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Abstract. Today’s modern industry has widely accepted the intelligent
condition monitoring system to improve the industrial organization. As
an effect, the data-driven-based fault diagnosis methods are designed by
integrating signal processing techniques along with artificial intelligence
methods. Various signal processing approaches have been proposed for
feature extraction from vibration signals to construct the fault feature
space, and thus, over the years, the feature space has increased rapidly.
Also, the challenge is to identify the promising features from the space
for improving diagnosis performance. Therefore, in this paper, wavelet
energy is presented as an input feature set to the fault diagnosis sys-
tem. In this paper, wavelet energy is utilized to represent the multiple
faults for reducing the requirement of number features, and therefore,
the complex task of feature extraction becomes simple. Further, the con-
volutional autoencoder has assisted in finding more distinguishing fault
feature from wavelet energy to improve the diagnosis task using extreme
learning machine. The proposed method testified using two vibration
datasets, and decent results are achieved. The effect of autoencoder on
fault diagnosis performance has been observed in comparison to princi-
pal component analysis (PCA). Also, the consequence has seen in the
size of the extreme learning machine (ELM) architecture.
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1 Introduction

Recently, the rapid development of sensor technology as well as communication
networks has helped to develop and deploy the cyber-physical system (CPS) in
advanced industrial systems. The emergence of this CPS has made the data col-
lection much easier for various processes conditions and a significant amount of
data generated for the analysis of machinery health status [1–3]. The advances
in artificial intelligence techniques have assisted in extracting useful informa-
tion from the substantial amount of vibration data for mitigating the issues of
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fault diagnosis. As a practical means, it reduces the risk of unplanned shut-
downs/breakdowns and assures the reliability as well as the safety of industrial
systems. The majority of unexpected shutdowns occur due to the failure of rolling
element bearing, and classifying the bearing fault as early as possible provides
adequate time for maintenance planning and saves the time as well as money of
industry [4–6].

Over the years, a significant amount of methods have been proposed for fea-
ture extraction and selection/transformation in bearing fault diagnosis. These
approaches aim to enhance the characterization of fault features for improv-
ing fault diagnosis performance, and the remarkable advancement in the signal
processing techniques has supported significantly for the various fault charac-
terization. Therefore, the fault feature space has increased rapidly and become
hybrid in nature in the last two decades due to the advancement in signal pro-
cessing techniques. This advancement has introduced the various multi-domain
features by the researchers to represent the multiple faults and fault severities
[7–9].

Recently, a Neuro-Fuzzy system has been developed to identify the bearing
health status by learning the resonant zones of vibration signals in the frequency
domain [10]. The statistical feature space has been designed using the wavelet
packet transform, and then distance-based criteria have been used to build the
Bayesian inference fault information [11]. The Shannon entropy has assisted
in choosing wavelet transform (WT) for designing the statistical feature space
to calculate bearing health using artificial neural network and support vector
machine [12,13]. A spectral kurtosis has assisted in extracting time-frequency
energy density information to train the optimized extreme learning machine
(ELM) [14]. The nonlinear and non-Gaussian characteristics of vibration data
have been captured using intrinsic mode function to develop the statistical fea-
ture space for expressing multiple fault pattern. Then the fault diagnosis task
has been performed by the support vector machine [15]. The wavelet-spectrum
method along with kurtosis ratio reference functions has assisted in calculat-
ing the health indicator for the monitoring of bearing based on Neuro-Fuzzy
classifier [16].

