ) αebe)(
D
2 −1)|E(Γ )| μ(α)dσ (17)

For this, note that
|
∑

e∈E(Γ )

αebe|2 ≥ |
∑

e∈E(Γ )

αe|2ε2 .

Since on the simplexΔwe have
∑

e∈E(Γ ) αe = 1, we can conclude that the integrand
in (17) is uniformly bounded by 1

ε2
and as long as ε > 0, we can interchange the

order of integration and perform the desired change of variables X �→ S−1X . The
Jacobian for this change of variables is

Det S = (DetΛ)D = (Det N )−D/2 ,

since (DetΛ)2 Det N = 1. It follows now from the tree-matrix Theorem 1 that

Det N = Ψ̂Γ (α) .

It is now also explicitly seen that the result doesn’t depend on the choice of the vertex
to which we assigned 0 in our Feynman rules, as the tree-matrix theorem gives the
same result for any choice of the minor LΓ [vi ], vi ∈ V (Γ ).

We can now rewrite c0 as

c0 = Γ
(|E(Γ )|( D

2 − 1)
)

(

(−1)(
D
2 −1)

4π
D
2

)|E(Γ )|

× lim
ε→0+

∫

Σ

dσ

(XTΞ X − iε)|E(Γ )|( D
2 −1)

∫

Δ

Ψ̂
−D/2
Γ (α)μ(α) =

Γ
(|E(Γ )|( D

2 − 1)
)

(

(−1)(
D
2 −1)

4π
D
2

)|E(Γ )|
PΓ lim

ε→0+

∫

Σ

dσ

(XTΞ X − iε)|E(Γ )|( D
2 −1)

,

(18)

where Ξ is a diagonal metric given in (16).
The remaining integral in (18) is easy to evaluate. It is the residue of the distribution

t (X) = 1

(XTΞ X − i0)(
D
2 −1)|E(Γ )|

on the indefinite product space (R(D−2)|E(Γ )|, Ξ), with divergence degree 0 and scal-
ing order 0. Now we use formula [4, Appendix C, formula after eq. (102)]:

Res t = i s |Sd−1| ,
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where d is the total dimension of the indefinite product space (in our case d =
(|V (Γ )| − 1)D = |E(Γ )|(D − 2)) and s is the number of minus signs in the sig-
nature of Ξ (in our case s = (|V (Γ )| − 1)(D − 1)) and |Sd−1| is the volume of the
unit sphere in d dimensions. We obtain

Res t = i (D−1)(|V (Γ )|−1)
∣

∣S|E(Γ )|(D−2)−1
∣

∣ .

With this result and the formula for the volume of the unit sphere in d dimensions

|Sd−1| = 2πn/2

Γ ( n2 )
,

we arrive at

c0 = i (2D−1)(|V (Γ )|−1) 2

(4π)|E(Γ )| PΓ .

In particular, for D = 4 we have

c0 = (−i)(|V (Γ )|−1) 2

(4π)|E(Γ )|

∫

Δ

|Ψ̂Γ |−2Ω(α) ,

where Ω(α) is the standard measure on the simplex.

Example 3 The simplest example is the fish graph in 4 dimensions:

The scaling degree and the scaling order vanish, so from Proposition 2 we obtain

c0 = −i
2

(4π)2
PΓ .

Here Ψ̂Γ = α1 + α2, so PΓ = 1 and hence c0 = −i
8π2 .

Example 4 Following [4], consider the triangle in 6 dimensions:

Proposition 2 implies that

c0 = − 2

(4π)3
PΓ ,

if PΓ converges. Since Ψ̂ (α) = α1α2 + α1α3 + α2α3, we have

PΓ =
∫

Δ

α1α2α3δ(1 − α1 − α2 − α3)dα1dα2dα3

(α1α2 + α2α3 + α1α3)3
.
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To see that this integral is absolutely convergent, note that singularities of the inte-
grand appear only in the “corners” of the simplex.Using the symmetry of the problem,
we pick the α3 = 1 and consider the integral Iε of the same integrand as above, but
over a small neighborhood of the point (α1, α2, 1) on the simplex Δ. Using polar
coordinates α1 = r cos θ , α2 = r sin θ , this integral takes the form

Iε =
∫ ε

0

∫ π/2

0

r3 sin2 θ cos θ(1 − r
√
2 sin(θ + π

4 ))

r3( 12r sin 2θ + √
2 sin(θ + π

4 ) − 2r sin2(θ + π
4 ))3

dθdr

Since sin(θ + π
4 ) does not vanish in the interval [0, π

2 ], the integrand can be bounded
by a constant when r → 0, so Iε is absolutely convergent and so is PΓ .

Following [4, example on p. 39] we evaluate this integral by integrating out α3 and
then changing the variables to λ, κ , so that α1 = λκ and α2 = (1 − λ)κ . We obtain

PΓ =
∫ 1

0

∫ 1

0

λ(1 − λ)κ2(1 − κ)

(λ(1 − λ)κ2 + κ(1 − κ))3
dκdλ = 1

2
,

so

c0 = − 1

26π3
.

Example 5 The final example is the well known “wheel with three spokes” graph in
4 dimensions:

This one also satisfies the assumptions of Proposition 2, so using the general formula
we obtain

c0 = i

211π6
PΓ = 3i

210π6
ζ(3) ,

where we used the well-known value PΓ = 6ζ(3) (see e.g. [10]).

Proposition 2 allows to reduce the problemof computing a large class of distributional
residues to the problem of evaluating periods arising from graph polynomials, of the
form discussed in [1, 6, 11, 42], so can be used to easily translate the existing results
and apply them to theories in Lorentzian signature.

Let us come back to the general case. Let Γ be a graph with ωΓ ≥ 0. If it contains
proper subgraphs with ωγ ≥ 0, then one has to renormalize these first and substitute
the result to the expression for tΓ . If overlapping divergences are present, a partition
of unity might be required. However, there are convincing arguments that this step
can be avoided; compare the Example 4.16 in [18] (using the partition of unity)
with example 5.3 of [24] (without the partition of unity). A distribution constructed
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this way is denoted by ũΓ and it was shown in [29] that the property of almost
homogeneous scaling is preserved in the recursive procedure of renormalization of
proper subgraphs. Hence ũΓ is an almost homogeneously scaling distribution and
the general formula for its residue is

Res(ũΓ ) =
∑

|β|=α−N

cβ∂β ,

where

cβ
.= (−1)α−N 1

β!
∫

Σ

x̂β(E + α)k ũΓ (x̂)dσ(x̂) , (19)

If a graph is EG primitive, then k = 0, ũΓ = uΓ and the residue is uniquely deter-
mined by the graph. Residues for EG primitive graphs which are not CK primitive
can be obtained by using the fact that coefficients cβ are Lorentz invariant. This
implies that integrals (19) can be reduced to scalar integrals multiplying appropriate
powers of ημν .

We believe that a result generalizing Proposition 2 can be established also in this
case and we will address it in future work.

Example 6 Consider the sunset diagram in 4 dimensions:

We have m = 0 and α = 8. This implies that |β| = 4 so we need to compute

cμναβ = 1

(2π)84!
∫

Σ

xμxνxαxβ

(x2 − i0)4
dσ(x) .

The Lorenz invariance and the symmetry of the problem imply that

(2π)8cμναβ = 1

4!24 (ηαβημν + ημβηνα + ημαηνβ)

∫

σ

(x2)2

(x2 − i0)4
dσ(x)

= 1

2632
(ηαβημν + ημβηνα + ημαηνβ)

∫

σ

dσ(x)

(x2 − i0)2

= − iπ2

2532
(ηαβημν + ημβηνα + ημαηνβ) (20)

Hence

Res(uΓ ) = − i

2133π6
�2 .

In fact there is a different, more direct, way to obtain residues for all the “sunset”
type diagrams with arbitrary number of lines. For details see [37, section 5.2] or [4,
Appendix C]. The general formula is
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Res

(

1

(X2 − i0)
d
2 +l

)

= cl�l ,

where

cl = i s |Sd−1| Γ ( d2 )

22l l!Γ ( d2 + l)

and X ∈ R
d with the diagonal metric of the form diag(1, . . . , 1−1, . . . ,−1

︸ ︷︷ ︸

s

). The

Example 6 is then the special case of this formula with d = 4, s = 3 and l = 2.

5 Renormalization Group Flow

In [4] the breaking of the homogeneous scaling is shown to relate to the definition
of the β-function. In this section we review the main ideas of that argument.

In the first step we generalize the discussion from the previous sections from the
massless to themassive scalar field. For studying the scaling properties, it is crucial to
work with time-ordered products that are smooth in mass.2 This is, unfortunately, not
the case if we use the standard Feynman propagatorΔF. To rectify this, we replace in
our framework the 2-point functionΔ+ with a Hadamard 2-point function H and the
Feynman propagator ΔF with a corresponding modified Feynman propagator HF.
Crucially, H and HF are smooth in mass. The choice of these objects is unique up to
a parameter M > 0 with the dimension of mass. Explicit formula for HF

M was derived
in [4] and it reads:

HF
M (x) = mD−2

(2π)
D
2 yD−2

(

K D
2 −1(y) + (−1)

D
2 log

M

m
I D

2 −1(y)

)

, (21)

where y
.= √−m2(x2 − i0) and K , I are modified Bessel’s functions. In 4 dimen-

sions this amounts to

HF
M (x) = −1

4π2(x2 − i0)

+ log(−M2(x2 − i0))m2 f (m2x2) + m2F(m2x2) ,

2The usual physical argument for the 2-point functions not being smooth atm2 = 0 is that it should
not be possible to go smoothly to models with imaginary mass. However, the smoothness in mass
is crucial for renormalization on curved spacetimes, as argued in [4, 30–32]. Another approach was
proposed in [19], where the “usual” 2-point function can be used and the smoothness in mass is
replaced by the smoothen of appropriately rescaled time-ordered products.
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while in 6 dimensions

HF
M (x) = 1

4π3(x2 − i0)2
+ m2 f (m2x2)

π (x2 − i0)

+ 1

π

(

log(−M2(x2 − i0))m4 f ′(m2x2) + m4F ′(m2x2)
)

,

where f and F are real-valued analytic functions. f and f ′ can be expressed in terms
of the Bessel functions J1 and J2, respectively, namely

f (z)
.= 1

8π2
√
z
J1(

√
z) , f (0) = 1

24 π2
, f ′(z) = −1

16π2 z
J2(

√
z) ;

and F is given by a power series

F(z)
.= − 1

4π

∞
∑

k=0

{ψ(k + 1) + ψ(k + 2)} (−z/4)k

k!(k + 1)! , F(0) = 2C − 1

4π
,

where C is Euler’s constant and the Psi-function is related to the Gamma-function
by ψ(x)

.= Γ ′(x) /Γ (x).
The non-uniqueness of H and HF forces one to use a bitmore abstract construction

to define the observables and time-ordered product.

Definition 10 For amassm wedefine a family of algebrasA(m)M

.= (Fμc[[�]], 	H),
labeled by M > 0, where H ≡ Hm

M and 	H is defined by

(F 	H G)(ϕ)
.= e

�

〈

H, δ2

δϕδϕ′
〉

F(ϕ)G(ϕ′)|ϕ′=ϕ

Different choices of the Hadamard 2-point function for a given mass m differ by a
smooth function, i.e. Hm

M1
− Hm

M2
is smooth. This allows to define a homomorphism

αm
M1M2

.= e
�

〈

Hm
M1

−Hm
M2

, δ2

δϕ2

〉

,

between the algebras A(m)M1
and A(m)M2

. We are now ready to define the algebra
of observables for a fixed mass.

Definition 11 A(m), the algebra of observables for mass m consists of families
A = (AM)M>0, where AM ∈ A(m)M and we have AM1

= αm
M1M2

(AM2
).

We can identify abstract elements of the algebra A(m) with concrete functionals in
Fμc[[�]]. For A ∈ A(m) denote

AM

.= αH(A) ,
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where αH ≡ e
〈

�H, δ2

δϕ2

〉

and H ≡ Hm
M is the appropriate Hadamard 2-point function.

AM defined this way is now a functional in Fμc[[�]]. Conversely, let F ∈ Fμc. We
denote by α−1

H F the element of A(m) such that (α−1
H F)M = F , where H ≡ Hm

M , as
above. The rationale behind this notation is explained in [4] and further clarified in
[41]. Let Aloc(m) denote the subspace of A(m) arising from local functionals.

Now, following [4], we want to combine algebras corresponding to different
masses in a common algebraic structure.

Definition 12 We define the following bundle of algebras

B =
⊔

m2∈R

A(m) .

Let A = (Am)m2∈R be a section ofB. We fix M > 0 and define a function from R+
toFμc[[�]] by

m2 �→ αM(A)(m)
.= αH(A

m) , where H ≡ Hm
M .

Definition 13 A section A ofB is called smooth if αM(A) is smooth for some (and
hence all) M > 0. The space of smooth sections of B is denoted by A. Similarly,
Aloc denotes the space of smooth sections ofB such that A(m) ∈ Aloc(m) for all m.

A is equipped with a non-commutative product defined as follows:

(A 	 B)mM
.= Am

M 	H Bm
M ,

where H ≡ Hm
M . The n-fold time-ordered productT n is amap fromAloc toA defined

by
T n(A1, . . . , An)(m)

.= α−1
H ◦ T n

H (αH A1 . . . , αH An) ,

where H ≡ Hm
M is a Hadamard 2-point function for mass m and maps T n

H :
Floc[[�]] → Fμc[[�]] satisfy axioms from Definition 4 with Δ+ replaced by H .

The S-matrix is now a map from Aloc to A defined by

S(A)
.=

∞
∑

n=0

1

n!T
n(A⊗n) .

Axioms for time-ordered products can be conveniently formulated on the level of
S-matrices.

S 1. Causality S(A + B) = S(A) 	 S(B) if supp(Am) is later than supp(Bm) for
all m2 ∈ R+.3

3We define supp Am .= supp(αH (A)), where H ≡ Hm
M and this definition is independent of the

choice of M .
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S 2. S(0) = 1, S(1)(0) = id,
S 3. ϕ-Locality:αM ◦ S(A)(ϕ0) = αM ◦ S ◦ α−1

M

(

αM(A)[N ]
ϕ0

)

(ϕ0) + O(�N+1),where

αM(A)[N ]
ϕ0

(ϕ) =
N
∑

n=0

1

n!
〈

δnαM(A)

δϕn
(ϕ0), (ϕ − ϕ0)

⊗n

〉

is the Taylor expansion up to order N . The dependence on mass m is kept
implicit in all these formulas.

S 4. Field independence: S doesn’t explicitly depends on field configurations.

In Epstein-Glaser renormalization the freedom in defining the renormalized S-matrix
is controlled by the Stückelberg-Petermann renormalization group.

Definition 14 The Stückelberg-Petermann renormalization group R is defined as
the group of maps Z : Aloc → Aloc with the following properties:

Z 1. Z(0) = 0,
Z 2. Z (1)(0) = id,
Z 3. Z = id + O(�),
Z 4. Z(F + G + H) = Z(F + G) + Z(G + H) − Z(G), if supp F ∩ supp G =

∅,
Z 5. δZ

δϕ
= 0.

Note that constructing Z ’s can be reduced to constructing maps ZH : Floc[[�]] →
Floc[[�]] which control the freedom in constructing T n

H , so the abstract formal-
ism reviewed in the present section can be related to the more concrete description
presented in Sects. 1–3. We have

Z = α−1
H ◦ ZH ◦ αH .

The fundamental result in the Epstein-Glaser approach to renormalization is theMain
Theorem of Renormalization [4, 17, 40, 46].

Theorem 2 Given two S-matrices S and ̂S satisfying conditions S 1– S 5, there
exists a unique Z ∈ R such that

̂S = S ◦ Z . (22)

Conversely, given an S-matrix S satisfying the mentioned conditions and a Z ∈ R,
Eq. (22) defines a new S-matrix ̂S satisfying S 1– S 5.

Let us now discuss symmetries. Again, we follow closely [4]. Let G be a subgroup
of the automorphism group of A. Assume that it has a well defined action onS , the
space of S-matrices, by

S �→ g ◦ S ◦ g−1 ,
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where S ∈ S , g ∈ G. Since g ◦ S ◦ g−1 ∈ S , it follows from the Main Theorem of
Renormalization that there exists an element Z(g) ∈ R such that

g ◦ S ◦ g−1 = S ◦ Z(g) .

We obtain a cocycle inR,

Z(gh) = Z(g)gZ(h)g−1 . (23)

The cocycle can be trivialized, i.e. is a coboundary, if there exists an element Z ∈ R
such that

Z(g) = ZgZ−1g−1 ∀g ∈ G . (24)

If this is the case, then

g ◦ S ◦ g−1 = S ◦ ZgZ−1g−1 .

Hence
g ◦ S ◦ Z ◦ g−1 = S ◦ Z ,

so the S-matrix S ◦ Z is G-invariant.
The non-triviality of the cocycle corresponds to the existence of anomalies. One

of the most prominent examples where the cocycle cannot be trivialized is the action
of the scaling transformations.

The scaling transformation is defined first on the level of field configurations
ϕ ∈ E as

(σρϕ)(x) = ρ
2−D
2 ϕ(ρ−1x) , (25)

where D is the dimension ofM. This induces the action on functionals by the pullback
σρ(F)(ϕ)

.= F(σρ(ϕ)) and finally, the action on A can be defined by

σρ(A)m = σρ(A
ρ−1m) .

Let now
σρ ◦ S ◦ σ−1

ρ = S ◦ Z(ρ) . (26)

Z(ρ) is called the Gell-Mann Low cocycle and it satisfies the cocycle condition

Z(ρ1ρ2) = Z(ρ1)σρ1 Z(ρ2)σ
−1
ρ1

. (27)

Typically this cocycle cannot be trivialized. The generator of this cocycle, denoted
by B is related to the β-function known from the physics literature. Following [4]
we define

B
.= ρ

d

dρ
Z(ρ)

∣

∣

∣

ρ=1
, (28)
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The physicalβ-function can be obtained from B after one corrects for the “wave func-
tion renormalization” and “mass renormalization” (see [4, section 6.4] for details).

To find B we differentiate (26) and obtain

ρ
d

dρ
(σρ ◦ S ◦ σ−1

ρ )(V )

∣

∣

∣

ρ=1
= ρ

d

dρ
(S ◦ Z(ρ))(V )

∣

∣

∣

ρ=1
= 〈

S(1)(V ), B(V )
〉

,

Note that
〈

S(1)(V ), .
〉

is invertible in the sense of formal power series so

B(V ) = S(1)(V )−1 ◦ ρ
d

dρ
(σρ ◦ S ◦ σ−1

ρ )(V )

∣

∣

∣

ρ=1

To compute B, first we write it in terms of its Taylor expansion:

B(V ) =
∞
∑

n=0

1

n!
〈

B(n)(0), V⊗n
〉

, (29)

where

〈

B(n)(0), V⊗n
〉 = dn

dλn
B(λV )

∣

∣

∣

∣

λ=0

= ρ
d

dρ

dn

dλn
Z(ρ)(λV )

∣

∣

∣

∣

λ=0,ρ=1

Denote B(n)(0) ≡ B(n). The computation of B(n) amounts to summing up the scaling
violations of distributional extensions appearing at order n in construction of time-
ordered products. To see that lower orders do not contribute, we use the fact that

Z(ρ)(n)(0) = σρ ◦ S(n)(0) ◦ σ−1
ρ − (S ◦ Zn−1(ρ))(n)(0) , (30)

where Zn is an element ofR defined in terms of its Taylor expansion as

Z (k)
n (0)

.=
{

Z (k)(0) , k ≤ n ,

0 , k > n .
(31)

The proof of (30) is provided in [4] and relies on the proof of the Main Theorem of
Renormalization (Theorem 4.1 in [4]). We expand Z(ρ)(n)(0) in terms of Feynman
graphs:

Z(ρ)(n)(0) =
∑

Γ ∈G n

Z(ρ)Γ .

where the sum is over all graphs with n vertices. Similarly for S(n)(0) and B(n)(0).
We can rewrite (30) as

Z(ρ)Γ = σρ ◦ T Γ ◦ σ−1
ρ −

∑

P∈Part′(V (Γ ))

T ΓP ◦
⊗

I∈P

Z(ρ)ΓI , (32)
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where Part′(V (Γ )) denotes the set of partitions of the vertex set V (Γ ), excluding the
partition with n elements; ΓP is the graph with vertex set V (ΓP) = V (Γ ), with all
lines connecting different index sets of the partition P , andΓI is the graphwith vertex
set V (ΓI ) = I and all lines of Γ which connect two vertices in I . Differentiating
(32) with respect ot ρ gives

BΓ = ρ
d

dρ
(σρ ◦ T Γ ◦ σ−1

ρ )

∣

∣

∣

ρ=1
−

∑

P∈Part′(V (Γ ))

T ΓP ◦
⊗

I∈P

BΓI , (33)

Note that BΓ is an operator onF⊗n
loc [[�]].

It is now clear that the second term in (32) subtracts contributions from scaling
violations corresponding to renormalization of all proper subgraphs of Γ . Hence
the only contributions to BΓ arise from scaling violations resulting from extending
distributions defined everywhere outside the thin diagonal of the graph Γ .

For performing computations we need to express V ∈ A in terms of a concrete
functional in Floc. Let’s take V = α−1

M F for some F ∈ Floc. In the computation
of B we have to take into account that αM , does not commute with the scaling
transformations. Define

SM

.= αM ◦ S ◦ α−1
M

and
BM

.= αM ◦ B ◦ α−1
M

We obtain

ρ
∂

∂ρ
(σρ ◦ SM ◦ σ−1

ρ )(F) − M
∂

∂M
SM(F)

∣

∣

∣

ρ=1
= ρ

d

dρ
(σρ ◦ Sρ−1M ◦ σ−1

ρ )(F)

∣

∣

∣

ρ=1

= 〈

S(1)
M (F), BM(F)

〉

.

for V ∈ Floc. The expression for −M ∂
∂M SM was derived in [4] and is given by

M
∂

∂M
S(n)

M = 2� S(n)
M ◦

∑

i �= j

Di j
v ,

where Di j
v

.= 1
2

〈

v, δ2

δϕi δϕ j

〉

is a functional differential operator on F⊗n
loc and v

.=
1
2M

d
dM Hm

M .

Again, BM can be written in terms of its Taylor expansion and B(n)
M (0) is expressed

as a sum over graphs with n vertices. Finally, note that due to the field independence
of S and Z , we have

δn

δϕn
◦ BM(F) =

∑

P∈Part(n)

B(|P|)
M ◦

⊗

I∈P

F |I | .
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It follows that the Taylor expansion of BM(F) around ϕ = 0 is determined by the
values of B(k)

M (F (n1) ⊗ · · · ⊗ F (nk )) at ϕ = 0, where n1 + · · · + nk = n. We will see
now that this allows to express everything in terms of connected graphs.

Let F ∈ Floc. Without loss of generality we can assume F to be monomial, i.e.
of the form

F(ϕ) =
∫

M

f (x)p( jx (ϕ))dDx , (34)

where f ∈ D and p is a monomial function on the jet space and jx (ϕ) is a finite
order jet of ϕ at point x . Graphically, we can represent F as a vertex, decorated by
f with one external leg for each factor of ϕ, some of them carrying derivatives. For
example

∫

M
f (x)ϕ4(x)dDx is

f

Given a monomial p on the jet space, define the set of Wick submonomials Wp as
the set of all monomials that are factors of p. For example, for ϕ4(x), the set of Wick
submonomials consists of ϕ4(x), ϕ3(x), ϕ2(x), ϕ(x), 1. To indicate derivatives, we
put lines across edges, e.g. p( jx (ϕ)) = ∂μϕ∂νϕ is

f
μν

and after summing up over the index μ we obtain ∂μϕ∂μϕ ≡ (∂ϕ)2 represented for
simplicity by

f
The Taylor expansion induces a coproduct

p( jx (ϕ + ψ)) = Δ(p)( jx (ϕ) ⊗ jx (ψ)) ,

which can be written explicitly as

Δ(p) =
∑

q∈Wp

Sym(q) p/q ⊗ q ,

where p/q is the graph obtained by removing the edges corresponding to q and
Sym(q) is the number of ways in which graph q can be embedded into graph p. For
the local functional F in (34) we obtain

F(ϕ + ψ) =
∫

M

f (x)Δp( jx (ϕ) ⊗ jx (ψ))dDx .
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Using Sweedler’s notation:

Δp =
∑

p

p(1) ⊗ p(2) .

By a small abuse of notation, we define a functional F(1)(ϕ)
.= ∫

M
f (x)p(1)( jx (ϕ))

dDx , while F(2)(ϕ)(x) is a smooth function defined by x �→ p(2)( jx (ϕ)). Using this
notation:

B(n)
M (F1, . . . , Fn)(ϕ) =

∑

F1,...,Fn

〈

B(n)
M (F1(1), . . . , Fn (1))(0), F1(2), . . . , Fn (2)

〉

.

Here B(n)
M (F1(1), . . . , Fn (1))(0) is a distribution, which we can write as

B(n)
M (F1(1), . . . , Fn (1))(0)(x1, . . . , xn) = f1(x1) . . . fn(xn)

∑

Γ

bΓ (x1, . . . , xn) ,

where the sum runs over connected graphs Γ with vertices representing p1(1), . . . ,

pn (1). Distributions b
Γ are given by

bΓ = ρ
d

dρ
σρ(u

Γ )

∣

∣

∣

ρ=1
,

where uΓ is the extension to the total diagonal of the distribution ũΓ constructed as
in Sect. 4, where all the proper subgraphs have been renormalized. Hence

B(n)
M (F1, . . . , Fn)(ϕ) =

∑

F1,...,Fn

∑

Γ

〈

( f1 ⊗ · · · ⊗ fn) · bΓ , F1(2), . . . , Fn (2)

〉

. (35)

If Γ is EG primitive, then ũΓ = uΓ and uΓ scales homogeneously. In this case

bΓ = Res uΓ .

This result provides a link between Kontsevich-Zagier periods appearing in Propo-
sition 2 and physical quantities computed in the pAQFT framework. However, the
class of distributional residues relevant for the computation of B is larger than the
ones discussed in Sect. 4, since here we need to replace DF with HF given by the
formula (21). To give an idea of how the computation proceeds at low loop orders,
we review the example of ϕ4 in 4 dimensions discussed in [4], but in contrast to [4]
we use the Feynman graphs notation to make it easier to follow.

Example 7 Consider the functional

F(ϕ) = λ

∫

M

f (x)ϕ4(x)d4x .
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The corresponding element of A is

V = α−1
M F ,

i.e.

V (m)M = λ α−1
Hm

M

∫

M

f (x)ϕ4(x)d4x .

We are interested in finding BM for the QFT model with this interaction. First
note that the orbit of the renormalization group is spanned by 1 and functionals
of the form

∫

M
f1(x)ϕ4(x)d4x ,

∫

M
f2(x)ϕ2(x)d4x ,

∫

M
f3(x)(∂ϕ)2(x)d4x , where

f1, f2, f3 ∈ D . Hence, we need to determine BM only on such functionals. Graphi-
cally we represent them as decorated vertices:

f1 f2 f3

Let us now compute B(2)
M on these functionals. We have

B(2)
M

(

f1
,

f1

)

= 16
〈

B(2)
M

(

f1
,

f1

)

(0), ⊗
〉

+

36

〈

B(2)
M

(

f1
,

f1

)

(0), ⊗
〉

+ constant and linear terms , (36)

since the co-product acts as:

Δ
( )

= 1 ⊗ + ⊗ 1 + 4 ⊗
+ 4 ⊗ + 6 ⊗

It follows from (36) now the graphs contributing to B(2)
M are

Γ1 = , Γ2 =

Hence, neglecting constant and linear terms:

B(2)
M

(

f1
,

f1

)

=
〈

( f1 ⊗ f1) · bΓ1 , ⊗
〉

+
〈

( f1 ⊗ f1) · bΓ2 , ⊗
〉

.

A similar reasoning leads to
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B(2)
M

(

f1
,

f2

)

= 6
〈

B(2)
M

(

f1
,

f2

)

(0), ⊗ 1
〉

= 6
〈

( f1 ⊗ f2) · bΓ2 , ⊗ 1
〉

and

B(2)
M

(

f1
,

f3

)

= 6
〈

B(2)
M

(

f1
,

f3

)

(0), ⊗ 1
〉

=
6
〈

( f1 ⊗ f3) · bΓ3 , ⊗ 1
〉

In the latter case there is a new graph appearing, namely

Γ3 = .

Calculating B(2)
M is now reduced to finding the residues: Res uΓ i , i = 1, 2, 3. The

(rather lengthy) computation can be found in Sect. 7.2 of [4].
From the point of view of Kontsevich-Zagier periods, one gets some more inter-

esting numbers in calculating higher orders of B. In particular, the wheel with three
spokes appears as a contribution to

B(4)
M

(

f1

⊗4) = 28
〈

f ⊗4
1 bΓ4 ,

⊗4〉+ . . . ,

where

Γ4 =

and bΓ4 = Res uΓ4 .

6 Conclusion

In this paper we reviewed some important algebraic structures appearing in pertur-
bative Algebraic Quantum Field Theory (pAQFT) on Minkowski spacetime [4] and
we have shown how these relate to periods, usually investigated in a different context
in Euclidean QFT in momentum space. The approach we advocate here provides a
natural interpretation of these periods both in the mathematical and physical context.
Mathematically, these correspond to distributional residues and are therefore intrin-
sic characterizations of scaling properties of certain class of distributions. Physically,
they are relevant in computing the β-function. Note that, in our approach, the later
characterization is independent of any regularization scheme. In fact, regularization
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is not needed at all and there is no need to recur to ill defined divergent expressions.
Instead, the whole analysis is centered around the singularity structure of distribu-
tions that arise from taking powers of the Feynman propagator.

The main result of this paper is that distributional residues in pAQFT, correspond-
ing to CK primitive graphs, are up to a factor that we compute, the same as Feynman
periods in the CK framework (as conjectured in [4]). The remaining EG primitive
graphs, which are not CK primitive, also give rise to multiples of the same periods.

For the future research it would be worth investigating the distributional residues
arising in pAQFT on other Lorentzian manifolds. Some interesting results have
already been obtained for de Sitter spacetime in [27]. All the fundamental struc-
tures of pAQFT presented in this paper generalize easily to curved spacetimes. The
only difference is the form of the Feynman propagator (or rather the “Feynman-like”
propagator HF). The hope is that looking at more general propagators, one would
obtain a richer structure of residues and some new structures would appear, which are
not present in theMinkowski spacetime context (and would not be periods anymore).

In recent work, [16] investigated the dependence of Feynman amplitudes on vari-
ations of the metric in Riemannian setting and shows that integrals of non divergent
Feynman amplitudes associated to closed graphs are functions on the moduli space
of Riemannian metrics. It would be interesting to extend that work to the Lorentzian
setting.
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Symmetril Moulds, Generic Group
Schemes, Resummation of MZVs

Claudia Malvenuto and Frédéric Patras

Abstract The present article dealswith various generating series and group schemes
(not necessarily affine ones) associated withMZVs. Our developments are motivated
by Ecalle’s mould calculus approach to the latter. We propose in particular a Hopf
algebra–type encoding of symmetril moulds and introduce a new resummation pro-
cess for MZVs.

Keywords Multiple zeta values · Mould calculus · Quasi-shuffle

1 Introduction

Motivated by the study of multiple zeta values (MZVs), Jean Ecalle has introduced
various combinatorial notions such as the ones of “symmetral moulds”, “symme-
trel moulds”, “symmetril moulds” or “symmetrul moulds” [4, 7]. The first two are
well-understood classical objects: they are nothing but characters on the shuffle alge-
bra, resp. the quasi-shuffle algebra over the integers, both isomorphic to the algebra
QSym of Quasi-symmetric functions. These two notions are closely related to the
interpretation of properly regularizedMZVs as real points of two prounipotent affine
group schemes (associated respectively to the integral and power series representa-
tions of MZVs), whose interactions through double shuffle relations has given rise to
the modern approach to MZVs (by Zagier, Deligne, Ihara, Racinet, Brown, Furusho
and many others) [3, 10, 12, 18].

Although fairly natural from the point of view of MZVs (the resummation of
MZVs into suitable generating series gives rise to a symmetril mould), the notion of
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symmetrility is more intriguing and harder to account for using classical combina-
torial Hopf algebraic tools.

The aim of this article is accordingly threefold. We first show that Ecalle’s mould
calculus can be interpreted globally, beyond the cases of symmetral and symmetrel
moulds, as a rephrasing of the theory of MZVs into the framework of prounipotent
groups. However, these are not necessarily associated to affine group schemes (that
is, to groups whose elements are characters on suitable Hopf algebras), at least in our
interpretation and indeed, to account for symmetrility we introduce a new class of
functors from commutative algebras to groups referred to as generic group schemes
(because the elements of these groups are characters on suitably defined “generic”
Hopf algebras). Second, we focus on this notion of symmetrility, develop system-
atic foundations for the notion and prove structure theorems for the corresponding
algebraic structures. Third, we interpret Ecalle’s resummation of MZVs by means
of formal power series as the result of a properly defined Hopf algebra morphism.
This construction is reminiscent in many aspects of the resummation of the various
Green’s functions in the functional calculus approach to quantum field theory or sta-
tistical physics, see e.g. [17]. This approach leads us to introduce a new resummation
process, different from Ecalle’s. The new process is more complex combinatorially
but more natural from the group and Lie theoretical point of view: indeed, it encodes
MZVs into new generating series that behave according to the usual combinatorics
of tensor bialgebras and their dual shuffle bialgebras.

In the process, we introduce various Hopf algebraic structures that, besides being
motivated by the mould calculus approach to MZVs, seem to be interesting on their
own from a combinatorial algebra point of view.

We refer the readers not acquainted with classical arguments on the theory of
MZVs to Cartier’s Bourbaki seminar [2] that provides a short and mostly self con-
tained treatment of the key notions.

2 Hopf Algebras

We recall first briefly the definition of a Hopf algebra and related notions. The reader
is referred to [2] for details. All the maps we will consider between vector spaces
will be assumed to be linear, unless otherwise stated explicitly. We will be mostly
interested in graded or filtered connected Hopf algebras, and restrict therefore our
presentation to that case.

Let H = ⊕
n∈N Hn be a graded vector space over a field k of characteristic zero.

We will always assume that the Hn are finite dimensional. We write H≤n := ⊕

m≤n
Hm ,

H≥n := ⊕

m≥n
Hm and H+ := ⊕

n∈N∗ Hn . The graded vector space H is said to be

connected if H0
∼= k.

An associative and unital product μ : H ⊗ H → H on H (also written h · h′ :=
μ(h ⊗ h′)) with unit map η : k → H0 ⊂ H (so that for any h ∈ H and η(1) =:
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1 ∈ H0, 1 · h = h · 1 = h) makes H a graded (resp. filtered) algebra if, for any inte-
gers n,m, μ(Hn ⊗ Hm) ⊂ Hn+m (resp. μ(Hn ⊗ Hm) ⊂ H≤n+m).

Dualizing, a coassociative and counital coproduct � : H → H ⊗ H on H (also
written using the abusive but useful Sweedler notation �(h) = h(1) ⊗ h(2)) with
counit map ν : H → k (with ν the null map on H+) makes H a graded coalgebra
if, for any integer n, �(Hn) ⊂ ⊕

p+q=n
Hp ⊗ Hq =: (H ⊗ H)n . The coproduct (resp.

the coalgebra H ) is cocommutative if for any h ∈ H , h(1) ⊗ h(2) = h(2) ⊗ h(1).
Recall that the category of associative unital algebras is monoidal: the tensor

product of two associative unital algebras is a unital associative algebra. Assume
that (μ,η) and (�,ν) equip H with the structure of an associative unital algebra and
coassociative counital coalgebra: they equip H with the structure of a bialgebra if
furthermore � and ν are maps of algebras (or equivalently μ and η are maps of
coalgebras). The bialgebra H is called a Hopf algebra if furthermore there exists a
endomorphism S of H (called the antipode) such that

μ ◦ (I d ⊗ S) ◦ � = μ ◦ (S ⊗ I d) ◦ � = η ◦ ν =: ε. (1)

A bialgebra or a Hopf algebra is graded (resp. filtered) if it is a graded algebra
and coalgebra (resp. a filtered algebra and a graded coalgebra). Graded and filtered
connected bialgebras are automatically equipped with an antipode and are therefore
Hopf algebras, and the two notions of Hopf algebras and bialgebras identify in that
case, see e.g. [2] for the graded case, the filtered one being similar. This observation
will apply to the bialgebras we will consider.

Example 1 The first example of a bialgebra occurring in the theory of MZVs is
QSym, the quasi-shuffle bialgebra over the integersN∗. The underlying graded vector
space is the vector space over the sequences of integers (written as bracketed words)
[n1...nk]. The bracket notation is assumed to behave multilinearly: for example, for
two words n1 . . . nk , m1 . . .ml and two scalars α, β

[α n1 . . . nk + β m1 . . .ml] = α[n1 . . . nk] + β[m1 . . .ml].

The words of length k span the degree k component of QSym (another graduation
is obtained by defining the word [n1...nk] to be of degree n1 + · · · + nk). The graded
coproduct is the deconcatenation coproduct:

�([n1...nk]) :=
k∑

i=0

[n1 . . . ni ] ⊗ [ni+1 . . . nk].

The unital “quasi-shuffle” product − is the filtered product defined inductively by
(the empty word identifies with the unit):
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[n1...nk]− [m1 . . .ml] := [n1(n2...nk − m1 . . .ml)] +
[m1(n1...nk − m2 . . .ml)] + [(n1 + m1)(n2...nk − m2 . . .ml)].

For example,

[35]− [1] = [3(5− 1) + 1(35) + 45] = [351] + [315] + [36] + [135] + [45].

Notice that, here and later on,we use in such formulas the shortcut notation [3(5− 1)]
for the concatenation of [3] with [5− 1] (so that [3(5− 1)] = [3(51 + 15 + 6)] =
[351 + 315 + 36]).

Algebra characters on QSym (i.e. unital multiplicative maps from QSym to a
commutative unital algebra A) are called by Ecalle symmetrel moulds. The convolu-
tion product of linear morphisms from QSym to A,

f ∗ g := mA ◦ ( f ⊗ g) ◦ �,

where mA stands for the product in A, equips the set GQSym(A) of A-valued charac-
ters with a group structure. Since QSym is a filtered connected commutative Hopf
algebra, the corresponding functor GQSym is (by Cartier’s correspondence between
group schemes and commutative Hopf algebras over a field of characteristic 0) a
prounipotent affine group scheme. Properly regularized MZVs are real valued alge-
bra characters on QSym and probably the most important example of elements in
GQSym(R) [2].

The quasi-shuffle bialgebra QSh(B) over an arbitrary commutative algebra
(B,×) is defined similarly: the underlying vector space is T (B) := ⊕

n∈N
B⊗n , the

coproduct is the deconcatenation coproduct and the product is defined recursively by
(we use a bracketed word notation for tensor products): [b1 . . . bk] := b1 ⊗ ... ⊗ bk ,

[b1 . . . bk]− [c1 . . . cl ] := [b1(b2...bk − c1 . . . cl)] +
[c1(b1...bk − c2 . . . cl)] + [(b1 × c1)(b2...bk − c2 . . . cl)].

Example 2 The second example arises from the integral representation of MZVs.
The corresponding graded vector space T (x, y) is spanned by words in two variables
x and y. The length of a word defines the grading. The coproduct is again the
deconcatenation coproduct acting on words. The product is the shuffle product,
defined inductively on sequences by

a1...ak b1 . . . bl := a1(a2...ak b1 . . . bl) + b1(a1...ak b2 . . . bl).

The Hopf algebra T (x, y) is called the shuffle bialgebra over the set {x, y}. Properly
regularized MZVs are algebra characters on T (x, y) (or on subalgebras thereof),
but the regularization process fails to preserve simultaneously the shuffle and quasi-
shuffle products [2].



Symmetril Moulds, Generic Group Schemes, Resummation of MZVs 381

Shuffle bialgebras over arbitrary sets X are defined similarly and denoted Sh(X)

(see [8]). In the mould calculus terminology, a character on Sh(X) is called a sym-
metral mould. The shuffle bialgebra over N∗, Sh(N∗), is written simply Sh and will
be called the integer shuffle bialgebra. It is isomorphic to QSym as a bialgebra [11].

Example 3 Rota-Baxter quasi-shuffle bialgebras. This third example departs from
the two previous ones in that it is not a classical one but already illustrates a leading
idea of mould calculus, namely: the application of fundamental identities of integral
calculus to word-indexed formal power series. We refer e.g. to [5] and to the survey
[6] for an overview of Rota–Baxter algebras and their relations to integral calculus
and MZVs as well as for their general properties.

Let A be a commutative Rota-Baxter algebra of weight θ , that is a commutative
algebra equipped with a linear endomorphism R such that

∀x, y ∈ A, R(x)R(y) = R(R(x)y + x R(y) + θxy).

The term R(x)y + x R(y) + θxy =: x ∗R y defines a new commutative (and asso-
ciative) product ∗R on A called the double Rota-Baxter product.We define the double
quasi-shuffle bialgebra over a Rota–Baxter algebra A, QShR(A), as the bialgebra
which identifies with T (A) := ⊕

n∈N
A⊗n as a vector space, equipped with the decon-

catenation coproduct, and equipped with the following recursively defined product
R :

x1...xk R y1...yl := x1(x2...xk R y1...yl) + y1(x1...xk R y2...yl)+
(x1 ∗R y1)(x2...xk R y2...yl).

The fact that QShR(A) is indeed a bialgebra follows from the general definition
of the quasi-shuffle bialgebra over a commutative algebra A, see [9, 11].

Example 4 This fourth example (a particular case of the previous one) and the fol-
lowing one are the first concrete examples of the kind of Hopf algebraic structure
showing up specifically in mould calculus. The definitions we introduce are inspired
by the notion of symmetrul mould [7, p. 418] of which they aim at capturing the
underlying combinatorial structure.

Let R[X ] be equipped with the Riemann integral R := ∫ X
0 viewed as a Rota–

Baxter operator of weight zero. With the notation ai := Xi−1, i ∈ N∗ we get:
R(ai ) := ai+1

i and

ai ∗R a j = i + j

i j
ai+ j .

This associative and commutative product gives rise to the following definition:

Definition 1 The bialgebra of quasi-symmetrul functions QSul is the quasi-shuffle
bialgebra over the linear span of the integers N∗ equipped with the product
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[i] ∗ [ j] := i + j

i j
[i + j].

Proposition 1 The bialgebras QSym, Sh and QSul are isomorphic, the isomor-
phism φ from Sh to QSul is given by:

φ([n1 . . . nk]) :=
∑

μ1+···+μi=k

(n1 + · · · + nμ1) . . . (nμ1+···+μi−1+1 + · · · + nμ1+···+μi )

μ1! . . . μi !n1 . . . nk
·

[n1 + · · · + nμ1 , . . . , nμ1+···+μi−1+1 + · · · + nμ1+···+μi ].

The proposition is an application of Hoffman’s structure theorems for quasi-shuffle
bialgebras [11]. It also follows from the combinatorial analysis of quasi-shuffle bial-
gebras understood as deformations of shuffle bialgebras in [9].

Example 5 The previous example gives the pattern for the notion of symmetrulity
(and gives a hint for its analytic meaning). Let now V be a vector space with a
distinguished basis B := (vi )i∈I and M a subsemigroup of (R>0,+), the strictly
positive real numbers. Let A be the linear span of M × Bwhose elements (m, v) are
represented

(m
v

)
, to stick to the “bimould” calculus notation [7]. We set:

(
m1

v1

)

∗
(
m2

v2

)

:= − 1

m2

(
m1 + m2

v1

)

− 1

m1

(
m1 + m2

v2

)

.

This product ∗ is associative and commutative.
Using the notation

(m1 ... mn

v1 ... vn

)
for the tensor product of the

(mi

vi

)
in T (A), equipped

with the deconcatenation coproduct, the following recursively defined product yields
a bialgebra structure denoted QSul(M, V ) on T (A):

(
m1 ... mn

v1 ... vn

)

ul

(
p1 ... pk
w1 ... wl

)

:=
(
m1

v1

)((
m2 ... mn

v2 ... vn

)

ul

(
p1 ... pk
w1 ... wl

))

+
(
p1
w1

) ((
m1 ... mn

v1 ... vn

)

ul

(
p2 ... pk
w2 ... wl

))

−
(

1

p1

(
m1 + p1

v1

)

+ 1

m1

(
m1 + p1

w1

)) (
m2 ... mn

v2 ... vn

)

ul

(
p2 ... pk
w2 ... wl

)

.

Definition 2 (Corollary) For B an arbitrary commutative algebra, denote the group
of B-valued characters ofQSul(M, V )byGQSul(M,V )(B) : then the functorGQSul(M,V )

is a prounipotent affine group schemewhose points are called symmetrul moulds [7].

Let us write Sh(M, V ) for the shuffle bialgebra over A, and GSh(M,V ) for the
corresponding prounipotent affine group scheme, we have:

Theorem 1 The prounipotent affine group schemes GQSul(M,V ) and GSh(M,V ) are
isomorphic. The isomorphism is induced by the bialgebra isomorphism φ between
Sh(M, V ) and QSul(M, V ) defined by:
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φ

(
m1 . . .mn

v1 . . . vn

)

:=
∑

μ1+···+μi=n

(−1)n−i

μ1! . . . μi ! ·

(
μ1∑

i=1

1

m1 . . .mi−1mi+1 . . .mμ1

(
m1 + · · · + mμ1

vi

))

. . .

⎛

⎝
n∑

i=μ1+···+μi−1+1

1

mμ1+···+μi−1+1 . . .mi−1mi+1 . . .mn

(
mμ1+···+μi−1+1 + · · · + mn

vi

)
⎞

⎠ .

This theorem follows once again from Hoffman’s structure theorem for quasi-
shuffle algebras by identification of the coefficients of the exponential isomorphism
in the particular case under consideration.

In Ecalle’s terminology, symmetrul moulds and symmetral moulds on M × V
are canonically in bijection. Notice that whereas the definition of symmetrul moulds
as characters on the Hopf algebra QSul(M, V ) is essentially a group-theoretical
interpretation of the definitions given in [7], the equivalence between the two notions
of symmetrulity and symmetrality of Theorem 1 (and therefore also the precise
formula for the isomorphism) is new at our best knowledge.

We do not insist further on the notion of symmetrulity that is relatively easy to
handle group-theoretically as we just have seen, and will focus preferably on the one
of symmetrility, whose signification for MZVs seems deeper, and for which a group-
theoretical account is harder to obtain, since it does not seem possible to interpret
symmetril moulds as elements of a prounipotent affine group scheme, but only as
elements of a properly defined prounipotent group scheme.

3 Generic Bialgebras

Symmetril moulds, of which a formal definitionwill be given later, behave verymuch
as characters on QSym or T (x, y). There are even some conversion rules to move
from one notion to the other, that we will explain later. Unfortunately, this notion
of symmetrility fails to be accounted for by using a naive theory of characters on a
suitable Hopf algebra. The aim of this section is to explain what has to be changed
in the classical theory of Hopf algebras to make sense of the notion.

The constructions in this section are motivated by the two notions of twisted
bialgebras (also called Hopf species) explored in [1, 14–16] and the one of con-
structions in the sense of Eilenberg and MacLane [13]. However, both the theory of
constructions and vector species are too functorial to account for the very specific
combinatorics of symmetrility, and we have to introduce for its proper understanding
a different framework. In view of the similarities with the theory of constructions,
we decided to keep however the terminology of “generic structures” used in [13].
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Let X be a finite or countable alphabet, partitioned into subsets X = ∐

i∈I
Xi . We

say that the partition is trivial if the Xi are singletons. Aword over X (possibly empty)
is said to be generic if it contains at most one letter in each Xi : for example, when
X = {a, b, c}, abc is generic for the trivial partition X = {{a}, {b}, {c}} but is not
generic for the partition X = {{a, b}, {c}}. This means that no letter can appear twice.
Similarly, tensor products of words are generic if they contain overall at most one
letter in each Xi . Two generic tensor products of words, t, t ′, are said to be in generic
position if t ⊗ t ′ is again a generic tensor product. Two linear combinations of generic
tensor products of words

∑
t λt t ,

∑
t ′ λt ′ t ′ are in generic position if all the pairs (t, t ′)

are. The underlying word u(t) of a tensor product t of words is the word obtained
by concatenating its components: observe that different tensors might have the same
underlying word. For instance u(x1 ⊗ x2x4 ⊗ x3) = u(x1x2 ⊗ x4x3) = x1x2x4x3, so
that u(t) is generic if and only if t is generic.

Definition 3 The categoryGenX of generic expressions over X is the smallest linear
(i.e. such that Hom-sets are k-vector spaces) subcategory of the category of vector
spaces:

• containing the null vector space,
• containing the one-dimensional vector spaces Vt generated by generic tensor prod-
ucts of words t ,

• closed by direct sums (although this will not be the case in the examples we will
consider, multiple copies of the Vt can be allowed, the following rules are applied
to each of these copies),

and such that furthermore Hom-sets contain:

• for t, t ′ two generic tensors with u(t) = u(t ′), the map from Vt to Vt ′ induced by
f (t) := t ′,

• the maps induced by substitutions of the letters inside the blocks Xi ,
• the maps obtained by erasing letters in the tensor products (e.g. the map induced
by f (x1 ⊗ x2x4 ⊗ x3) := x1 ⊗ x4) (the example refers to the case where X =
{xi }i∈N∗ , with the trivial partition).

Most importantly for our purposes, GenX is equipped with a symmetric monoidal
category structure by the generic tensor product ⊗̂ defined on the Vt by

Vt⊗̂Vt ′ :=
{
Vt⊗t ′ if t ⊗ t ′ is generic,
0 otherwise.

The generic tensor product is extended to direct sums by the rule

(A ⊕ B)⊗̂(C ⊕ D) = A⊗̂C ⊕ A⊗̂D ⊕ B⊗̂C ⊕ B⊗̂D.

Notice, for further use, the canonical embedding A⊗̂B ↪→ A ⊗ B.
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The reader familiarwith homological algebrawill have recognized themain ingre-
dients of the theory of constructions [13]. Generic algebras, coalgebras, Hopf alge-
bras, Lie algebras, and so on, are, by definition, algebras, coalgebras, Hopf algebras,
Lie algebras, and so on, in a given GenX . For example, a generic algebra A with-
out unit is an object of GenX equipped with an associative product map μ from
A⊗̂A to A. Notice that μ can be viewed alternatively as a partially defined product
map on A (it is defined only on elements in A ⊗ A in generic position and linear
combinations thereof).

We will study from now on only standard generic bialgebras H , by which we
mean that (H, π�) is a generic bialgebra with product π and coproduct� such that:

• H = ⊕

n∈N
Hn , where H0 = V∅ is identified with the ground field k and ∅ behaves

as a unit/counit for the product and the coproduct,
• the coproduct is graded,
• the product satisfies the filtering condition: ∀k, l > 0, π(Hk ⊗ Hl) ⊂⊕

0<n≤k+l Hn .

These bialgebras behave as the analogous usual bialgebras (the same arguments and
proofs apply, we refer e.g. to [2] for the classical case). In particular such a bial-
gebra is equipped with a convolution product of linear endomorphims: for arbitrary
f, g ∈ HomGenX (H, H), f ∗ g := π ◦ ( f ⊗̂g) ◦ �. The projection u from H to H0

orthogonally to the Hi , i ≥ 1 is a unit for ∗. Convolution of linear forms on H is
defined similarly.

The existence of an antipodal map, that is a convolution inverse S to the identity
map I , follows from the identity

S = (u + (I − u))∗ −1 = u +
∑

n>0

(−1)n(I − u)∗n, (2)

where the rightmost sum restricts to a finite sum when S is acting on a graded com-
ponent Hn since the coproduct is graded. In particular, a standard generic bialgebra
H is automatically a generic Hopf algebra.

Since A⊗̂B ⊂ A ⊗ B, one candefinemorphisms froman algebra, bialgebra,Hopf
algebra... in GenX to a classical algebra, bialgebra, Hopf algebra... We will call such
morphisms regularizing morphisms. For example, a regularizing morphism between
a standard generic bialgebra H equipped with the product μ and the coproduct �

and a graded Hopf algebra H ′ equipped with the product μ′ and the coproduct �′ is
a morphism of graded vector spaces f that maps the unit ∅ of H to the unit 1 ∈ H ′

0
of H ′ and such that, for any h, h′ in generic position in H ,

f (μ(h⊗̂h′)) = μ′( f (h) ⊗ f (h′)), ( f ⊗ f ) ◦ �(h) = �′( f (h)).

Example 6 A first example of a standard generic bialgebra will look familiar to
readers acquainted with the theory of free Lie algebras and Reutenauer’s monograph
[19]. Let X = {1, . . . , n} be equippedwith the trivial partition. Then, let T g

k (X) be the
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linear span of genericwords of length k, we have: T g(X) = ⊕

k∈N
T g
k (X) = ⊕

k≤n
T g
k (X);

the highest order non trivial component of this direct sum, T g
n (X), is usually called

the multilinear part of the tensor algebra over X in the literature. Concatenation of
words defines a map from T g

k (X)⊗̂T g
l (X) to T g

k+l(X) and a generic algebra structure
on T g(X) = ⊕

n∈N
T g
n (X). Similarly, the usual unshuffling of words � (the coproduct

dual to the one introduced in example 2) defines, when restricted to generic words, a
generic coalgebra structure, and, together with the concatenation product, a standard
generic bialgebra structure on T g(X). The generic Lie algebra of primitive elements
of T g(X) is defined as usual: Prim(T g(X)) := {w ∈ T g(X),�(w) = w ⊗ 1 + 1 ⊗
w}, its highest order non trivial componentwith respect to the graduation by the length
of words is simply the multilinear part of the usual free Lie algebra over X .

Dually, the shuffle product and the deconcatenation product (as in Example 2)
define a (dual) standard generic bialgebra structure on T g(X), that will be named
the generic shuffle bialgebra over X and denoted Shg(X). We write simply Shg for
Shg(N∗).

This example is particularly easy to understand: the embedding of T g(X) into the
usual tensor algebra T (X) over X is a regularizing morphism, and all our assertions
are direct consequences of the behaviour of T (X) as exposed e.g. in [19].

Definition 4 Let H be a standard generic bialgebra. For B an arbitrary commutative
algebra, a B-valued character on H is, by definition, a unital multiplicative map from
H to B, that is a map φ such that:

• φ(∅) = 1,
• for any h1, h2 in generic position, writing h1 · h2 := π(h1⊗̂h2)

φ(h1 · h2) = φ(h1)φ(h2). (3)

Proposition 2 Let H be a standard generic bialgebra. The set GH (B) of B-valued
characters is equipped with a group structure by the convolution product ∗. The
corresponding functor GH from commutative algebras over the reference ground
field k to groups is called, by analogy with the classical case, a generic group scheme.

Indeed, we have, for any φ, φ′ ∈ GH (B), and any h, h′ ∈ H+ := ⊕

n>0
Hn in generic

position:

φ ∗ φ′(∅) = φ(∅)φ′(∅) = 1,

φ ∗ φ′(h · h′) = φ(h(1) · h ′(1))φ′(h(2) · h ′(2))

= φ(h(1))φ′(h(2))φ(h
′(1))φ′(h

′(2))

= φ ∗ φ′(h) · φ ∗ φ′(h′),
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where we used a Sweedler-type notation �(h) = h(1)⊗̂h(2).
Similarly, φ ◦ S is the convolution inverse of φ since: ((φ ◦ S) ∗ φ)(∅) =

φ(∅)2 = 1 and, for h as above,

((φ ◦ S) ∗ φ)(h) = φ(S(h(1)))φ(h(2)) = φ(S(h(1)) · h(2)) = φ ◦ u(h) = 0.

Notice that, contrary to the classical case, the identity φ(S(h(1)))φ(h(2)) =
φ(S(h(1)) · h(2)) is not straightforward, since identity Eq.3 holds only under the
assumption that h1, h2 are in generic position. Here, we can apply the identity
because S, in view of Eq.2, can be written on each graded component as a sum
of convolution powers I ∗k of the identity map. It is then enough to check that, given
h ∈ H+, I ∗k(h(1)) ⊗ h(2) can be written as a linear combination of tensor products
w ⊗ w′, where w,w′ are in generic position, which follows from the definition of
the convolution product ∗ and the coassociativity of �.

4 Symmetril Moulds and Generic Group Schemes

We come now to the main examples of generic structures in view of the scope of
the present article—symmetrility properties. This section aims at abstracting the key
combinatorial features of symmetrility in order to study them and link them with
classical combinatorial objects, such as quasi-symmetric functions. The next section
will move forward by sticking closer to Ecalle’s study ofMZVs, linking symmetrility
phenomena to the resummation of MZVs.

Definition 5 Let X = N∗, equipped with the trivial partition. We define the generic
divided quasi-shuffle bialgebra over N∗, QShg

d , as the generic bialgebra which iden-
tifies with T g(N∗) as a vector space, equipped with the deconcatenation coproduct,
and equipped with the following recursively defined product (elements of T g(N∗)
are written using a bracketed word notation):

[n1...nk] [m1...ml ] := [n1(n2...nk m1...ml)] + [m1(n1...nk m2...ml)] +
1

n1 − m1
{[n1(n2...nk m2...ml)] − [m1(n2...nk m2...ml)]}.

The elements of the groups GQShg
d
(B) are called symmetril moulds (over N∗).

Proving thatQShg
d is indeed aHopf algebra inGenX is not entirely straightforward

and is better stated at a more general level, by mimicking for generic structures the
theory of quasi-shuffle algebras.

Definition 6 (Proposition) Let X be a partitioned alphabet and assume that ∗ equips
k〈X〉, the linear span of X , with the structure of a generic commutative algebra. Then,
the generic quasi-shuffle bialgebra denotedQShg

∗(X) over (k〈X〉, ∗) is, by definition,
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the generic bialgebrawhose underlying generic coalgebra is T g(X) equippedwith the
deconcatenation coproduct�, andwhose commutative product is defined inductively
(for words satisfying the genericity conditions) by:

[n1...nk] [m1...ml ] := [n1(n2...nk m1...ml)] + [m1(n1...nk m2...ml)] +
[(n1 ∗ m1)(n2...nk m2...ml)].

The fact that the product is well defined and sends two generic words in generic
position on a linear combination of generic words follows from the very definition
of the category of generic expressions.

The associativity of the product follows by induction on the total length k + l + q
from the identity of the expansion:

[(n1...nk m1...ml ) p1..pq ] = [n1(n2...nk m1...ml p1..pq )]
+ [p1((n1(n2...nk m1...ml )) p2..pq )] + [(n1 ∗ p1)(n2...nk m1...ml p1..pq )]

+ [m1(n1...nk m2...ml p1..pq )] + [p1((m1(n1...nk m2...ml )) p2..pq )]
+ [(m1 ∗ p1)(n1...nk m2...ml p2...pq )] + [(n1 ∗ m1)(n2...nk m2...ml p1..pq )]

+ [p1((n1 ∗ m1)(n2...nk m2...ml )) p2..pq )]
+ [(n1 ∗ m1 ∗ p1)(n1...nk m2...ml p1...pq )]

= [n1(n2...nk m1...ml p1..pq )] + [m1(n1...nk m2...ml p1..pq )]
+ [p1(n1...nk m1...ml p2...pq )] + [(n1 ∗ m1)(n2...nk m2...ml p1..pq )]

+ [(n1 ∗ p1)(n2...nk m1...ml p2...pq )] + [(m1 ∗ p1)(n1...nk m2...ml p2...pq )]
+ [(n1 ∗ m1 ∗ p1)(n1...nk m2...ml p2...pq )],

with the same symmetric expansion in the ni ,mi , pi for

[n1...nk (m1...ml p1...pq)].

The compatibility of the deconcatenation coproduct with the product is obtained
similarly and follows the same pattern as the proof that usual quasi-shuffle algebras
over commutative algebras are indeed equipped with a Hopf algebra structure by the
deconcatenation coproduct [9, 11], and is omitted.

We can now conclude that QShg
d is indeed a generic bialgebra from the Lemma:

Lemma 1 The product ∗ defined by

[n] ∗ [m] := 1

n − m
([n] − [m])

equips k < N∗ > with the structure of a generic commutative algebra.

Indeed, for distinct m, n, p,

[(n ∗ m) ∗ p] = 1

n − m
([n] − [m]) ∗ [p] = 1

(n − m)(n − p)
[n]
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+ 1

(m − n)(m − p)
[m] + (

1

(n − m)(p − n)
+ 1

(m − n)(m − p)
)[p]

= 1

(n − m)(n − p)
[n] + 1

(m − n)(m − p)
[m] + 1

(p − n)(p − m)
[p]

which is equal to the same symmetric expression for [n ∗ (m ∗ p)].
For later use, we also calculate iterated products in k < N∗ >.

Lemma 2 For distinct n1, . . . , nk ∈ N ∗ we have

[n1] ∗ · · · ∗ [nk] :=
k∑

i=1

[ni ]
∏

j �=i
(ni − n j )

Let us assume that the Lemma holds for k ≤ p and prove it by induction. Since
the product ∗ is commutative, it is enough to show that the coefficient of [np+1] in
[n1] ∗ · · · ∗ [np+1] is given by 1∏

j≤p
(np+1−n j )

. Equivalently, we have to show that α = 1,

where

α =
p∑

i=1

∏

j≤p
(np+1 − n j )

(np+1 − ni )
∏

j �=i, j≤p
(ni − n j )

=
p∑

i=1

∏

j �=i, j≤p

(np+1 − n j )

(ni − n j )
.

Notice that the induction hypothesis amounts to assuming that the following two
identities hold for arbitrary distinct integersm1, ...,mp (the two identities are shown
to be equivalent by multiplying the i-th term of the sum in the left hand side of the
first identity by (mp − mi )/(mp − mi ))

p−1∑

i=1

∏

j �=i, j≤p−1

(mp − m j )

(mi − m j )
= 1,

p∑

i=1

∏

j �=i, j≤p

1

(mi − m j )
= 0.

We get:

α =
p−1∑

i=1

⎛

⎝
∏

j �=i, j≤p

(np+1 − n j )

(ni − n j )

⎞

⎠ +
∏

j≤p−1

(np+1 − n j )

(np − n j )

=
p−1∑

i=1

⎛

⎜
⎝

∏

j �=i, j≤p−1
(np+1 − n j )

∏

j �=i, j≤p
(ni − n j )

⎞

⎟
⎠

(
(np+1 − ni ) + (ni − np)

) +
∏

j≤p−1

(np+1 − n j )

(np − n j )



390 C. Malvenuto and F. Patras

=
⎛

⎜
⎝

p−1∑

i=1

⎛

⎜
⎝

∏

j �=i, j≤p−1
(np+1 − n j )

∏

j �=i, j≤p
(ni − n j )

⎞

⎟
⎠ (np+1 − ni ) +

∏

j≤p−1

(np+1 − n j )

(np − n j )

⎞

⎟
⎠

+
⎛

⎜
⎝

p−1∑

i=1

⎛

⎜
⎝

∏

j �=i, j≤p−1
(np+1 − n j )

∏

j �=i, j≤p
(ni − n j )

⎞

⎟
⎠ (ni − np)

⎞

⎟
⎠

=
p∑

i=1

⎛

⎜
⎝

1
∏

j �=i, j≤p
(ni − n j )

⎞

⎟
⎠ ·

∏

j≤p−1

(n p+1 − n j ) +
p−1∑

i=1

⎛

⎝
∏

j �=i, j≤p−1

(n p+1 − n j )

(ni − n j )

⎞

⎠ = 0 + 1 = 1,

where the last identity follows from the induction hypothesis.

Theorem 2 The following map ψ defines a linear embedding of QShg
d into Sh and

is a regularizing bialgebra map.

ψ([n1 . . . nk]) :=
∑

μ1+···+μi=k

(−1)k−i

μ1 . . . μi

⎛

⎜
⎝

μ1∑

j=1

[n j ]
∏

l �= j,l≤μ1

(n j − nl)

⎞

⎟
⎠ . . .

. . .

⎛

⎜
⎝

k∑

j=μ1+···+μi−1+1

[n j ]
∏

l �= j,μ1+···+μi−1+1≤l≤k
(n j − nl)

⎞

⎟
⎠

In particular, the product and coproduct maps on QShg
d are mapped to the product

and coproduct on Sh.

The Theorem can be rephrased internally to the category GenN∗ . This is because
the image of ψ identifies with the subspace T g(N∗) of Sh (the latter identifying with
T (N∗) as a graded vector space).

Corollary 1 The standard generic bialgebras QShg
d and Shg are isomorphic

under ψ .

The theorem is an extension to the generic case of the Hoffman isomorphism
between shuffle and quasi-shuffle bialgebras. Following [9, 11], the proof of the
isomorphism relies only on the combinatorics of partitions and on a suitable lift to
formal power series of natural coalgebra endomorphisms of shuffle bialgebras (we
refer to [9] for details). Let us show here that these arguments still hold in the generic
framework.

Let P(X) =
∞∑

i=1
pi Xi be a formal power series XQ[[X ]]. This power series

induces a generic coalgebra endomorphism φP of T g(N∗) equipped with the
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deconcatenation coproduct: on an arbitrary generic tensor [n1 . . . nk] ∈ T g(N∗) the
action is given by

φP ([n1 . . . nk ]) =
k∑

j=1

∑

i1+...+i j=k

pi1 ...pi j ([n1] ∗ ... ∗ [ni1 ]) ⊗ ... ⊗ ([ni1+...+i j−1+1] ∗ ... ∗ [nk ]),

(4)
where we recall that [n] ∗ [m] := [n]−[m]

n−m . When p1 �= 0, φP is bijective (by a trian-
gularity argument), and a coalgebra automorphism of T g(N∗).

Let us show now that, for arbitrary P(X), Q(X) ∈ XQ[[X ]],

φP ◦ φQ = φP◦Q, (5)

where (P ◦ Q)(X) := P(Q(X)). We have indeed, for an arbitrary sequence of dis-
tinct integers n1, . . . , nk :

φP ◦ φQ(n1...nk) =

= φP(

k∑

j=1

∑

i1+···+i j=k

qi1 . . . qik (n1 ∗ · · · ∗ ni1) ⊗ · · · ⊗ (ni1+···+i j−1+1 ∗ · · · ∗ nk))

=
k∑

j=1

j∑

l=1

∑

h1+···+hl= j

∑

i1+···+i j=k

ph1 . . . phl qi1 . . . qik (n1 ∗ · · · ∗ ni1+···+ih1
)⊗

· · · ⊗ (ni1+···+ih1+···+hl−1+1 ∗ · · · ∗ nk)

= φP(Q)(n1...nk).

The proof of the theorem follows: ψ = φlog has for inverse ρ = φexp, which maps
isomorphically Shg to QShg

d (Hoffman’s combinatorial argument in the classical
case in [11] applies mutatis mutandis when restricted to generic tensors).

5 Resummation of MZVs

In order to resum MZVs into formal power series equipped with interesting group-
theoretical operations and structures, let us introduce first a formal analogue of the
standard generic bialgebraQShg

d studied previously. Here, “formal”means that num-
bers and sequences of numbers are replaced by formal power series and words over
an alphabet. Proofs of the properties and structure theorems are similar to the ones
for QShg

d and are omitted. Our definitions and constructions are motivated by [7].

Definition 7 Let V = {vi }i∈N∗ , equipped with the trivial partition. We define the
generic divided quasi-shuffle bialgebra over V , QShg

d(V ), as the generic bialgebra
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defined over kV := k((V )), the field of fractions of the ring of formal power series
over V , which identifies with T g(V ) as a vector space, equipped with the deconcate-
nation coproduct, and equipped with the following recursively defined product
(elements of T g(V ) are written using a bracketed word notation):

[vi1 ...vik ] [vik+1 ...vik+l ] := [vi1(vi2 ...vik vik+1 ...vik+l )]
+ [vik+1(vi1 ...vik vik+2 ...vik+l )]

+ 1

vi1 − vik+1

{[vi1(vi2 ...vik vik+2 ...vik+l )] − [vik+1(vi2 ...vik vik+2 ...vik+l )]},

where [vi1 ...vik ] and [vik+1 ...vik+l ] are in generic position (so that 1
vi1−vik+1

is well-

defined).
The elements of the groupsGQShg

d (V )(B), where B runs over algebras over kV asso-
ciated to the generic group scheme GQShg

d (V ) over kV , are called symmetril moulds
(over V ).

Let us denote Shg
V the generic shuffle bialgebra (or g-shuffle bialgebra) over V

with kV as a field of coefficients. Corollary 1 generalizes to QShg
d(V ) and Shg

V : the
two g-bialgebras are isomorphic under ψV :

ψV ([v1 . . . vk]) :=
∑

μ1+···+μi=k

(−1)k−i

μ1 . . . μi

⎛

⎜
⎝

μ1∑

j=1

[v j ]
∏

l �= j,l≤μ1

(v j − vl)

⎞

⎟
⎠ . . .

. . .

⎛

⎜
⎝

k∑

j=μ1+···+μi−1+1

[v j ]
∏

l �= j,μ1+···+μi−1+1≤l≤k
(v j − vl)

⎞

⎟
⎠ .

(6)

Let us denote now QSymV the completion (with respect to the grading) of the
bialgebra of quasi-symmetric functions over the base field kV . Since properly regu-
larizedMZVs at positive values are characters onQSym, generating series forMZVs
such as ∑

n1,...,nk≥1

v
n1−1
1 . . . v

nk−1
k ζ(n1, . . . , nk)

and the study of their algebraic structure can be lifted to QSymV . Let us show how
this idea translates group-theoretically.

Theorem 3 The following morphism γ is a regularizing bialgebra map from
QShg

d(V ) to QSymV :

γ ([vi1 . . . vik ]) :=
∑

n1,...,nk≥1

v
n1−1
i1

. . . v
nk−1
ik

· [n1 . . . nk]. (7)
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Notice first that γ is, by its very definition, multiplicative for the concatenation
product:

γ
([vi1 . . . vik ]

) = γ ([vi1]) · γ ([vi2 . . . vik ]) = γ ([vi1]) · γ ([vi2 ]) . . . γ ([vik ]), (8)

from which it follows that γ is a coalgebra map (recall that the later is induced on
QShg

d(V ) and QSymV by deconcatenation).
Let us prove that, for any vi1 ...vik , vik+1 ...vik+l in generic position, we have

γ

(

[vi1 . . . vik ] [vik+1 . . . vik+l ]
)

= γ

(

[vi1 . . . vik ]
)

− γ

(

[vik+1 . . . vik+l ]
)

by induction on k + l. So, let vi0 an element of V distinct from vi1 , ..., vik+l . We get
from (7):

γ

(

[vi0 . . . vik ] [vik+1 . . . vik+l ]
)

= γ

(

[vi0(vi1 ...vik vik+1 ...vik+l )]
)

+ γ

(

[vik+1(vi0 ...vik vik+2 ...vik+l )]
)

+ γ

(
1

vi0 − vik+1

{[vi0(vi1 ...vik vik+2 ...vik+l )] − [vik+1(vi1 ...vik vik+2 ...vik+l )]}
)

.

