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Preface

Electricity generation, transmission and distribution were once primarily controlled
by private companies. However, after a huge restructuring in the industry we find
that retailers, large consumers, virtual power plants, demand response aggregators,
electric vehicle aggregators, smart homes, energy hubs, microgrids, etc. have
emerged to be key within the industry as well. Nowadays, there is a severe
uncertainty of electricity market price, it is a challenge which the major electricity
market players are facing. It should be noted that the electricity market price
uncertainty is increasing mainly due to behaviours of market players, renewable
distributed generation and responsive loads. This uncertainty poses challenges on
grid operations and control, distorts the electricity market outcomes and complicates
the short-run and long-run decision-making processes of electricity market players.

solutions will be discussed in this book. Furthermore, it can be studied in order to
investigate how electricity is purchased or sold in the presence of electricity market
price uncertainty. Therefore, uncertainty modelling of market price is necessary to
take a decision with less risk. According to the importance of continuous and secure
operation of electricity market players, further and complete studies are required
in this concept. Finally, this book seeks to find, analyse and introduce features and
problems of electricity market players in uncertain environment.

Bonab, Iran Sayyad Nojavan
Tabriz, Iran Kazem Zare

v

By defining aforementioned problems and challenges of the industry, the optimal
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Chapter 1
Energy Harvesting Technologies
and Market Opportunities

Farzad H. Panahi and Fereidoun H. Panahi

Nomenclature

AP Access point
BS Base station
CH Cluster head
D2D Device-to-device
EE Energy efficiency
EH Energy harvesting
HER Energy harvesting rate
EHT Energy harvesting technology
FIS Fuzzy inference system
FQLA Fuzzy Q-learning algorithm
HetNet Heterogeneous network
ICT Information and communication technology
IoT Internet of Things
GHG Greenhouse gas
M2M Machine-to-machine
PS Power station
QLA Q-learning algorithm
QoS Quality of service
RF Radio frequency
RL Reinforcement learning
RPS Renewable power supplier
RES Renewable energy source
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SG Smart grid
WPT Wireless power transfer
WSN Wireless sensor network
UDN Ultradense network
UE User equipment
UWB Ultrawide band

1.1 Introduction

Enhanced management of urban communities brings another concept, known as
smart cities [1, 2], which enables environmental data gathering and better usage
of city resources. Specific application areas of smart cities are intelligent transport
systems, smart grids, home automation, smart agriculture, and structural health
monitoring [3]. The realization of them strictly requires considerable advancements
over edge systems and devices, for example, the Internet of Things (IoT). Indeed,
detecting and controlling highlights of the IoT are essential empowering agents
of this acknowledgment. Utilizing IoT and Information and Communication Tech-
nology (ICT) features, we can access a digitized world by means of the Internet
connections, and draw one stage nearer to the Smart City idea [4, 5]. Obviously,
in order to obtain nonstop tracking and control, an auxiliary or maybe a totally
particular power supply needs to be prepared to the sensors. However, this strategy
might also or would not be practical in some cases in general because of size
constraints or environmental restrictions. Hence, energy harvesting (EH) strategies
come into prominence to relieve the troubles of energy restrained networks via
utilizing a stray supply or converting power from one shape to every other [6, 7].

Generally, EH, also known as energy scavenging, is the action by which energy
is extracted from available external sources, commonly named as “ambient energy
sources.” There is a wide assortment of ambient energy sources and relating
EH technologies (EHTs) with various specialized applications. The degree of
deliverable energy from every technology differs also in the range of low micro-Watt
to milli-Watt. Indeed, this variety is a chance to design an appropriate EHT for IoT-
gadgets according to the use cases. Some EHTs effectively offer the fundamental
power yield to drive IoT gadgets. However, they may not be applicable. The energy
harvester must fit in with the utilization case and the related energy forms, subjects
which must be viewed when planning a gadget. In this chapter, a review of various
sources, technologies, intelligent mechanisms, and also market opportunities for EH
is presented.

1.2 Energy Harvesting Technologies and Challenges

Giving EH ability to smart systems and networks empowers the devices to consis-
tently obtain their power from natural or man-made phenomena. Therefore, this
gives promising features to wireless networks: self-sustainability and reliability
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Fig. 1.1 Different forms of ambient energy sources and corresponding EHTs [15]

with network lifetimes constrained by an internal equipment instead of the energy
storage. Thus, EH-enabled wireless networks will make it feasible to grow new
medicinal, surveillance, and security applications which are not generally practical
with ordinary battery-controlled nodes. There are a few distinctive characteristic
sources and related technologies for EH: electromagnetic, solar, indoor lighting,
vibrational, thermal, biological, chemical, etc. [6, 8–14] (as can be observed in
Fig. 1.1). However, energy might be obtained from man-made sources by means
of wireless power transfer (WPT), in a controlled way.

It is clear that the development of an EHT takes time since it needs often
profound researches. Thus, there is the risk that industry surrenders the technology.
For instance, small manufactures working on some energy harvesters are not
fundamentally developing them with their defined utilization as harvesters any
more, but as temperature sensor nodes. Generally, the major challenges of current
EHT can then be summarized as in Table 1.1.

1.3 Energy Harvesting Markets and Key Players

Generally, the EH has been utilized for quite a long time for bike dynamos or solar
panels. Today, it is widely applied to application fields, such as smart cities, auto-
motive vehicles, and security systems. Development inside the areas of ICT and IoT
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Table 1.1 Major challenges of current EHTs

Explanations

1. The greatest obstacle of actualizing EHT is their greater expense contrasted with regular
batteries.
2. Depending on the power request of the gadget, the size of the EHT can end up massive.
3. Since most EHTs produce discontinuous energy, power storage might be required.
4. Current power storages have shorter lifetimes than EHTs. It seems that the combination
of the conventional Li-ion batteries and EHTs are still the ideal with respect to lifetimes and
supported power.

Fig. 1.2 Global EH market
2014–2019
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and thus the spread of battery-based sensor systems are real power driving advances
in EH and self-powered systems [16, 17]. The most well-known power sources
utilized for EH are mechanical, thermal energy, and sunlight-based radiations.
Recent advances in ultralow power technologies have accelerated the improvement
of self-powered monitoring gadgets for a wide scope of utilizations consisting of
smart grids (SGs), structural health monitoring, and biomedical telemetry [18–
21]. A self-powered wireless sensor, that gains surrounding energy for driving its
hardware, is among promising techniques for supporting a maintenance-free sensor
network in smart networks.

The worldwide EH market demonstrates a stunning development: somewhere
in the range of 2015 and 2019 it could sum at 21.9% and peak at 28% in 2019
(Fig. 1.2). Governments and public initiatives are the main drivers for EH market
development. Public actors utilize EH as a key apparatus for gathering the rising
energy request and saving power. In fact, EH supports SGs and IoT by powering
wireless sensor networks (WSNs) that are fundamental to provide connectivity
between devices. A huge number of sensors is required to monitor and manage
network processes and the sensors should be powered. Ordinarily, batteries were
utilized to enable the sensing nodes but they have a restricted lifetime and in a
network with a huge number of wireless sensors, replacement of the batteries will
not be applicable. It should be noted that EH-powered sensors need less maintenance
and are easier to arrange than batteries and also more comfortable to manage in
mobile-sensing strategies. To sum up, development of IoT and energy-efficient
communication infrastructures for sensor networks is driving interest for wireless
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and battery-less sensors which will be increasingly more powered by EH. Indeed,
EH wireless solutions find increasing applications in smart networks due to their
low-cost installation and maintenance. In addition, EH-based wireless technology
is the reliable communication strategy to provide connectivity among thousands of
nodes in smart networks.

European Commission supports the business with motivation and interests in
R&D of EH and storage gadgets. This is rational with European priorities as the
Commission distinguishes the feasible supply of energy as the “grand challenges”
confronting human communities. Indeed, green power trend is advancing the market
as a lot of sustainable and renewable power sources offer an appropriate platform for
the EH process. As mentioned before, EH empowers IoT and ICT by driving sensors
arranges that are fundamental to associate and organize devices. Countless sensors
are expected to make network procedures work and sensors should be powered.
Normally, batteries were utilized to enable the sensing hardwires but they have a
restricted lifetime and in a framework with a huge number of remote gadgets, the
replacement of batteries is really impossible. On the other side, EH-powered sensors
are self-sufficient, require less support, and are simpler to set up than batteries.
Totally, advancement of IoT and ICT is driving interest for remote and battery-less
sensors which will be increasingly more supported by EH.

The market for home automation is booming today and it is estimated to have
5% growth in the range of 2015–2019. Indeed, EHTs find increasing applications
in this area thanks to their high cost-saving potential in setup and maintenance.
Compared to copper wiring or battery, EHT is the ideal communication standards
to interconnect a huge number of devices with various applications. Based on
the report “EH Market Size, Share, Growth Forecast 2019 To 2027,” published
by Market Research Future (MRFR), EH market is increasingly influenced by
growing demands for renewable power sources (RPSs). The worldwide EH market
is additionally studied in detail in the report, which aims to find out how the market
is likely to progress over the forecast period and what are the significant drivers
affecting the market’s direction over that period. In fact, EH is a basic term for
the way toward catching the energy from a specific power source and storing it for
later use. In spite of its simple definition, the EH market growth has not been rapid
to develop because of specialized challenges in designing power storage systems.
The EH market is accordingly to grow at a steady rate over the forecast period,
driven by the growing interests for a considerable progress in the field of EHTs.
However, organizations and new companies are expected to appear despite the
heavy investments required to enter it, given the attractive growth opportunities.
Generally, the global EH market is segmented on the basis of energy source,
technology, application, and region (Table 1.2).