Along with machine learning methods, recently, a deep learning approach has
been broadly employed for fault classification. The kurtogram has been evalu-
ated using a convolutional neural network (CNN) [17,18] and recurrent neural
network [19] to enhance the fault diagnosis results. The statistical feature space
has been designed by capturing the vibration data from multiple sources to
develop a responsive fault diagnosis method using deep neural network [20]. The
2D input feature map has been constructed using time and frequency domain
statistical features to train the CNN for fault diagnosis [21,22]. The various sig-
nal processing methods have served to establish the multi-domain feature set for
the learning of stacked Gaussian-Bernoulli restricted Boltzmann machines [23].
A similar type of feature set has been developed by Chen et al. to examine the
performance of bearing fault diagnosis using deep Boltzmann machines, deep
belief network, and stacked autoencoders (AE) [24].
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The above literature signifies that the various methods have been proposed
to extract the fault features for improving fault diagnosis results. The differ-
ent signal processing domain features have been analyzed by introducing new
features along with existing features for identification of gear and bearing fault
[25]. For developing the fault features spaces, one must be master in the signal
processing and then determine the promising features from the space to express
various defects by designing a robust feature selection routine. Therefore, in this
paper, this complex task of identifying the fault features has been simplified by
introducing the wavelet energy (WE) as a feature set to represent the various
faults. In addition, to enhance the fault pattern representation capability of WE,
convolutional AE has applied to the feature set. Then the efficient, as well as fast
classifier like ELM, has been utilized for fault diagnosis. However, Haidong et
al. have proposed a similar approach of fault diagnosis with wavelet as an acti-
vation function of AE [26]. The major difference between the proposed method
and approach proposed by Haidong et al. is the use of convolutional layers for
the extraction of significant fault information. This information is very crucial
for differentiating the faults of short duration and low amplitude value such as
ball fault and healthy bearing. The effect of AE has been analyzed for achieving
small-size ELM architecture in the proposed method. The two vibration datasets
have been used for testifying the proposed method and compared with existing
alternatives.

2 Related Work

In this section, we briefly introduce the concepts of wavelet energy and autoen-
coder, which underlies the proposed method.

2.1 Wavelet Energy

The effective method to represent the signal in the time-frequency domain is
a WT. The delightful property of WT is that at low frequencies, it presents
the significant frequency information, and at high frequencies, it provides ade-
quate information of time [9,27]. These characteristics are vital for fault diag-
nosis because the vibration signal contains the high frequencies as well as low
frequencies components. Also, the non-gaussianity of vibration signal has been
analyzed by WT to locate the transient present in the signal. The analysis using
wavelet depends on the selection of the mother wavelet for the characterization
of signal, and the unique decomposition of the signal provides the advantage in
signal analysis [27,28].

The wavelet family set Ψn,j(t) for multiresolution analysis in L2(�) is an
orthogonal basic, and the idea of calculating the energy is derived from the
Fourier theory. Initially, the mother wavelet Ψ(t) is selected with the decompo-
sition levels N [27,28]. At different decomposition levels, energy is expressed as
the energy of wavelet coefficients Cn,j . Thus, the energy is defined at different
decomposition levels with m number of wavelet coefficients as
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En =
m∑

j=1

|Cn,j |2 (1)

where the jth wavelet coefficient of nth scale is Cn,j . Thus, the total energy is
calculated by

Etotal =
∑

n

En =
∑

n

∑

j

|Cn,j |2 (2)

The above equations provide essential information at different frequency
bands for characterizing the vibration signal energy distribution.

2.2 Autoencoder

Autoencoder belongs to the family of deep learning architecture in which the
dimension of input and output is the same so that it will reconstruct the input
at the output stage through intermediate layers with a reduced number of hid-
den nodes. The basic idea of AE is to compress the input data into a latent-
space representation, and then reconstruct the output from this representation.
Therefore, the AE network consists of encoder and decoder parts for performing
dimensionality reduction and data denoising tasks [29,30].