From Eq.8 and the induction hypothesis, we get:

γ

(

[vi0(vi1 ...vik vik+1 ...vik+l )]
)

= γ

(

[vi0 ]
)

γ

(

[vi1 ...vik vik+1 ...vik+l )]
)

= γ

(

[vi0 ]
)

γ

(

[vi1 . . . vik ]
)

− γ

(

[vik+1 . . . vik+l ]
)

and similarly

γ

(

[vik+1 (vi0 ...vik vik+2 ...vik+l )]
)

= γ

(

[vik+1 ]
)(

γ

(

[vi0 . . . vik ]
)

− γ

(

[vik+2 . . . vik+l ]
))

.

At last,

γ

(
1

vi0 − vik+1

[vi0 − vik+1][vi1 ...vik vik+2 ...vik+l ]
)

=
1

vi0 − vik+1

γ

(

[vi0 − vik+1]
)

γ

(

[vi1 ...vik vik+2 ...vik+l ]
)

and, in view of the recursive definition of − , to conclude the proof it remains to
show that
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1

vi0 − vik+1

γ

(

[vi0 − vik+1]
)

= γ

(

[vi0 ]
)

� γ

(

[vik+1]
)

where, to avoid confusion with other already introduced symbols, � denotes the
product of bracketed integers induced by the addition: [n] � [m] = [n + m].

Indeed, we have:

γ

(

[vi0 − vik+1]
)

=
∑

n≥1

(vn−1
i0

− vn−1
ik+1

)[n] =
∑

n≥2

(vn−1
i0

− vn−1
ik+1

)[n],

and

(vi0 − vik+1)γ ([vi0 ]) � γ ([vik+1]) = (vi0 − vik+1)
∑

n,m≥1

vn−1
i0

vm−1
ik+1

[n + m]

=
∑

p≥2

(vi0 − vik+1)

( ∑

n,m≥0,n+m=p−2

vn
i0v

m
ik+1

)

[p] =
∑

p≥2

(v
p−1
i0

− v
p−1
ik+1

)[p].

Corollary 2 Let V be an infinite alphabet. The regularizing morphism γ induces,
for any commutative algebra B over a base field k a group map from GQSym(B) to
GQShg

d (V )(B ⊗k kV ).

In particular, regularized ζ functions, viewed as a real-valued characters onQSym,
give rise to symmetril R((V ))-valued moulds over V . More generally, symmetrel
moulds give rise to symmetril moulds by resummation [4, 7]—the very reason for
the introduction of the latter.

Recall the definition of the Multiple Zeta Values (MZVs for short) associated to
(s1, s2, . . . , sr ), where the si ’s are positive integers, and s1 > 1:

ζ(s1s2 . . . sr ) :=
∑

n1>···>nr>0

1

ns11 . . . nsrr
.

For εi ∈ Q/Z, the modular MZVs are defined as

ζ

(
ε1 . . . εr

s1 . . . sr

)

:=
∑

n1>···>nr

e2π in1ε1 . . . e2π inr εr

ns11 . . . nsrr
.

Observe that when εi = 0 for all i , then ζ
( 0...0
s1...sr

) = ζ(s1s2 . . . sr ). Let us mention that,
when dealing with modular MZVs, a “bimould” version of the previous construction
has to be used.We only sketch the constructions in that case, they could be developed
in more detail following the previous ones in this section.

Definition 8 Let W := Q/Z × V , with V = {vi }i∈N∗ , equipped with the partition
W = ∐

Wi , Wi := Q/Z × {vi }. We define the generic divided quasi-shuffle bialge-
bra overW , QShg

d(W ), or g-divided quasi-shuffle algebra as the g-bialgebra defined
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over kV := k((V )), which identifies with T g(W ) as a vector space, equipped with
the deconcatenation coproduct, and equipped with the following recursively defined
product (elements of W are represented as column vector):

(
ε1 . . . εr

vi1 . . . vir

) (
εr+1 . . . εr+s

vir+1 . . . vir+s

)

:=
(

ε1

vi1

) ((
ε2 . . . εr

vi2 . . . vir

) (
εr+1 . . . εr+s

vir+1 . . . vir+s

))

+
(

εr+1

vir+1

)((
ε1 . . . εr

vi1 . . . vir

) (
εr+2 . . . εr+s

vir+2 . . . vir+s

))

+ 1

vi1 − vir+1

(
ε1 + εr+1

vi1

)((
ε2 . . . εr

vi2 . . . vir

) (
εr+2 . . . εr+s

vir+2 . . . vir+s

))

− 1

vi1 − vir+1

(
ε1 + εr+1

vir+1

)((
ε2 . . . εr

vi2 . . . vir

) (
εr+2 . . . εr+s

vir+2 . . . vir+s

))

where
(

ε1...εr
vi1 ...vir

)
and

(
εr+1...εr+s

vir+1 ...vir+s

)
are in generic position (so that 1

vi1−vik+1
iswell-defined).

The elements of the groups GQShg
d (W )(B), where B runs over algebras over kV ,

associated to the generic group scheme GQShg
d (W ) over kW are called symmetril

moulds (over W ).

Symmetril moulds over W can be used to resum modular MZVs by the same
process that allows the resummation of usual MZVs by symmetril moulds over V ,
see [7].

6 A New Resummation Process

In this last section, we introduce a new resummation process for MZVs, based on
Theorem 2. Contrary to Ecalle’s resummation process, which maps a symmetrel
mould (a character on the algebra of quasi-symmetric functions) to a symmetril
mould, the new resummation is much more satisfactory in that it maps a symmetrel
mould to a character on Shg

V , so that calculus on MZVs and other characters on
QSym can be interpreted in terms of the usual rules of Lie calculus (recall that the
set of primitive elements in the dual of Shg

V is simply the multilinear part of the free
Lie algebra over the integers, a well-known object whose study is even easier than
the one of the usual free Lie algebra).

Theorem 4 The inverse ρV of the standard g-bialgebra isomorphism ψV between
QShg

d(V ) and Shg
V is given by

ρV ([v1 . . . vk]) :=
∑

μ1+···+μi=k

1

μ1! . . . μi !

⎛

⎜
⎝

μ1∑

j=1

[v j ]
∏

l �= j,l≤μ1

(v j − vl)

⎞

⎟
⎠ . . .
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. . .

⎛

⎜
⎝

k∑

j=μ1+···+μi−1+1

[v j ]
∏

l �= j,μ1+···+μi−1+1≤l≤k
(v j − vl)

⎞

⎟
⎠ .

The theorem follows by adapting to T g(V ) the correspondence between formal
power series in XQ[[X ]] and generic coalgebra endomorphisms of T g(N∗): with the
same notation than the one used for T g(N∗), each P ∈ XQ[[X ]] defines a generic
coalgebra endomorphism φP of T g(V ). We have ρV = φexp and ψV = φlog , and the
two morphisms are mutually inverse.

Corollary 3 The morphism
regV := γ ◦ ρV

is a regularizing Hopf algebra morphism from Shg
V to QSymV . It induces, for

any commutative algebra B over the base field k, a group map from GQSym(B)

to GShg
V
(B ⊗k kV ).

Naming generic symmetral moulds the characters on Shg
V , we get that this last

map resums symmetrel moulds (such as regularized MZVs at the positive integers)
into generic symmetral moulds. As announced, this approach should provide a new
way to investigate group-theoretically the properties of MZVs. Together with the
study of the various combinatorial structures introduced in the present article, this
will the object of further studies.

We conclude by illustrating the resummation process on low dimensional exam-
ples that show the behaviour of the map regV . We write ζ for a character on QSym
(a symmetrel mould), having in mind the example of regularized multizetas. The
morphism regV is given in low degrees by:

regV ([v1]) = γ ([v1]) =
∑

n≥1

vn−1
1 [n],

regV ([v1, v2]) =γ ([v1, v2] + 1

2

[v1] − [v2]
v1 − v2

)

=
∑

n,m≥1

vn−1
1 vm−1

2 [n,m] + 1

2(v1 − v2)

∑

n≥1

(vn−1
1 − vn−1

2 )[n]

=
∑

n,m≥1

vn−1
1 vm−1

2 [n,m] + 1

2

∑

n≥2
p+q=n−2

v
p
1 v

q
2 [n].
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regV ([v1, v2, v3]) =γ ([v1, v2, v3] + 1

2

( [v1v3] − [v2v3]
v1 − v2

+ [v1v2] − [v1v3]
v2 − v3

)

+ 1

6

( [v1]
(v1 − v2)(v1 − v3)

+ [v2]
(v2 − v1)(v2 − v3)

+ [v3]
(v3 − v1)(v3 − v2)

)

=
∑

n,m,p≥1

vn−1
1 vm−1

2 v
p−1
3 [n,m, p] + 1

2

( ∑

n≥2,m≥1
p+q=n−2

v
p
1 v

q
2 vm−1

3 [n,m]+

∑

n≥1,m≥2
p+q=m−2

vn−1
1 v

p
2 v

q
3 [n,m]

)

+ 1

6

∑

n≥3
p+q+r=n−3

v
p
1 v

q
2 vr3[n],

where we used the identity

vn−1
1

(v1 − v2)(v1 − v3)
+ vn−1

2

(v2 − v1)(v2 − v3)
+ vn−1

3

(v3 − v1)(v3 − v2)

=
∑

p+q+r=n−3

v
p
1 v

q
2v

r
3.

We get, for the ζ character:

ζ ◦ regV ([v1] [v2]) =ζ

( ∑

n,m≥1

vn−1
1 vm−1

2 ([n,m] + [m, n]) +
∑

n≥2,p+q=n−2

v
p
1 v

q
2 [n]

)

= ζ

( ∑

n,m≥1

vn−1
1 vm−1

2 [n]− [m]
)

= ζ ◦ regV ([v1]) · ζ ◦ regV ([v2]).

ζ ◦ regV ([v1, v2] [v3]) =ζ ◦ regV ([v1, v2, v3] + [v1, v3, v2] + [v3, v1, v2])

=ζ

( ∑

n,m,p≥1

vn−1
1 vm−1

2 v
p−1
3 [n,m] [p]

+
∑

n≥2
p+q=n−2

m≥1

(

(
1

2
v
p
1 v

q
2 vm−1

3 + v
p
1 vm−1

2 v
q
3 )[n,m] + (

1

2
v
p
1 v

q
2 vm−1

3 + vm−1
1 v

p
2 v

q
3 )[m, n])

+ 1

2

∑

n≥3
p+q+r=n−3

v
p
1 v

q
2 vr3[n]

)

=ζ

(( ∑

n,m≥1

vn−1
1 vm−1

2 [n,m] + 1

2

∑

n≥2
p+q=n−2

v
p
1 v

q
2 [n]

)

−
( ∑

r≥1

vr−1
3 [r ]

))

=ζ ◦ regV ([v1, v2]) · ζ ◦ regV ([v3]).
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Mould Theory and the Double Shuffle
Lie Algebra Structure

Adriana Salerno and Leila Schneps

Abstract The realmultiple zeta values ζ(k1, . . . , kr ) are known to formaQ-algebra;
they satisfy a pair of well-known families of algebraic relations called the double
shuffle relations. In order to study the algebraic properties ofmultiple zeta values, one
can replace them by formal symbols Z(k1, . . . , kr ) subject only to the double shuffle
relations. These form a graded Hopf algebra over Q, and quotienting this algebra
by products, one obtains a vector space. A complicated theorem due to G. Racinet
proves that this vector space carries the structure of a Lie coalgebra; in fact Racinet
proved that the dual of this space is a Lie algebra, known as the double shuffle Lie
algebra ds. J. Ecalle developed a new theory to explore combinatorial and algebraic
properties of the formal multiple zeta values. His theory is sketched out in some
publications. However, because of the depth and complexity of the theory, Ecalle did
not include proofs of many of the most important assertions, and indeed, even some
interesting results are not always stated explicitly. The purpose of the present paper
is to show how Racinet’s theorem follows in a simple and natural way from Ecalle’s
theory. This necessitates an introduction to the theory itself, which we have pared
down to only the strictly necessary notions and results.

Keywords Mould · Double shuffle · Multiple zeta values · Lie algebra ·
Dimorphy · Flexions

1 Introduction

In his doctoral thesis from 2000, Georges Racinet ([10], see also [11]) proved a
remarkable theorem using astute combinatorial and algebraic reasoning. His proof

A. Salerno (B)
Bates College, 3 Andrews Rd, Lewiston 04240, USA
e-mail: asalerno@bates.edu

L. Schneps
Institute de Mathématiques de Jussieu, 4 place Jussieu, Case 247, 75252 Paris Cedex, France
e-mail: leila@math.jussieu.fr

© Springer Nature Switzerland AG 2020
J. I. Burgos Gil et al. (eds.), Periods in Quantum Field Theory
and Arithmetic, Springer Proceedings in Mathematics & Statistics 314,
https://doi.org/10.1007/978-3-030-37031-2_15

399

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37031-2_15&domain=pdf
mailto:asalerno@bates.edu
mailto:leila@math.jussieu.fr
https://doi.org/10.1007/978-3-030-37031-2_15


400 A. Salerno and L. Schneps

was later somewhat simplified and streamlined by Furusho [8], but it remains really
difficult to grasp the essential key that makes it work. The purpose of this article is
to show how Ecalle’s theory of moulds yields a very different and natural proof of
the same result. The only difficulty is to enter into the universe of moulds and learn
its language; the theory is equipped with a sort of standard all-purpose “toolbox”
of objects and identities which, once acquired, serve to prove all kinds of results, in
particular the one we consider in this paper. Therefore, the goal of this article is not
only to present the mould-theoretic proof of Racinet’s theorem, but also to provide
an initiation into mould theory in general. Ecalle’s seminal article on the subject is
[6], and a detailed introduction with complete proofs can be found in [12]; the latter
text will be referred to here for some basic lemmas.

We begin by recalling the definitions necessary to state Racinet’s theorem.

Definition 1 Let u, v be two monomials in x and y. Then the commutative shuffle
product sh(u, v) is defined recursively by sh(u, v) = {{u}} if v = 1 and {{v}} if u =
1, where {{·}} denotes a multiset, i.e. an unordered list with possible repetitions;
otherwise, writing u = Xu′ and v = Yv′ where X,Y ∈ {x, y} represents the first
letter of the word, we have the recursive rule

sh(Xu,Yv) = {{X · sh(u,Yv)}} ∪ {{Y · sh(Xu, v)}}, (1)

where ∪ denotes the union of the two multisets which preserves repetitions and
X · sh(u, v) means we multiply every member in the multiset sh(u, v) on the left
by X .

For example,

sh(xy, x) = {{x · sh(y, x)}} ∪ {{x · sh(xy, 1)}}
= {{x · {{yx, xy}} }} ∪ {{x · {{xy}} }}
= {{xyx, xxy}} ∪ {{xxy}}
= {{xyx, xxy, xxy}}

If u, v are two words ending in y, we can write them uniquely as words in the
letters yi = xi−1y. The stuffle product of u, v is defined by st(u, v) = {{u}} if v = 1
and {{v}} if u = 1, and

st(yiu, y j v) = {{yi · st(u, y j v)}} ∪ {{y j · st(yiu, v})} ∪ {{yi+ j · st(u, v)}}, (2)

where yi and y j are respectively the first letters of the words u and v written in the
y j .

For example,
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st(y1y2, y1) = {{y1 · st(y2, y1)}} ∪ {{y1 · st((y1y2, 1)}} ∪ {{y2 · st(y2, 1)}}
= {{y1y2y1, y1y1y2, y1y3}} ∪ {{y1y1y2}} ∪ {{y2y2}}
= {{y1y2y1, y1y1y2, y1y3, y1y1y2, y2y2}}

Definition 2 The double shuffle space ds is the space of polynomials f ∈ Q〈x, y〉,
the polynomial ring on two non-commutative variables x and y, of degree ≥3 that
satisfy the following two properties:

1. The coefficients of f satisfy the shuffle relations

∑

w∈sh(u,v)

( f |w) = 0, (3)

where u, v are words in x, y and sh(u, v) is the set of words obtained by shuffling
them. This condition is equivalent to the assertion that f lies in the free Lie algebra
Lie[x, y], a fact that is easy to see by using the characterization of Lie polynomials
in the non-commutative polynomial ringQ〈x, y〉 as those that are “Lie-like” under
the coproduct Δ defined by Δ(x) = x ⊗ 1 + 1 ⊗ x and Δ(y) = y ⊗ 1 + 1 ⊗ y,
i.e. such thatΔ( f ) = f ⊗ 1 + 1 ⊗ f ([13, Chap.3, Theorem 5.4]). Indeed, when
the property of being Lie-like under Δ is expressed explicitly on the coefficients
of f it is nothing other than the shuffle relations (3).

2. Let f∗ = πy( f ) + fcorr, where πy( f ) is the projection of f onto just the words
ending in y, and

fcorr =
∑

n≥1

(−1)n−1

n
( f |xn−1y)yn . (4)

Considering f∗ as being rewritten in the variables yi = xi−1y, the coefficients of
f∗ satisfy the stuffle relations:

∑

w∈st(u,v)

( f∗|w) = 0, (5)

where u and v are words in the yi .

The double shuffle space ds is the one defined by Racinet in [10] (which he
denoted dm, for the French term “double mélange”). It should not be confused with
the bigraded space Dsh studied in [9]. The space Dsh is a linearized version of ds,
which has also been the subject of a great deal of study, but is more often denoted ls
(cf. for example [3]).

For every f ∈ Lie[x, y], define a derivation D f of Lie[x, y] by setting it to be

D f (x) = 0, D f (y) = [y, f ]

on the generators. Define the Poisson (or Ihara) bracket on (the underlying vector
space of) Lie[x, y] by
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{ f, g} = [ f, g] + D f (g) − Dg( f ). (6)

This definition corresponds naturally to the Lie bracket on the space of derivations
of Lie[x, y]; indeed, it is easy to check that

[D f , Dg] = D f ◦ Dg − Dg ◦ D f = D{ f,g}. (7)

Theorem 1 (Racinet) The double shuffle space ds is a Lie algebra under the Poisson
bracket.

The goal of this paper is to give the mould-theoretic proof of this result, which
first necessitates rephrasing the relevant definitions in terms of moulds. The paper
is organized as follows. In Sect. 2, we give basic definitions from mould theory that
will be used throughout the rest of the paper, and in Sect. 3 we define dimorphy and
consider the main dimorphic subspaces related to double shuffle. In Sect. 4 we give
the dictionary between mould theory and the double shuffle situation. In Sect. 5 we
give some of the definitions and basic results on the group aspect of mould theory.
In Sect. 6 we describe the special mould pal that lies at the heart of much of mould
theory, and introduce Ecalle’s fundamental identity. The final Sect. 7 contains the
simple and elegant proof of the mould version of Racinet’s theorem. Sections2, 3, 5
and 6 can serve as a short introduction to the basics of mould theory; a much more
complete version with full proofs and details is given in [12], which is cited for some
results. Every mould-theory definition in this paper is due to Ecalle, as are all of the
statements, although some of these are not made explicitly in his papers, but used as
assumptions. Our contribution has been firstly to provide complete proofs of many
statements which are either nowhere proved in his articles or proved by arguments
that are difficult to understand (at least by us), secondly to pick a path through the
dense forest of his results that leads most directly to the desired theorem, and thirdly,
to give the dictionary that identifies the final result with Racinet’s theorem above.

In order to preserve the expository flow leading to the proof of the main theorem,
we have chosen to consign the longer and more technical proofs to appendices or,
for those that already appear in [12], to simply give the reference.

2 Definitions for Mould Theory

This section constitutes what could be called the “first drawer” of the mould toolbox,
with only the essential definitions of moulds, some operators on moulds, and some
mould symmetries.Wework over a base field K , and let u1, u2, . . . be a countable set
of indeterminates, and v1, v2, . . . another. The definitions below arise from Ecalle’s
papers (see especially [6], and are also developed at length in [5, 12]).
Moulds. A mould in the variables ui is a family A = (Ar )r≥0 of functions of the ui ,
where each Ar is a function of u1, . . . , ur . We call Ar the depth r component of the
mould. In this paper we let K = Q, and in fact we consider only rational-function
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valued moulds, i.e. we have Ar (u1, . . . , ur ) ∈ Q(u1, . . . , ur ) for r ≥ 0. Note that
A0(∅) is a constant. We often drop the index r when the context is clear, and write
A(u1, . . . , ur ). Moulds can be added and multiplied by scalars componentwise, so
the set of moulds forms a vector space. A mould in the vi is defined identically for
the variables vi .

Let ARI (resp. ARI) denote the space of moulds in the ui (resp. in the vi ) such
that A0(∅) = 0.1 These two vector spaces are obviously isomorphic, but they will be
equipped with very different Lie algebra structures. We use superscripts on ARI to
denote the type of moulds we are dealing with; in particular ARIpol denotes the space
of polynomial-valued moulds, and ARIrat denotes the space of rational-function
moulds.
Operators on moulds. We will use the following operators on moulds in ARI:

neg(A)(u1, . . . , ur ) = A(−u1, . . . ,−ur ) (8)

push(A)(u1, . . . , ur ) = A(−u1 − · · · − ur , u1, . . . , ur−1) (9)

mantar(A)(u1, . . . , ur ) = (−1)r−1A(ur , . . . , u1) (10)

We also introduce the swap, which is a map from ARI to ARI given by

swap(A)(u1, . . . , ur ) = A(vr , vr−1 − vr , vr−2 − vr−1, . . . , v1 − v2), (11)

and its inverse, also called swap, from ARI to ARI:

swap(A)(v1, . . . , vr ) = A(u1 + · · · + ur , u1 + · · · + ur−1, . . . , u1 + u2, u1).
(12)

Thanks to this formulation, which is not ambiguous since to know which swap is
being used it suffices to check whether swap is being applied to a mould in ARI or
one in ARI, we can treat swap like an involution: swap ◦ swap = id.

Let us now introduce some notation necessary for the Lie algebra structures on
ARI and ARI.
Flexions. Let w = (u1, · · · , ur ). For every possible way of cutting the word w into
three (possibly empty) subwords w = abc with

a = (u1, . . . , uk), b = (uk+1, . . . , uk+l), c = (uk+l+1, . . . , ur ),

set
{
a� = (u1, u2, · · · , uk + uk+1 + · · · + uk+l) if b = ∅, otherwise a� = a
�c = (uk+1 + · · · + uk+l+1, uk+l+2, · · · , ur ) if b = ∅, otherwise. �c = c.

1Ecalle works with bimoulds, which are moulds that are simultaneously in the variables ui and vi .
However, while bimoulds are well-adapted to the study of certain more complex objects such as
multizeta values colored by roots of unity, they do not arise naturally in the context of the simple
multizeta values used here, and we found that using moulds in only the ui or only the vi made the
proofs and the notation considerably simpler.
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If noww = (v1, . . . , vr ) is a word in the vi , then for every decompositionw = abc
with

a = (v1, . . . , vk), b = (vk+1, . . . , vk+l), c = (vk+l+1, . . . , vr ),

we set
{
b� = (vk+1 − vk+l+1, vk+2 − vk+l+1, . . . , vk+l − vk+l+1) if c = ∅, otherwise b� = b

�b = (vk+1 − vk , vk+2 − vk , . . . , vk+l − vk) if a = ∅, otherwise �b = b.

Operators on pairs of moulds. For A, B ∈ ARI or A, B ∈ ARI, we set

mu(A, B)(w) =
∑

w=ab

A(a)B(b) (13)

lu(A, B) = mu(A, B) − mu(B, A) (14)

For any mould B ∈ ARI, we define two operators on ARI, amit(B) and anit(B),
defined by

(
amit(B) · A)

(w) =
∑

w=abc
b,c =∅

A(a�c)B(b)

(
anit(B) · A)

(w) =
∑

w=abc
a,b =∅

A(a�c)B(b) (15)

For any mould B ∈ ARI, the operators amit(B) and anit(B) are derivations of
ARI for the lu-bracket (see [12, Proposition 2.2.1]). We define a third derivation,
arit(B), by (

arit(B) · A)
(w) = amit(B) · A − anit(B) · A. (16)

If B ∈ ARI we have derivations of ARI given by

(
amit(B) · A)

(w) =
∑

w=abc
b,c =∅

A(ac)B(b�)

(
anit(B) · A)

(w) =
∑

w=abc
a,b =∅

A(ac)B(�b), (17)

and again we define the derivation arit(B) as in (16).
Finally, for A, B ∈ ARI or A, B ∈ ARI, we set

ari(A, B) = arit(B) · A + lu(A, B) − arit(A) · B. (18)
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Remark. The condition b = ∅ in the definitions of amit and anit above are not
necessary in (15) and (17), sincewe are assuming that B ∈ ARI, so it has the property
that B(∅) = 0; thismeans that includingdecompositionswithb = ∅ in the sumwould
not actually change the values. However, we chose to reproduce Ecalle’s definition,
which also applies to moulds with non-zero value in depth 0, so as to make it easier
to consult his articles and recognize the same definitions.

Since arit is a derivation for lu, the ari-operator is easily shown to be a Lie bracket.
Note that although we use the same notation ari for the Lie brackets on both ARI
and ARI, they are two different Lie brackets on two different spaces. Indeed, while
some formulas and properties (such as mu, or alternality, see (19) below) are written
identically for ARI and ARI, others, in particular all those that use flexions, are very
different, since the definitions of upper flexions (on the ui ) and lower flexions (on
the vi ) are very different. This can be seen in the following examples.

Examples. We give a few of the expressions above explicitly in low depth. The
moulds amit(B) · A and amit(B) · A are all zero in depth 1. Let A, B ∈ ARI and let
us compute the mould amit(B) · A in depth 2. The only possible decomposition of
w = (u1, u2) as abc with b, c = ∅ is abc = (∅)(u1)(u2), so using the upper flexions
as in (15), we have �c = (u1 + u2) and

(
amit(B) · A)

(u1, u2) = A(u1 + u2)B(u1).

(Note that if we don’t include the condition b = ∅ in the sum, wewould also consider
the decomposition abc = (u1)(∅)(u2) so we would add on the term A(u1, u2)B(∅),
but as pointed out in the remark above, this term is zero since B ∈ ARI.)

Now let us compute the mould anit(B) · A in depth 3. Let w = (u1, u2, u3). The
decompositions w = abc with a,b = ∅ are given by (u1)(u2)(u3), (u1, u2)(u3)(∅)

and (u1)(u2, u3)(∅), so

(
anit(B) · A)(u1, u2, u3) =

A(u1 + u2, u3)B(u2) + A(u1, u2 + u3)B(u3) + A(u1 + u2 + u3)B(u2, u3).

If A, B ∈ ARI, we again compute amit(B) · A in depth 2 and anit(B) · A in depth
3, but now using the lower flexions of (17); we obtain the expressions

(
amit(B) · A)

(v1, v2) = A(v2)B(v1 − v2),

(
anit(B) · A)

(v1, v2, v3) =
A(v1, v3)B(v2 − v1) + A(v1, v2)B(v3 − v2) + A(v1)B(v2 − v1, v3 − v1).

Symmetries. A mould in ARI (resp. ARI) is said to be alternal if for all words u, v
in the ui (resp. vi ),
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∑

w∈sh(u,v)

A(w) = 0. (19)

The relations in (19) are known as the alternality relations, and they are identical
for moulds in ARI and ARI. Let us now define the alternility relations, which are
only applicable to moulds in ARI. Just as the alternality conditions are the mould
equivalent of the shuffle relations, the alternility conditions are the mould equivalent
of the stuffle relations, translated in terms of the alphabet {v1, v2, . . .} as follows.
Let Y1 = (yi1 , . . . , yir ) and Y2 = (y j1 , . . . , y js ) be two sequences; for example, we
consider Y1 = (yi , y j ) and Y2 = (yk, yl). Let w be a word in the stuffle product
st

(
Y1,Y2

)
, which in our example is the 13-element multiset

{{(yi , y j , yk, yl), (yi , yk, y j , yl), (yi , yk, yl , y j ), (yk, yi , y j , yl), (yk, yi , yl , y j ),
(yk, yl , yi , y j ), (yi , y j+k, yl), (yi+k, y j , yl), (yi , yk, y j+l), (yi+k, yl , y j ),

(yk, yi , y j+l), (yk, yi+l , y j ), (yi+k, y j+l)}}.
(20)

To each such word we associate an alternility term for the mould A, given by
associating the tuple (v1, v2, v3, v4) to the ordered tuple (yi , y j , yk, yl) and taking

1

(vi − v j )

(
A(. . . , vi , . . .) − A(. . . , v j , . . .)

)
(21)

for each contraction occurring in the word w. For instance in our example we have
the six alternility terms

A(v1, v2, v3, v4), A(v1, v3, v2, v4), A(v1, v3, v4, v2), A(v3, v1, v2, v4),
A(v3, v1, v4, v2), A(v3, v4, v1, v2)

(22)

corresponding to the first six words in (20), the six terms

1

(v2 − v3)

(
A(v1, v2, v4) − A(v1, v3, v4)

)
,

1

(v1 − v3)

(
A(v1, v2, v4) − A(v3, v2, v4)

)
,

1

(v2 − v4)

(
A(v1, v3, v2) − A(v1, v3, v4)

)
,

1

(v1 − v3)

(
A(v1, v4, v2) − A(v3, v4, v2)

)
,

1

(v2 − v4)

(
A(v3, v1, v2) − A(v3, v1, v4)

)
,

1

(v1 − v4)

(
A(v3, v1, v2) − A(v3, v4, v2)

)

(23)

corresponding to the next six words, and the final term

1

(v1 − v3)(v2 − v4)

(
A(v1, v2) − A(v3, v2) − A(v1, v4) + A(v3, v4)

)
(24)

corresponding to the final word with the double contraction.
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Let us write Aw for the alternility term of A associated to a word w in the stuffle
product st(Y1,Y2); note that the alternility terms (for example those in (22), (23) and
(24) associated to the words w in the list (20)) are not all terms of the form A(w)

or even linear combinations of such terms (due to the denominators). However, the
alternility terms Aw are all polynomials in the vi , since the zeros of the denominators
all correspond to zeros of the numerator.

The alternility relation associated to the pair (Y1,Y2) on A is the sum of the
alternility terms associated to words in the stuffle of Y1 and Y2; it is given by

∑

w∈st(Y1,Y2)
Aw = 0. (25)

Let Ar,s denote the left-hand side of (25). Note that indeed, Ar,s does not depend
on the actual sequences Y1 and Y2, but merely on the number of letters in Y1 and
in Y2. For example when r = s = 2, the alternility sum A2,2 is given by the sum of
the terms (22)–(24) above. Furthermore, like for the shuffle, we may assume that
r ≤ s by symmetry. Thus we have the following definition: a mould in ARI is said
to be alternil if it satisfies the alternility relation Ar,s = 0 for all pairs of integers
1 ≤ r ≤ s.

3 Lie Subalgebras of ARI

In this section, we show that the spaces of moulds satisfying certain important sym-
metry properties are closed under the ari-bracket. In particular, we introduce the
following dimorphic spaces investigated by Ecalle, where the term dimorphy refers
to the double description of a mould by a symmetry property on it and another one
on its swap.

Definition 3 Let ARIal denote the set of alternal moulds. Let ARIal/al (resp.
ARIal/ il ) denote the set of alternal moulds with alternal (resp. alternil) swap. Let
ARIal∗al (resp. ARIal∗il ) denote the set of alternal moulds whose swap is alter-
nal (resp. alternil) up to addition of a constant-valued mould. Finally, let ARIal/al
(resp. ARIal∗al , ARIal/il , ARIal∗il) denote the subspace of ARIal/al (resp. ARIal∗al ,
ARIal/ il , ARIal∗il ) consisting of moulds A such that A1 is an even function, i.e.
A(−u1) = A(u1).

The first main theorem of this paper is the following result, which is used con-
stantly in Ecalle’swork although no explicit proof appears to have beenwritten down,
and the proof is by no means as easy as one might imagine.

Theorem 2 The subspace ARIal ⊂ ARI of alternal moulds forms a Lie algebra
under the ari-bracket, as does the subspace ARIal of ARI.

The full proof is given in Appendix A. The idea is as follows: if C = ari(A, B),
then by (18) it is enough to show separately that if A and B are alternal then lu(A, B)
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is alternal and arit(B) · A is alternal. This is done via a combinatorial manipulation
that is fairly straightforward for lu but actually quite complicated for arit.

We next have a simple but important result on polynomial-valued moulds.

Proposition 1 The subspace ARIpol of polynomial-valued moulds in ARI forms a
Lie algebra under the ari-bracket.

Proof This follows immediately from the definitions of mu, arit and ari in (13)–(18),
as all the operations and flexions there are polynomial. �

Nowwe give another key theorem, the first main result concerning dimorphy. This
result, again, is used repeatedly by Ecalle but we were not able to find a complete
proof in his papers, so we have reconstructed one here (see also [12, Sect. 2.5]).

Theorem 3 The subspaces ARIal/al and ARIal∗al form Lie algebras under the
ari-bracket.

The proof is based on the following two propositions.

Proposition 2 If A ∈ ARIal∗al , then A is neg-invariant and push-invariant.

The proof of this proposition is deferred to Appendix B.

Proposition 3 If A and B are both push-invariant moulds, then

swap
(
ari

(
swap(A), swap(B)

)) = ari(A, B), (26)

Proof Explicit computation using the flexions shows that for all moulds A, B ∈ ARI
we have the general formula:

swap
(
ari(swap(A), swap(B))

) = axit
(
B,− push(B)

) · A − axit
(
A,− push(A)

) · B
+ lu(A, B),

(27)

where here ari is the Lie bracket on ARI, and axit is the operator on ARI defined for
a general pair of moulds B,C ∈ ARI by the formula

axit(B,C) · A = amit(B) · A + anit(C) · A.

(See [12, Sect. 4.1] for complete details of this flexion computation.) Comparing
with (16) shows that arit(B) = axit(B,−B). Thus if A and B are push-invariant,
(27) reduces to

swap
(
ari

(
swap(A), swap(B)

)) = arit(B) · A − arit(A) · B + lu(A, B),

which is exactly ari(A, B) by (18). �
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Proof (Theorem 3) Using these two propositions, the proof becomes reasonably
easy. We first consider the case where A, B ∈ ARIal/al . In particular A and B
are alternal. Set C = ari(A, B). The mould C is alternal by Theorem 2. By
Proposition 2, we know that A and B are push-invariant, so by Proposition 3 we
have swap(C) = swap

(
ari(A, B)

) = ari
(
swap(A), swap(B)

)
. But this is also alter-

nal by Theorem 2, soC ∈ ARIal/al . Furthermore, it follows directly from the defining
formula for the ari-bracket, which is additive in the mould depths, that if C is an ari-
bracket of two moulds in ARI, i.e. with constant term equal to 0, we must have
C(u1) = 0, so C ∈ ARIal/al .

Nowwe consider themore general situationwhere A, B ∈ ARIal∗al . Let A0, B0 be
the constant-valued moulds such that swap(A) + A0 and swap(B) + B0 are alternal.
From the definitions (13)–(16), we see that for any constant-valued mould M0, we
have arit(M0) · M = 0. Indeed if M0 is constant-valued, say with constant value cr
in depth r , then

(
arit(M0) · M)(w) =

∑

w=abc
b,c =0

M(a�c)M0(b) −
∑

w=abc
a,b =0

M(a�c)M0(b).

Writing w = abc = (u1, . . . , ui )(ui+1, . . . , ui+ j )(ui+ j+1, . . . , ur ), we can rewrite
this as

r−2∑

i=0

r−1∑

j=1

c j M(u1, . . . , ui , ui+1 + · · · + ui+ j+1, ui+ j+2, . . . , ur )

−
r−1∑

i=1

r−1∑

j=1

c j M(u1, . . . , ui−1, ui + · · · + ui+ j , ui+ j+1, . . . , ur ).

But by renumbering i as i + 1 in the first sum shows that these two sums are in fact
equal, so their difference is zero. An analogous computation shows that arit(M) ·
M0 = lu(M, M0); thus by (18), we have ari(M, M0) = 0. Thus we find that

ari(A + A0, B + B0) = ari(A, B) + ari(A, B0) + ari(A0, B) + ari(A0, B0) = ari(A, B).

(28)
Now, A and B are push-invariant by Proposition 2, and constant-valued moulds are
always push-invariant, so A + A0 and B + B0 are also push-invariant; thus we have

swap(C) = swap
(
ari(A, B)

)

= swap
(
ari(A + A0, B + B0)

)
by (28)

= ari
(
swap(A + A0), swap(B + B0)

)
by (26).

But since swap preserves constant-valued moulds, we have swap(A + A0) =
swap(A) + A0 and swap(B + B0) = swap(B) + B0. These two moulds are alter-
nal by hypothesis, so by Theorem 2, their ari-bracket is alternal, i.e. swap(C) is
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alternal. Since as above we have C(u1) = 0, we find that in fact C is not just in
ARIal∗al but in ARIal/al . This completes the proof of Theorem 3. �

We will see in the next section that the double shuffle space ds defined in Sect. 1
is isomorphic to the space of polynomial-valued moulds ARIpolal∗il , with the alternal-
ity property translating shuffle and the alternility property translating stuffle. Thus
dimorphy is closely connected to double shuffle, but much more general, since the
symmetry properties of alternality or alternility on itself or its swap can hold for any
mould, not just polynomial ones.

4 Dictionary with the Lie Algebra and Double Shuffle
Framework

Let Ci = ad(x)i−1y ∈ Q〈x, y〉, where ad(x)y = [x, y]. By Lazard elimination (see
[2, Proposition 10a]), the subringQ〈C1,C2, . . .〉, which we denote simply byQ〈C〉,
is free on the Ci . Let Q0〈C〉 denote the subspace of polynomials in the Ci with
constant term equal to 0. Define a linear map

ma : Q0〈C〉 ∼→ ARIpol

Ca1 · · ·Car �→ Aa1,...,ar (29)

where Aa1,...,ar is the polynomial mould concentrated in depth r defined by

Aa1,...,ar (u1, . . . , ur ) = (−1)a1+···+ar−r ua1−1
1 · · · uar−1

r . (30)

This map ma is trivially invertible and thus an isomorphism of vector spaces. Let
Lie[C] denote the free Lie algebra Lie[C1,C2, . . .] on the Ci . Note that, again by
Lazard elimination, we can write Lie[x, y] = Qx ⊕ Lie[C]. Since by its definition,
all elements of the double shuffle space ds ⊂ Lie[x, y] are polynomials of degree
≥ 3, we have

ds ⊂ Lie[C] ⊂ Q0〈C〉.

Definition 4 LetMT 0 denote the Lie algebra whose underlying space is the space
of polynomials Q0〈C〉, equipped with the Poisson bracket (6), and let mt denote the
subspace of Lie polynomials in theCi , i.e. the vector space Lie[C] equipped with the
Poisson bracket. Observe thatmt is closed under the Poisson bracket since if f, g are
Lie then so are D f (g), Dg( f ) and [ f, g], so mt is a Lie algebra. The letters “M-T”
stand for twisted Magnus (cf. [10]).

Let MT denote the universal enveloping algebra of mt. It is isomorphic as a
vector space to Q〈C〉, and like all universal enveloping algebras, it is equipped with
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a pre-Lie2 law�. In the special case where g ∈ mt, the pre-Lie law onMT reduces
to the expression f � g = f g − Dg( f ), so that we have f � g − g � f = { f, g}
as befits the pre-Lie law of a universal enveloping algebra.

Let us also define the twisted Magnus group as the exponential MT = exp�(mt),
where

exp�( f ) =
∑

n≥0

1

n! f
�n.

Note that
f �n = f �(n−1) � f = f n − D f ( f

�n),

which gives an explicit recursive expression for f �n .

Theorem 4 (Racinet) The linear isomorphism (29) is a Lie algebra isomorphism

ma : MT 0
∼→ ARIpol , (31)

and it restricts to a Lie algebra isomorphism of the Lie subalgebras

ma : mt
∼→ ARIpolal . (32)

Proof In view of the fact that ma is invertible as a linear map, the isomorphism
(31) follows from the following identity relating the Poisson bracket and the ari-
bracket on polynomial-valued moulds, which was proven by Racinet in his thesis
([10, Appendix A], see also [12, Corollary 3.3.4]):

ma
({ f, g}) = ari

(
ma( f ),ma(g)

)
. (33)

The isomorphism (32), identifyingLie polynomialswith alternal polynomialmoulds,
follows from a standard argument thatwe indicate briefly, as it ismerely an adaptation
to Lie[C] of the similar argument following the definition of the shuffle relations in
(3). Let Δ denote the standard cobracket on Q〈C〉 defined by Δ(Ci ) = Ci ⊗ 1 +
1 ⊗ Ci . Then the Lie subspace Lie[C] of the polynomial algebra Q〈C〉 is the space
of primitive elements for Δ, i.e. elements f ∈ Lie[C] satisfying Δ( f ) = f ⊗ 1 +
1 ⊗ f . This condition on f is given explicitly on the coefficients of f by the family
of shuffle relations ∑

D∈sh(Ca1 ···Car ,Cb1 ···Cbs )

( f |D) = 0,

where ( f |D) denotes the coefficient in the polynomial f of the monomial D in the
Ci . But these conditions are exactly equivalent to the alternality relations

2A pre-Lie law must satisfy the defining relation
(
( f � g) � h

) − (
f � (g � h)

) = ((
f � h) �

g
) − (

f � (h � g)
)
.
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∑

D∈sh((a1,...,ar ),(b1,...,bs ))
ma( f )(D) = 0,

proving (32). �

Theorem 5 The linear isomorphism (32) restricts to a linear isomorphism of the
subspaces

ma : ds ∼→ ARIpolal∗il . (34)

Proof By (32), since ds ⊂ mt, we have ma : ds ↪→ ARIpolal . If an element f ∈ ds
has a depth 1 component, i.e. if the coefficient of xn−1y in f is non-zero, then n
is odd; this is a simple consequence of solving the depth 2 stuffle relations (see [4,
Theorem 2.30 (i)] for details). Thus, if the mould ma( f ) has a depth 1 component,
it will be an even function, since by the definition of ma the degree of ma( f )(u1)
is equal to the degree of f minus 1. This shows that ma maps ds to moulds that are
even in depth 1, i.e.

ma : ds ↪→ ARIpolal .

It remains only to show that if f ∈ ds then swap
(
ma( f )

)
is alternil up to addi-

tion of a constant mould, i.e. that the stuffle conditions (5) imply the alternility of
swap

(
ma( f )

)
.

By additivity, we may assume that f is of homogeneous degree n. Let C be the
constant mould concentrated in depth n given by

C(u1, . . . , un) = (−1)n−1

n
( f |xn−1y),

and let A = swap
(
ma( f )

) + C . Ecalle showed (see [10,Appendix A] or [12, (3.2.6)]
for full details) that we have the following explicit expression for swap

(
ma( f )

)
. If

for r ≥ 1 we write the depth r part of f∗ as

( f∗)r =
∑

a=(a1,...,ar )

ca ya1 · · · yar , (35)

then swap
(
ma( f )

)
is given by

swap
(
ma( f )

)
(v1, . . . , vr ) =

∑

a=(a1,...,ar )

ca v
a1−1
1 · · · var−1

r (36)

Note that since f is homogeneous of degree n, the associated mould

A = swap
(
ma( f )

) + C
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is concentrated in depths≤ n. We will use this close relation between the polynomial
f∗ and the mould A to show that the stuffle relations (5) on f∗ are equivalent to the
alternility of A.

For any pair of integers 1 ≤ r ≤ s, let Ar,s denote the alternility sum associ-
ated to the mould A as in (25). By definition, A is alternil if and only if Ar,s = 0
for all pairs 1 ≤ r ≤ s. Recall from Sect. 2 that the alternility sum Ar,s is a poly-
nomial in v1, . . . , vr+s obtained by summing up polynomial terms in one-to-one
correspondence with the terms of the stuffle of two sequences of lengths r and s.
By construction, the coefficient of a monomial w = vb1−1

1 · · · vbr+s−1
r+s in the alternility

term corresponding to a given stuffle term is equal to the coefficient in f∗ of the
stuffle term itself. This follows from a direct calculation obtained by expanding the
alternility terms; for example, the alternility term corresponding to the stuffle term
(yi , y j+k, yl) in (20) is given by

1

v2 − v2

(
A(v1, v2, v4) − A(v1, v3, v4)

)

(see (22)), whose polynomial expansion is given by

∑

a=(a1,a2,a3)

cav
a1−1
1

(a2−2∑

m=0

vm2 v
a2−2−m
3

)
va3−1
4 ,

and the coefficient of the monomial vi−1
1 v j−1

2 vk−1
3 vl−1

4 in this alternility term corre-
sponds to a1 − 1 = i − 1, m = j − 1, a2 − 2 − m = k − 1 and a3 − 1 = l − 1, i.e.
a1 = i , a2 = j + k, a3 = l, so it is equal to ci, j+k,l which is exactly the coefficient
( f∗|yi y j+k yl) in (35). The alternility sum is equal to zero if and only if the coefficient
of each monomial in v1, . . . , vr+s is equal to zero, which is thus equivalent to the full
set of stuffle relations on f∗. �

In view of (33) and (34), a mould-theoretic proof of Racinet’s theorem consists
in proving that ARIpolal∗il is a Lie algebra under the ari-bracket. To prove this mould-
theoretic version, we need to make use of the Lie group GARI associated to ARI,
defined in the next section. In Sect. 6 we give the necessary results from Ecalle’s
theory, and the theorem is proved in Sect. 7.

5 The Group GARI

In this section we introduce several notions on the group GARI of moulds with
constant term 1, which are group analogs of the Lie notions introduced in Sect. 2. To
move from the Lie algebra ARI to the associated group GARI, Ecalle introduces a
pre-Lie law on ARI, defined as follows:
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preari(A, B) = arit(B) · A + mu(A, B), (37)

where arit and mu are as defined in (16) and (13). Indeed, if A, B ∈ ARI then
preari(A, B) also lies in ARI, and it is straightforward to check that preari satisfies
the defining condition of pre-Lie laws given in Sect. 4. Using preari, Ecalle defines
an exponential map on ARI in the standard way:

expari(A) =
∑

n≥0

1

n! preari(A, . . . , A︸ ︷︷ ︸
n

), (38)

where
preari(A, . . . , A︸ ︷︷ ︸

n

) = preari(preari(A, . . . , A︸ ︷︷ ︸
n−1

), A).

This map is the exponential isomorphism expari : ARI → GARI, where GARI is
nothing other than the group of all moulds with constant term equal to 1, equipped
with the multiplication law, denoted gari, that comes as always from the Campbell-
Hausdorff law ch(·, ·) on ARI:

gari
(
expari(A), expari(B)

) = expari(ch(A, B)). (39)

The gari-inverse of a mould B ∈ GARI is denoted invgari(B). The inverse isomor-
phism of expari is denoted by logari.

Like all Lie algebras, ARI is equipped with an action of the associated group
GARI, namely the standard adjoint action, denoted Adari (Ecalle denotes it simply
adari, but we have modified it to stress the fact that it represents the adjoint action of
the group GARI on ARI ):

Adari(A) · B = gari
(
preari(A, B), invgari(A)

)

= d

dt
|t=0 gari

(
A, expari(t B), invgari(A)

)

= B + ari
(
logari(A), B

) + 1

2
ari

(
logari(A), ari

(
logari(A), B

)) + · · ·
(40)

Finally, to any mould A ∈ GARI (i.e. any mould in the ui with constant term 1),
Ecalle associates an automorphism ganit(A) of the ring of all moulds in the ui under
the mu-multiplication which is just the exponential of the derivation anit

(
logari(A)

)
.

The analogous objects exist for moulds in the vi . If preari denotes the pre-Lie
law on ARI given by (37) (but for the derivation arit of ARI), then the formula (38)
defines an analogous exponential isomorphismARI → GARI, where GARI consists
of all moulds in the variables vi with constant term 1 and multiplication determined
by (39) (note that this definition depends on that of arit, so just as the Lie bracket ari
is different for ARI and ARI, the multiplication is different for GARI and GARI).
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As above, we let the automorphism ganit(A) of GARI associated to each A ∈ GARI
be defined as the exponential of the derivation anit

(
logari(A)

)
of ARI.

Definition 5 Amould A ∈ GARI (resp. GARI) is symmetral if for all words u, v in
the ui (resp. in the vi ), we have

∑

w∈sh(u,v)

A(w) = A(u)A(v). (41)

Following Ecalle, we write GARIas (resp. GARIas) for the set of symmetral moulds
in GARI (resp. GARI). The property of symmetrality is the group equivalent of
alternality; in particular,

A ∈ ARIal (resp. ARIal) ⇔ expari(A) ∈ GARIas (resp. GARIas ). (42)

RemarkLetMT denote the twistedMagnusgroupof power series inQ〈〈C1,C2, . . .〉〉
with constant term 1, identified with the exponential of the twisted Magnus Lie
algebra mt defined by

exp�( f ) =
∑

n≥0

1

n! f �n

for f ∈ mt, where � is the pre-Lie law

f � g = f g + D f (g) (43)

defined for f, g ∈ mt (see Sect. 4). The group MT is equipped with the twisted
Magnus multiplication

(
f � g

)
(x, y) = f (x, gyg−1)g(x, y). (44)

Notice that it makes sense to use the same symbol � for (43) and (44), because in
fact � is the multiplication on the completion of the universal enveloping algebra of
mt, and (43) and (44) merely represent the particular expressions that it takes on two
elements of mt resp. two elements of MT .

The multiplication (44) corresponds to the gari-multiplication in the sense that the
map ma defined in (29) yields a group isomorphism MT

∼→ GARIpol . If g ∈ MT ,
then the automorphism ganit

(
ma(g)

)
is the GARI-version of the automorphism of

MT given by mapping x �→ x and y �→ yg.
The fact of having non-polynomial moulds in GARI gives enormously useful pos-

sibilities of expanding the familiar symmetries and operations (derivations, shuffle
and stuffle relations etc.) to a broader situation. In particular, the next section con-
tains some of Ecalle’s most important results in mould multizeta theory, which make
use of moulds with denominators and have no analog within the usual polynomial
framework.
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6 The Mould Pair pal/ pi l and Ecalle’s Fundamental
Identity

In this section we enter into the “second drawer” of Ecalle’s powerful toolbox, with
the mould pair pal/pil and Ecalle’s fundamental identity.

Definition 6 Let dupal be the mould defined explicitly by the following formulas:
dupal(∅) = 0 and for r ≥ 1,

dupal(u1, . . . , ur ) = Br

r !
1

u1 · · · ur

(
r∑

i=0

(−1)i
(r − 1

i

)
ui+1

)
, (45)

where Br denotes the r -th Bernoulli number.

This mould is actually quite similar to a power series often studied in classical
situations. Indeed, if we define dar to be the mould operator defined by

dar ·A(u1, . . . , ur ) = u1 · · · ur A(u1, . . . , ur ),

then dar ·dupal is a polynomial-valued mould, so it is the image of a power series
under ma; explicitly

dar ·dupal = ma
(
x − ad(−y)

exp(ad(−y)) − 1
(x)

)
.

Ecalle gave several equivalent definitions of the key mould pal, but the most
recent one (see [7]) appears to be the simplest and most convenient. If we define dur
to be the mould operator defined by

dur ·A(u1, . . . , ur ) = (u1 + · · · + ur ) A(u1, . . . , ur ),

then the mould pal is defined recursively by

dur ·pal = mu(pal, dupal). (46)

Calculating the first few terms of pal explicitly, we find that

pal(∅) = 1

pal(u1) = 1

2u1

pal(u1, u2) = u1 + 2u2
12u1u2(u1 + v2)

pal(u1, u2, u3) = −1

24u1u3(u1 + u2)
.
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Let pil = swap(pal). The most important result concerning pal, necessary for
the proof of Ecalle’s fundamental identity below, is the following.

Theorem 6 The moulds pal and pil are symmetral.

In [6, Sect. 4.2], the mould pil (called ess) is given an independent definition
which makes it easy to prove that it is symmetral. Similarly, it is not too hard to
prove that pal is symmetral using the definition (46). The real difficulty is to prove
that pil (as defined in [6]) is the swap of pal (as defined in (46)). Ecalle sketched
beautiful proofs of these two facts in [7], and the details are fully written out in [12,
Sects. 4.2, 4.3].

Before proceeding to the fundamental identity, we need a useful result in which
a very simple v-mould is used to give what amounts to an equivalent definition of
alternility.3

Proposition 4 Let pic be the v-mould defined by pic(v1, . . . , vr ) = 1/v1 · · · vr . Then
for any alternal mould A ∈ ARI, the mould ganit(pic) · A is alternil.

Proof The proof is deferred to Appendix C. �

We now come to Ecalle’s fundamental identity.
Ecalle’s fundamental identity: For any push-invariant mould A, we have

swap
(
Adari(pal) · A) = ganit(pic) · (

Adari(pil) · swap(A)
)
. (47)

The proof of this fundamental identity actually follows as a consequence of (27) and
a more general fundamental identity, similar but taking place in the group GARI and
valid for all moulds. It is given in full detail in [12, Theorem 4.5.2].

7 The Main Theorem

In this section we give Ecalle’s main theorem on dimorphy, which shows how the
mould pal transforms moulds with the double symmetry al ∗ al to moulds that are
al ∗ il. We then show how Racinet’s theorem follows directly from this. We first
need a useful lemma.

Lemma 1 If C is a constant-valued mould, then

ganit(pic) · Adari(pil) · C = C. (48)

3This is just one example of a general identity valid for flexion units, see [6, p. 64] where Ecalle
explains the notion of alternality twisted by a flexion unit and asserts that alternility is merely
alternality twisted by the flexion unit 1/v1.
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Proof [1, Corollary 4.43] We apply the fundamental identity (47) in the case where
A = swap(A) = C is a constant-valued mould, obtaining

swap
(
Adari(pal) · C) = ganit(pic) · Adari(pil) · C.

So it is enough to show that the left-hand side of this is equal toC , i.e. thatAdari(pal) ·
C = C , since a constant mould is equal to its own swap. As we saw just before (28),
the definitions (13)–(16) imply that ari(A,C) = 0 for all A ∈ ARI. Now, by (40) we
see that Adari(pal) · C is a linear combination of iterated ari-brackets of logari(pal)
with C , but since pal ∈ GARI, logari(pal) ∈ ARI, so ari(logari(pal),C) = 0, i.e.
all the bracketed terms in (40) are 0. Thus Adari(pal) · C = C . This concludes the
proof. �

We can now state the main theorem on moulds.

Theorem 7 The action of the operatorAdari(pal) on the Lie subalgebraARIal∗al ⊂
ARI yields a Lie isomorphism of subspaces

Adari(pal) : ARIal∗al ∼→ ARIal∗il . (49)

Thus in particular ARIal∗il forms a Lie algebra under the ari-bracket.

Proof The proof we give appears not to have been published anywhere by Ecalle,
but we learned its outline from him through a personal communication to the second
author, for which we are grateful.

Note first that Adari(pal) preserves the depth 1 component of moulds in ARI, so
if A is even in depth 1 then so is Adari(pal) · A. We first consider the case where
A ∈ ARIal/al , i.e. swap(A) is alternal without addition of a constant correction.
By (42), the mould Adari(pal) · A is alternal, since pal is symmetral by Theo-
rem 6. By Proposition 2, A is push-invariant, so Ecalle’s fundamental identity (47)
holds. Since A ∈ ARIal/al , swap(A) is alternal, and by Theorem 6, pil is alternal;
thus by (42), Adari(pil) · swap(A) is alternal. Then by Proposition 4, ganit(pic) ·
Adari(pil) · swap(A) is alternil, and finally by (47), swap

(
Adari(pal) · A)

is alternil,
which proves that Adari(pal) · A ∈ ARIal/il as desired.

We now consider the general case where A ∈ ARIal∗al . Let C be the constant-
valued mould such that swap(A) + C is alternal. As above, we have that Adari(pal) ·
A is alternal, so to conclude the proof of the theorem it remains only to show that
its swap is alternil up to addition of a constant mould, and we will show that this
constant mould is exactly C . As before, since swap(A) + C ∈ ARI is alternal, the
mould

Adari(pil) · (
swap(A) + C

) = Adari(pil) · swap(A) + Adari(pil) · C

is also alternal. Thus by Proposition 4, applying ganit(pic) to it yields the alternil
mould
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ganit(pic) · Adari(pil) · swap(A) + ganit(pic) · Adari(pil) · C.

By Lemma 1, this is equal to

ganit(pic) · Adari(pil) · swap(A) + C, (50)

which is thus alternil. Now, since A is push-invariant by Proposition 2, we can apply
(47) and find that (50) is equal to

swap
(
Adari(pal) · A) + C,

which is thus also alternil. Therefore swap
(
Adari(pal) · A)

is alternil up to a constant,
which precisely means that Adari(pal) · A ∈ ARIal∗il as claimed. Since Adari(pal)
is invertible (with inverse Adari

(
invgari(pal)

)
) and by the analogous arguments this

inverse takes ARIal∗il to ARIal∗al , this proves that (49) is an isomorphism. �
Corollary 1 ARIpolal∗il forms a Lie algebra under the ari-bracket.

Proof By Proposition 1, ARIpol is a Lie algebra under the ari-bracket, so since
ARIal∗il is as well by Theorem 7, their intersection also forms a Lie algebra. �

In view of (33) and (34), this corollary is equivalent to Racinet’s theorem that ds
is a Lie algebra under the Poisson bracket.

Acknowledgements The authors wish to thank the ICMAT and the Women in Number Theory
group for hosting wonderful workshops, the referees for the careful reading of this paper and the
many improvements that resulted, and Jean Ecalle for his guidance. Salerno was partially supported
by the NSF-AWM Mentoring Travel grant.

Appendix A

Proof of Theorem 2. We cut it into two separate results as explained in the main text.

Proposition 5 If A, B are alternal moulds then C = lu(A, B) is alternal.

Proof We have

C(w) = lu(A, B)(w) =
∑

w=ab

(
A(a)B(b) − B(a)A(b)

)
,

so we need to show that the following sum vanishes:

∑

w∈sh(u,v)

C(w) =
∑

w∈sh(u,v)

lu(A, B)(w)

=
∑

w∈sh(u,v)

∑

w=ab

(
A(a)B(b) − B(a)A(b)

)
. (51)
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This sum breaks into three pieces: the terms where a contain letters from both u
and v, the case where a contains only letters from u or from v but b contains letters
from both, and finally the cases a = u, b = v and a = v,b = u.

The first type of terms add up to zero because we can break up the sum into smaller
sums where a lies in the shuffle of the first i letters of u and j letters of b, and these
terms already sum to zero since A and B are alternal.

The second type of term adds up to zero for the same reason, because even though
a may contain only letters from one of u and v, bmust contain letters from both and
therefore the same reasoning holds.

The third type of term yields A(u)B(v) − B(u)A(v) when a = u,b = v and
A(v)B(u) − B(v)A(u) when a = v, b = u, which cancel out. Thus the sum (51)
adds up to zero. �

Proposition 6 If A and B are alternal moulds in ARI, then C = arit(B) · A is
alternal.

Proof By definition, C is alternal if

∑

w=sh(x,y)

C(w) = 0,

for all pairs of non-trivial words x, y.
Pick an arbitrary pair of non-trivial words x, y, of appropriate length (that is, so

that their lengths add up to the length of A plus the length of B). We will be shuffling
x and y together, and the resulting word is then broken up into three parts (all possible
ones) in order to compute the flexions. Thus, if we break up w = abc, a must be a
shuffle of some parts at the beginning of each word x, y, bmust come from shuffling
their middles, and c can only come from shuffling the last parts. Then we can rewrite
this computation as follows:

∑

w=sh(x,y)

arit(B) · A(w) =
∑

w=sh(x,y)

⎛

⎜⎝
∑

w=abc
c =∅

A(a�c)B(b) −
∑

w=abc
a =∅

A(a�c)B(b)

⎞

⎟⎠

=
∑

x=x1x2x3
y=y1y2y3 ,x3y3 =∅

∑

a=sh(x1 ,y1)

b=sh(x2 ,y2),c=sh(x3 ,y3)

A(a�c)B(b)

−
∑

x=x1x2x3
y=y1y2y3 ,x1y1 =∅

∑

a=sh(x1 ,y1)

b=sh(x2 ,y2),c=sh(x3 ,y3)

A(a�c)B(b).

Now for a fixed splitting of each x and y into three parts, we have the following
possibilities.
Case I. Both x2 = y2 = ∅. Then B(∅) = 0 so we are done.
Case II. Both x2 and y2 are nonempty. The trick here is that because of the flexion
operations, no matter how b = sh(x2, y2) is shuffled, the part being added together
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with the last letter in a and the first letter in c remains the same. Thus, if we further
fix a particular a and c, we get that

∑

b=sh(x2,y2)

A(a�c)B(b) = A(a�c)
∑

b=sh(x2,y2)

B(b) = 0

and ∑

b=sh(x2,y2)

A(a�c)B(b) = A(a�c)
∑

b=sh(x2,y2)

B(b) = 0,

by alternality of B. And thus,

∑

a=sh(x1 ,y1)

c=sh(x3 ,y3)

∑

b=sh(x2,y2)

A(a�c)B(b) = 0

and ∑

a=sh(x1 ,y1)

c=sh(x3 ,y3)

∑

b=sh(x2,y2)

A(a�c)B(b) = 0.

Case III. Either x2 = ∅ or y2 = ∅, but not both. Without loss of generality, assume
x2 = ∅. Then we have

∑

a=sh(x1 ,y1)

b=y2 ,c=sh(x3 ,y3)

A(a�c)B(b) = B(y2)
∑

a=sh(x1 ,y1)

c=sh(x3 ,y3)

A(a�c).

And similarly,

∑

a=sh(x1 ,y1)

b=y2 ,c=sh(x3 ,y3)

A(a�c)B(b) = B(y2)
∑

a=sh(x1 ,y1)

c=sh(x3 ,y3)

A(a�c).

Recall that by definition

sh(x1, y1) = sh(x′
1, y1)(last letter in x1) + sh(x1, y′

1)(last letter in y1)

and

sh(x3, y3) = (first letter in x3) sh(x′
3, y3) + (first letter in y3) sh(x3, y′

3).

Thus,

a�c = sh(x1, y1)(sum of letters in y2 plus first letter in x3) sh(x′
3, y3) (52)

or
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a�c = sh(x1, y1)(sum of letters in y2 plus first letter in y3) sh(x3, y′
3) (53)

and

a�c = sh(x′
1, y1)(sum of letters in y2 plus last letter in x1) sh(x3, y3) (54)

or

a�c = sh(x1, y′
1)(sum of letters in y2 plus last letter in y1) sh(x3, y3). (55)

Recall that, since x2 is assumed to be empty, then for a given x1, x3, we can let
x1, x3 be so that x1 is x1 with an additional letter given by the first letter of x3 and x3
is defined in the logical way. That means that Eqs. (52) and (54) are exactly the same.
Thus, we get direct cancellation for all possible choices of x1, x3 (this is compatible
with the restrictions on nonemptiness given by the definition).

We cannot do the same for (53) and (55), since y2 is assumed to be nonempty. For
these, notice that if we keep y fixed and sum over all possible partitions of x = x1x2x3
where x2 = ∅, and x3 = ∅ we get that each

a�c = sh(x1, y1)(sum of letters in y2 plus first letter in y3) sh(x3, y′
3)

could be seen as a term in the shuffle sh(x, y1�y3). To see this, suppose that

x = u1 · · · uk |uk+1 · · · ul = x1|x3
and that

y = ul+1 · · · ul+i |ul+i+1 · · · ul+ j |ul+ j+1 · · · un = y1|y2|y3.

Then

a�c = sh((u1 · · · uk), (ul+1 · · · ul+i ))(ul+i+1+ · · · + ul+ j + ul+ j+1)

· sh((uk+1 · · · ul), (ul+ j+2 · · · un)).

And so if we allow the k to shift from 1 to l, this is essentially the shuffling of the
words u1 · · · ul = x and ul+1 · · · ul+i (ul+i+1 + · · · + ul+ j + ul+ j+1)ul+ j+2 · · · un =
y1�y3. Thus we have

∑

x=x1x3
x3 =∅

∑

a=sh(x1 ,y1)

b=y2 ,c=yfirst sh(x3 ,y′3)

A(a�c) =
∑

w=sh(x,y1�y3)
A(w) = 0

by alternality of A.
A similar argument holds for the terms corresponding to the other flexion (the

terms corresponding to Eq. (55)).
Putting all of these cases together, we see that indeed, C is alternal. �
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Proposition 7 If A and B are alternal moulds in ARI, then C = arit(B) · A is
alternal.

Proof As with the proof for ARIal , we have to show that

∑

w=sh(x,y)

C(w) = 0,

for all pairs of non-trivial words x, y. Again, this can be rewritten as follows:

∑

w=sh(x,y)

arit(B) · A(w) =
∑

w=sh(x,y)

⎛

⎜⎝
∑

w=abc
c =∅

A(ac)B(b�) −
∑

w=abc
a =∅

A(ac)B(�b)

⎞

⎟⎠

=
∑

x=x1x2x3
y=y1y2y3,x3y3 =∅

∑

a=sh(x1 ,y1)

b=sh(x2 ,y2),c=sh(x3 ,y3)

A(ac)B(b�)

−
∑

x=x1x2x3
y=y1y2y3,x1y1 =∅

∑

a=sh(x1 ,y1)

b=sh(x2 ,y2),c=sh(x3 ,y3)

A(ac)B(�b)

Again, for a fixed splitting of each x and y into three parts, we have the following
possibilities.
Case I. Both x2 = y2 = ∅. Then B(∅) = 0 so we are done.
Case II. Both x2 and y2 are nonempty.

Here, no matter how b = sh(x2, y2) is shuffled, the part being subtracted from b,
which is either the last letter in a or the first letter in c, remains the same if we fix a
particular a and c. Thus, we get that

b�i = sh(x2, y2)i − first letter in c = sh((x2k − first letter in c), (y2k − first letter in c))i

and

�bi = sh(x2, y2)i − last letter in a = sh((x2k − last letter in a), (y2k − last letter in a))i .

Thus, ∑

b=sh(x2,y2)

A(ac)B(b�) = A(ac)
∑

b=sh(x2,y2)

B(b�) = 0

and ∑

b=sh(x2,y2)

A(ac)B(�b) = A(ac)
∑

b=sh(x2,y2)

B(�b) = 0,

by alternality of B. And thus,
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∑

a=sh(x1 ,y1)

c=sh(x3 ,y3)

∑

b=sh(x2,y2)

A(ac)B(b�) = 0

and ∑

a=sh(x1 ,y1)

c=sh(x3 ,y3)

∑

b=sh(x2,y2)

A(ac)B(�b) = 0.

Case III. Either x2 = ∅ or y2 = ∅, but not both. Without loss of generality, assume
x2 = ∅.

Recall, again, that by definition

sh(x1, y1) = sh(x′
1, y1)(last letter in x1) + sh(x1, y′

1)(last letter in y1)

and

sh(x3, y3) = (first letter in x3) sh(x′
3, y3) + (first letter in y3) sh(x3, y′

3).

Since x2 = ∅, we can see that

b�i = y2i − first letter in c

and
�bi = y2i − last letter in a.

For a given x1, x3, we can let x1, x3 be so that x1 is x1 with an additional letter
given by the first letter of x3 and x3 is defined in the logical way. That means that

A(sh(x1′, y1)(last letter in x1) sh(x3, y3))B(�b)

and
A(sh(x1, y1)(first letter in x3) sh(x′

3, y3))B(b�)

are identical (for each fixed shuffling).
Thus,weget direct cancellation for all possible choices ofx1, x3 (this is compatible

with the restrictions on nonemptiness given by the definition).
The only terms that have not cancelled out are the ones coming from the second

term in the shuffle equations above. Now, suppose that

x = v1 · · · vk |vk+1 · · · vl = x1|x3
and that

y = vl+1 · · · vl+i |vl+i+1 · · · vl+ j |vl+ j+1 · · · vn = y1|y2|y3,

and fix this splitting of y. Then
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ac = sh(v1 · · · vk, vl+1 · · · vl+i )vl+ j+1 sh(vk+1 · · · vl , vl+ j+2 · · · vn).

And so ifwe allow the k to shift from1 to l, this is essentially the shuffling of thewords
v1 · · · vl = x and vl+1 · · · vl+i , vl+ j+1, vl+ j+2 · · · vn = y1y3. Notice that this shuffling
fixes b�, since

b� = (vl+i+1 − vl+ j+1, . . . , vl+ j − vl+ j+1).

Thus we have

∑

x=x1x3
x3 =∅

∑

a=sh(x1 ,y1),b=y2
c=yfirst sh(x3 ,y′3)

A(ac)B(b�) = B(b�)
∑

w=sh(x,y1y3)

A(w) = 0

by alternality of A.
A similar argument holds for the terms corresponding to the other flexion. Com-

bining all the cases, we see that indeed, C is alternal. �

Appendix B

Proof of Proposition 2. By additivity, we may assume that A is concentrated in a
fixed depth d, meaning that A(u1, . . . , ur ) = 0 for all r = d. We use the following
two lemmas.

Lemma 2 If A ∈ ARIal , then

A(u1, . . . , ur ) = (−1)r−1A(ur , . . . , u1);

in otherwords, A ismantar-invariant. Similarly, if A ∈ ARIal then again A ismantar-
invariant.

Proof We give the argument for ARI; the result in ARI comes from the identical
computation with ui replaced by vi . We first show that the sum of shuffle relations

sh
(
(1), (2, . . . , r)

) − sh
(
(2, 1), (3, . . . , r)

) + sh
(
(3, 2, 1), (4, . . . , r)

) + · · ·

+(−1)r−2 sh
(
(r − 1, . . . , 2, 1), (r)

) = (1, . . . , r) + (−1)r (r, . . . , 1).

Indeed, using the recursive formula for shuffle, we can write the above sum with two
terms for each shuffle, as
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(1, . . . , r) + 2 · sh((1), (3, . . . , r))

− 2 · sh((1), (3, . . . , r)) − 3 · sh((2, 1), (4, . . . , r))

+ 3 · sh((2, 1), (4, . . . , r)) + 4 · sh((3, 2, 1), (5, . . . , r))

+ · · · + (−1)r−3(r − 1) · sh((r − 2, . . . , 1), (r)
)

+ (−1)r−2(r − 1) · sh((r − 2, . . . , 1), (r)
) + (−1)r−2(r, r − 1, . . . , 1)

= (1, . . . , r) + (−1)r (r, . . . , 1).