The developing interest for renewable powers such as solar- and wind-oriented
energies is additionally to be a noteworthy driver for the worldwide EH market.
As the generation of electric power through wind- and sunlight-based mechanism
is transient and temperamental for steady power delivery, EHTs become hugely
important in this area. Expanding endeavors are probably going to be taken in
these fields to create successful EH frameworks over the coming years, prompting
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Table 1.2 Main segments for global EH market

Type Segments

Energy source Chemicals, mechanical, electrical, nuclear, thermal, and gravitational
Technology Electrodynamics, photovoltaic, thermoelectric, and others
Applications Electronics, industrial, aerospace and defense, automotive, healthcare, and others

consistent development of the worldwide EH market over the forecast period. Key
players in the worldwide EH market are probably going to concentrate on research
endeavors to think of strong answers for the main consumers. Teaming up with
outer research foundations is also likely to be the main way for players in the EH
market, as many promising advancements in energy storage happen in research
organizations. Europe, Asia Pacific, and North America presently dominate the
worldwide EH market and are probably going to remain as the key players over the
forecast period because of the growing government supports to renewable energy
initiatives and also the growing presence of leading players in the region, which has
prompted the improvement of a solid research segment in the field.

1.4 Intelligent Mechanisms for Energy Harvesting

The Internet of Things (IoT) and intelligent wireless sensor networks as a promis-
ing improvement for future telecommunications will make everything smart and
empower them associating with one another instantly and transferring data per-
vasively [22, 23]. However, there are different challenges toward communication
networks deployment consisting of security, quality of service (QoS), reliability,
energy affairs, and technologies [16, 24–34]. Obviously, the IoT connected things
will be more than the human population in near future. For this tremendous system
of interconnected sensors, batteries are the best sources to give the ability to work
the services. On the other side, IoT modules and devices require longer lifetime and
supplanting the batteries oftentimes is impractical [26]. Consequently, as referenced
previously, EH strategy is one of the responses to this issue. The EH-aided WSNs
can work for a considerable length of time and years with the minimum level of
human interventions [16].

Regarding the energy efficiency (EE) as a key basis in the designing of
communication systems, some feasible approaches should be taken into account to
overcome the restrictions of energy sources and network lifetime [35]. In this way,
EH strategy in intelligent networks [17] has been proposed as a promising technique
for expanding the lifetime of mobile and low-power nodes. Recently, RF-based
EH strategies have been presented to enable portable sensors and devices to gather
energy from radiated radio frequency signals in the form of ambient or devoted RF
sources [36, 37]. In addition, regarding the impressive benefits of wireless powering
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energy-constrained sensors and maximizing the lifetime of sensor networks, EH
techniques have been extensively investigated in different scenarios for WSNs [38].

Inspired by the effective performance of intelligent mechanisms and learning-
based algorithms to design practical scenarios over smart networks, many researches
have been focused on the acceleration of the battery charging process [39, 40]. In
some other works, intelligent algorithms are utilized to guide sensor movements
toward allocated power stations (PSs) as wireless battery charging points, in order
to define an energy-efficient EH-enabled network. The approach depends on finding
the areas of the PSs during successive movements of the mobile sensors. Thus, as
stated, every sensor freely utilizes the intelligent algorithms to gradually discover
a PS in the system. In a general model, considering downlink transmission, a
two-tier HetNet for energy-based cooperation scenarios among sensor nodes is
investigated. More explicitly, there exist N mobile sensors along with three kinds
of BSs, consisting of a central BS and Q cluster heads (CHs) and furthermore M
PSs, randomly distributed over the network, powered by both electrical grid and
renewable power sources (RPSs) (as can be observed in Fig. 1.3).

As mentioned before, to make the EH process smart, we may have to utilize
intelligent or learning-based mechanisms. So far, various kinds of reinforcement
learning (RL) algorithms have been introduced [39]. Indeed, the Q-learning algo-
rithm (QLA), as one of the most popular RL algorithms, computes the table of all
values Q(s, a) using continuous estimation, to form a Q-table. It should be noted that
Q(s, a) represents the expected value or the quality factor for a specific problem,

Renewable Energy Flow

Conventional Grid Power Flow

Energy Harvesting Link

BS

PS
Sensor

CH

Smart Grid

Fig. 1.3 EH model consisting of PSs and mobile sensors
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which can be acquired in state S = {s1, s2, . . . sN} for the sensor action a and the
corresponding reward value r. Consequently, the related Q-table is formed according
to the iterative equation as follows:

Q(s, a) ← Q(s, a) + β�Q(s, a) (1.1)

where β ∈ (0, 1] is the learning rate and,

�Q(s, a) = r + λmax
a′ Q

(
s′, a′)− Q(s, a) (1.2)

Here, the maximization operator indicates the greatest value obtained by a mobile
sensor for the action a

′
that may be done in next state s

′
. In fact, the basic QLA

performance can be effectively improved by means of accurate tracking of the
state-action history. This is defined by the competency factor λ ∈ [0, 1], thus the
enhanced learning strategy is called Q(λ)-learning [40]. The parameter λ for each
state increases after the state-action process, and then exponentially decreases until
the state is not checked again [39].

In general, QLA enables the mobile sensors to learn from interaction with the
network, where a reward mechanism is defined for the learning process of EH.
However, combining a fuzzy-control strategy with the QLA (i.e., FQLA) leads to
an enhanced self-adaptive algorithm for pragmatic applications (Fig. 1.4). Indeed,
the way of knowledge representations can be expressed as the primary contrast in

Fig. 1.4 Block diagram of FQLA to control movements of a mobile sensor
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the model between the QLA and FQLA. In other words, fuzzy rules for evaluating
the explored knowledge are exploited in the FQLA, while a basic look-up table (i.e.,
Q-table) is used in the QLA [40]. The fuzzy inference system (FIS) that plays a key
role in making final decisions for FQLA includes a set of rules R and competing
actions for each rule. Accordingly, the mobile sensor (i.e., the learning agent) needs
to detect the best conclusion based on the related rule. It implies that an action
with the highest Q-value between the feasible actions for a rule is selected. Clearly,
the mobile sensors (i.e., the learning agents) should advance toward power stations
(PSs) according to FQLA’s decisions to detect the nearest PS. In order to estimate
the optimal policy, the state-action value function Qπ (s, a) is approximated in case
of taking action a ∈ As in state s.

Here, a practical smart scenario for mobile sensors is considered to investigate
the power-saving impacts of the EH process on sensor networks. In addition, in
order to evaluate whether this methodology can quicken the EH procedure in mobile
sensors, a series of simulations is performed. It should be noted that the simulated
environment is defined based on conventional WSN configurations, then simulation
results corresponding to the conventional (Fig. 1.5a) and a FQLA-based EH models
(Fig. 1.5b) are presented, respectively. Here, a basic definition to assess the EH
efficiency over the system is introduced. In this way, the EH rate (EHR) is defined

as kEH.
(
d0

EH/dt
EH

)2
to show the effectiveness of EH process for all mobile sensors

distributed over the network, where kEH is a positive coefficient and dt
EH indicates

average distance between sensors and PSs at the time of t. According to the results
(Fig. 1.6), a performance degradation can be observed when the exact knowledge
of PSs’ locations is not available. In this case, unlike the perfect case, mobile
sensors are exploring PSs using partial location information prepared by M2M
communications.

Now, as a special case, another intelligent methodology is investigated in which
a centralized image-processing (IP) technique is utilized to monitor the estimated
network coverage and then to identify the potential locations for EH, i.e., red
regions which indicate high level of RF ambient energy. The mobile sensors at that
point endeavor to get to these areas during smart motions, in order to improve the
network lifetime. This process is modeled based on the simulated HetNet coverage
as plotted in Fig. 1.7. As stated before, smart sensors around the HetNet will try to
move toward these areas to harvest energy and therefore to accelerate the battery
charging process over some potential areas for the EH. As a result, the accuracy of
the estimation of network coverage plays a great role to provide an efficient EH.
In this technique, red areas are called peak energy points, and are assumed as the
peak points of mountains. To continue, the IP-based algorithm, called peak detection
algorithm can be exploited to find the peak points, which is the process of exploring
for the mountains’ peaks, i.e., red areas. In fact, a peak can be deduced as a higher
location (i.e., higher energy for the EH model) compared with surrounding regions.
Note that, in general, the concept of peaks in a specific geographical space has
various interpretations [41].

Here, the peak energy regions, i.e., the red areas in the network (Fig. 1.8), are
determined. As can be seen in Fig. 1.9, the peak detection is done using a mean-shift
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Fig. 1.5 Coverage map for conventional and intelligent EH-enabled WSNs. (a) Conventional EH
model. (b) FQLA-based EH model
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Fig. 1.6 EH rate for static
and dynamic sensor scenarios
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Fig. 1.8 Coverage peak
detection (i.e., potential EH
areas) for sensor networks
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Fig. 1.9 Peak detection
process for the network
coverage based on the
mean-shift algorithm

algorithm [41]. We denote by Γ (μ, v) the correlation surface having the origin at
the highest peak. Note that Γ is obtained via the mean-shift algorithm in which the
estimated points for the EH peaks are iteratively updated over the network coverage.
Therefore, in an iterative way and according to mean-shift rule, each point (x, y) is
updated until a stable state is reached.