In the proposed method, WE is treated as 2D data and therefore, to extract
the more significant information for the fault representation by dimensionality
reduction, convolutional AE has operated on WE Ei [29]. The encoder assists
in determining the reduced hidden representation Ê ∈ RdÊ by mapping the
Ei ∈ RdE with the help of the feed-forward process of the network as

Ê = ϕL

(
· · · ϕ2

(
ϕ1

(
E, δ(1)

)
, δ(2)

)
· · · , δ(L)

)
(3)

where δ is the learning parameters of a network for each stage L and ϕ are the
various convolutional and pooling operation performed by the network at each
L. The decoder reconstructs the E′ ∈ RdE from Ê as

E′ = ϕ1

(
· · · ϕL−1

(
ϕL

(
Ê, δ(L)

)
, δ(L−1)

)
· · · , δ(1)

)
(4)

Finally, the training of AE is a minimization of error between E, and E′ and
it is given as

argmin
ϕ,δ

(E,E′) (5)

AE illustrates a promising potential to study the meaningful features from
E for fault diagnosis.
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Fig. 1. Proposed method framework.

3 Proposed Method

Several signals generated through machines provide adequate information about
the health state of the machine by analyzing them. Therefore, in this paper, a
novel bearing fault classification method is proposed by incorporating WE and
AE for identifying the distinguishing features, and then various fault patterns are
learned by ELM. The proposed bearing fault classification method is manifested
in Fig. 1, and it is consists of the following phases: (1) Data acquisition, (2)
Feature transformation, and (3) Fault classification.

It has been found in the literature that the vibration data has been utilized
extensively for the development of fault diagnosis solutions. As a result, a two
bearing vibration set has assisted in testifying the proposed method. The detail
information of data acquisition with experimental setup and dataset description
as well as analysis is provided in [17,19,31–33].

The traditional signal processing methods could not able to handle a large
amount of industrial data effectively for identifying the various fault patterns. As
a result, it causes a bottleneck for precise and timely evaluation of bearing health
conditions. In addition, assuming the idealization and simplifications of vibration
data extend the inappropriate review of the bearing health. As an effect, the
reliability of the overall bearing health diagnosis system reduces. Therefore, in
this paper, to determine the various faults, WE have utilized it as a feature.
Hence, in the second stage, the raw data has been transformed into WE. Further,
to mine important information about the various defects and improve the fault
diagnosis performance, the AE based dimension reduction technique has been
operated on WE feature in the data transformation stage. It identifies the more
distinguishing features to articulate the various features. The W contains the
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Table 1. Performance analysis of the proposed method.

Algorithm Training
accuracy (%)

Testing
accuracy (%)

F-score Computational
time (s.)

Dataset-1

ELM (Sigmoid) 98.33 ± 1.17 96.34 ± 1.08 0.96 ± 0.01 170.11 ± 0.01

ELM (RBF) 98.61 ± 0.54 97.39 ± 0.77 0.97 ± 0.01 167.21 ± 0.01

MLP 96.11 ± 0.0 92.91 ± 0.0 0.92 ± 0.0 165.5 ± 0.01

Dataset-2

ELM (Sigmoid) 98.13 ± 1.57 95.14 ± 3.27 0.95 ± 0.03 125.71 ± 0.01

ELM (RBF) 98.11 ± 1.1 95.94 ± 1.79 0.96 ± 0.02 125.24 ± 0.01

MLP 90.63 ± 0.0 86.75 ± 0.0 0.86 ± 0.0 125.24 ± 0.01

input data, and Y is the corresponding class label. In the final stage, ELM has
trained using W and Y to study the different fault diagnosis patterns.

3.1 Benefits of Proposed Method

– The use of WE as an input feature has reduced the task of constructing the
feature space using various signal processing methods.

– Further, there is no need to find promising features from the feature space.
As a result, feature extraction and selection process become simple.

– The convolutional AE has assisted in dimension reduction of input data and
identifies the more distinguishing feature to represent the fault.

– The use of AE helps in reducing the requirement of L, and hence, small size
ELM architecture has been attained by preserving the accuracy of the model.

– In addition, AE has assisted in improving the fault diagnosis performance.