Using this, we conclude that if A satisfies the shuffle relations, then

A(u1, . . . , ur ) + (−1)r−1A(ur , . . . , u1) = 0,

which is the desired result. �

Lemma 3 If A ∈ ARIal∗al , then A is neg ◦ push-invariant.
Proof We first consider the case where A ∈ ARIal/al . Using the easily verified iden-
tity

neg ◦ push = mantar ◦ swap ◦mantar ◦ swap, (56)

and the fact that by Lemma 2, if A ∈ ARIal/al , then both A and swap(A) are mantar-
invariant, we have

neg ◦ push(A)(u1, . . . , ur ) = mantar ◦ swap ◦mantar ◦ swap(A)(u1, . . . , ur )

= mantar ◦ swap ◦ swap(A)(u1, . . . , ur )

= mantar(A)(u1, . . . , ur )

= A(u1, . . . , ur ), (57)

so A is neg ◦ push-invariant.
Now suppose that A ∈ ARIal∗al , so A is alternal and swap(A) + A0 is alter-

nal for some constant mould A0. By additivity, we may assume that A is con-
centrated in depth r . First suppose that r is odd. Then mantar(A0)(v1, . . . , vr ) =
(−1)r−1A0(vr , . . . , v1), so since A0 is a constant mould, it is mantar-invariant. But
swap(A) + A0 is alternal, so it is also mantar-invariant by Lemma 2; thus swap(A)

is mantar-invariant, and the identity neg ◦ push = mantar ◦ swap ◦mantar ◦ swap
shows that A is neg ◦ push-invariant as in (57).

Finally, we assume that A is concentrated in even depth r . Here we have
mantar(A0) = −A0, so we cannot use the argument above; indeed swap(A) + A0 is
mantar-invariant, but

mantar(swap(A)) = swap(A) + 2A0. (58)

Instead, we note that if A is alternal then so is neg(A) = A. Thus we can write A as
a sum of an even and an odd function of the ui via the formula
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A = 1

2
(A + neg(A)) + 1

2
(A − neg(A)). (59)

So it is enough to prove the desired result for all moulds concentrated in even depth
r such that either neg(A) = A (even functions) or neg(A) = −A (odd functions).
First suppose that A is even. Then since neg commutes with push and push is of odd
order r + 1 and neg is of order 2, we have

(neg ◦ push)r+1(A) = neg(A) = A. (60)

However, we also have

neg ◦ push(A) = mantar ◦ swap ◦mantar ◦ swap(A)

= mantar ◦ swap(swap(A) + 2A0
)
by (58)

= mantar
(
A + 2A0

)

= A − 2A0.

Thus (neg ◦ push)r+1(A) = A − 2(r + 1)A0, and this is equal to A by (60),
so A0 = 0; thus in fact A ∈ ARIal/al and that case is already proven.

Finally, if A is odd, i.e. neg(A) = −A, the same argument as above gives A −
2(r + 1)A0 = −A, so A = (r + 1)A0, so A is a constant-valuedmould concentrated
in depth r , but this contradicts the assumption that A is alternal since constant moulds
are not alternal, unless A = A0 = 0. Note that this argument shows that all moulds
in ARIal∗al that are not in ARIal/al must be concentrated in odd depths. �

Wecannowcomplete the proof of Proposition 2.4 Because A = neg ◦ push(A),we
have neg(A) = push(A), so in factwe only need to show that neg(A) = A. As before,
we may assume that A is concentrated in depth r . If r = 1, then A is an even function
by assumption. If r is even, then as before we have A = (neg ◦ push)2s+1(A) =
neg(A). Finally, assume r = 2s + 1 is odd. Since we can write A as a sum of an
even and an odd part as in (59), we may assume that neg(A) = −A. Then, since A
is alternal, using the shuffle sh

(
(u1, . . . , u2s)(u2s+1)

)
, we have

2s∑

i=0

A(u1, . . . , ui , u2s+1, ui+1, . . . , u2s) = 0.

Making the variable change u0 ↔ u2s+1 gives

2s∑

i=0

A(u1, . . . , ui , u0, ui+1, . . . , u2s) = 0. (61)

4Ecalle states this result in [6, Sect. 2.4] and there is also a proof in [7, Sect. 12], but we were not
able to follow the argument, so we have provided this alternative proof.
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Now consider the shuffle relation sh((u1)(u2, . . . , u2s+1)), which gives

2s+1∑

i=1

A(u2, . . . , ui , u1, ui+1, . . . , u2s+1) = 0. (62)

Set u0 = −u1 − · · · − u2s+1. Since neg ◦ push acts like the identity on A, we can
apply it to each term of (62) to obtain

2s∑

i=1

−A(u0, u2, . . . , ui , u1, ui+1, . . . , u2s) − A(u0, u2, . . . , u2s, u2s+1).

We apply neg ◦ push again to the final term of this sum in order to get the u2s+1 to
disappear, obtaining

2s∑

i=1

−A(u0, u2, . . . , ui , u1, ui+1, . . . , u2s) + A(u1, u0, u2, . . . , u2s−1, u2s) = 0.

Making the variable change u0 ↔ u1 in this identity yields

2s∑

i=1

−A(u1, u2, . . . , ui , u0, ui+1, . . . , u2s) + A(u0, u1, u2, . . . , u2s−1, u2s) = 0.

(63)
Finally, adding (61) and (63) yields 2A(u0, u1, . . . , u2s) = 0, so A = 0. This con-
cludes the proof that neg(A) = A for all A ∈ ARIal∗al , and thus, by Lemma 3, that
push(A) = A. This concludes the proof of Proposition 2. �

Appendix C

We follow Ecalle’s more general construction of twisted alternality from
[6, pp. 57–64]. Let e ∈ ARI be a flexion unit, which is a mould concentrated in
depth 1 satisfying

e(v1) = −e(−v1)

and
e(v1)e(v2) = e(v1 − v2)e(v2) + e(v1)e(v2 − v1).

Associate to e the mould ez ∈ GARI defined by

ez(v1, . . . , vr ) = e(v1) · · · e(vr ).
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Then a mould A ∈ ARI is said to be e-alternal if A = ganit(ez) · B where B ∈ ARI
is alternal. The conditions for e-alternality can be written out using the explicit
expression for ganit, using flexions, computed by Ecalle [6, (2.36)]:

(
ganit(B) · A)

(w) =
∑

A(b1 · · · bs)B(�c1) · · · A(�cs), (64)

where the sum runs over the decompositions of the word w = (u1, . . . , ur ) (r ≥ 1)
as

w = b1c1 · · · bscs, (s ≥ 1)

where all bi and ci are non-empty words except possibly for cs . For example in small
depths, setting C = ganit(B) · A, we have

C(v1) = A(v1)

C(v1, v2) = A(v1, v2) + A(v1)B(v2 − v1)

C(v1, v2, v3) = A(v1, v2, v3) + A(v1, v2)B(v3 − v2)

+ A(v1)B(v2 − v1, v3 − v1) + A(v1, v3)B(v2 − v1).

Using the expression (64) for ganit(B) · A, the e-alternality relations can be writ-
ten explicitly as follows. Let Y1 = (y1, . . . , yr ) and Y2 = (yr+1, . . . , yr+s). Then for
each word in the stuffle set st(Y1,Y2), we construct the associated e-alternality term,
with an expression of the form

(
C(. . . , vi , . . .) − C(. . . , v j )

)
e(vi − v j )

corresponding to each contraction (cf. (21)). For example, taking Y1 = (yi , y j ) and
Y2 = (yk, yl), the stuffle set st(Y1,Y2) is given in (20), and the corresponding 13
e-alternality terms are, first of all the six shuffle terms

C(v1, v2, v3, v4),C(v1, v3, v2, v4),C(v1, v3, v4, v2),C(v3, v1, v2, v4),

C(v3, v1, v4, v2),C(v3, v4, v1, v2)

(cf. (22)), then the six terms with a single contraction

(
C(v1, v2, v4) − C(v1, v3, v4)

)
e(v2 − v3),

(
C(v1, v2, v4) − C(v3, v2, v4)

)
e(v1 − v3),

(
C(v1, v3, v2) − C(v1, v3, v4)

)
e(v2 − v4),

(
C(v1, v4, v2) − C(v3, v4, v2)

)
e(v1 − v3),

(
C(v3, v1, v2) − C(v3, v1, v4)

)
e(v2 − v4),

(
C(v3, v1, v2) − C(v3, v4, v2)

)
e(v1 − v4)

(cf. (23)), and finally the single term with two contractions,
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(
C(v1, v2) − C(v3, v2) − C(v1, v4) + C(v2, v4)

)
e(v1 − v3)e(v2 − v4).

The e-alternality sum Cr,s is defined to be the sum of all the e-alternality terms
corresponding to words in the stuffle set st(Y1,Y2); this sum is independent of the
actual sequences Y1,Y2, depending only on their lengths r, s. The mould C is said
to satisfy the e-alternality relations if Cr,s = 0 for all 1 ≤ r ≤ s. Comparing with
(22)–(24) we see that the notion of alternality is nothing but the special case of e-
alternality for the flexion unit e(v1) = 1/v1. The associated mould ez is thus equal
to pic, so we find that ganit(pic) · A is alternil if A is alternal.
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On Some Tree-Indexed Series with One
and Two Parameters

F. Chapoton

Abstract There is a rich algebraic setting involving free pre-Lie algebras and the
combinatorics of rooted trees. In this context, one can consider the analog of formal
power series, called tree-indexed series. Several interesting such series are known,
including one calledΩ and its more recent one-parameter and two-parameters gener-
alizations. This survey article explains how one can compute their coefficients using
Ehrhart polynomials of lattice polytopes.

Keywords Order polytope · Rooted tree · Pre-Lie algebra · Ehrhart polynomial ·
q-Bernoulli number

Let us start by recalling how tree-indexed series appear when considering ordinary
differential equations. This is very classical, but maybe not so well-known.

Let V : R
D → R

D be a smooth vector field and X be a curve R → R
D . Let t be

the coordinate on R (time) and let x1, . . . , xD be coordinates on R
D .

The ordinary differential equation

d

dt
X (t) = V (X (t)), (1)

with initial condition X (0) = X0, describes the movement of a material point X
whose velocity is given by the vector field V .

When the vector field is linear, the solution is given by the exponential of the
associated matrix. Otherwise, one can try to look for a solution as a formal power
series in t . The result is

X (t) − X0 = V (X0)t + (V � V )(X0)
t2

2
+ · · · + (V � (V � (V . . . )))(X0)

tn

n! + . . .

(2)
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Here � is a bilinear operation on smooth vector fields defined by

V � W =
∑

i, j

Vi (∂iW j )∂ j (3)

where V = ∑
i Vi∂i and W = ∑

j W j∂ j in the chosen coordinates on R
D .

This is half of the Lie bracket of vector fields, and [V,W ] = V � W − W � V .
The operation � is modified by a general change-of-coordinates, but preserved under
affine change-of-coordinates. It has the following property:

a � (b � c) − (a � b) � c = b � (a � c) − (b � a) � c, (4)

as can be checked by an easy computation. This property is the definition of a pre-Lie
product.

Let us now spend some time to describe free pre-Lie algebras.
Free associative algebras are very well known and can be easily described: they

have bases indexed bywords, and the associative product is given by concatenation of
words. It turns out that free pre-Lie algebras also have a very nice explicit description,
just slightly more complicated: they have bases indexed by decorated rooted trees,
and the pre-Lie product is given by grafting of rooted trees.

A rooted tree is a finite connected graph without cycles and with a distinguished
vertex called the root. A decoration of a rooted tree T by a set E is a map from the
vertices of T to E . Here is an example, with E = {♥,♦,♠,♣}:

♥

♣

♥

♠

♦♣

Note that trees will be drawn growing up, with their root at the bottom.
Consider a set of generators E and let PL(E) be the vector space over Q spanned

by (isomorphism classes of) rooted trees decorated by E . The pre-Lie product is
defined on the basis of PL(E) by

S � T =
∑

v∈T
S �v T, (5)

where S �v T is the rooted tree obtained from the disjoint union of the rooted trees
S and T by adding an edge between v and the root of S, and taking the root of T as
root.
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Here is an example with E = {♥,♣}:

♥

♥

� ♣

♣

= ♣

♥

♥

♣

+ ♣

♣

♥

♥

Let us now go back to the flow of vector fields. One can lift the formal power
series solution (2) (letting also t = 1) to the element

A= +( � )
1
2
+ · · ·+( � ( � ( . . .)))

1
n!

+ · · ·
(6)

which belongs to the completion of the free pre-Lie algebra on one generator with
respect to its natural grading by the number of vertices. If a finite sumof (undecorated)
rooted trees is like a polynomial in one variable, then this is like a formal power series
in one variable.

Using the definition of � on rooted trees, one can compute the first few terms:

A= +
1
2

+
1
6

+
1
3 2

+
1
24

+
1
12 2

+
1
8

+
1
4 6

+ · · ·
(7)

Because of its origin, this tree-indexed series could be called the “exact solution of
the generic flow equation of vector fields”. Note that this is completely independent
of the ambient dimension D of vector fields.

Note also that one has written the coefficients of A in a specific way, by separating
out (under every tree) a factor corresponding to the number of automorphisms of the
tree (sometimes called a symmetry factor). Then the remaining coefficients have a
very simple expression as the inverse of the tree-factorials.1 All the coefficients are
positive rational numbers.

All this story is tightly connected with several important theories in numerical
analysis and mathematical physics. First, it is very close with John Butcher’s theory
of composition of Runge-Kutta methods, which is very well-known in numerical
analysis under the keywords of B-series or Butcher series [4]. This setting has been
recently generalized to numerical analysis on manifolds, see for instance [20, 21,
24]. In a similar direction, usage of pre-Lie products has been pioneered by Agracev
and Gamkrelidze under a different name in [1], where the pre-Lie logarithm and
the pre-Lie exponential were introduced. In relation with mathematical physics, the
work of Connes and Kreimer on Hopf algebras and renormalisation of quantum field
theories [11–13], at least in its initial stage, used an Hopf algebra of decorated rooted

1For more on the tree-factorial, see for example [3, 17].
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trees, which is the dual of the universal enveloping algebra of a free pre-Lie algebra
(also known as a Grossman-Larson Hopf algebra [16]).

Let PL be the free pre-Lie algebra on one generator (spanned by undecorated
rooted trees), and let P̂L be its completion with respect to its graduation.

Let us now explain briefly why the space P̂L is a monoid, just like the space
of formal power series with no constant term in one variable is a monoid under
composition.

Every element B of P̂L can be considered as a linear operator acting on P̂L by

C 	→ φB(C), (8)

for any C ∈ P̂L, where φB is the unique morphism of completed pre-Lie algebras
from P̂L to P̂L that maps the generator to B. Existence and uniqueness of φB are
given by the freeness of PL as a pre-Lie algebra.

One can then show that the composition of two such operators is again of the same
kind, and this defines an associative (but linear only with respect to its left argument)
product ◦ on P̂L, that it is natural to call the composition of tree-indexed series.

Let us now introduce our main tree-indexed series of interest: letΩ be the inverse
of A for the composition law of tree-indexed series.

Using this definition, the first few terms can be computed and are given by

= − 1
2

+
1
3

+
1
6 2

− 1
4

− 1
6 2

− 1
12

+ · · ·
(9)

This series is also used in numerical analysis under the name of “backward error
analysis” element. It can also be considered as providing a “pre-Lie Magnus expan-
sion”, similar to the more classical Magnus expansion, see [15]. The tree-indexed
series A andΩ are the concrete expansions of the pre-Lie exponential and logarithm
that play a crucial rôle in the general theory of pre-Lie algebras, see for example [23]
for more details on this.

The story we want to tell here has started with the aim to understand the coeffi-
cients of Ω , which are complicated-looking rational numbers with signs, including
Bernoulli numbers and other interesting numbers. This has lead to consider a one
parameter versionΩx with coefficients in the polynomial ringQ[x]. Then, motivated
by a connection found with the study of Lie idempotents, the author has introduced
a q-analogue ofΩ , calledΩq , with coefficients in the field of rational functions in q.

Let us now explain how one can give an expression for the coefficients of Ω .
The aim is therefore to describe a procedure starting from a rooted tree T and

giving a rational number ΩT such that

Ω =
∑

T

ΩT
T

# Aut T
, (10)
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where Aut T is the automorphism group of the rooted tree T . This group is defined,
after choosing a bijection between the set of vertices of T and the set of integers in
the interval [1, n], as the subgroup of the symmetric group Sn preserving the root
and the adjacency of vertices.

This result that we are going to explain now has been obtained by Wright and
Zhao in [30] and can be described using several steps:

rooted tree
1−→ partial order

2−→ polytope
3−→ polynomial

4−→ rational number

Let us present these steps in order.
1 First, a rooted tree defines a partial order on the set of its vertices, where

x ≤ y if and only if there is a path from the root up to y going through x . This partial
order has the root as unique minimal element, and maximal elements are the leaves.

For example, the partial order associated with the tree a

b

d

c

is described by the
relations a ≤ c and a ≤ b ≤ d. Let us keep this tree as a running example.

2 Next, given a partial order (P,≤), one can consider its order polytope in the
space R

P (with coordinates xi for i ∈ P). This is defined by the inequalities

∀i ∈ P 0 ≤ xi ≤ 1, (11)

∀i, j ∈ P i ≤ j =⇒ xi ≤ x j . (12)

For the running example, this gives the polytope described by the inequalities
0 ≤ xa ≤ xc ≤ 1 and 0 ≤ xa ≤ xb ≤ xd ≤ 1.

The order polytope was introduced by Stanley [27]. It has some nice general
properties. First, it is a lattice polytope, which means that all its vertices are in Z

P

(and in fact in {0, 1}P ). Moreover, it is an empty lattice polytope, which means that
it has no other points in Z

P than its vertices.
Some new results on order polytopes have been obtained recently in [26].
In the example, there are seven vertices:

0

0

0

0

0

0

0

1

0

0

1

0

0

0

1

1

0

1

1

0

0

1

1

1

1

1

1

1

3 Now, from a lattice polytope Q, one can define a polynomial, called the
Ehrhart polynomial EQ . Its defining property is that, for every integer n ≥ 0, the
value EQ(n) is the number of lattice points in the dilated polytope nQ (where all
coordinates of vertices have been multiplied by n).
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For the running example of rooted tree, one can compute (by interpolation)

ET (n) = (n + 1)(n + 2)(n + 3)(3n + 4)

24
, (13)

where one uses the convenient shortcut notation ET for the Ehrhart polynomial of
the order polytope of the poset associated with T .

The Ehrhart polynomial has a wonderful general property called reciprocity,
namely its value EQ(−n) at negative integers is (up to sign) the number of inte-
rior lattice points (points not belonging to any proper face) in the dilated polytope
nQ. In particular, if the polytope Q is an empty lattice polytope, then

EQ(−1) = 0. (14)

Because the order polytope of a poset is an empty lattice polytope, one therefore
knows that the Ehrhart polynomial of the order polytope of the poset of a rooted tree
vanishes at −1.

A general reference for the theory of Ehrhart polynomials is [2].
4 The last step is to go from a polynomial Z vanishing at −1 to the rational

number Z ′(−1), which is also the value of the polynomial Z/(1 + x) at x = −1.
In our favorite example of rooted tree, from the Ehrhart polynomial displayed in

(13), one gets the number 1
12 .

Theorem 1 (Wright-Zhao) The coefficientΩT in the tree-indexed seriesΩ is given
(up to sign) by the derivative at −1 of the Ehrhart polynomial ET (n) (defined using
the order polytope of the poset of the rooted tree T ).

This is the promised explicit description of the coefficients of Ω . Given the last
step of this description, it is natural to introduce the 1-parameter tree-indexed series
Ωx defined by

Ωx =
∑

T

ET (x)
T

# Aut T
. (15)

This is like a generating series of the Ehrhart polynomials of trees. Note that every
coefficient is divisible by 1 + x , because all order polytopes are empty lattice poly-
topes.

Now let us turn to another one-parameter deformation of Ω , with a very different
origin.

Let
FQSYM = ⊕n≥0QSn (16)

be the direct sum of group rings of symmetric groups. This has a natural structure of
graded Hopf algebra, introduced byMalvenuto and Reutenauer [22]. It is also known
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as the algebra of free-quasi-symmetric functions [14]. The associative product is
defined on the basis by

π ∗ σ = πx shift(σ ), (17)

where x is the classical shuffle product of words and “shift” is the minimal shift on
indices of σ that makes them disjoint from the indices of π . For example, the product
of the permutation 12 in S2 with itself is given by

12 ∗ 12 = 12x34 = 1234 + 1324 + 1342 + 3124 + 3142 + 3412. (18)

In this algebra, one can also cut the product ∗ into two halves: let π ≺ σ be the sum
of words inxwhere the first letter comes from π and let π � σ be the sum of words
in x where the first letter comes from σ . For example:

12 ≺ 12 = 1234 + 1324 + 1342, (19)

12 � 12 = 3124 + 3142 + 3412. (20)

Then obviouslyπ ∗ σ = π ≺ σ + π � σ . These two products define on FQSYM
a structure of dendriform algebra, as defined in [19].

It is then rather easy to check that the operation

π � σ = π � σ − σ ≺ π (21)

defines a pre-Lie product of FQSYM.2

By the universal property of the free pre-Lie algebra on one generator PL, there is a
unique morphism of pre-Lie algebrasψ from PL to FQSYM that maps the generator
to the permutation 1 in S1. This morphism can be extended into a morphism (still

denoted byψ) from the completion P̂L of PL to the completion of FQSYM.This gives
a way to map tree-indexed series to infinite linear combinations of permutations.

It happens that the image of Ω by ψ has a nice explicit expression.

Theorem 2 There holds

ψ(Ω) =
∑

n≥1

(−1)n

n

∑

σ∈Sn

(−1)d(σ )

(n−1
d(σ )

) σ, (22)

where d(σ ) is the number of descents of the permutation σ .

On the other hand, a one-parameter deformation of this formula has appeared in
the study of Lie idempotents [18], namely

∑

n≥1

(−1)n

[n]q
∑

σ∈Sn

(−1)d(σ )qmaj(σ )−(d(σ )+1
2 )

[
n − 1
d(σ )

]

q

σ, (23)

2In fact, the same formula gives a pre-Lie algebra for every dendriform algebra.
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where q is a formal parameter, [n]q = 1 + q + q2 + · · · + qn−1, [n]q ! = [1]q [2]q
. . . [n]q , and [

n
d

]

q

= [n]!q
[d]!q [n − d]!q (24)

are the usual q-integers, q-factorials and q-binomial coefficients. In (23), one can see
maj(σ ), which is the major index, defined as the sum of the positions of the descents.

One can then prove (see [6]) that this deformation is still in the image of ψ .

Theorem 3 There exists a tree-indexed series Ωq , with coefficients in the field of
fractions Q(q), such that ψ(Ωq) is equal to (23). Moreover, one can evaluate this
series at q = 1, and the result is Ω .

The first few terms of Ωq are

− 


+



+

  

− 
 

− 
  

− 
  

− −q

   
+ · · ·

where, for every integer d, Φd(q) is the cyclotomic polynomial of order d.

Now the main question is: can we understand the coefficients of Ωq in the same
way as explained before in Theorem 1 for Ω ? The answer is yes, with just a single
new ingredient, which is a q-analog of the Ehrhart polynomial, as defined in [9].

Recall that a tree T has an associated poset and order polytope QT .

Proposition 1 There exists a unique polynomial Eq,T inQ(q)[x] such that, for every
integer n ≥ 0, there holds

Eq,T ([n]q) =
∑

z∈nQT

q
∑

z, (25)

where
∑

z is the sum of the coordinates of z.

Moreover, there is still a kind of reciprocity.

Proposition 2 For every integer n ≥ 1, there holds

Eq,T ([−n]q) = (−1)d
∑

z∈ interior of nQT

q
∑

z, (26)

where d is the dimension of the ambient space.

For example, consider the tree . The polytope QT is just the segment [0, 1] in R.
Then ∑

z∈nQT

q
∑

z = 1 + q + · · · + qn = 1 + q[n]q . (27)
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Therefore the q-Ehrhart polynomial is 1 + qx . Evaluated at the q-integer [−1]q =
−1/q, it gives 0, as there are no interior points in QT . The same vanishing at [−1]q
holds for all empty lattice polytopes, hence in particular for order polytopes.

Theorem 4 The coefficient Ωq,T of the rooted tree T in Ωq is the value at [−1]q
(i.e. −1/q) of the polynomial Eq,T (x)/(1 + qx).

This is an explicit description of the coefficients of Ωq . Note that this reduces to
Theorem 1 when q tends to 1. This is also essentially the derivative at [−1]q .

Just as in the case of Ω , it is natural to introduce a generating series for the
q-Ehrhart polynomials:

Ωq,x =
∑

T

Eq,T (x)
T

# Aut T
. (28)

The first few terms of Ωq,x are given by

All the series A, Ω , Ωq and Ωq,x can be characterized by some functional equa-
tions, using the completed free pre-Lie algebra on one generator and the universal
enveloping algebra of its Lie algebra.

The tree-indexed A can be defined concisely by the equality

(29)

where the fraction has to be understood as an element of the (completed)
enveloping algebra of PL, and � is the action deduced from the pre-Lie product.

Composing this functional equation by Ω (using the monoid structure on tree-
indexed series and its compatibility with the other algebraic structures), one gets

(30)
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Inverting then the element of the completed enveloping algebra, one gets

(31)

which has Ω as unique solution.
With a little more work, one can show that Ω is characterized by

(32)

A similar-looking equation can then be given for the q-analog Ωq :

(33)

where Ωq [q] is obtained from Ωq by multiplying by qn−1 the coefficients of trees
with n vertices, for all n.

There is a similar functional equation for Ωq,x , that the interested reader can find
in [8].

Let us now return to the coefficients of Ω and Ωq .
The coefficients of corollas (trees made of one root and some vertices attached

to the root) in Ω are interesting and well-known numbers, namely the Bernoulli
numbers, classically defined as the coefficients Bn in the exponential generating
series

z

exp(z) − 1
=

∑

n≥0

Bn
zn

n! .

This can be easily proved using themorphism ofmonoids from (P̂L, ◦) to themonoid
(Q[[z]],×) which maps the corolla with n leaves to zn .

It follows that the coefficients of corollas in Ωq must be q-analogues of the
Bernoulli numbers, In fact, these q-analogues were introduced by Carlitz already
in the 1950s [5]. They have been related to the values of a q-analogue of the zeta
function in [7]. They can be defined as follows

q(qβ + 1)n − βn =

⎧
⎪⎨

⎪⎩

q − 1 si n = 0,

1 si n = 1,

0 si n > 1,

(34)

where one has to expand the binomial and then replace βk by βk .
These numbers lead to another interesting point of view on the coefficients ofΩq .

Instead of obtaining them by a derivative at [−1]q , one can get them using the linear
form Ψq defined by

Ψq(x
n) = βn. (35)
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By reference to the classical umbral calculus, the image of a polynomial in x by
the linear form Ψq can be called its q-umbra.

The description of the coefficients in Ωq can be rephrased using q-umbra. More
precisely, let T be the rooted tree obtained by grafting several rooted trees T1, . . . , Tk
on a common root. Then the coefficient of T in Ωq is given by

Ψq

(
k∏

i=1

ETi

)
, (36)

using the q-Ehrhart polynomials attached to the rooted trees T1, . . . , Tk . For more
details, see [8].

Let us now go back to the classical case q = 1.
It is worth remarking that the coefficients of the double corollas3 in Ω have

appeared in the works of Ramanujan, as coefficients of an asymptotic expansion
involving triangular numbers [28, 29]. By the same umbral expression (36), but

taken at q = 1, they can be obtained as the values Ψ
((x+2

2

)n)
, where Ψ is the linear

form on polynomials in x that maps xn to the Bernoulli number Bn .
Let us end this article by some more results and questions about the coefficients

of Ω .
Computing the first few terms ofΩ , one observes that the corolla with three leaves

has zero coefficient. More generally, this is also true for corollas with k leaves when
k ≥ 3 is odd, because the Bernoulli numbers Bk vanish.

One can therefore ask the following question: is it possible to describe all trees
that have zero coefficients in Ω ?

It has been proved in [25] that if the number n is composite (not a prime number)
then there is at least one tree with n vertices which has zero coefficient in Ω . This is
proved by exhibiting an explicit family of trees with vanishing coefficients.

On the other hand, it has been checked up to n = 19 included that if n is a prime
number, then no tree with n vertices has zero coefficient in Ω . For n = 19, this
verification already involved 4688676 trees. One may wonder if this continues to
hold for greater prime numbers.

Let us end with a last statement. Define the multi-corolla Mp
� as the rooted tree

obtained by grafting p linear trees4 of size � on a common root. It has therefore
p� + 1 vertices.

Theorem 5 If p ≥ 3 is odd and � is odd, then the coefficient of M p
� in Ω is zero.

When � = 1, this is true by the classical vanishing of Bernoulli numbers, which are
the coefficients of corollas inΩ . This theorem is just a very special case of the results
in [10], which involve the notion of Gorenstein polytope.

3A double corolla is obtained by grafting several copies of the rooted tree with 2 vertices on a
common root.
4A linear tree is a rooted tree which is a path graph (no forking vertex), with the root at one end.
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Evaluating Generating Functions
for Periodic Multiple Polylogarithms
via Rational Chen–Fliess Series

Kurusch Ebrahimi-Fard, W. Steven Gray and Dominique Manchon

Abstract The goal of the paper is to give a systematic way to numerically evaluate
the generating function of a periodic multiple polylogarithm using a Chen–Fliess
series with a rational generating series. The idea is to realize the corresponding Chen–
Fliess series as a bilinear dynamical system. A standard form for such a realization is
given. The method is also generalized to the case where the multiple polylogarithm
has non-periodic components. This allows one, for instance, to numerically validate
the Hoffman conjecture. Finally, a setting in terms of dendriform algebras is provided.

Keywords Chen–Fliess series · Dendriform algebra · Hoffman conjecture ·
Multiple polylogarithms · Rational formal power series

1 Introduction

Given any vector s = (s1, s2, . . . , sl) ∈ N
l with s1 ≥ 2 and si ≥ 1 for i ≥ 2, the

associated multiple polylogarithm (MPL) of depth l and weight |s| := ∑l
i=1 si is

taken to be

Lis(t) :=
∑

k1>k2>···>kl≥1

t k1

ks1
1 k

s2
2 · · · ksll

, |t | ≤ 1, (1)
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whereupon the multiple zeta value (MVZ) of depth l and weight |s| is the value of
(1) at t = 1, namely,

ζ(s) := Lis(1).

Any such vector s will be referred to as admissible. The MPL in (1) can be represented
in terms of iterated Chen integrals with respect to the 1-forms ω

(1)
j := dt j/(1 − t j )

and ω
(0)
j := dt j/t j . Indeed, using the standard notation, |s( j)| := s1 + · · · + s j , j ∈

{1, . . . , l}, one can show that

Lis(t) =
∫ t

0

( |s(1)|−1∏

j=1

ω
(0)
j

)

ω
(1)
|s(1)| · · ·

( |s(l)|−1∏

j=|s(l−1)|+1

ω
(0)
j

)

ω
(1)
|s(l)|. (2)

For instance,

Li(2,1,1)(t) =
∫ t

0

dt1
t1

∫ t1

0

dt2
1 − t2

∫ t2

0

dt3
1 − t3

∫ t3

0

dt4
1 − t4

=
∑

k1>k2>k3≥1

t k1

k2
1k2k3

.

An MPL of depth l is said to be periodic if it can be written in the form Li{s}n (t),
where {s}n denotes the n-tuple (s, s, . . . , s) ∈ N

nl , n ≥ 0 with Li{s}0(t) := 1.1 In this
case, the sequence (Li{s}n (t))n∈N0 has the generating function

Ls(t, θ) :=
∞∑

n=0

Li{s}n (t)
(
θ |s|)n . (3)

In general, the integral representation (2) implies thatLs will satisfy a linear ordinary
differential equation in t whose solution can be written in terms of a hypergeometric
function [1, 4, 5, 28–31]. For example, when l = 1 and s = (s), it follows that

((

(1 − t)
d

dt

)(

t
d

dt

)s−1

− θ s

)

Ls(t, θ) = 0, (4)

and its solution is the Euler–Gauss hypergeometric function

L(s)(t, θ) =s Fs−1

( −ωθ,−ω3θ, . . . ,−ω2s−1θ

1, 1, . . . , 1

∣
∣
∣
∣ t

)

,

where ω = eπ i/s , a primitive s-th root of −1 [4]. By expanding this solution into a
hypergeometric series and equating like powers of θ with those in (3), it is possible
to show, for example, when s = 2 that

1Following other authors, {s}n = {(s1, s2, . . . , sl )}n will be written more concisely as
{s1, s2, . . . , sl }n .
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ζ({2}n) = π2n

(2n + 1)! , n ≥ 1. (5)

In a similar manner it can be shown that

ζ({3, 1}n) = 2π4n

(4n + 2)! , n ≥ 1.

This method has yielded a plethora of such MZV identities [3, 4, 6, 32]. The most
general case is treated in [31], where it is shown thatLs satisfies the linear differential
equation of Fuchs type

(Ps − θ |s|)Ls(t, θ) = 0, (6)

where for s = (s1, s2, . . . , sl) ∈ N
l

Ps := Psl Psl−1 · · · Ps1

and

Psi :=
(

(1 − t)
d

dt

) (

t
d

dt

)si−1

.

(The conventions in [31] are to use −θ in place of θ and t in place of 1 − t .) In [31]
and related work [28–30], the authors develop WKB type asymptotic expansions of
these hypergeometric solutions.

The ultimate goal of the present paper is to provide a numerical scheme for
estimating Ls(t, θ) by in essence mapping the |s|-order linear differential equation
(6) to a system of |s| first-order bilinear differential equations which can be solved
by standard tools found in software packages like MatLab. Specifically, it will be
shown how to construct a dynamical system of the form

ż = N0z u0 + N1z u1, z(0) = z0 (7a)

y = Cz, (7b)

which when simulated over the interval (0, 1) has the property that y(t) = Ls(t, θ)

for any value of θ and t ∈ (0, 1). In this case, the matrices N0 and N1 will depend on
θ , and the initial condition z0 and the input functions u0, u1 must be suitably chosen.
Such a technique could be useful for either disproving certain conjectures involving
MZVs or providing additional evidence for the truthfulness of other conjectures.
For example, one could validate with a certain level of (numerical) confidence a
conjecture of the form

ζ({sa}n) = bnζ({sb}n), n, b ∈ N,

where sa ∈ N
la , sb ∈ N

lb with |sa| = |sb|. Take as a specific example the known
identity
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ζ({4}n) = 4nζ({3, 1}n) (8)

for all n ≥ 1, so that sa = (4), sb = (3, 1) and b = 4 [4]. Note that for n = 1 the
identity follows immediately from double shuffle relations for MZVs [22]. On the
level of generating functions it is evident that

L(4)(1, θ) =
∞∑

n=0

Li{4}n (1)
(
θ4

)n =
∞∑

n=0

ζ({4}n) θ4n

L(3,1)(1,
√

2θ) =
∞∑

n=0

Li{3,1}n (1)
(
(
√

2θ)4
)n =

∞∑

n=0

4nζ({3, 1}n) θ4n.

Therefore, identity (8) implies that

L(4)(1, θ) − L(3,1)(1,
√

2θ) = 0, ∀θ ∈ R, (9)

a claim that can be tested empirically if these generating functions can be accurately
evaluated. The method can also be generalized to address the conjecture of Hoffman
that

ζ({2}n, 2, 2, 2) + 2ζ({2}n, 3, 3) = ζ(2, 1, {2}n, 3), (10)

for all integers n > 0, which has only been proved for n ≤ 8 [6]. The idea here
is to admit non-periodic components in the generating function calculation. For
example, ({2}n, 3, 3) can be viewed as having the periodic component {2}n and the
non-periodic component (3, 3). In the general case, say when sn := (sa, {sb}n, sc),
n ≥ 0, the generating function is defined analogously as

L(sa ,{sb},sc)(t, θ) :=
∞∑

n=0

Lisn (t)
(
θ |sb |)n .

Therefore, relation (10), if true, would imply that

L({2},2,2,2)(1, θ) + 2L({2},3,3)(1, θ) − L(2,1,{2},3)(1, θ) = 0, ∀θ ∈ R. (11)

The basic approach to estimatingLs(t, θ) is to map a periodic multiple polylogarithm
to a rational series and then to employ well known concepts from control theory
to produce bilinear state space realization (7) of the corresponding rational Chen–
Fliess series [2, 16, 17]. The periodic nature of the MPL always ensures that these
realizations have a certain built-in recursion/feedback structure. The technique will
first be described in general, and then it will be demonstrated by empirically verifying
the identities (5), (8), and (10). It should be noted that the connection between
polylogarithms and differential equations with singularities at {0, 1,∞} has been
well studied by a number of researchers, especially, [8, 10, 19, 20]. (See, in particular,
[20, Chapter 4] and the references therein.) In addition, rational series of the type
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suitable for representing periodic multiple polylogarithms have appeared in [8, 20].
In this regard, the main contribution here is to customize these results specifically
and explicitly for periodic multiple polylogarithms and then to actually apply them
to problems like the Hoffman conjecture (10).

The paper is organized as follows. In the next section, a brief summary of rational
Chen–Fliess series is given to establish the notation and the basic concepts to be
employed. Then the general method for evaluating a generating function of a periodic
multiple polylogarithm is given in the subsequent section, which also contains in
Sect. 3.3 a short digression regarding another way of looking at periodic MPLs in
terms of dendriform algebra along the lines of reference [15]. This is followed by
several examples in Sect. 4. In particular, the last example shows that the Hoffman
conjecture (10) has a high likelihood of being true. The final section gives the paper’s
conclusions.

2 Preliminaries

2.1 Chen–Fliess Series

A finite nonempty set of noncommuting symbols X = {x0, x1, . . . , xm} is called an
alphabet. Each element of X is called a letter, and any finite sequence of letters from
X , η = xi1 · · · xik , is called a word over X . The length of word η, denoted |η|, is the
number of letters in η. The set of all words with fixed length k is denoted by Xk .
The set of all words including the empty word, ∅, is designated by X∗. It forms a
monoid under catenation. The set ηX∗ξ ⊆ X∗ is the set of all words with prefix η

and suffix ξ . Any mapping c : X∗ → R
� is called a formal power series. The value

of c at η ∈ X∗ is written as (c, η) ∈ R
� and called the coefficient of the word η in

the series c. Typically, c is represented as the formal sum c = ∑
η∈X∗(c, η)η. If the

constant term (c,∅) = 0 then c is said to be proper. The collection of all formal
power series over the alphabet X is denoted by R

�〈〈X〉〉. The subset of polynomials
is written as R

�〈X〉. Each set forms an associative R-algebra under the catenation
product.

Definition 1 Given ξ ∈ X∗, the corresponding left-shift operator ξ−1 : X∗ → R〈X〉
is defined:

η �→ ξ−1(η) :=
{

η′ : η = ξη′
0 : otherwise.

It is extended linearly to R
�〈〈X〉〉.

One can formally associate with any series c ∈ R
�〈〈X〉〉 a causal m-input, �-output

operator, Fc, in the following manner. Let t0 < t1 be fixed, and consider a class
of locally integrable functions u = (u1, . . . , um) ∈ Lm

1,loc[t0, t1) modulo almost-
everywhere equality with respect to the Lebesgue measure. For any compact subset
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Ω = [t0, s] ⊂ [t0, t1), the usual L1 norm restricted to Ω , denoted here by ‖·‖1,Ω ,
provides a family of seminorms on Lm

1,loc[t0, t1). Define inductively for each word
η ∈ X∗ and u ∈ Lm

1,loc(Ω) an iterated integral by setting E∅[u] = 1 and letting

Exi η̄[u](t) :=
∫ t

t0

ui (τ )Eη̄[u](τ ) dτ, (12)

where xi ∈ X , η̄ ∈ X∗, t ∈ Ω , and u0 = 1. The input-output operator corresponding
to the series c ∈ R

�〈〈X〉〉 is the Fliess operator or Chen–Fliess series

Fc[u](t) =
∑

η∈X∗
(c, η) Eη[u](t) (13)

[17]. If there exist real numbers Kc, Mc > 0 such that the coefficients of the gener-
ating series c = ∑

η∈X∗(c, η)η ∈ R
�〈〈X〉〉 satisfy the growth bound

|(c, η)| ≤ KcM
|η|
c |η|!, ∀η ∈ X∗, (14)

then the series (13) converges absolutely and uniformly for every t ∈ Ω provided
the measure of Ω and ‖u‖1,Ω are sufficiently small [18].

In the case of polylogarithms, it is sufficient to consider the single-input, single-
output case m = � = 1 and to set t0 = 0 and t1 = 1. The convergence situation,
however, is a bit different: the underlying iterated integrals (12) involve the locally
integrable function u1(t) = 1/(1 − t) on [0, 1), but the function u0 is now given by
u0(t) = 1/t , which is locally integrable only on (0, 1). The growth condition (14) is
not sufficient to ensure the convergence of a Chen-Fliess series. Even rationality of the
generating series c is not sufficient as it can be shown using results from [20, Theorem
4.3.4], for example, that Fc[Li0](t) with c = ∑

k≥0 x
k
0 x1 and Li0(t) := t/(1 − t) is

divergent. Therefore, the convergence of (13) will have to be addressed for the
specific case of interest in the context of polylogarithms.

2.2 Bilinear Realizations of Rational Chen–Fliess Series

A series c ∈ R〈〈X〉〉 is called invertible if there exists a series c−1 ∈ R〈〈X〉〉 such
that cc−1 = c−1c = 1.2 In the event that c is not proper, i.e., the coefficient (c,∅) is
nonzero, it is always possible to write

c = (c,∅)(1 − c′),

where c′ ∈ R〈〈X〉〉 is proper. It then follows that

2The polynomial 1∅ is abbreviated throughout as 1.
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c−1 = 1

(c,∅)
(1 − c′)−1 = 1

(c,∅)
(c′)∗,

where the Kleene star of c′ is defined by

(c′)∗ :=
∞∑

i=0

(c′)i .

In fact, c ∈ R〈〈X〉〉 is invertible if and only if c is not proper. Now let S be a subalgebra
of the R-algebra R〈〈X〉〉 with the catenation product. S is said to be rationally closed
when every invertible c ∈ S has c−1 ∈ S (or equivalently, every proper c′ ∈ S has
(c′)∗ ∈ S). The rational closure of any subset E ⊂ R〈〈X〉〉 is the smallest rationally
closed subalgebra of R〈〈X〉〉 containing E .

Definition 2 A series c ∈ R〈〈X〉〉 is rational if it belongs to the rational closure of
R〈X〉.

Rational series have appeared in a number of different contexts including automata
theory [26], control theory [17], formal language theory [25], and polylogarithms
[20]. The monograph [2] provides a concise introduction to the area. Of particu-
lar importance is an alternative characterization of rationality using the following
concept.

Definition 3 A linear representation of a series c ∈ R〈〈X〉〉 is any triple (μ, γ, λ),
where

μ : X∗ → R
n×n

is a monoid morphism, and the vectors γ, λT ∈ R
n×1 are such that each coefficient

(c, η) = λμ(η)γ, ∀η ∈ X∗.

The integer n is the dimension of the representation.

Definition 4 A series c ∈ R〈〈X〉〉 is called recognizable if it has a linear represen-
tation.

Theorem 1 [26] A formal power series is rational if and only if it is recognizable.

Returning to (13), Chen–Fliess series Fc is said to be rational when its generating
series c ∈ R〈〈X〉〉 is rational. The state space realization (7) is said to realize Fc on
some admissible input set U when (7a) has a well defined solution, z(t), on the
interval [t0, t0 + T ] for every T > 0 with input u ∈ U and output

y(t) = Fc[u](t) = C(z(t)), t ∈ [t0, t0 + T ].

Identify with any linear representation (μ, γ, λ) of the series c ∈ R〈〈X〉〉 the bilinear
system
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(N0, N1, z0,C) := (μ(x0), μ(x1), γ, λ).

The following result is well known.

Theorem 2 [17, 18] The statements below are equivalent for a given c ∈ R〈〈X〉〉:
i (μ, γ, λ) is a linear representation of c.
ii The bilinear system (N0, N1, z0,C) realizes Fc on the extended space Lp,e(t0)

for any p ≥ 1.

3 Evaluating Periodic Multiple Polylogarithms

It is first necessary to associate a periodic MPL and its generating function to a
rational series. Elements of this idea have appeared in numerous places. The approach
taken here is most closely related to the one presented in [21]. The next step is
then to find the bilinear realization of the rational Chen–Fliess series in terms of its
linear representation (see Theorem 4). The case when non-periodic components are
present works similarly but is slightly more complicated (see Theorem 5). Recall
that throughout m = 1, so that the underlying alphabet is X := {x0, x1}.

3.1 Periodic Multiple Polylogarithms

Given any admissible vector s ∈ N
l , there is an associated word ηs ∈ x0X∗x1 of

length |s|
ηs = xs1−1

0 x1x
s2−1
0 x1 · · · xsl−1

0 x1.

In which case, cs := (θ |s|ηs)
∗ = ∑

n≥0

(
θ |s|ηs

)n
is a rational series satisfying the

identity
1 + (θ |s|ηs)cs = cs. (15)

The idea is to now relate the generating function of the sequence (Li{s}n (t))n>0 to the
Chen–Fliess series with generating series cs. Recall that for any word xiξ ′ ∈ X∗ the
iterated integral is defined inductively by

Exi ξ ′ [u](t) =
∫ t

0
ui (τ )Eξ ′ [u](τ ) dτ,

where xi ∈ X , ξ ′ ∈ X∗. Assume here that the letters x0 and x1 correspond to the inputs
u0(t) := 1/t and u1(t) := 1/(1 − t), respectively, and E∅ := 1. For the formal power
series cs ∈ R〈〈X〉〉, the corresponding Chen–Fliess series is then taken to be



Evaluating Generating Functions for Periodic Multiple Polylogarithms … 453

Fcs [u] =
∑

ξ∈X∗
(cs, ξ)Eξ [u].

Comparing this to the classical definition (13), the factor 1/t can be extracted from
u0 and u1 so that each integral can be viewed instead as integration with respect to
the Haar measure. That is,

Exi ξ ′ [u](t) =
∫ t

0
ūi (τ )Eξ ′ [u](τ )

dτ

τ
,

where ū0(t) := 1 and ū1(t) = tu1(t). The following theorem is central to the paper.

Theorem 3 For any admissible vector s ∈ N
l ,

Ls(t, θ) = Fcs [Li0](t), t ∈ [0, 1),

where Li0(t) := t/(1 − t), and the defining series for Fcs [Li0](t) converges abso-
lutely for any fixed t ∈ [0, 1) provided θ ∈ R is sufficiently small.

Proof First observe that since cs = ∑
n≥0

(
θ |s|ηs

)n
, it follows directly that

Fcs [u](t) =
∞∑

n=0

F(θ |s|ηs)
n [u](t) =

∞∑

n=0

Eηn
s
[u](t) (

θ |s|)n .

Comparing this against the definition

Ls(t, θ) =
∞∑

n=0

Li{s}n (t)
(
θ |s|)n ,

it is evident that one only needs to verify the identity

Eηn
s
[Li0](t) = Li{s}n (t), n ≥ 0. (16)

But this is clear from (2), i.e., for any admissible vector s ∈ N
l

Lis(t) =
∫ t

0
ui (τ )Lis′(τ ) dτ,

where ηs = xiηs′ ,

ui (t) =
{ 1

t : i = 0
t

1−t
1
t : i = 1,

and Li∅(t) = 1 [32]. Therefore, it follows directly that Lis(t) = Eηs [Li0](t), from
which (16) also follows. To prove the convergence claim, it is sufficient to consider
the special case where ηs = xs1−1

0 x1 so that cs = (θ s1xs1−1
0 x1)

∗. The general case then
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follows similarly. Clearly, for any t ∈ [0, 1)

Ex1[Li0](t, 0) = ln

(
1

1 − t

)

=
∞∑

k=1

t k

k
.

Hence, for any s1 ≥ 1

Ex
s1−1
0 x1

[Li0](t, 0) =
∞∑

k=1

t k

ks1
= Li(s1)(t) < ∞,

and similarly, for any n ≥ 1

E(
x
s1−1
0 x1

)n [Li0](t, 0) =
∞∑

k1,k2,...,kn=1

t k1+k2+···+kn

ks1
1 (k1 + k2)s1 · · · (k1 + k2 + · · · + kn)s1

.

The convergence claim for the series

F(
θ s1 x

s1−1
0 x1

)∗ [Li0](t) =
∞∑

n=0

E(
x
s1−1
0 x1

)n [Li0](t, 0) θ s1n

can be verified by the ratio test. Observe

E(
x
s1−1
0 x1

)n+1[Li0](t, 0) |θ |s1(n+1)

E(
x
s1−1
0 x1

)n [Li0](t, 0) |θ |s1n

=
∑∞

k1,k2,...,kn+1=1
t k1+k2+···+kn+1

k
s1
1 (k1+k2)

s1 ···(k1+k2+···+kn+1)
s1

∑∞
k1,k2,...,kn=1

t k1+k2+···+kn

k
s1
1 (k1+k2)

s1 ···(k1+k2+···+kn)s1

|θ |s1

=
∞∑

k1=1

t k1

ks1
1

∑∞
k2,k3,...,kn+1=1

t k2+k3+···+kn+1

(k1+k2)
s1 (k1+k2+k3)

s1 ···(k1+k2+···+kn+1)
s1

∑∞
k2,k3,...,kn+1=1

t k2+k3+···+kn+1

k
s1
2 (k2+k3)

s1 ···(k2+k3+···+kn+1)
s1

|θ |s1

< Li(s1)(t)|θ |s1,

so that ratio is less than one when |θ | < (1/Li(s1)(t))
1/s1 . �

The key idea now is to apply Theorem 2 and the rational nature of the series cs in
order to build a bilinear realization of the mapping u �→ y = Fcs [u] (see [23, 24])
so that Ls(t, θ) can be evaluated by numerical simulation of a dynamical system. In
principle, one could attempt to ensure that any such realization is minimal in dimen-
sion or even canonical in some sense [7, 9, 11, 27]. There is also the potential for
lower dimensional realizations to exist if systems other than bilinear realizations are
considered. But in the present context these issues are not really essential. In addition,
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the realizations considered here are in the same general class as those described in [8,
20] for realizing classes of hypergeometric functions and polylogarithms using ratio-
nal generating series. But in this work they are customized specifically for periodic
multiple polylogarithms.

Theorem 4 For any admissible s ∈ N
l , Ls(t, θ) = Fcs [Li0](t) has the bilinear

realization
(N0, N1, z0,C) := (

μ(x0), μ(x1), γ, λ
)
,

where

N0 = diag
(
N0(s1), N0(s2), . . . , N0(sl)

)
(17a)

N1 = I+
|s| − N0 + θ |s|e|s|eT1 (17b)

with N0(si ) ∈ R
si×si and I+

|s| ∈ R
|s|×|s| being matrices of zeros except for a super

diagonal of ones, ei is an elementary vector with a one in the i-th position, and
z0 = CT = e1 ∈ R

|s|×1.

Proof First recall Definition 1 describing the left-shift operator on X∗, i.e., for any
xi ∈ X , x−1

i (·) is defined by x−1
i (xiη) = η with η ∈ X∗ and zero otherwise. In which

case, (xiξ)−1(·) = ξ−1x−1
i (·) for any ξ ∈ X∗. Now assign the first state of the real-

ization to be
z1(t) = Fcs [u](t) = 1 + F(θ |s|ηs)cs [u](t).

In light of the integral representation (2) of MPLs, differentiate z1 exactly s1 times
so that the input u1(t) := ū1(t)/t appears. Assign a new state at each step along the
way. Specifically,

ż1(t) = 1

t
Fθ |s|x−1

0 (ηs)cs
[u](t) =: z2(t)

1

t
...

żs1−1(t) = 1

t
F

θ |s|(xs1−1
0 )−1(ηs)cs

[u](t) =: zs1(t)
1

t

żs1(t) = ū1(t)
1

t
F

θ |s|(xs1−1
0 x1)−1(ηs)cs

[u](t) =: zs1+1(t)ū1(t)
1

t
.

This produces the first s1 rows of the matrices in (17) since when l > 1
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⎡

⎢
⎢
⎢
⎣

ż1(t)
...

żs1−1(t)
żs1(t)

⎤

⎥
⎥
⎥
⎦

= I+
s1×(s1+1)

⎡

⎢
⎢
⎢
⎣

z1(t)
...

zs1(t)
zs1+1(t)ū1(t)

⎤

⎥
⎥
⎥
⎦

1

t

= [
N0(s1) 0

]

⎡

⎢
⎢
⎢
⎣

z1(t)
...

zs1(t)
zs1+1(t)

⎤

⎥
⎥
⎥
⎦

1

t
+ [

0s1 es1

]

⎡

⎢
⎢
⎢
⎣

z1(t)
...

zs1(t)
zs1+1(t)

⎤

⎥
⎥
⎥
⎦
ū1(t)

1

t
.

Both
[
N0(s1) 0

]
and

[
0s1 es1

]
denote matrices in R

s1×(s1+1). The pattern is exactly
repeated until the final state, then the periodicity of cs comes into play. Namely,

ż|s|(t) = θ |s|ū1(t)
1

t
F(ηs)−1(ηs)cs [u](t) =: θ |s|z1(t)ū1(t)

1

t
,

which gives the final rows of N0 and N1 in (17). �

It is worth pointing out that the validity of (6) is obvious in the present setting.
Namely, (6) follows from the fact that (15) implies η−1

s (cs) − θ |s|cs = 0, and thus,
Theorem 3 gives

(Ps − θ |s|)Ls(t, θ) = (Ps − θ |s|)Fcs [Li0](t) = F
η−1

s (cs)−θ |s|cs
[Li0](t) = F0·cs [Li0](t) = 0.

3.2 Periodic Multiple Polylogarithms with Non-periodic
Components

The non-periodic case requires a generalization of the basic set-up. The following
lemma links this class of generating functions to the corresponding set of rational
Fliess operators.

Lemma 1 For any admissible s := (sa, {sb}, sc)

Ls(t, θ) = Fcs [Li0](t), t ∈ [0, 1), θ ∈ R,

where cs := ηsa

(
θ |sb|ηsb

)∗
ηsc .

Proof Similar to the periodic case, cs = ∑
n≥0 ηsa

(
θ |sb|ηsb

)n
ηsc , and therefore,

Fcs [u](t) =
∞∑

n=0

F
ηsa

(
θ |sb |ηsb

)n
ηsc

[u](t) =
∞∑

n=0

Eηsa ηn
sb

ηsc
[u](t) (

θ |sb |)n .
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The same argument used for proving (16) now shows that Eηsa ηn
sb

ηsc
[Li0](t) = Lisn (t),

n ≥ 0. In which case, Fcs [Li0](t) = Ls(t, θ) as claimed. �

The required generalization of Theorem 4 is a bit more complicated. A simple
example is given first to motivate the general approach.

Example 1 Consider the periodic MPL with non-periodic components specified by
s = (2, 1, {2}, 3) as appearing in (11). In this case, cs = ∑

n≥0 x0x2
1 (θ2x0x1)

nx2
0 x1 =

x0x2
1 c̄, where c̄ = x2

0 x1 + θ2x0x1c̄. Assign the first state of the realization to be

z1(t) = Fcs [u](t) = Fx0x2
1 c̄

[u](t).

The strategy here is to differentiate z1 exactly
∣
∣ηsa

∣
∣ = ∣

∣x0x2
1

∣
∣ = 3 times, assigning

new states along the way, in order to remove the prefix x0x2
1 and isolate c̄. At which

point, the identity c̄ = x2
0 x1 + θ2x0x1c̄ is used and the process is continued. This will

yield a certain block diagonal structure for N0 and an upper triangular form for N1.
As will be shown shortly, this structure is completely general but possibly redundant.
Specifically,

ż1(t) = 1

t
Fx2

1 c̄
[u](t) =: z2(t)

1

t

ż2(t) = 1

t
ū1(t)Fx1 c̄[u](t) =: z3(t)ū1(t)

1

t

ż3(t) = 1

t
ū1(t)Fc̄[u](t) = 1

t
ū1(t)Fx2

0 x1+θ2x0x1 c̄[u](t) =: z4(t)ū1(t)
1

t

ż4(t) = 1

t
Fx0x1+θ2x1 c̄[u](t) =: z5(t)

1

t

ż5(t) = 1

t
Fx1[u](t) + θ2

t
ū1(t)Fc̄[u](t) =: z6(t)

1

t
+ θ2z4(t)ū1(t)

1

t

ż6(t) = ū1(t)
1

t
.

The corresponding realization at this point has the form

ż =Ñ0zū0 + Ñ1zū1 + B1ū1, z(0) = z̃0

y =C̃z,

which does not have the form of a bilinear realization as defined in (7) since the
state equation for z6 does not depend on z, and thus, the term B1ū1 with B1 = e6

appears. Nevertheless, a permutation of the canonical embedding of Brockett (see
[7, Theorem 1]), namely,

N0 =
[
Ñ0 0
0 0

]

, N1 =
[
Ñ1 B1

0 0

]

, z0 =
[
z̃0

1

]

, CT =
[
C̃T

0

]

, (18)
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renders an input-output equivalent bilinear realization of the desired form, albeit at
the cost of increasing the dimension of the system by one. In this case,

N0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, N1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

0 0 0 0 0 0 0
0 0 0 θ2 0 0 0
0 0 0 0 0 0 1

0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, z(0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0

0
0
0

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, CT =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0
0

0
0
0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Theorem 5 Consider any admissible s := (sa, {sb}, sc) with ηsa := xi1 · · · xik , k =
j|sa |, and |sc| > 0. Then Ls(t, θ) = Fcs [Li0](t) has the bilinear realization
(N0, N1, z0,C), where

N0 = diag(N0(sa), N0(sb, sc), 0), N1 =
[
N1(sa) E|sa |1

0 N1(sb, sc)

]

with Ni (sa) ∈ R
|sa |×|sa | being a matrix of zeros and ones depending only on sa, E|sa |1

is the elementary matrix with a one in position (|sa| , 1), and Ni (sb, sc) ∈ R
sbc×sbc

is a matrix of zeros, ones, and the entry θ |sb |. (Its dimension sbc and exact structure
depend only on sb and sc.) Finally, z0 = e1 + e|sa |+sbc ∈ R

(|sa |+sbc)×1 and C = e1 ∈
R

1×(|sa |+sbc).

Proof Following Example 1, assign the first state of the realization to be

z1(t) = Fcs [u](t) = Fηsa c̄[u](t),

where c̄ := ηsc + θ |ηsb |ηsb c̄, and differentiate z1 until the series c̄ appears in isolation.
Observe

ż1(t) =
1∑

i=0

ūi (t)
1

t
Fx−1

i (ηsa )c̄[u](t) =: eT2 z(t)ūi1(t)
1

t
.

So the first row of Ni1 is eT2 , where xi1 is the first letter of ηsa , and the first row of the
other realization matrix contains all zeroes. Continuing in this way,

żk(t) =
1∑

i=0

ūi (t)
1

t
Fη−1

sa (ηsa )c̄[u](t) =: eTk+1z(t)ūik (t)
1

t
.

Since in general xik = x1, the k-th row of N1 is eTk+1, and the k-th row of the N0

contains all zeroes. So far, this is in agreement with the proposed structure of the
realization. Next observe that
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żk+1(t) =
1∑

i=0

ūi (t)
1

t
Fx−1

i (c̄)[u](t)

=
1∑

i=0

ūi (t)
1

t
Fx−1

i (ηsc )
[u](t)

︸ ︷︷ ︸
=:zk+2(t)

+
1∑

j=0

ū j (t)
1

t
Fx−1

j (ηsb c̄)
[u](t)

︸ ︷︷ ︸
=:zk+3(t)

.

In this way, new states are created until finally the term Fc̄[u](t) = zk+1(t) reappears
as it must. This produces an entry θ |sb| in N1 and preserves the proposed structures
of N0 and N1. But note, as in Example 1, that the process can continue to create
new states, and the state zk+1(t) could reappear if ηsc is a power of ηsb , a possibility
that has not been excluded. In addition, this realization could produce copies of the
the first k states if ηsc contains ηsa as a factor. These copies will still preserve the
desired structure, but this possibility points out that in general the final realization
constructed by this process may not be minimal. Finally, the canonical embedding
(18), which is always needed if |sc| > 0, yields the final elements of the proposed
structure. �

Clearly, when non-periodic components are present, giving a precise general form
of the matrices N0 and N1 is not as simple as in the purely periodic case.

3.3 The Dendriform Setting

It is shown in this section that the generating function Ls(t, θ) defined in (3), more
precisely its t-derivative, is a solution of a higher-order linear dendriform equation
in the sense of [15]. The case with non-periodic components can also be considered
from that perspective. This provides a purely algebraic setting for the problem and
also motivates an interesting generalization in the context of the theory of linear
dendriform equations.

Recall that MPLs satisfy shuffle product identities, which are derived from inte-
gration by parts for the iterated integrals in (2). For instance,

Li(2)(t)Li(2)(t) = 4Li(3,1)(t) + 2Li(2,2)(t).

In slightly more abstract terms this can be formulated using the notion of a dendriform
algebra. The reader is referred to [15] for full details. Examples of dendriform alge-
bras include the shuffle algebra as well as associative Rota–Baxter algebras. Indeed,
for any t0 < t1, the space L1,loc[t0, t1) is naturally endowed with such a structure
consisting of two products:

f � g := I ( f )g (19a)

f ≺ g := f I (g), (19b)
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where I is the Riemann integral operator defined by I ( f )(t, t0) := ∫ t
t0
f (s) ds—a

Rota–Baxter map of weight zero. It is easily seen to satisfy the axioms of a dendriform
algebra

f � (g � h) = ( f ∗ g) � h

( f � g) ≺ h = f � (g ≺ h)

( f ≺ g) ≺ h = f ≺ (g ∗ h),

where
f ∗ g := f � g + f ≺ g

is an associative product. The example (19) above moreover verifies the extra com-
mutativity property f � g = g ≺ f , making it a commutative dendriform or Zinbiel
algebra3

( f ≺ g) ≺ h = f ≺ (g ≺ h + h ≺ g).

This is another way of saying that Chen’s iterated integrals define a shuffle product,
which gives rise to the shuffle algebra of MPLs. For more details, including a link
between general, i.e., not necessarily commutative, dendriform algebras and Fliess
operators, see [13–15].

In the following, the focus is on the commutative dendriform algebra (C[t0, t1),
�,≺), where C[t0, t1) stands for the linear subspace of continuous (hence locally
integrable!) functions on [t0, t1). The linear operator R�

g : C[t0, t1) → C[t0, t1) is
defined for g ∈ C[t0, t1) by right multiplication using (19a)

R�
g ( f ) := f � g.

Now add the distribution δ = δt0 to the dendriform algebra C[t0, t1). In view of
the identity I (δ) = 1 on the interval [t0, t1], it follows that R�

f (δ) = δ � f = f
for any f ∈ C[t0, t1). Consider next the specific functions u0(t) = 1/t and u1(t) =
1/(1 − t) which appeared above (with t0 = 0 and t1 = 1 here), and the corresponding
linear operators R�

u0
and R�

u1
. Although u0 is not locally integrable on [0, 1), the space

C[t0, t1) is invariant under R�
u0

. For any word w = xs1−1
0 x1 · · · xsl−1

0 x1 ∈ x0X∗x1, the
linear operator R�

w is defined as the composition of the linear operators associated to
its letters, namely,

R�
w = (R�

u0
)s1−1R�

u1
· · · (R�

u0
)sl−1R�

u1

for w = w1 · · ·w|s| = xs1−1
0 x1 · · · xsl−1

0 x1. Using the shorthand notation R�
w = R�

s
with s = (s1, . . . , sl), the multiple polylogarithm Lis obviously satisfies

3The space of continuous maps on [t0, t1] with values in the algebra Mn(R) is also a dendriform
algebra, with ≺ and � defined the same way. But it is Zinbiel only for n = 1.
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d

dt
Lis = R�

s (δ). (21)

From (21) it follows immediately that

d

dt
Ls(t, θ) =

∞∑

k=0

θ k|s|(R�
s )k(δ),

which in turn yields

d

dt
Ls(t, θ) = δ + θ |s|R�

s

( d

dt
Ls(t, θ)

)
. (22)

Equation (22) is a dendriform equation of degree (|s|, 0) in the sense of [15, Sec-
tion 7]. The general form of the latter is

X = a00 +
|s|∑

q=1

θq
q∑

j=1

(· · · (X � aq1) � aq1 · · · ) � aqq (23)

with a00 := δ, aq j = 0 for q < |s| and a|s| j := w̃ j , matching the notations of equation
(46) in Ref. [15]. The general solution X of (23) is the first coefficient of a vector Y of
length |s| whose coefficients (discarding the first one) are given by θ j R�

w1···wj
(X) for

j = 1, . . . , |s| − 1. This vector satisfies the following matrix dendriform equation
of degree (1, 0):

Y = (δ, 0, . . . , 0
︸ ︷︷ ︸

|s|−1

) + θY � N , (24)

where the matrix4 N is given by:

N =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 w̃1 0 0 · · · 0
0 0 w̃2 0 · · · 0
0 0 0 w̃3 · · · 0
...

...
. . .

. . .
...

...

0 0 0 0 · · · w̃|s|−1

w̃|s| 0 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

First, observe that the |s|-fold product (· · · (N � N ) � · · · ) � N yields a diagonal
matrix with the entry d

dt Lis(t) in the position (1, 1). Second, matrix N splits into
N = N0u0 + N1u1 with N0, N1 as in (17). Equation (24) essentially corresponds to
the integral equation deduced from (7) giving the state z(t).

4The size of the matrix can be reduced from 1 + |s|(|s| − 1)/2 to |s| by eliminating rows and
columns of zeroes due to the particular form of (22) compared to equation (46) in [15].
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The case with non-periodic components can also be handled in this setting. Observe

d

dt
Lsa{sb}sc = R�

sa

(
d

dt
L{sb}sc

)

,

and the term X ′ = d
dtL{sb}sc satisfies the dendriform equation

X ′ = R�
sc (δ) + θ |sb|R�

sb(X
′). (25)

Equation (25) is again a dendriform equation of degree (|sb|, 0) with a00 = R�
sc (δ),

aq j = 0 for q < |sb| and a|sb | j = wj using the notation in [15]. The general solution
X ′ of (25) is the first coefficient of a vector Y ′ of length |sb| whose coefficients
(discarding the first one) are given by θ j R�

w1···wj
(X ′) for j = 1, . . . , |sb| − 1. This

vector satisfies the following matrix dendriform equation of degree (1, 0)

Y ′ = (R�
sc (δ), 0, . . . , 0

︸ ︷︷ ︸
|sb|−1

) + θY ′ � M ′,

where the matrix M ′ is given by:

M ′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 w̃1 0 0 · · · 0
0 0 w̃2 0 · · · 0
0 0 0 w̃3 · · · 0
...

...
. . .

. . .
...

...

0 0 0 0 · · · w̃|sb |−1

w̃|sb| 0 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

One can ask the question whether the term X = d
dtLsa{sb}sc itself is a solution of a

dendriform equation. In fact, a closer look reveals that the theory of linear dendriform
equations presented in [15] has not been sufficiently developed to embrace this more
complex setting. In the light of Theorem 5, it is clear that the results in [15] should be
adapted in order to address this question. Such a step, however, is beyond the scope
of this paper and will thus be postponed to another work. It is worth mentioning that
the matrix N needed in the linear dendriform equation

Y ′ = (0, δ, 0, 0, 0, 0, 0) + θY ′ � N

to match the result from Example 1 has the form



Evaluating Generating Functions for Periodic Multiple Polylogarithms … 463

N =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0
0 0 w̃1 0 0 0 0
0 0 0 w̃2 0 0 0
0 0 0 0 w̃3 0 0
0 0 0 0 0 w̃4 0
0 0 0 0 w̃6 0 w̃5

w̃7 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

which reflects the canonical embedding of Brockett. The first component of the vector
Y ′ contains the solution. As indicated earlier, a proper derivation of this result in the
context of general dendriform algebras, i.e., extending the results in [15], lies outside
the scope of the present paper.

4 Examples

In this section, three examples of the method described above are given corresponding
to the generating functions behind the identities (5), (8), and (10).

Example 2 Consider the generating function L(2)(t, θ). This example is simple
enough that a bilinear realization can be identified directly from (4). For any fixed θ

define the first state variable to be z1(t) = L(2)(t, θ), and the second state variable
to be z2(t) = t dL(2)(t, θ)/dt . In which case,

ż1(t) = z2(t)
1

t
, z1(0) = 1 (26a)

ż2(t) = θ2 z1(t)
t

1 − t

1

t
, z2(0) = 0 (26b)

y(t) = z1(t). (26c)

Thereupon, system (26) assumes the form of a bilinear system as given by (17),
where the inputs are set to be ū0(t) = 1 and ū1(t) = Li0(t) = t/(1 − t), i.e.,

N0 = N0(2) =
[

0 1
0 0

]

, N1 = N1(2) =
[

0 0
θ2 0

]

, z(0) = CT =
[

1
0

]

(recall the 1/t factors in (26) are absorbed into Haar integrators). A simulation di-
agram for this realization suitable for MatLab’s Simulink simulation software is
shown Fig. 1. Setting θ = 1 and using Simulink’s default integration routine ode45
(Dormand-Prince method [12]) with a variable step size lower bounded by 10−8,
Fig. 2 was generated showing L(2)(t, 1) = F(x0x1)∗ [Li0](t) as a function of t . In par-
ticular, it was found numerically thatL(2)(1, 1) ≈ 3.6695, which compares favorably
to the theoretical value derived from (5):
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Li0
z2

y´
z1

Haar integrator Haar integrator
q2

Fig. 1 Unity feedback system realizing L(2)(t, 1)

Fig. 2 Plot of L(2)(t, 1)

versus t

L(2)(1, 1) =
∞∑

n=0

ζ({2}n) =
∞∑

n=0

π2n+1

(2n + 1)n
= sinh(π)

π
= 3.6761.

Better estimates can be found by more carefully addressing the singularities at the
boundary conditions t = 0 and t = 1 in the Haar integrators.

Example 3 In order to validate (8), the identity (9) is checked numerically. Since the
generating functions L(4) and L(3,1) are periodic, Theorem 4 applies. For s = (4)

the corresponding bilinear realization is

N0 = N0(4) =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤

⎥
⎥
⎦ , N1 = N1(4) =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
θ4 0 0 0

⎤

⎥
⎥
⎦ , z(0) = CT =

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦ .

For s = (3, 1) the bilinear realization is

N0 =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ , N1 =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 1

θ4 0 0 0

⎤

⎥
⎥
⎦ , z(0) = CT =

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦ .
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Fig. 3 Plot of
L(4)(t, θ) − L(3,1)(t,

√
2θ)

versus t for different values
of θ

These two dynamical systems were simulated using Haar integrators in Simulink and
the difference (9) was computed as a function of t as shown in Fig. 3. As expected, this
difference is very close to zero when t = 1 no matter how the parameter θ is selected.
This is pretty convincing numerical evidence supporting (8), which as discussed in
the introduction is known to be true.

Example 4 Now the method is applied to the generating functions behind the Hoff-
man conjecture (10). In this case, each multiple polylogarithm has non-periodic
components, so Theorem 5 has to be applied three times. The realization for
L(2,1,{2},3)(t, θ) was presented in Example 1. Following a similar approach, the
realization for L({2},2,2,2)(t, θ) and L({2},3,3)(t, θ) are, respectively,

N0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, N1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0
θ2 0 1 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1

0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, z(0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0

0
0
0
0

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, CT =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0

0
0
0
0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

N0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0 0
0 0 1 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, N1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0
θ2 0 0 0 0 0 0

0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1

0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, z(0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0

0
0
0
0

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, CT =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
0

0
0
0
0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Fig. 4 Plot of
L({2},2,2,2)(t, θ) +
2L({2},3,3)(t, θ) −
L(2,1,{2},3)(t, θ) versus t for
different values of θ

These dynamical systems were simulated to estimate numerically the left-hand
side of (11) as shown in Fig. 4. As in the previous example, the case where t = 1
is of primary interest. This value is again very close to zero for every choice of θ

tested. It is highly likely therefore that the Hoffman conjecture is true.

5 Conclusions

A systematic way was given to numerically evaluate the generating function of peri-
odic multiple polylogarithm using Chen–Fliess series with rational generating series.
The method involved mapping the corresponding Chen–Fliess series to a bilinear
dynamical system, which could then be simulated numerically using Haar integra-
tion. A standard form for such a realization was given, and the method was generalized
to the case where the multiple polylogarithm could have non-periodic components.
The method was also described in the setting of dendriform algebras. Finally, the
technique was used to numerically validate the Hoffman conjecture.
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(2003)
32. Zudilin, W.: Algebraic relations for multiple zeta values. Russian Math. Surveys 58, 1–29

(2003)



Arborified Multiple Zeta Values

Dominique Manchon

Abstract Wedescribe someparticular finite sumsofmultiple zeta valueswhich arise
from J. Ecalle’s “arborification”, a process which can be described as a surjective
Hopf algebra morphism from the Hopf algebra of decorated rooted forests onto a
Hopf algebra of shuffles or quasi-shuffles. This formalism holds for both the iterated
sum picture and the iterated integral picture. It involves a decoration of the forests
by the positive integers in the first case, by only two colours in the second case.

Keywords Multiple zeta values · Rooted trees · Hopf algebras · Shuffle ·
Quasi-shuffle · Arborification

1 Introduction

Multiple zeta values are defined by the following nested sums:

ζ(n1, . . . , nr ) :=
∑

k1>k2>···>kr≥1

1

kn11 · · · knrr , (1)

where the n j ’s are positive integers. The nested sum (1) converges as long as n1 ≥ 2.
The integer r is the depth, whereas the sum p := n1 + · · · nr is the weight. Although
the multiple zeta values of depth one and two were already known by L. Euler, the
full set of multiple zeta values first appears in 1981 in a preprint of Jean Ecalle under
the name “moule ζ•

<”, in the context of resurgence theory in complex analysis [9,
Page 429], together with its companion ζ•≤ now known as the set of multiple star zeta
values. The systematic study begins a decade later with the works of Hoffman [15]
and Zagier [26]. It has been remarked by Kontsevich ([26], (see also the intriguing
precursory Remark 4 on Page 431 in [9]) that multiple zeta values admit another
representation by iterated integrals, namely:
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ζ(n1, . . . , nr ) =
∫

· · ·
∫

0≤u p≤···≤u1≤1

du1
ϕ1(u1)

· · · du p

ϕp(u p)
, (2)

with ϕ j (u) = 1 − u if j ∈ {n1, n1 + n2, n1 + n2 + n3, . . . , p} and ϕ j (u) = u oth-
erwise. For later use we set:

f0(u) := u, f1(u) := 1 − u.

Iterated integral representation (2) is the starting point to the modern approach in
terms of mixed Tate motives over Z, already outlined in [26] and widely developed
in the literature since then [1–3, 7, 24]. Multiple zeta values verify a lot of polyno-
mial relations with integer coefficients: the representation (1) by nested sums leads
to quasi-shuffle relations, whereas representation (2) by iterated integrals leads to
shuffle relations. A third family of relations, the regularization relations, comes from
a subtle interplay between the first two families, involving divergent multiple zeta
sums ζ(1, n2 . . . nr ). A representative example of each family (in the order above) is
given by:

ζ(2, 3) + ζ(3, 2) + ζ(5) = ζ(2)ζ(3), (3)

ζ(2, 3) + 3ζ(3, 2) + 6ζ(4, 1) = ζ(2)ζ(3), (4)

ζ(2, 1) = ζ(3). (5)

It is conjectured that these three families include all possible polynomial rela-

tions between multiple zeta values. Note that the rationality of the quotient
ζ(2k)

π2k
,

proved by L. Euler, does not yield supplementary polynomial identities. As an exam-

ple, ζ(2) = π2

6
and ζ(4) = π4

90
yield 2ζ(2)2 = 5ζ(4), a relation which can also be

deduced from quasi-shuffle, shuffle and regularization relations.
It is convenient to write multiple zeta values in terms of words. In view of repre-

sentations (1) and (2), this can be done in two different ways. We consider the two
alphabets:

X := {x0, x1}, Y := {y1, y2, y3, . . .}, (6)

and we denote by X∗ (resp. Y ∗) the set of words with letters in X (resp. Y ). The
vector space Q〈X〉 freely generated by X∗ is a commutative algebra for the shuffle
product, which is defined by:

(v1 · · · vp) �� (vp+1 · · · vp+q) :=
∑

σ∈Sh(p,q)

vσ−1
1

· · · vσ−1
p+q

(7)

with v j ∈ X , j ∈ {1, . . . , p + q}. Here, Sh(p, q) is the set of (p, q)-shuffles, i.e.
permutations σ of {1, . . . , p + q} such that σ1 < · · · < σp and σp+1 < · · · < σp+q .
The vector space Q〈Y 〉 freely generated by Y ∗ is a commutative algebra for the
quasi-shuffle product, which is defined as follows: a (p, q)-quasi-shuffle of type r
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is a surjection σ : {1, . . . , p + q} →→ {1, . . . , p + q − r} such that σ1 < · · ·σp and
σp+1 < · · · < σp+q . Denoting by Qsh(p, q; r) the set of (p, q)-quasi-shuffles of
type r , the formula for the quasi-shuffle product ��- is:

(w1 · · ·wp) ��- (wp+1 · · · wp+q) :=
∑

r≥0

∑

σ∈Qsh(p,q;r)
wσ

1 · · · wσ
p+q−r (8)

with w j ∈ Y , j ∈ {1, . . . , p + q}, and where wσ
j is the internal product of the letters

in the set σ−1({ j}), which contains one or two elements. The internal product is
defined by [yk yl ] := yk+l .

We denote by Y ∗
conv the submonoid of words w = w1 · · ·wr with w1 
= y1, and

we set X∗
conv = x0X∗x1. An injective monoid morphism is given by changing letter

yn into the word xn−1
0 x1, namely:

s : Y ∗ −→ X∗

yn1 · · · ynr �−→ xn1−1
0 x1 · · · xnr−1

0 x1,

and restricts to a monoid isomorphism from Y ∗
conv onto X∗

conv. As notation suggests,
Y ∗
conv and X∗

conv are two convenient ways to symbolize convergent multiple zeta
values through representations (1) and (2) respectively. The following notations are
commonly adopted:

ζ��- (yn1 · · · ynr ) := ζ(n1, . . . nr ), (9)

ζ�� (xe1 · · · xep ) :=
∫

· · ·
∫

0≤u p≤···≤u1≤1

du1
fe1(u1)

· · · du p

fep (u p)
, (10)

and extended to finite linear combinations of convergent words by linearity. In par-
ticular we have:

ζ(n1, . . . , nr ) = ζ�� (x0x
n1
1 · · · x0xnr1 ), (11)

hence the relation:
ζ��- = ζ�� ◦ s

is obviously verified. The quasi-shuffle relations then write:

ζ��- (w ��- w′) = ζ��- (w)ζ��- (w′) (12)

for any w,w′ ∈ Y ∗
conv, whereas the shuffle relations write:

ζ�� (v �� v′) = ζ�� (v)ζ�� (v′) (13)

for any v, v′ ∈ X∗
conv. By assigning an indeterminate value θ to ζ(1) and setting

ζ��- (y1) = ζ�� (x1) = θ, it is possible to extend ζ��- , resp. ζ�� , to all words in Y ∗, resp.
to X∗x1, such that (12), resp. (13), still holds. It is also possible to extend ζ�� to a



472 D. Manchon

map defined on X∗ by assigning an indeterminate value θ′ to ζ�� (x0), such that (13)
is still valid. We will stick to θ′ = θ for symmetry reasons, reflecting the following
formal equality between two infinite quantities:

∫ 1

0

dt

t
=

∫ 1

0

dt

1 − t
.

It is easy to show that for any word v ∈ X∗ or w ∈ Y ∗, the expressions ζ�� (v) and
ζ��- (w) are polynomialwith respect to θ. It is no longer true that extended ζ��- coincides
with extended ζ�� ◦ s, but the defect can be explicitly written:

Theorem 1 (Boutet de Monvel and Zagier [26]) There exists an infinite-order
invertible differential operator ρ : R[θ] → R[θ] such that

ζ�� ◦ s = ρ ◦ ζ��- . (14)

The operator ρ is explicitly given by the series:

ρ = exp

(
∑

n≥2

(−1)nζ(n)

n

(
d

dθ

)n
)

. (15)

In particular, ρ(1) = 1, ρ(θ) = θ, and more generally ρ(P) − P is a polynomial of
degree ≤ d − 2 if P is of degree d, hence ρ is invertible. A proof of Theorem 1 can
be read in numerous references, e.g. [5, 17, 21]. Any word w ∈ Y ∗

conv gives rise to
Hoffman’s regularization relation:

ζ��
(
x1 �� s(w) − s(y1 ��- w)

) = 0, (16)

which is a direct consequence of Theorem 1. The linear combination of words
involved above is convergent, hence (16) is a relation between convergent multi-
ple zeta values, although divergent ones have been used to establish it. The simplest
regularization relation (5) is nothing but (16) applied to the word w = y2.

Rooted trees can enrich the picture in two ways: first of all, considering a rooted
tree t with set of vertices V(t) and decoration nv ∈ Z>0, v ∈ V(t), we define the
associated contracted arborified multiple zeta value by:

ζT-(t) :=
∑

k∈Dt

∏

v∈V(t)

1

knv
v

, (17)

where Dt is made of those maps v �→ kv ∈ Z>0 such that kv < kw if and only if there
is a path from the root tow through v. The sum (17) is convergent as long as nv ≥ 2 if
v is a leaf of t . The definition is multiplicatively extended to rooted forests. A similar
definition can be introduced starting from the integral representation (2): considering
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a rooted tree τ with set of vertices V(τ ) and decoration ev ∈ {0, 1}, v ∈ V(τ ), we
define the associated arborified multiple zeta value by:

ζT (τ ) :=
∫

u∈Δτ

∏

v∈V(τ )

duv

fev
(uv)

, (18)

where Δτ ⊂ [0, 1]|V(τ )| is made of those maps v �→ uv ∈ [0, 1] such that uv ≤ uw if
and only if there is a path from the root tow through v. The integral (18) is convergent
as long as ev = 1 if v is the root of τ and ev = 0 if v is a leaf of τ . A multiplicative
extension to two-coloured rooted forests will also be considered. A further extension
of multiple zeta values to more general finite posets than rooted forests, in this non-
contracted form, recently appeared in a paper by Yamamoto [25], see also [18]. We
give a brief account of these “posetified” multiple zeta values in Sect. 6.

Arborified and contracted arborified multiple zeta values are finite linear combi-
nations of ordinary ones. For example we have :

ζT-( n3

n2n1

) = ζ(n1, n2, n3) + ζ(n2, n1, n3) + ζ(n1 + n2, n3)

and, choosing white for colour 0 and black for colour 1:

ζT

( )
= 2ζ(3, 1) + ζ(2, 2),

ζT ( ) = 3ζ(4).

The terminology comes fromJ.Ecalle’s arborification, a transformationwhich admits
a “simple” and a “contracting” version [10, 11]. This transformation is best under-
stood in terms of a canonical surjective morphism from Butcher-Connes-Kreimer
Hopf algebra of rooted forests onto a corresponding shuffle Hopf algebra (quasi-
shuffle Hopf algebra for the contracting arborification) [13].

The paper is organized as follows: after a reminder on shuffle and quasi-shuffle
Hopf algebras, we describe the two versions of arborification in some detail, and we
describe a possible transformation from contracted arborified to arborified multiple
zeta values, which can be seen as an arborified version of the map s from words in
Y ∗ into words in X∗. A more natural version of this arborified s with respect to the
tree structures is still to be found. We finally give in Sect. 6 an account of the more
general poset multiple zeta values in both simple and contracting versions, and we
interpret the restricted sum formula of [12, 23] in terms of simple poset multiple zeta
values.
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2 Shuffle and Quasi-Shuffle Hopf Algebras

Let V be any commutative algebra on a base field k of characteristic zero. The
product on V will be denoted by (a, b) �→ [ab]. This algebra is not supposed to be
unital: in particular any vector space can be considered as a commutative algebra
with trivial product (a, b) �→ [ab] = 0. The associated quasi-shuffle Hopf algebra
is

(
T (V ),��- ,Δ

)
, where

(
T (V ),Δ

)
is the tensor coalgebra:

T (V ) =
⊕

k≥0

V⊗k .

The decomposable elements of V⊗k will be denoted by v1 · · · vk with v j ∈ V . The
coproduct Δ is the deconcatenation coproduct:

Δ(v1 · · · vk) :=
k∑

r=0

v1 · · · vr ⊗ vr+1 · · · vk . (19)

The quasi-shuffle product ��- is given for any v1, . . . vp+q by:

(v1 · · · vp) ��- (vp+1 · · · vp+q) :=
∑

r≥0

∑

σ∈Qsh(p,q;r)
vσ
1 · · · vσ

p+q−r (20)

with v j ∈ Y , j ∈ {1, . . . , p + q}, and where vσ
j is the internal product of the letters in

the setσ−1({ j}), which contains one or two elements. Note that if the internal product
vanishes, only ordinary shuffles (i.e. quasi-shuffles of type r = 0) do contribute to
the quasi-shuffle product, which specializes to the shuffle product�� in this case. The
tensor coalgebra endowed with the quasi-shuffle product��- is a Hopf algebra which,
remarkably enough, does not depend on the particular choice of the internal product
[16]. An explicit Hopf algebra isomorphism exp from

(
T (V ),��- ,Δ

)
onto

(
T (V ),

�� ,Δ
)
is given in [16]. Although we won’t use it, let us recall its expression: letP(k)

be the set of compositions of the integer k, i.e. the set of sequences I = (i1, . . . , ir )
of positive integers such that i1 + · · · + ir = k. For any u = v1 . . . vk ∈ T (V ) and
any composition I = (i1, . . . , ir ) of k we set:

I [u] := [v1 . . . vi1].[vi1+1 · · · vi1+i2 ] . . . [vi1+···+ir−1+1 . . . vk].

Then:

exp u =
∑

I=(i1,...,ir )∈P(k)

1

i1! . . . ir ! I [u].
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Moreover ([16], lemma 2.4), the inverse log of exp is given by :

log u =
∑

I=(i1,...,ir )∈P(k)

(−1)k−r

i1 . . . ir
I [u].

For example for v1, v2, v3 ∈ V we have:

exp v1 = v1 , log v1 = v1,

exp(v1v2) = v1v2 + 1

2
[v1v2], log(v1v2) = v1v2 − 1

2
[v1v2],

exp(v1v2v3) = v1v2v3 + 1

2
([v1v2]v3 + v1[v2v3]) + 1

6
[v1v2v3],

log(v1v2v3) = v1v2v3 − 1

2
([v1v2]v3 + v1[v2v3]) + 1

3
[v1v2v3].

Going back to the notations of the introduction,Q〈Y 〉 is the quasi-shuffle Hopf alge-
bra associated to the algebra tk[t] of polynomials without constant terms, whereas
Q〈X〉 is the shuffle Hopf algebra associated with the two-dimensional vector space
spanned by X .

3 The Butcher-Connes-Kreimer Hopf Algebra
of Decorated Rooted Trees

LetD be a set. A rooted tree is an oriented (non planar) graph with a finite number of
vertices, among which one is distinguished and called the root, such that any vertex
admits exactly one incoming edge, except the root which has no incoming edges. A
D-decorated rooted tree is a rooted tree t together with a map from its set of vertices
V(t) into D. Here is the list of (non-decorated) rooted trees up to five vertices:

A D-decorated rooted forest is a finite collection of D-decorated rooted trees, with
possible repetitions. The empty set is the forest containing no trees, and is denoted
by 1. For any d ∈ D, the grafting operator Bd+ takes any forest and changes it into
a tree by grafting all components onto a common root decorated by d, with the
convention Bd+(1) = d .

Let T D denote the set of nonempty rooted trees and let HD
BCK = k[T D] be the

free commutative unital algebra generated by elements of T D. We identify a product
of trees with the forest containing these trees. Therefore the vector space underlying
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HD
BCK is the linear span of rooted forests. This algebra is a graded and connected

Hopf algebra, called theHopf algebra of D-decorated rooted trees,with the following
structure: the grading is given by the number of vertices, and the coproduct on a
rooted forest u is described as follows [14, 20]: the set V(u) of vertices of a forest u
is endowed with a partial order defined by x ≤ y if and only if there is a path from
a root to y passing through x . Any subset W of V(u) defines a subforest u|W of u
in an obvious manner, i.e. by keeping the edges of u which link two elements of W .
The coproduct is then defined by:

Δ(u) =
∑

V�W=V(u)

W<V

u|V ⊗ u|W . (21)

Here the notation W < V means that y < x for any vertex x in V and any vertex
y in W such that x and y are comparable. Such a couple (V,W ) is also called an
admissible cut, with crown (or pruning) u|V and trunk u|W . We have for example:

Δ
( ) = ⊗ 1 + 1 ⊗ + ⊗

Δ
( ) = ⊗ 1 + 1 ⊗ + 2 ⊗ + ⊗ .

The counit is ε(1) = 1 and ε(u) = 0 for any non-empty forest u. The coassociativ-
ity of the coproduct is easily checked using the following formula for the iterated
coproduct:

Δ̃n−1(u) =
∑

V1�···�Vn=V(u)

Vn<···<V1

u|V1

⊗ · · · ⊗ u|Vn

.

The notation Vn < · · · < V1 is to be understood as Vi < Vj for any i > j , with
i, j ∈ {1, . . . , n}.

This Hopf algebra first appeared in the work of Dür in 1986 [8]. Its dual algebra
appears in [10] (Page 81 therein). It has been rediscovered and intensively studied by
Kreimer in 1998 [19], as the Hopf algebra describing the combinatorial part of the
BPHZ renormalization procedure of Feynman graphs in a scalar ϕ3 quantum field
theory. Its group of characters:

GD
BCK = Homalg(HD

BCK, k) (22)

is known as the Butcher group and plays a key role in approximation methods in
numerical analysis [4]. Connes and Kreimer also proved in [6] that the operators Bd+
satisfy the property

Δ
(
Bd

+(t1 · · · tn)
) = Bd

+(t1 · · · tn) ⊗ 1 + (Id⊗Bd
+) ◦ Δ(t1 · · · tn), (23)

for any t1, ..., tn ∈ T . This means that Bd+ is a 1-cocycle in the Hochschild cohomol-
ogy of HD

BCK with values inHD
BCK.
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4 Simple and Contracting Arborification

The Hopf algebra of decorated rooted forests enjoys the following universal property
(see e.g. [14]): let D be a set, let H be a graded Hopf algebra, and, for any d ∈ D,
let Ld : H → H be a Hochschild one-cocycle, i.e. a linear map such that:

Δ
(
Ld(x)

) = Ld(x) ⊗ 1H + (Id⊗Ld) ◦ Δ(x). (24)

Then there exists a unique Hopf algebra morphism � : HD
BCK → H such that:

� ◦ Bd
+ = Ld ◦ � (25)

for any d ∈ D. Now let V be a commutative algebra, let
(
T (V ),��- ,Δ

)
be the cor-

responding quasi-shuffle Hopf algebra, let (ed)d∈D be a linear basis of V , and let
Ld : T (V ) → T (V ) the right concatenation by ed , defined by:

Ld(v1 . . . vk) := v1 . . . vked . (26)

One can easily check, due to the particular form of the deconcatenation coproduct,
that Ld verifies the one-cocycle condition (24). The contracting arborification of the
quasi-shuffle Hopf algebra above is the unique Hopf algebra morphism

aV : HD
BCK →→ (

T (V ),��- ,Δ
)

(27)

such that aV ◦ Bd+ = Ld ◦ aV for any d ∈ D. The map aV sends any decorated forest
to the sum of all its linear extensions, taking contractions into account (see Example
(30) below). It is obviously surjective, since the wordw = ed1 · · · edr can be obtained
as the image of the ladder �Y (w) with r vertices decorated by d1, . . . dr from top
to bottom. This map is invariant under linear base changes. For the shuffle algebra
(i.e. when the internal product on V is set to zero), the corresponding Hopf algebra
morphism aV is called simple arborification, and the corresponding section will be
denoted by �X (see Examples (31) and (32) below).

Let us apply this construction tomultiple zeta values (the basefield k being thefield
Q of rational numbers): we denote by aX (resp. aY ) the simple (resp. contracting)
arborification from HX

BCK onto Q〈X〉 (resp. from HY
BCK onto Q〈Y 〉). The maps

ζ�� and ζ��- defined in the introduction are characters of the (Hopf) algebras Q〈X〉
and Q〈Y 〉 respectively, with values in the algebra R[θ]. The simple and contracted
arborified multiple zeta values are then respectively given by:

ζT
�� : HX

BCK −→ R[θ]
τ �−→ ζT

�� (τ ) = ζ�� ◦ aX (τ ). (28)
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and:

ζT-
��- : HY

BCK −→ R[θ]
t �−→ ζT-

��- (t) = ζ��- ◦ aY (t). (29)

They are obviously characters of HX
BCK and HY

BCK respectively, and respectively
coincide with the maps ζT and ζT- defined in the introduction. This last statement
comes from the fact that, for any X -decorated forest τ , the domainΔτ can be decom-
posed in a union of simplices the sameway aX (τ ) is decomposed as the sum of its lin-
ear extensions, and similarly with contracting arborification aY for any Y -decorated
forest t , taking diagonals in Dt into account. Looking back at the examples given
there we have:

aY ( n3

n2n1

) = yn1 yn2 yn3 + yn2 yn1 yn3 + yn1+n2 yn3 (30)

and

aX ( ) = 2x0x0x1x1 + x0x1x0x1, (31)

aX ( ) = 3x0x0x0x1. (32)

5 Arborification of the Map s

We are looking for a map sT which makes the following diagram commutative:

HY
BCK

aY

sT HX
BCK

aX

Q〈Y 〉 s
Q〈X〉

An obvious answer to this problem is given by:

sT = �X ◦ s ◦ aY ,

where �X is the section of aX described in the previous section. It has the drawback
of completely destroying the geometry of trees: indeed, any Y -decorated forest is
mapped on a linear combination of X -decorated ladders. We are then looking for a
more natural map with respect to the tree structures, which makes the diagram above
commute, or at least the outer square of the diagram below:
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HY
BCK

aY

sT

ζT−��-

HX
BCK

aX

ζT��Q〈Y 〉 s

ζ��-

Q〈X〉
ζ��

R[θ] ρ
R[θ]

This interesting problem remains open.

6 Poset Multiple Zeta Values

A rooted forest is nothing but a particular finite poset in which each non-minimal
element (i.e. each vertex different from a root) x has a unique predecessor, i.e. there
exists a unique y < x such that for any z with y ≤ z ≤ x , one has z = x or z = y. It
turns out that most of the concepts previously defined still make sense without this
last condition. First of all, identities (17) and (18) define real numbers for any finite
poset t (resp. τ ) respectively decorated by Y and X , respectively named contracted
poset multiple zeta values and simple poset multiple zeta value. Connected (non-
decorated) posets up to four vertices are given by:

�∧��

�∧���

�∧��

�

�∧��

�

� �

� �

� � �

� �

�� �∨��

�∧
.

We have for example:

ζT-(
n4

n3n2

n1

�∨��

�∧
) = ζ(n1, n2, n3, n4) + ζ(n1, n3, n2, n4) + ζ(n1, n2 + n3, n4)

and

ζT ( �∨��

�∧
) = ζ(3, 1) + ζ(2, 2).

Next, for any set D, the linear span of isomorphism classes of D-decorated posets is
a graded connected commutative Hopf algebraHD

P . The product is given by disjoint
union, and the coproduct is still given by Formula (21). It is well-known thatHD

P is a
commutative incidence Hopf algebra: see [22, Paragraph 16], taking forF the family
of all finite posets with the notations therein. The forest Hopf algebraHD

BCK is a Hopf
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subalgebra of HD
P . The simple arborification aX : HX

BCK → (T (X),�� ,Δ) extends
to a surjective Hopf algebra morphism pX : HX

P → (T (X),�� ,Δ) and, similarly, the
contracting arborification aY : HY

BCK → (T (Y ),��- ,Δ) extends to a surjective Hopf
algebra morphism pY : HY

P → (T (Y ),��- ,Δ).
The “posetization” map pX and its contracting version pY still map a poset on the

sum of all its linear extensions, moreover taking contraction terms into account in
the case of pY . The fact that both are Hopf algebra morphisms can be checked by a
routine computation.

The canonical involution ι on the set of finite posets is given by reversing the
order: for example,

ι( ) = �∧�� .

The duality involution σ on the set of X -decorated posets is given by both applying ι
and switching the two colours, i.e. exchanging 0 and 1. The duality relations for
multiple zeta values extends to poset multiple zeta values as follows:

ζT (τ ) = ζT ◦ σ(τ ). (33)

Poset multiple zeta values recently appeared (in the simple form only) in a paper by
Yamamoto [25], as well as in another paper of the same author together with Kaneko
[18]. Let us mention that the restricted sum formula of [12], (see [23], formula (2)
therein) can be understood as an equality between two poset multiple zeta values (in
the simple version) involving “kite-shaped” posets, namely:

ζT (Aa,b,c) = ζT (Ba,b,c), (34)

where a, b, c are three non-negative integers, and where Aa,b,c and Ba,b,c are defined
as follows:

• Aa,b,c has a unique white maximum linked to two ladders, the first made of cwhite
vertices, the second made of b black vertices. Both join to a black ladder (the tail,
pointing downwards) of length a + 1.

• Ba,b,c has a unique black minimum linked to two ladders, the first made of b white
vertices, the second made of a black vertices. Both join to a white ladder (the tail,
pointing upwards) of length c + 1.

Both posets defined above have total number of vertices equal to a + b + c + 2.
From (33) and (34), we immediately get:

ζT (Aa,b,c) = ζT (Ac,b,a). (35)

Finally, the question asked in Sect. 5 makes also sense in the poset context, replacing
the two Hopf algebras HX

BCK and HY
BCK respectively by HX

P and HY
P .
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1 Introduction

Enveloping algebras of Lie algebras are known to be a fundamental notion, for an
impressive variety of reasons. Their bialgebra structure allows to make a natural
bridge between Lie algebras and groups. As such they are a key tool in pure algebra,
algebraic and differential geometry, and so on. Their combinatorial structure is inter-
esting on its own and is the object of the theory of free Lie algebras. Applications
thereof include the theory of differential equations, numerics, control theory... From
themodern point of view, featured in Reutenauer’sFree Lie algebras [38], the “right”
point of view on enveloping algebras is provided by the descent algebra: most of their
key properties can indeed be obtained and finely described using computations in
symmetric group algebras relying on the statistics of descents of permutations. More
recently, finer structures have emerged that refine this approach. Let us quote, among
others, the Malvenuto-Reutenauer or free quasi-symmetric functions Hopf algebra
[29] and its bidendriform structure [14].

Many features of classical Lie theory generalize to the broader context of alge-
bras over Hopf operads [24]. However, this idea remains largely to be developed
systematically. Quasi-shuffle algebras provide for example an interesting illustration
of these phenomena, but have not been investigated from this point of view.

The notion of quasi-shuffle algebras was developed systematically only recently,
starting essentially with Hoffman’s work, that was motivated by multizeta values
(MZVs) and featured their bialgebra structure [23]. The reason for the appearance of
quasi-shuffle products inmany application fields (classical and stochastic integration,
summation processes, probability, renormalization...) is explained by the construc-
tion by Ebrahimi-Fard of a forgetful functor from Rota–Baxter algebras of non-zero
weight to quasi-shuffle algebras [11]. Many partial results on the structure of quasi-
shuffle bialgebras have been obtained during the last two decades [17, 28, 30–32],
fine structure theorems have been obtained in [2], but, besides the fact that each of
these articles features a particular point of view, they fail to develop systematically
a complete combinatorial theory.

This article builds on these various results and develops the analog theory, for
quasi-shuffle bialgebras, of the theory of descent algebras and their relations to free
Lie algebras for classical enveloping algebras.

The plan is as follows. Sections2 and 3 recall the fundamental definitions. These
are fairly standard ideas and materials, excepted for the fact that bialgebraic struc-
tures are introduced from the point of view of Hopf operads that will guide later
developments.

The following section shows how the symmetrization process in the theory of
twisted bialgebras (or Hopf species) can be adapted to define a noncommutative
quasi-shuffle bialgebra structure on the operad of quasi-shuffle algebras (Theorem 1).

Section5 deals with the algebraic structure of linear endomorphisms of quasi-
shuffle bialgebras and studies from this point of view the structure of surjections.
Section6 deals with the projection on the primitives of quasi-shuffle bialgebras -the
analog in the present setting of the canonical projection from an enveloping algebra
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to the Lie algebra of primitives. As in classical Lie theory, a structure theorem for
quasi-shuffle algebras follows from the properties of this canonical projection.

Section7 investigates the relations between the shuffle and quasi-shuffle oper-
ads when both are equipped with the Hopf algebra structure inherited from the Hopf
operadic structure of their categories of algebras (as such they are isomorphic respec-
tively to the Malvenuto-Reutenauer Hopf algebra, or Hopf algebra of free quasi-
symmetric functions, and to the Hopf algebra of word quasi-symmetric functions).
We recover in particular from the existence of a Hopf algebra morphism from the
shuffle to the quasi-shuffle operad (Theorem 3) the exponential isomorphism relat-
ing shuffle and quasi-shuffle bialgebras. Section8 studies coalgebra endomorphisms
of quasi-shuffle bialgebras and classifies natural Hopf algebra endomorphisms and
morphisms relating shuffle and quasi-shuffle bialgebras.

Section9 studies coderivations. Quasi-shuffle bialgebras are considered classi-
cally as filtered objects (the product does not respect the tensor graduation), however
the existence of a natural graded Hopf algebra structure can be deduced from the
general properties of their coderivations.

Section10 recalls briefly how the formalism of operads can be adapted to take into
account graduations by using decorated operads. We detail then the case of quasi-
shuffle algebras and conclude by initiating the study of the analog, in this context,
of the classical descent algebra. Section11 shows, using the bidendriform rigidity
theorem, that the decorated quasi-shuffle operad is free as a noncommutative shuffle
algebra.

Section12 shows that the quasi-shuffle analog of the descent algebra, QDesc, is,
up to a canonical isomorphism, a free noncommutative quasi-shuffle algebra over the
integers (Theorem 6). The last section concludes by investigating the quasi-shuffle
analog of the classical sequence of inclusions Desc ⊂ PBT ⊂ Sh of the descent
algebra into the algebra of planar binary trees, resp. the operad of shuffle algebras. In
the quasi-shuffle context, this sequence reads Desc ⊂ ST ⊂ QSh, where ST stands
for the algebra of Schröder trees and QSh for the quasi-shuffle operad.
Terminology Following a suggestion by the referee, we include comments on the
terminology. The behaviour of shuffle products was investigated by Eilenberg and
MacLane in the early 50’s [12]. They introduced the key idea of splitting shuffle prod-
ucts into two “half-shuffle products” and used the algebraic relations they satisfy to
prove the associativity of shuffle products in topology. Soon after, and independently,
Schützenberger axiomatized the shuffle products appearing in combinatorics and Lie
algebra theory [42]. In control theory, shuffles and their relations appear in relation to
products of iterated integrals under the name chronological products. The terminol-
ogy is probably inspirated by the physicists’ time-ordered products. The structure of
the corresponding operad was implicit in Schützenberger’s work as a consequence
of his description of free shuffle algebras, it was introduced independently by Loday
in the early 2000’s [25]. Following a wit by the topologist J.-M. Lemaire, this operad
of shuffle algebras is now often called operad of Zinbiel algebras (up to a few excep-
tions previous names such as “commutative dendriform algebras” do not seem to
be used anymore). The wit is motivated by a Koszul duality phenomenon with the
Bloh-Cuvier notion of Leibniz algebras. The operad encoding the axioms associated
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naturally to Hoffmann’s quasi-shuffle algebras is called instead operad of commuta-
tive tridendriform algebras [28].

As far as the subject of the present article is concerned, quasi-shuffles are usually
viewed as a deformation of shuffles (Hoffmann’s isomorphism states for example that
under relatively mild technical conditions quasi-shuffle bialgebras are isomorphic to
shuffle bialgebras [17, 23]), and from this point of view the (weird and heavy)
terminology commutative tridendriform algebras is not consistent with the one of
Zinbiel algebras.

For that reason and other, historical and conceptual, ones we prefer to use the
simple and coherent terminology promoted in articles such as [16, 17, 31] of “shuffle
algebras” (resp. operad) and “quasi-shuffle algebras” (resp. operad) for algebras
equipped with product operations satisfying the axioms obeyed by the various usual
commutative shuffle and quasi-shuffle products that have appeared in the literature
(resp. the corresponding operads). The reader familiar with the operadic terminology
should therefore have in mind the dictionary:

• Shuffle algebra = Zinbiel algebra
• Quasi-shuffle algebra = commutative tridendriform algebra
• Noncommutative shuffle algebra = dendriform algebra
• Noncommutative quasi-shuffle algebra = tridendriform algebra.

Notations and conventions All the structures in the article (vector spaces, algebras,
tensor products...) are defined over a field k. Algebraic theories and their categories
(Com,As, Sh,QSh . . . ) are denoted in italic, as well as the corresponding free alge-
bras over sets or vector spaces (QSh(X),Com(V ) . . . ). Operads (of which we will
study underlying algebra structures) and abbreviations of algebra names are written
in bold (QSh,NSh,Com,FQSym . . . ).

2 Quasi-Shuffle Algebras

Quasi-shuffle algebras have mostly their origin in the theory of Rota-Baxter algebras
and related objects such as MZVs (this because the summation operator of series is
an example of a Rota–Baxter operator [10]). As we just mentioned, this is sometimes
traced back to Cartier’s construction of free commutative Rota-Baxter algebras [3].
They appeared independently in the study of adjunction phenomena in the theory
of Hopf algebras. The relations defining quasi-shuffle algebras have also be written
down in probability, in relation to semimartingales, but this does not seem to have
given rise to a systematic algebraic approach. Recent developments really started
with Hoffman’s [23].

Another reason for the development of the theory lies in the theory of combi-
natorial Hopf algebras and, more specifically, into the developments originating in
the theory of quasi-symmetric functions, the dual theory of noncommutative sym-
metric functions and other Hopf algebras such as the one of word quasi-symmetric
functions. This line of thought is illustrated in [17, 30–32].
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Still another approach originates in the work of Chapoton on the combinatorial
and operadic properties of permutohedra and other polytopes (see e.g. [6, 7] and
the introductions of [2, 32]). These phenomena lead to the axiomatic definition
of noncommutative quasi-shuffle algebras (also known as dendriform trialgebras)
in [28].

We follow here the Rota–Baxter approach to motivate the introduction of the
axioms of quasi-shuffle algebras. This approach is the one underlying at the moment
most of the applications of the theory and the motivations for its development. Rota–
Baxter algebras encode for example classical integration, summation operations (as
in the theory ofMZVs), but also renormalization phenomena in quantum field theory,
statistical physics and dynamical systems (see the survey article [10]). As explained
below, any commutative Rota–Baxter algebra of weight non zero gives automatically
rise to a quasi-shuffle algebra.

Definition 1 A Rota–Baxter (RB) algebra of weight θ is an associative algebra A
equipped with a linear endomorphism R such that

∀x, y ∈ A, R(x)R(y) = R(R(x)y + x R(y) + θxy).

It is a commutative Rota–Baxter algebra if it is commutative as an algebra.

Setting R′ := R/θ when θ �= 0, one gets that the pair (A, R′) is a Rota–Baxter
algebra of weight 1. This implies that, in practice, there are only two interesting
cases to be studied abstractly: the weight 0 and weight 1 (or equivalently any other
non zero weight). The others can be deduced easily from the weight 1 case. Similar
observations apply for one-parameter variants of the notion of quasi-shuffle algebras.

A classical example of a Rota–Baxter operator of weight 1 is the summation
operator acting on sequences ( f (n))n∈N of elements of an associative algebra A

R( f )(n) :=
n−1∑

i=0

f (i).

This general property of summation operators applies in particular to MZVs. Recall
that the latter are defined for k positive integers n1, . . . , nk ∈ N

∗, n1 > 1, by

ζ(n1, . . . , nk) :=
∑

m1>···>mk>0

1

mn1
1 · · ·mnk

k

.

The Rota–Baxter property of summation operators translates then into the identity

ζ(p)ζ(q) = ζ(p, q) + ζ(q, p) + ζ(p + q).

From now on in this article, RB algebra will stand for RB algebra of weight 1.
When otherRBalgebraswill be considered, theirweightwill bementioned explicitly.
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An important property of RB algebras, whose proof is left to the reader, is the
existence of an associative product, the RB double product �, defined by:

x � y := R(x)y + x R(y) + xy (1)

so that: R(x)R(y) = R(x � y). If one sets, in a RB algebra, x ≺ y := x R(y),
x 	 y := R(x)y, one gets immediately relations such as

(x · y) ≺ z = xyR(z) = x · (y ≺ z),

(x ≺ y) ≺ z = x R(y)R(z) = x ≺ (y � z),

and so on. In the commutative case, x ≺ y = y 	 x , and all relations between the
products ≺,	, · and � :=≺ + 	 +· follow from these two. In the noncommutative
case, the relations duplicate and one has furthermore (x 	 y) ≺ z = R(x)yR(z) =
x 	 (y ≺ z). These observations give rise to the axioms of quasi-shuffle algebras
and noncommutative quasi-shuffle algebras.

Fromnowon, “commutative algebra”without other precisionmeans commutative
and associative algebra; “product” on a vector space Ameans a bilinear product, that
is a linear map from A ⊗ A to A.

Definition 2 A quasi-shuffle (QSh) algebra A is a nonunital commutative algebra
(with product written •) equipped with another product ≺ such that

(x ≺ y) ≺ z = x ≺ (y � z) (2)

(x • y) ≺ z = x • (y ≺ z). (3)

where x � y := x ≺ y + y ≺ x + x • y. We also set for further use x 	 y := y ≺ x .
As theRBdouble product in a commutativeRBalgebra, the product � is automatically
associative and commutative and defines another commutative algebra structure on
A.

Recall, for further use, that shuffle algebras correspond to weight 0 commutative
RB algebras, that is quasi-shuffle algebras with a null product • = 0. Equivalently:

Definition 3 A shuffle (Sh) algebra is a vector space equipped with a product ≺
satisfying (2) with x � y := x ≺ y + y ≺ x .

It is sometimes convenient to equip quasi-shuffle algebras with a unit. The phe-
nomenon is exactly similar to the case of shuffle algebras [42]: given a quasi-shuffle
algebra, one sets B := k ⊕ A, and the products ≺, • have a partial extension to B
defined by, for x ∈ A:

1 • x = x • 1 := 0, 1 ≺ x := 0, x ≺ 1 := x .

The products 1 ≺ 1 and 1 • 1 cannot be defined consistently, but one sets 1 � 1 := 1,
making B a unital commutative algebra for �.
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The categories of quasi-shuffle and of unital quasi-shuffle algebras are clearly
equivalent (under the operation of adding or removing a copy of the ground field).

Definition 4 Anoncommutative quasi-shuffle algebra (NQSh algebra) is a nonunital
associative algebra (with product written •) equipped with two other products ≺,	
such that, for all x, y, z ∈ A:

(x ≺ y) ≺ z = x ≺ (y � z) (4)

(x 	 y) ≺ z = x 	 (y ≺ z) (5)

(x � y) 	 z = x 	 (y 	 z) (6)

(x ≺ y) • z = x • (y 	 z) (7)

(x 	 y) • z = x 	 (y • z) (8)

(x • y) ≺ z = x • (y ≺ z). (9)

where x � y := x ≺ y + x 	 y + x • y.

As the RB double product, the product � is automatically associative and equips A
with another associative algebra structure. Indeed, the associativity relation

(x • y) • z = x • (y • z) (10)

and (4)+ . . . +(9) imply the associativity of �:

(x � y) � z = x � (y � z). (11)

If A is furthermore a quasi-shuffle algebra, then the product � is commutative.
One can show that these properties are equivalent to the associativity of the double

product � in a Rota-Baxter algebra (this is because the free NQSh algebras embed
into the corresponding free Rota–Baxter algebras).

Noncommutative shuffle algebras correspond to weight 0 RB algebras, that is
NQSh algebras with a null product • = 0. Equivalently:

Definition 5 A noncommutative shuffle (NSh) algebra is a vector space equipped
with two products ≺,	 satisfying (4, 5, 6) with x � y := x ≺ y + y ≺ x .

The most classical example of such a structure is provided by the topologists’
shuffle product and its splitting into two “half-shuffles”, an idea going back to [12].

As in the commutative case, it is sometimes convenient to equip NQSh algebras
with a unit. Given a NQSh algebra, one sets B := k ⊕ A, and the products ≺, 	, •
have a partial extension to B defined by, for x ∈ A:

1 • x = x • 1 := 0, 1 ≺ x := 0, x ≺ 1 := x, 1 	 x := x, x 	 1 := 0.
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The products 1 ≺ 1, 1 	 1 and 1 • 1 cannot be defined consistently, but one sets
1 ∗ 1 := 1, making B a unital commutative algebra for ∗.

The categories of NQSh and unital NQSh algebras are clearly equivalent.
The following Lemma encodes the previously described relations between RB

algebras and quasi-shuffle algebras:

Lemma 1 The identities x ≺ y := x R(y), x 	 y := R(x)y, x • y := xy induce a
forgetful functor from RB algebras to NQSh algebras, resp. from commutative RB
algebras to QSh algebras.

Remark 1 Let A be a NQSh algebra.

1. If A is a commutative algebra (for the product •) and if for x, y ∈ A: x ≺ y =
y 	 x, we say that A is commutative as a NQSh algebra. Then, (A, •,≺) is a
quasi-shuffle algebra.

2. We put �=≺ +•. Then (4)+(7)+(9)+(10), (5)+(9) and (6) give:

(x � y) � z = x � (y � z + y 	 z), (12)

(x 	 y) � y = x 	 (y � z), (13)

(x � y + x 	 y) 	 z = x 	 (y 	 z). (14)

These are the axioms that define a noncommutative shuffle algebra structure
(A,�,	) on A. Similarly, if =	 +•, then (A,≺,) is a noncommutative
shuffle algebra.

Example 1 (Hoffman, [23]) Let V be an associative, non unitary algebra. The prod-
uct of v,w ∈ V is denoted by v.w. The augmentation ideal T+(V ) = ⊕

n∈N∗
V⊗n of

the tensor algebra T (V ) = ⊕
n∈N∗

Tn(V ) = ⊕
n∈N∗

V⊗n (resp. T (V )) is given a unique

(resp. unital) NQSh algebra structure by induction on the length of tensors such that
for all a, b ∈ V , for all v,w ∈ T (V ):

av ≺ bw = a(v − bw), av 	 bw = b(av − w), av • bw = (a.b)(v − w),

(15)

where − =≺ + 	 +• is called the quasi-shuffle product on T (V ) (by definition:
∀v ∈ T (V ), 1− v = v = v − 1).

Definition 6 The NQSh algebra (T+(V ),≺,	, •) is called the tensor quasi-shuffle
algebra associated to V . It is quasi-shuffle algebra if, and only if, (V, .) is commu-
tative (and then is called simply the quasi-shuffle algebra associated to V ).

Here are examples of products in T+(V ). Let a, b, c ∈ V .

a ≺ b = ab, a 	 b = ba, a • b = a.b,

a ≺ bc = abc, a 	 bc = bac + bca + b(a.c), a • bc = (a.b)c,

ab ≺ c = abc + acb + a(b.c), ab 	 c = cab, ab • c = (a.c)b.



Lie Theory for Quasi-Shuffle Bialgebras 491

In particular, the restriction of • to V is the product of V . If the product of V is zero,
we obtain for − the usual shuffle product .

A useful observation, to which wewill refer as “Schützenberger’s trick” (see [42])
is that, in T+(V ), for v1, . . . , vn ∈ V ,

v1 . . . vn = v1 ≺ (v2 ≺ . . . (vn−1 ≺ vn) . . . )). (16)

3 Quasi-Shuffle Bialgebras

We recall that graded connected and more generally conilpotent bialgebras are auto-
matically equipped with an antipode [5], so that the two notions of bialgebras and
Hopf algebras identify when these conditions are satisfied—this will be most often
the case in the present article.

Quasi-shuffle bialgebras are particular deformations of shuffle bialgebras associ-
ated to the exponential and logarithm maps. They were first introduced by Hoffman
in [23] and studied further in [2, 17, 26]. The existence of a natural isomorphism
between the two categories of bialgebras is known as Hoffman’s isomorphism [23]
and has been studied in depth in [17].

We introduce here a theoretical approach to their definition, namely through the
categorical notion of Hopf operad, see [24]. The underlying ideas are elementary
and deserve probably to be better known. We avoid using the categorical or operadic
langage and present them simply (abstract definitions and further references on the
subject are given in [24]).

Let us consider categories of binary algebras, that is algebras defined by one or
several binary products satisfying homogeneous multilinear relations (i.e. algebras
over binary operads). For example, commutative algebras are algebras equipped with
a binary product · satisfying the relations x · (y · z) = (x · y) · z and x · y = y · x ,
and so on. Multilinear means that letters should not be repeated in the defining
relations: for example, n-nilpotent algebras defined by a binary product with xn =
0, n > 1 are excluded.

The category of algebras will be said non-symmetric if in the defining relations
the letters x, y, z... always appear in the same order. For example, the category Com
of commutative algebras is not non-symmetric because of the relation x · y = y · x ,
whereas As, the one of associative algebras (x · (y · z) = (x · y) · z) is.

Notice that the categories Sh, QSh of shuffle and quasi-shuffle algebras are not
non-symmetric (respectively because of the relation x � y = x ≺ y + y ≺ x and
because of the commutativity of the • product) and are equipped with a forgetful
functor to Com. The categories NSh, NQSh of noncommutative shuffle and quasi-
shuffle algebras are non-symmetric (in their defining relations the letters x, y, z are
not permuted) and are equipped with a forgetful functor to As.
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Definition 7 Let C be a category of binary algebras. The category is said Hopfian
if tensor products of algebras in C are naturally equipped with the structure of an
algebra in C (i.e. the tensor product can be defined internally to C).

Classical examples of Hopfian categories are Com and As.

Definition 8 A bialgebra in a Hopfian category of algebras C (or C-bialgebra) is an
algebra A in C equipped with a coassociative morphism to A ⊗ A in C.

Equivalently, it is a coalgebra in the tensor category of C-algebras.
Further requirements can be made in the definition of bialgebras, for example

when algebras have units. When C = Com or As, we recover the usual definition of
bialgebras.

Proposition 1 A category of binary algebras equipped with a forgetful functor to
Com is Hopfian. In particular, Pois, Sh,QSh are Hopfian.

Here Po is stands for the category of Poisson algebras, studied in [24] from this
point of view.

Indeed, let C be a category of binary algebras equipped with a forgetful functor
to Com. We write μ1, . . . ,μn the various binary products on A, B ∈ C and · the
commutative product (which may be one of the μi , or be induced by these products
as the � product is induced by the ≺,	 and • products in the case of shuffle and
quasi-shuffle algebras). Notice that a given category may be equipped with several
distinct forgetful functors to Com: the quasi-shuffle algebras carry, for example, two
commutative products (• and �).

The Proposition follows by defining properly theC-algebra structure on the tensor
products A ⊗ B:

μi (a ⊗ b, a′ ⊗ b′) := μi (a, a′) ⊗ b · b′.

The new productsμi on A ⊗ B clearly satisfy the same relations as the corresponding
products on A, which concludes the proof. Notice that one could also define a “right-
sided” structure by μi (a ⊗ b, a′ ⊗ b′) := a · a′ ⊗ μi (b, b′).

Abialgebra (without a unit) in the category of quasi-shuffle algebras is a bialgebra
in the Hopfian categoryQSh, where the Hopfian structure is induced by the � product.
Concretely, it is a quasi-shuffle algebra A equipped with a coassociative map Δ in
QSh to A ⊗ A, where the latter is equipped with a quasi-shuffle algebra structure by:

(a ⊗ b) ≺ (a′ ⊗ b′) = (a ≺ a′) ⊗ (b � b′), (17)

(a ⊗ b) • (a′ ⊗ b′) = (a • a′) ⊗ (b � b′). (18)

The same process defines the notion of shuffle bialgebra (without a unit), e.g. by
taking a null • product in the definition.

Using Sweedler’s shortcut notation Δ(a) =: a(1) ⊗ a(2), one has:

Δ(a ≺ b) = a(1) ≺ b(1) ⊗ a(2) � b(2), (19)



Lie Theory for Quasi-Shuffle Bialgebras 493

Δ(a • b) = a(1) • b(1) ⊗ a(2) � b(2). (20)

In the unital case, B = k ⊕ A, one requires furthermore that Δ be a counital
coproduct (with Δ(1) = 1 ⊗ 1) and, since 1 ≺ 1 and 1 • 1 are not defined, sets:

(1 ⊗ b) ≺ (1 ⊗ b′) = 1 ⊗ (b ≺ b′),

(1 ⊗ b) • (1 ⊗ b′) = 1 ⊗ (b • b′).

Since unital quasi-shuffle and shuffle bialgebras are more important for applications,
we call them simply quasi-shuffle bialgebras and shuffle bialgebras. In this situation
it is convenient to introduce the reduced coproduct on A,

Δ̃(a) := Δ(a) − a ⊗ 1 − 1 ⊗ a.

Concretely, we get:

Definition 9 The unital QSh algebra k ⊕ A equipped with a counital coassociative
coproduct Δ is a quasi-shuffle bialgebra if and only if for all x, y ∈ A (we introduce
for the reduced coproduct the Sweedler-type notation Δ̃(x) = x ′ ⊗ x ′′):

Δ̃(x ≺ y) = x ′ ≺ y′ ⊗ x ′′ � y′′ + x ′ ⊗ x ′′ � y + x ≺ y′ ⊗ y′′ + x ′ ≺ y ⊗ x ′′ + x ⊗ y,
(21)

Δ̃(x • y) = x ′ • y′ ⊗ x ′′ � y′′ + x ′ • y ⊗ x ′′ + x • y′ ⊗ y′′. (22)

The same constructions and arguments hold in the non-symmetric context. We do
not repeat them and only state the conclusions.

Proposition 2 A non-symmetric category of binary algebras equipped with a for-
getful functor to As is Hopfian. In particular, NSh and NQSh are Hopfian.

A bialgebra (without a unit) in the category of noncommutative quasi-shuffle
(NQSh) algebras is a bialgebra in the Hopfian category NQSh, where the Hopfian
structure is induced by the � product. Concretely, it is a NQSh algebra A equipped
with a coassociative map Δ in NQSh to A ⊗ A, where the latter is equipped with a
NQSh algebra structure by:

(a ⊗ b) ≺ (a′ ⊗ b′) = (a ≺ a′) ⊗ (b � b′), (23)

(a ⊗ b) 	 (a′ ⊗ b′) = (a 	 a′) ⊗ (b � b′), (24)

(a ⊗ b) • (a′ ⊗ b′) = (a • a′) ⊗ (b � b′). (25)

The same process defines the notion of NSh (or dendriform) bialgebra (without a
unit), e.g. by taking a null • product in the definition.
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Recall that setting �:=≺ +• defines a forgetful functor from NQSh to NSh alge-
bras. The same definition yields a forgetful functor from NQSh to NSh bialgebras.

In the unital case, one requires furthermore that Δ be a counital coproduct (with
Δ(1) = 1 ⊗ 1) and sets

(1 ⊗ b) ≺ (1 ⊗ b′) = 1 ⊗ (b ≺ b′),

and similarly for 	 and •. Since this case is more important for applications, we call
simply NQSh and NSh bialgebras the ones with a unit.

Definition 10 The unital NQSh algebra k ⊕ A equipped with counital coassociative
coproduct Δ is a NQSh bialgebra if and only if for all x, y ∈ A:

Δ̃(x ≺ y) = x ′ ≺ y′ ⊗ x ′′ � y′′ + x ′ ⊗ x ′′ � y + x ≺ y′ ⊗ y′′ + x ′ ≺ y ⊗ x ′′ + x ⊗ y,
(26)

Δ̃(x 	 y) = x ′ 	 y′ ⊗ x ′′ � y′′ + y′ ⊗ x � y′′ + x 	 y′ ⊗ y′′ + x ′ 	 y ⊗ x ′′ + y ⊗ x,
(27)

Δ̃(x • y) = x ′ • y′ ⊗ x ′′ � y′′ + x ′ • y ⊗ x ′′ + x • y′ ⊗ y′′. (28)

Recall, for later use, that a NQSh bialgebra k ⊕ A is connected if the reduced
coproduct is locally conilpotent:

A =
⋃

n≥0

Ker(Δ̃(n)),

where Δ̃(n) is the iterated coproduct of order n (Ker(Δ̃, the set of primitive ele-
ments, is also denoted Prim(A)) and similarly for the other unital bialgebras we
will consider.

The reason for the importance of the unital case comes from Hoffman’s:

Example 2 Let V be an associative, non unitary algebra. With the deconcatenation
coproduct Δ, defined by:

Δ(x1 . . . xn) =
n∑

i=0

x1 . . . xi ⊗ xi+1 . . . xn,

the tensor quasi-shuffle algebra T (V ) is a NQSh bialgebra. When V is commutative,
it is a quasi-shuffle bialgebra.

4 Lie Theory for Quasi-Shuffle Bialgebras

The structural part of Lie theory, as developed for example in Bourbaki’s Groupes
et Algèbres de Lie [1] and Reutenauer’s monograph on free Lie algebras [38], is
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largely concernedwith the structure of enveloping algebras and cocommutative Hopf
algebras. It was shown in [24] that many phenomena that might seem characteristic
of Lie theory do actually generalize to other families of bialgebras -precisely the ones
studied in the previous section, that is the ones associated with Hopfian categories
of algebras equiped with a forgetful functor to Com or As.

Themost natural way to study these questions is by working with twisted algebras
over operads—algebras in the category of S-modules (families of representations
of all the symmetric groups Sn, n ≥ 0) or, equivalently, of functors from finite
sets to vector spaces. However, doing so systematically requires the introduction of
many terms and preliminary definitions (see [24]), and we prefer to follow here a
more direct approach inspired by the theory of combinatorial Hopf algebras. The
structures we are going to introduce are reminiscent of the Malvenuto–Reutenauer
Hopf algebra [29], whose construction can be deduced from the Hopfian structure of
As, see [35–37] and [24, Example 2.3.4]. The same process will allow us to contruct
a combinatorial Hopf algebra structure on the operadQSh of quasi-shuffle algebras.

Recall that an algebraic theory such as the ones we have been studying (associa-
tive, commutative, quasi-shuffle, NQSh... algebras) is entirely characterized by the
behaviour of the corresponding free algebra functor F : an analytic functor described
by a sequence of symmetric group representation Fn (i.e. a S-module) so that, for a
vector space V , F(V ) = ⊕

n
Fn ⊗Sn V

⊗n.Composition of operations for F-algebras

are encoded by natural transformations from F ◦ F to F . By a standard process, this
defines a monad, and F-algebras are the algebras over this monad. The direct sum
F = ⊕

n
Fn equipped with the previous (multilinear) composition law is called an

operad, and F-algebras are algebras over this operad. Conversely, the Fn are most
easily described as the multilinear part of the free F-algebras F(Xn) over the vector
space spanned by a finite set with n elements, Xn := {x1, . . . , xn}. Here, multilinear
means that Fn is the intersection of the n eigenspaces associated to the eigenvalue λ
of the n operations induced on F(Xn) by the map that scales xi by λ (and acts as the
identity on the x j , j �= i).

Let X be a finite set, and let us anticipate on the next Lemma and write
QSh(X) := T+(k[X ]+) for the quasi-shuffle algebra associated to k[X ]+, the (non
unital, commutative) algebra of polynomials without constant term over X . For I
a multiset over X , we write xI the associated monomial (e.g. if I = {x1, x3, x3},
xI = x1x23 ). The tensors xI1 . . . xIn = xI1 ⊗ · · · ⊗ xIn form a basis of QSh(X).

There are several ways to show that QSh(X) is the free quasi-shuffle algebra over
X : the property can be deduced from the classical constructions of commutativeRota-
Baxter algebras by Cartier [3] or Rota [39, 40] (indeed the tensor product xI1 . . . xIn
corresponds to the Rota–Baxter monomial xI1R(xI2 R(xI3 . . . R(xIn ) . . . ))) in the free
RBalgebra over X ). It can be deduced from the construction of the free shuffle algebra
over X by standard filtration/graduation arguments. It can also be deduced from a
Schur functor argument [26]. The simplest proof is but the one due to Schützenberger
for shuffle algebras that applies almost without change to quasi-shuffle algebras [42,
p. 1–19].
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Lemma 2 The quasi-shuffle algebra QSh(X) is the (unique up to isomorphism)
free quasi-shuffle algebra over X.

Proof Indeed, let A be an arbitrary quasi-shuffle algebra generated by X . Then, one
checks easily by a recursion using the defining relations of quasi-shuffle algebras
that every a ∈ A is a finite sum of “normed terms”, that is terms of the form

xI1 ≺ (xI2 ≺ (xI3 · · · ≺ xIn ) . . . ).

But, if A = QSh(X), by the Schützenberger’s trick, xI1 ≺ (xI2 ≺ (xI3 · · · ≺ xIn ) . . . )

= xI1 . . . xIn ; the result follows from the fact that these terms form a basis of
QSh(X). �

Corollary 1 The component QShn of the operad QSh identifies therefore with the
linear span of tensors xI1 . . . xIk , where I1 � · · · � Ik = [n].

Let us introduce useful notations. We write xI := xI1 . . . xIk , where I denotes an
arbitrary ordered sequence of disjoint subsets ofN∗, I1, . . . , Ik , and set |I| := |I1| +
· · · + |Ik |. Recall that the standardization map associated to a subset I = {i1, . . . , in}
of N∗, where i1 < · · · < in is the map st from I to [n] defined by: st (ik) := k. The
standardization of I is then the ordered sequence st (I) := st (I1, . . . , Ik), where st
is the standardization map associated to the subset I1 � · · · � Ik of the integers. We
also set st (xI) := xst (I). For example, if I = {2, 6}, {5, 9}, st (I) = {1, 3}, {2, 4}
and st (xI) = x1x3 ⊗ x2x4. The shift by k of a subset I = {i1, . . . , in} (or a sequence
of subsets, and so on...) of N∗, written I + k, is defined by I + k := {i1 + k, . . . ,
in + k}.
Theorem 1 The operad QSh of quasi-shuffle algebras inherits from the Hopfian
structure of its category of algebras a NQSh bialgebra structure whose product
operations are defined by:

xI ≺ xJ := xI ≺ f xJ+n,

xI 	 xJ := xI 	 f xJ+n,

xI • xJ := xI • f xJ+n,

where I and J run over ordered partitions of [n] and [m]; the coproduct is defined
by:

Δ(x) := (st ⊗ st) ◦ Δ f (x),

where, on the right-hand sides, ≺ f ,	 f , • f ,Δ f stand for the corresponding opera-
tions on QSh(N∗) (where, as usual, x ≺ f y =: y 	 f x).

The link with the Hopfian structure of the category of quasi-shuffle algebras refers
to [24, Theorem 2.3.3]: any connected Hopf operad is a twisted Hopf algebra over
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this operad. The Theorem 1 can be thought of as a reformulation of this general result
in terms of NQSh bialgebras.

The fact that QSh is a NQSh algebra follows immediately from the fact that
QSh(N∗) is aNQShalgebra for≺ f ,	 f , • f , togetherwith the fact that the category of
NQSh algebras is non-symmetric. The coalgebraic properties and their compatibility
with the NQSh algebra structure are less obvious and follow from the following
Lemma (itself a direct consequence of the definitions):

Lemma 3 Let I = I1, . . . , Ik and J = J1, . . . , Jl be two ordered sequence of dis-
joint subsets of N∗ that for any n ∈ Ip, p ≤ k and any m ∈ Jq , q ≤ l we have
n < m. Then:

st (xI ≺ f xJ ) = xst (I) ≺ f xst (J )+|I| = xst (I) ≺ xst (J ),

st (xI 	 f xJ ) = xst (I) 	 f xst (J )+|I| = xst (I) 	 xst (J ),

st (xI • f xJ ) = xst (I) • f xst (J )+|I| = xst (I) • xst (J ).

The Hopf algebra QSh is naturally isomorphic with WQSym, the Chapoton-
Hivert Hopf algebra of word quasi-symmetric functions, that has been studied in
[17, 31], also in relation to quasi-shuffle algebras, but from a different point of view.

Let us conclude this section by some insights on the “Lie theoretic” structure
underlying the previous constructions on QSh (where “Lie theoretic” refers con-
cretely to the behaviour of the functor of primitive elements in a class of bialgebras
associated to an Hopfian category with a forgetful functor to As or Com). Recall
that there is a forgetful functor from quasi-shuffle algebras to commutative algebras
defined by keeping only the • product. Dually, the operad Com embeds into the
operad QSh: Comn is the vector space of dimension 1 generated by the monomial
x1 . . . xn , and through the embedding intoQSh thismonomial is sent to themonomial
(a tensor of length 1) x•n

1 := x1 • · · · • x1 in QSh viewed as a NQSh algebra. Let us
write slightly abusively Com for the image of Com in QSh, we have, by definition
of the coproduct on QSh:

Theorem 2 The operad Com embeds into the primitive part of the operad QSh
viewed as a NQSh bialgebra. Moreover, the primitive part of QSh is stable under
the • product.

Proof Only the last sentence needs to be proved. It follows from the relations:

1 • x = x • 1 = 0

for x ∈ QShn, n ≥ 1. �

From the point of view of S-modules, the Theorem should be understood in the
light of [24, Theorem 2.4.2]: for P a connected Hopf operad, the space of primitive
elements of the twisted Hopf P-algebra P is a sub-operad of P.
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As usual in categories of algebras a forgetful functor such as the one from QSh
to Com induced by • has a left adjoint, see e.g. [19] for the general case and [26]
for quasi-shuffle algebras. This left adjoint, written U (by analogy with the case of
classical enveloping algebras: U (A) ∈ QSh for A ∈ Com equipped with a product
written ·) is, up to a canonical isomorphism, the quotient of the free quasi-shuffle
over the vector space A by the relations a • b = a · b. When the initial category is
Hopfian, such a forgetful functor to a category of algebras over a naturally defined
sub-operad arises from the properties of the tensor product of algebras in the initial
category, see [24, Theorem 2.4.2 and Sect. 3.1.2]—this is exactly what happens with
the pair (As,Lie) in the classical situationwhere the left adjoint is the usual enveloping
algebra functor, and here for the pair (QSh,Com).

Lemma 4 (Quasi-shuffle PBW theorem) The left adjoint U of the forgetful functor
from QSh to Com, or “quasi-shuffle enveloping algebra” functor from Com to QSh,
is (up to isomorphism) Hoffman’s quasi-shuffle algebra functor T+.

Proof An elementary proof follows once again from (a variant of) Schützenberger’s
construction of the free shuffle algebra. Notice first that T+(A) is generated by A
as a quasi-shuffle algebra, and that, in it, the relations a • b = a · b hold. Moreover,
choosing a basis (ai )i∈I of A, the tensors ai1 . . . ain = ai1 ≺ (ai2 ≺ · · · ≺ ain ) . . . )

form a basis of T+(A). On the other hand, by the definition of the left adjoint U (A)

as a quotient of Sh(A) by the relations a • b = a · b, using the defining relations of
quasi-shuffle algebras, any term inU (A) can be written recursively as a sum of terms
in “normed form” ai1 ≺ (ai2 ≺ . . . (ain−1 ≺ ain ) . . . ). The Lemma follows. �

Notice that the existence of a basis of T+(A) of tensors ai1 . . . ain = ai1 ≺ (ai2 ≺
· · · ≺ ain ) . . . ) is the analog, for quasi-shuffle enveloping algebras, of the Poincaré-
Birkhoff-Witt (PBW) basis for usual enveloping algebras.

5 Endomorphism Algebras

We follow once again the analogy with the familiar notion of usual enveloping
algebras and connected cocommutative Hopf algebras and study, in this section the
analogs of the convolutionproduct of their linear endomorphisms. Surjections happen
to play, for quasi-shuffle algebras T (A) associated to commutative algebras A, the
role played by bijections in classical Lie theory, see [29] and [17, 31].

Proposition 3 Let A be a coassociative (non necessarily counitary) coalgebra with
coproduct Δ̃ : A −→ A ⊗ A, and B be a NQSh algebra. The space of linear mor-
phisms Lin(A, B) is given a NQSh algebra structure in the following way: for all
f, g ∈ Lin(A, B),

f ≺ g =≺ ◦( f ⊗ g) ◦ Δ̃, f 	 g =	 ◦( f ⊗ g) ◦ Δ̃, f • g = • ◦ ( f ⊗ g) ◦ Δ̃.

(29)
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Proof The construction follows easily from the fact that NQSh is non-symmetric
and from the coassociativity of the coproduct. As an example, let us prove (5) using
Sweedler’s notation for Δ̃. Let f, g, h ∈ Lin(A, B). For all x ∈ A,

( f 	 g) ≺ h(x) = ( f 	 g)(x ′) ≺ h(x ′′)
= ( f ((x ′)′) 	 g((x ′)′′)) ≺ h(x ′′)
= f (x ′) 	 (g((x ′′)′) ≺ h((x ′′)′′)
= f (x ′) 	 (g ≺ h)(x ′′)
= f 	 (g ≺ h)(x).

So ( f 	 g) ≺ h = f 	 (g ≺ h). �

Remark 2 The induced product � on Lin(A, B) is the usual convolution product.

Corollary 2 The set of linear endomorphisms of A, where k ⊕ A is a NQSh bialge-
bra, is naturally equiped with the structure of a NQSh algebra.

Let us turn now to the quasi-shuffle analog of the Malvenuto-Reutenauer non-
commutative shuffle algebra of permutations. The appearance of a noncommutative
shuffle algebra of permutations in Lie theory in [29] can be understood operadically
by noticing that the linear span of the n-th symmetric groupSn isAsn , the n-th com-
ponent of the operad of associative algebras. The same reason explainwhy surjections
appear naturally in the study of quasi-shuffle algebras: ordered partitions of initial
subsets of the integers (say {2, 4}, {5}, {1, 3}) parametrize a natural basis of QShn ,
and such ordered partitions are canonically in bijection with surjections (here, the
surjection s from [5] to [3] defined by s(2) = s(4) = 1, s(5) = 2, s(1) = s(3) = 3).
Let us show how the NQSh algebra structure ofQSh can be recovered from the point
of view of the structure of NQSh algebras of linear endomorphisms. In the process,
we also give explicit combinatorial formulas for the corresponding structure maps
≺,	, •. We also point out that composition of endomorphisms leads to a new prod-
uct on QSh (such a product is usually called “internal product” in the theory of
combinatorial Hopf algebras, we follow the use, see [18, 31]).

Recall that a word n1 . . . nk over the integers is called packed if the underlying
set S = {n1, . . . , nk} is an initial subset of N∗, that is, S = [m] for a certain m.
For later use, recall also that any word n1 . . . nk over the integers can be packed:
pack(n1 . . . nk) = m1 . . .mk is the unique packed word preserving the natural order
of letters (mi < m j ⇔ ni < n j , mi = m j ⇔ ni = n j , e.g. pack(6353) = 3121).

Let n ≥ 0. We denote by Sur jn the set of maps σ : [n] := {1, . . . , n} −→ N
∗

such that σ({1, . . . , n}) = {1, . . . , k} for a certain k. The corresponding elements in
QShn are the ordered partitions σ−1({1}), . . . ,σ−1({k}) of [n]. The integer k is the
maximum of σ and denoted by max(σ). The element σ ∈ Sur jn will be represented
by the packed word (σ(1) . . . σ(n)). We identify in this way elements of Sur jn with
packed words of length n.

We assume that V is an associative, commutative algebra andworkwith the quasi-
shuffle algebra T+(V ). Let σ ∈ Sur jn , n ≥ 1. We define Fσ ∈ Endk(T (V )) in the
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following way: for all x1, . . . , xl ∈ V ,

Fσ(x1 . . . xl) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎝
∏

σ(i)=1

xi

⎞

⎠ . . .

⎛

⎝
∏

σ(i)=max(σ)

xi

⎞

⎠ if l = n,

0 otherwise.

Note that in each parenthesis, the product is the product of V . For example, if x, y,
z ∈ V ,

F(123)(xyz) = xyz F(132)(xyz) = xzy F(213)(xyz) = yxz
F(231)(xyz) = zxy F(312)(xyz) = yzx F(321)(xyz) = zyx
F(122)(xyz) = x(y.z) F(212)(xyz) = y(x .z) F(221)(xyz) = z(x .y)
F(112)(xyz) = (x .y)z F(121)(xyz) = (x .z)y F(211)(xyz) = (y.z)x

F(111)(xyz) = x .y.z.

Wealso define F1, where 1 is the emptyword, by F1(x1 . . . xn) = ε(x1 . . . xn)1,where
ε is the augmentation map from T (V ) to k (with kernel T+(V )).

Notations. Let k, l ≥ 0.