The simulation results given will show how the FQLA can control the sensors’
mobility to reach those potential EH areas based on smart movements (Fig. 1.10).
Consequently we can understand how the FQLA can speed up the process of wire-
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Fig. 1.10 Mobility of sensors to detect potential EH areas (i.e., peaks) over the HetNet

less EH, i.e., battery charging, for randomly distributed sensors over the network.
As mentioned, the essential methodology is built on a centralized IP approach.
More specifically, a centralized IP unit is deployed to monitor and estimate the
instant coverage map of the HetNet, and then to detect the red areas, according
to the described peak detection process. By checking the simulation results (Fig.
1.11), as expected, one can similarly observe the performance degradation in the
case of partial peak information for the average EHR. The precise information of
peak locations are assumed to be accessible to all sensors when the perfect case is
considered.

1.5 Conclusions and Suggested Readings

The ever-growing market of communication devices leads to increase in demands
for efficient power solutions. In addition, the developing interest for green powered
systems and smart networks is additionally to be a noteworthy driver for the
worldwide EH market. The problem of battery lifetime and EHTs is as relevant
to research organizations as it is to companies and consumers. Currently, a few
standalone EHTs can help to significantly alleviate this issue but researchers and
companies should collaborate together to come up with intelligent EH mechanisms
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Table 1.3 Major topics and the latest research article on energy harvesting technologies

Topics References

EH optimization and approximation algorithms [42–44]
Joint operation scheduling (routing, data gathering, ambient harvesting) [45–47]
WPT devices deployment [48–50]
Electromagnetic energy harvesting and circuits and systems [51–53]
Simultaneous wireless information and power transfer (SWIPT) [54–56]
Green powered infrastructures and markets [57–59]
Battery and energy storage elements [60–62]
RFID-related electronics, self-powered sensors, and wearable devices [63–65]
Biomass, biofuel, and bioenergy [66–68]
Intelligent and nature-inspired optimal algorithms for EH [69–71]
Energy-efficient and D2D-based wireless communications [72–74]
Rechargeable sensor networks [75–77]

to impact upon the design and appearance of future smart networks. This chapter
reviewed profound analyses and contributions in the board area of EHTs and EH
market along with some intelligent EH scenarios through computer simulation.
Table 1.3 summarizes the general topics to prepare a comprehensive perspective
on the recent studies in this area.
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Chapter 2
Electricity Market Pricing: Uniform
Pricing vs. Pay-as-Bid Pricing

Alireza Akbari-Dibavar, Behnam Mohammadi-Ivatloo, and Kazem Zare

2.1 Introduction

As practical economic approaches, the auctions are used in electricity markets
trading. The auction leads to awarding some participants attend a financial program
and compete according to market rules. Any auction is based on three fundamentals,
bidding, clearing, and pricing rules. The bidding rules determine the quality and
quantity of submitted bids. The clearing rules determine how to settle the market,
choose the awarded participants and determine the amount of traded product. The
pricing rules determine at what price the production will be traded. The electricity
market auctions are sealed-bid auctions, in which pre-qualified bidders submit their
bids to the market simultaneously so that they are not announced about each other
submission. In these kinds of auctions, each participant submits only one price
offer for each segment of production. The main disadvantage with the sealed-bid
auction is that winner participants do not have information about rivals’ revenue
and feel that they are experiencing losses, since they have not estimated the cost
accurately, which is called “winner’s curse” [1]. In fact, they believe that they were
able to gain more profit, if they had forecasted the prices accurately.

There are many kinds of auction designs used in electricity markets around
the world. The first group is named sealed-bid auctions, including first sealed-
bid auctions, uniform price auctions (UPA), and pay-as-bid auctions (PABA). The
second group is dynamic pricing auctions, in particular, descending clock auctions
for electricity markets. Third, the hybrid auctions contain a combination of the
mentioned auctions, e.g., descending clock auction followed by PABA, or first-
price sealed-bid stage followed by an iterative descending auction, and sequential
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auctions [1]. We will focus on the most used auction types in electricity markets,
i.e., the UPA and PABA.

In electricity markets, there is another subcategory regarding the auctions,
namely, one-sided and two-sided auctions. The first one refers to some kinds of
auctions, in which only one side participates strategically and submits its offers.
On the other hand, in two-sided auctions, both sides are asked to bid. Electricity
markets can be traded in both forms; however, the one-side auctions are dominant,
since the electricity is somewhat an inelastic good, moreover, usually, the demand-
side does not tend to encounter with the rules of the power market. In an ideal
restructured power system, the generation companies (GenCos) are independent
of the government and transmission systems. They submit their selling offers
separately to the market as sealed price-quantity pairs, which are arranged according
to their production costs, i.e., the variable cost associated with the amount of
production. System operator as an auctioneer aggregates the submitted offers and
arranges them considering their economic merits and by estimating load demand,
clears the market, dispatches generators and determines the market clearing price
(MCP). A feasible solution should meet loads, economic viability, and system
securities [2].

In competitive electricity markets, producers take bidding strategies to make their
profit as much as possible. The behavior modeling of power producers leads to the
subject of power transaction games. These games are known as non-cooperative
games, in which all participants try to maximize their profit without considering
others’ welfare. It should be pointed out that the power transactions are known
as static auctions since all participants submit their bids at the same time. The
electricity market is run repeatedly, which is known as the repeated game, in which
participants learn the strategies progressively. These games are held as imperfect
and complete information games; the first one refers to a set of games, in which
the participants are not announced with the structure of system and with other
participants’ strategy, while the second one refers to a set of games, in which power
producers are informed about the strategies of other participants made recently [3].

Considering the capacity of each participant, it belongs to sets of price-taker
or price-maker group. The price-taker participants engage in the power market
and have not enough authority to influence the market situation by their actions,
while the price-maker participant can pose market power—as they can change the
situation of the market in a way that it is profitable for themselves. This condition
holds in an oligopolist market, in which there are few power plants, and their
actions influence the market’s price. The market power is defined as the ability of
participants in changing prices to their benefit. Two types of market power have been
introduced by the literature, i.e., economic withholding and physical withholding.
In economic withholding, generators bid highly above their actual marginal cost;
hence, the average market price goes up. In physical withholding, generators hesitate
in providing full capacity, so by this mean, the active production is reduced in the
market, and the market price increase occurs [4, 5]. The market power is measured
by concentration ratios such as Herfindahl–Hirschman Index (HHI) [6], generalized
HHI, or Lerner index [7].
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It is worth mentioning at the end that the primary mission of deregulated markets
is to breaking the traditional monopolistic environment and adding efficiency to the
market clearing process. Hence a good auction selection is of great importance in
the power market operation [8].

2.2 Contributions

Despite existing works that test and advocate one pricing scheme using evolutionary
algorithms, this chapter looks on the published works and highlights the critical
deductions from each one. Selecting a proper pricing mechanism for electricity
markets is a sophisticated job and depends on each market’s attributes. Hence, a
generalized prescription cannot be extracted from the works, but reviewing these
kinds of literature can provide valuable insights to the market auctioneer and
operators to operate the markets with higher efficiency.

2.3 Electricity Market Pricing

There are three main auction types utilized in power markets, namely, UPA (or non-
discriminatory), PABA (or discriminatory), and Vickrey auction, which is known as
Vickrey–Clarke–Groves (VCG) pricing in multi-unit power system economic [9].

2.3.1 Vickrey–Clarke–Groves (VCG)

In Vickrey auction, the winner GenCos will be paid at the price of second-highest
bid unlike standard sealed-bid tenders; hence, it is reputed to second-price sealed-
bid auction, and Vickrey believes that this makes participants’ bid more truthfully
[9]. About the Vickrey auction, it should be noted that this kind of action may
reduce the collusion and enhance the willingness of the bidders to bid at their real
cost, but has severe problems, which is not suitable for electricity as a non-storable
and inelastic good, and it creates a complex framework for bidders. Furthermore,
the auctioneer must solve a substantial mixed-integer problem in large-scale power
systems. So, there are few works that investigate the multi-unit Vickrey auctions for
power markets [10]. In [11], some reasons are expressed regarding the weakness of
Vickrey’s auction for real electric markets.
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2.3.2 Uniform Price Auction

The uniform pricing auction (UPA) or non-discriminatory pricing or competitive
pricing or system marginal pricing is a kind of sealed-bid auction. In UPA, all of the
winners would be paid at a single pre-determined price, i.e., MCP, irrespective of
what they had bided, and the last winner company, which is called “marginal unit,”
will get the bided price and have not extra surplus. This auction is a generalized
form of Vickrey auction [12] and is introduced by Friedman in the 1960s [13]. The
process of clearing market regardless of pricing rule is straightforward. This process
is based on the equilibrium of generation and demand considering economic indices.
The independent system operator (ISO) aggregates the supply offers and demand
bids in a spot market, and arranges them in the form of ascending and descending
curves, as shown in Fig. 2.1. The intersection of these two curves will determine the
market price and consequently, the cleared quantity, which satisfies the aggregated
cost of winner sellers and demand of winner buyers, respectively [2]. All sales occur
at market price. The shaded area in Fig. 2.1 shows the total revenue of winner
producers. The upper area of the shaded area represents the surplus of buyers. In the

Fig. 2.1 The mechanism of UP auction
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spot markets, there is only one MCP; however, there might be more than a single
particular clearing price (or quantity) in private bilateral contracts, according to the
agreements between buyers and sellers. Even between various zones under zonal
pricing, the MCP can be different. The zonal pricing scheme divides an electrical
network into several zones, where in each zone, the probability of congestion is
ignored and the price is unique.