4 Results and Discussion

4.1 Simulation Environment

The two REB datasets are used to verify the effectiveness of the proposed fault
diagnosis method. Dataset-1: The machine fault simulator is used to generate the
vibration signal under different working conditions in a supervised manner [31]
and Dataset-2: Publicly available bearing dataset from Case Western Reserve
University (CWRU) [32]. The simulation environment (i7-CPU with the fre-
quency of 3.6 GHz, 8.0-GB RAM, and Ubuntu 16.04 operating system) has setup
to analyze the fault diagnosis results. The 50 trails are performed to calculate the
average as well as standard deviation value for training and testing performance
along with F-score and computational time. The K-fold cross-validation method
has been employed to deliver the data partitioning exercise. The AE consists
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Fig. 2. Value of L for ELM the performance in Table 1.

Table 2. Performance analysis of the proposed method without autoencoder.

Algorithm Training
accuracy (%)

Testing
accuracy (%)

F-score Computational
time (s.)

Dataset-1

ELM (Sigmoid) 93.85 ± 0.81 90.48 ± 1.02 0.90 ± 0.01 2.29 ± 0.01

ELM (RBF) 91.69 ± 0.01 89.37 ± 0.01 0.88 ± 0.0 2.61 ± 0.01

MLP 85.83 ± 0.0 84.31 ± 0.0 0.84 ± 0.0 2.32 ± 0.01

Dataset-2

ELM (Sigmoid) 90.14 ± 1.57 79.41 ± 2.24 0.79 ± 0.02 0.57 ± 0.01

ELM (RBF) 88.42 ± 0.01 84.11 ± 0.01 0.83 ± 0.0 0.36 ± 0.01

MLP 85.18 ± 0.0 80.81 ± 0.0 0.79 ± 0.0 0.16 ± 0.01

of six layers of convolutional and pooling. The first three layers are used for
encoding and the last three for decoding. The bottom layer of encoding obtains
the low-level features, and a top layer acquires the high-level features of faults
to train the classifier [26]. For the comparison, the stopping RMSE is set to 0.2,
and sigmoid as well as RBF type of nodes are considered in ELM [34].

4.2 Result Analysis

Table 1 illustrates the performance of the proposed method. For both the vibra-
tion datasets, the ELM demonstrate the training and testing performance respec-
tively of 98.0% and 95.0% with RMSE equal to 0.2. The RBF types of nodes
show the acceptable performance in comparison to the sigmoid type of nodes for
both the datasets. The best performance of 97.39% has been recorded for the
dataset-1 and, similarly, 95.94% for dataset-2. The SD value of performance is
around 1.0 for dataset-1 and 2.0 for dataset-2. The F-score values of different
algorithms are above 0.95.

Also, the hidden node requirement of a sigmoid node is high compared to
RBF nodes, and it is almost 300.0% more in both the datasets as shown in
Fig. 2. However, the SD value of L for a sigmoid node is better than RBF nodes,
and it is approximately below 10. It is also noted that the computational time
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Table 3. Performance analysis of the proposed method with PCA.

Algorithm Training
accuracy (%)

Testing
accuracy (%)

F-score Computational
time (s.)

Dataset-1

ELM (Sigmoid) 98.12 ± 0.51 95.75 ± 0.82 0.95 ± 0.01 5.16 ± 0.01

ELM (RBF) 95.13 ± 0.01 89.74 ± 0.01 0.90 ± 0.0 3.64 ± 0.01

MLP 90.03 ± 0.0 87.73 ± 0.0 0.86 ± 0.0 3.44 ± 0.01

Dataset-1

ELM (Sigmoid) 92.64 ± 1.18 86.19 ± 0.06 0.86 ± 0.06 3.36 ± 0.01

ELM (RBF) 91.21 ± 0.01 88.16 ± 0.01 0.88 ± 0.0 3.16 ± 0.01

MLP 88.64 ± 0.0 84.16 ± 0.01 0.83 ± 0.0 2.59 ± 0.01

Fig. 3. Training speed comparison of the datasets for autoencoder.

requirement of RBF nodes is less as compared to sigmoid nodes. This impact
has been observed due to the less demand for RBF hidden nodes in comparison
to sigmoid nodes for achieving similar performance. This effect has been found
in both the data sets. In addition, the proposed method has been compared
with MLP. Table 1 indicates that the MLP performance is not acceptable in
comparison to ELM and it is almost 5.0% to 9.0% less than ELM performance.