1. a. We denote by QShk,l the set of (k, l) quasi-shuffles, that is to say elements
σ ∈ Sur jk+l such that σ(1) < . . . < σ(k) and σ(k + 1) < . . . < σ(k + l).

b. QSh≺
k,l is the set of (k, l) quasi-shuffles σ such that σ−1({1}) = {1}.

c. QSh	
k,l is the set of (k, l) quasi-shuffles σ such that σ−1({1}) = {k + 1}.

d. QSh•
k,l is the set of (k, l) quasi-shuffles σ such that σ−1({1}) = {1, k + 1}.

Note that QShk,l = QSh≺
k,l � QSh	

k,l � QSh•
k,l .

2. If σ ∈ Sur jk and τ ∈ Sur jl , σ ⊗ τ is the element of Sur jk+l represented by the
packed word στ [max(σ)], where [k] denotes the translation by k (312[5] = 867).

The subspace of EndK (T (V )) generated by the maps Fσ is stable under compo-
sition and the products:

Proposition 4 Let σ ∈ Sur jk and τ ∈ Sur jl .

1. If max(τ ) = k, then Fσ ◦ Fτ = Fσ◦τ . Otherwise, this composition is equal to 0.
2.

Fσ ≺ Fτ =
∑

ζ∈QSh≺
k,l

Fζ◦(σ⊗τ ), Fσ 	 Fτ =
∑

ζ∈QSh	
k,l

Fζ◦(σ⊗τ ),

Fσ • Fτ =
∑

ζ∈QSh•
k,l

Fζ◦(σ⊗τ ), Fσ − Fτ =
∑

ζ∈QShk,l

Fζ◦(σ⊗τ ).

The same formulas describe the structure of the operad QSh as a NQSh algebra
(i.e., inQSh, using the identification between surjections and ordered partitions,
σ ≺ τ = ∑

ζ∈QSh≺
k,l

ζ ◦ (σ ⊗ τ ), and so on).
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Proof The proof of 1 and 2 follows by direct computations. The identification with
the corresponding formulas forQSh follows from the identities, for all x1, . . . , xk+l ∈
V , in the quasi-shuffle algebra T+(V ):

x1 . . . xk ≺ xk+1 . . . xk+l =
∑

ζ∈QSh≺
k,l

Fζ(x1 . . . xk+l),

x1 . . . xk 	 xk+1 . . . xk+l =
∑

ζ∈QSh	
k,l

Fζ(x1 . . . xk+l),

x1 . . . xk • xk+1 . . . xk+l =
∑

ζ∈QSh•
k,l

Fζ(x1 . . . xk+l),

x1 . . . xk − xk+1 . . . xk+l =
∑

ζ∈QShk,l

Fζ(x1 . . . xk+l).

Moreover:
x1 . . . xk xk+1 . . . xk+l =

∑

ζ∈Shk,l
Fζ(x1 . . . xk+l),

where Shk,l is the set of (k, l)-shuffles, that is to say Sk+l ∩ QShk,l . �

Remark 3 1. F(1...n) is the projection on the space of words of length n. Conse-
quently:

I d =
∞∑

n=0

F(1...n).

2. In general, this action of packed words is not faithful. For example, if A is a trivial
algebra, then for any σ ∈ Sur jk \ Sk , Fσ = 0.

3. Here is an example where the action is faithful. Let A = K [Xi | i ≥ 1]+. Let us
assume that

∑
aσFσ = 0. Acting on the word X1 . . . Xk , we obtain:

∑

σ∈Sur jk
aσ

⎛

⎝
∏

σ(i)=1

Xi

⎞

⎠ . . .

⎛

⎝
∏

σ(i)=max(σ)

Xi

⎞

⎠ = 0.

As the Xi are algebraically independent, the words appearing in this sum are
linearly independent, so for all σ, aσ = 0.

6 Canonical Projections on Primitives

This section studies the analog, for quasi-shuffle bialgebras, of the canonical pro-
jection from a connected cocommutative Hopf algebra to its primitive part—the
logarithm of the identity (see e.g. [33, 34, 38]). See also [2] where this particular
topic and related ones are addressed in a more general setting.
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Recall that a coalgebra C with a coassociative coproduct Δ̃ is connected if and
only if the coproduct il locally conilpotent (for c ∈ C there exists n ∈ N∗ such that
Δ̃(n)(c) = 0).

Proposition 5 Let A be a coassociative, non counitary, coalgebra with a locally
conilpotent coproduct

Δ̃ : A −→ A ⊗ A, A =
⋃

n≥0

Ker(Δ̃(n)),

and let B be a NQSh algebra. Then, for any f ∈ Lin(A, B), there exists a unique
map π f ∈ Lin(A, B), such that

f = π f + π f ≺ f.

Proof For all n ≥ 1, we put Fn = Ker(Δ̃(n)): this defines the coradical filtration of
A. In particular, F1 =: Prim(A). Moreover, if n ≥ 1:

Δ̃(Fn) ⊆ Fn−1 ⊗ Fn−1.

Let us choose for all n a subspace En of A such that Fn = Fn−1 ⊕ En . In particular,
E1 = F1 = Prim(A). Then, A is the direct sum of the En’s and for all n:

Δ̃(En) ⊆
⊕

i, j<n

Ei ⊗ E j .

Existence. We inductively define a map π f : En −→ B for all n ≥ 1 in the following
way:

• For all a ∈ E1, π f (a) = f (a).

• If a ∈ En , as Δ̃(a) ∈
⊕

i+ j<n

Ei ⊗ E j , (π f ⊗ f ) ◦ Δ̃(a) is already defined. We then

put:
π f (a) = f (a)− ≺ ◦(π f ⊗ f ) ◦ Δ̃(a) = f (a) − (π f ≺ f )(a)

Unicity. Letμ f such that f = μ f + (μ f ≺ f ). For alla ∈ E1, f (a) = μ f (a) + 0,
so μ f (a) = π f (a). Let us assume that for all k < n, μ f (a) = π f (a) if a ∈ Ek . Let
a ∈ En . Then:

a = μ f (a) + μ f (a
′) ≺ a′′ = μ f (a) + π f (a

′) ≺ a′′ = μ f (a) + a − π f (a),

so μ f (a) = π f (a). Hence, μ f = π f . �

Proposition 6 When A = B = T+(V ) and f = I d, the map π := π f defined in
Proposition 5 is equal to the projection F(1).
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Proof First, observe that, as QSh≺
1,k = {(1, . . . , k)}, for all packed words (a1 . . . ak),

F(1) ≺ F(a1...ak ) = F(1(a1+1)...(ak+1)). Hence, in A:

F(1) + F(1) ≺ I dA = F(1) +
∞∑

n=1

F(1) ≺ F(1...n) = F(1) +
∞∑

n=1

F(1...n+1)

=
∞∑

n=1

F(1...n) = I dA.

By unicity in Proposition 5, π f = F(1). �

More generally, we have:

Proposition 7 Let A be a non unital, connected NQSh bialgebra, and π the unique
solution to

IdA = π + π ≺ I dA,

then π is a projection on Prim(A), and for all x ∈ Prim(A), y ∈ A, π(x ≺ y) = 0.

Proof Let us prove that for all a ∈ En , π(a) ∈ Prim(A) by induction on n. As
E1 = Prim(A), this is obvious if n = 1. Let us assume the result for all k < n. Let
a ∈ En . Then π(a) = a − π(a′) ≺ a′′. By the induction hypothesis, we can assume
that π(a′) ∈ Prim(A), so:

Δ̃(π(a)) = a′ ⊗ a′′ − π(a′) ≺ a′′ ⊗ a′′′ − π(a′) ⊗ a′′

= (a′ − (π ≺ I d)(a′) − π(a′)) ⊗ a′′ = 0.

Hence, for all a ∈ A, π(a) ∈ Prim(a). So π that, by its very definition, acts as the
identity on Prim(A), is a projection on Prim(A).

Let x ∈ Prim(A) and y ∈ En , let us prove thatπ(x ≺ y) = 0 by induction on n. If
n = 1, then y ∈ Prim(A), so Δ̃(x ≺ y) = x ⊗ y, and π(x ≺ y) = x ≺ y − π(x) ≺
y = x ≺ y − x ≺ y = 0. Let us assume the result at all rank < n. We have:

Δ̃(x ≺ y) = x ≺ y′ ⊗ y′′ + x ⊗ y.

By the induction hypothesis, we can assume that π(x ≺ y′) = 0, so π(x ≺ y) = x ≺
y − 0 − π(x) ≺ y = x ≺ y − x ≺ y = 0. �

Remark 4 For all x, y ∈ Prim(A):

π(x ≺ y) = 0, π(x 	 y) = x 	 y − y ≺ x, π(x • y) = x • y.

Proposition 8 Let A be a nonunital, connected quasi-shuffle bialgebra. Then
Prim(A) is stable under • and the following map is an isomorphism of quasi-shuffle
bialgebras:
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θ :
{
T+(Prim(A)) −→ A

a1 . . . ak −→ a1 ≺ (a2 ≺ (. . . ≺ ak) . . .).

Proof Let a1, . . . , ak ∈ Prim(A). An easy induction on k proves that:

Δ̃(θ(a1 ⊗ . . . ⊗ ak)) =
k−1∑

i=1

θ(a1 ⊗ . . . ⊗ ai ) ⊗ θ(ai+1 ⊗ . . . ⊗ ak).

So θ is a coalgebra morphism.
From this coalgebra morphism property and the identity π(x ≺ y) = 0 for x ∈

Prim(A), we get for a1, . . . , ak ∈ Prim(A), (I dA ⊗ π) ◦ Δ̃(θ(a1 ⊗ . . . ⊗ ak)) =
θ(a1 ⊗ . . . ⊗ ak−1) ⊗ θ(ak). Since θ is the identity on its restriction to Prim(A), its
injectivity follows by induction.

Let a = a1 . . . ak and b = b1 . . . bl ∈ T+(Prim(A)). Let us prove by induction
on k + l that:

θ(a ≺ b) = θ(a) ≺ θ(b), θ(a 	 b) = θ(a) 	 θ(b), θ(a • b) = θ(a) • θ(b).

If k = 1, then a ≺ b1 . . . bl = ab1 . . . bl , so θ(a ≺ b) = a ≺ θ(b) = θ(a) ≺ θ(b). If
l = 1, then a 	 b = ba, so θ(a 	 b) = b ≺ θ(a) = θ(b) ≺ θ(a) = θ(a) 	 θ(b). If
k = l = 1, , x • y = π(x • y) ∈ Prim(A), so θ(a • b) = a • b = θ(a) • θ(b). All
these remarks give the results for k + l ≤ 2. Let us assume the result at all ranks
< k + l. If k = 1, we already proved that θ(a ≺ b) = θ(a) ≺ θ(b). If k ≥ 2, a ≺
b = a1(a2 . . . ak − b). By the induction hypothesis applied to a2 . . . ak and b:

θ(a ≺ b) = a1 ≺ (θ(a2 . . . ak) � θ(b)) = (a1 ≺ θ(a2 . . . ak)) ≺ θ(b) = θ(a) ≺ θ(b).

Using the commutativity of T+(Prim(A)) and A, we obtain θ(a 	 b) = θ(a) 	
θ(b). If l > 1, a • b = a • (b1 ≺ b2 . . . bl) = (a • b1) ≺ b2 . . . bl . Moreover, a • b1
is a linear span of words of length ≤ k + 1, so, by the preceding computation and
the induction hypothesis:

θ(a • b) = θ(a • b1) ≺ θ(b2 . . . bl).

The induction hypothesis holds for a and b1, so:

θ(a • b) = (θ(a) • θ(b1)) ≺ •(b2 . . . bl) = θ(a) • (b1 ≺ θ(b2 . . . bl)) = θ(a) • θ(b).

If l = 1, then k > 1 and we conclude with the commutativity of •.
Let us now prove that Prim(A) generates A as a quasi-shuffle algebra. Let A′ be

the quasi-shuffle subalgebra of A generated by Prim(A). Let a ∈ En , let us prove
that x ∈ A′ by induction on n. As E1 = Prim(A), this is obvious if n = 1. Let us
assume the result for all ranks < n. Then a = π(a) + π(a′) ≺ a′′. By the induction
hypothesis, a′′ ∈ A′. Moreover, π(a) and π(a′) ∈ Prim(A), so a ∈ A′.
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As a conclusion, θ is a morphism of quasi-shuffle algebras, whose image contains
Prim(A), which generates A, so θ is surjective. �

7 Relating the Shuffle and Quasi-Shuffle Operads

A fundamental theorem of the theory of quasi-shuffle algebras relates quasi-shuffle
bialgebras and shuffle bialgebras and, under some hypothesis (combinatorial and
graduation hypothesis on the generators in Hoffman’s original version of the theorem
[23]), shows that the two categories of bialgebras are isomorphic. This result allows
to understand quasi-shuffle bialgebras as deformations of shuffle bialgebras and,
as such, can be extended to other deformations of the shuffle product than the one
induced by Hoffman’s exponential map, see [17]. We will come back to this line of
arguments in the next section.

Here, we stick to the relations between shuffle and quasi-shuffle algebras and
show that Hoffman’s theorem can be better understood and refined in the light of an
Hopf algebra morphism relating the shuffle and quasi-shuffle operads.

Let us notice first that the same construction that allows to define a NQSh algebra
structure on the operad QSh allows, mutatis mutandis, to define a noncommutative
shuffle algebra structure on Sh, the operad of shuffle algebras. A natural basis of the
latter operad is given by permutations (the result goes back to Schützenberger, who
showed that the tensor algebra over a vector space V is a model of the free shuffle
algebra over V [42]). Let us stick here to the underlying Hopf algebra structures.

Recall first that the set of packed words (or surjections, or ordered partitions of
initial subsets of the integers) Sur j is a basis of QSh. As a Hopf algebra, QSh is
isomorphic toWQSym, the Hopf algebra of word symmetric functions, see e.g. [17]
for references on the subject. This Hopf algebra structure is obtained as follows. For
all σ ∈ Sur jk , τ ∈ Sur jl :

σ � τ =
∑

ζ∈QShk,l

ζ ◦ (σ ⊗ τ ).

For all σ ∈ Sur jn:

Δ(σ) =
max(σ)∑

k=0

σ|{1,...,k} ⊗ Pack(σ|{k+1,...,max(σ)}),

where for all I ⊆ {1, . . . ,max(σ)}, σ|I is the packed word obtained by keeping only
the letters of σ which belong to I .

On the other hand, the set of permutations is a basis of the operad Sh. As a Hopf
algebra, the latter identifies with the Malvenuto-Reutenauer Hopf algebra [29] and
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with the Hopf algebra of free quasi-symmetric functions FQSym. Its Hopf structure
is obtained as follows. For all σ ∈ Sk , τ ∈ Sl :

σ � τ =
∑

ζ∈Shk,l
ζ ◦ (σ ⊗ τ ).

For all σ ∈ Sn:

Δ(σ) =
max(σ)∑

k=0

σ|{1,...,k} ⊗ Pack(σ|{k+1,...,max(σ)}).

There is an obvious surjectiveHopf algebramorphismΞ fromQSh toSh, sending
a packed word σ to itself if σ is a permutation, and to 0 otherwise. From an operadic
point of view, this maps amounts to put to zero the • product. There is however
another, non operadic, transformation, relating the two structures.

We use the following notations:

1. Let σ ∈ Sn and τ ∈ Sur jn . We shall say that τ ∝ σ if:

∀1 ≤ i, j ≤ n, (σ(i) ≤ σ( j) =⇒ τ (i) ≤ τ ( j)).

2. Let τ ∈ Sur jn . We put τ ! =
max(τ )∏

i=1

|τ−1({i})|!.

Theorem 3 Consider the following map:

Φ :
⎧
⎨

⎩

Sh −→ QSh

σ ∈ Sn −→
∑

τ∝σ

τ

τ ! .

Then Φ is an injective Hopf algebra morphism. Moreover it is equivariant: for all
σ, τ ∈ Sn,

Φ(σ ◦ τ ) = Φ(σ) ◦ τ .

Proof Let σ, τ ∈ Sn . Then τ ∝ σ if, and only if, σ = τ . So, for all σ ∈ Sn:

Φ(σ) = σ + linear span of packed words which are not permutations.

So Ξ ◦ Φ = I dSh, and Φ is injective.
Let τ ∈ Sur jn and σ ∈ Sn . Then τ ∝ σ if, and only if, τ ◦ σ−1 ∝ In . Moreover,

|τ ◦ σ−1|! = τ !, as σ is a bijection. Hence:

Φ(σ) =
∑

τ∝σ

τ

τ ! =
∑

ρ∝In

ρ ◦ σ

ρ! = Φ(In) ◦ σ.
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More generally, if σ, τ ∈ Sn , Φ(σ ◦ τ ) = Φ(In) ◦ (σ ◦ τ ) = (Φ(In) ◦ σ) ◦ τ =
Φ(σ) ◦ τ .

Let σ1 ∈ Sn1 and σ2 ∈ Sn2 .

Φ(σ1) � Φ(σ2) =
∑

τ1∝σ1,τ2∝σ2
ζ∈QSh(max(τ1),max(τ2))

ζ ◦ (τ1 ⊗ τ2)

τ1!τ2! .

Let S be the set of elements σ ∈ Sur jn1+n2 such that:

• For all 1 ≤ i, j ≤ n1, σ1(i) ≤ σ1( j) =⇒ σ(i) ≤ σ( j).
• For all 1 ≤ i, j ≤ n2, σ2(i) ≤ σ2( j) =⇒ σ(i + n1) ≤ σ( j + n2).

Let τ1 ∝ σ1, τ2 ∝ σ2 and ζ ∈ QSh(max(τ1),max(τ2)). As ζ is increasing on
{1, . . . ,max(τ1)} and {max(τ1) + 1, . . . ,max(τ1) + max(τ2)}, ζ ◦ (τ1 ⊗ τ2) ∈ S.
Conversely, if σ ∈ S, there exists a unique τ1 ∈ Sur jn1 , τ2 ∈ Sur jn2 and ζ ∈
QShmax(τ1),max(τ2) such that σ = ζ ◦ (τ1 ⊗ τ2): in particular, τ1 = Pack(σ(1) . . .

σ(n1)) and τ2 = Pack(σ(n1 + 1) . . . σ(n1 + n2)). As σ ∈ S and ζ ∈
QShmax(τ1),max(τ2), τ1 ∝ σ1 and τ2 ∝ σ2. Hence:

Φ(σ1) � Φ(σ2) =
∑

σ∈S

σ

Pack(σ(1) . . . σ(n1))!Pack(σ(n1 + 1) . . . σ(n1 + n2))! .

On the other hand:
Φ(σ1 � σ2) =

∑

ζ∈Sh(n1,n2)
τ∝ζ◦(σ1⊗σ2)

τ

τ ! .

Let ζ ∈ Sh(n1, n2) and τ ∝ ζ ◦ (σ1 ⊗ σ2). If 1 ≤ i, j ≤ n1 and σ1(i) ≤ σ1( j), then:

ζ ◦ (σ1 ⊗ σ2)(i) = ζ(σ1(i)) ≤ ζ(σ1( j)) = ζ ◦ (σ1 ⊗ σ2)(i),

so τ (i) ≤ τ ( j). If 1 ≤ i, j ≤ n2 and σ2(i) ≤ σ2( j), then:

ζ ◦ (σ1 ⊗ σ2)(i + n1) = ζ(σ2(i) + max(σ1)) ≤ ζ(σ2( j) + max(σ1)) = ζ ◦ (σ1 ⊗ σ2)( j + n1),

so τ (i + n1) ≤ τ ( j + n2). Hence, τ ∈ S and finally:

Φ(σ1 � σ2) =
∑

τ∈S

τ

τ !�{ζ ∈ Sh(n1, n2) | τ ∝ ζ ◦ (σ1 ⊗ σ2)}.

Let τ ∈ S. We put τ1 = (τ (1) . . . τ (n1)) and τ2 = (τ (n1 + 1) . . . τ (n1 + n2)). Let
ζ ∈ Sh(n1, n2), such that τ ∝ ζ ◦ (σ1 ⊗ σ2). For all 1 ≤ i ≤ max(τ ), ζ(τ−1({i})) =
Ii is entirely determined and does not depend on ζ. By the increasing conditions on ζ,
the determination of such a ζ consists of choosing for all 1 ≤ i ≤ max(τ ) a bijective
map ζi from τ−1({i}) to Ii , such that ζi is increasing on τ−1({i}) ∩ {1, . . . , n1} =
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τ−1
1 ({i}) and on τ−1({i}) ∩ {n1 + 1, . . . , n1 + n2} = τ−1

2 ({i}). Hence, the number of
possibilities for ζ is:

max(τ )∏

i=1

|τ−1(i)|!
|τ−1

1 ({i})|!|τ−1
2 ({i})|!

=

max(τ )∏

i=1

|τ−1({i})|!
max(τ1)∏

i=1

|τ−1
1 ({i})|!

max(τ2)∏

i=1

|τ−1
2 ({i})|!

=

max(τ )∏

i=1

|τ−1({i})|!
max(Pack(τ1))∏

i=1

|Pack(τ1)−1({i})|!
max(Pack(τ2))∏

i=1

|Pack(τ2)−1({i})|!

= τ !
Pack(τ1)!Pack(τ2)! .

Hence:

Φ(σ1 � σ2) =
∑

τ∈S

τ

τ !
τ !

Pack(τ (1) . . . τ (n1))!Pack(τ (n1 + 1) . . . τ (n1 + n2))!
= Φ(σ1) � Φ(σ2).

So Φ is an algebra morphism.
Let σ ∈ Sn .

Δ(Φ(σ))

=
∑

τ∝σ

max(τ )∑

k=0

1

τ !τ|{1,...,k} ⊗ Pack(τ|{k+1,...,max(τ )}

=
∑

τ∝σ

max(τ )∑

k=0

1

τ|{1,...,k}!Pack(τ|{k+1,...,max(τ )}!τ|{1,...,k} ⊗ Pack(τ|{k+1,...,max(τ )}

=
n∑

k=0

∑

τ1∝σ|{1,...,k}
τ2∝Pack(σ|{k+1,...,n})

τ1

τ1! ⊗ τ2

τ2!

= (Φ ⊗ Φ) ◦ Δ(σ).

Hence, Φ is a coalgebra morphism. �
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Example 3

Φ((1)) = (1),

Φ((12)) = (12) + 1

2
(11),

Φ((123)) = (123) + 1

2
(112) + 1

2
(122) + 1

6
(111),

Φ((1234)) = (1234) + 1

2
(1123) + +1

2
(1223) + +1

2
(1233)

+ 1

4
(1122) + 1

6
(1112) + 1

6
(1222) + 1

24
(1111).

More generally:

Φ((1 . . . n)) =
n∑

k=1

∑

i1+...+ik=n

1

i1! . . . ik ! (1
i1 . . . kik ).

Remark 5 The map Φ is not a morphism of NSh algebras from (Sh,≺,	) to
(QSh,�,	), nor to (QSh,≺,). Indeed:

Φ((1) ≺ (1)) = (12) + 1

2
(11),

Φ((1)) ≺ Φ((1)) = (12),

Φ((1)) � Φ((1)) = (12) + (11).

We extend the map σ −→ Fσ into a linear map from QSh to End(T (V )). By
Proposition 4, F is an algebra morphism.

Corollary 3 (Exponential isomorphism) Le us consider the following linear map:

φ :
{

T (V ) −→ T (V )

x1 . . . xn −→ FΦ(In)(x1 . . . xn).

Then φ is a Hopf algebra isomorphism from (T (V ), ,Δ) to (T (V ), − ,Δ).

Proof Let x1, . . . , xk+l ∈ V .
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φ(x1 . . . xk xk+1 . . . xk+l) =
∑

ζ∈Sh(k,l)

FΦ(Ik+l ) ◦ Fζ(x1 . . . xk+l)

=
∑

ζ∈Sh(k,l)

FΦ(Ik+l )◦ζ(x1 . . . xk+l)

=
∑

ζ∈Sh(k,l)

FΦ(ζ)(x1 . . . xk+l)

= FΦ(Ik�Il )(x1 . . . xk+l)

= FΦ(Ik )�Φ(Il )(x1 . . . xk+l)

= FΦ(Ik ) − FΦ(Il )(x1 . . . xk+l)

=
k+l∑

i=0

FΦ(Ik )(x1 . . . xi )− FΦ(Il )(xi+1 . . . xk+l)

= FΦ(Ik )(x1 . . . xk)− FΦ(Il )(xk+1 . . . xk+l)

= φ(x1 . . . xk)−φ(xk+1 . . . xl).

So φ is an algebra morphism.
For any packed words σ ∈ Sur jk , τ ∈ Sur jl and all x1, . . . , xn ∈ V we define

Gσ⊗τ by:
Gσ⊗τ (x1 . . . xn) = Fσ(x1 . . . xk) ⊗ Fτ (xk+1 . . . xn)

is k + l = n and = 0 else. Then, for all increasing packed word σ, for all x ∈ T (V ):

Δ(Fσ(x)) = GΔ(σ)(x).

Hence, if x1, . . . , xn ∈ V :

Δ ◦ φ(x1 . . . xn) = GΔ(Φ(In))(x1 . . . xn)

= G(Φ⊗Φ)◦Δ(In)(x1 . . . xn)

=
n∑

k=0

GΦ(Ik )⊗Φ(In−k )(x1 . . . xn)

=
n∑

k=0

FΦ(Ik )(x1 . . . xk) ⊗ FΦ(In−k )(xk+1 . . . xn)

=
n∑

k=0

φ(x1 . . . xk) ⊗ φ(xk+1 . . . xn)

= (φ ⊗ φ) ◦ Δ(x1 . . . xn).

So φ is a coalgebra morphism.
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As the unique bijection appearing in Φ(In) is In , for all word x1 . . . xn:

φ(x1 . . . xn) = x1 . . . xn + linear span of words of length < n.

So φ is a bijection. �

Example 4 Let x1, x2, x3, x4 ∈ V .

φ(x1) = x1,

φ(x1x2) = x1x2 + 1

2
x1.x2,

φ(x1x2x3) = x1x2x3 + 1

2
(x1.x2)x3 + 1

2
x1(x2.x3) + 1

6
x1.x2.x3,

φ(x1x2x3x4) = x1x2x3x4 + 1

2
(x1.x2)x3x4 + 1

2
x1(x2.x3)x4

+ 1

2
x1x2(x3.x4) + 1

4
(x1.x2)(x3.x4) + 1

6
(x1.x2.x3)x4

+ 1

6
x1(x2.x3.x4) + 1

24
x1.x2.x3.x4.

More generally, for all x1, . . . , xn ∈ V :

φ(x1 . . . xn) =
n∑

k=1

∑

i1+...+ik=n

1

i1! . . . ik ! F(1i1 ...kik )(x1 . . . xn).

Remark 6 1. This isomorphism is the morphism denoted by exp and obtained in
the graded case by Hoffman in [23].

2. If V is a trivial algebra, then φ = I dT (V ).
3. This morphism is not a NSh algebra morphism, except if V is a trivial algebra.

In fact, except if the product of V is zero, the NSh algebras (T (V ),�,	) and
(T (V ),≺,) are not commutative, so cannot be isomorphic to a shuffle algebra.

8 Coalgebra and Hopf Algebra Endomorphisms

In the previous section,we studied the links between shuffle and quasi-shuffle operads
and obtained as a corollary the exponential isomorphism of Corollary 3 between
the shuffle and quasi-shuffle Hopf algebra structures on T (V ). This section aims
at classifying all such possible (natural, i.e. functorial in commutative algebras V )
morphisms.We refer to our [17] for applications of natural coalgebra endomorphisms
to the study of deformations of shuffle bialgebras.
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Recall that we defined π as the unique linear endomorphism of the quasi-shuffle
bialgebra T+(V ) such that π + π ≺ I dT+(V ) = I dT+(V ). By Proposition 6, it is equal
to F(1), so is the canonical projection on V . This construction generalizes as follows.

Hereafter, we work in the unital setting and write ε for the canonical projection
from T (V ) to the scalars (the augmentation map). It behaves as a unit w.r.t. the NQSh
products on End(T+(V )): for g ∈ End(T+(V )), ε ≺ g = 0, g ≺ ε = g.

Proposition 9 Let f : T (V ) −→ V bea linearmap such that f (1) = 0. There exists
a unique coalgebra endomorphism ψ of T (V ) such that π ◦ ψ = f . This coalgebra
endomorphism is the unique linear endomorphism of T (V ) such that ε + f ≺ ψ =
ψ.

Proof First step. Let us prove the unicity of the coalgebra morphism ψ such that
π ◦ ψ = f . Let ψ1,ψ2 be two (non zero) coalgebra endomorphisms such that π ◦
ψ1 = π ◦ ψ2. Let us prove that for all x1, . . . , xn ∈ V , ψ1(x1 . . . xn) = ψ2(x1 . . . xn)
by induction on n. If n = 1, asψ1(1) andψ2(1) are both nonzero group-like elements,
they are both equal to 1. Let us assume the result at all rank < n. Then:

Δ ◦ ψ1(x1 . . . xn) = (ψ1 ⊗ ψ1) ◦ Δ(x1 . . . xn)

= ψ1(x1 . . . xn) ⊗ 1 + 1 ⊗ ψ1(x1 . . . xn)

+
n−1∑

i=1

ψ1(x1 . . . xi ) ⊗ ψ1(xi+1 . . . xn),

Δ ◦ ψ2(x1 . . . xn) = ψ2(x1 . . . xn) ⊗ 1 + 1 ⊗ ψ2(x1 . . . xn)

+
n−1∑

i=1

ψ2(x1 . . . xi ) ⊗ ψ2(xi+1 . . . xn).

Applying the induction hypothesis, for all i ≤ 1 ≤ n − 1, ψ1(x1 . . . xi ) =
ψ2(x1 . . . xi ) and ψ1(xi+1 . . . xn) = ψ2(xi+1 . . . xn). Consequently, ψ1(x1 . . . xn) −
ψ2(x1 . . . xn) is primitive, so belongs to V and:

ψ1(x1 . . . xn) − ψ2(x1 . . . xn) = π ◦ ψ1(x1 . . . xn) − π ◦ ψ2(x1 . . . xn) = 0.

Second step. Let us prove the existence of a (necessarily unique) endomorphism
ψ such that ψ = ε + f ≺ ψ. We construct ψ(x1 . . . xn) for all x1, . . . , xn ∈ V by
induction on n in the following way: ψ(1) = 1 and, if n ≥ 1:

ψ(x1 . . . xn) := f (x1 . . . fn) +
n−1∑

i=1

f (x1 . . . xi ) ≺ ψ(xi+1 . . . xn).

Then (ε + f ≺ ψ)(1) = ε(1) = 1 = ψ(1). If n ≥ 1:
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(ε + f ≺ ψ)(x1 . . . xn)

= ε(x1 . . . xn) + f (x1 . . . xn) +
n−1∑

i=1

f (x1 . . . xi ) ≺ ψ(xi+1 . . . xn)

= 0 + f (x1 . . . xn) +
n−1∑

i=1

f (x1 . . . xi ) ≺ ψ(xi+1 . . . xn)

= ψ(x1 . . . xn).

Hence, ε + f ≺ ψ = ψ.

Third step. Let ψ such that ε + f ≺ ψ = ψ. Let us prove that Δ ◦ ψ(x1 . . . xn) =
(ψ ⊗ ψ) ◦ Δ(x1 . . . xn) by induction on n. If n = 0, then ψ(1) = ε(1) + f (1) =
1 + 0 = 1, so Δ ◦ ψ(1) = (ψ ⊗ ψ) ◦ Δ(1) = 1 ⊗ 1. If n ≥ 1, we put x = x1 . . . xn ,
Δ(x) = x ⊗ 1 + 1 ⊗ x + x ′ ⊗ x ′′. The induction hypothesis holds for x ′′.
Moreover:

ψ(x) = ε(x) + f (x) + f (x ′) ≺ ψ(x ′′) = f (x) + f (x ′) ≺ ψ(x ′′).

As f (x), f (x ′) ∈ V are primitive:

Δ̃ ◦ ψ(x) = f (x ′) ⊗ ψ(x ′′) + f (x ′) ≺ ψ(x ′′)′ ⊗ ψ(x ′′)′

= f (x ′) ⊗ ψ(x ′′) + f (x ′) ≺ ψ(x ′′) ⊗ ψ(x ′′′)
= ψ(x ′) ⊗ ψ(x ′′)

= (ψ ⊗ ψ) ◦ Δ̃(x).

As ψ(1) = 1, we deduce thatΔ ◦ ψ(x) = (ψ ⊗ ψ) ◦ Δ(x). So ψ is a coalgebra mor-
phism. Moreover, π ◦ ψ(1) = π(1) = 0 = f (1). If ε(x) = 0:

π ◦ ψ(x) = π ◦ f (x) + π( f (x ′) ≺ f (x ′′)) = f (x),

as f (x), (x ′) ∈ V (so f (x ′) ≺ f (x ′′) is a linear span of words of length ≥ 2, so
vanishes under the action of π). Hence, π ◦ ψ = f . �

Proposition 10 Let A =
∑

n≥1

an X
n be a formal series without constant term. Let fA

be the linear map from T (V ) to V defined by fA(x1 . . . xn) = anx1 • . . . • xn and let
φA be the unique coalgebra endomorphism of T (V ) such that π ◦ φA = f A. For all
x1, . . . , xn ∈ V :

φA(x1 . . . xn) =
n∑

k=1

∑

i1+...+ik=n

ai1 . . . aik F(1i1 ...kik )(x1 . . . xn). (30)



514 L. Foissy and F. Patras

Proof Note that f A(x1 . . . xn) = anF(1n)(x1 . . . xn). Let φ be the morphism defined
by the second member of (30). Then (ε + f A ≺ φ)(1) = 1 + f A(1) = 1 = φ(1). If
n ≥ 1:

(ε + f A ≺ φ)(x1 . . . xn)

= f A(x1 . . . xn) +
n−1∑

i=1

f A(x1 . . . xi ) ≺ φ(xi+1 . . . xn)

= anF(1n)(x1 . . . xn)

+
n−1∑

i=1

n∑

k=2

∑

i2+...+ik=n−i

aiai2 . . . aik F(1i ) ≺ F(1i2 ...(k−1)ik )(x1 . . . xn)

= anF(1n)(x1 . . . xn)

+
n−1∑

i=1

n∑

k=2

∑

i+i2+...+ik=n

aiai2 . . . aik ≺ F(1i2i2 ...kik )(x1 . . . xn)

= φ(x1 . . . xn).

By unicity in Proposition 9, φ = φA. �

Remark 7 The morphism φ defined in corollary 3 is φexp(X)−1.

Proposition 11 φX = I d and for all formal series A, B without constant terms,
φA ◦ φB = φA◦B.

Proof For all x1, . . . , xn ∈ V , π ◦ I d(x1 . . . xn) = δ1,nx1 . . . xn = fX (x1 . . . xn). By
unicity in Proposition 9, φX = I d. Moreover:

π ◦ φA ◦ φB(x1 . . . xn)

= f A

⎛

⎝
n∑

k=1

∑

i1+...+ik=n

bi1 . . . bik (x1 • . . . • xi1) . . . (xi1+...+ik−1+1 • . . . • x1+...+ik )

⎞

⎠

=
n∑

k=1

∑

i1+...+ik=n

akbi1 . . . bik x1 • . . . • xn

= f A◦B(x1 . . . xn).

By unicity in Proposition 9, φA ◦ φB = φA◦B . �

So the set of all φA, where A is a formal series such that A(0) = 0 and A′(0) �= 1,
is a subgroup of the group of coalgebra isomorphisms of T (V ), isomorphic to the
group of formal diffeomorphisms of the line.
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Corollary 4 The inverse of the isomorphism φ defined in corollary 3 is φln(1+X):

φ−1(x1 . . . xn) =
n∑

k=1

∑

i1+...+ik=n

(−1)n+k

i1 . . . ik
F(1i1 ...kik )(x1 . . . xn).

Proposition 12 Let A ∈ K [[X ]]+.
1. φA : (T (V ), ,Δ) −→ (T (V ), ,Δ) is a Hopf algebra morphism for any

commutative algebra V if, and only if, A = aX for a certain a ∈ K.
2. φA : (T (V ), ,Δ) −→ (T (V ), − ,Δ) is a Hopf algebra morphism for any

commutative algebra V if, and only if, A = exp(aX) − 1 for a certain a ∈ K.
3. φA : (T (V ), − ,Δ) −→ (T (V ), − ,Δ) is a Hopf algebra morphism for any

commutative algebra V if, and only if, A = (1 + X)a − 1 for a certain a ∈ K.
4. φA : (T (V ), − ,Δ) −→ (T (V ), ,Δ) is a Hopf algebra morphism for any

commutative algebra V if, and only if, A = a ln(1 + X) for a certain a ∈ K.

Proof First, note that for any x1, . . . , xk ∈ V :

π ◦ φA(x1 . . . xk) = ak F(1...1)(x1 . . . xk).

Consequently, for any commutative algebra V , for any x, x1, . . . , xk ∈ V , k ≥ 1:

π ◦ φA(x x1 . . . xk) = π(xx1 . . . xk+1 + . . . + x1 . . . xk+1x)

= (k + 1)ak+1x .x1 · . . . · xk,
π(φA(x) φA(x1 . . . xk)) = 0,

π(φA(x)− φA(x1 . . . xk)) = a1akx .x1 · . . . · xk .

1. We assume that φA is an algebra morphism for any V for the shuffle product.
Let us choose an algebra V and elements x, x1, . . . , xk ∈ V such that x .x1 · . . . ·
xk �= 0 in V . As φ(x x1 . . . xk) = φ(x) φ(x1 . . . xk), applying π, we deduce that
for all k ≥ 1, (k + 1)ak+1 = 0, so ak+1 = 0. Hence, A = a1X . Conversely, for any
x1, . . . , xk ∈ V ,φaX (x1 . . . xk) = ak1x1 . . . xk , soφaX is an endomorphismof theHopf
algebra (T (V ), ,Δ).

2. We already proved that φexp(X)−1 is a Hopf algebra morphism from (T (V ),

,Δ) to (T (V ), − ,Δ). By composition:

φexp(aX)−1 = φexp(X)−1 ◦ φaX : (T (V ), , Δ) −→ (T (V ), , Δ) −→ (T (V ), − , Δ)

is a Hopf algebra morphism.
We assume that φA is an algebra morphism for any V from the shuffle product to

the quasi-shuffle product. Let us choose an algebra V , and x, x1, . . . , xk ∈ V , such
that x .x1 · . . . · xk �= 0 in V . As φ(x x1 . . . xk) = φ(x)− φ(x1 . . . xk), applying π,

we deduce that for all k ≥ 1, (k + 1)ak+1 = a1ak , so ak = ak1
k! for all k ≥ 1. Hence,

A = exp(a1X) − 1.



516 L. Foissy and F. Patras

3. The following conditions are equivalent:

• For any V , φA : (T (V ), − ,Δ) −→ (T (V ), − ,Δ) is a Hopf algebra morphism.
• For any V , φln(1+X) ◦ φA ◦ φexp(X)−1 : (T (V ), ,Δ) −→ (T (V ), ,Δ) is a
Hopf algebra morphism. For any V , φln(1+X)◦A◦(exp(X)−1) : (T (V ), ,Δ) −→
(T (V ), ,Δ) is a Hopf algebra morphism.

• There exists a ∈ K , ln(1 + X) ◦ A ◦ (exp(X) − 1) = aX .
• There exists a ∈ K , A = (1 + X)a − 1.

4. Similar proof. �

Remark 8 TheProposition12 classifies actually all theHopf algebra endomorphisms
and morphisms relating shuffle and quasi-shuffle algebras T (V ), that are natural (i.e.
functorial) in V . This naturality property follows formally from the study of nonlinear
Schur-Weyl duality in [17, 31].

9 Coderivations and Graduations

The present section complements the previous one that studied coalgebra endomor-
phisms. We aim at investigating here coderivations of quasi-shuffle bialgebras. As
an application we recover the existence of a natural graded structure on the Hopf
algebras (T (V ), − ,Δ) [17].

Notations. Let A be a NQSh algebra, f ∈ EndK (A) and v ∈ A. We define:

f ≺ v :
{
A −→ A
x −→ f (x) ≺ v,

v ≺ f :
{
A −→ A
x −→ v ≺ f (x).

Proposition 13 Let f : T (V ) −→ V be a linear map. There exists a unique
coderivation D of T (V ) such that π ◦ D = f . Moreover, D is the unique linear
endomorphism of T (V ) such that D = f + π ≺ D + f ≺ I d.

Proof First step. Let us prove that the unicity of the coderivation D such thatπ ◦ D =
f . The result is classical [20] and elementary, we include its proof for completeness
sake. Let D1 and D2 be two coderivations such that π ◦ D1 = π ◦ D2. Let us prove
that D1(x1 . . . xn) = D2(x1 . . . xn) by induction on n.

Δ ◦ D1(1) = (D1 ⊗ I d + I d ⊗ D1)(1 ⊗ 1) = D1(1) ⊗ 1 + 1 ⊗ D1(1),

so D1(1) ∈ Prim(T (V )) = V . Similarly, D2(1) ∈ V . Hence, D1(1) = π ◦ D1(1) =
π ◦ D2(1) = D2(1). Let us assume the result at all ranks < n. If p = 1 or 2:

Δ ◦ Dp(x1 . . . xn) =
n∑

i=0

Dp(x1 . . . xi ) ⊗ xi+1 . . . xn +
n∑

i=0

x1 . . . xi ⊗ Dp(xi+1 . . . xn).
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Applying the induction hypothesis at all ranks < k, we obtain by subtraction:

Δ ◦ (D1 − D2)(x1 . . . xn) = (D1 − D2)(x1 . . . xn) ⊗ 1 + 1 ⊗ (D1 − D2)(x1 . . . xn).

So (D1 − D2)(x1 . . . xn) ∈ V . Applying π:

(D1 − D2)(x1 . . . xn) = π ◦ (D1 − D2)(x1 . . . xn) = 0.

So D1(x1 . . . xn) = D2(x1 . . . xn).

Second step. Let us prove the existence of a map D such that D = f + π ≺
D + f ≺ I d. We define D(x1 . . . xn) by induction on n by D(1) = f (1) and:

D(x1 . . . xn) = x1 ≺ D(x2 . . . xn) +
n−1∑

i=0

f (x1 . . . xi ) ≺ xi+1 . . . xn + f (x1 . . . xn).

Then ( f + π ≺ D + f ≺ I d)(1) = f (1) = D(1). If n ≥ 1:

( f + π ≺ D + f ≺ I d)(x1 . . . xn)

= f (x1 . . . xn) +
n∑

i=1

π(x1 . . . xi ) ≺ D(xi+1 . . . xn)

+
n−1∑

i=0

f (x1 . . . xi ) ≺ xi+1 . . . xn

= f (x1 . . . xn) + x1 ≺ D(x2 . . . xn) +
n−1∑

i=0

f (x1 . . . xi ) ≺ xi+1 . . . xn

= D(x1 . . . xn).

So D = f + π ≺ D + f ≺ I d.

Last step. Let D be such that D = f + π ≺ D + f ≺ I d. Let us prove that Δ ◦
D(x1 . . . xn) = (D ⊗ I d + I d ⊗ D) ◦ Δ(x1 . . . xn) by induction on n. If n = 0:

Δ ◦ D(1) = Δ( f (1))

= f (1) ⊗ 1 + 1 ⊗ f (1)

= D(1) ⊗ 1 + 1 ⊗ D(1)

= (D ⊗ I d + I d ⊗ D)(1 ⊗ 1).

Let us assume the result at all ranks < n.
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D(x1 . . . xn) = ( f + π ≺ D + f ≺ I d)(x1 . . . xn)

=
n∑

i=1

π(x1 . . . xi ) ≺ D(xi+1 . . . xn) +
n−1∑

i=0

f (x1 . . . xi ) ≺ xi+1 . . . xn

+ f (x1 . . . xn)

= x1D(x2 . . . xn) +
n∑

i=0

f (x1 . . . xi )xi+1 . . . xn.

Hence:

Δ ◦ D(x1 . . . xn))

=
n∑

j=1

x1D(x2 . . . x j ) ⊗ x j+1 . . . xn

+
n∑

j=1

x1 . . . x j ⊗ D(x j+1 . . . xn) + 1 ⊗ x1D(x2 . . . xn)

+
n∑

i=0

n∑

j=i

f (x1 . . . xi )xi+1 . . . x j ⊗ x j+1 . . . xn

+
n∑

i=0

1 ⊗ f (x1 . . . xi )xi+1 . . . xn

=
n∑

j=1

x1D(x2 . . . x j ) ⊗ x j+1 . . . xn

+
n∑

j=1

x1 . . . x j ⊗ D(x j+1 . . . xn) + 1 ⊗ x1D(x2 . . . xn)

+
n∑

j=1

j∑

i=1

f (x1 . . . xi )xi+1 . . . x j ⊗ x j+1 . . . xn

+ f (1) ⊗ x1 . . . xn +
n∑

i=0

1 ⊗ f (x1 . . . xi )xi+1 . . . xn

=
n∑

j=0

D(x1 . . . x j ) ⊗ x j+1 . . . xn +
n∑

j=1

x1 . . . x j ⊗ D(x j+1 . . . xn)

= (D ⊗ I d + I d ⊗ D) ◦ Δ(x1 . . . xn).

Moreover, π ◦ D(1) = π ◦ f (1) = f (1); if n ≥ 1:



Lie Theory for Quasi-Shuffle Bialgebras 519

π ◦ D(x1 . . . xn) = π(x1D(x2 . . . xn)) +
n∑

i=0

π( f (x1 . . . xi )xi+1 . . . xn)

= 0 + f (x1 . . . xn).

So π ◦ D = f . �

Proposition 14 Let A =
∑

n≥1

an X
n be a formal series without constant term. Let DA

be the unique coderivation of T (V ) such that π ◦ φA = f A. For all x1, . . . , xn ∈ V :

DA(x1 . . . xn) =
n∑

i=1

ai

n−i+1∑

j=1

F(12... j−1 j i j+1...n−i+1)(x1 . . . xn). (31)

Proof Let D be the linear endomorphism defined by the right side of (31). As
f A(1) = 0, we get by induction on n:

( f + π ≺ D + f ≺ I d)(x1 . . . xn)

= f (x1 . . . xn) + x1D(x2 . . . xn) +
n−1∑

i=1

f (x1 . . . xi )xi+1 . . . xn

= x1D(x2 . . . xn) +
n∑

i=1

f (x1 . . . xi )xi+1 . . . xn

=
n−1∑

i=1

ai

n−i+1∑

j=2

F(12... j−1 j i j+1...n−i+1)(x1 . . . xn) +
n∑

i=1

ai F(1i2...n−i+1)(x1 . . . xn)

=
n∑

i=1

ai

n−i+1∑

j=1

F(12... j−1 j i j+1...n−i+1)(x1 . . . xn)

= D(x1 . . . xn).

Moreover, π ◦ D(x1 . . . xn) = anx1 • . . . • xn = f A(x1 . . . xn). The unicity in Propo-
sition 13 implies that D = DA. �

Corollary 5 For all word x1 . . . xn, DX (x1 . . . xn) = nx1 . . . xn.

Proof Indeed, DX (x1 . . . xn) =
n∑

j=1

F(12... j−1 j1 j+1...n)(x1 . . . xn) = nx1 . . . xn . �

Remark 9 Let A and B be two formal series andλ ∈ K . As DA + λDB is a coderiva-
tion and π ◦ (DA + λDB) = f A + λ fB = f A+λB :

DA + λDB = DA+λB .
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Moreover, the group of coalgebra automorphims of T (V ) acts on the space of
coderivations of T (V ) by conjugacy. Let us precise this action if we work only
with automorphisms and coderivations associated to formal series.

Proposition 15 Let A, B be two formal series without constant terms, such that
A′(0) �= 0. Then:

φ−1
A ◦ DB ◦ φA = D B◦A

A′ .

Proof By linearity and continuity of the action, it is enough to prove this formula if
B = X p. We denote by C the inverse of A for the composition.

π ◦ φ−1
A ◦ DX p ◦ φA(x1 . . . xn)

= fC ◦ DXp

⎛

⎝
n∑

k=1

∑

i1+...+ik=n

ai1 . . . aik F(1i1 ...kik )(x1 . . . xn)

⎞

⎠

=
n∑

k=p−1

∑

i1+...+ik=n

(k − p − 1)ck−p+1ai1 . . . aik x1 • . . . • xn.

So π ◦ φA−1 ◦ DX p ◦ φA is the linear map associated to the formal series:

⎛

⎝
∞∑

k=p−1

(k − p + 1)ck−p+1X
k

⎞

⎠ ◦ A =
( ∞∑

i=0

iai X
i−1+p

)
◦ A

= (X pC ′) ◦ A

= ApC ′ ◦ A

= Ap

A′ .

Hence, φA−1 ◦ DX p ◦ φA = D Ap

A′ . �

Corollary 6 The eigenspaces of the coderivation D(1+X)ln(1+X) give a gradation of
the Hopf algebra (T (V ), − ,Δ).

Proof Let D = φ ◦ DX ◦ φ−1. As φ = φexp(X)−1:

D = φ−1
ln(1+X) ◦ DX ◦ φln(1+X) = D(1+X)ln(1+X).

As DX is a derivation of the algebra (T (V ), ) and φ is an algebra isomorphism
from (T (V ), ) to (T (V ), − ), D is is a derivation of the algebra (T (V ), − ). As
it is conjugated to DX , its eigenvalues are the elements of N. �
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Remark 10 As (1 + X)ln(1 + X) = 1 +
∞∑

k=2

(−1)k

k(k − 1)
Xk :

D(1+X)ln(1+X)(x1 . . . xn)

= nx1 . . . xn +
n∑

i=2

n−i+1∑

j=1

(−1)i

i(i − 1)
x1 . . . x j−1(x j • . . . • x j+i−1)x j+i . . . xn.

The gradation of A = (T (V ), − ) is given by:

An = Vect

⎛

⎜⎜⎝

n∑

k=1

∑

i1+...+ik=n

1

i1! . . . ik !

(
i1∏

i=1

xi

)
. . .

⎛

⎝
i1+...+ik∏

i=i1+...+ik−1+1

xi

⎞

⎠ ,

x1, . . . , xn ∈ V

⎞

⎟⎟⎠ .

10 Decorated Operads and Graded Structures

In many applications, algebras over operads carry a natural graduation. This is
because geometrical objects (polynomial vector fields, spaces, differential forms…),
but also combinatorial and algebraic ones carry often a graduation (or a dimension,
a cardinal…) that is better taken into account in the associated algebra structures. As
far as quasi-shuffle algebras are concerned, they often naturally carry a graduation in
their application domains : think to quasi-symmetric functions and multizeta values
(MZVs) [4]; Ecalle’s mould calculus and dynamical systems [13]; iterated integrals
of Itô type in stochastic calculus [8, 9].

Here, we recall briefly how the formalism of operads can be adapted to take
into account graduations [41]. We detail then the case of quasi-shuffle algebras and
conclude by studying the analogue, in this context, of the classical descent algebra
of a graded commutative or cocommutative Hopf algebra [34].

In this section, we denote by A = ⊕
n∈N

An (where A0 = k, the ground field), a

graded, connected, quasi-shuffle bialgebra. By graded we mean that all the structure
maps (≺, •,Δ) are graded maps. Then Prim(A) = V = ⊕

n∈N∗
Vn is an associative,

commutative graded algebra for the product • and we can identify A and the quasi-
shuffle bialgebra T (V ) as graded quasi-shuffle algebras. Be aware however that the
graduation of T (V ) is not the tensor length: for example, for v1 ∈ Vn1 , . . . , vk ∈ Vnk ,
the degree of the tensor v1 . . . vk ∈ V⊗k is now n1 + · · · + nk .

It is an easy exercise to adapt the definition of operads to the graded case: whereas
the component Fn of an operad identifies with the set of multilinear elements in the n
letters x1, . . . , xn in the free algebra F(Xn), Xn := {x1, . . . , xn}, the corresponding
component of the associated graded operad Fd

n is obtained by allowing the xi s to be
decorated by integers (corresponding to degrees). Each sequence (d1, . . . , dn) of
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decorations gives then rise to a component of the associated decorated operad,
isomorphic to Fn and corresponding to n-ary operations that act on a sequence
(a1, . . . , an) of elements of a F-graded algebra as the corresponding element of
Fn would when deg(ai ) = di , and as the null map else, see [41] for details. We call
Fd = ∪nFd

n the (integer-)decorated operad associated to F-algebras.
The decorated operad QShd is then spanned by decorated packed words, where:

Definition 11 A decorated packed word of length k is a pair (σ, d), where σ is a
packed word of length k and d is a map from {1, . . . , k} into N

∗. We denote it by(
σ(1) . . . σ(k)
d(1) . . . d(k)

)
.

Notation. Let (σ, d) =
(

σ(1) . . . σ(k)
d(1) . . . d(k)

)
be a decorated packed word. Let m be the

maximumofσ.Wedefine F(σ,d) ∈ Endk(A) in the followingway: for all x1, . . . , xl ∈
V , homogeneous,

F(σ,d)(x1 . . . xl) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛

⎝
∏

σ(i)=1

xi

⎞

⎠ . . .

⎛

⎝
∏

σ(i)=m

xi

⎞

⎠

if k = l and
deg(x1) = d(1),

...

deg(xk) = d(k),

0 otherwise.

Note that in each parenthesis, the product is the product • of V . For example, if
x, y, z ∈ V are homogeneous,

F⎛

⎝ 2 1 2
a b c

⎞

⎠
(xyz) = y(x • z)

if deg(x) = a, deg(y) = b, and deg(z) = c, and 0 otherwise.
The subspace of Endk(A) generated by these maps is stable under composition

and the noncommutative quasi-shuffle products:

Proposition 16 Let

(σ, d) =
(

σ(1) . . . σ(k)
d(1) . . . d(k)

)
and (τ , e) =

(
τ (1) . . . τ (l)
e(1) . . . e(l)

)

be two decorated packed words. max(τ ) = k and for all 1 ≤ j ≤ k,
∑

τ (i)= j

e(i) =
d( j), then:

F(σ,d) ◦ F(τ ,e) = F(
σ ◦ τ (1) . . . σ ◦ τ (l)
e(1) . . . e(l)

).
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Otherwise, this composition is equal to 0. Moreover:

F(σ,d) ≺ F(τ ,e)

=
∑

Pack(u(1)...u(k))=σ,
Pack(u(k+1)...u(k+l))=τ ,

min(u(1)...u(k))<min(u(k+1)...u(k+l))

F(
u(1) . . . u(k) u(k + 1) . . . u(k + l)
d(1) . . . d(k) e(1) . . . e(l)

),

F(σ,d) 	 F(τ ,e)

=
∑

Pack(u(1)...u(k))=σ,
Pack(u(k+1)...u(k+l))=τ ,

min(u(1)...u(k))>min(u(k+1)...u(k+l))

F(
u(1) . . . u(k) u(k + 1) . . . u(k + l)
d(1) . . . d(k) e(1) . . . e(l)

),

F(σ,d) • F(τ ,e)

=
∑

Pack(u(1)...u(k))=σ,
Pack(u(k+1)...u(k+l))=τ ,

min(u(1)...u(k))=min(u(k+1)...u(k+l))

F(
u(1) . . . u(k) u(k + 1) . . . u(k + l)
d(1) . . . d(k) e(1) . . . e(l)

).

Proof Direct computations. �

Remark 11 1. For all packed word (σ(1) . . . σ(n)):

F(σ(1)...σ(n)) =
∑

d(1),...,d(n)≥1

F⎛

⎝ σ(1) . . . σ(n)

d(1) . . . d(n)

⎞

⎠
.

2. In general, this action of decorated packed words is not faithful. For example, if
V = K [X ]+, where X is homogeneous of degree n, then F⎛

⎝1 2
1 1

⎞

⎠
= F⎛

⎝2 1
1 1

⎞

⎠
.

Indeed, both sends the word XX on itself and all the other words on 0.
3. Here is an example where the action is faithful. Let V = K [Xi | i ≥ 1]+, where

Xi is homogeneous of degree 1 for all i . Let us assume that
∑

a(σ,d)F(σ,d) = 0.
Acting on the word (Xa1

1 ) . . . (Xak
k ), we obtain:

∑

length(σ)=k

a⎛

⎝ σ(1) . . . σ(k)
a1 . . . ak

⎞

⎠

⎛

⎝
∏

σ(i)=1

Xai
i

⎞

⎠ . . .

⎛

⎝
∏

σ(i)=max(σ)

Xai
i

⎞

⎠ = 0.

As the Xi are algebraically independent, the words appearing in this sum are
linearly independent, so for all (σ, d), a(σ,d) = 0.
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Notations.

1. For all n ≥ 1, we put:

pn =
n∑

k=1

∑

d(1)+...+d(k)=n

F(
1 . . . k

d(1) . . . d(k)

).

Themap pn is the projection on the space of words of degree n, so
∑

n≥1

pn = I dA.

2. For all n ≥ 1, we put:
qn = F(

1
n

).

The map qn is the projection on the space of letters of degree n, so, by
Proposition 6, q =

∑

n≥1

qn = F(1) is the projectionπ of Proposition 5. It is not difficult

to deduce, in the same way as proposition 12 of [16], the following result:

Theorem 4 The NQSh subalgebra QDesc(A) of EndK (A) generated by the homo-
geneous components pn of I dA is also generated by the homogeneous components
qn of the projection on Prim(A) of Proposition 5. Moreover, for all n ≥ 1:

qn =
n∑

k=1

(−1)k+1
∑

a1+...+ak=n

pa1 ≺ (pa2 − . . . − pak ).

Remark 12 This result is the quasi-shuffle analog of the statement that the descent
algebra of a graded connected cocommutative Hopf algebra H (the convolution
subalgebra of End(H) generated by the graded projections) is equivalently generated
by the graded components of the convolution logarithm of the identity [34].

11 Structure of the Decorated Quasi-Shuffle Operad

In this section, we show that the decorated quasi-shuffle operad QShd is free as a
NSh algebra using the bidendriform techniques developed in [14].

We denote byQShd
+ the subspace of the decorated quasi-shuffle operad generated

by nonempty decorated packed words. As for a well-chosen graded quasi-shuffle
bialgebra A the action of packed words is faithful, we deduce that QShd

+ inherits a
NQSh algebra structure by:
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(σ, d) ≺ (τ , e)

=
∑

Pack(u(1)...u(k))=σ,
Pack(u(k+1)...u(k+l))=τ ,

min(u(1)...u(k))<min(u(k+1)...u(k+l))

(
u(1) . . . u(k) u(k + 1) . . . u(k + l)
d(1) . . . d(k) e(1) . . . e(l)

)
,

(σ, d) 	 (τ , e)

=
∑

Pack(u(1)...u(k))=σ,
Pack(u(k+1)...u(k+l))=τ ,

min(u(1)...u(k))>min(u(k+1)...u(k+l))

(
u(1) . . . u(k) u(k + 1) . . . u(k + l)
d(1) . . . d(k) e(1) . . . e(l)

)
,

(σ, d) • (τ , e)

=
∑

Pack(u(1)...u(k))=σ,
Pack(u(k+1)...u(k+l))=τ ,

min(u(1)...u(k))=min(u(k+1)...u(k+l))

(
u(1) . . . u(k) u(k + 1) . . . u(k + l)
d(1) . . . d(k) e(1) . . . e(l)

)
.

Notations. Let (σ, d) be a decorated packed word of length k and let I ⊆ {1, . . . ,
max(σ)}. We put σ−1(I ) = {i1, . . . , il}, with i1 < . . . < il . The decorated packed
word (σ, d)|I is (Pack(σ(i1), . . . ,σ(il)), (d(i1), . . . , d(il))).

Definition 12 We define two coproducts on QShd
+ in the following way: for all

nonempty packed word (σ, d),

Δ≺(σ, d) =
max(σ)−1∑

i=σ(1)

(σ, d)|{1,...,i} ⊗ (σ, d)|{{i+1,...,max(σ)},

Δ	(σ, d) =
σ(1)−1∑

i=1

(σ, d)|{1,...,i} ⊗ (σ, d)|{{i+1,...,max(σ)}.

Then QShd
+ is a NSh coalgebra, that is to say:

(Δ≺ ⊗ I d) ◦ Δ≺ = (I d ⊗ (Δ≺ + Δ	)) ◦ Δ≺, (32)

(Δ	 ⊗ I d) ◦ Δ≺ = (I d ⊗ Δ≺) ◦ Δ	, (33)

((Δ≺ + Δ	) ⊗ I d) ◦ Δ	 = (I d ⊗ Δ	) ◦ Δ	. (34)

For all a, b ∈ QShd
+:

Δ≺(a ≺ b) = a′
≺ ≺ b′ ⊗ a′′

≺ � b′′ + a′
≺ ≺ b ⊗ a′′

≺ + a′
≺ ⊗ a′′

≺ � b

+ a ≺ b′ ⊗ b′′ + a ⊗ b, (35)

Δ≺(a 	 b) = a′
≺ 	 b′ ⊗ a′′

≺ � b′′ + a 	 b′ ⊗ b′′ + a′
≺ 	 b ⊗ a′′

≺, (36)

Δ≺(a • b) = a′
≺ • b′ ⊗ a′′

≺ � b′′ + a′
≺ • b ⊗ a′′

≺ + a • b′ ⊗ b′′, (37)

Δ	(a ≺ b) = a′
	 ≺ b′ ⊗ a′′

	 � b′′ + a′
	 ≺ b ⊗ a′′

	 + a′
	 ⊗ a′′

	 � b, (38)
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Δ	(a 	 b) = a′
	 	 b′′ ⊗ a′′

	 � b′′ + a′
	 	 b ⊗ a′′

	 + b′
	 ⊗ a � b′′ + b ⊗ a, (39)

Δ	(a • b) = a′
	 • b′ ⊗ a′′

	 � b′′ + a′
	 • b ⊗ a′′

	. (40)

Proof Let (σ, d) be a decorated packed word. Then:

(Δ≺ ⊗ I d) ◦ Δ≺(σ, d) = (I d ⊗ (Δ≺ + Δ	)) ◦ Δ≺(σ, d)

=
∑

σ(1)≤i< j≤max(σ)−1

(σ, d)|{1,...,i} ⊗ (σ, d)|{i+1,..., j} ⊗ (σ, d)|{ j+1,...,max(σ)},

(Δ	 ⊗ I d) ◦ Δ≺(σ, d) = (I d ⊗ Δ≺) ◦ Δ	(σ, d)

=
∑

1≤i<σ(1)≤ j≤max(σ)−1

(σ, d)|{1,...,i} ⊗ (σ, d)|{i+1,..., j} ⊗ (σ, d)|{ j+1,...,max(σ)},

((Δ≺ + Δ	) ⊗ I d) ◦ Δ	(σ, d) = (I d ⊗ Δ	) ◦ Δ	(σ, d)

=
∑

1≤i< j<σ(1)

(σ, d)|{1,...,i} ⊗ (σ, d)|{i+1,..., j} ⊗ (σ, d)|{ j+1,...,max(σ)}.

Let us prove (35), for a = (σ, d) and b = (τ , e) two decorated packed words of
respective length k and l. We put:

a ⊗ b =
(

σ(1) . . . σ(k) τ (1) + max(σ) . . . τ (l) + max(τ )

d(1) . . . d(k) e(1) . . . e(l)

)
.

Then a ≺ b is the sum of all decorated packed words obtained by quasi-shuffling in
all possible ways the values of the letters in the first row of a ⊗ b, in such a way
that 1 occurs only in the first k columns; Δ≺(a ⊗ b) is then given by separating the
letters of the first row of these decorated packed words in such a way that the first
letter appears in the left side. So at least one of the k first letters appears on the left
side. This gives five possible cases:

1. All the k first letters are on the left and all the l last letters are on the right.
Necessarily, this case comes from the decorated packed word a ⊗ b, and this
gives the term a ⊗ b.

2. All the k first letters are on the left and at least one of the l last letters is on the
left. This gives the term a ≺ b′ ⊗ b′′.

3. At least one of the k first letters is on the right and all the l last letters are on the
left. This gives the term a′≺ ≺ b ⊗ a′′≺.

4. At least one of the k first letters is on the right and all the l last letters are on the
right. This gives the term a′≺ ⊗ a′′≺ � b.

5. At least one of the k first letters is on the right and there are some of the l last
letters on both sides. This gives the term a′≺ ≺ b′ ⊗ a′′≺ � b′′.
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Summing all these terms, we obtain (35). The other compatibilities can be proved
similarly. �

Remark 13 We also obtain, by addition:

Δ≺(a � b) = a′
≺ � b′ ⊗ a′′

≺ � b′′ + a′
≺ � b ⊗ a′′

≺ + a′
≺ ⊗ a′′

≺ � b

+ a � b′ ⊗ b′′ + a ⊗ b, (41)

Δ≺(a  b) = a′
≺  b′ ⊗ a′′

≺ � b′′ + a  b′ ⊗ b′′ + a′
≺  b ⊗ a′′

≺, (42)

Δ	(a � b) = a′
	 � b′ ⊗ a′′

	 � b′′ + a′
	 � b ⊗ a′′

	 + a′
	 ⊗ a′′

	 � b, (43)

Δ	(a  b) = a′
	  b′′ ⊗ a′′

	 � b′′ + a′
	  b ⊗ a′′

	 + b′
	 ⊗ a � b′′ + b ⊗ a; (44)

Δ̃(a ≺ b) = a′ ≺ b′ ⊗ a′′ � b′′ + a′ ≺ b ⊗ a′′ + a′ ⊗ a′′ � b
+ a ≺ b′ ⊗ b′′ + a ⊗ b, (45)

Δ̃(a 	 b) = a′ 	 b′ ⊗ a′′ � b′′ + a′ 	 b ⊗ a′′ + a 	 b′ ⊗ b′′

+ b′ ⊗ a � b′′ + b ⊗ a, (46)

Δ̃(a • b) = a′ • b′ ⊗ a′′ � b′′ + a′ • b ⊗ a′′ + a • b′ ⊗ b′′; (47)

Δ̃(a � b) = a′ � b′ ⊗ a′′ � b′′ + a′ � b ⊗ a′′ + a′ ⊗ a′′ � b
+ a � b′ ⊗ b′′ + a ⊗ b, (48)

Δ̃(a  b) = a′  b′ ⊗ a′′ � b′′ + a′  b ⊗ a′′ + a  b′ ⊗ b′′

+ b′ ⊗ a � b′′ + b ⊗ a. (49)

Consequently, (QShd
+,	op,�op,Δ

op
	 ,Δ

op
≺ ) and (QShd

+,op,≺op,Δ
op
	 ,Δ

op
≺ ) are

bidendriform bialgebras. By the bidendriform rigidity theorem of [14], we have:

Theorem 5 (QShd
+,�,	) and (QShd

+,≺,) are free NSh algebras.

Forgetting the decoration, we get back theorem 2.5 of [32], up to a permutation
of maximum and minimum, and first and last letters.

Forgeting again the decorations, we obtain a NQSh algebra structure on QSh+
and a NSh coalgebra structure, with compatibilities (35)–(40). Let us describe, for
completeness sake, the dual (half-)products and coproducts. The elements of the dual
basis of packed words are denoted by Nu .

Proposition 17 1. For all nonempty packed words σ, τ , of respective lengths k
and l:

Nσ ≺ Nτ =
∑

α∈Sh≺
k,l

N(σ⊗τ )◦α−1, Nσ 	 Nτ =
∑

α∈Sh	
k,l

N(σ⊗τ )◦α−1 .
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2. For any nonempty packed word σ of length n, denoting by f (σ) the index of the
first appearance of 1 in σ and by l(σ) the index of the last appearance of 1 in σ:

Δ̃≺(Nσ) =
n−1∑

k=l(σ)

Npack(σ(1)...σ(k)) ⊗ Npack(σ(k+1)...σ(n)),

Δ̃	(Nσ) =
f (σ)−1∑

k=1

Npack(σ(1)...σ(k)) ⊗ Npack(σ(k+1)...σ(n)),

Δ̃•(Nσ) =
l(σ)−1∑

k= f (σ)

Npack(σ(1)...σ(k)) ⊗ Npack(σ(k+1)...σ(n)).

12 The Quasi-Shuffle Analog of the Descent Algebra

Recall that, given a graded NQSh bialgebra A, we introduced QDesc(A), the quasi-
shuffle analogue of the descent algebra defined as the NQSh subalgebra of End(A)

generated by the graded projections or, equivalently, by the graded components of the
projection on Prim(A). We write QDesc for the corresponding NQSh subalgebra
of QShd (the subalgebra generated by the

(1
d

)
).

Recall first some properties of NSh algebras.

Notations. Let n ≥ 1.

1. a. Let TSch(n) be the set of Schröder trees of degree n, that is to say reduced
planar rooted trees with n + 1 leaves.

b. For any set D, let TD
Sch(n) be the set of reduced planar rooted trees t with

n + 1 leaves, such that the n spaces between the leaves of t are decorated by
elements of D.

c. T
D
Sch =

⊔

n≥1

T
D
Sch(n).

2. Let t1, . . . , tk ∈ T
N

∗
Sch and let d1, . . . , dk−1 ∈ N

∗. The element t1 ∨d1 . . . ∨dk−1 tk
is obtained by grafting t1, . . . , tk on a common root; for all 1 ≤ i ≤ k, the space
between the right leaf of ti and the left leaf of ti+1 is decorated by di .

Following [28], TD
Sch is a basis of the free NQSh algebra generated by D,

NQSh(D). The three products are inductively defined: if t = t1 ∨d1 . . . ∨dk−1 tk and
t ′ = t ′1 ∨d ′

1
. . . ∨d ′

l−1
t ′l ∈ TSch(D), then

t 	 t ′ = (t � t ′1) ∨d ′
1
t ′2 ∨d ′

2
. . . ∨d ′

l−1
t ′l ,

t ≺ t ′ = t1 ∨d1 . . . ∨ tk−1 ∨dk−2 . . . ∨dk−1 (tk � t ′),
t • t ′ = t1 ∨d1 . . . ∨dk−1 (tk � t ′1) ∨d ′

1
. . . ∨d ′

l−1
t ′l .
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Sending any non binary tree to 0, we obtain the free NSh algebra NSh(D) gen-
erated by D. A basis is given by the set of planar binary trees Tbin(D) ⊆ TSch(D)

whose spaces between the leaves are decorated by elements of D. The products are
given in the following way: if t = t1 ∨d t2 and t ′ = t ′1 ∨d ′ t ′2, then:

t 	 t ′ = (t � t ′1) ∨d ′ t ′2,
t ≺ t ′ = t1 ∨d (t2 � t ′).

We denote by NQSh(1) and by NSh(1) the free NQSh and the free NSh algebra
on one generator. The set TSch is a basis of NQSh(1), and Tbin is a basis of NSh(1).