The UPA is in-use pricing mechanism for forward transactions of the energy in
Europe and the USA and is the simplest pricing mechanism from the viewpoint of
the suppliers and consumers. Considering the concept of UPA, the winner sellers
will award the highest accepted price automatically, so there is not a loss for none of
the sellers if they had bided their marginal cost [14]. On the other hand, the buyers
will pay the least possible value for their traded good. Both of one-sided and two-
sided auctions can be implemented through UPA [15].

2.3.2.1 The Advantages with the UPA

In the UPA, the electricity price regardless of the offered prices is the same for all
winners whose offers are less than the MCP. It seems that these make the power
plants to be more honest regarding price bidding. If a producer bids at a higher price
than its actual marginal price, it might be not committed by the ISO and miss out
the opportunity of participation in the market; on the flip side, if it bids at a lower
price than its actual marginal cost, it may be committed for full capacity generation
and will incur loss.

Consequently, offering marginal cost is the best strategy for the power plants to
assure that they will not suffer economically, and also the ISO finds the least price,
in which the demand is satisfied. This is the reason why the UPA is well-known
as an efficient pricing mechanism. It is stated that the UPA is a transparent pricing
mechanism which leads to the efficient selection of the least-cost producers and
social welfare maximization. Considering the expected revenue equivalence, under
no market power condition, the UPA is superior to the PABA in terms of dispatch
efficiency and economic merits [16].

Moreover, in a single-unit case, the UPA theoretically is a cost revealing auction;
however, in multi-unit cases, the probability of gaming still exists, which can reduce
the overall efficiency [17]. It is stated by Nazemi and Mashayekhi [18] that only
producers that their cost is near to the MCP will exercise market power and have the
incentive to bid dishonestly, yet others will not risk losing the market participation
opportunity by offering at above of their actual cost. Furthermore, the UPA creates
opportunity and incentivized small producers to take part and take the advantage
of higher prices determined by large-scale producers [1]. Since the paid price to all
winner producers is the same, there is a single probability distribution for market
prices [19], and this may lead to being helpful to create risk-averse decisions. The
authors of [20] summarize the benefits of the UPA as the following points:
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• Bidding the actual cost from supplier side.
• Minimization of consumer and social costs.
• Equality between all participants.
• Incentives for innovation of technology and efficiency for being more efficient

player.
• Ease of market power mitigation and monitoring.
• At last, the UPA has been tested and well functioned over years in different

markets.

2.3.2.2 The Disadvantages with the UPA

In 2001, it was declared that despite the progress of power market operation
and fuel cost reduction under the UPA, the electricity prices have been increased
in comparison with 1990. The reason was the domination of large-scale power
plants. This was the start of the recasting of pricing rules in balancing markets in
England and Wales, which was known as New Electricity Trading Arrangements
(NETA) [21]. After that, the California Power Exchange reported that pricing rule
transforming to PAB pricing could probably decrease the abuse of market power
exercising and reduce price spikes in spot markets [22].

On the other hand, it is shown by [9] that when the market share of the producer
is increased, without any communication, the other small producers collaborate and
collusion appears among small producers, in a way, they bid at lower price and get
higher cleared price determined by the tremendous power plants despite their small
share. The authors of [20] have shown that this kind of auction experiences market
power exercise easily if no mitigation and monitoring is considered; moreover, the
“hockey-stick” shaped curves constructed from supply curves can lead to price
volatility year by year. The market power exercising through capacity withholding
is discussed by [14], which leads to inefficient dispatch and higher cost. Viehmann
et al. [23] using a Q-learning approach found that UPA leads to higher prices, when
there is an asymmetry sharing between the size of utilities, and if the number of
suppliers is limited.

2.3.3 Pay-as-Bid Auction

PABA is a sealed-bid auction, which discriminates between winners. In this auction,
each buyer will pay his bided price, and each seller will be paid at the price it had
offered [15]. This auction is used when different units of a particular commodity are
sold by different prices and is implemented by governments and central banks to
allocate treasury bonds, for allocation of carbon credits and for electricity generation
payments. Considering the rule of gaining profit, each producer offers higher than
her actual price to gain more profit, and by forecasting MCP and by offering near it,
each player refuses to reveal her actual cost. In other words, the participants forecast
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Fig. 2.2 The mechanism of PABA

the MCP or at least estimate the cost function of rivals. In this regard, the Wolak’s
cost function estimating tool, which is designed for the UPA, has been modified by
[24] for Iranian PAB-based market. The estimation is based on the weighted average
prices through defining an expected profit of the firm and the first-order conditions.

Figure 2.2 shows the market-clearing under the PABA. The market clearing
process is similar to the UPA. The revenue paid to generators is highlighted by the
shaded area. As a well-established tradition, the buyers will pay the average price
instead of market clearing price. All players submit their offers higher than their
actual cost to gain more revenue. This leads to higher prices and lowers the cleared
quantities, which reduces market efficiency, as shown in Fig. 2.3.

On the other hand, there is a converse relation between the price offered and
the probability of acceptance in the market and the expected profit gained so the
decision-maker should compromise between two mentioned factors [25]. The PABA
has attracted attention because most markets in England and Wales are traded
through bilateral agreements, which are settled by PABA [26]. Also, PAB pricing is
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Fig. 2.3 Effect of unrealistic bidding behavior

the dominant pricing mechanism for renewable-based generation sector, e.g., solar
generation and wind turbines, in most European countries [27].

Besides, the balancing markets in some European countries such as Germany
and Italy are settled under PAB pricing [28]. In this regard, a multi-leader-common-
follower structure is proposed by [29], which is a bilevel optimization problem.
At the upper level, the producers try to find optimal offering strategy with given
demand, and at the lower level, the regulator runs the market and dispatches the
generation. The same authors in [30] stated that in PAB-based markets, the linear
bidding is more profitable than quadratic bidding for producers. The optimal linear
bidding curve for each producer is called “best response,” and under circumstances
where no best response is found, the optimal offering strategy can be achieved
by a sequence of quadratic bidding converging to “limiting best response” point
[30]. However, the authors of [31] believe that UP pricing reduces the strategic
behaviors of the participants, so it is superior to the PAB pricing for balancing
markets. Hu et al. [32] state that PAB pricing mechanism of balancing markets of
Germany or Italy leads to low liquidity of the intra-day markets and consequently
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causes higher transaction costs of the market participants. Finally, considering
the European Commission proposes in creating an integrated balancing market
for whole Europe, using game-theory approach, the authors of [33] stated that
both German balancing market with PABA and future Europe market design with
UPA have satisfying results in terms of price competitiveness and market outputs.
Furthermore, switching to the UP market will not persuade participants to bid
honestly and reveal actual costs but leads to underbidding.

2.3.3.1 The Advantages with PABA

The PAB pricing mechanism is a price setting; hence, the accepted bids have less
flexibility in choosing the shape of their offering curve and reduce the possibility
of multiple equilibria point. Besides, the PABA will result in flatten bidding, which
improves competitiveness. In PAB governed market, the participants only rely on
their private cost function and capacity to provide optimal bids. Also, they have no
information about others’ bidding and cost functions, so they would bid near their
production cost truthfully. Furthermore, the increased cost in unequal sharing of
capacity and volatility in bidding behavior is less than the UPA [9]. The authors of
[20] stated that these auctions could reduce the price volatility and market power if
there is a sufficient number of producers, and none of them have not complete data
about others’ offers and final cleared price. According to [34], the strategic bidding
of different sized producers will not take place in discriminatory auctions, where all
winners are paid based on the output of each of their plants. It is proved in [35], the
consumers will prefer PABA when the demand is perfectly inelastic. Moreover, the
risk of tacit collusion under PABA is relatively lower than that under UPA [36].

2.3.3.2 The Disadvantages with PABA

Discriminatory pricing is used in Iran and some Latin American countries, and the
assumption is that the large-scale power plants with lower cost will bid lower prices,
and consequently, the overall consumer surplus and social welfare will be high.
However, this assumption seems very optimistic and should be debated. Since the
payments are based on the offers of sellers, the discriminatory pricing cannot make
an incentive for power plants to offer at the actual price [17]. From Ref. [20], this
auction abets lower-cost producers to offer at higher prices, and this makes them
not committed in the market, while high-cost resources are committed, as shown
in Fig. 2.4. The unrealistic bidding leads to insufficient dispatch and unreal MCP,
consequently rises the consumer payments and destroys the social welfare. It creates
economic advantages for incumbents and large-scale power plants while it violates
small and new entrants since they are not acquainted with the market structure
and cleared prices to forecast MCP accurately. Also, the effort for reducing MCP
will lead to other non-optimal dispatches, which spoils economic operation. Under
this pricing scheme, the equilibrium depends on probability distribution of demand
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Fig. 2.4 Inefficient dispatch under PAB auction

shock which makes producers to take randomized strategies instead of deterministic
ones, known as mixed strategy Nash equilibrium. Noted by [37], some barriers exist
for small producers in the PABA, which can be destructive in long-term runs. It
is shown by [38] that the PABA lead to lower costs for consumers in short term;
however, it will result in incorrect pricing signals for investment and consequently
increases the long-term costs.