Further, to analyze the effect of AE, the WE has been presented as an input
to the classifier, and L value for the ELM has been utilized from the Fig. 2 to
illustrate the generalize performance for comparison. Table 2 demonstrates the
results for the proposed method without the AE step. It has been found that the
overall performance has decreased for all the types of nodes. The significant effect
has been noticed for the dataset-2 as compared to dataset-1. The total decrement
in the training performance is approximately 6.0% and 10.0%, respectively, for
the dataset-1 and dataset-2. Similarly, for the testing performance, it has been
6.0% and 15.0%, respectively, for the dataset-1 and dataset-2. The effect of
performance degradation has observed on the F-score value. Besides F-score,
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Table 4. Statistical feature set performance comparisons of ELM and MLP.

Algorithm Training
accuracy (%)

Testing
accuracy (%)

F-score Computational
time (s.)

Dataset-1

ELM (Sigmoid) 72.83 ± 3.65 65.31 ± 3.92 0.65 ± 0.04 1.78 ± 0.4

ELM (RBF) 78.19 ± 0.28 76.45 ± 0.21 0.76 ± 0.01 1.69 ± 0.01

MLP 35.41 ± 0.18 34.58 ± 0.1 0.29 ± 0.01 1.32 ± 0.17

Dataset-2

ELM (Sigmoid) 87.09 ± 2.34 78.64 ± 3.91 0.77 ± 0.03 1.18 ± 0.06

ELM (RBF) 87.5 ± 0.1 86.36 ± 0.1 0.85 ± 0.1 0.96 ± 0.02

MLP 39.77 ± 0.08 38.63 ± 0.04 0.38 ± 0.0 0.51 ± 0.1

the computational time of the method without AE is better than the routine
with AE.

Further, PCA has been widely utilized to extract sensitive features and
reduced feature size in bearing [35]. Therefore, to analyze the effect of AE,
the WE has been presented as an input to principal component analysis (PCA),
and then to the classifier. L value for the classifier has been utilized from the
Table 1 to display the generalize performance for comparison. Table 3 illustrates
the results for the proposed method with PCA as a dimension reduction step. It
has been notified from the Tables 1, 2 and 3 that the AE and PCA improve the
fault diagnosis performance. PCA based proposed method performance is not
acceptable in comparison to AE based proposed method. Similar to AE, in PCA
based approach, RBF provides better performance than sigmoid nodes. Also,
the computational time of the PCA based method is better than the AE-based
method. This effect of computational time has seen due to the utilization of
various convolutional and pooling layers.

From Tables 1, 2 and 3, it can be concluded that the proposed method reduces
the size of ELM architecture. With the same number of L, the method with PCA
and without AE has unable to attain a similar performance. Thus, the combined
effect of WE and AE has been seen on the overall performance of the system.
Also, Fig. 3 demonstrates the training speed of the AE using both the datasets.

In addition, the fault diagnosis system development Samanta and Al-Balushi
by utilizing statistical features have been analyzed for the comparison with WE
feature set [36]. Tables 1 and 4 indicates that the performance of the proposed
method is better than the statistical feature set, and it is improved by 20.0%
[19]. Also, the result notifies that the proposed method illustrates the satisfactory
results with wavelet energy.

5 Conclusion

In the modern industry, the rotating machinery has been broadly employed
for various applications. Therefore, the health monitoring of equipment is an
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essential task for the overall functioning of the system. Hence, bearing fault
classification performance has improved by introducing the wavelet energy as
an input feature set in this paper. Also, it simplifies the feature extraction and
selection process of fault diagnosis. In addition, it proves the wavelet energy as
a useful input feature vector for fault diagnosis. Further, the use of autoencoder
has assisted in identifying the promising features from wavelet energy to achieve
the small size ELM design by preserving the accuracy of the solution.
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