Example 5

TSch(0) = Tbin(0) = { }, TSch(1) = Tbin(1) = {∨},

TSch(2) =
⎧
⎨

⎩
∨∨ , ∨∨, ∨

⎫
⎬

⎭ , Tbin(2) =
⎧
⎨

⎩
∨∨ , ∨∨

⎫
⎬

⎭ ,

TSch(3) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∨∨
∨

, ∨∨
∨

, ∨∨
∨

, ∨∨
∨

��
, ∨∨ , ∨∨ , ∨∨ ,

∨∨ , ∨∨ ,
��∨

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, Tbin(3) =

⎧
⎪⎨

⎪⎩
∨∨

∨
, ∨∨

∨
, ∨∨

∨
, ∨∨

∨
,

��

⎫
⎪⎬

⎪⎭
.

We define now inductively a surjective map � from the set of packed words
decorated by D into TD

Sch in the following way:

1. �(1) = .
2. If w = (σ, d), let σ−1(1) = {i1, . . . , ik}, i1 < . . . < ik . We put:

w1 = Pack

(
σ(1) . . . σ(i1 − 1)
d(1) . . . d(i1 − 1)

)
,

w2 = Pack

(
σ(i1 + 1) . . . σ(i2 − 1)
d(i1 + 1) . . . d(i2 − 1)

)
,

...

wk+1 = Pack

(
σ(ik + 1) . . . σ(n)

d(ik + 1) . . . d(n)

)
.

Then:
�(σ, d) = �(w1) ∨d(i1) . . . ∨d(ik ) �(wk+1).
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If w = (σ, d) is a decorated packed word of length n, �(w) is an element of
T

D
Sch(n) such that the spaces between the leaves are decorated from left to right by

d(1), . . . , d(n). In particular �
(1
d

)
is the tree ∨ d-decorated.

For any t ∈ T
N

∗
Sch , we put:

Ω(t) =
∑

σ∈Sur j,�(σ)=t

σ ∈ QShd
+.

We extend Ω : NQSh(N∗) −→ QShd
+ by linearity map. It is clearly injective.

Example 6

Ω(∨ ) = (1), Ω( ∨∨ ) = (21), Ω( ∨∨) = (12),

Ω(∨ ) = (11), Ω( ∨∨
∨

) = (321), Ω( ∨∨
∨

) = (231),

Ω( ∨∨
∨

) = (132), Ω( ∨∨
∨
) = (123), Ω(

��
) = (212) + (312) + (213),

Ω( ∨∨ ) = (221), Ω( ∨∨ ) = (211), Ω( ∨∨ ) = (121),

Ω( ∨∨ ) = (112), Ω( ∨∨ ) = (122), Ω(
��∨ ) = (111).

Theorem 6 The map Ω is an injective morphism of NQSh algebras. Consequently,
QDesc, the NQSh subalgebra ofQShd

+ generated by the elements
(1
d

)
, d ≥ 1, is free

and isomorphic to NQSh(N∗).

Proof Let w = (σ, d) be a packed word of length n and let i1, . . . , ik be integers
such that i1 + . . . + ik = n. For all d1, . . . , dk−1 ≥ 1, we put:

insd1,...,dk−1
i1,...,ik

(w)

=
(

σ(1) + 1 . . . σ(i1) + 1 1 . . . 1 σ(i1 + . . . + ik−1 + 1) + 1 . . . σ(n) + 1
d(1) . . . d(i1) d1 . . . dk−1 d(i1 + . . . + ik−1 + 1) . . . d(n)

)
.

It is not difficult to show that:

Ω(t1 ∨d1 . . . ∨dk−1 tk) = insd1,...,dk−1
|t1|,...,|tk | (Ω(t1) � . . . � Ω(tk)).

Hence, if t = t1 ∨d1 . . . ∨dk−1 tk and t ′ = t ′1 ∨d ′
1
. . . ∨d ′

l−1
t ′l :
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Ω(t) 	 Ω(t ′) = ins
d ′
1,...,d

′
l−1

|t |+|t ′1|,...,|t ′l |(Ω(t) � Ω(t ′1) � . . . � Ω(t ′l )),

Ω(t) ≺ Ω(t ′) = insd1,...,dk−1
|t1|,...,|tk |+|t |(Ω(t1) � . . . � Ω(tk) � Ω(t ′)),

Ω(t) • Ω(t ′) = ins
d1,...,dk−1,d ′

1,...,d
′
l−1

[t1|,...,|tk |+|t ′1|,...,|t ′l |(Ω(t1) � . . . � Ω(tk) � Ω(t ′1) � . . . � Ω(t ′l )).

An induction on m + n proves that for t ∈ T
N

∗
Sch(m), t ′ ∈ T

N
∗

Sch(n):

Ω(t 	 t ′) = Ω(t) 	 Ω(t ′), Ω(t ≺ t ′) = Ω(t) ≺ Ω(t ′), Ω(t • t ′) = Ω(t) • Ω(t ′).

So Ω is an injective morphism of NQSh algebras. �

13 Lie Theory, Continued

In classical Lie theory, it has been realized progressively that many applications of
the combinatorial part of the theory rely on the freeness of theMalvenuto-Reutenauer
algebra of permutations (for us, the operad Sh or, equivalently, the algebra of free
quasi-symmetric functions FQSym) as a noncommutative shuffle bialgebra (and
more precisely, as a bidendriform bialgebra [14]). As such, Sh has two remarkable
subalgebras. The first is PBT, the noncommutative shuffle sub-bialgebra freely gen-
erated as a noncommutative shuffle algebra by the identity permutation in S1 (in
particular PBT is isomorphic to NSH(1), the free NQSh algebra on one generator).
Its elements can be understood as linear combinations of planar binary trees (PBT
can be constructed directly as a subspace of the direct sum of the symmetric group
algebras is by using a construction going back to Viennot: a natural partition of the
symmetric groups parametrized by planar binary trees), see [21, 22, 27]. The second,
Desc, is known as the descent algebra [38], is isomorphic to Sym, the Hopf algebra
of noncommutative symmetric functions, and is the sub Hopf algebra of PBT and
Sh freely generated as an associative algebra by (all) the identity permutations using
the convolution product �. We get:

Desc = Sym ⊂ PBT = NSH(1) ⊂ Sh = FQSym.

The situation is similar when moving to surjections, that is toQSh. As we already
saw, the noncommutative quasi-shuffle sub-bialgebra freely generated by the identity
permutation inS1 (i.e. the packedword 1) is the free NQSh algebra on one generator,
identified with ST, the linear span of Schröder trees. The sub Hopf algebra of ST
andQSh freely generated as an associative algebra by (all) the identity permutations
using the convolution product � is isomorphic (using e.g. that it is a free associative
algebra over a countable set of generators) to Desc. We get:

Desc = Sym ⊂ ST = NQSH(1) ⊂ QSh = WQSym.
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The aim of the present and last section is to compare explicitely the two sequences
of inclusions. The existence of a Hopf algebra map from Sh = FQSym to QSh =
WQSym was obtained in [17, Corollary 18]. The existence of a map comparing the
two copies of the descent algebra follows, a simple direct proof was given in [8,
Lemma 7.1]. We aim here at refining these results and extend the constructions to
planar and Schröder trees.

We start by showing how planar trees (PBT) can be embedded into Schröder trees
(ST).

Definition 13 Let t, t ′ ∈ TSch .

1. We denote by R(t) the set of internal edges of t which are right, that is to say
edges e such that:

• both extremities of e are internal vertices.
• e is the edge which is at most on the right among all the edges with the same
origin as e.

2. Let I ⊆ R(T ). We denote by t/I the planar reduced tree obtained by contracting
all the edges e ∈ I .

3. We shall say that t ′ ≤ t if there exists I ⊆ R(t), such that t ′ = t/I .

Remark 14 If I ⊆ R(t), then R(t/I ) = R(t) \ I . Moreover, if I, J ⊆ R(t) are dis-
joint, then (t/I )/J = t/(I � J ). This implies that ≤ is a partial order on TSch .

Example 7 Here are the Hasse graphs of TSch(2) and TSch(3).

∨∨ ∨∨

∨

; ∨∨
∨

∨∨
∨

�� ∨∨
∨

∨∨
∨

∨∨ ∨∨ ∨∨ ∨∨ ∨∨

��∨

It is possible to prove the following points:

• For any t ∈ TSch , there exists a unique b(t) ∈ Tbin , such that t ≤ b(t). We denote
by I (t) the unique subset I ⊆ R(b(t)), such that t = b(t)/I .

• For any t, t ′ ∈ TSch , t ≤ t ′ if, and only if, b(t) = b(t ′) and I (t) ⊇ I (t ′).
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Theorem 7 The followingmap is an injectivemorphismof bidendriformbialgebras:

ψ :
⎧
⎨

⎩

(PBT,≺,	,Δ≺,Δ	) −→ (ST,�,	,Δ≺,Δ	)

t ∈ Tbin −→
∑

t ′≤t

t ′.

Proof By universal properties of free objects, there exists a unique morphism of
noncommutative shuffle algebras ψ′ from (NSh(1) = PBT,≺,	) to (NQSh(1) =
ST,�,	), sending ∨ to ∨ . As ∨ is a primitive element (in the bidendriform
sense) for both sides, ψ′ is a morphism of bidendriform bialgebras. We shall prove
that ψ = ψ′.

Let us show that for all t1, t2 ∈ Tbin ,

ψ′(t1 ∨ t2) = ψ′(t1) 	 ∨ � ψ′(t2),

ψ(t1 ∨ t2) = ψ(t1) 	 ∨ � ψ(t2).

The identity ψ = ψ′ will follow by induction.
The identity involving ψ′ follows immediately from the identity, in Tbin:

t1 ∨ t2 = t1 	 ∨ ≺ t2.

Let us consider the action of ψ. We put t = t1 ∨ t2. We first consider the case
where t2 = . In this case, R(t) = R(t1) and for any I ⊆ R(t1), t/I = (t1/I ) ∨ .
Hence:

ψ(t) =
∑

I⊆R(t1)

(t1/I ) ∨ =
⎛

⎝
∑

I⊆R(t1)

t1/I

⎞

⎠ 	 ∨ = ψ(t1) 	 ∨ � .

Wenowconsider the casewhere t2 �= . Let r be the internal edge of t relating the root
of t to the root of t2. Then R(t) = R(t1) � R(t2) � {r}. Let I1 ⊆ R(t1), I2 ⊆ R(t2).
Then:

t/I1 � I2 = (t1/I1) ∨ (t2/I2) = (t1/I1) 	 ∨ ≺ (t2/I2).

We put t2/ i2 = t3 ∨ . . . ∨ tk . Then:

t/I1 � I2 � {r} = t1/I1 ∨ t3 ∨ . . . ∨ tk
= (t1/I1 ∨ ) • (t3 ∨ . . . ∨ tk)

= ((t1/I1) 	 ∨ ) • (t2/I2)

= (t1/I1) 	 ∨ • (t2/I2).
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Hence:

ψ(t) =
∑

I1⊆R(t1),I2⊆R(t2)

(t1/I1) 	 ∨ ≺ (t2/I2) + (t1/I1) 	 ∨ • (t2/I2)

=
∑

I1⊆R(t1),I2⊆R(t2)

(t1/I1) 	 ∨ � (t2/I2)

= ψ(t1) 	 ∨ � ψ(t2).

So ψ = ψ′. As ≤ is an order, ψ is injective. �

We investigate now how the injection of PBT into ST behaves with respect to the
respective embeddings into Sh and QSh. We consider the morphism:

Ω :
⎧
⎨

⎩

ST = NQSh(1) −→ QSh
t −→

∑

σ,�(σ)=t

σ.

There exists a unique map from PBT = NSh(1) to Sh, denoted by Ω ′, making the
following diagram commuting:

ST Ω QSh

PBT
Ω ′ Sh

where the vertical arrows are the canonical projection. For any t ∈ Tbin:

Ω ′(t) =
∑

σ∈S,�(σ)=t

σ.

Example 8

Ω ′(∨ ) = (1), Ω ′( ∨∨ ) = (21), Ω ′( ∨∨) = (12),

Ω ′( ∨∨
∨

) = (321), Ω ′( ∨∨
∨

) = (231), Ω ′( ∨∨
∨

) = (132),

Ω ′( ∨∨
∨
) = (123), Ω ′( ��

) = (312) + (213).
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Proposition 18 [15] Let σ, τ be two packed words of the same length n. We shall
say that σ ≤ τ if:

1. If i, j ∈ [n] and σ(i) ≤ σ( j), then τ (i) ≤ τ ( j).
2. If i, j ∈ [n], i < j and σ(i) > σ( j), then τ (i) > τ ( j).

Then ≤ is a partial order. Moreover, the following map is a Hopf algebra morphism:

Ψ :
⎧
⎨

⎩

Sh −→ QSh
σ −→

∑

τ≤σ

τ .

Here are the Hasse graphs of Sur j2 and Sur j3:
(12) (21)

(11)

;

(123)

(122) (112)

(111)

(132)

(121)

(213)

(212)

(231)

(221)

(312)

(211)

(321)

Lemma 5 For any packed word σ, we put ι(σ) = min{i | σ(i) = 1}. If σ ≤ τ , then
ι(σ) = ι(τ ).

Proof We put i = ι(τ ). For any j , τ ( j) ≥ τ (i), so σ( j) ≥ σ(i) as σ ≤ τ . So σ(i) =
1, and by definition ι(σ) ≤ i . Let us assume that j < i . By definition of ι(τ ), τ ( j) >

τ (i). As σ ≤ τ , σ( j) > σ(i), so σ( j) �= 1, and ι(σ) �= j . So ι(σ) = i . �

Proposition 19 Themap � : Sur j −→ TSch is amorphism of posets: for any packed
words σ, τ ,

σ ≤ τ =⇒ �(σ) ≤ �(τ ).

We define a map ω : TSch −→ Sur j by:

• ω( ) = 1,
• ω(t1 ∨ . . . ∨ tk) = (ω(t1)[1])1 . . . 1(ω(tk)[1]).
Then � ◦ ω = I dTSch , and ω is a morphism of posets: for any t, t ′ ∈ TSch,

t ≤ t ′ =⇒ ω(t) ≤ ω(t ′).
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Proof Let us prove that � is a morphism. Let σ, τ be two packed words, such that
σ ≤ τ ; let us prove that �(σ) ≤ �(τ ).We proceed by induction on the common length
n of σ and τ . If n = 0 or 1, the result is obvious. Let us assume the result at all rank
< n. As ι(σ) = ι(τ ), we can write σ = σ′1σ′′ and τ = τ ′1τ ′′, where σ′ and τ ′ have
the same length and do not contain any 1. By restriction, Pack(σ′) ≤ Pack(τ ′) and
Pack(σ′′) ≤ Pack(τ ′′). By the induction hypothesis, s0 = �(σ′) ≤ �(τ ′) = t0 and
s1 ∨ . . . ∨ sk = �(σ′′) ≤ �(τ ′′) = t1 ∨ . . . ∨ tl . Then:

�(σ) = s0 ∨ s1 ∨ . . . ∨ . . . sk ≤ t0 ∨ t1 ∨ . . . ∨ tl = �(τ ).

Let us now prove that ω is a morphism. Let t , t ′ ∈ TSch , such that t ≤ t ′. By
transitivity, we can assume that there exists e ∈ R(t ′), such that t = t ′|e. Let us prove
that ω(t) ≤ ω(t ′). We proceed by induction on the common degree n of t and t ′. The
result is obvious if n = 0 or 1. Let us assume the result at all ranks < n. We put
t ′ = t ′1 ∨ . . . ∨ t ′k . If e is an edge of t ′i , then t = t ′1 ∨ . . . ∨ (t ′i )|I ∨ . . . ∨ t ′k . We put
σ′
j = ω(t ′j ) and σ j = ω(t j ) for all j . If j �= i , σ′

j = σ j ; by the induction hypothesis,
σi ≤ σ′

i . Then:

ω(t) = (σ1[1])1 . . . 1(σi [1])1 . . . 1(σk[1])
≤ (σ1[1])1 . . . 1(σ′

i [1])1 . . . 1(σk[1]) = ω(t ′).

If e is the edge relation the root of t to the root of t ′k , putting t = t1 ∨ . . . ∨ tk ∨
. . . ∨ tl , then t ′i = ti if i < k and t ′k = tk ∨ . . . ∨ tl . Putting σi = ω(ti ), we obtain:

ω(t) = (σ1[1])1 . . . 1(σk[1])1 . . . 1(σl [1]),
ω(t ′) = (σ1[1])1 . . . 1(σk[2])2 . . . 2(σl[2]).

It is not difficult to prove that ω(t) ≤ ω(t ′). �

Remark 15 There are similar results for decorated packed words, replacing NSh(1)
and NQSh(1) by NSh(N∗n) and NQSh(N∗).

Example 9

ω(∨ ) = (1), ω( ∨∨ ) = (21), ω( ∨∨) = (12), ω(∨ ) = (11),

ω( ∨∨
∨

) = (321), ω( ∨∨
∨

) = (231), ω( ∨∨
∨

) = (132), ω( ∨∨
∨
) = (123),

ω(
��

) = (212), ω( ∨∨ ) = (221), ω( ∨∨ ) = (211), ω( ∨∨ ) = (121),

ω( ∨∨ ) = (112), ω( ∨∨ ) = (122), ω(
��∨ ) = (111).
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Proposition 20 The map Ψ is a bidendriform bialgebra morphism from
(Sh,≺,	,Δ≺,Δ	) to (QSh,�,	,Δ≺,Δ	). Moreover, the following diagram
commutes:

PBT
ψ

Ω ′

ST

Ω

Sh
Ψ

QSh

Proof Let σ be a packed word. We put:

A = {(k, τ ) | τ ≤ σ, k ∈ [max(τ )]},
B = {(k, τ ′, τ ′′) | k ∈ [max(σ)], τ ′ ≤ σ|[k], τ ′′ ≤ Pack(σ|[max(σ)]\[k]).

As Ψ is a coalgebra morphism,

Δ ◦ Ψ (σ) =
∑

τ≤σ

max(τ )∑

k=0

τ|[k] ⊗ Pack(τ|[max(τ )]\[k])

=
∑

(k,τ )∈A

τ|[k] ⊗ Pack(τ|[max(τ )]\[k])

= (Ψ ⊗ Ψ ) ◦ Δ(σ) =
max(σ)∑

k=0

∑

τ ′≤σ|[k]
τ ′′≤Pack(σ|[max(σ)]\[k])

τ ′ ⊗ τ ′′

=
∑

(l,τ ′,τ ′′)∈B
τ ′ ⊗ τ ′′.

Hence, there exists a bijection F : A −→ B, such that, if F(k, τ ) = (l, τ ′, τ ′′), then:

• τ ′ = τ|[k] and τ ′′ = Pack(τ|[max(τ )]\[k]);
• l is the unique integer such that τ ′ ≤ σ|[l].

If k ≥ τ (1), then the first letter of τ appears in τ|[k], so the first letter of σ appears also
in σ|[l]. Consequently l ≥ σ(1). Similarly, if l ≥ σ(1), then k ≥ τ (1). We obtain:

Δ≺ ◦ Ψ (σ) =
=

∑

(k,τ )∈A,k≥τ (1)

τ|[k] ⊗ Pack(τ|[max(τ )]\[k])

=
∑

(l,τ ′,τ ′′)∈B,l≥σ(1)

τ ′ ⊗ τ ′′

= (Ψ ⊗ Ψ ) ◦ Δ≺(σ)

So Ψ is a morphism of dendriform coalgebras.
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Let σ, τ be two permutations. We put:

C = {(α, ζ) | α ∈ Sh(max(σ),max(τ )), ζ ≤ α ◦ (σ ⊗ τ )},
D = {(β,σ′, τ ′) | σ′ ≤ σ, τ ′ ≤ τ ,β ∈ QSh(max(σ′),max(τ ′))},

Then:

Ψ (σ τ ) =
∑

α∈Sh(max(σ),max(τ ))

∑

ζ≤α◦(σ⊗τ )

ζ

=
∑

(α,ζ)∈C
ζ

= Ψ (σ)−Ψ (τ ) =
∑

σ′≤σ
τ ′≤τ

∑

β∈QSh(max(σ′),max(τ ′))

β ◦ (σ′ ⊗ τ ′)

=
∑

(β,σ′,τ ′)∈D
β ◦ (σ′ ⊗ τ ′).

Hence, there exists a bijectionG : D −→ C , such that ifG(β,σ′, τ ′) = (α, ζ), then:

1. ζ = β ◦ (σ′ ⊗ τ ′);
2. α is the unique (max(σ),max(τ ))-shuffle such that ζ ≤ α ◦ (σ ⊗ τ ).

Let us assume that α(1) = 1, and let us prove that β(1) = 1. Denoting by k the
length of σ, 1 appears in the k first letters of ζ ′ = α ◦ (σ ⊗ τ ). Let i ∈ [k], such that
ζ ′(i) = 1. For any j , ζ ′(i) ≤ ζ ′( j). As ζ ≤ ζ ′, ζ(i) ≤ ζ( j), so ζ(i) = 1: 1 appears
among the k first letters of ζ, so β(1) = 1.

Let us assume that α(1) �= 1. Then 1 does not appear in the first k letters of ζ ′.
Let j > k, such that ζ ′( j) = 1. For all i ∈ [k], ζ ′(i) > ζ ′( j) and i < j . As ζ ≤ ζ ′,
ζ(i) > ζ( j), so ζ(i) �= 1: 1 does not appear among the first k letters of ζ, soβ(1) �= 1.
Finally, α(1) = 1 if, and only if, β(1) = 1. Hence:

Ψ (σ ≺ τ ) =
∑

(α,ζ)∈C,α(1)=1

ζ =
∑

(β,σ′,τ ′)∈D,β(1)=1

β ◦ (σ′ ⊗ τ ′) = Ψ (σ) � Ψ (τ ).

By composition, Ω ◦ ψ and Ψ ◦ Ω are both noncommutative shuffle algebra

morphisms, sending ∨ to (1), so, since PBT is a free NSh algebra, they are
equal. �
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Galois Action on Knots II: Proalgebraic
String Links and Knots

Hidekazu Furusho

Abstract Wediscuss an action of theGrothendieck-Teichmüller proalgebraic group
on the linear span of proalgebraic tangles, oriented tangles completed by a filtration
of Vassiliev. The action yields amotivic structure on tangles.We derive distinguished
properties of the action particularly on proalgebraic string links and on proalgebraic
knots which can not be observed in the action on proalgebraic braids. By exploiting
the properties, we explicitly calculate the inverse image of the trivial (the chordless)
chord diagram under the Kontsevich isomorphism.

Keywords Proalgebraic tangles · Chord diagrams · Grothendieck-Teichmüller
group · Associators

1 Introduction

This paper is a continuation of our previous paper [22], where the action of the abso-
luteGalois grouponprofinite knotswas constructed by an action of theGrothendieck-
Teichmüller profinite group ̂GT there. While in this paper, the action of the motivic
Galois group, which is the Galois group of the tannakian category of mixed Tate
motives over Spec Z, on the linear span of proalgebraic tangles is deduced from an
action of the Grothendieck-Teichmüller proalgebraic group GT (K) (K: a field of
characteristic 0) there.

Proalgebraic tangles (Definition 3.3) means the K-linear span of oriented tangles
completed by a filtration à la Vassiliev. Proalgebraic n-string links (resp. proalge-
braic knots) are proalgebraic analogues of n-string links (a good example can be
found in Fig. 5) (resp. knots) and they are subspaces of proalgebraic tangles spanned
by them. In Sect. 3, we give a GT (K)-action on proalgebraic tangles by follow-
ing a method indicated in [28]. The action is interpreted as an extension of the
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GT (K)-action on the proalgebraic braids (reviewed in Sect. 2) into the one on the
proalgebraic tangles. In Sect. 4 we derive distinguished properties of the GT (K)-
action on proalgebraic tangles which can not be observed inGT (K)-action on proal-
gebraic braids. Particularly

Theorem A (Theorem 4.14 and Proposition 4.19) Let GT1(K) be the unipotent part
of GT (K). Then

(1) The GT1(K)-action on proalgebraic string links is given by an inner conju-
gation.

(2) The GT1(K)-action on proalgebraic knots is trivial, which yields a non-trivial
decomposition (68) of each oriented knot.

They are derived by Twistor Lemma (Lemmas 4.2 and 4.12), which can be seen as
reformulations of [2] Theorem 7.5, [3] Theorem 2, [30] Theorem 8 and [32] Theorem
2.1 in our setting, though all of which originate from [16] Theorem A′. The action on
proalgebraic n-string links in Theorem A (1) is faithful for n � 3 and is not faithful
(actually it is trivial) for n = 1 (see Remark 4.16). However the case for n = 2
remains unsolved (Problem 4.17). Since GT (K) contains the motivic Galois group,
our GT (K)-action on proalgebraic tangles yields the Galois action there, which
yields a structure of mixed Tate motives of Spec Z there. Particularly Theorem A
(2) says that proalgebraic knots can be decomposed into infinite summations of Tate
motives.

By exploiting the properties shown in the above theorem, we explicitly determine
the inverse image of the unit e, the chordless chord diagram on the oriented circle,
under Kontsevich isomorphism I in (52):

Theorem B (Theorem 4.22) Let c0 be the proalgebraic knot which is the infinite
summation of (topological) knots given in Fig.15. Put

γ0 := − c0 + c0�c0 − c0�c0�c0 + c0�c0�c0�c0 − · · · (1)

where is the trivial knot and � is the product called the connected sum. Then
Kontsevich (knot) invariant of γ0 becomes trivial, i.e. I (γ0) = e. Namely

I−1(e) = γ0.

We recall that the image I ( ) of the unit , the trivial knot, under the Kontsevich
isomorphism I was calculated in [8]. Hence the above theorem could be regarded as
a calculation in an opposite direction to their calculation.

The contents of the paper go as follows: Sect. 2 is a review on Drinfeld’s tools
of Grothendieck-Teichmüller groups and their actions on braids, which serves for
a good understanding of the actions of the groups on proalgebraic tangles given in
Sect. 3. Main results will be shown in Sect. 4.

Convention. In this paper,Kmeans a commutative field with characteristic 0. (Actu-
ally we may more generally assume that it is a commutative ring containing the
rational number field Q.) The symbols C, R, Qp, Zp, Z and̂Z stand for the complex
number field, the real number field, the p-adic number field (p: a prime), the p-adic
integer ring, the integer ring and its profinite completion respectively.
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2 Proalgebraic Braids and Infinitesimal Braids

This is an expository section for non-experts on Drinfeld’s works on the action of
the proalgebraic Grothendieck-Teichmüller groups on proalgebraic braids and also
on infinitesimal braids and also a short review on a relationship of the groups with
the motivic Galois group.

2.1 The GT-Action

We recall in Definition 2.2 explicitly the definition of the Grothendieck-Teichmüller
group GT (K), a proalgebraic group introduced by Drinfeld [16], and explain its
action on the proalgebraic braids K̂[Bn] for n � 2 in Proposition 2.5.

Notation 2.1 (1) Let Bn be the Artin braid group with n-strings (n � 2) with stan-
dard generators σi (1 � i � n − 1) and defining relations σiσi+1σi = σi+1σiσi+1

and σiσ j = σ jσi for |i − j | > 1. The generator σi in Bn is depicted as in Fig. 1. And
for b and b′ ∈ Bn , we draw the product b · b′ ∈ Bn as in Fig. 2 (the order of product
b · b′ is chosen to combine the bottom endpoints of b with the top endpoints of b′).

We denote the pure part of Bn by Pn , i.e. the kernel of the natural homomorphism
Pn → Sn , and call it by the pure braid group. For 1 � i < j � n, special elements

xi, j = x j,i = (σ j−1 · · · σi+1)σ
2
i (σ j−1 · · · σi+1)

−1

form a generating set of Pn . For 1 � a � a + α < b � b + β � n, we define

xa···a+α,b···b+β := (xa,bxa,b+1 · · · xa,b+β) · (xa+1,bxa+1,b+1 · · · xa+1,b+β)

· · · (xa+α,bxa+α,b+1 · · · xa+α,b+β) ∈ Pn.

They are drawn in Figs. 3 and 4.
We mean K̂[Bn] by the completion of the group algebra K[Bn] with respect to

the two-sided ideal I generated by σi − σ−1
i for 1 � i � n − 1;

K̂[Bn] := lim←−
N

K[Bn]/I N

(cf. [22]). By abuse of notation, we denote the induced filtration on K̂[Bn] by the
same symbol {I n}n�0. It is checked that K̂[Bn] is a filtered Hopf algebra. We call its
group-like part by the proalgebraic braid group and denote it by Bn(K). It naturally
admits a structure of a proalgebraic group over K. We note that it is Hain’s [23]
relative completion of Bn with respect to the natural projection Bn → Sn .
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i − 1 n − i − 1

Fig. 1 σi

b′

b

n

n

Fig. 2 b · b′

i − 1

j − 1

Fig. 3 xi j

α + 1 β + 1

a − 1
b − a − α − 1

Fig. 4 xa···a+α,b···b+β

(2) Similarly we denote its pure part by K̂[Pn]. Namely

K̂[Pn] := lim←−
N

K[Pn]/I N0
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with I0 = I ∩ K[Pn]. It is also a filtered Hopf algebra. The proalgebraic pure braid
group Pn(K) means its group-like part. We note that it is a unipotent (Malcev)
completion of Pn because I0 forms an augmentation ideal of K[Pn].

(3) Let F2(K) be the prounipotent algebraic group over K, the unipotent com-
pletion of the free group F2 of rank 2 with two variables x and y, that is, the
group-like part of the Hopf algebra K̂[F2] completed by the augmentation ideal.
Similarly to the convention in [22], for any f ∈ F2(K) and any homomorphism
τ : F2(K) → G(K) of proalgebraic groups sending x �→ α and y �→ β, the symbol
f (α,β) stands for the image τ ( f ). Particularly for the (actually injective) homo-
morphism F2(K) → Pn(K) of proalgebraic groups sending x �→ xa···a+α,b···b+β and
y �→ xb···b+β,c···c+γ (1 � a � a + α < b � b + β < c � c + γ � n), the image of
f ∈ F2(K) is denoted by fa···a+α,b···b+β,c···c+γ .

The proalgebraic group GT (K) is defined by Drinfeld [16] to be a subgroup of
the automorphism (proalgebraic) group of F2(K).

Definition 2.2 ([16]) The proalgebraic Grothendieck-Teichmüller group GT (K) is
the proalgebraic group over K whose set of K-values points forms a subgroup of
AutF2(K) and is defined by

GT (K) :=
⎧

⎨

⎩

σ ∈ AutF2(K)

∣

∣

∣

∣

σ(x) = xλ,σ(y) = f −1yλ f
for some (λ, f ) ∈ K

× × F2(K)

satisfying the three relations below.

⎫

⎬

⎭

f (x, y) f (y, x) = 1 in F2(K), (2)

f (z, x)zm f (y, z)ym f (x, y)xm = 1 in F2(K) with z = (xy)−1, m = λ − 1

2
, (3)

f1,2,34 f12,3,4 = f2,3,4 f1,23,4 f1,2,3 in P4(K). (4)

The powers xλ, yλ, xm , ym , zm appearing in the above all make sense because
F2(K) is the prounipotent completion of F2. For f1,2,34 etc., see Notation 2.1.

We remark that each σ ∈ GT (K) determines a pair (λ, f ) uniquely because the
pentagon equation (4) implies that f belongs to the commutator of F2(K). By abuse
of notation, we occasionally express the pair (λ, f ) to represents σ and denote as
σ = (λ, f ) ∈ GT (K).

The above set-theoretically defined GT (K) forms indeed a proalgebraic group
whose product is induced from that of AutF2(K) and is given by1

(λ2, f2) ◦ (λ1, f1) :=
(

λ2λ1, f1( f2x
λ2 f −1

2 , yλ2 ) · f2
)

=
(

λ2λ1, f2 · f1(x
λ2 , f −1

2 yλ2 f2)
)

.

(5)

1For our purpose to make (6) not anti-homomorphic but homomorphic, we reverse the order of the
product given in the original paper [16].
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The first equality is the definition and the second equality can be easily verified. We
denote the subgroup of GT (K) with λ = 1 by GT1(K);

GT 1(K) := {σ = (λ, f ) ∈ GT (K) | λ = 1} .

It is easily seen that it forms a proalgebraic unipotent subgroup of GT (K).

Remark 2.3 In some literatures, (2), (3) and (4) are called 2-cycle, 3-cycle and 5-
cycle relation respectively. The author often calls (2) and (3) by two hexagon equa-
tions and (4) by one pentagon equation because they reflect the three axioms, two
hexagon and one pentagon axioms, of braided monoidal (tensor) categories [25]. We
remind that (4) represents

f (x12, x23x24) f (x13x23, x34) = f (x23, x34) f (x12x13, x24x34) f (x12, x23) in P4(K).

In several literatures such as [19, 24], the Eq. (4) is replaced by a different (more
symmetric) formulation:

f (x∗
12, x

∗
23) f (x

∗
34, x

∗
45) f (x

∗
51, x

∗
12) f (x

∗
23, x

∗
34) f (x

∗
45, x

∗
51) = 1 in P∗

5 (K)

where P∗
5 is the pure sphere braid group with 5-strings.

The author actually showed that the pentagon equation implies two hexagon
equations:

Proposition 2.4 ([21]) LetK be an algebraically closed field of characteristic 0. For
each f ∈ F2(K) satisfying (4), there always exists (actually unique up to signature)
λ ∈ K such that the pair (λ, f ) satisfies the two hexagon equations (2) and (3).

The following Drinfeld’s GT (K)-action on K̂[Bn] plays a fundamental role in
our paper here.

Proposition 2.5 ([16]) Let n � 2. There is a continuous GT (K)-action on the fil-
tered Hopf algebra K̂[Bn]

ρn : GT (K) → Aut K̂[Bn] (6)

which is induced by, for each σ = (λ, f ) ∈ GT (K),

ρn(σ) :
{

σ1 �→ σλ
1 ,

σi �→ f −1
1···i−1,i,i+1 σλ

i f1···i−1,i,i+1 (2 � i � n − 1).

Here σλ
i := σi · (σ2

i )
λ−1
2 ∈ K̂[Bn] and f1···i−1,i,i+1 = f (x1i x2i · · · xi−1,i , xi,i+1) ∈

Pn(K) (see Notation 2.1). It is well defined because σ2
i belongs to the unipotent

completion Pn(K) and λ−1
2 -th power ofσ2

i makes sense in Pn(K).Wedenoteρn(σ)(b)
simply by σ(b) when there is no confusion.
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We note that ρn is injective when n � 3.

Remark 2.6 For each prime l, there are natural homomorphisms ̂Bn → Bn(Ql) and
̂Pn → Pn(Ql). Hence we have

̂Bn → Q̂l[Bn].

By natural homomorphismŝZ → Ql , ̂F2 → F2(Ql) and ̂P4 → P4(Ql), we obtain a
continuous group homomorphism

̂GT → GT (Ql) (7)

from the profinite Grothendieck-Teichmüller group ̂GT (cf. [22]). By direct calcu-
lations, it can be verified that the above two homomorphisms are consistent with the
GT (Ql)-action on Q̂l[Bn] in Proposition 2.5 and the ̂GT -action on ̂Bn (given in [16]
and see also [22]).

In Sect. 4, we will extend the action on proalgebraic braids to the one on proalge-
braic tangles and will show that actually the above action on proalgebraic pure braid
groups is realized as an inner automorphism of proalgebraic string links (Corollary
4.15).

2.2 The GRT-Action

We recall explicitly Drinfeld’s definitions of the graded Grothendieck-Teichmüller
group GRT (K) in Definition 2.9. We discuss their actions on the algebra Ûbn of
infinitesimal braids for n � 2 in Proposition 2.12.

Notation 2.7 (1) Let pn be the infinitesimal pure braid Lie algebra with n-strings
(n � 2) with standard generators ti j (1 � i, j � n) and defining relations tii = 0,
ti j = t ji , [ti j , tik + t jk] = 0 and [ti j , tkl] = 0 when i , j , k, l all differ. For 1 � a �
a + α < b � b + β � n, we define

ta···a+α,b···b+β :=
∑

0�i�α,0� j�β

ta+i,b+ j ∈ pn.

We denote by Upn its enveloping algebra and by Ûpn its completion with respect to
its augmentation ideal.

(2) We denote Sn to be the symmetric group acting on {1, 2, . . . , n} (n � 1)
and τi,i+1 in Sn to be the transpose of i and i + 1 (1 � i � n − 1). The group Sn

acts Ûpn by τ · ti j = tτ−1(i),τ−1( j) for τ ∈ Sn and 1 � i, j � n. We may consider the
crossed product (cf. [33] etc.)
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Ûbn := K[Sn] ∗ Ûpn.

It is K[Sn] ⊗K Ûpn as vector space with the product structure given by

(τ1 ⊗ ti1 j1) · (τ2 ⊗ ti2 j2) := τ1τ2 ⊗ (tτ−1
2 (i1)τ

−1
2 ( j1) · ti2 j2)

for τ1, τ2 ∈ Sn . By abuse of notation, occasionally τ indicate τ ⊗ 1 for τ ∈ K[Sn]
and t indicate 1 ⊗ t for t ∈ Ûpn in this paper. Hence we have

τ · ti j = tτ (i)τ ( j) · τ (=τ ⊗ ti j ) (8)

for τ ∈ Sn .We occasionally depict ti j ∈ Ûpn as the diagramwith n vertical lines and
a dotted horizontal line (called a chord) connecting i-th and j-th lines and τ ∈ Sn as
the diagram connecting each i-th point on the bottomwith τ (i)-th point on the top by
an interval. The order of the product b · b′ is chosen to combine the bottom endpoints
of b with the top endpoints of b′. By putting deg ti j = 1 (1 � i, j � n) and deg τ =
0 (τ ∈ Sn), we can show that both Ûpn and Ûbn carry structures of graded Hopf
algebras.

(3) Let f2 be the free Lie algebra over K with two variables A and B and ̂U f2 be
its completed Hopf algebra. Again similarly, for any g ∈ ̂U f2 and any algebra homo-
morphism τ : ̂U f2 → S sending A �→ v and B �→ w, the symbol g(v,w) stands for
the image τ (g). Particularly for the (actually injective) homomorphism ̂U f2 → Ûpn
sending A �→ ta···a+α,b···b+β and B �→ tb···b+β,c···c+γ (1 � a � a + α < b � b + β <

c � c + γ � n), the image of g ∈ ̂U f2 is denoted by ga···a+α,b···b+β,c···c+γ ∈ Ûpn .

We note that Ûpn is not algebraically generated by ti,i+1 (1 � i � n − 1) while

the following holds for Ûbn .

Lemma 2.8 The algebra Ûbn is algebraically generated by ti,i+1 and τi,i+1 for
1 � i � n − 1.

Proof The elements τi,i+1 generate Sn and, by (8), any tkl is obtained from ti,i+1

and τi,i+1 (1 � i � n − 1), which yields our claim.

The proalgebraic groupGRT 1(K) is defined byDrinfeld [16] to be a proalgebraic
subgroup of the automorphism (proalgebraic) group of exp f2.

Definition 2.9 ([16]) The proalgebraic graded Grothendieck-Teichmüller group
GRT (K) is the subgroup of Aut exp f2 defined by

GRT (K) :=
⎧

⎨

⎩

σ ∈ Aut exp f2

∣

∣

∣

∣

∣

∣

σ(eA) = eA/c, σ(eB) = g−1eB/cg for some c ∈ K
×

and g ∈ exp f2 satisfying two hexagon equations
(9)-(10) and one pentagon equation (11) below.

⎫

⎬

⎭

g(A, B)g(B, A) = 1 in exp f2, (9)
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g(C, A)g(B,C)g(A, B) = 1 in exp f2 with C = −A − B, (10)

g1,2,34g12,3,4 = g2,3,4g1,23,4g1,2,3 in exp p4. (11)

Similarly to Definition 2.2, we remark that each σ ∈ GRT (K) determines a pair
(c, g) uniquely. By abuse of notation, we occasionally express the pair (c, g) to
represents σ ∈ GRT (K) and denote as σ = (c, g) ∈ GRT (K).

The above set-theoretically defined GRT (K) forms indeed a proalgebraic group
whose product is induced from that of Aut exp f2(K) and is given by2

(c2, g2) ◦ (c1, g1) =
(

c2c1, g1

(

g2
A

c2
g−1
2 ,

B

c2

)

· g2
)

=
(

c2c1, g2 · g1
(

A

c2
, g−1

2
B

c2
g2

))

.

(12)
The first equality is the definition and the second equality can be easily veri-
fied. Notice the simple equality (1, g) ◦ (c, 1) = (c, g). We denote the subgroup
of GRT (K) with c = 1 by GRT (K)1, i.e. GRT 1(K) := {σ = (c, g) ∈ GRT (K) |
c = 1} . It is easily seen that it forms a proalgebraic unipotent subgroup ofGRT (K).

Remark 2.10 The symbol GRT stands for ‘graded Grothendieck-Teichmüller
group.’ Indeed its grading on GRT1(K) is equipped by the action of Gm(K) (=K

×)

given by

(1, g(A, B)) �→
(

1, g(
A

c
,
B

c
)

)

(13)

for c ∈ K
× and g ∈ GRT1(K), which is reformulated by (1, g) �→ (c, 1) ◦ (1, g).

Thus we have, by the action,

GRT (K) = K
×

� GRT1(K).

Two specific elements of GRT (K) are known.

Example 2.11 (1) The p-adic Drinfeld associator �
p
KZ(A, B), a p-adic analogue of

the Drinfeld (KZ-)associator (cf. Example 2.16) is a non-commutative formal power
series whose coefficients are p-adic multiple zeta values [18]. It was constructed as
a regularized holonomy of the p-adic KZ-equation and was shown in [20] by the
results of [38] that it belongs to GRT1(K) with K = Qp.

(2) The p-adic Deligne associator �
p
De(A, B), a variant of the above �

p
KZ(A, B)

(cf. [20]) is shown in [38] to be in GRT1(K) with K = Qp. It was in [20] shown
that each of its coefficients is given by a certain polynomial combination of p-adic
multiple zeta values.

The following GRT (K)-action on Ûbn was explicitly presented neither in Drin-
feld’s paper [16] nor Bar-Natan’s paper [7], where they showed GRT1(K)-action
there.

2We remark again that, for our purpose, we reverse the order of the product given in [16].
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Proposition 2.12 Let n � 2. There is a continuous GRT (K)-action on the graded
Hopf algebra Ûbn

ρn : GRT (K) → Aut Ûbn (14)

which is induced by, for each σ = (c, g) ∈ GRT (K),

ρn(σ) :

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

t1,2 �→ t1,2
c ,

ti,i+1 �→ g−1
1···i−1,i,i+1

ti,i+1

c g1···i−1,i,i+1 (2 � i � n − 1),

τ1,2 �→ τ1,2,

τi,i+1 �→ g−1
1···i−1,i,i+1 τi,i+1 g1···i−1,i,i+1 (2 � i � n − 1).

We recall that τi,i+1 means the transpose of i and i + 1 inSn . We again note that
ρn is injective when n � 3.

In Sect. 4 we will extend the above action on infinitesimal braids to the one on
chord diagrams and will show that actually the above action on infinitesimal braids
is realized as an inner automorphism of chord diagrams.

The associated Lie algebra grt1 of GRT1, which was independently introduced
by Ihara [24] and called the stable derivation algebra, is equipped grading by the
Gm-action (13).

Conjecture 2.13 ([14, 16, 24]) The graded Lie algebra grt1 is freely generated by
one element in each degree 3, 5, 7, . . . .

Remark 2.14 By [10], we know that grt1 contains such a free Lie subalgebra (see
Remark 2.23 below).

2.3 Associators

We recall Drinfeld’s definition of the associator set M(K) in Definition 2.15 and
its (GRT (K),GT (K))-bitorsor structure in Proposition 2.18. Then we will explain
how associators give isomorphisms between K̂[Bn] and Ûbn in Proposition 2.19.

Definition 2.15 ([16]) The associator set M(K) is the proalgebraic variety whose
set of K-valued points is given by

M(K) :=
{

p = (μ,ϕ) ∈ K × exp f2
∣

∣

∣ μ ∈ K
× and (μ,ϕ) satisfies (9), (11) and (15).

}

exp{μA
2

}ϕ(C, A) exp{μC
2

}ϕ(B,C) exp{μB
2

}ϕ(A, B) = 1 in exp f2 (15)

with C = −A − B. For each fixed μ0 ∈ K, define the proalgebraic variety Mμ0(K)

by
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Mμ0(K) :=
{

ϕ ∈ exp f2
∣

∣

∣ ϕ satisfies (9), (11) and (15) with μ = μ0

}

.

Hence we have M0(K) = GRT1(K). Three examples of associators are known:

Example 2.16 (1) The KZ-associator, also known as the Drinfeld associator,
�KZ(A, B) is a non-commutative formal power series whose coefficients are mul-
tiple zeta values. It was constructed by Drinfeld [16] as a regularized holonomy of
the KZ-equation and was shown by him that it belongs to Mμ(K) with K = C and
μ = ±2π

√−1. It is known to be expressed as follows:

�KZ(A, B) = 1 +
∑

m,k1,...,km∈N

km>1

(−1)mζ(k1, · · · , km)Akm−1B · · · Ak1−1B (16)

+ (regularized terms).

Here ζ(k1, · · · , km) is themultiple zeta value (MZV in short), the real number defined
by the following power series

ζ(k1, · · · , km) :=
∑

0<n1<···<nm

1

nk11 · · · nkmm

for m, k1,…, km ∈ N(= Z>0) with km > 1 (its convergent condition). All of the
coefficients of�KZ (including its regularized terms) are explicitly calculated in terms
of MZV’s in [17] Proposition 3.2.3 by Le-Murakami’s method in [31].

(2) The Deligne associator �De(A, B) [11] (denoted by �−
KZ(A, B) in [20]) is

a non-commutative formal power series in Mμ(K) with K = R and μ = 1 which is

located in the ‘middle’ of �KZ

(

1
2π

√−1
A, 1

2π
√−1

B
)

and �KZ

(

−1
2π

√−1
A, −1

2π
√−1

B
)

.

Its explicit relationship with the above �KZ(A, B) is given in [20] Lemma 2.25.
(3) The AT-associator �AT(A, B) is another associator. It was constructed

by Alekseev and Torossian [1] as a holonomy of AT-connection, a certain non-
holomorphic flat connection on a certain configuration space. Ševera andWillwacher
[36] showed that it belongs to Mμ(K) with K = R and μ = 1. Rossi andWillwacher
showed that �AT �= �De in [35].

We remark again that the author also in this setting showed that the pentagon
equation implies two hexagon equations.

Proposition 2.17 ([22]) Let K be an algebraically closed field of characteristic
0. For each ϕ ∈ exp f2 satisfying (11), there always exists (actually unique up to
signature) μ ∈ K such that the pair p = (μ,ϕ) satisfies the two hexagon equations
(9) and (15).

It was shown by Drinfeld thatGRT (K) acts freely and transitively on M(K) from
the left, GT (K) acts freely and transitively on M(K) from the right, and these two
actions are commutative:
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Proposition 2.18 ([16]) The associator set M(K) forms a (GRT (K),GT (K))-
bitorsor by the left GRT (K)-action given by

(c, g) ◦ (μ,ϕ) :=
(

μ

c
, ϕ

(

g
A

c
g−1,

B

c

)

· g
)

=
(

μ

c
, g · ϕ

(

A

c
, g−1 B

c
g

))

for (c, g) ∈ GRT (K) and (μ,ϕ) ∈ M(K) and the right GT (K)-action given by

(μ,ϕ) ◦ (λ, f ) := (

λμ, f (ϕeμAϕ−1, eμB) · ϕ
) = (

λμ, ϕ · f (eμA,ϕ−1eμBϕ)
)

for (μ,ϕ) ∈ M(K) and (λ, f ) ∈ GT (K).

Wemust note again that we reverse the order of the product given in the paper [16]
for our purpose. Drinfeld [16] showed that associators give an isomorphism between
K̂[Bn] and Ûbn .

Proposition 2.19 ([16]) Let n � 2. The (GRT (K),GT (K))-bitorsor M(K) is

mapped to the
(

Aut(̂Ubn), Aut(K̂[Bn])
)

-bitorsor Isom(K̂[Bn], Ûbn) by the map

ρn : M(K) → Isom
(

K̂[Bn], Ûbn

)

(17)

induced by, for each p = (μ,ϕ),

ρn(p) :

⎧

⎪

⎨

⎪

⎩

σ1 �→ τ1,2 · exp {μt12
2

}

,

σi �→ ϕ−1
1···i−1,i,i+1· τi,i+1 · exp {μti,i+1

2

} · ϕ1···i−1,i,i+1

(2 � i � n − 1).

It is a morphism as bitorsors, i.e. it is compatible with (6) and (14).

We again note that ρn is injective when n � 3.

2.4 The Motivic Galois Group

We briefly review the formulations of the motivic Galois groups and their torsor
(consult also [4] as a nice exposition).We also review their relationshipwith the torsor
of the Grothendieck-Teichmüller groups discussed in our previous subsections.

The triangulated category DM(Q)Q of mixed motives over Q (a part of an
idea of mixed motives is explained in [14] Sect. 1) was constructed by Hanamura,
Levine and Voevodsky. Tate motives Q(n) (n ∈ Z) are (Tate) objects of the cate-
gory. Let DMT (Q)Q be the triangulated sub-category of DM(Q)Q generated by
Tate motives Q(n) (n ∈ Z). By the work of Levine a neutral tannakian Q-category
MT (Q) = MT (Q)Q of mixed Tate motives over Q is extracted by taking the heart
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with respect to a t-structure of DMT (Q)Q. Deligne and Goncharov [15] introduced
the full subcategory MT (Z) = MT (Z)Q of mixed Tate motives over Spec Z inside
of MT (Q)Q. The category MT (Z) forms a neutral tannakian Q-category and asso-
ciation of each object M ∈ MT (Z) with the underlying Q-linear space of its Betti
and de Rham realizations give the fiber functor ωBe and ωDR respectively.

Definition 2.20 For ∗ ∈ {Be, DR}, the motivic Galois group GalM∗ (Z) is defined to
be the corresponding tannakian fundamental group of MT (Z), that is, the pro-Q-
algebraic group defined by Aut⊗(MT (Z) : ω∗).

For ∗, ∗′ ∈ {Be, DR}, we denote the corresponding tannakian fundamental torsor
Isom⊗(MT (Z) : ω∗,ω∗′) byGalM∗,∗′(Z). This is a (GalM∗′ (Z),GalM∗ (Z))-bitorsor.We
note that GalM∗,∗(Z) = GalM∗ (Z). By the fundamental theorem of tannakian category
theory, each fiber functor ω∗ induces an equivalence of categories

MT (Z)  Rep GalM∗ (Z) (18)

where the right hand side stands for the category of finite dimensional Q-vector
spaces equipped with GalM∗ (Z)-action.

Remark 2.21 For∗, ∗′ ∈ {Be, DR}, the actionofGalM∗ (Z)onω∗(Q(1))  Qdefines
a surjection GalM∗ (Z) → Gm and its kernel GalM∗ (Z)1 is the unipotent radical of
GalM∗ (Z). For ∗ = DR, there is a natural splitting τ : Gm → GalMDR(Z) which gives
a negative grading on its associated Lie algebra LieGalMDR(Z)1. By the axiom on the
structure of the category MT (Z), it is known that the Lie algebra is the graded Lie
algebra freely generated by one element in each degree −3,−5,−7, . . . . (consult
[14] Sect. 8 for the full story).

The motivic fundamental group πM
1 (P1\{0, 1,∞} : −→

01) constructed in [15]
Sect. 4 is a (pro-)object of MT (Z). The KZ-associator (cf. Example 2.16) is essential
in describing the Hodge realization of the motive (cf. [4, 15, 20]). Since its Betti
and de Rham realization is given by F2(Q) and exp f2, the motivic Galois groups,
GalMBe (Z) and GalMDR(Z), acts there respectively. The tannakian equivalence (18)
induces a morphism of bitorsors

Ψ : GalMBe,DR(Z) → Isom(F2(Q), exp f2)

from the (GalMDR(Z),GalMBe (Z))-bitorsor GalMBe,DR(Z) to the (Aut exp f2,AutF2(Q))-
bitorsor Isom(F2(Q), exp f2). The following has been conjectured (Deligne-Ihara
conjecture) and finally proved by Brown by using Zagier’s relation on MZV’s.

Theorem 2.22 ([10]) The map Ψ is injective.

It is a proalgebraic group analogue of the so-called Belyı̆’s theorem [9] in the
profinite group setting. The theorem says that all unramified mixed Tate motives
over Spec Z are associated with MZV’s.
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Remark 2.23 We recall that our (GRT (Q),GT (Q))-bitorsor M(Q) is naturally
injected to the (Aut exp f2,AutF2(Q))-bitorsor Isom(F2(Q), exp f2):

M(Q) ↪→ Isom(F2(Q), exp f2).

As is explained in [4, 20], a certain geometric interpretations of the Grothendieck-
Teichmüller groups shows that ImΨ is injected in M(Q) as bitorsors. Thus by the
above theorem, (GalMDR(Z),GalMBe (Z))-bitorsor GalMBe,DR(Z) is mapped injectively
to (GRT (Q),GT (Q))-bitorsor M(Q) as bitorsors:

GalMBe,DR(Z) ↪→ M(Q). (19)

The inclusion induces the one from LieGalMDR(Z)1 to GRT (Q). By Remark 2.21 we

get the claim in Remark 2.14. The GT (Q)-action on Q̂[Bn] given in (6) induces
a GalMBe (Z)-action there and GRT (Q)-action on Ûbn given in (14) also induces a

GalMDR(Z)-action there. Hence by the equivalence (18), Q̂[Bn] is the Betti realization
of a certain mixed Tate (pro-)motive over Spec Z, while whose de Rham realization
is given by Ûbn .

3 Proalgebraic Tangles and Chord Diagrams

We develop the actions of the Grothendieck-Teichmüller groups on proalgebraic
braids and on infinitesimal braids explained in our previous section into the ones on
proalgebraic tangles and on chord diagrams by following the method indicated in
[28]. This section might be regarded as an extension of Bar-Natan’s formalism [7]
on a relationship of the Grothendieck-Teichmüller groups with proalgebraic braids
into their relationship with proalgebraic tangles.

3.1 The GT-Action

In this subsection we give a review but with more detailed considerations on the
last appendix of both [27, 28] where an interesting GT (K)-action on proalgebraic
tangles and knots are briefly explained. Proalgebraic tangles and proalgebraic knots
are recalled in Definition 3.3. They are shown in Proposition 3.7 to be described by
proalgebraic pre-tangles (and knots) introduced by our ABC-construction in Defi-
nition 3.5. The GT (K)-action on proalgebraic tangles is explained in Definition 3.9
and Proposition 3.11. The induced GT (K)-action on proalgebraic knots is discussed
in Proposition 3.13. In Proposition 3.17 we give a relationship of the GT (K)-action
on the proalgebraic knots with the profinite ̂GT -action on profinite knots which was
constructed in our previous paper [22].
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Fig. 5 A string link

Fig. 6 A tangle in T↑↓↑↓,↓↑

Notation 3.1 Let k, l � 0. Let ε = (ε1, . . . , εk) and ε′ = (ε′
1, . . . , ε

′
l) be sequences

(including the empty sequence ∅) of symbols ↑ and ↓. An (oriented)3 tangle of type
(ε, ε′) means a smooth embedded compact oriented one-dimensional real manifolds
in [0, 1] × C (hence it is afinite disjoint unionof embeddedone-dimensional intervals
and circles), whose boundaries are {(1, 1), . . . , (1, k), (0, 1) . . . , (0, l)} such that εi
(resp. ε′

j ) is ↑ or ↓ if the tangle is oriented upwards or downwards at (1, i) (resp. at
(0, j)) respectively. A link is a tangle of type (∅,∅) , i.e. k = l = 0, and a knotmeans
a link with a single connected component. An n-string link,4 a string link with n-
components, means a tangle with ε = ε′ and k = l = n which consists of n-intervals
connecting (0, i) with (1, i) for each 1 � i � n and no circles (cf. Fig. 5).

We denote T to be the full set of isotopy classes of oriented tangles and Tε,ε′ to
be its subset consisting of tangles with type (ε, ε′). Figure6 might help the readers
to have a good understanding of the definition. It is easily seen that there is a natural
composition map

· : Tε1,ε2 × Tε2,ε3 → Tε1,ε3 (20)

3We occasionally omit to mention it. Throughout the paper all tangles are assumed to be oriented.
4A string link is not a link in the sense of the previous sentence.
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=⇒

Fig. 7 Connected sum (knot sum)

for any sequences ε1, ε2, ε3. The set SLε denotes the subspace of Tε,ε consisting of
string links. By the above composition SLε forms a monoid for each ε. By putting on
each i-th strand an orientation εi , the pure braid group Pn (n > 1) may be regarded
as a submonoid of SLε with ε = (ε1, . . . , εn). By definition T∅,∅ is the set of isotopy
classes of (oriented) links. We denoteK to be its subspace consisting isotopy classes
of (oriented) knots. The set K forms a monoid by the connected sum (the knot sum)

� : K × K → K. (21)

It is a natural way to fuse two oriented knots, with an appropriate position of orien-
tation, into one (an example is illustrated in Fig. 7). It can be done at any points. Our
short caution is that the connected sum � in (21) is different from the composition in
(20). (In fact a composition of two knots in not a knot but a link).

There is a fundamental identification between knots and long knots (string link
with a single component).

Proposition 3.2 Let ε =↑ or↓. Then the setSLε of long knots with the composition ·
is identified with the set K with the connected sum � by closing the two endpoints of
each. Namely we have an identification of two monoids

cl : (SL↑, ·)  (K, �).

Proof The identification is simply obtained by combining the ends of long knots.
Checking all compatibilities are easy to see.

For more on tangles, consult the standard textbook, say, [13].

Definition 3.3 ([22, 28]) (1) Let K[Tε,ε′ ] be the free K-module of finite formal
sums of elements of Tε,ε′ . A singular oriented tangle, an ‘oriented tangle’ allowed
to have a finite number of transversal double points (see [28] for detail), determines
an element of K[Tε,ε′ ] by the singularization of each double point by the following
relation

������ = ���� − ����.
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Let Tn (n � 0) be the K-submodule of K[Tε,ε′ ] generated by all singular oriented
tangles with type (ε, ε′) and with n double points. The descending filtration {Tn}n�0

is called the singular filtration. The topological K-module K̂[Tε,ε′ ] of proalgebraic
tangles of type (ε, ε′) means its completion with respect to the singular filtration:

K̂[Tε,ε′ ] := lim←−
N

K[Tε,ε′ ]/TN .

By abuse of notation, we denote the induced filtration on K̂[Tε,ε′ ] by the same symbol
{Tn}n�0. Note that there is a natural composition map

· : K̂[Tε1,ε2 ] × K̂[Tε2,ε3 ] → K̂[Tε1,ε3 ] (22)

for any ε1, ε2 and ε3. We denote the collection of K̂[Tε,ε′ ] for all ε and ε′ by ̂TK.
(2) Let K[K] be the K-submodule of K[T∅,∅] generated by K. By the product

� : K̂[K] × K̂[K] → K̂[K] (23)

induced by the connected sum � in (21) and the coproduct map � : K[K] →
K[K] ⊗K K[K] sending k �→ k ⊗ k and the augmentationmapK[K] → K, it carries
a structure of co-commutative and commutative bi-algebra. Put Kn := Tn ∩ K[K]
(n � 0). Then Kn forms an ideal of K[K] and the descending filtration {Kn}n�0

is called the singular knot filtration (cf .loc .cit). The topological commutative K-
algebra K̂[K] of proalgebraic knotsmeans its completion with respect to the singular
knot filtration:

K̂[K] := lim←−
N

K[K]/KN .

It is a K-linear subspace of K̂[T∅∅]. Since each element γ in K is congruent to the
unit moduloK1 due to the finiteness property of the unknotting number (cf. [13]),
the inverse of γ with respect to � always exists in K̂[K]. It defines the antipode map
on K̂[K], which yields a structure of co-commutative and commutative Hopf algebra
there. Again by abuse of notation, we denote the induced filtration of K̂[K] by the
same symbol {Kn}n�0, which is compatible with a structure of filtered Hopf algebra

on K̂[K].
(3) Proalgebraic links and proalgebraic string links can be defined in the same

way. The subset K̂[SLε] of K̂[Tε,ε] consisting of proalgebraic string links forms a
non-commutative K-algebra by the composition map (22).

Here is a fundamental identification in our proalgebraic setting.

Lemma 3.4 Let ε =↑ or ↓. There is an identification between two K-algebras

cl : (K̂[SLε], ·)  (K̂[K], �). (24)
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which is compatible with their filtrations.

Proof It is an immediate corollary of Proposition 3.2.

We give a piecewise construction of the above proalgebraic tangles by using
proalgebraic pre-tangles introduced below.

Definition 3.5 (1) A fundamental proalgebraic (oriented) tangle means a vector
belonging to an ABC-space, one of the following K-linear spaces Aε

k,l , ̂B
ε
τ and C ε

k,l
for some k, l, ε, τ :

Aε
k,l := K · aε

k,l , with ε = (εi )
k+l+1
i=1 ∈ {↑,↓}k × {�, �} × {↑,↓}l (k, l = 0, 1, 2, . . . ),

̂Bε
τ := K̂[Pn] · τ with ε = (εi )

n
i=1 ∈ {↑,↓}n and τ ∈ Sn (n = 1, 2, 3, 4, . . . ),

Cε
k,l := K · cεk,l , with ε = (εi )

k+l+1
i=1 ∈ {↑,↓}k × { �, �} × {↑,↓}l (k, l = 0, 1, 2, . . . ).

Here K̂[Pn] · τ stands for the coset of K̂[Bn]
/

K̂[Pn] corresponding to τ ∈ Sn =
Bn/Pn , the inverse image of K · σ under the natural homomorphism K̂[Bn] →
K[Sn]. To stress that an element b belongs to ̂Bε

τ , we occasionally denote bε or
(b, ε).

For each ABC-space V , its source s(V ) and target t (V ), which are sequences of
↑ and ↓, are defined in a completely same way to [22]; e.g. s(̂Bε

τ ) = ε, t (̂Bε
τ ) = τ (ε).

(2) A proalgebraic pre-tangle Γ of type (ε, ε′) is a vector belonging to a K-
linear space which is a finite consistent (successively composable) K-linear tensor
product of ABC-spaces. Namely it is an element belonging to a K-linear space
Vn ⊗ · · · V2 ⊗ V1 for some n such that s(Vi+1) = t (Vi ) for all i = 1, 2, . . . , n − 1
and s(V1) = ε and t (Vn) = ε′. For our simplicity, we denote each of its element
Γ = γn ⊗ · · · ⊗ γ2 ⊗ γ1 with γi ∈ Vi by Γ = γn · · · γ2 · γ1. We also define s(Γ ) :=
s(V1) and t (Γ ) := t (Vn). A proalgebraic pre-link Γ is a proalgebraic pre-tangle
with s(Γ ) = t (Γ ) = ∅. Two proalgebraic pre-tangles Γ = γn · · · γ2 · γ1 and Γ ′ =
γ′
m · · · γ′

2 · γ′
1 are called composable when s(Γ ) = t (Γ ′). Their composition Γ · Γ ′

is defined by γn · · · γ2 · γ1 · γ′
m · · · γ′

2 · γ′
1.

For each ABC-space V , its skeleton S(V ) is defined in a completely same way to
[22]. For a proalgebraic pre-tangle Γ = γn · · · γ2 · γ1 with γi ∈ Vi , its skeleton S(Γ )

stands for the graph of the compositions S(Vn) · · · S(V2) · S(V1) and its connected
componentsmean the connected components of S(Γ ) as graphs. A proalgebraic pre-
knot is a proalgebraic pre-link with a single connected component. A proalgebraic
pre-string link of type ε = (εi )

n
i=1 is a proalgebraic pre-tangle of type (ε, ε) whose

connected components consist of n intervals connecting each i-th point on the bottom
to the one on the top.

(3) Two proalgebraic pre-tangles are called isotopic when they are related by a
finite number of the 6 moves replacing profinite tangles and profinite braids group
̂Bn by proalgebraic pre-tangles and proalgebraic braid algebras K̂[Bn] in (T1)–(T6)
in [22] and c ∈ ̂Z by c ∈ K in (T6). (N.B. We note that σc

i for c ∈ K makes sense in

K̂[Bn] by the reason explained in [22] Proof of Proposition 2.29 (2).)
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(4) We denote K[T pre
ε,ε′ ] to be the K-linear space which is the quotient of the K-

span of proalgebraic pre-tangles with type (ε, ε′) divided by the equivalence linearly
generated by the above isotopy. Note that there is a natural composition map

· : K[T pre
ε1,ε2

] × K[T pre
ε2,ε3

] → K[T pre
ε1,ε3

] (25)

for any ε1, ε2 and ε3. The subset K[SLpre
ε ] of K[T pre

ε,ε ] consisting of proalgebraic
pre-string links of type ε forms a non-commutative K-algebra by the composition
map.

The symbolK[Kpre] stands for the subspace ofK[T pre
∅,∅ ] generated by proalgebraic

pre-knots. It can be proven in a same way to [22] that K[Kpre] inherits a structure of
a commutative K-algebra by the connected sum

� : K[Kpre] × K[Kpre] → K[Kpre]. (26)

Here for any two proalgebraic knots K1 = αm · · · α1 and K2 = βn · · · β1 with
(αm,α1) = (�, �) and (βn,β1) = (�, �) (we may assume such presentations
by (T6)), their connected sum is defined by

K1�K2 := αm · · · α2 · βn−1 · · ·β1.

Again we note that � is different from the above composition (25).
(5) For a K-linear space V with V = ̂Bε

τ , we give its descending filtration
{TN (V )}∞N=0 of K-linear subspaces by TN (V ) := I N and for a K-linear space V
with V = Aε

k,l or C
ε
k,l we give its filtration by T0(V ) = V and TN (V ) := {0} for

N > 0. For a finite consistent tensor product V = Vn ⊗ · · · ⊗ V1 of ABC-spaces,
we give its descending filtration {TN (V )}∞N=0 with

TN (V ) :=
∑

in+···+i1=N

Tin (Vn) ⊗ · · · ⊗ Ti1(V1),

i.e. the K-linear subspaces generated by the subspaces Tin (Vn) ⊗ · · · ⊗ Ti1(V1) with
in + · · · + i1 = N . For any ε and ε′, the collection of the filtrations of such consistent
tensor product V with s(V ) = ε′ and t (V ) = ε yields a filtration ofK-submodules of
K[T pre

ε,ε′ ], which we denote by {T pre
N }N�0. They are compatible with the composition

map (25). The filtration on K[Kpre] induced by the filtration of K[T pre
∅,∅ ] is denoted

by {Kpre
N }N�0. The filtration is compatible with its algebra structure given by (26).

Lemma 3.6 (1) For any ε and ε′ and any N � 0, there is an isomorphism ofK-linear
spaces

K[Tε,ε′ ]/TN  K[T pre
ε,ε′ ]/T pre

N .

(2) For any ε and any N � 0, there is an isomorphism of non-commutative K-
algebras

K[SLε]/TN  K[SLpre
ε ]/T pre

N .
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(3) For any N � 0, there is an isomorphism of commutative K-algebras

K[K]/KN  K[Kpre]/Kpre
N .

Proof (1) The map is obtained because the set T is described by the sequence
of elements in the discrete sets A, B and C modulo the discrete version of our
moves (T1)–(T6) (see [22]). Showing that it is an isomorphism is attained by the
isomorphism

K[Bn]/I i  K̂[Bn]/I i

for i = 0, 1, 2, . . . .
(2) and (3) It is a direct consequence of (1).

Here are algebraic reformulations of proalgebraic tangles and knots.

Proposition 3.7 (1) For each ε and ε′, there is an identification of filtered K -linear
spaces

lim←−
n

K[T pre
ε,ε′ ]/T pre

n  K̂[Tε,ε′ ].

(2) For each ε, there is an identification of filtered non-commutative K-algebras

lim←−
n

K[SLpre
ε ]/T pre

n  K̂[SLε].

(3) There is an identification of filtered commutative K-algebras

lim←−
n

K[Kpre]/Kpre
n  K̂[K].

Proof It is immediate by Definition 3.3 and the above lemma.

Remark 3.8 By [5] Sect. 4.2, we have a natural inclusion K̂[Pn] ↪→ K̂[SL↑n ].
Based on the identification, the action of the Grothendieck-Teichmüller group

GT (K) on proalgebraic tangles (in [27, 28] Appendix) can be explained as follows:

Definition 3.9 Let Γ̄ ∈ K̂[Tε,ε′ ]/TN with any sequences ε, ε′ and N � 0. Let Γ be
its representative in K[T pre

ε,ε′ ]with a presentation Γ = γm · · · γ2 · γ1 (γ j : fundamental
proalgebraic tangle). For σ = (λ, f ) ∈ GT (K) with λ ∈ K

× and f ∈ F2(K), we
define

σ(Γ̄ ) := σ(γm) · · · σ(γ2) · σ(γ1) ∈ K̂[Tε,ε′ ]/TN . (27)

Here σ(γ j ) is defined in a same way to [22] as follows.
(1) If γ j ∈ Aε

k,l , we define

σ(γ j ) := γ j · (ν f )
s(γ j )

k+2 · f
s(γ j )

1···k,k+1,k+2.
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Here the middle term stands for the proalgebraic tangle whose source is s(γ j ) which
is obtained by putting the trivial braid with k + 1-strands on the left of ν f (see below)
and the trivial braid with l-strands on its right.

(2) If γ j = (bn, ε) ∈ ̂Bε
τ with bn ∈ K̂[Pn] · τ ⊂ K̂[Bn], we define

σ(γ j ) := (ρn(σ)(bn), ε).

Here ρn(σ)(bn) is the image of bn by the action σ ∈ GT (K) on K̂[Bn] explained in
Sect. 2.1.

(3) If γ j ∈ C ε
k,l , we define

σ(γ j ) := f
−1,t (γ j )

1···k,k+1,k+2 · γ j .

The symbol νε
f (ε =↑,↓) means the proalgebraic tangle in K̂[Tε,ε] which is a

proalgebraic string link with a single strands such that s(με
f ) = t (με

f ) = ε and which
is given by the inverse of Λε

f with respect to the composition:

νε
f := {Λε

f }−1.

HereΛ
↓
f in K̂[Tε,ε] represents the proalgebraic string link with a single strands given

by
Λ

↓
f := a↓�

1,0 · f ↓↑↓ · c
�↓

0,1 .

(cf. Fig. 8) and Λ
↑
f is the same one obtained by reversing its all arrows.

We note that the existence of the inverse of Λε
f in K̂[Tε,ε] is immediate because

Λε
f is congruent to the trivial braid with a string modulo T1 and K̂[Tε,ε] is completed

by the filtration {Tn}∞n=0.