2.4 Switching from UPA to PABA?

While economists claim that the UPA and PABA will lead to the same expected
revenue and consumer surplus, this is conditional on the assumption of accessing to
complete information of players cost function. For instance, it is shown by [39] that
both auctions will lead to an equivalent revenue when the sellers are announced by
the value of buyers and set their optimal supply and reserve prices, and when the
information of demand is incomplete, the optimal design PABA weakly dominates
the UPA. Figure 2.5 shows the total payment equivalence under both UP and PAB
pricing mechanisms for perfect information environment, as the shaded area below
the MCP is equal for both auctions. In the PABA, under complete information
environment, the players know the MCP and offer at the maximum acceptable price
to get maximum profit, and under UP, all of the generators offer at their true marginal
cost and they will automatically receive MCP (i.e., the maximum acceptable price).

However, the perfect information assumption does not always happen, and if
the demand is uncertain, the UPA will be vulnerable and results in price volatility,
while under the PABA, the markup function will compensate some part of the
demand uncertainty [40]. On the advocation of PABA, Oren stated that this auction
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Fig. 2.5 The equivalence of UP and PAB pricing payments under perfect competition

is prioritized when there is a need for fragmentation of product, e.g., in reserve
markets, where the performance (in terms of spinning reserve, non-spinning reserve,
regulation, etc.) is criterion for payments [40].

There is an argue for UPA or non-discriminatory pricing among winners since
the payments are the same regardless of merits and performance; hence, this pricing
mechanism should not be chosen when some of the generators are under the control
of the government. Meanwhile, the UPA can increase the possibility of collusion
in the market [15]. When some influential players try to exercise market power to
increase the MCP, other feeble players will automatically complicit without any
action, and the overall efficiency will go down. In line with the previous expression,
the regulator, Ofgem, (or members of its supervising authority, GEMA) expressed
that the UPA can increase the market power exercising of large-scale producers
[21]. However, it is proved that the collusion in terms of capacity withholding still
exists under PAB pricing somewhat; moreover, proof of abuse under PAB pricing is
harder since the suppliers can claim they used “guess the clearing price” principle
and forecasted prices wrongly [6].

In an oligopoly situation, it is stated by [41] that the average prices are higher
in the UPA than the PABA, but it is difficult to deduce what pricing rule is more
efficient.

By analyzing bidding behavior of large-scale power plants, Yamamoto and
Tezuka [42] found that in PABAs, the price bids of high-cost generators reach to
their upper limit and this makes an opportunity for fringe power plants to win. In
PABA, the power plants’ price curve is flatter, and they offer the same prices for
each quantity they sell [42]. But when the scheme is changed from the UPA to
PABA in the monopoly, the power plants with market power behave insufficiently,
which reduces social welfare [42].
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Kahn et al. [43] have stated that the failure or success of a producer in UPA
depends on its merit and this is a sign of an efficient market, while in PAB-
based markets, the success owes to the forecasting of the behavior of other rivals.
Furthermore, the small producers will not be successful in PAB markets, since
generally they have higher forecasted cost and will be injured by the implementation
of market power by large-scale power plants. Also, the immediate shift from UP to
PABA may decrease the efficiency and competition among generators.

Using an analytical evolution in a perfect market and considering elastic demand,
it was expressed by Federico and Rahman [44] that the switching from UPA to
PABA can decrease both consumer payment and total welfare, and abuse of market
power under PABA by the monopolist is harder than that in the UPA.

The problem of bidding strategy of GenCos using experimental economics is
studied by [45] for both UP-based and PAB-based markets. Some remarkable results
are obtained. Firstly, the average market price is higher in the PAB pricing than that
in the UPA pricing and the prices are more stable, which leads to further payments to
GenCos. Secondly, the prices are getting higher under both settlements when loads
are becoming less elastic. Finally, under the UPA, the competition among GenCos
is more intense.

For reactive power procurement, it is mentioned by [46] that the UPA is not
preferable since it pays all participants the same price without considering their
performance and merit regarding system condition and their location, so the PAB-
based market is recommended for these kinds of power delivery.

In markets with high penetration of renewable resources, due to the variability
of the production of these resources, they offer zero price to the market, when the
settlement is UPA and receive the MCP. However, this reduces the income and may
lead to discouragement where the large portion of the energy is provided by this
kind of resources. The authors of [47] tested changing from UP pricing to PAB
pricing, by two energy share scenarios with different renewable penetration rate.
The results indicate that the UPA is superior for the fluctuating renewable resources.
The authors of [48] compare the bidding behavior of producers in Iranian (PAB-
based) and Danish markets (UPA-based) with respectively low and high penetrated
wind turbines. The results indicate that in Iran’s market, with system capacity
margin increment, the trends for higher price bidding are disappeared and peak load
condition leads to lower variability in bidding behavior compared with the Danish
market. Also, it is concluded by [49] that changing the pricing rule from UP to
PAB will affect the bidding behavior of wind farm, as they show a non-conservative
behavior but also leads to lower expected revenue. The photovoltaic systems sizing
in spot markets under both pricing schemes is addressed by [50] employing a genetic
algorithm. It is found that the net present worth of installed solar systems for the
owners of these systems under UP pricing is a little more than that in the PAB-based
market.

For day-ahead markets, it was shown by [51] that the changing from UPA to
PABA increases the prices because of the collective learning models. Producers
tend to find MCP, and this leads to bidding up. However, the referred phenomena
might be mitigated in real-time markets.
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Based on two market benchmarks, namely, the monopoly and the perfect
competition, the authors of [44] have deduced that demand-weighted average prices
will increase under PABA compared with the UPA if demand is highly uncertain.
Also, players with market power will react inefficiently under PABA, may lead to
lower output and welfare deterioration and probably increases the market power
exercising in the medium run. Finally, the UPA structure incentivizes players
to compete by their supply function considering demand uncertainty in repeated
interactions; however, forcing them to compete by pricing under PABA by using
continuous bilateral contracts may remove these equilibria.

Ren and Galiana [52, 53] theoretically and by simulation have been found that
the expected profit of generators and consumers’ payments are equal in both UPA
and PABA; but, the variation of these expected profits and payment are more under
UPA. Moreover, the risk of not realization of these expected values is higher in
the UP.

Xiong et al. [54] compared the UPA and PABA using a multi-agent framework
where producers develop bids using Q-learning algorithm. The authors have found
that PAB pricing can reduce the market price and price volatility. Furthermore, in
the PABA, the aggregated supply curve is more flattened than that in UPA.

The authors of [55] analyzed the strategic behaviors of a tremendous player and a
small player in a short-term run under both UPA and PABA using game theory and
auction theory. They found that under a static game considering two players and
inelastic demands, the Nash equilibrium point under PABA yields less revenue than
UPA. Also, under the elastic demand assumption, the PABA leads to great expected
served demand.

Using an adaptive game, it is shown by [56] that when the market is approaching
in perfect competition, the market prices go down under the UP mechanism.
However, when the market structure is likely to oligopoly, the PAB pricing is more
efficient. Moreover, the PAB pricing leads to a uniform sharing of generators, while
under the UPA producers have various market shares.

Holmberg [57] suggests switching from the UPA to PABA, when the risk of
power shortage is not too high, and the market is tended to be imperfect. Also, from
the viewpoint of the auctioneer, in the presence of risk-averse producers, the PAB
pricing has priority.

On the contrary, Genc [58] stated that there is higher risk in the presence of
chaotic bidding or mixed strategy of producers under PABA, which makes prices
unpredictable and this is harmful to both consumers and generators.

The pricing behavior of producers is modeled in Vickrey, UP, and discriminatory
auctions by [59]. It is found that firstly, the UPA always outperforms by the
discriminatory auction in terms of consumer surplus and secondly, the Vickrey
auction is the best auction considering productivity efficiency. However, another
comparison between three auctions is ambiguous. Furthermore, the decision about
selecting UPA or PABA requires a compromise between productive efficiency and
prices amount.
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Finally, the best strategy seems to be a hybrid auction combining PABA as the
last stage of payment and the UPA is used in the allocation of generation and
classification part. This scheme is called “simultaneous descending clock auction
plus PAB negotiation stage,” which reduces the collusion and inefficient dispatch
problems in one go, according to [60].