Remark 3.10 (1) The inverse νε
f does not look exist in K[T pre

ε,ε′ ] generally. That is
why we define GT (K)-action on K̂[Tε,ε′ ] below.

f

↓

↓

Fig. 8 Λ
↓
f
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(2) Our action (27) looks slightly different from the one given in [22]. One of the
reasons is that we deal tangles in Definition 3.9 while we discuss knots in [22].

Proposition 3.11 ([27, 28]) The Eq. (27) yields a well-defined GT (K)-action on
K̂[Tε,ε′ ]/TN for any ε, ε′ and any N � 0, and induces a well-defined GT (K)-action

on K̂[Tε,ε′ ] such that the equality

σ(Γ · Γ ′) = σ(Γ ) · σ(Γ ′)

holds in K̂[Tε1,ε3] for two proalgebraic tangles Γ ∈ K̂[Tε1,ε2 ] and Γ ′ ∈ K̂[Tε2,ε3] for
any ε1, ε2 and ε3.

Proof Though its proof can be found in loc. cit where it is explained in terms of
K-linear braided monoidal categories, we can prove in a same way to the proof of
[22] Theorem 2.38. by direct calculations.

We denote the above induced action by

ρε,ε′ : GT (K) → Aut K̂[Tε,ε′ ]. (28)

We may say that it is a generalization of the map (6) into the proalgebraic tangle
case. As a consequence of the above proposition, we have

Proposition 3.12 For each sequence ε, the subspace K̂[SLε] of proalgebraic string
links is stable under the above GT (K)-action. The action is compatible with its
non-commutative algebra structure whose product is given by the composition.

We denote the above action by

ρε : GT (K) → Aut K̂[SLε]. (29)

We will see in Theorem 4.14 that this action restricted into GT1(K) is given by inner
conjugation.

Particularly by restricting our action (28) into K̂[T∅,∅] we obtain the following.

Proposition 3.13 The subspace K̂[K] of proalgebraic knots is stable under the
above GT (K)-action. The action there is not compatible with the connected sum
� however the equality

σ(K1�K2)�σ( ) = σ(K1)�σ(K2) (30)

holds for any σ ∈ GT (K) and any K1, K2 ∈ K̂[K].
Proof Seeing that the subspace is stable can be verified by showing that connected
components of skeletons of proalgebraic tangles are unchanged. The Eq. (30) can be
proven in a same way to the proof of the Eq. (2.21) in [22].
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We denote the above action by

ρ0 : GT (K) → Aut K̂[K0]. (31)

Remark 3.14 We will see in Proposition 4.19 that this action is given by Gm-action.
Wewill explicitly determine in Theorem4.27 the subspace of K̂[K]which is invariant
under the above GT (K)-action.

We note that in the proalgebraic knot setting our action above is not compatible
with the product structure (23) due to (30), while in the profinite knot setting the
̂GT -action on the group of profinite knots is compatible with the product structure
as shown in [22] Theorem 2.38 (4). In order to relate the ̂GT -action on FraĉK con-
structed in [22]with the aboveGT (K)-action on K̂[K], we introduce the proalgebraic
group FracK(K) below.

Notation 3.15 PutK(K) to be the group-like part of K̂[K], which carries a structure
of proalgebraic group. It can be checked directly that GT (K)-action on K̂[K] is
compatible with its coproduct map and its antipode map. Hence we have GT (K)-
action on K(K) though it is not compatible with its product structure of K(K) due
to (30). We denote its group of fraction by FracK(K), which is the quotient space of
K(K) × K(K) by the equivalent relations (r, s) ≈ (r ′, s ′) if r�s ′�t = r ′�s�t holds in
K(K) for some t ∈ K(K).

Lemma 3.16 The induced GT (K)-action on FracK(K) is compatible its group
structure, i.e.

σ(e) = e, σ(x�y) = σ(x)�σ(y), σ(
1

x
) = 1

σ(x)

for any σ ∈ GT (K) and x, y ∈ FracK(K). Here e = / .

Proof Let x = r1/s1 and y = r2/s2. Then by (30) it is easy to see

σ(x�y) = σ(
r1�r2
s1�s2

) = σ(r1�r2)

σ(s1�s2)
= σ(r1�r2)�σ( )

σ(s1�s2)�σ( )
= σ(r1)�σ(r2)

σ(s1)�σ(s2)

= σ(r1)

σ(s1)
�
σ(r2)

σ(s2)
= σ(

r1
s1

)�σ(
r2
s2

) = σ(x)�σ(y),

σ(
1

x
)�σ(x) = σ(

s1
r1

)�σ(
r1
s1

) = σ(s1)

σ(r1)
�
σ(r1)

σ(s1)
= σ(s1)�σ(r1)

σ(r1)�σ(s1)
= σ(r1)�σ(s1)

σ(r1)�σ(s1)
= = e.

In [22], the profinite ̂GT -action on FraĉK was constructed. A relationship of the
action with the above constructed GT (K)-action on K(K) is explicitly given below.

Proposition 3.17 For each prime l, there is a natural group homomorphism

FraĉK → FracK(Ql). (32)
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The ĜT -action on FraĉK constructed in [22] is compatible with the above GT (Ql)-
action on K(Ql) under the maps (7) and (32).

Proof The map (32) is naturally induced by the map in [22] Proposition 2.30. It
follows from our construction that the map is compatible with two actions.

3.2 The GRT-Action

In this subsection, we establish an ‘infinitesimal’ counterpart of the GT (K)-action
on proalgebraic tangles given in the previous subsection. Infinitesimal tangles (and
knots) are introduced inDefinition3.19 as an infinitesimal counterpart of proalgebraic
tangles (and knots). (It will be shown in next subsection that this notion coincides
with the notion of chord diagrams.) A consistentGRT (K)-action there is established
in Proposition 3.23.

Definition 3.18 (1) A fundamental infinitesimal tanglemeans a vector belonging to
one of the following K-linear spaces (let us again call them ABC-spaces): Aε

k,l , Î B
ε
τ

and C ε
k,l for some k, l, ε, τ :

Aε
k,l := K · aε

k,l , with ε = (εi )
k+l+1
i=1 ∈ {↑,↓}k × {�, �} × {↑,↓}l (k, l = 0, 1, 2, . . . ),

Î Bε
τ := Ûpn · τ with ε = (εi )

n
i=1 ∈ {↑, ↓}n and τ ∈ Sn (n = 1, 2, 3, 4, . . . ),

Cε
k,l := K · cεk,l , with ε = (εi )

k+l+1
i=1 ∈ {↑,↓}k × { �, �} × {↑,↓}l (k, l = 0, 1, 2, . . . ).

Here Ûpn · τ stands for the coset of Ûbn
/

Ûpn corresponding to τ ∈ Sn = Bn/Pn .

To stress that an element b belongs to Î Bε
τ , we occasionally denote bε or (b, ε).

For each above space V , its source s(V ) and target t (V ), are defined in a com-
pletely same way to Definition 3.5.

(2) An infinitesimal pre-tangle D of type (ε, ε′) is defined in a same way
to Definition 3.5. Namely it is D = dn · · · d2 · d1 where each di is an infinitesi-
mal fundamental tangle, a vector belonging to Vi , one of the above ABC-spaces,
such that s(Vi+1) = t (Vi ) for all i = 1, 2, . . . , n − 1 and s(V1) = ε and t (Vn) = ε′.
We also define s(D) := s(V1) and t (D) := t (Vn). An infinitesimal pre-link D is
an infinitesimal pre-tangle with s(D) = t (D) = ∅. Two infinitesimal pre-tangles
D = dn · · · d2 · d1 and D′ = d ′

m · · · d ′
2 · d ′

1 are called composablewhen s(D) = t (D′)
and their composition D · D′ is defined by dn · · · d2 · d1 · d ′

m · · · d ′
2 · d ′

1.
For an infinitesimal pre-tangle D its skeleton S(D) and its connected components

can be defined in the same way to Definition 3.5. An infinitesimal pre-knot is an
infinitesimal pre-link with a single connected component. An infinitesimal pre-string
link of type ε = (εi )

n
i=1 is an infinitesimal pre-tangle of type (ε, ε) consisting of n

connected components whose each i-th component connect i-th point on the bottom
to the one on the top.
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(3) Two infinitesimal pre-tangles are called isotopic when they are related by a
finite number of the 6 moves (IT1)–(IT6). Here (IT1)–(IT5) are the moves replac-
ing profinite tangles and profinite braids group ̂Bn by infinitesimal pre-tangles and
infinitesimal braid algebras Ûbn in (T1)–(T5) in [22] and (IT6) is an ‘infinitesimal’
variant of (T6), which is stated below.

(IT6): For α ∈ K, cε
k,l ∈ C ε

k,l and tk+1,k+2 · τ ∈ Î Bε′
τ with τ = τk+1,k+2 ∈ Sk+l+2

(the switch of k + 1 and k + 2) and t (C ε
k,l) = ε′

exp{α tk+1,k+2} · τk+1,k+2 · cε
k,l = cε̄

k,l

where ε̄ is the sequence obtained by revering the (k + 1)-st and (k + 2)-nd arrows.

And for α ∈ K, aε
k,l ∈ Aε

k,l and τ · tk+1,k+2 ∈ Î Bε′
τ with τ = τk+1,k+2 ∈ Sk+l+2 and

s(Aε
k,l) = τ (ε′)

aε
k,l · τk+1,k+2 · exp{α tk+1,k+2} = a ε̄

k,l .

where ε̄ is the sequence obtained by revering the (k + 1)-st and (k + 2)-nd arrows.
Figure9 depicts the moves. (N.B. We note that exp{α tk+1,k+2} for α ∈ K makes
sense in ̂Upk+l+2.)

(4) We denote K[IT pre
ε,ε′ ] to be the K-linear space which is the quotient of the K-

span of infinitesimal pre-tangles with type (ε, ε′) divided by the equivalence linearly
generated by the above isotopy. Note that there is a natural composition map

· : K[IT pre
ε1,ε2

] × K[IT pre
ε2,ε3

] → K[IT pre
ε1,ε3

] (33)

for any ε1, ε2 and ε3. The subspaceK[ISLpre
ε ] ofK[IT pre

ε,ε ] consisting of infinitesimal
pre-string links forms a non-commutative K-algebras by the composition (33).

The symbolK[IKpre] stands for the subspace ofK[IT pre
∅,∅] generated by infinitesi-

mal pre-knots. As in Definition 3.5, it inherits a structure of a commutativeK-algebra
by the connected sum (which can be defined in the same way to [22])

� : K[IKpre] × K[IKpre] → K[IKpre]. (34)

Again we note that � is different from the above composition (33).
(5) For a K-linear space V with V = Aε

k,l or C
ε
k,l we give its descending filtration

of K-linear subspaces by IT 0(V ) = V and IT N (V ) := {0} for N > 0, and when

k

exp{α }

l

=

k l , k

exp{α }

l

=

k l

Fig. 9 (IT6)
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V = Î Bε
τ , we give its descending filtration {IT N (V )}∞N=0 such that IT N (V ) is the

K-linear subspace topologically generated by elements whose degrees are greater
than or equal to N .

By the method indicated in Definition 3.5, for any sequences ε and ε′, K[IT pre
ε,ε′ ]

is inherited a filtration of its K-submodules which we denote by {IT pre
N }N�0. They

are compatible with the composition map (33). The filtration on K[IKpre] induced
by the filtration of K[IT pre

∅,∅] is denoted by {IKpre
N }N�0. The filtration is compatible

with its algebra structure given by (34).

Definition 3.19 (1) An infinitesimal tangle with type (ε, ε′) is an element of

̂K[IT ε,ε′ ] := lim←−
n

K[IT pre
ε,ε′ ]/IT pre

n .

(2) An infinitesimal string link with type ε is an element of

̂K[ISLε] := lim←−
n

K[ISLpre
ε ]/IT pre

n .

(3) An infinitesimal knot is an element of the following completed K-algebra

K̂[IK] := lim←−
n

K[IKpre]/IKpre
n .

We note that ̂K[IT ε,ε′ ] for ε, ε′ is inherited a composition product · by (33) and

the set ̂K[ISLε] generally forms a non-commutative K-algebra. The set K̂[IK] is
inherited a connected � by (34) and forms a commutative K-algebra.

Remark 3.20 By [5] Sect. 4.2, we have a natural inclusion Ûpn ↪→ ̂K[ISL↑n ]. Sim-

ilarly for each ε = (εi )
n
i=1 with ε =↑, ↓, there is an inclusion Ûpn ↪→ ̂K[ISLε]. We

denote the image of each element h ∈ Ûpn by hε.

As an analogue of Lemma 3.4, we have

Lemma 3.21 Let ε =↑ or ↓. There is an identification of two algebras

cl : ( ̂K[ISLε], ·)  (K̂[IK], �)

which is compatible with their filtrations.

Based on the identification, the action of the graded Grothendieck-Teichmüller
group GRT (K) on infinitesimal tangles is constructed as follows:

Definition 3.22 Let D̄ ∈ ̂K[IT ε,ε′ ]/IT N with any sequences ε, ε′ and N � 0. Let
D be its representative in K[IT pre

ε,ε′ ] with a presentation D = dm · · · d2 · d1 (d j :
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fundamental infinitesimal tangle). For σ = (c, g) ∈ GRT (K), hence c ∈ K
× and

g ∈ exp f2, we define

σ(D̄) := σ(dm) · · · σ(d2) · σ(d1) ∈ ̂K[IT ε,ε′ ]/IT N . (35)

with σ(d j ) given below.
(1) when d j ∈ Aε

k,l , we define

σ(d j ) := d j · (νg)
s(d j )

k+2 · gs(d j )

1···k,k+1,k+2.

Here the middle term stands for the infinitesimal tangle whose source is s(d j ) which
is obtained by putting the trivial infinitesimal braid with k + 1-strands on the left of
νg (see below) and the trivial infinitesimal braid with l-strands on its right.

(2) when d j = (bn, ε) ∈ Î Bε
τ with bn ∈ Ûpn · τ ⊂ Ûbn , we define

σ(d j ) := (ρn(σ)(bn), ε).

Here ρn(σ)(bn) is the image of bn by the action σ ∈ GRT (K) on Ûbn explained in
Sect. 2.2.

(3) when d j ∈ C ε
k,l , we define

σ(d j ) := g
−1,t (d j )

1···k,k+1,k+2 · d j .

The symbol νε
g (ε =↑,↓) means the infinitesimal tangle in ̂K[IT ε,ε]with a single

connected component such that s(με
g) = t (με

g) = ε and which is given by the inverse
of Λε

g with respect to the composition:

νε
g := {Λε

g}−1.

Here Λ
↓
g in ̂K[IT ε,ε] represents the infinitesimal string link with a single strands

given by
Λ↓

g := a↓�

1,0 · g↓↑↓ · c

�↓
0,1 .

(which can be depicted as the picture in Fig. 8 replacing f by g) and Λ
↑
g is the same

one obtained by reversing its all arrows.

We note that the existence of the inverse of Λε
g in ̂K[IT ε,ε] is immediate because

Λε
g is congruent to the unit in ̂K[IT ε,ε] modulo T1 and ̂K[IT ε,ε] is completed by the

filtration {Tn}∞n=0.

Proposition 3.23 (1). The Eq. (35) yields a well-defined GRT (K)-action on
̂K[IT ε,ε′ ]/IT N for any ε, ε′ and any N � 0, and induces a well-defined GRT (K)-

action on ̂K[IT ε,ε′ ] such that the equality
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σ(D · D′) = σ(D) · σ(D′)

holds in ̂K[IT ε1,ε3] for two infinitesimal tangles D ∈ ̂K[IT ε1,ε2 ]and D′ ∈ ̂K[IT ε2,ε3 ]
for any ε1, ε2 and ε3.

(2) For each ε, the subspace ̂K[ISLε] of infinitesimal string links with type ε is
stable under the above GRT (K)-action. The action is compatible with its algebra
structure whose product is given by the composition.

(3) The subspace K̂[IK] of infinitesimal knots is stable under the above GRT (K)-
action. The action there is not compatible with the connected sum � however the
equality

σ(D1�D2)�σ( ) = σ(D1)�σ(D2) (36)

holds for any σ ∈ GRT (K) and any D1, D2 ∈ K̂[IK].
Proof Proof can be done in a completely same way to the proof of Proposition 3.11
and 3.13.

We denote the above induced actions respectively by

ρε,ε′ : GRT (K) → Aut ̂K[IT ε,ε′ ], (37)

ρε : GRT (K) → Aut ̂K[ISLε], (38)

ρ0 : GRT (K) → Aut K̂[IK]. (39)

Wemay say that themap (37) is a generalization of themap (14) into the infinitesimal
tangle case. We will see that the action (38) restricted into GRT1(K) is given by
inner conjugation in Theorem 4.10 and that the action (39) is given by Gm-action in
Proposition 4.19.

3.3 Associators

In this subsection we reformulate the isomorphism given in [28] Theorem 2.4 (also
shown in [6, 12, 28, 30, 34]) in our terminologies of proalgebraic and infinitesimal
tangles. It is shown that each associator gives an isomorphism between the system
of proalgebraic tangles and the system of infinitesimal tangles in Proposition 3.25.
Proposition 3.28 shows an equivalence of the notion of infinitesimal tangles and the
notion of chord diagrams.

Similarly to our previous subsections, such an isomorphism is constructed piece-
wise.

Definition 3.24 Let Γ̄ ∈ K̂[Tε,ε′ ]/TN with any sequences ε, ε′ and N � 0. Let Γ be
its representative in K[T pre

ε,ε′ ]with a presentation Γ = γm · · · γ2 · γ1 (γ j : fundamental
proalgebraic tangle). For p = (μ,ϕ) ∈ M(K), hence μ ∈ K

× and ϕ ∈ exp f2, we
define
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p(Γ̄ ) := p(γm) · · · p(γ2) · p(γ1) ∈ ̂K[IT ε,ε′ ]/IT N . (40)

with p(γ j ) given below.
(1) when γ j ∈ Aε

k,l , we define

p(γ j ) := γ j · (νϕ)
s(γ j )

k+2 · ϕ
s(γ j )

1···k,k+1,k+2.

Here νϕ is the infinitesimal string link defined in Definition 3.22.

(2) when γ j = (bn, ε) ∈ ̂Bε
τ with bn ∈ K̂[Pn] · τ ⊂ K̂[Bn], we define

p(γ j ) := (ρn(p)(bn), ε).

Here ρn(p)(bn) ∈ Ûbn is the image of bn by the map given in Proposition 2.19.
(3) when γ j ∈ C ε

k,l , we define

p(γ j ) := ϕ
−1,t (γ j )

1···k,k+1,k+2 · γ j .

As an analogue of Propositions 3.11 and 3.23 in this subsection, we have the
following:

Proposition 3.25 (1) For each p = (μ,ϕ) ∈ M(K), the Eq. (40) yields a well-
defined isomorphism of K-linear spaces

ρN
ε,ε′(p) : K̂[Tε,ε′ ]/TN  ̂K[IT ε,ε′ ]/IT N

for any ε and ε′ and N � 0.
(2) This induces an isomorphism of K-linear spaces

ρε,ε′(p) : K̂[Tε,ε′ ]  ̂K[IT ε,ε′ ] (41)

such that the equality

ρε1,ε3(p)(Γ · Γ ′) = ρε1,ε2(p)(Γ ) · ρε2,ε3(p)(Γ
′)

holds in ̂K[IT ε1,ε3 ] for two proalgebraic tangles Γ ∈ K̂[Tε1,ε2 ] and Γ ′ ∈ K̂[Tε2,ε3 ]
for any ε1, ε2 and ε3.

(3) Restriction of the map (41) into proalgebraic string links of type ε yields an
isomorphism

ρε(p) : K̂[SLε]  ̂K[ISLε]. (42)

It is compatible with non-commutative product structures of both algebras given by
the compositions.

(4) Restriction of the map (41) into proalgebraic knots yields an isomorphism
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ρ0(p) : K̂[K]  K̂[IK]. (43)

It is not compatible with the commutative product structure given by the connected
sum � however the equality

ρ0(p)(K1�K2) � ρ0(p)( ) = ρ0(p)(K1) � ρ0(p)(K2) (44)

holds in K̂[IK] for any K1, K2 ∈ K̂[K].
Proof (1) Firstly we have to show that Definition 3.24 makes sense, that is, the map
ρN

ε,ε′(p) is well-defined. It is enough to prove the equality ρN
ε,ε′(p)(Γ̄1) = ρN

ε,ε′(p)(Γ̄2)

for Γ1 and Γ2 ∈ K̂[Tε,ε′ ] when Γ1 is obtained from Γ2 by a single operation of one
of the moves (T1)–(T6). This can be proved in a completely same way to the proof
of [22] Theorem 2.38 (1).

Secondly we prove that the map ρN
ε,ε′(p) is isomorphic. This is achieved by con-

sidering the K-linear map

Sa : IT a
/ IT a+1 → Ta

/ Ta+1

for a = 0, 1, 2, . . . , N − 1. It is a map sending each Γ = γm · · · γ1 with each
γi belonging to one Vi of the ABC-spaces to Sa(Γ ) := Sa(γm) · · · Sa(γ1) with
Sa(γi ) = γi when Vi = Aε

k,l or C ε
k,l for some k, l, ε, and Sa(γi ) = ρn(p)−1(γi )

when Vi = Î Bτ
ε for some τ ∈ Sn (some n � 1) and ε. Here ρn(p) : K̂[Bn] → Ûbn

is the isomorphism given by (17). The well-definedness of Sa can be checked
directly. To see the compatibility for the move (IT6), we need to use the congruence
ρn(p)−1(tk+1,k+2) ≡ σk+1 − σ−1

k+1 (mod I 1). By the construction, Sa is isomorphic.
By checking that Sa gives an right inverse of

ρa+1
ε,ε′ (p)

∣

∣

Ta
: Ta

/ Ta+1 → IT a
/ IT a+1,

inductively we get that ρa+1
ε,ε′ (p) is isomorphic.

(2) Since both filtration {Tn}∞n=0 and {IT n}∞n=0 are compatible with the isomor-
phism ρN

ε,ε′(p), the isomorphism (41) is obtained. Checking the equality of the com-
position is immediate to see.

(3) It can be proved by the same arguments of the proof of Proposition 3.12.
(4) The statements follow from the same arguments given in the proof of Propo-

sition 3.13.

The above isomorphism (41) is compatible with both GT (K)-action on K̂[Tε,ε′ ]
and GRT (K)-action on ̂K[IT ε,ε′ ].
Proposition 3.26 The induced maps

ρε,ε′ : M(K) → Isom
(

K̂[Tε,ε′ ], ̂K[IT ε,ε′ ]
)

, (45)
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ρε : M(K) → Isom
(

K̂[SLε], ̂K[ISLε]
)

, (46)

ρ0 : M(K) → Isom
(

K̂[K], K̂[IK]
)

(47)

are all morphisms of bitorsors.

Proof It is derived from Proposition 2.19.

We may say that the map (45) is a generalization of the map (2.19) into proalge-
braic tangles.

Next we will discuss a relation of infinitesimal tangles with chord diagrams.

Notation 3.27 ([27, 28] etc.) Let Γ be a tangle in Tε,ε′ . A chord diagram on a
curve Γ is a finite (possibly empty) set of unordered pair of points on Γ \ ∂Γ .
A homeomorphism of chord diagrams means a homeomorphism of the underlying
curves preserving their orientations and fixing their endpoints such that it preserves
the distinguished pairs of points. In our picture, we draw a dashed line, called a chord,
between the two points of a distinguished pair.

We denote CDm
ε,ε′ to be the K-linear space generated by all homeomorphism

classes of chord diagrams with m chords (m � 0) on tangles of type (ε, ε′), subject
to the 4T-relation and the FI-relation. Here the 4T-relation stands for the 4 terms
relation defined by D1 − D2 + D3 − D4 = 0 where Dj are chord diagrams with
four chords identical outside a ball in which they differ as illustrated in Fig. 10 and
the FI-relation stands for the frame independent relation where we put D = 0 for
any chord diagrams D with an isolated chord, a chord that does not intersect on any
other one in their diagrams. We put ̂CDε,ε′ := ̂⊕∞

m=0CDm
ε,ε′ .

It is known that it is well-behaved under the composition

· : ̂CDε3,ε2 × ̂CDε2,ε1 → ̂CDε3,ε1 . (48)

We denote the subspace of ̂CDε,ε′ consisting of chord diagrams whose underlying
spaces are string links with type ε by ̂CD(ε). It forms a non-commutative K-algebra
by the composition map (48).

The subspace ̂CD( ) (⊂ ̂CD∅,∅) of chord diagrams whose underlying spaces are
homeomorphic to the oriented circles forms a commutative algebra by the connected
sum

� : ̂CD( ) × ̂CD( ) → ̂CD( ). (49)

D1 D2 D3 D4

Fig. 10 4T-relation
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We remind that the unit is given by the chordless chord diagram on the oriented circle
.

Proposition 3.28 (1) For each ε, ε′, there is a natural identifications

̂K[IT ε,ε′ ]  ̂CDε,ε′

which is compatible with the composition maps.
(2) For each ε, there is a natural identification of non-commutative graded

K-algebras:
̂K[ISLε]  ̂CD(ε).

(3) There is a natural identification of commutative graded K-algebras:

K̂[IK]  ̂CD( ).

Proof (1) By replacing each ������-part on the associated picture of each infinitesimal
tangle D by ���� (actually we may replace it by ���� because both are equivalent
modulo homeomorphisms of underlying tangles) and multiplying (−1)D↓ to each D
(which is necessary to keep 4T-relation), we obtain a well-defined K-linear map

̂K[IT ε,ε′ ] → ̂CDε,ε′ . (50)

Here D↓ is the set of ends of chord on D which hit downward lines. Its composition
with the map ρε,ε′(p) in (41) is the isomorphism

K̂[Tε,ε′ ] → ̂CDε,ε′ .

given as the non-framed version of [28] Theorem 2.4. Since ρε,ε′(p) is isomorphic,
the morphism in our claim should be isomorphic. Checking the compatibility with
the composition map is immediate.

(2) It immediately follows from (1).
(3) It is obtained by a restriction of the above claim into the case (ε, ε′) = (∅,∅).

It can be checked directly that the map is compatible with the connected sum.

Hereafter we identify ̂K[IT ε,ε′ ] with ̂CDε,ε′ , ̂K[ISLε] with ̂CD(ε), and K̂[IK ]
with ̂CD( ) by the map (50). Thus the identification given in Lemma 3.21 is refor-
mulated as the identification below

(̂CD(ε), ·)  (̂CD( ), �) (51)

for ε =↑ or ↓.
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Remark 3.29 Kontsevich’s isomorphism [26]

I : Ĉ[K]  ̂CD( ) (52)

is given by specifying p of ρ0(p) of (43) to pKZ = (1,ϕKZ) ∈ M(C) with ϕKZ =
�KZ

(

1
2π

√−1
A, 1

2π
√−1

B
)

.We note that it is independent of the choice ofϕ (cf. [30]).

For each oriented knot K , the image I (K ) is called the Kontsevich invariant of K .

Remark 3.30 By the same arguments to Remark 2.23, the proalgebraic tangles
Q̂[Tε,ε′ ], the proalgebraic string links Q̂[SLε] and the proalgebraic knots K̂[K] are
regarded as Betti realizations of mixed Tate (pro-)motives over Spec Z. And their
corresponding deRham realizations are given by the spaces ̂CDε,ε′ , ̂CD(ε) and ̂CD( )

of chord diagrams located there respectively. In Remark 4.28, we will see that the
proalgebraic knots K̂[K] carries a structure of Tate (pro-)motives.

4 Main Results

We discuss and derive distinguished properties of the action of the Grothendieck-
Teichmüller groups on proalgebraic tangles (constructed in Sect. 3.1) which can not
be observed in the action on proalgebraic braids (discussed in Sect. 2.1). By exploit-
ing the properties, we explicitly determine the proalgebraic knot whose Kontsevich
invariant is the unit, the trivial chord diagram (Theorem 4.22).

4.1 Proalgebraic String Links

We restrict the previously constructed action of the Grothendieck-Teichmüller group
GT (K) on proalgebraic tangles into the action of its unipotent part GT1(K) on
proalgebraic string links and show that it is simply described by an inner conjugation
(Proposition 4.10 and Theorem 4.14). The proofs are based on Twistor Lemmas
(Lemmas 4.2 and 4.12).

Notation 4.1 (1) For n > 1, εi : ̂K[ISL↑n ] → ̂K[ISL↑n−1] (i = 1, 2 . . . n) means
the map sending an infinitesimal string link D to 0 if at least one chord of D has an
endpoint on the i-th strand; otherwise εi (D) is obtained by removing the i-th strand.

(2) For D ∈ ̂K[ISL↑n ], we denote D1,...,n (resp. D2,...,n+1) to be the element in
̂K[ISL↑n+1] obtained by putting a chordless straight line on the right (resp. the left) of

D and D1,...,i−1,i i+1,i+2,...,n+1 (i = 1, 2, . . . , n) to be also the element in ̂K[ISL↑n+1 ]
obtained by doubling the i-th strand and taking the sum over all possible lifts of the
chord endpoints of D from the i-th strand to one of the new two strands.
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(3) For D ∈ ̂K[ISL↑n ] and τ ∈ Sn , Dτ (1),...,τ (n) denote the element in τ−1 · D · τ
where the product is taken as a product of infinitesimal tangles (recall the identifica-
tion given in Proposition 3.28).

Hereafter we regard exp f2 and Up5 to be the subspaces of ̂K[ISL↑↑↑] and
̂K[ISL↑↑↑↑] respectively. The following lemma which is shown for GRT (K)might

be called as a reformulation of [30] Theorem 8 which is shown for a ‘chord diagram-
matic’ analogue of M1(K).

Lemma 4.2 (Twistor Lemma) Let σ = (c, g) ∈ GRT (K), thus c ∈ K
× and g ∈

exp f2 ⊂ ̂K[ISL↑↑↑]. Then g is gauge equivalent to 1, namely, there exists Δ(σ) ∈
̂K[ISL↑↑]× satisfying

ε1(Δ(σ)) = ε2(Δ(σ)) =↑ (53)

and the symmetric condition
Δ(σ) = Δ(σ)2,1 (54)

such that
g = Δ(σ)2,3 · Δ(σ)1,23 · Δ(σ)−1

12,3 · Δ(σ)−1
1,2 (55)

holds in ̂K[ISL↑↑↑]×.
Proof The proof can be done recursively in the same way to the proof of [30]
Theorem 8, or rather, we may say that actually it is easier: Because we have (1, g)
and (1, 1) ∈ GRT1(K), both g and 1 satisfy the same relations (9)–(11). Our proof
is obtained just by replacing � by g and �′ by 1 in their proof.

Remark 4.3 Other variants of twistor lemma can be found in several literatures such
as [32] Theorem 2.1 with twistors in Aut̂F2 for ̂GT 1, [2] Theorem 7.5 with twistors
in TAutf2 for K RV 0

3 , and [3] Theorem 2with twistors in TAutf2 for M1(K). Actually
all of them are attributed to [16] Theorem A′.

The above Δ(σ) may not be uniquely chosen but it can be chosen independently
from c by the construction. When we make such a choice, we occasionally denote
Δ(g) instead of Δ(σ) by abuse of notations. We note that the first two terms on the
right hand side of (55) commute each other, so do the last two terms.

Definition 4.4 We call such Δ(σ) in ̂K[ISL↑↑]× a twistor5 of σ = (c, g) ∈
GRT (K). For a twisor Δ(σ), we put Δ(σ,↑) :=↑∈ ̂K[ISL↑]× and

Δ(σ,↑n) := Δ(σ)12···n−1,n · · · Δ(σ)12,3 · Δ(σ)1,2 ∈ ̂K[ISL↑n ]× (56)

for n � 2. Here Δ(σ)1···k,k+1 means the element in ̂K[ISL↑n ] obtained multi-

doubling of the first strand of Δ(σ) ∈ ̂K[ISL↑↑] by k strands, summing up all

5We call this element twistor because it is related to Drinfeld’s notion of twisting in [16].
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possible lifts of chords and putting n − k − 1 chordless line ↑n−k−1 on its right.
For any sequence ε = (εi )

n
i=1, we determine the element Δ(σ, ε) in ̂K[ISLε] by

reversing corresponding all arrows of Δ(σ,↑n). We note that Δ(σ,↑↑) = Δ(σ) and
g = Δ(σ,↑↑↑)3,2,1 · Δ(σ,↑↑↑)−1 by (54).

An automorphism θΔ(σ)
ε,ε′ of ̂K[IT ε,ε′ ] associated to a twistor Δ(σ) can be con-

structed piecewise as follows.
(1) when D ∈ Aε

k,l , we define

θΔ(σ)
ε,ε′ (D) := D · (Δ(σ)−1

k+1,k+2)
s(D) · (νg)

s(D)
k+2 · gs(D)

1···k,k+1,k+2.

Here the term (Δ(σ)−1
k+1,k+2)

s(D) means the element in ̂K[ISLs(D)] obtained by
putting the trivial chordless diagram with k-strands on the left of Δ(σ)−1 and the
trivial chordless diagram with l-strands on its right.

(2) when D = (bn, ε) ∈ Î Bε
τ , we define

θΔ(σ)
ε,ε′ (D) := (ρn(σ)(bn), ε).

(3) when D ∈ C ε
k,l , we define

θΔ(σ)
ε,ε′ (D) := g−1,t (D)

1···k,k+1,k+2 · (Δ(σ)k+1,k+2)
s(D) · D.

Here με
g is the one defined in Definition 3.22.

Lemma 4.5 For any sequences ε, ε′, any σ ∈ GRT (K) and any twistor Δ(σ), the
above constructiondetermines awell-definedautomorphism θΔ(σ)

ε,ε′ of ̂K[IT ε,ε′ ]which
is compatible with the composition map (48).

Proof This can be verified by an almost same way to the proof of Proposition 3.23
except for compatibilities of (IT5) and (IT6).

• To check the compatibility of the first equality of (IT5), it is enough to show
the equality illustrated in Fig. 11. By the identification of ̂K[ISL↑] with K̂[IK]
given in Lemma 3.21 (cf. (51)), showing the validity is deduced to showing the
equality illustrated in Fig. 12. It is immediate to see because we have (IT6) and
Δ(σ)2,1 = Δ(σ) by (54).
The compatibility of the second equality of (IT5) can be done in the same way.

• To check the compatibility of the first equality of (IT6), it is enough to show the
equality illustrated in Fig. 13. Actually it is a consequence of (IT3), (IT5) and
(IT6). The compatibility of the second equality of (IT6) can be done in the same
way.

It is easily shown that the restriction of θΔ(σ)
ε,ε into the algebra ̂K[ISLε] of infinites-

imal string links induces its automorphism, denoted by θΔ(σ)
ε . The following explains

its relationship with our previous automorphism ρε(σ) in (37).
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Δ(σ)

Δ(σ)−1

=

Fig. 11 The first equality of (IT5)

Δ(σ)

Δ(σ)−1

=

Fig. 12 Proof of Fig. 11

Δ(σ)

exp{cα }

= Δ(σ)

Fig. 13 The first equality of (IT6)

Proposition 4.6 For any σ ∈ GRT (K) and any sequence ε,

ρε(σ)(D) = θΔ(σ)
ε (D) (57)

holds for all D ∈ ̂K[ISLε].

Proof Differences between two actions θΔ(σ)
ε and ρε(σ) are observed only on the

action on Aε
k,l and C ε

k,l . It is enough to show that equality of Fig. 12, which were
proved in the above lemma.
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When we restrict σ into the unipotent part GRT1(K), we obtain a relationship of
θΔ(σ)

ε,ε′ with the identity map of ̂K[IT ε,ε′ ] as follows.
Proposition 4.7 For any σ = (1, g) ∈ GRT1(K) and any sequences ε and ε′,

θΔ(σ)
ε,ε′ (D) = Δ(σ, ε) · D · Δ(σ, ε′)−1. (58)

holds for any D ∈ ̂K[IT ε,ε′ ].
Proof The equation can be checked piecewise.

• When D ∈ Aε
k,l , we may assume that D = aε

k,l with s(D) = ε1 and t (D) = ε2.
Then

θΔ(σ)
ε2,ε1

(aε
k,l) = aε

k,l · Δ(σ)−1
k+1,k+2 · (μg)k+2 · g1···k,k+1,k+2

= aε
k,l · Δ(σ)−1

k+1,k+2 · (μg)k+2

· Δ(σ)k+1,k+2 · Δ(σ)1···k,k+1 k+2 · Δ(σ)−1
1···k+1,k+2 · Δ(σ)−1

1···k,k+1

= aε
k,l · (μg)k+2 · Δ(σ)−1

1···k+1,k+2 · Δ(σ)−1
1···k,k+1.

By Lemma 4.8,

=aε
k,l · Δ(σ)−1

1···k+1,k+2 · Δ(σ)−1
1···k,k+1

=Δ(σ)1,2 · · · Δ(σ)1···k+l−1,k+l · aε
k,l · Δ(σ)−1

1···k+l+1,k+l+2 · · ·Δ(σ)−1
1,2

=Δ(σ, ε2) · aε
k,l · Δ(σ, ε1)

−1.

• When D ∈ ̂I B, it is enough to to show the case when D = τi,i+1 or ti,i+1 ∈ Ubn
(1 � i � n − 1). If D = τi,i+1 with s(D) = ε1 and t (D) = ε2, byProposition 2.12,

θΔ(σ)
ε2,ε1

(τi,i+1) = g−1
1···i−1,i,i+1 · τi,i+1 · g1···i−1,i,i+1

= Δ(σ)1···i−1,i · Δ(σ)1···i,i+1 · Δ(σ)−1
1···i−1,i i+1 · Δ(σ)−1

i,i+1

· τi,i+1 · Δ(σ)i,i+1 · Δ(σ)1···i−1,i i+1 · Δ(σ)−1
1···i,i+1 · Δ(σ)−1

1···i−1,i .

By (54),

=Δ(σ)1···i−1,i · Δ(σ)1···i,i+1 · τi,i+1 · Δ(σ)−1
1···i,i+1 · Δ(σ)−1

1···i−1,i

=Δ(σ)1,2 · · · Δ(σ)1···n−1,n · τi,i+1 · Δ(σ)−1
1···n−1,n · · · Δ(σ)−1

1,2

=Δ(σ, ε2) · τi,i+1 · Δ(σ, ε1)
−1.

If D = ti,i+1 with s(D) = ε1 and t (D) = ε2, again by Proposition 2.12,

θΔ(σ)
ε2,ε1

(ti,i+1) = g−1
1···i−1,i,i+1 · ti,i+1 · g1···i−1,i,i+1

= Δ(σ)1···i−1,i · Δ(σ)1···i,i+1 · Δ(σ)−1
1···i−1,i i+1 · Δ(σ)−1

i,i+1

· ti,i+1 · Δ(σ)i,i+1 · Δ(σ)1···i−1,i i+1 · Δ(σ)−1
1···i,i+1 · Δ(σ)−1

1···i−1,i
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By Lemma 4.9,

=Δ(σ)1···i−1,i · Δ(σ)1···i,i+1 · ti,i+1 · Δ(σ)−1
1···i,i+1 · Δ(σ)−1

1···i−1,i

=Δ(σ)1,2 · · · Δ(σ)1···n−1,n · ti,i+1 · Δ(σ)−1
1···n−1,n · · · Δ(σ)−1

1,2

=Δ(σ, ε2) · ti,i+1 · Δ(σ, ε1)
−1.

We note that we use c = 1 for the second equality.
• When D ∈ C ε

k,l , we may assume that D = cε
k,l with s(D) = ε1 and t (D) = ε2.

Then

θΔ(σ)
ε2,ε1

(cε
k,l) = g−1

1···k,k+1,k+2 · Δ(σ)k+1,k+2 · cε
k,l

= Δ(σ)1···k,k+1 · Δ(σ)1···k+1,k+2 · Δ(σ)−1
1···k,k+1 k+2 · Δ(σ)−1

k+1,k+2

· Δ(σ)k+1,k+2 · cε
k,l

= Δ(σ)1···k,k+1 · Δ(σ)1···k+1,k+2 · cε
k,l

= Δ(σ)1,2 · · · Δ(σ)1···k+l+1,k+l+2 · cε
k,l · Δ(σ)−1

1···k+l,k+l · · · Δ(σ)−1
1,2

= Δ(σ, ε2) · cε
k,l · Δ(σ, ε1)

−1.

Hence we get the equality (58) for any D ∈ ̂K[IT ε,ε′ ].
The followings are required to prove the previous proposition.

Lemma 4.8 For σ = (c, g) ∈ GRT (K), the infinitesimal long knot μg ∈ ̂K[ISL↑]
is actually equal to the trivial chordless chord diagram on ↑.
Proof It is enough to show that Λg is the trivial diagram ↓. Since g = Δ(σ)2,3 ·
Δ(σ)1,23 · Δ(σ)−1

12,3 · Δ(σ)−1
1,2, it is enough to show the equality depicted in Fig. 14.

It can be proved in a same way to Fig. 12.

The following is proved in a topological way.

Δ(σ)−1

Δ(σ)

=

Fig. 14 Proof of Lemma 4.8
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Lemma 4.9 The element t12 lies in the center of ̂K[ISL↑↑]. Namely

t12 · D = D · t12 (59)

holds for any D ∈ ̂K[ISL↑↑].
Proof First, for a discrete case, we have T · (σ1,2)

2α = (σ1,2)
2α · T for any T ∈

SL(↑↑) andα ∈ Z. Whence wewill have the same equality T · (σ1,2)
2α = (σ1,2)

2α ·
T for any T ∈ ̂K[SL↑↑] and α ∈ K. Then by the isomorphism (42), we have

D · exp{αt1,2} = exp{αt1,2} · D for any D ∈ ̂K[ISL↑↑] and α ∈ K. Since the space
̂K[ISL↑↑] is completed, we have the equality (59).

The proposition below states that our GRT1(K)-action on ̂K[ISLε] is described
by an inner conjugation action of twistor.

Proposition 4.10 Let ε be any sequence. The action ρε of (38) restricted into the
unipotent part GRT1(K) on the algebra ̂K[ISLε] of infinitesimal string links is given
by the inner conjugation of the twistor Δ(σ, ε), i.e.

ρε(σ)(D) = Δ(σ, ε) · D · Δ(σ, ε)−1 (60)

holds for σ = (1, g) ∈ GRT1(K) and D ∈ ̂K[ISLε].
Proof The formula is obtained by combining (4.6) and (4.7).

Next we discuss GT1(K)-action on the algebra K̂[SLε] of proalgebraic string
links.

Notation 4.11 (1) For n > 1, εi : K̂[SL↑n ] → ̂K[SL↑n−1 ] (i = 1, 2 . . . n) means the
map removing the i-th strand on each proalgebraic string links.

(2) For each Γ ∈ K̂[SL↑n ], we denote Γ1,...,n (resp. Γ2,...,n+1) to be the element

in ̂K[SL↑n+1] obtained by putting a straight line on the right (resp. the left) of Γ and

Γ1,...,i−1,i i+1,i+2,...,n+1 (i = 1, 2, . . . , n) to be also the element in ̂K[SL↑n+1] obtained
by doubling the i-th strand.

(3) Particularly for Γ ∈ ̂K[SL↑↑], the symbol Γ2,1 denotes the element σ−1
1,2 · Γ ·

σ1,2 in Γ ∈ ̂K[SL↑↑].

Hereafter we regard F2(K) and P5(K) to be the subspaces of ̂K[SL↑↑↑] and
̂K[SL↑↑↑↑] respectively. The following lemma is a GT (K)-analogue of Twistor

Lemma 4.2.
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Lemma 4.12 (Twistor Lemma) Let σ = (λ, f ) ∈ GT (K), thus λ ∈ K
× and f ∈

F2(K) ⊂ ̂K[SL↑↑↑]. Then f is gauge equivalent to 1, namely, there exists �(σ) ∈
̂K[SL↑↑]× satisfying

ε1(�(σ)) = ε2(�(σ)) =↑ (61)

and the symmetric condition
�(σ) = �(σ)2,1 (62)

such that
f = �(σ)2,3 · �(σ)1,23 · �(σ)−1

12,3 · �(σ)−1
1,2 (63)

holds in ̂K[SL↑↑↑]×.
Proof Fix an element p = (1,ϕ) ∈ M1(K). Then by Proposition 2.18 it yields an
isomorphism

rp : GT1(K)  GRT1(K).

By Proposition 3.25.(3), we have an isomorphism

ρ↑↑↑(p) : ̂K[SL↑↑↑]  ̂K[ISL↑↑↑].

Put �(σ) := ρ↑↑↑(p)−1
(

Δ
(

rp(σ)
))

. Then using Proposition 3.26 and Twistor
Lemma 4.2, we can check the validities of (61)–(63) for �(σ) by direct
calculations.

The above �(σ) may not be uniquely chosen and may depend on λ ∈ K
× unlike

the case for GRT (K). Here we note again that the first two terms on the right hand
side of (55) commute each other, so do the last two terms.

Definition 4.13 We call such�(σ) in ̂K[SL↑↑]× a twistor of σ = (λ, f ) ∈ GT (K).

For a twisor �(σ), we put �(σ,↑) :=↑∈ K̂[SL↑]× and

�(σ,↑n) := �(σ)12···n−1,n · · ·�(σ)12,3 · �(σ)1,2 ∈ K̂[SL↑n ]× (64)

for n � 2. Here�(σ)1···k,k+1 means the element in K̂[SL↑n ] obtainedmulti-doubling

of the first strand of �(σ) ∈ ̂K[SL↑↑] by k strands, and putting n − k − 1 straight
lines ↑n−k−1 on its right. For any sequence ε = (εi )

n
i=1, we determine the element

�(σ, ε) in K̂[SLε]
×
by reversing all corresponding arrows of �(σ,↑n). We note

that �(σ,↑↑) = �(σ) and f = �(σ,↑↑↑)3,2,1 · �(σ,↑↑↑)−1 by (62).

Our theorem in this subsection is to state that our GT1(K)-action on K̂[SLε] is
described by the inner conjugation action by the twistor.
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Theorem 4.14 Let ε be any sequence. The action

ρε : GT1(K) → Aut K̂[SLε]

induced by (29), of the unipotent part GT1(K) on the algebra K̂[SLε] of proalgebraic
string links is simply given by an inner conjugation of twistor �(σ, ε) ∈ K̂[SLε]

×
.

That is,
ρε(σ)(Γ ) = �(σ, ε) · Γ · �(σ, ε)−1 (65)

holds for σ = (1, f ) ∈ GT1(K) and Γ ∈ K̂[SLε].
Proof Let p = (1,ϕ) ∈ M1(K) be an element taken in the proof of Twistor Lemma
4.12. By Proposition 2.18 it yields an isomorphism rp : GT1(K)  GRT1(K). By
Proposition 3.25.(3), we have an isomorphism

ρε(p) : K̂[SL↑n ]  ̂K[ISL↑n ].

Our claim follows from Propositions 3.26 and 4.10. We may take �(σ, ε) in the
above (65). by ρε(p)−1

(

Δ(rp(σ), ε)
)

.

Here is a corollary of Theorem 4.14.

Corollary 4.15 The restricted action of (6) into the unipotent part GT1(K) on proal-
gebraic pure braids, denoted by

ρn : GT1(K) → Aut K̂[Pn],

is simply given by an inner conjugation by the element �(σ,↑n) ∈ K̂[SL↑n ]. That
is,

ρn(σ)(xi j ) = �(σ,↑n) · xi j · �(σ,↑n)−1 (66)

holds for 1 � i, j � n and σ ∈ GT1(K).

We note that though �(σ,↑n) belongs to K̂[SL↑n ] the right hand side of (66)

belongs to its subspace K̂[Pn].
Remark 4.16 (1) Since the GT (K)-action on K̂[Pn] is faithful for n � 3, the action
ρε : GT1(K) → Aut K̂[SLε] is faithful for n � 3, where n is the number of strings,
i.e. the cardinality of ε, by Remark 3.8.

(2) When n = 1, the action is far from faithful. Actually the kernel of the action
ρε : GT1(K) → Aut K̂[SLε] (with ε =↑ or ↓) on proalgebraic long knots is the
unipotent part GT1(K) because �(σ, ε) in Theorem 4.14 is trivial.

The rest case n = 2 looks unclear.
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Problem 4.17 Is the action

ρε : GT (K) → Aut K̂[SLε]

(with ε = (ε1, ε2) ∈ {↑,↓}2) on proalgebraic 2-string links faithful?

4.2 Proalgebraic Knots

We discuss a non-trivial grading on proalgebraic knots induced by GT (K)-action.
In [8] the image of the trivial knot, the unknot, under the Kontsevich isomorphism
(52) is explicitly determined. In this subsection, we work in an opposite direction.
That is, we explicitly calculate the inverse image γ0 of the unit, the trivial (chord-
less) chord diagram, under the Kontsevich isomorphism. It is explicitly described as
combinations of two-bridge knots (Theorem 4.22). We also show that the invariant
space of proalgebraic knots under the GT (K)-action is one-dimensional generated
by the element γ0 (Theorem 4.27).

The following lemma is a knot analogue of Proposition 4.6.

Lemma 4.18 For any σ ∈ GRT (K)

ρ0(σ)(D) = θΔ(σ)
0 (D) (67)

holds for all D ∈ K̂[IK].
Proof It can be proven in a completely same way to the proof of Proposition 4.6.

We may say that the following is an analogue of Theorems 4.10 and 4.14 for
proalgebraic knots.

Proposition 4.19 (1) The GRT (K)-action ρ0 constructed in (39) on the algebra
K̂[IK] of infinitesimal knots actually factors throughGm(K)(= K

×)-action. Namely
the kernel of the action is its unipotent part GRT1(K).

(2) The GT (K)-action ρ0 constructed in (31) on the algebra K̂[K] of proalgebraic
knots actually factors throughGm(K)(=K

×)-action. Namely the kernel of the action
is its unipotent part GT1(K).

Proof (1) It is obtained from a combination of (67) and (58) because we have
s( ) = t ( ) = ∅.

(2) The proof is almost same to the proof of Theorem 4.14. It can be derived from
the above claim in this proposition and Proposition 3.26.

As a corollary of the above proposition, we obtain a non-trivial decomposition of
knots below.



Galois Action on Knots II: Proalgebraic String Links and Knots 583

Corollary 4.20 Each oriented knot K admits a canonical decomposition

K = K0 + K1 + K2 + · · · (68)

in K̂[K] such that
σ(Km) = λm · Km

holds for σ = (λ, f ) ∈ GT (K) and m � 0.

Proof It is a direct corollary of Proposition 4.19.(2). By the representation theory of
Gm , the completed vector space K̂[K] is decomposed into the product of eigenspaces
Va (a ∈ Z) where Gm acts as a multiplication of a-th power:

K̂[K] =
∏

i�0

Vi . (69)

By our construction, the decomposition is compatible its filtration {K}∞N=0 , i.e.
∏

i�N Vi = KN . We also have dim Va < ∞ for all a ∈ Z and actually dim Va = 0
for a < 0. Thus we get the claim.

Another Proof.Again by the representation theory ofGm , Proposition 4.19(1) implies
that the completed vector space K̂[IK], hence ̂CD( ), is decomposed into the prod-
uct of eigenspaces Wa (a ∈ Z) where Gm acts as a multiplication of a-th power:

̂CD( ) =
∏

i�0

Wi . (70)

Since the Gm-action is compatible with the grading ̂CD( ) = ̂⊕∞
m=0CDm( ) where

CDm( ) is the K-linear space spanned by the chord diagrams with m-chords, we
have

W−m = CDm( ) (71)

for m � 0. Thus dimWa < ∞ for all a ∈ Z and actually dimWa = 0 for a > 0. Let
p = (1,ϕ) ∈ M1(K). Then we have an isomorphism

rp : GT (K)  GRT (K)

by Proposition 2.18 and an isomorphism

ρ0(p) : K̂[K]  ̂CD( )

by Proposition 3.25.(4). By using Proposition 3.26, we can show that

Va := ρ0(p)
−1(W−a) (72)
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is the eigenspace where Gm acts as a multiplication of a-th power and actually the
space is invariant under any choice of p = (1,ϕ) ∈ M1(K).

We note that in the decomposition (69), we have dim Vm = dim CDm( ). for all
m � 0.

Remark 4.21 Let ι0 = (−1, 1) ∈ GT (K). Since it is an involution, the space K̂[K]
is divided into two eigenspaces V+ and V− where the action of ι0 is given by the
multiplication by 1 and −1 respectively. So an each oriented knot K is decomposed
as

K = K+ + K− ∈ K̂[K] with K± ∈ V±.

Since ι0(K ) is nothing but the mirror image K̄ of K , we have K+ = 1
2 (K + K̄ ) and

K− = 1
2 (K − K̄ ).Wenote that in terms of the decomposition (68) they are expressed

as
K+ =

∑

i�0

K2i and K− =
∑

i�0

K2i+1.

Our first theorem in this subsection is an explicit presentation of the proalge-
braic knot whose Kontsevich invariant is trivial. That is, we explicitly calculate the
inverse image of the unit, the trivial (chordless) chord diagram, under the Kontsevich
isomorphism I : Ĉ[K]  ̂CD( ) given in (52).

Theorem 4.22 The inverse image I−1(e) of the unit e ∈ ̂CD( ) (K̂[IK]), under
Kontsevich’s isomorphism I is explicitly given by

γ0 := − c0 + c0�c0 − c0�c0�c0 + c0�c0�c0�c0 − · · · ∈ Ĉ[K] (73)

where � is the connected sum and c0 ∈ Ĉ[K] is given below (see also Fig.15):

c0 :=
∑

m,k1,...,km∈N

km>1

(−1)m
ζ inv(k1, . . . , km)

(2π
√−1)k1+···+km

·
{

a�

0,0 · a↓↑�

2,0 · (logσ2
2)

km−1 · (logσ2
3)·

(logσ2
2)

km−1−1 · (logσ2
3) · · · · · · (logσ2

2)
k1−1 · (logσ2

3) · c↓ �↑
1,1 · c �

0,0

}

.

(74)

Here we define

logσ2
i = −

∞
∑

k=1

1

k
{1 − σ2

i }k ∈ Ĉ[P4] (75)

for i = 2, 3. Andwe define the inversedMZV ζ inv(k1, . . . , km) to be the coefficient of
Akm−1B · · · Ak1−1Bmultiplied by (−1)m in the inversedKZ-associator�inv

KZ(A, B) ∈
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c0 =
∑

m,k1,...,km∈N
km>1

(−1)mζ inv(k1,...,km)
(2π

√−1)k1+···+km
·

log σ2
3

log σ2
2

log σ2
2

k1 − 1

log σ2
3

log σ2
3

log σ2
2

log σ2
2

km−1 − 1

log σ2
3

log σ2
2

log σ2
2

km − 1

Fig. 15 c0

R〈〈A, B〉〉, which is the inverse of the KZ-associator�KZ(A, B) in (16) with respect
to the multiplication (12). Namely

�inv
KZ(A, B) =: 1 +

∑

m,k1,...,km∈N

km>1

(−1)mζ inv(k1, · · · , km)Akm−1B · · · Ak1−1B

+ (other terms) (76)

where �inv
KZ(A, B) is the series uniquely defined by

�inv
KZ

(

�KZ(A, B) · A · �KZ(A, B)−1, B
) = �KZ(A, B)−1. (77)

The inversed MZV’s with small depths are calculated in Example 4.24 and the
first two terms of γ0 is calculated in Example 4.25.
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Proof By our construction, the degree 0-part of the image I ( ) of the trivial knot
(unknot) under theKontsevich isomorphism I given in (52) is the trivial (chordless)
chord diagram e. Therefore on the decomposition K = K0 + K1 + · · · in (68) for
K = , we have

K0 = I−1(e) (78)

by (72). To calculate K0, we take K to be the polynomial algebra C[T±] generated
by T and T−1 and take p ∈ M1(C) to be a specific element pKZ = (1,ϕKZ) ∈ M(C)

with ϕKZ = �KZ

(

1
2π

√−1
A, 1

2π
√−1

B
)

. We have (T−1, 1) ∈ GRT (K). By Proposi-

tion 2.18, we obtain a unique element (T, fT ) ∈ GT (K(T )) satisfying

(T−1, 1) ◦ (1,ϕKZ) = (1,ϕKZ) ◦ (T, fT ).

It can be read as

ϕKZ(T A, T B) = fT (ϕKZ · eA · ϕ−1
KZ, e

B) · ϕKZ.

We get that fT belongs to F2(C[T ]). So

fT
(

exp{ϕKZ · A · ϕ−1
KZ}, exp{B}) ≡ ϕ−1

KZ (mod T ).

By replacing A and B by 2π
√−1A and 2π

√−1B respectively, we obtain

fT (e2π
√−1A, e2π

√−1B) ≡ �inv
KZ (mod T ).

It says that

fT (σ2
1,σ

2
2) ≡ �inv

KZ

(

logσ2
1

2π
√−1

,
logσ2

2

2π
√−1

)

(mod T ),

where precisely it means that

red
(

fT (σ2
1,σ

2
2)

) = red

(

�inv
KZ

(

logσ2
1

2π
√−1

,
logσ2

2

2π
√−1

))

with the reductionmap red : F2(C[T ]) → F2(C) causedbyputtingT = 0.Therefore
by Definition 3.9
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Λ
↑
fT

= a↑�

1,0 · fT (σ2
1,σ

2
2) · c

�↑
0,1

≡ a↑�

1,0 · �inv
KZ

(

logσ2
1

2π
√−1

,
logσ2

2

2π
√−1

)

· c

�↑
0,1 (mod T )

= a↑�

1,0 · c

�↑
0,1 +

∑

m,k1,...,km∈N

km>1

(−1)m
ζ inv(k1, . . . , km)

(2π
√−1)k1+···+km

·
{

a↑�

1,0 · (logσ2
1)

km−1 · (logσ2
2)

· (logσ2
1)

km−1−1 · (logσ2
2) · · · · · · (logσ2

1)
k1−1 · (logσ2

2) · c

�↑
0,1

}

.

The third equality follows from (76). Here we note that the non-admissible terms,
the ‘other terms’ in (76), all vanish by (T6). By the isomorphism (24), we have

cl(Λ↑
fT

) = a�

0,0 · (↓ ⊗Λ
↑
fT

) · c �

0,0 ≡ + c0 (mod T )

(for c0, see Fig. 15). Whence, by taking inverse of both, we have

cl(ν↑
fT

) ≡ γ0 (mod T ) (79)

(for γ0, see (1)). We note that the infinite summation on the right hand side of
(73) converges because c�n

0 ∈ Kn for n � 1. By Corollary 4.20, K0 is obtained by
evaluating (T, fT )( ) at T = 0, i.e.

(T, fT )( ) ≡ K0 (mod T ). (80)

Since = a�

0,0 · c �

0,0 , the action on is calculated to be

(T, fT )( ) = a�

0,0 · (↓ ⊗ν
↑
fT

) · c �

0,0 = cl(ν↑
fT

). (81)

By (79)–(81), we have
γ0 = K0 (82)

because both γ0 and K0 are independent of T . Finally we obtain

γ0 = I−1(e)

by (78).

It might be worthy to mention that our c0 is given by a linear combination of two
bridge knots and our γ0 is given by a linear combination of connected sums of two
bridge knots.

Remark 4.23 We remind that the image I ( ) of the unit , the trivial knot, under
the Kontsevich isomorphism I was calculated in [8], which may be regarded as a
calculation in an opposite direction to our theorem.
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By the definition of inversed MZV’s, (76) and (77), they are given by polynomial
combinations of MZV’s.

Example 4.24 (1) For n > 1,

ζ inv(n) = −ζ(n).

(2) For a > 0 and b > 1,

ζ inv(a, b) = ζ(a)ζ(b) − ζ(a, b) +
a−2
∑

i=0

(−1)i
(

i + b − 1

i

)

ζ(b + i)ζ(a − i)

+ (−1)a
b−2
∑

j=0

(

j + a − 1

j

)

ζ(b − j)ζ(a + j).

Here is a brief computation of our γ0.

Example 4.25

γ0 ≡ − 1

24
{ − 3l1} (mod K4).

Here 3l1 stands for the left trefoil knot.

Proposition 4.26 γ0 ∈ Q̂[K].
Proof In the proof of above theorem, there is no specific reason to choose (1,ϕKZ) ∈
M1(C). Take (μ,ϕ) ∈ M(K) to be any associator with an expansion

ϕ(A, B) = 1 +
∑

m,k1,...,km∈N

km>1

(−1)mc(k1, · · · , km)Akm−1B · · · Ak1−1B

+ (regularized terms).

Then (1,ϕ(A/μ, B/μ)) ∈ M1(K). By using (1,ϕ(A/μ, B/μ)) ∈ M1(K) instead of
(1,ϕKZ) ∈ M1(C) in the proof of Theorem 4.22, we obtain an explicit formula of
c0, which is nothing but the replacement of 2π

√−1 by μ ∈ K
× and ζ(k1, . . . , km)

by c(k1, . . . , km) in (74). Thus our claim is obtained by particularly taking a rational
associator, an element of M(Q), whose existence is guaranteed in [16].

Our second theorem in this subsection is on the invariant subspace of K̂[K] under
our GT (K)-action (cf. (31)).

Theorem 4.27 (1) The invariant subspace V0 of K̂[K] under our GT (K)-action is
1-dimensional and actually generated by γ0.
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(2) On the decomposition K = K0 + K1 + · · · given in (68),

K0 = γ0

holds for any oriented knot K .

Proof (1) Since CD0( ) is 1-dimensional generated by the trivial (chordless) chord
diagram e, the K-linear space V0 in (69) is 1-dimensional by (71) and (72). Thus it is
enough to show that ρ0(p)−1(e) = γ0 for a particular choice of p = (1,ϕ) ∈ M1(K).
It is obtained by Theorem 4.22 because ρ0(p) = I for p = pKZ (actually it holds for
any p ∈ M1(K)).

(2) By our construction, the degree 0-part of the image I (K ) is always equal to
e ∈ CD0( ). So I (K0) = e, by (72). Then by the arguments given above, we get
K0 = γ0.

Though our knot γ0 is not equal to the trivial knot, the unknot , we may say that
it is the ‘trivial’ knot in a particular sense.

Remark 4.28 We saw in Remark 3.30 particularly that the space K̂[K] of proal-
gebraic knots carries a structure of a mixed Tate (pro-)motive over Spec Z. But
Proposition 4.19 tells that it falls to infinite direct sum of Tate motives Q(n) for
n � 0. Our γ0 is the generator of the degree 0-part V0. Finding a basis of the degree
n-part Vn for another n, such as the basis which is dual to the Vassiliev invariants
listed in [13] Table3.2, is worthy to calculate.
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On Distribution Formulas for Complex
and l-adic Polylogarithms

Hiroaki Nakamura and Zdzisław Wojtkowiak

Dedicated to the memory of Professor Jean-Claude Douai

Abstract We study an l-adic Galois analogue of the distribution formulas for poly-
logarithms with special emphasis on path dependency and arithmetic behaviors. As
a goal, we obtain a notion of certain universal Kummer–Heisenberg measures that
enable interpolating the l-adic polylogarithmic distribution relations for all degrees.

Keywords Arithmetic fundamental group · Galois actions on étale paths ·
Functional equations of polylogarithms

1 Introduction

One of the most important and useful functional equations of classical complex
polylogarithms is a series of distribution relations

Lik(z
n) = nk−1

(
n−1∑
i=0

Lik(ζ
i
n z)

)
(ζn = e2π i/n). (1)
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J. Milnor [10, (7), (32)] says that a functionLs(z) has (multiplicative) Kubert iden-
tities of degree s ∈ C, if it satisfies

Ls(z) = ns−1
∑
wn=z

Ls(w) (2)

for every positive integer n. The aforementioned classical identity (1) for Lik(z) is, of
course, a typical example of Kubert identity of degree k, assuming, however, correct
choice of branches of the multivalued function Lik in all terms of the identity. To
avoid the ambiguity of branch choice, we would rather considerLs(z) as a function
Ls(z; γ ) of paths γ on P1 − {0, 1,∞} from the unit vector

−→
01 to z. The main aim of

this paper is to study generalizations of the above distribution relation for multiple
polylogarithms and their l-adic Galois analogs (l-adic iterated integrals) with special
emphasis on path dependency.

Let K be a subfield of C with the algebraic closure K ⊂ C. The l-adic polyloga-
rithmic characters

χ̃ z
k : GK → Z� (k = 1, 2, . . . )

are introduced in [12] as Z�-valued 1-cochains on the absolute Galois group GK :=
Gal(K/K ) for any given path γ from

−→
01 to a K -rational point z on P1 − {0, 1,∞}.

Our study in [NW2] showed that χ̃ z
k : GK → Z� behave nicely as l-adic analogues

of the classical polylogarithms Lik(z). The l-adic polylogarithms and l-adic iter-
ated integrals are Q�-valued variants (and generalizations) of the above 1-cochains
χ̃ z
k : GK → Z�. (See Sects. 2 and 3 for their precise definitions.) We will give a

geometrical proof of distribution relations for classical multiple polylogarithms and
their l-adic analogues in considerable generality. In particular, we will obtain several
versions of Kubert identities with explicit path systems for:

• classical multiple polylogarithms (Theorem 4),
• l-adic iterated integrals (Proposition 6, Theorem 17),
• l-adic polylogarithms and polylogarithmic characters (Theorem 19, Corollary 21).

The polylogarithm is interpreted as a certain coefficient of an extension of the
Tate module by the logarithm sheaf arising from the fundamental group of V1 :=
P1 − {0, 1,∞}. The motivic construction dates back to the fundamental work of
Beilinson-Deligne [1], Huber-Wildeshaus [7] (see also [5] Sect. 6 and references
therein for more recent generalizations). In this article, we mainly work on the l-adic
realization which forms a Z�- or Q�-valued 1-cochain on the Galois group GK . In
the collaboration [3] of the last author with J.-C. Douai, it was shown that certain
linear combinations of l-adic polylogarithms at various points give rise to 1-cocycles
on GK , which lead to an l-adic version of Zagier’s conjecture. See also Remark 9
and [11] Sect. 3.2

We will intensively make use of a system of simple cyclic covers Vn := P1 −
{0, μn,∞} over V1 = P1 − {0, 1,∞}, where μn is the group of n-th roots of unity
{1, ζn, . . . , ζ n−1

n } (ζn := e2π i/n), and {0, μn,∞} denotes {0,∞} ∪ μn by abuse of
notation. We consider the family of cyclic coverings Vn → V1 and open immersions
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Vn ↪→ V1 together with induced relations between their fundamental group(oid)s.
Our basic idea is to understand the distribution relations of polylogarithms as the
“trace property” of relevant coefficients (“iterated integrals”) arising in those funda-
mental groups.

As observed in [13] and will be seen in Sect. 3 below, unlike in the classical
complex case, there generally occur lower degree terms in l-adic case when a distri-
bution relation is naively derived. This problem prevents artless approaches to l-adic
Kubert identities i.e., distribution formulas of homogeneous form (with no lower
degree terms). Our line of studies in Sects. 2–6 will lead us to understand why and
how to make use of Q�-paths (l-adic paths with ‘denominators’) to eliminate such
lower degree terms dramatically. Consequently in Sect. 7, as a primary goal of this
paper, we arrive at introducing a generalization of the Kummer–Heisenberg measure
of [12] so as to interpolate those l-adic distribution relations of polylogarithms for
all degrees.

Remark 1 We have already studied in [19, 20] the distribution relations for those l-
adic polylogarithmsunder certain restricted assumptions (see [20, Proposition11.1.4]
for l-adic dilogarithms, [20, Corollary11.2.2, 11.2.4] for l-adic polylogarithms on
restricted Galois groups, and [19, Theorem2.1] for l-adic polylogarithmic characters
with � � n).

Basic setup, notations and convention
Below, we understand that all algebraic varieties are geometrically connected over a
fixed field K ⊂ C and that all morphisms between them are K -morphisms. A path
on a K -variety V is a topological path on V (C) or an étale path on V ⊗ K whose
distinction will be obvious in contexts. The notation γ : x�y means a path from x
to y, and write γ1γ2 for the composed path tracing γ1 first and then γ2 afterwards.
We write χ : GK → Z

×
� for the l-adic cyclotomic character (�: a fixed prime). The

Bernoulli polynomials Bk(T ) (k = 0, 1, . . . ) are defined by the generating function
zeT z

ez−1 = ∑∞
k=0 Bk(T ) z

k

k! , and the Bernoulli numbers are set as Bk := Bk(0). For a
vector space H , we write H∗ for its dual vector space.

Assume K ⊃ μn . We shall be concerned with two kinds of standard morphisms
defined by {

Jζ : Vn ↪→ V1 Jζ (z) = ζ z (ζ ∈ μn);
πn : Vn → V1 πn(z) = zn.



596 H. Nakamura and Z. Wojtkowiak

As easily seen, each Jζ is an open immersion, while πn is an n-cyclic covering.

Write
−→
01n for the tangential base point represented by the unit tangent vector on

Vn . Since J1 : Vn ↪→ V1 maps
−→
01n to

−→
011 (often written just

−→
01), it induces the

surjection homomorphism

π1(Vn,
−→
01n) � π1(V1,

−→
01). (3)

On the other hand, although the image πn(
−→
01n) is not exactly the same as

−→
011 as

a tangent vector, they give the same tangential base point on V1 in the sense that
they give equivalent fiber functors on the Galois category of finite étale covers of
V1. Henceforth, for simplicity, we shall regard πn(

−→
01n) = −→

011 = −→
01, and regard

π1(Vn,
−→
01n) as a subgroup of π1(V1,

−→
01) by the homomorphism

π1(Vn,
−→
01n) ↪→ π1(V1,

−→
01) (4)

induced from πn .
For each ζ ∈ μn , introduce a path δζ : −→

01�ζ
−→
01 = Jζ (

−→
01n) on V1 to be the arc

from
−→
01 to ζ

−→
01 anti-clockwise oriented.Using thepath δζ ,weobtain the identification

π1(V1,
−→
01)

∼→ π1(V1, ζ
−→
01).

Let x , y be standard loops based at
−→
011 on V1 = P1 − {0, 1,∞} turning around the

punctures 0, 1 once anticlockwise respectively.We introduce loops xn , y0,n . . . , yn−1,n

based at
−→
01n on Vn characterized by:

{
xn := π−1

n (xn) = J −1
1 (x),

ys,n := J −1
1 (δζ ) · J −1

ζ−1(y) · J −1
1 (δζ )

−1 (ζ = e
2π is
n , s = 0, . . . , n − 1)

so that xn , y0,n, . . . , yn−1,n freely generate π1(V (C),
−→
01n).

Note that, in view of the above inclusion (4), we have the identifications:

xn = xn, ys,n = xs yx−s . (5)

2 Complex Distribution Relations

For n = 1, 2, ..., let

ω(Vn) := dz

z
⊗
(
dz

z

)∗ +
n−1∑
i=0

dz

z − ζ i
n

⊗
(

dz

z − ζ i
n

)∗ ∈ Ω1
log(Vn) ⊗ Ω1

log(Vn)
∗

be the canonical one-form on Vn . Traditionally, we set
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Xn :=
(
dz

z

)∗
and Yi,n :=

(
dz

z − ζ i
n

)∗
.