2.5 Conclusion

In this chapter, a brief introduction to the electricity market has been provided.
Various auctions are outlined. Uniform, discriminatory, and Vickrey auctions are
suggested for electricity markets. Each auction and a comparison between them
are presented. Uniform and discriminatory pricing are compared to each other
according to existing literatures. However, the various authors have their own
opinions, the selection between two pricing settlements is still ambiguous, and as
a general statement, it depends on the effects of each pricing rule on the market
performance. As a general conclusion, in the following, the definite attributes and
results of each pricing mechanism are summarized:

• UPA should not be chosen in government-oriented power markets.
• UPA may lead to tacit collusion between producers, especially small generators.
• UPA is vulnerable against demand uncertainty.
• UPA can encourage producers to reveal their actual cost, which is beneficial for

long-term planning.
• The UPA may lead to innovation and improvement of system investments.
• There is the winners’ curse under UPA between winner sellers.
• PABA will insult small producers unless they are large enough.
• PABA does not reveal the actual cost of producers.
• The probability of collusion is lower under PABA.
• Under PABA condition, the cheap plants are concerned regarding their bidding

since they can gain more profit, but there is a considerable risk.
• The PAB pricing is useful in the case of frequency regulating markets or reactive

power compensation services, where the performance is important.
• The PABA may lead to consolidation of the industry and concentration of the

market.
• Seems the UPA outperforms by the PABA in terms of renewable-based future

markets.
• The best auction design can be formed as a combination of both UP and PAB

pricing schemes.
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Chapter 3
Integrated Gas and Power Networks

Alireza SoltaniNejad, Ramin Bahmani, and Heidarali Shayanfar

Nomenclature

Sets

h Index for energy hubs
l Index for transmission line
η Index of natural gas supply contract
GU Set of gas-fired generating units

Parameters

Fk Maximum capacity of transmission line k
Zki Gas compressibility factor at compressor inlet
αk, βk, γ k Gas consumption coefficients of compressor k
Rmax

k Compression ratio of compressor k
πmax

i , πmin
i Max and min pressure at node i

WSmax
i , WSmin

i Max and min amount of gas supply at node i
A Pipe-nodal incidence matrix
NC Number of candidate compressors and existing compressors
NCG Number of coal-fired generators
NWS Number of gas suppliers
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NWL Number of gas loads
WLi Natural gas load at node i
CarbonCost Carbon emission price
PlineCosti Investment cost of installing pipeline i
ClineCosti Investment cost of installing compressor i
ElineCosti Investment cost of installing electricity line
ξ1, ξ2 Carbon emission coefficient of coal-fired generator and gas-

fired generator, respectively
Mk Large enough input value
P max

gk , P min
gk Max and min capacity of generator k

Costgasi Gas purchase cost of supplier i
ai, bi, ci Coefficients of the operation cost of generator i
PLi Real power load at node k
μ1, μ2, μ3 Gas fuel rate coefficients of generator i
GHV Gas gross heating value
Mij Gas pipeline constant depending on diameter, length, tempera-

ture, friction, and gas composition
ς Coefficient of converting net present value to annualized

investment cost
pfGas

g Participation factor of gas supply facilities g [p.u]
CFi, t Capacity factor of electricity unit i during time period t [p.u]
∅ Energy conversion factor
HHV High heating value
e

ptg
a Efficiency of PtG facility a

σ Discretized storage and inflow/outflow rate used to linearize
the properties of the NG storage

ρin, ρout Inflow and outflow rate of storage
NT Number of periods in the duration time
LE

t Electricity power output within energy hub
Wo Cost of firm natural gas contract
SU, SD Startup and shutdown cost of a unit
ρLS Penalty price of electricity load shedding
PLS Electricity load shedding
VOLL Penalty price of shed load
ρgas, gss Price of natural gas and operation cost of gas storage s

Variables

zi Binary decision variable, 1 if electricity line i is installed, and 0
otherwise

fPk Natural gas flow of pipeline
Hk Power for compressor k
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σ Specific heat ratio
fck Gas flow rate at compressor k
π i, π j Pressures at node I and j, respectively
τ k Amount of gas tapped by compressor k
xi Binary decision variable, 1 if pipeline i is installed, and 0 otherwise
yi Binary decision variable, 1 if compressor i is installed, and 0

otherwise
zi Binary decision variable, 1 if electricity line i is installed, and 0

otherwise
WSi Natural gas injection of gas supplier i
fpi Natural gas flow of pipeline
fck Gas flow rate at compressor k
flk Power flow on transmission line k
Bk Electrical susceptance of transmission line k
θ fr(k), θ to(k) Voltage angle at “from” and “to” buses of transmission line k
Pgk Real power supply from generator k

p
G,N
g,t Gas production of new gas supply projects g in time period t [TJ/h]

p
C,N
g Gas supply capacity of new gas projects [TJ/year]

p
G,Ex
g,t Gas production of existing gas supply projects g in time period t

[TJ/h]
pN

i,t Electricity production of new unit i during time period t [MW]

p
C,N
i Power capacity to be built for new unit i [MW]

pEx
i,t Electricity production of existing unit i during time period t [MW]

p
C,Ex
i Power capacity of existing unit i [MW]

Gaht Gas production of PtG facility a at load block h of year t
P bc

aht Base-case power consumption of PtG a at load block h of year t
ψ NG flow rate between NG node s i, j in time t
AC Total available capacity
AUint, ALlnt Binary variable which is equal to 1 if unit i/line l is available, being

0 otherwise
RM Grid resilience metric
fi() Electric load loss cost function
pdi, b, t Load curtailment
W Cost of natural gas contract
P 0

i,t Generation of unit I at hour t

LD0
j,t Preventive load shedding at bus at hour t

vsp, t Production of natural gas in well sp at hour t
GCs, t, GDs, t Storing/releasing rate of storage s at hour
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3.1 Introduction

Electricity is one of the best forms of energy that has features such as easy
controllability, conversion to different types of energy, convenient transmission, and
economical production compared to other types of energy, and such characteristics
of electrical energy lead to increased consumption and the tendency of technological
progress toward electrical technology [1]. Note that the emergence of smart power
networks can create demand-side management to control demand, but increasing
demand is proportional to population growth over time, requiring the development
of resources to meet that demand [2, 3]. Two approaches have been developed in
order to meet the increased electricity demand.

The first approach is the development of traditional hierarchical power systems.
Traditional power systems include centralized power plants as generating units,
transmission systems, subtransmission, and distribution systems that deliver elec-
trical energy from production to end users. With the development of power plants,
transmission networks, subtransmission, and distribution networks, this increase in
electricity demand can be met [4]. Concentrating on electricity generation not only
does not provide the opportunity for efficient power generation technologies due to
the high distance from the consumer but also makes high losses for the transmission
of electrical energy to the end users. Also, due to hierarchical energy transmission,
the reliability of the power system is reduced, since disruption in any part of the
generation, transmission, and distribution can cause a power supply failure.

The disadvantages of the traditional power systems development approach
have increased the tendency toward consumer side production and the presence
of distributed generations in the subtransmission and distribution systems. The
presence of these low-capacity products in the power grid has also led to the
emergence of structures such as micro-grids as well as concepts such as virtual
power plants, which turns distribution networks active rather than reactive parts of
the system [5]. The second approach can address a variety of perspectives, including
the cost of electricity generation, power system efficiency, reliability, environmental
issues, and other issues to the power system. In both of the above approaches to meet
increased demand, distributed power generations have been added which could be
gas-fired units.

In the past decade, as natural gas has less pollution, lower prices, and more
abundance than other fossil fuels, its consumption in the electricity generation sector
is increasing. Transmission of natural gas from wells to end users requires pipelines,
storage facilities, compressors, and valves. Figure 3.1 schematically illustrates the
electricity and natural gas systems. Gas flow paths from gas wells to gas units
and other gas consumers are shown. With some similarities to the power system,
the steady-state gas flow of a pipeline is a function of the pressure difference
between its two ends, the gas properties (compressibility factor, specific gravity),
and the physical properties of the pipe (diameter, length, friction coefficient). It can
be concluded that the importance and role of gas pressure in the gas grid is the
same as the voltage in the grid. Compressors are installed in a location where the
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Renewable distributed

generation
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Fig. 3.1 Physical interdependency of gas and electricity networks in transmission, distribution,
and demand side

transmission network needs to be increased to enhance the transmission capacity
of the grid so that by increasing the gas pressure, it is possible to transfer gas
to distant locations, which is very similar to the performance of the transformer
in the power system. These compressors have power consumption that must be
supplied. At critical points in the power grid where the compressors cannot be
fed, the compressors are fed using a gas turbine. The amount of gas consumed
by a compressor depends on the pressure increase. Valves and control devices
in the gas grid are the same as breakers and fuses in the grid. Unlike electricity
where large-scale storage is not yet technically or economically feasible, natural
gas can be stored for future consumption. There are three main types of natural
gas storage facilities: (a) underground storage, (b) LNG tanks, and (c) pipelines.
Another important difference between electricity and natural gas systems is that
electricity moves at the speed of light, while natural gas is transmitted at a maximum
speed of 30 km/h.

The distinct advantages of combined cycle units such as high productivity,
rapid response, and shorter installation and commissioning time have doubled the
importance of gas. As a result, government and market agents have increased
investment in the construction of new gas plants [6]. Furthermore, the abundance
of natural gas resources in many places, such as the USA, Russia, Europe and
Latin America, can be considered as the main factor in the growth of natural gas
consumption. The electricity and gas infrastructures are interconnected not only
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by gas units but also by other factors, as shown in Fig. 3.1. As it can be seen
from Fig. 3.1, the gas generating units have created this connection. Also, electric
compressors that are present in the gas transmission network are another link
between the electricity and gas networks. P2G equipment, which is a consumer
of electricity in the power grid and a natural gas generator in the gas grid, are
also other linking factors. Moreover, as illustrated in Fig. 3.1, the two electricity
and gas infrastructures at the distribution and sub-distribution levels are distributed
generations including CHP units and fuel cells. On the demand side, the concept
of hub is a link between the two infrastructures, which can convert the loads of
the two networks using different switching devices [7]. For example, heat loads for
consumers can be supplied by both gas furnaces and electric heaters, which is the
transfer of load from one infrastructure to another.