Let Rn := C〈〈Xn,Yi,n | 0 ≤ i < n〉〉 be the non-commutative algebra of formal
power series overC generated by non-commuting variables Xn and Yi,n (0 ≤ i < n).
Consider the trivial bundle

Rn × Vn → Vn

equipped with the (flat) connection

Δ: Φ �→ dΦ − Φ ω(Vn) for smooth functions
Φ : Vn → Rn . For a piecewise smooth path γ : [0, 1] → Vn from γ (0) = a to
γ (1) = z, let Φ : [0, 1] → Rn be the solution to the differential equation dΦ =
Φ ω(Vn) pulled back on γ with Φ(0) = 1 and define Λ(a

γ�z) ∈ Rn to be Φ(1).
(cf. [6] Sect. 2, [16] Sect 1; we here follow Hain’s path convention in loc. cit.) In
the case a being the tangential base point

−→
01, we interpret Λ(

−→
01

γ�z) in a suitable
manner introduced in [2], [17, Sect. 3.2].

LetMn be the set of all monomials (words) in Xn and Yi,n (0 ≤ i < n). Then, we
can expand

Λ(a
γ�z) = 1 +

∑
w∈Mn

Liw(a
γ�z) · w (6)

inRn . If w = Xa0
n Yi1,n X

a1
n · · · Yik ,n Xak

n , then

Liw(a
γ�z) =

∫ z

a,γ

dz

z
· · · dz

z︸ ︷︷ ︸
a0

· dz

z − ζ
i1
n

· · · dz

z − ζ
ik
n

· dz
z

· · · dz
z︸ ︷︷ ︸

ak

, (7)

the iterated integral along γ .

Definition 2 For a word w = Xa0
n Yi1,n X

a1
n · · · Yik ,n Xak

n , we define its X -weight by

wtX (w) = a0 + · · · + ak .

Let the cyclic cover
πrn,r : Vrn −→ Vr (8)

be given by πrn,r (z) = zn . Then, we have

[
Id ⊗ (πrn,r )∗

]
(ω(Vrn)) =

[
(πrn,r )

∗ ⊗ Id
]
(ω(Vr )).

This implies that the inducedmap from (πrn,r )∗ on complete tensor algebras (denoted
by the same symbol):
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T̂ (Ω1
log(Vrn)

∗) T̂ (Ω1
log(Vr )

∗)

C〈〈Xrn, Y j,rn | 0 ≤ j < rn〉〉 C〈〈Xr ,Yi,r | 0 ≤ i < r〉〉

preserves the associated power series:

(πrn,r )∗
(
Λ(

−→
01

γ�z)
)

= Λ(
−→
01

πrn,r (γ )��� zn). (9)

Note that {
(πrn,r )∗(Xrn) = nXr ,

(πrn,r )∗(Y j,rn) = Yi,r (i ≡ j mod r).
(10)

Definition 3 For w ∈ Mrn , we mean by (w mod r ) the word in Mr obtained by
replacing each letter Xrn , Y j,rn (0 ≤ j < rn) appearing in w by Xr , Yi,r (where i is
an integer with 0 ≤ i < r , i ≡ j mod r ) respectively. If r is a common divisor of m
and n, w ∈ Mm , w′ ∈ Mn and (w mod r) = (w′ mod r ), then we shall write

w ≡ w′ mod r.

Theorem 4 Notations being as above, let γ be a path on Vrn from
−→
01 to a point z.

Then, for any word w ∈ Mr , we have the distribution relation

Liw(
−→
01

πrn,r (γ )��� zn) = nwtX (w)
∑
u∈Mrn

u≡w mod r

Liu(
−→
01

γ�z).

Proof The theorem follows immediately from the formula (9): Write Λ(
−→
01

γ�z) =
1 + ∑

u∈Mrn
Liu(

−→
01

γ�z) · u inRrn . Applying (9), we obtain

1 +
∑
w∈Mr

Liw(
−→
01

πrn,r (γ )��� zn) · w = 1 +
∑
u∈Mrn

Liu(
−→
01

γ�z) · (πrn,r )∗(u).

Given any specific w ∈ Mr in LHS, collect from RHS all the coefficients of
(πrn,r )∗(u) for those u satisfying (u mod r) = w. Noting that (πrn,r )∗(u) = nwtX (u)

w = nwtX (w)w for them, we settle the assertion of the theorem. �

The above theorem generalizes the distribution relation (1) for the classical poly-
logarithm Lik(z)γ along the path γ : −→

01�z. Indeed, in the notation above, since
dz
1−z = − dz

z−1 , we may identify

Lik(z)γ = −LiY Xk−1(
−→
01

γ�z).
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Applying the theorem to the special case πn,1 : Vn → V1, w = Y Xk−1 where Y =
Y0,1, X = X1, we obtain

∫ zn

−→
01,πn,1(γ )

dz

z − 1
· dz
z

· · · dz
z︸ ︷︷ ︸

k−1

= nk−1
∑
ζ∈μn

∫ z

−→
01,γ

dz

z − ζ
· dz
z

· · · dz
z︸ ︷︷ ︸

k−1

.

Each term of RHS turns out to be Lik(ζ z) along the path δζ · Jζ (γ ) : −→
01�ζ

−→
01�ζ z,

after integrated by substitution z → ζ z. Noting that the integration here over δζ :−→
01�ζ

−→
01 vanishes (cf. [17] Sect. 3), we obtain (1) with path system specified as

follows:
Lik(z

n)πn,1(γ ) = nk−1
∑
ζ∈μn

Lik(ζ z)δζ ·J ζ (γ ). (11)

3 l-adic Case (general)

We shall look at the l-adic analogue of the previous section by recalling the following
construction which essentially dates back to [18]. Let K ⊂ C and consider

π�
1 (Vn ⊗ K ,

−→
01),

the pro-� (completion of the étale) fundamental group of Vn ⊗ K . It is easy to see
the loops xn , y1,n, . . . , yn−1,n introduced in Sect. 1 form a free generator system of
the pro-� fundamental group. Consider the (multiplicative) Magnus embedding into
the ring of non-commutative power series

ιQ�
: π�

1 (Vn ⊗ K ,
−→
01) ↪−→ Q�〈〈Xn,Yi,n | 0 ≤ i ≤ n − 1〉〉 (12)

defined by ιQ�
(xn) = exp(Xn), ιQ�

(yi,n) = exp(Yi,n) (cf. [21, 15.1]). For simplicity,

we often identify elements of π�
1 (Vn ⊗ K ,

−→
01) with their images by ιQ�

. Let us write
againMn for the set of monomials in Xn,Yi,n (i = 0, . . . , n − 1) (although variables
have different senses from the previous section where they were duals of differential
forms). We shall also employ the usage ‘wtX (w)’ and ‘w ≡ w′ mod r ’ by following
the same manners as Definitions 2 and 3.

Recall that we have a canonical Galois action GK on (étale) paths on Vn ⊗ K
with both ends at K -rational (tangential) points. Given a path γ from such a point a
to a point z ∈ Vn(K ), we set, for any σ ∈ GK ,

fγσ := γ · σ(γ )−1 ∈ π�
1 (Vn ⊗ K , a), (13)
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where the RHS is understood to be the image in the pro-� quotient. When a = −→
01,

we expand f
γ
σ ∈ π�

1 (Vn ⊗ K ,
−→
01) in the form

fγσ = 1 +
∑
w∈Mn

Liw(
−→
01

γ�z)(σ ) · w (14)

in Q�〈〈Xn,Yi,n | 0 ≤ i ≤ n − 1〉〉, and associating the coefficient

Liw(
−→
01

γ�z)(σ ) := Coeffw(fγσ )

of w ∈ Mn to σ ∈ GK , we define the l-adic Galois 1-cochain

Liw(
−→
01

γ�z)
(
= Li(�)w (

−→
01

γ�z)
)

: GK → Q�

for every monomial w ∈ Mn . We call each Liw(
−→
01

γ�z) the l-adic iterated integral
associated to w ∈ Mn and to the path γ on Vn .

Remark 5 The above naming ‘l-adic iterated integral’ is intended to be an analog of
the iterated integral appearing in the complex case (6) (7). They represent general
coefficients of the associator in the Magnus expansion. Conceptually, the associator
lies in the pro-unipotent hull of the fundamental group and the monodromy infor-
mation encoded in the total set of them is equivalent to that encoded in the general
coefficients with respect to any fixed Hall basis of the corresponding Lie algebra.
This line of formulation was, in fact, taken up, e.g., in [18] Sect. 5. However for the
purpose of pursuing the distribution formulas in the present paper, the simple form
of trace properties (9), (10) along the cyclic coverings πrn,r : Vrn −→ Vr is most
essential. This is why we start with Magnus expansions fγσ in Q�〈〈Xn,Yi,n〉〉i rather
than with Lie expansions of log fγσ with respect to a Hall basis in Lie〈〈Xn,Yi,n〉〉i . But
we shall discuss their relations in the polylogarithmic part of n = 1 in Sect. 4.

Now, as in Sect. 2, let us consider the morphism πrn,r : Vrn → Vr given by

πrn,r (z) = zn for n, r > 0, and let γ be a path on Vrn from
−→
01 to a K -rational

point z. By our construction, the l-adic analogue of the equality (9) holds, i.e., πrn,r

preserves the l-adic associators:

(πrn,r )∗(f γ
σ ) = fπrn,r (γ )

σ (σ ∈ GK ). (15)

However, unlike the complex case (10), πrn,r does not preserve the expansion coef-
ficients homogeneously, i.e., it maps as

{
(πrn,r )∗(Xrn) = nXr ,

(πrn,r )∗(Y j,rn) = exp(kXr )Yi,r exp(−kXr ) ( j = i + kr, 0 ≤ i < r).
(16)
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Proof of (16) Note that the cyclic projections πrn,r identify {π1(Vn)}n as a sequence
of subgroups of π1(V1) as in (4), and regard xrn = xr n = xrn , y j,rn = x j yx− j =
(xr )k xi yx−i (xr )−k = xkr yi,r x

−k
r . Although πrn,r does not keep injectivity on the

complete envelops, it does induce a functorial homomorphism on them. The for-
mula follows then from xn = exp(Xn), ys,n = exp(Ys,n). �

This causes generally (lower degree) error terms to appear in distribution relations
for l-adic iterated integrals.

Still, if we restrict ourselves to the words whose X -weights are zero, we have the
following

Proposition 6 Notations being as above, if w ∈ Mr is a word withwtX (w) = 0, i.e.,
of the form w = Yik ,r · · · Yi1,r , then it holds that

Liw(
−→
01

πrn,r (γ )��� zn)(σ ) =
∑
u∈Mrn

u≡w mod r

Liu(
−→
01

γ�z)(σ ) (σ ∈ GK ).

Proof In the expansion of (πrn,r )∗(f
γ
σ ) = f

πrn,r (γ )
σ , the contributions to the coefficient

of w come only from the first ‘Y -only’ term of each u ∈ Mrn with u ≡ w mod r . The
proposition follows from this observation. �

Remark 7 In the l-adic Galois case, the distribution relations of Proposition 6 are
used in [23] to construct measures onZ

r
� which generalize the measure onZ� in [12].

The general distribution formula analogous to Theorem 4 for arbitrary words in Mr

hold only up to lower degree terms in the l-adic Galois case. More generally, any
coveringmaps between smooth algebraic varieties will give some kind of distribution
relations.

4 l-adic Polylogarithms (Review)

Henceforth, we shall closely look at the case of l-adic polylogarithm where r = 1
and only those words w ∈ M1 involving Y0,1 only once are concerned, in the setting
of the previous section. For simplicity, we write x := x1, y := y0,1 and X := log(x),
Y := log(y), and will be concerned with those coefficients of the words Y Xk−1

of fγσ .
Let us recall some basic facts from [12, 13].We introduced, for any path γ : −→

01�z
on V1 = P1 − {0, 1,∞}, the l-adic polylogarithms

�im(z, γ ) : GK → Q� (17)

(with regard to the fixed free generator system {x, y} of π�
1 (V1 ⊗ K ,

−→
01)) to be the

Lie expansion coefficients of the associator fγσ = γ · σ(γ )−1 for σ ∈ GK modulo the
ideal IY of Lie monomials including Y twice or more:
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log(fγσ )−1 ≡ ρz(σ )X +
∞∑

m=1

�im(z, γ )(σ )ad(X)m−1(Y ) mod IY . (18)

Here, ρz : GK → Z�(1) designates the Kummer 1-cocycle for power roots of z along
γ . Note, however, that the other coefficients �im(z, γ )(σ ) ∈ Q� are generally not
valued inZ� due to applications of log respectively to x , y and f

γ
σ ∈ π�

1 (V1 ⊗ K ,
−→
01).

In fact, we can bound the denominators of �im(z, γ )(σ ) by relating them with more
explicitly defined Z�-valued 1-cochains called the l-adic polylogarithmic characters

χ̃ z
m(= χ̃ z,γ

m ) : GK → Zl (m ≥ 1) (19)

defined by the Kummer properties for n ≥ 1:

ζ
χ̃ z
m (σ )

�n = σ

(
�n−1∏
a=0

(1 − ζ
χ(σ)−1a
�n z1/�

n
)
am−1

�n

) / �n−1∏
a=0

(1 − ζ
a+ρz(σ )

�n z1/�
n
)
am−1

�n , (20)

where (1 − ζ α
�n z

1/�n )
β

�n means the β-th power of a carefully chosen �n-th root of
(1 − ζ α

�n z
1/�n ) along γ . It is shown in [12, p.293 Corollary] that, for each σ ∈ GK ,

the l-adic polylogarithm �im(z, γ )(σ ) ∈ Q� can be expressed by the Kummer- and
l-adic polylogarithmic characters ρz(σ ), χ̃ z

m(σ ) ∈ Z� as follows:

�im(z, γ )(σ ) = (−1)m+1
m−1∑
k=0

Bk

k! (−ρz(σ ))k
χ̃ z
m−k(σ )

(m − k − 1)! (m ≥ 1). (21)

One has then the following relations among �im(z, γ )(σ ) ∈ Q� (17), χ̃ z
m(σ ) ∈ Z�

(19) and LiY Xm−1(
−→
01

γ�z)(σ ) ∈ Q� (Sect. 3):

Proposition 8 (i) Notations being as above, we have

χ̃ z
m(σ ) = (−1)m+1(m − 1)!

m∑
k=1

ρz(σ )m−k

(m + 1 − k)!�i k(z, γ )(σ ) (m ≥ 1).

(ii) Moreover, the expansion of fγσ in Q�〈〈X,Y 〉〉 partly looks like

fγσ = 1 +
∞∑
i=1

(−ρz(σ ))i

i ! Xi −
∞∑
i=0

χ̃ z
i+1(σ )

i ! Y Xi + ...(other terms).

In particular, we have

LiY Xm−1(
−→
01

γ�z)(σ ) = − χ̃ z
m(σ )

(m − 1)! (m ≥ 1).
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Proof (i) Follows immediately from inductively reversing the formula (21). (ii) Also
follows easily from discussions in [13, p.284–285]: Suppose fγσ hasmonomial expan-
sion as

fγσ = 1 +
∞∑
i=1

ci
Xi

i ! −
∞∑
i=0

di+1Y Xi + ...(other terms).

First, from (18), we see that fγσ ≡ ecX modulo Y = 0 with a constant c := −ρz(σ ),
hence that ci = ci . Next, to look at the coefficients of monomials of the forms Xi ,
Y Xi (i = 0, 1, 2, . . . ) closely, we take reduction modulo the ideal JY := 〈XY,Y 2〉
of Q�〈〈X,Y 〉〉. Observe then the congruence:

log(fγσ ) ≡ (fγσ − 1)

{
1 − 1

2
(fγσ − 1) + 1

3
(fγσ − 1)2 − + · · ·

}

≡
(

−
∞∑
i=0

di+1Y Xi

){
1 − 1

2
(ecX − 1) + 1

3
(ecX − 1)2 − + · · ·

}

≡
(

−
∞∑
i=0

di+1Y Xi

){ ∞∑
k=0

Bk

k! c
k Xk

}
(mod JY )

and find that the coefficient of Y Xm−1 in log(fγσ ) is

−
m−1∑
k=0

Bk

k! c
kdm−k (∗)

for m ≥ 1.1 On the other hand, the formula (18) combined with (21) calculates the
same coefficient, which is (−1)m−1-multiple of that of ad(X)m−1(Y ), as to be

(−1)m−1�im(z, γ ) =
m−1∑
k=0

Bk

k! (−ρz(σ ))k
χ̃ z
m−k(σ )

(m − k − 1)! (∗∗)

for m ≥ 1. Comparing those (∗) and (∗∗) inductively on m ≥ 1, we conclude our
desired identities di+1 = −χ̃i+1(σ )/ i ! (i ≥ 0). �
Remark 9 The l-adic polylogarithm was constructed as a certain lisse Q�-sheaf on
V1 = P1 − {0, 1,∞} as in [1, 5, 7, 22]. The fiber over a point z ∈ V1(K ) forms
a polylogarithmic quotient torsor of l-adic path classes from

−→
01 to z. We have the

GK -action on the path space whose specific coefficients are the l-adic (Galois) poly-
logarithms in our sense (17), viz., realized as Q�-valued 1-cochains on GK . See also,
e.g., [11] Sect. 3 for a concise account from the viewpoint of non-abelian cohomology
in a mixed Tate category.

1Note that there are misprints in [13, p.284] where exponents � = 2, 3 of (e(log z)X − 1)� should
read � = 1, 2 respectively in the 2nd and 3rd terms in line −11.
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5 Distribution Relations for χ̃ z
m

Suppose now that μn ⊂ K ⊂ C and that we are given a point z ∈ Vn(K ) together
with a(n étale) path γ : −→

01n�z on Vn ⊗ K = P1
K

− {0, μn,∞}. We consider the

l-adic polylogarithmic characters χ̃ zn
m , χ̃

ζ z
m : GK → Z� (ζ ∈ μn) along the paths

πn(γ ) : −→
01�zn and δζJζ (γ ) : −→

01�ζ z respectively. In this section, we shall show
the following l-adic analog of the distribution formula:

Theorem 10 Notations being as above, we have

χ̃ zn
k (σ ) =

k∑
d=1

(
k − 1

d − 1

)
nd−1

n−1∑
s=0

(sχ(σ))k−d χ̃
ζ sn z
d (σ ) (σ ∈ GK , ζn = e

2π i
n , 00 = 1).

Consider now the l-adic Lie algebras LQ�
(
−→
01n) and LQ�

(
−→
01) associated to

π�
1 (Vn,

−→
01n) and π�

1 (V1,
−→
011) respectively, and set specific elements of them by

Xn := log xn , Yi,n := log yi,n (i = 0, . . . , n − 1), X := log x and Y := log y.
In the following of this section, we shall fix σ ∈ GK and frequently omit men-

tioning σ that is potentially appearing in each term of our functional equation. In
particular, the quantities χ , ρz designate the values χ(σ), ρz(σ ) at σ ∈ GK respec-
tively. For our fixed σ ∈ GK , let us determine the polylogarithmic part of the Galois
transformation fγσ := γ · σ(γ )−1 of the path γ : −→

01n�z in the form:

log(fγσ )−1 ≡ CXn +
n−1∑
s=0

∞∑
m=1

Cs,m ad(Xn)
m−1(Ys,n) (22)

≡ CXn +
n−1∑
s=0

Cs(adXn)(Ys,n) mod IY∗ ,

where, IY∗ represents the ideal generated by those terms including {Y0,n, . . . ,Yn−1,n}
twice or more, and Cs(t) = ∑∞

m=1 Cs,mtm−1 ∈ Q�[[t]] (s = 0, . . . , n − 1).
We determine the above coefficients C , Cs,m by applying the morphisms Jζ

(ζ ∈ μn). Let us set

L(ζ )(t) := L1(ζ z) + L2(ζ z)t + L3(ζ z)t2 + · · · (ζ ∈ μn);
L(n)(t) := L1(zn) + L2(zn)t + L3(zn)t2 + · · · ,

with
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⎪⎪⎪⎪⎩

L0(ζ z) := ρζ z = ρz + s
n (χ − 1),

L1(ζ z) := ρ1−ζ z,

Lk(ζ z) := χ̃
ζ z
k (σ )

(k−1)! (k ≥ 2),

(ζ = e2π is/n, s = 0, 1, . . . , n − 1);

⎧⎪⎨
⎪⎩
L0(zn) := ρzn = nρz,

L1(zn) := ρ1−zn = ∑
ζ∈μn

ρ1−ζ z,

Lk(zn) := χ̃ zn
k (σ )

(k−1)! (k ≥ 2).

Then,

Lemma 11

(1) C = L0(z) = ρz .

(2) C0(t) = L(1)(−t) ρz t
eρz t−1 .

(3) Cs(t) = L(ζ )(−t)e(( s
n −1)χ− s

n )t ρz t
eρz t−1 (s = 1, . . . , n − 1; ζ = e− 2π is

n ).

The proof of this lemma will be given later in this section.

Proof of Theorem 10 assuming Lemma 11
We apply the morphism πn : Vn → V1 to log(f

γ
σ )−1. We first observe that πn(Xn) =

nX , πn(Ys,n) = xsY x−s = ∑∞
k=0

sk

k! (adX)k(Y ) = es·adX (Y ) for s = 0, . . . , n − 1.
Hence,

πn(log(f
γ
σ )−1) = CnX +

n−1∑
s=0

Cs(n adX)

( ∞∑
k=0

sk

k! (adX)k

)
(Y ). (23)

The above LHS equals to

log(fπn(γ )
σ )−1 = ρzn X +

∞∑
k=1

�i k(z
n, πn(γ ))(adX)k−1(Y ). (24)

From the formula (21) we see that

∞∑
k=1

�i k(z
n, πn(γ ))t k = t L(n)(−t)

ρznt

eρznt − 1
, (25)

hence that the equality of RHSs of (23) and (24) results in:

n−1∑
s=0

Cs(nt)e
st = L(n)(−t)

ρznt

eρznt − 1
. (26)

Substituting Cs(t) (s = 0, . . . , n − 1) by Lemma 11 (2), (3), the above left side
equals (

L(1)(−nt) +
n−1∑
s=1

L(ζ )(−nt)e(( s
n −1)χ− s

n )nt est
)

ρznt

eρznt − 1
(27)
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where, in the summation
∑

s , we understand ζ = e− 2π is
n . As (( s

n − 1)χ − s
n )nt +

st = −(n − s)χ t , the replacement of ζ by ζ s
n = e

2π is
n enables us to collect the sum

as
∑n−1

s=0 L
(ζ )(−nt)e−sχ t . Finally, substituting t for −t , we obtain

L(n)(t) =
n−1∑
s=0

L(ζ )(nt)esχ t (ζ = e
2π is
n ). (28)

Theorem 10 follows from comparing the coefficients of the above equation. �
We prepare the following combinatorial lemma concerning the Baker–Campbell–

Hausdorff sum: S ⊕
CH

T = log(eSeT ). Let

β(t) = t

et − 1
=

∞∑
n=0

Bn
tn

n!

be the generating function for Bernoulli numbers.

Lemma 12 Let K be a field of characteristic 0 and let α, �0, �1, · · · ∈ K. Let
�(X,Y ) = �0X + �+(adX)(Y ) = �0X + ∑∞

k=1 �k (adX)k−1(Y ) be an arbitrary ele-
ment of the formal Lie series ring LieK 〈〈X,Y 〉〉 with �+(t) ∈ K [[t]]. Then, we have
the following congruence formulas modulo IY .

(i)

�(X,Y ) ⊕
CH

αX ≡ (α + �0)X +
(

β((α + �0)adX)

β(α adX)
�+(adX)

)
(Y );

(ii)

αX ⊕
CH

�(X,Y ) ≡ (α + �0)X +
(

β((α + �0)adX)

β(�0 adX)
�+(adX)eα adX

)
(Y ).

Proof Both formulas follow from the polylogarithmic BCH formula and with a
representation of the core generating function. See [13, Proposition5.9 and (5.8)]. �

Proof of Lemma 11:
Apply the morphisms Jζ (ζ ∈ μn) to determine the coefficients Cm,s of the poly-
logarithmic terms of log fγσ in (22).

Case ζ = 1: Observe that J1(Xn) = X , J1(Y0,n) = Y and J1(Yi,n) = 0 (i �= 0).
Then, it follows from (22) that

J1(log(f
γ
σ )−1) = log(f

J1(γ )
σ )−1 ≡ CX + (

C0(adX)
)
(Y ) mod IY .

We immediately see that the first coefficient C is given by

C = ρz = L0(z), (29)
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and that the other polylogarithmic coefficients are given by (21) as follows:

C0(t) =
∞∑
k=1

�ik(z,J1(γ ))t k−1 = L(1)(−t)
ρz t

eρz t − 1
. (30)

Case ζ �= 1: Assume ζ = e− 2π is
n (s = 1, . . . , n − 1). We observe in this case that

δζ Jζ (Xn) δ−1
ζ = X , δζ Jζ (Ys,n) δ−1

ζ = xY x−1 = ∑∞
k=0

(adX)k (Y )

k! = eadX (Y )

and Jζ (Yi,n) = 0 (i �= 0). Therefore, it follows from (22) that

δζ · Jζ (log(f
γ
σ )−1) · δ−1

ζ ≡ CX + (
Cs(adX)eadX

)
(Y ) mod IY . (31)

On the other side, since f
δζJ ζ (γ )
σ = δζ f

J ζ (γ )
σ δ−1

ζ f
δζ

σ by (13), we have

δζ · Jζ (log(f
γ
σ )−1) · δ−1

ζ = δζ · log(fJ ζ (γ )
σ )−1 · δ−1

ζ (32)

=
(
− log(f

δζ

σ )−1
)

⊕
CH

(
log(f

δζJ ζ (γ )
σ )−1

)

≡
(

−n − s

n
(χ − 1)X

)
⊕
CH

(
�i0(ζ z)X +

∞∑
k=1

�ik(ζ z)(adX)k−1(Y )

)

mod IY , where �ik(ζ z) (k ≥ 0) are taken along the path δζJζ (γ ). Note here that
�i0(ζ z) = L0(ζ z) = ρz + n−s

n (χ − 1) and that (21) implies

∞∑
k=1

�ik(ζ z, δζJζ (γ ))t k−1 = L(ζ )(−t) β(L0(ζ z) t) = L(ζ )(−t)
L0(ζ z)t

eL0(ζ z)t − 1
. (33)

Putting this into (32) and using Lemma 12 (ii), we find

δζ · Jζ (log(f
γ
σ )−1) · δ−1

ζ ≡ ρz X +
(
L(ζ )(−adX)e− n−s

n (χ−1)adX ρzadX

eρzadX − 1

)
(Y )

(34)
mod IY . Comparing this with (31), we obtain

Cs(t) = L(ζ )(−t)e(− n−s
n (χ−1)−1)t ρz t

eρz t − 1
(s = 1, . . . , n − 1; ζ = e− 2π is

n ). (35)

Thus, the proof of Lemma 11 is completed. �

Remark 13 In [13, Theorem 5.7], we gave a general tensor criterion to have a
functional equation of (complex and l-adic) polylogarithms from a collection of
morphisms { fi : X → P1 − {0, 1,∞}}i∈I and their formal sum

∑
i∈I ci [ fi ]. In our

above case, it holds that the collection {πn,J0, . . . ,Jn−1 : Vn → V1} satisfies the
criterion with coefficients 1,−nk−1, . . . ,−nk−1 (as observed already in [4, (1.9)
(iii)]). Explicit evaluation of the error terms Ek := Ek(σ, γ ) discussed in [13] (that
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explains part of lower degree inhomogeneous terms of our functional equation) can
be obtained a posteriori from (25), (30), (33) and (28) as:

∞∑
k=1

Ek t
k = ρznt2

eρznt − 1

n−1∑
s=1

L(ζ s
n )(−nt)(e−sχ t − e−s(χ−1)t ).

Note that the lower degree terms other than Ek are explained by the Roger type
normalization (difference from �i k and χ̃k) and the effects from compositions of
paths

−→
01�ζ

−→
01�ζ z of Baker–Campbell–Hausdorff type.

Remark 14 Replacing L(n)(t), L(ζ )(nt) in (28) by those generating functions for
�ik(zn, πn(γ )), �ik(ζ z, δζJζ (γ )) by (25), (30) and (33), we obtain an equation

∞∑
k=1

�ik(z
n, πn(γ ))t k−1

= ρznt

eρznt − 1

n−1∑
s=0

esχ t
(
e−L0(ζ s

n z)nt − 1

−L0(ζ s
n z)nt

) ∞∑
k=1

�ik(ζ
s
n z,Jζ s

n
(γ ))(−nt)k−1

inQ�[[t]]. From this, for every fixed k ≥ 1, onemay express �ik(zn, πn(γ )) as a linear
combination of the �id(ζ s

n z, δζ s
n
Jζ s

n
(γ )) (s = 0, . . . , n − 1, d = 1, . . . , k). However,

those coefficients are apparently more complicated than those in Theorem 10 where
the polylogarithmic characters χ̃ zn

k , χ̃ ζ z
d are treated.

6 Homogeneous Form

We keep the notations in Sect. 5 with assuming μn ⊂ K . Let πQ�
(
−→
01n) denote the l-

adic pro-unipotent fundamental group of Vn ⊗ K based at
−→
01n which is by definition

the pro-unipotent hull of the image of the Magnus embedding (12) consisting of all
the group-like elements of the complete Hopf algebraQ�〈〈Xn,Yi,n | 0 ≤ i ≤ n − 1〉〉.
We also define the l-adic pro-unipotent path space (or Q�-path space for short)
πQ�

(
−→
01n, v) for a K -(tangential) point v on Vn to be the Q�-rational extension of the

path torsor π�
1 (Vn ⊗ K ,

−→
01n, v) via π�

1 (Vn ⊗ K ,
−→
01n) ⊂ πQ�

(
−→
01n). Note that both

πQ�
(
−→
01n) and πQ�

(
−→
01n, v) have natural actions byGK compatible with identification

π�
1 (Vn ⊗ K ,

−→
01n) ⊂ πQ�

(
−→
01n), π�

1 (Vn ⊗ K ,
−→
01n, v) ⊂ πQ�

(
−→
01n, v).

Let us introduce rational modifications of the loops ys,n (s = 0, . . . , n − 1) and the
paths δζ (ζ ∈ μn) respectively as follows. For s = 0, . . . , n − 1 and ζ = e2π is/n , set
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ỹs,n := x
− s

n
n ys,nx

s
n
n ∈ πQ�

(
−→
01n),

εζ := x− s
n · δζ ∈ πQ�

(
−→
01, ζ

−→
01).

Note that, in the case n = 1, we have x = x1, y = ỹ0,1 by definition.
The following lemma is the key to homogenize the l-adic distribution formula.

Lemma 15 (i) For every σ ∈ GK and ζ ∈ μn, we have σ(εζ ) = εζ . Moreover, for

any path γ from ζ
−→
01 to a K -point w on V1, we have εζ f

γ
σ ε−1

ζ = f
εζ γ
σ .

(ii) The natural extensions of the homomorphisms on πQ�
(
−→
01∗) induced by Jζ :

Vn → V1, πrn,r : Vrn → Vr (denoted by the same symbols) map the loops xn, ỹs,n
(s = 0, . . . , n − 1) as follows.

(a) εζ Jζ (xn) ε−1
ζ = x .

(b) πrn,r (xrn) = xr n.

(c) εζ Jζ (ỹs,n) ε−1
ζ =

{
y (ζ = e−2π is/n),

1 (ζ �= e−2π is/n).

(d) πrn,r (ỹ j,rn) = ỹi,r (0 ≤ i < r, 0 ≤ j < rn, i ≡ j mod r).

Proof (i): Let ζ = e2π is/n (s = 0, . . . , n − 1). By the assumption μn ⊂ K , we have
χ(σ) ≡ 1 mod n for σ ∈ GK . The first assertion follows immediately from the
formula

σ(δζ ) = x
s
n (χ(σ )−1)δζ ,

which can be easily seen from an argument similar to the proof of [12, Proposition1]
with replacement of F̄((t − z)) by F̄{{ζ t}}. The second claim follows easily from the
definition (13): fpσ = p · σ(p)−1 for any path p : a�b.

(ii): (a), (b) and the case ζ �= e−2π is/n of (c) are trivial. (d) follows from (b)
and the fact πrn,r (y j,rn) = xkr yi,r x

−k
r with j = i + kr , 0 ≤ i < r (16). It remains to

prove (c) in the case ζ = e−2π is/n . Suppose first that ζ is different from 1, i.e., ζ =
e−2π is/n for anyfixed s = 1 . . . n − 1.Then εζ = x− n−s

n · δζ . Since δζ Jζ (ys,n) δ−1
ζ =

xyx−1, (a) implies δζJζ (ỹs,n)δ
−1
ζ = x− s

n xyx−1x
s
n = x

n−s
n yx− n−s

n . It follows then

that εζJζ (ỹs,n)ε
−1
ζ = y. Next, suppose ζ = 1 (i.e., s = 0). Then, it is easy to settle

this case by J1(y0,n) = y. We thus complete the proof of (c). �

Now, we embed πQ�
(
−→
01n) and its Lie algebra LQ�

(
−→
01n) into the non-commutative

power series ringQ�〈〈Xn,Ys,n | 0 ≤ s < n〉〉 by settingXn := Xn = log xn ,Ys,n :=
log ỹs,n , and denote by Mn the set of monomials in Xn,Ys,n (s = 0, . . . , n − 1).
For w ∈ Mn , let wtX (w) denote the number of Xn appearing in w. We shall also
employ the monomial congruence ‘w ≡ w′ mod r ’ by following the same manner as
Definition 3 after replacing Xn , Yi,n by Xn , Yi,n (n ∈ Z>0, 0 ≤ i < n) respectively.
For the case n = 1, we will also simply write X = X1, Y = Y0,1.
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Definition 16 Let z be a point in Vn(K ). Given a Q�-path p ∈ πQ�
(
−→
01, z) and any

σ ∈ GK , we set f
p
σ := p · σ(p)−1 and expand it in the form

fpσ = 1 +
∑
w∈M n

L iw(
−→
01

p�z)(σ ) · w

in Q�〈〈Xn,Yi,n | 0 ≤ i ≤ n − 1〉〉. (Recall that, in (14), another (non-commutative)

expansion of fγσ for γ ∈ π�
1 (Vn ⊗ K ,

−→
01, z) was considered by using a different set

of variables.) We call the above coefficient character

L iw(
−→
01

p�z)
(
= L i (�)w (

−→
01

p�z)
)

: GK → Q�

the l-adic iterated integral associated to the word w ∈ Mn and to the Q�-path p
on Vn .

Theorem 17 Let p be a Q�-path on Vrn from
−→
01 to a point z ∈ Vrn(K ). Then, for

any word w ∈ Mr , we have the distribution relation

L iw(
−→
01

πrn,r (p)��� zn)(σ ) = nwtX (w)
∑

u∈M rn
u≡w mod r

L i u(
−→
01

p�z)(σ )

for σ ∈ GK .

Proof The assertion follows in the same way as Theorem 4 after the above Lemma
15 (b), (d). �

Next, let us concentrate on thepolylogarithmicpart onV1.Recall that bothπQ�
(
−→
01)

and its Lie algebra LQ�
(
−→
01) are embedded in Q�〈〈X,Y 〉〉, where X = X1 and Y =

Y0,1.

Definition 18 Let z be a point in V1(K ) = P1(K ) − {0, 1,∞} and p : −→
01�z a Q�-

path. Consider the associator fpσ := p · σ(p)−1 ∈ πQ�
(
−→
01) for σ ∈ GK , and define

ρz,p : GK → Q�, �im(z, p) : GK → Q�

by the non-commutative expansion corresponding to (18):

log(fpσ )−1 ≡ ρz,p(σ )X +
∞∑

m=1

�im(z, p)(σ )(adX)m−1(Y ) mod IY ,

where IY represents the ideal generated by those terms including Y twice or more.
Using these, we also define

χ̃ z,p
m : GK → Q�
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for m ≥ 1 by the equation extending Proposition 8 (i):

χ̃ z,p
m (σ ) = (−1)m+1(m − 1)!

m∑
k=1

ρz,p(σ )m−k

(m + 1 − k)!�i k(z, p)(σ ). (36)

SinceQ�-paths generally do not give bijection systems betweenfibers of endpoints
on finite étale covers, no simple interpretation is available for ρ z,p or χ̃

z,p
m byKummer

properties: For example, the above χ̃ z,p
m (σ ) (σ ∈ GK ) generally has a denominator

in Q�, i.e., may not be valued in Z�. This makes it difficult to understand χ̃ z,p
m (σ ) in

terms of Kummer properties at finite levels of an arithmetic sequence like (20).
Once ρz,p, �im(z, p) and χ̃ z,p

m : GK → Q� are defined as in the above Definition,
the identities as in Proposition 8 (ii) and (21) can be extended in obvious ways for
them by formal transformations of generating functions. In the same way, it holds
that

− χ̃ z,p
m (σ )

(m − 1)! = L iY Xm−1(
−→
01

p�� z)(σ ) (37)

for p ∈ πQ�
(
−→
01, z) and σ ∈ GK .

Theorem 19 Supposeμn ⊂ K ⊂ C and let p be aQ�-path on Vn from
−→
01 to a point

z ∈ Vn(K ). Then,

�i k(z
n, πn(p))(σ ) = nk−1

∑
ζ∈μn

�i k(ζ z, εζJζ (p))(σ )

holds for σ ∈ GK .

Proof We first put the Lie expansion of log(fpσ )−1 in Xn = Xn = log xn , Ys,n =
log ỹs,n (s = 0, . . . , n − 1) in the Lie algebra LQ�

(
−→
01n) as:

log(fγσ )−1 ≡ DXn +
n−1∑
s=0

∞∑
m=1

Ds,m (adXn)
m−1(Ys,n) (38)

≡ DXn +
n−1∑
s=0

(Ds(adXn)) (Ys,n) mod IY ∗ ,

where, IY ∗ represents the ideal generated by those terms including {Y0,n, . . . ,Yn−1,n}
twice ormore, andDs(t) = ∑∞

m=1 Ds,m tm−1 ∈ Q�[[t]] (s = 0, . . . , n − 1).We shall
determine those coefficients D and Ds,m by applying the morphisms Jζ . For

any fixed ζ = ζ−s
n (s = 0, . . . , n − 1), by Lemma 15 (i), we obtain f

εζJ ζ (p)
σ =

εζ · Jζ (p · σ(p)−1) · σ(εζ )
−1 = εζ · Jζ (f

p
σ ) · ε−1

ζ , hence

εζ · Jζ (log(f
p
σ )−1) · ε−1

ζ = log(f
εζJ ζ (p)
σ )−1.
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As the right hand side comes from the associator for the path εζJζ (p) : −→
01�ζ z, it

should coincide, by definition, with

ρζ z,εζJ ζ (p)(σ )X +
∞∑
k=1

�i k(ζ z, εζJζ (p))(σ ) (adX)k−1(Y ),

while, the left hand side can be calculated after Lemma 15 (ii) (a), (c) to equal to

DX +
∞∑
k=1

Ds,k (adX)k−1(Y )

with s given by ζ = e−2π is/n . Therefore, we conclude

D = ρζ z,εζJ ζ (p)(σ ), (39)

Ds,k = �i k(ζ z, εζJζ (p))(σ ) (40)

for ζ = e−2π is/n (s = 0, . . . , n − 1). Now, apply the projection morphism πn :=
πn,1 : Vn → V1 and interpret the both sides of equalityπn(log(f

p
σ )−1) = log(fπn(p)

σ )−1.
Then, we obtain

DnX +
n−1∑
s=0

∞∑
k=1

Ds,k (n adX)k−1(Y ) = ρzn ,πn(p)X +
∞∑
k=1

�ik(z
n, πn(p)) ad(X)k−1(Y ).

Comparing the coefficient of (adX)k−1(Y ) in the above and (40), we conclude the
proof of the theorem. �

In the above proof, for a given Q�-path p : −→
01�z on Vn , we considered the

collection of Q�-paths

Pn := {εζJζ (p) : −→
01�ζ z | ζ = ζ s

n ∈ μn (s = 0, 1, . . . , n − 1)}

on V1 = P1 − {0, 1,∞} . Note that each εζJζ (p) can also be written as the com-
posite of paths on V1:

εζ · [ζ p] = x− s
n · δζ · [ζ p] : (41)

−→
01

x− s
n�� −→

01
δζ� ζ

−→
01

[ζ p]�� ζ z

where [ζ p] : ζ
−→
01�ζ z means a path obtained by “rotating” p : −→

01�z by the auto-
morphism of P1 − {0,∞} with multiplication by ζ .

Corollary 20 Notations being as above, the maps ρζ z,p(σ ) : GK → Q� are all the

same for the Q�-paths [p : −→
01�ζ z] ∈ ⋃∞

n=1 Pn.
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Proof As seen in (39), we have the common D upon applying Jζ to the first
term of log(fpσ )−1. The assertion follows from this and the fact that Pn contains
P1 �= ∅. �

From this corollary, we immediately see that the above theorem also gives homoge-
neous functional equations for the rationally extended l-adic polylogarithmic char-
acters.

Corollary 21 Notations being as in Theorem 19, let χ̃ zn ,πn(p)
k and χ̃

ζ z,εζJ ζ (p)
k (ζ ∈

μn) be the extended l-adic polylogarithmic characters. Then, we have

χ̃
zn ,πn(p)
k (σ ) = nk−1

∑
ζ∈μn

χ̃
ζ z,εζJ ζ (p)
k (σ ) (σ ∈ GK ).

Proof The assertion follows from Theorem 19 by applying Corollary 20 to the
definition of l-adic polylogarithmic characters for Q�-paths (Definition 18). �

7 Translation in Kummer–Heisenberg Measure

Let γ : −→
01�z be an l-adic path in π�

1 (P
1
K

− {0, 1,∞};−→
01, z) and p := x− s

n γ be

the pro-unipotent path in πQ�
(
−→
01, z) produced by the composition with x− s

n for
any fixed s ∈ Z� and n ∈ N. By definition we have fpσ = x− s

n f
γ
σ x

s
n χ(σ) for σ ∈ GK .

Since x− s
n = exp(−s

n X) ≡ 1 modulo the right ideal X ·Q�〈〈X,Y 〉〉, it follows from
Proposition 8 (ii) that

− χ̃
z,p
k (σ )

(k − 1)! = CoeffY Xk−1(fpσ ) = CoeffY Xk−1

(
1 · fγσ · exp

(
s χ(σ)

n
X

))

=
k−1∑
i=0

CoeffY Xi (fγσ ) ·
(
s
nχ(σ)

)k−i−1

(k − i − 1)! = −
k−1∑
i=0

χ̃
z,γ
i+1(σ )

i ! ·
(
s
nχ(σ)

)k−i−1

(k − i − 1)! .

Thus we obtain

χ̃
z,p
k (σ ) =

k−1∑
i=0

(
k − 1

i

)( s
n
χ(σ)

)k−i−1
χ̃

z,γ
i+1(σ ) (σ ∈ GK ). (42)

Recall then that, in [12], introduced is a certain Z�-valued measure (called the
Kummer–Heisenberg measure) κ z,γ (σ ) onZ� for every path γ : −→

01�z and σ ∈ GK ,
which is characterized by the integration properties:

χ̃
z,γ
k (σ ) =

∫
Z�

ak−1dκ z,γ (σ )(a) (k ≥ 1). (43)
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Putting this into (42), we may rewrite the RHS to get

χ̃
z,p
k (σ ) =

∫
Z�

(
a + s

n
χ(σ)

)k−1

dκ z,γ (σ )(a). (44)

Note that s
n + Z� = s

nχ(σ) + Z� as a subset of Q� when μn ⊂ K . Comparison of
(43) and (44) leads us to introduce the following

Definition 22 Suppose μn ⊂ K , and let σ ∈ GK and p = x− s
n γ ∈ πQ�

(
−→
01, z) be

as above. Define a Z�-valued measure κ z,p(σ ) on the coset s
n + Z�(⊂ Q�) by the

property:

χ̃
z,p
k (σ ) =

∫
s
n +Z�

ak−1dκ z,p(σ )(a) (k ≥ 1).

A verification of this new notion of the extended measure κ z,p(σ ) is that our
distribution relations in Corollary 21 can be summarized into a single relation of
measures:

Theorem 23 For s ∈ Z�, let [n] : s
n + Z� → Z� (a �→ na) denote the continuous

map of multiplication by n ∈ N, and denote by [n]∗κ the push-forward measure on
Z� obtained from any measure κ on s

n + Z� by U �→ κ([n]−1(U )) for the compact
open subsets U of Z�. Then,

κ zn ,πn(γ )(σ ) =
∑
ζ∈μn

[n]∗κζ z,εζJ ζ (γ )(σ ) (σ ∈ GK ).

Proof The formula follows immediately from Corollary 21 and the characteristic
property (44) of the Kummer–Heisenberg measure. �

Question 24 In the above discussion, we defined κ z,p(σ ) only for Q�-paths p :−→
01�z of the form p = xαγ withα ∈ Q� andγ : −→

01�z being l-adic (i.e.,Z�-integral)
paths. It is natural to conjecture existence of a suitable measure κ z,p(σ ) for a more

general Q�-path p : −→
01�z satisfying the property of Definition 22. The support of

this measure should be a parallel transport R(p, σ ) of Z� in Q� such that x R(p,σ ) ⊂
xQ� is the image of π�

1 (V1 ⊗ K ;−→
01, z) · σ(p)−1 via the projection πQ�

(
−→
01) � xQ� .

8 Inspection of Special Cases

In this section, we shall closely look at special cases of the l-adic distribution formula.
Let us first consider dilogarithms, i.e., for the case of k = 2. By Theorem 10, we
have
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Corollary 25 Letμn ⊂ K and γ : −→
01�z ∈ Vn(K ) be an l-adic path which induces

paths πn(γ ) : −→
01�zn and δζJζ (γ ) : −→

01�ζ z (ζ = ζ s
n ∈ μn) on V1 = P1 − {0,

1,∞}. Along these paths, we have the following Z�-valued functional equation

χ̃ zn
2 (σ ) = n

n−1∑
s=0

χ̃
ζ s
n z

2 (σ ) +
n−1∑
s=1

sχ(σ)ρ1−ζ s
n z(σ ) (σ ∈ GK ),

where ρ1−ζ s
n z is the same as the 1st polylogarithmic character χ̃

ζ s
n z

1 : GK → Z�. �

In particular when n = 2, the above formula is specialized to the following.

Corollary 26 For γ : −→
01�z on V2 = P1 − {0,±1,∞}, let π2(γ ) : −→

01�z2,
J1(γ ) : −→

01�z and δ−1J−1(γ ) : −→
01� − z be the induced paths onP1 − {0, 1,∞}.

Note here that δ−1 : −→
01� − −→

01 is the positive half rotation. Along these paths, we
have a functional equation of the l-adic polylogarithmic characters

χ̃ z2
2 (σ ) = 2(χ̃ z

2 (σ ) + χ̃−z
2 (σ )) + χ(σ)ρ1+z(σ ) (σ ∈ GK ).

�

Putting z = −→
10 in the above, and recalling χ̃

−→
10
2k (σ ) = B2k

2(2k) (χ(σ )2k − 1) (σ ∈ GQ)

from [NW2] Proposition 5.13, we immediately obtain

Corollary 27 Along the path γ−1 : −→
01�(z=1)�(z=−1) induced by the positive

half arc on the unit circle on P1 − {0, 1,∞}, we have the following Z�-valued equa-
tion:

χ̃ z=−1
2 (σ ) = −χ(σ)2 − 1

48
− 1

2
χ(σ)ρ2(σ ) (σ ∈ GQ).

�

This result is an l-adic analog of the classical result Li2(−1) = −π2

12 ([Le]), and is
compatible with [13, Remark 5.14 and Remark after (6.31)].

To confirm validity of our above narrow stream of geometrical arguments toward
Corollary 27, we here present an alternative direct proof in a purely arithmetic way
as below:

Arithmetic proof of Corollary 27. We (only) make use of the characterization
of χ̃ z

m by the Kummer properties (20). Applying it to our case m = 2, z = −1 where
ρz(σ ) = 1

2 (χ(σ ) − 1), we obtain

ζ
χ̃ z=−1
2 (σ )

�n = σ

(
�n−1∏
a=0

(1 − ζ
2χ(σ)−1a+1
2�n )

a
�n

) / �n−1∏
a=0

(1 − ζ
2a+χ(σ)

2�n )
a
�n . (∗)
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We evaluate both the denominator and numerator of the above right hand side, first
by pairing two factors indexed by a and a′ = −χ(σ) − a and by simplifying their
product by

(
1 − ζ

−2a−χ(σ)

2�n

) 1
�n =

(
1 − ζ

2a+χ(σ)

2�n

) 1
�n · ζ

ln−〈2a+χ(σ)〉
2�n

with 0 ≤ 〈2a + χ(σ)〉 ≤ 2�n being the unique residue of 2a + χ(σ) mod 2�n . Pick
a disjoint decomposition of the index set S := {0 ≤ a ≤ �n − 1} into S+ ∪ S− ∪ S0
so that, for all a ∈ S,

(i) a ∈ S+ iff 〈 − χ(σ) − a〉 ∈ S−;
(ii) a ∈ S0 iff a ≡ −a − χ(σ) mod �n .

Then, one finds:
∏

a∈S−S0

(1 − ζ
2χ(σ)−1a+1
2�n )

a
�n =

∏
a∈S±

(1 − ζ
2χ(σ)−1a+1
2�n )

−χ(σ)
�n ζ

(�n−〈1+2χ(σ)−1a〉)(−a−χ(σ))
2�n ,

∏
a∈S−S0

(1 − ζ
2a+χ(σ)
2�n )

a
�n =

∏
a∈S±

(1 − ζ
2a+χ(σ)
2�n )

−χ(σ)
�n ζ

(�n−〈2a+χ(σ))(−a−χ(σ))
2�n .

Noting that
∏

a∈S(1 − ζ 2a+1
2�n ) = 2, we obtain the squared sides of (∗) as

ζ
2χ̃ z=−1

2 (σ )

�n =
σ
(
2

−χ(σ)

�n
∏

a∈S ζ
(�n−〈1+2χ(σ)−1a〉)(−a−χ(σ))

2�n

)
2

−χ(σ)

�n
∏

a∈S ζ
(�n−〈2a+χ(σ))(−a−χ(σ))

2�n

.

Here, note that contribution from S0 (which is empty when � = 2) is included into the
factor 2

−χ(σ)

�n both in the numerator and the denominator. Now, choose integers c, c̄ ∈
Z so that c ≡ χ(σ), cc̄ ≡ 1 mod 2�n . Then, we obtain the following congruence
equation mod �n:

2χ̃ z=−1
2 (σ ) ≡ −χ(σ)ρ2(σ )

+ 1

2

∑
a∈S

χ(σ)(−a − c)(�n − 〈1 + c̄a〉) − (−a − c)(�n − 〈1 + 2c̄a〉)

≡ −χ(σ)ρ2(σ )

+ 1

2

∑
a∈S

(−a − c)

[
χ(σ) − 1

2
+
{
2a + c

2�n

}
− c

{
1 + 2c̄a

2�n

}]

≡ −χ(σ)ρ2(σ ) + 1

2

∑
b∈S

b

[
c

{
1 + 2c̄b

2�n

}
−
{
c + 2b

2�n

}
+ 1 − c

2

]
.

By basic properties of the Bernoulli polynomial B2(X) = X2 − X + 1
6 (cf. [8]), the

last sum is congruent modulo �n

48Z to
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∑
b∈S

�n

2

[
c2B2

({
1 + 2c̄b

2�n

})
− B2

({
2b + c

2�n

})]

= 1

2
(χ(σ )2 − 1)B2(

1

2
) = − 1

24
χ(σ)2 − 1.

Summing up, we find the congruence relations

2χ̃ z=−1
2 (σ ) ≡ −χ(σ)ρ2(σ ) − 1

24
(χ(σ )2 − 1) mod

�n

48
Z

for all n, hence the equality in Z�. This concludes the proof of the corollary. �
Turning to Theorem 10, by specialization to the case n = 2 (but for general k),

we obtain:

Corollary 28 Along the paths from
−→
01 to±z, z2 onP1 − {0, 1,∞} used inCorollary

26, it holds that

χ̃ z2

k (σ ) = 2k−1χ̃ z
k (σ ) +

k∑
d=1

(
k − 1

d − 1

)
2d−1χ(σ)k−d χ̃−z

d (σ ) (k ≥ 1, σ ∈ GK ).

Upon observing special cases of the above formula, we find that χ̃ z=−1
4 does not

factor through Gal(Q(μ�∞)/Q), because it involves a nontrivial term from χ̃
−→
10
3 (σ )

which does not vanish on Gal(Q/Q(μ�∞)) by Soulé [14].
With regard to the classical formula Li2k(−1) = (−1)k+1(1 − 22k−1)B2k

π2k

(2k)!
([Le]), we should rather figure out its l-adic analog in terms of the “Q�-adic” poly-
logarithmic characters introduced in Definition 18. In fact,

Corollary 29 Let γ−1 : −→
01�(z=−1) be the path in Corollary 27. Then, along the

Q�-path x− 1
2 γ−1 : −→

01�(z=−1), it holds that

χ̃ z=−1
2k (σ ) = (1 − 22k−1)

22k
B2k

2k
(χ(σ )2k − 1) (σ ∈ GQ).

Proof Applying Corollary 21 to the case where n = 2 and p : −→
01�−→

10 is the straight
path on V2 = P1 − {0,±1,∞}, we obtain

χ̃
−→
10,π2(p)
k (σ ) = 2k−1(χ̃

−→
10,J1(p)
k (σ ) + χ̃

z=−1,γ−1
k (σ )).

Since π2(p) and J1(p) are the same standard path
−→
01�−→

10 on V1, the values

χ̃
−→
10,π2(p)
k (σ ) and χ̃

−→
10,J1(p)
k (σ ) coincide with the (extended) Soulé value χ̃

−→
10
k (σ )

(cf. [12, Remark 2]). The desired formula follows then from a basic formula from
[13, Proposition 5.13]: χ̃

−→
10
2k (σ ) = B2k

2(2k) (χ(σ )2k − 1) (σ ∈ GQ). �



618 H. Nakamura and Z. Wojtkowiak

Unlike the Z�-integral analog stated in Corollary 27, the above right hand side
generally has denominators inQ�. This is due to the concern of x− 1

2 ∈ πQl (
−→
01)which

does not lie in π�
1 (V1 ⊗ K ,

−→
01) when � = 2.
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On a Family of Polynomials Related
to ζ(2, 1) = ζ(3)

Wadim Zudilin

Abstract We give a new proof of the identity ζ({2, 1}l) = ζ({3}l) of the multiple
zeta values, where l = 1, 2, . . . , using generating functions of the underlying gen-
eralized polylogarithms. In the course of study we arrive at (hypergeometric) poly-
nomials satisfying 3-term recurrence relations, whose properties we examine and
compare with analogous ones of polynomials originated from an (ex-)conjectural
identity of Borwein, Bradley and Broadhurst.

Keywords Multiple zeta values · Hypergeometric function · Hypergeometric
polynomial · Generalized orthogonality

1 Introduction

The first thing one normally starts with, while learning about the multiple zeta values
(MZVs)

ζ(s) = ζ(s1, s2, . . . , sl) =
∑

n1>n2>···>nl≥1

1

ns11 n
s2
2 · · · nsll

,

is Euler’s identity ζ(2, 1) = ζ(3)—see [3] for an account of proofs and generaliza-
tions of the remarkable equality. One such generalization reads

ζ({2, 1}l) = ζ({3}l) for l = 1, 2, . . . , (1)

where the notation {s}l denotes the multi-index with l consecutive repetitions of the
same index s. The only known proof of (1) available in the literature makes use of the
duality relation of MZVs, originally conjectured in [6] and shortly after established
in [12]. The latter relation is based on a simple iterated-integral representation of
MZVs (see [12] but also [3, 4, 14] for details) but, unfortunately, it is not capable of
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establishing similar-looking identities

ζ({3, 1}l) = 2π4l

(4l + 2)! for l = 1, 2, . . . . (2)

The equalities (2) were proven in [4] using a simple generating series argument.
The principal goal of this note is to give a proof of (1) via generating functions

and to discuss, in this context, a related ex-conjecture of the alternating MZVs. An
interesting outcome of this approach is a family of (hypergeometric) polynomials
that satisfy a 3-term recurrence relation; a shape of the relation and (experimentally
observed) structure of the zeroes of the polynomials suggest their bi-orthogonality
origin [7, 8, 11].

2 Multiple Polylogarithms

For l = 1, 2, . . . , consider the generalized polylogarithms

Li{3}l (z) =
∑

n1>n2>···>nl≥1

zn1

n31n
3
2 · · · n3l

,

Li{2,1}l (z) =
∑

n1>m1>n2>m2>···>nl>ml≥1

zn1

n21m1n22m2 · · · n2l ml
,

Li{2,1}l (z) =
∑

n1>m1>n2>m2>···>nl>ml≥1

zn1(−1)n1+n2+···+nl

n21m1n22m2 · · · n2l ml
;

if l = 0 we set all these functions to be 1. Then at z = 1,

ζ({3}l) = Li{3}l (1) and ζ({2, 1}l) = Li{2,1}l (1),

and we also get the related alternating MZVs

ζ({2, 1}l) = Li{2,1}l (1)

from the specialization of the third polylogarithm.
Since
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(
(1 − z)

d

dz

)(
z
d

dz

)2

Li{3}l (z) = Li{3}l−1(z),

(
(1 − z)

d

dz

)2(
z
d

dz

)
Li{2,1}l (z) = Li{2,1}l−1(z),

(
(1 + z)

d

dz

)2(
z
d

dz

)
Li{2,1}l (z) = Li{2,1}l−1(−z)

for l = 1, 2, . . . , the generating series

C(z; t) =
∞∑

l=0

Li{3}l (z)t3l,

B(z; t) =
∞∑

l=0

Li{2,1}l (z)t3l and A(z; t) =
∞∑

l=0

Li{2,1}l (z)t
3l

satisfy linear differential equations. Namely, we have

((
(1 − z)

d

dz

)(
z
d

dz

)2

− t3
)
C(z; t) = 0,

((
(1 − z)

d

dz

)2(
z
d

dz

)
− t3

)
B(z; t) = 0

and

((
(1 − z)

d

dz

)2(
z
d

dz

)(
(1 + z)

d

dz

)2(
z
d

dz

)
− t6

)
A(z; t) = 0,

respectively. The identities (1) and identities

1

8l
ζ({2, 1}l) = ζ({2, 1}l) for l = 1, 2, . . . ,

conjectured in [4] and confirmed in [13] by means of a nice though sophisticated
machinery of double shuffle relations and the ‘distribution’ relations (see also an
outline in [2]), translate into

C(1; t) = B(1; t) = A(1; 2t).

Note that

C(1; t) =
∞∑

l=0

t3l
∑

n1>n2>···>nl≥1

1

n31n
3
2 · · · n3l

=
∞∏

j=1

(
1 + t3

j3

)
. (3)
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At the same time, the differential equation for C(z; t) = ∑∞
n=0 Cn(t)zn results in

−n3Cn + (n + 1)3Cn+1 = t3Cn

implying
Cn+1

Cn
= n3 + t3

(n + 1)3
= (n + t)(n + e2π i/3t)(n + e4π i/3t)

(n + 1)3

and leading to the hypergeometric form

C(z; t) = 3F2

(
t, ωt, ω2t

1, 1

∣∣∣∣ z
)

, (4)

where ω = e2π i/3. We recall that

m+1Fm

(
a0, a1, . . . , am
b1, . . . , bm

∣∣∣∣ z
)

=
∞∑

n=0

(a0)n(a1)n · · · (am)n

n! (b1)n · · · (bm)n
zn,

where (a)n = Γ (a + n)/Γ (a) denotes the Pochhammer symbol (also known as the
‘shifted factorial’ because (a)n = a(a + 1) · · · (a + n − 1) for n = 1, 2, . . . ). It is
not hard to see that the sequences An(t) and Bn(t) from A(z; t) = ∑∞

n=0 An(t)zn and
B(z; t) = ∑∞

n=0 Bn(t)zn do not satisfy 2-term recurrence relations with polynomial
coefficients. Thus, no hypergeometric representations of the type (4) are available
for them.

3 Special Polynomials

The differential equation for B(z; t) translates into the 3-term recurrence relation

n3Bn − (n + 1)2(2n + 1)Bn+1 + (n + 2)2(n + 1)Bn+2 = t3Bn (5)

for the coefficients Bn = Bn(t); the initial values are B0 = 1 and B1 = 0.

Lemma 1 We have

Bn(t) = 1

n!
n∑

k=0

(ωt)k(ω2t)k(t)n−k(−t + k)n−k

k! (n − k)!

= (t)n(−t)n
n!2 3F2

( −n, ωt, ω2t
−t, 1 − n − t

∣∣∣∣ 1
)

. (6)
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Proof The recursion (5) for the sequence in (6) follows from application of the
Gosper–Zeilberger algorithm of creative telescoping. The initial values for n = 0
and 1 are straightforward. �

Remark 1 The hypergeometric form in (6) was originally prompted by [9, Theo-
rem 3.4]: the change of variable z �→ 1 − z in the differential equation for B(z; t)
shows that the function f (z) = B(1 − z; t) satisfies the hypergeometric differential
equation with upper parameters −t , −ωt, −ω2t and lower parameters 0, 0.

It is not transparent from the formula (6) (but immediate from the recursion (5))
that Bn(t) ∈ t3Q[t3] for n = 0, 1, 2, . . . ; the classical transformations of 3F2(1) and
their representations as 6F5(−1) hypergeometric series (see [1]) do not shed a light
on this belonging either.

Lemma 2 We have

B(1; t) =
∞∏

j=1

(
1 + t3

j3

)
. (7)

Proof This follows from the derivation

B(1; t) =
∞∑

n=0

Bn(t) =
∞∑

n=0

1

n!
n∑

k=0

(ωt)k(ω2t)k(t)n−k(−t + k)n−k

k! (n − k)!

=
∞∑

k=0

(ωt)k(ω2t)k
k!2

∞∑

m=0

(t)m(−t + k)m
m! (k + 1)m

=
∞∑

k=0

(ωt)k(ω2t)k
k!2 · 2F1

(
t, −t + k
k + 1

∣∣∣∣ 1
)

= 1

Γ (1 − t)Γ (1 + t)

∞∑

k=0

(ωt)k(ω2t)k
k! (1 − t)k

= 1

Γ (1 − t)Γ (1 + t)
· 2F1

(
ωt, ω2t
1 − t

∣∣∣∣ 1
)

= 1

Γ (1 − t)Γ (1 + t)
· Γ (1 − t)

Γ (1 − (1 + ω)t)Γ (1 − (1 + ω2)t)

= 1

Γ (1 + t)Γ (1 + ωt)Γ (1 + ω2t)
=

∞∏

j=1

(
1 + t3

j3

)
,

where we applied twice Gauss’s summation [1, Sect. 1.3]

2F1

(
a, b
c

∣∣∣∣ 1
)

= Γ (c) Γ (c − a − b)

Γ (c − a) Γ (c − b)

valid when �(c − a − b) > 0. �
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Finally, we deduce from comparing (3) and (7),

Theorem 1 The identity ζ({3}l) = ζ({2, 1}l) is valid for l = 1, 2, . . . .

4 A General Family of Polynomials

It is not hard to extend Lemma 1 to the one-parameter family of polynomials

Bα
n (t) = 1

n!
n∑

k=0

(ωt)k(ω2t)k(α + t)n−k(α − t + k)n−k

k! (n − k)!

= 1

n!
n∑

k=0

(α + ωt)k(α + ω2t)k(t)n−k(α − t + k)n−k

k! (n − k)! . (8)

Lemma 3 For eachα ∈ C, the polynomials (8) satisfy the3-term recurrence relation

((n + α)3 − t3)Bα
n − (n + 1)(2n2 + 3n(α + 1) + α2 + 3α + 1)Bα

n+1

+ (n + 2)2(n + 1)Bα
n+2 = 0

and the initial conditions Bα
0 = 1, Bα

1 = α2. In particular, Bα
n (t) ∈ C[t3] for n =

0, 1, 2, . . . .

In addition, we have Bα
n ∈ t3Q[t3] for α = 0,−1, . . . ,−n + 1 (in other words,

Bα
n (0) = 0 for these values of α).

Lemma 4 B1−n−α
n (t) = Bα

n (t).

Proof This follows from the hypergeometric representation

Bα
n (t) = (α + t)n(α − t)n

n!2 3F2

( −n, ωt, ω2t
α − t, 1 − α − n − t

∣∣∣∣ 1
)

. �

Here is one more property of the polynomials that follows from Euler’s transfor-
mation [1, Sect. 1.2].

Lemma 5 We have

∞∑

n=0

Bα
n (t)zn = (1 − z)1−2α

∞∑

n=0

B1−α
n (t)zn.
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Proof Indeed,

∞∑

n=0

Bα
n (t)zn =

∞∑

k=0

(ωt)k(ω2t)k
k!2 zk · 2F1

(
α + t, α − t + k

k + 1

∣∣∣∣ z
)

=
∞∑

k=0

(ωt)k(ω2t)k
k!2 zk · (1 − z)1−2α

2F1

(
1 − α + t, 1 − α − t + k

k + 1

∣∣∣∣ z
)

= (1 − z)1−2α
∞∑

n=0

B1−α
n (t)zn.

�

Alternative Proof of Lemma 2. It follows from Lemma 5 that

B1
n (t) =

n∑

k=0

Bk(t),

hence B(1; t) = limn→∞ B1
n (t) and the latter limit is straightforward from (8). �

Note that, with the help of the standard transformations of 3F2(1) hypergeometric
series, we can also write (8) as

Bα
n (t) = (α − ωt)n(α − ω2t)n

n!2 3F2

( −n, α + t, t
α − ωt, α − ω2t

∣∣∣∣ 1
)

,

so that the generating functions of the continuous dual Hahn polynomials lead to the
generating functions

∞∑

n=0

n!
(α − t)n

Bα
n (t)zn = (1 − z)−t

2F1

(
α + ωt, α + ω2t

α − t

∣∣∣∣ z
)

and

∞∑

n=0

(γ )n n!
(α − ωt)n(α − ω2t)n

Bα
n (t)zn = (1 − z)−γ

3F2

(
γ, α + t, t

α − ωt, α − ω2t

∣∣∣∣
z

z − 1

)
,

where γ is arbitrary.
Finally, numerical verification suggests that for real α the zeroes of Bα

n viewed as
polynomials in x = t3 lie on the real half-line (−∞, 0].
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5 Polynomials Related to the Alternating MZV Identity

Writing

A(z; t) =
∞∑

n=0

An(t)z
n

= 1 + 1
4 t

3z2 − 1
6 t

3z3 + (
1

192 t
3 + 11

96

)
t3z4 − (

1
240 t

3 + 1
12

)
t3z5

+ (
1

34560 t
6 + 23

5760 t
3 + 137

2160

)
t3z6 + O(z7)

and using the equation

(
(1 + z)

d

dz

)2(
z
d

dz

)
A(z; t) = t3A(−z; t),

we deduce that

(n3 − T )An + (n + 1)2(2n + 1)An+1 + (n + 2)2(n + 1)An+2 = 0, (9)

where T = (−1)nt3. Producing two shifted copies of (9),

((n − 1)3 + T )An−1 + n2(2n − 1)An + (n + 1)2nAn+1 = 0, (10)

((n − 2)3 − T )An−2 + (n − 1)2(2n − 3)An−1 + n2(n − 1)An = 0, (11)

then multiplying recursion (9) by n(n − 1)2(2n − 3), recursion (10) by
−(n − 1)2(2n + 1)(2n − 3), recursion (11) by (2n + 1)((n − 1)3 + T ) and adding
the three equations so obtained we arrive at

(2n + 1)((n − 1)3 + T )((n − 2)3 − T )An−2

− n(n − 1)(2n − 1)(2n(n − 1)(n2 − n − 1) − 3T )An

+ (n + 2)2(n + 1)n(n − 1)2(2n − 3)An+2 = 0.

This final recursion restricted to the subsequence A2n , namely

(4n + 5)((2n)3 − t3)((2n + 1)3 + t3)A2n

− (4n + 3)(2n + 1)(2n + 2)(2(2n + 1)(2n + 2)(4n2 + 6n + 1) − 3t3)A2n+2

+ (4n + 1)(2n + 1)2(2n + 2)(2n + 3)(2n + 4)2A2n+4 = 0, (12)

and, similarly, to A2n+1 gives rise to two families of so-called Frobenius–Stickel-
berger–Thiele polynomials [10]. The latter connection, however, sheds no light on
the asymptotics of An(t) ∈ Q[t3]. Unlike the case of B(z; t) treated in Sect. 3 we
cannot find closed form expressions for those subsequences. Here is the case most
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visually related to the recursion (12):

(4n + 5)
(2n)3 − t3

t − 2n

(2n + 1)3 + t3

t + 2n + 1
A′
n

− (4n + 3)(2n + 1)(2n + 2)((2n + 1)(2n + 2) + (8n2 + 12n + 1)t + 3t2)A′
n+1

+ (4n + 1)(2n + 1)2(2n + 2)(2n + 3)(2n + 4)2A′
n+2 = 0,

where

A′
n = 1

2n (1/2)n n!
n∑

k=0

(ωt/2)k(ω2t/2)k(t/2)n−k(1/2)n−k

k! (n − k)! (−1)k .

The latter polynomials are not from Q[t3].
If we consider Ãn(t) = ∑n

k=0 Ak(t) then (it is already known [5, 13] that)

(n3 − (−1)nt3) Ãn−1 + (2n + 1)n Ãn − (n + 1)2n Ãn+1 = 0, n = 1, 2, . . . .

As before, the standard elimination translates it into

(2n + 3)((n − 1)3 + T )(n3 − T ) Ãn−2

− (2n + 1)n(n − 1)(2(n2 + n + 1)2 − 6 − T ) Ãn

+ (2n − 1)(n + 2)2(n + 1)2n(n − 1) Ãn+2 = 0,

where T = (−1)nt3. One can easily verify that

Ãn(t) = 1 + · · · + t3	n/2


2	n/2
	n/2
! n!
but we also lack an explicit representation for them.

We have checked numerically a fine behaviour (orthogonal-polynomial-like) of
the zeroes of An and Ãn viewed as polynomials in x = t3 (both of degree [n/2]
in x). Namely, all the zeroes lie on the real half-line (−∞, 0]. This is in line with the
property of the polynomials Bα

n (see the last paragraph in Sect. 4).
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