All of the above factors, as summarized in Fig. 3.1, are the physical link
between the two electricity and gas infrastructure. Despite the link between the two
infrastructures, it is necessary to implement the operational planning and expansion
of these two infrastructures in a unified, integrated manner so that the achieved
program not only incurs the least possible cost for integrated electricity and gas
systems but also provide the security standards of gas and electricity networks [8].

In this chapter, the physical relationship between electricity and gas networks
is considered. This correspondence is investigated in transmission and distribution
levels. Moreover, the effect of several facilities such as PtG and gas-fired units is
studied. In addition, various approaches such as resiliency and reliability are also
taken into account.

The rest of the proposed chapter is listed as follows: the expansion co-planning
of electricity and gas networks is discussed in Sect. 3.2. Afterward, the operation
planning of integrated gas and electricity system is presented in Sect. 3.3. Finally,
the conclusion and future works are described in Sect. 3.4.

3.2 Expansion Co-planning of Electricity and Gas Networks

With the increasing consumption of gas in the electrical and nonelectrical sectors,
the development of corresponding infrastructure is essential to meet the demand
of both power plant and non-power producer customers. Considering the bene-
fits of electrical energy mentioned in the previous section, the development of
power system is also of great importance. Since these two infrastructures are
interconnected through a great number of equipment in different sectors, it therefore
requires integrated planning to be able to make decisions on capacity and timing
of new equipment installation based on economic considerations, environmental
issues, and security factors [9]. Gas pipelines, gas import pipeline capacity, gas
storage equipment, compressors, and LNG terminal capacities are among the
equipment to be developed and strengthened in planning the development of the gas
transmission network. The development of power transmission networks focuses
more on strengthening and building electricity transmission lines.
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In most integrated expansion co-planning of the electricity and gas networks,
the objective function is to minimize the total cost of operation and expansion, and
hence, in the modeling of this program, the constraints of the networks electricity
and gas operation are also included. Since the computational burden of integrated
electricity and gas planning is high, most of the studies use the simple form of
operating constraints. Although some models have used the exact model, they have
finally provided a method to reduce the computational burden. Here, like most
studies, we use a simple model.

Equations (3.1)–(3.18), similar to Reference Modeling [10], are used toward the
co-operation planning of electricity and gas infrastructure. Equations (3.1)–(3.18)
model the relationships in the operation planning of the power system. Equation
(3.14) shows the power equilibrium requirement per bus of the power system at each
time interval. The constraints (3.10) and (3.12) represent the permissible quantity for
power through existing and constructible DC power lines, respectively. The DC load
distribution equations for the existing and constructible power lines are presented in
Eqs. (3.9) and (3.11), respectively.

−zkfPk ≤ fPk ≤ zkfPk (3.1)

Hk = σ fck

[(
πj

πi

)Zki

− 1

]

(3.2)

τk = γkH
2
k + βkHk + αk (3.3)

1 ≤ πj

πi

≤ Rmax
k (3.4)

0 ≤ πj

πi

− 1 ≤ ykR
max
k (3.5)

πmin
i ≤ πi ≤ πmax

i (3.6)

WSmin
i ≤ WSi ≤ WSmax

i (3.7)

NP∑

i=1

Ami. fpi +
NC∑

i=1

Umi. fci +
NWS∑

i=1

VmiWSi −
NWL∑

i=1

CmiWLi −
NC∑

i=1

Dmiτi = 0

(3.8)

flk = Bk

(
θfr(k) − θto(k)

)
(3.9)
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−Fk ≤ flk ≤ Fk (3.10)

−Mk (1 − zk) ≤ flk − Bk

(
θfr(k) − θto(k)

) ≤ Mk (1 − zk) (3.11)

−zkFk ≤ flk ≤ zkFk (3.12)

P min
gk ≤ Pgk ≤ P max

gk (3.13)

NL∑

i=1

Tmifli +
NG∑

i=1

GmiPgi −
ND∑

i=1

WmiPLi = 0 (3.14)

WLk =
(
μ1P

2
gi + μ2Pgi + μ3

)
/GHV (3.15)

fP2
k = sgnijMij

(
π2

i − π2
j

)
(3.16)

−M1 (1 − zk) ≤ fP2
k − sgnijMij

(
π2

i − π2
j

)
≤ M1 (1 − zk) (3.17)

−Fk ≤ flk ≤ Fk (3.18)

Equation (3.7) illustrates the equilibrium condition of gas flow in each node
of the gas network. Equations (3.16) and (3.17), respectively, demonstrate the gas
capacity in the existing and constructible pipelines. Equations (3.2)–(3.6) illustrate
the operation constraints of gas compressors in terms of gas pressure before and
after the compressor as well as the physical characteristics of the compressor.
Similar to the power grid, Eq. (3.6) shows the permissible gas pressure range
in each node. Equation (3.15) shows the relationship between the natural gas
and electricity infrastructures through power plants. Equation (3.19) illustrates
the cost of expansion co-planning investment, which includes the cost of gas
pipelines, the cost of installing the compressor, and the cost of developing the power
lines, respectively. Equation (3.20) defines the cost of generating electricity, which
includes the cost of purchasing gas as well as the cost of fuel for non-gas-fired units.
Equation (3.21) is aimed toward calculation of carbon emission cost. The sum of the
three cost functions in Eqs. (3.19)–(3.21) is considered as the objective function in
the expansion co-planning.
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InvestmentCost = ς.

(
NCP∑

i=1

xiP lineCosti +
NCC∑

i=1

yiClineCosti +
NCL∑

i=1

ziElineCosti

)

(3.19)

ProductionCost =
NWS∑

i=1

8760.Costgasi ∗ WSi + 8760.

NCG∑

i=1

(
aiP

2
gi + biPgi + ci

)

(3.20)

CarbonEmissionCost =
NCG∑

i=1

8760.CarbonCost ∗ ξ1 ∗ Pgi

+
NGG∑

i=1

8760.CarbonCost ∗ ξ2 ∗ Pgi

(3.21)

A number of studies have also addressed the development of gas suppliers as
well as the development of generating units in the power system. Equations (3.22)
and (3.23), respectively, show the limitation of gas production in each of the existing
and constructible gas producers. Equations (3.24) and (3.25) also show the capacity
constraints of the existing production units, respectively. It should be noted that in
all of the above modeling equation used for the purpose of integrated development,
a binary variable is used which represents the state of constructing the equipment
after the expansion co-planning has been implemented [11].

0 ≤ p
G,N
g,t,b ≤

B∑

b=1

p
C,N
g,b,w.pfGas

g,b (3.22)

0 ≤ p
G,Ex
g,b,t ≤ p

C,Ex
g,b .pfGas

g,b (3.23)

0 ≤ pN
i,t ≤ p

C,N
i .CFi,t (3.24)

0 ≤ pEx
i,t ≤ p

C,Ex
i .CFi,t (3.25)

If planning for the integrated development of electricity and gas infrastructure
involves the retirement of units such as coal-fired power plants after several years,
the results show that in order to compensate lack of production capacity, it is
required to build more gas units. This will in turn increase the connectivity of the
two infrastructures; and consequently pipelines, compressors, and other gas network
equipment need to be further developed to meet the increased demand for gas in
the power generation sector. As a result, the investment decisions of these two
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infrastructures are strongly linked. Also, considering the retirement of the units in
expansion co-planning of the electricity and gas networks can significantly increase
the computational complexity [12].

As illustrated in Fig. 3.1 another equipment that creates a connection between the
electricity and gas infrastructure is the PtG equipment. Modeling of this equipment
is presented in Eq. (3.26):

Gaht = ∅.P bc
aht .e

ptg
a /HHV (3.26)

This equipment is in fact a consumer of electricity in the power grid and an
injector in the gas grid. One of the applications of PtG equipment is the optimal
use of renewable power sources, especially wind units. With the use of PtG units,
the surplus power of wind units can be converted to gas, thus preventing their loss.
Otherwise, the capacity of the power lines should be increased in order to transfer
the excess power to the consumption areas. Reducing the amount of power cutoff
by wind farms also results in a reduced use of fossil fuels, thus, reducing the envi-
ronmental pollution. As a result, the use of PtG units can increase the penetration
of renewable wind products, delay the development of the electricity transmission
network, as well as reduce the use of fossil fuels and carbon emission [12].

Another equipment used in the gas grid is gas storage. These gas storages,
which are more applicable than electric energy storage in large-scale utilization,
can increase system reliability. The reliability of the system may be reduced due
to a disruption in the gas grid or increased demand for gas units because of high
demand for electricity. Also, it might be the reason for the sudden decline in the
production of renewable units, which gas storages can significantly solve. In the
equations, gas storage modeling is discussed.

Equations (3.27) and (3.28) show the limitation of the injected gas and the storage
output. Equation (3.29) also states that charging and discharging operations do not
occur simultaneously. Equation (3.30) shows the limitation of the level of gas stored
in the storage, which can be between permissible values. Equation (3.31) illustrates
that the amount of gas in storage at any time is equal to the amount of gas in the
interval before input gas is added and the output gas is reduced [13].

∑

j

ψj,s,t ≤
∑

σ

vin
σ,s,t ρ

in (3.27)

∑

j

ψj,s,t ≤
∑

σ

vout
σ,s,t ρ

out (3.28)

∑

σ

vin
σ,s,t +

∑

σ

vout
σ,s,t = 1 (3.29)

Ss ≤ xs,t ≤ Ss (3.30)
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xs,t = xs,t +
∑

j

ψj,s,t −
∑

j

ψs,j,t (3.31)

The use of gas storages can significantly increase the reliability of the system,
so that depletion of these large-scale storages can compensate a sudden increase
of gas demand of the system in short term. The location of these gas storages can
have a substantial impact on reducing the gas load cutoff (power plant and non-
power plant). If the location of these gas storage are defined in order to reduce the
cutoff cost of the gas loads, the results show that the optimal location of these gas
storage facilities can lead to a reduction in the penalties that should be paid to the
consumers, which can be achieved by minimizing the number of gas cutoffs caused
by the pipeline outages. In addition to reducing the number gas disruptions, the
average price of gas also declines due to the imbalance in gas [14].

As shown earlier, one of the criteria that can be considered in expansion co-
planning of electricity and gas infrastructure is reliability. To this end, different
studies have considered different criteria of reliability in expansion planning to
achieve the reliability of a single system to a certain extent. One of these criteria
is the loss-of-load expectation (LOLE) matrix, which by definition is the average
number of hours or days in a given time period (usually 1 year). The load is greater
than the production capacity. This definition is illustrated in (3.32) [15].

LOLEh =
NT∑

t=1

Pt

(
ACh ≤ LE

t

)
(3.32)

The results of applying reliability metrics to expansion co-planning of gas and
electricity infrastructure indicate that in order to achieve a certain level of reliability
(the numerical value of reliability indexes determine the level of reliability of the
system), the system expansion cost is increased, because more elements are needed
to be added to the system, which in turn increases the cost of system expansion.

Another reliability criterion is the N − 1 index, which is a simplified case of the
N − k index, where k is the number of system elements out of operation. According
to this criterion, a system that normally operates should be able to continue operating
at k-element exit. Adding this criterion to expansion co-planning can improve the
reliability of system. This criterion is illustrated in Eq. (3.33) [12].

s.t
∑

i

(1 − AUint ) +
∑

l

(1 − ALlnt ) ≤ 1 (3.33)

This criterion for the gas network can also be considered in expansion co-
planning of electricity and gas. The N − 1 criterion can be applied using the
contingency matrix [16]. This matrix includes set of 0 and 1, in which 0 shows
the disruption of an element and one shows the normal condition of that element. If
n illustrate the number of element which are going to be considered, this matrix
n.n + 1. In this matrix, the first column depicts the normal condition (with no
disruption) and other columns only show the outage or disruption of an element.
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Thus, this matrix is applied to the modeling of the constraints of the operation so that
in addition to the modeling of normal conditions, the constraints of the system can
also be modeled in conditions of an element outage. In this regard, the disconnected
element can be a pipeline or a compressor.

To examine the impact of considering the N − 1 criterion in the electricity and
gas network, three cases are taken into account. In the first case it is assumed that
the N − 1 criterion is not considered for any infrastructure. In this case, although
the investment cost may be low, the power outage can be very high in the event
of a power outage. It is assumed in the second case to consider only in the N − 1
power system rather than gas network. In this case, although the investment cost
of electricity infrastructure increases due to the development of transmission lines,
the amount of electricity outages is not much lower than before. In this case, it
may be because of gas pipeline outflow, as a result of which gas units may not be
able to generate their nominal capacity due to the weak gas supply network. Thus,
the amount of interruption is still high. However, if the N − 1 criterion is taken into
account in both infrastructures, by installing more pipelines, the amount of curtailed
electrical load can be reduced to zero (Figs. 3.2 and 3.3). In a system with high
penetration of gas-fired units, the production capacity of such systems is a function
of the rated capacity of the installed units as well as the capacity of the gas network
infrastructure.

Flexibility-based expansion co-planning is another approach that can be applied
to expansion planning. As defined by Presidential Policy Directive 21 (PPD-21),

Fig. 3.2 Power system combined with gas system [8]
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Fig. 3.3 Four-bus system [9]

resilience is the ability to adapt to changing conditions and the ability to tolerate and
recover from impaired conditions. The disturbances can be deliberate attacks, major
accidents, or natural disasters. The set of possible events and measures proposed
to eliminate the disorder are two important parts of the above definition, the first
to identify hazardous conditions in the system and the second is the planning and
recovery plans for the disorder. Criteria such as length of service unavailability, cost
of system recovery, or cost of preventing severe disruption are used to evaluate the
resilience. One of the criteria that can be used to measure the resilience of a power
system is the minimum disruption level after the most severe event that has been
modeled in relation (3.35) [17].

RM = max min
∑

i,b,t

fi

(
pdi,b,t

)
(3.34)

In this equation, f is a function that calculates the disruption cost. In Resilience-
Based expansion Planning, Eq. (3.34) is also added to Planning as Eq. (3.35). In
this regard, the RMmax is the maximum allowable cutoff value after the worst
disturbance in the electricity and gas system, which can be approximated by
sensitive loads such as hospitals and security centers.

RM = max min
∑

i,b,t

fi

(
pdi,b,t

) ≤ RMmax (3.35)

The results show that in order to achieve a certain level of resilience in the
network, adding equipment to increase system tolerance against major disruptions
is a necessity. However, in integrated electricity and gas networks, equipment can
be added to the electricity or gas network to increase network resilience. Since
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the vulnerability of gas pipelines to disruptions is less than that of electricity
transmission lines, the resiliency-based integrated expansion planning devotes more
investment on the development of gas pipelines than other types of planning. To
further clarify this point, consider the gas and electricity network (Fig. 3.3). In the
first case, suppose that we are only allowed to add gas units to buses 2 and 3. The
results of expansion planning show that in order to increase system resilience, a gas-
fired unit is added to bus 3. But in order to meet the load on Bus 4, a great deal of
power has be added to the power grid, which in turn increases the cost. However,
if we are allowed to add a unit to bus 5, then instead of spending too much money
on developing the power grid, by adding a pipeline from bus 2 to 4, the cost will
significantly decrease.

Another approach that can have a significant impact on expansion co-planning,
especially production expansion, is demand response programs. Demand response
programs encourage consumers to change their normal pattern of consumption,
which can be through consumer pricing methods or the definition of incentives for
consumers. If implemented correctly, this can have the benefits of increasing the
load factor and making the load curve smoother. This long-term load curve change
can have a significant impact on expansion planning, including integrated expansion
plans for the electricity and gas networks. As a result of the correct implementation
of the electrical demand response programs, the peak load has been reduced, which
can lead to a significant reduction in the capacity of the new gas-fired units. Thus, in
countries such as GB where some of their gas is supplied by imports, the results
show that implementation of demand response programs can reduce imports by
90 million cubic meters by 2050. The cost savings associated with implementing
GB demand Response Programs over a 50-year period from 2010 are estimated at
approximately $ 60 billion. Although cost savings are not large in the gas network,
the use of demand response plays an important role in improving gas network
security.

Even though electric charge response programs reduce the cost of developing
the gas network, the cost of operating the gas network increases because in this
case part of the peak load transferred to other hours is supplied by cheap gas units.
This will likely increase gas consumption and thus increase the cost of operating
the gas network. The simultaneous reduction of the maximum gas supply capacity
(import and development of the gas network) and the increase in the amount of gas
consumed and the flow of gas in the gas network increase the utilization coefficient
of the gas network. Therefore, the use of load response programs in the power
system can bring great benefits to both the electricity and gas infrastructure [18].

Applying the concept of energy hub has also made sense for gas response
programs in the gas infrastructure. The energy hub has a number of input energy
carriers and a number of output energy carriers. The input carriers either appear
unchanged in the output or are converted to other carriers using converters. With
converters such as electric heaters and PtG equipment in the energy hub, there
is an opportunity to, for example, provide consumers with thermal energy rather
than being supplied with gas, which means that there will be a reduction in gas
consumption. In other words, consumers are encouraged to only change their
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primary energy source. Changing the source of primary energy in the electrical
sector is more likely; so, its use can significantly reduce the cost of developing
electricity and gas infrastructure.

As shown in Fig. 3.1, both the electricity and gas infrastructures are intercon-
nected at the level of the electricity and gas distribution networks, which can be
connected through equipment such as renewable distributed generation, PtG, as
well as on the consumer side through concepts such as energy hubs. Unlike gas
transmission networks, in gas distribution networks, the operating and technical
loss costs of the development planning are not considered in the gas distribution
network. This is because the gas is distributed in a limited area in gas distribution
networks as compared to the transmission network; so, these compressors are not
present in gas distribution networks. Similarly, the cost of constructing gas storage
tanks is not taken into account as they are mostly installed at the transmission level
of these gas reserves.

Distributed generations are low-capacity products whose presence in the distri-
bution network has quit a few advantages for the power grid. Reducing the cost
of transmission network expansion, reducing transmission losses, and increasing
energy efficiency are some of the benefits of using these generations. In the
expansion planning, if the development of distributed generation, including gas-
fired distribution units, is not considered, then the cost of distribution network
development will be high, given that the distribution network infrastructure needs to
be developed to access power from the power grid. However, the cost of developing
the gas network is not high as no new load is added to the network.

In the latter case, the development of gas-fired distributed generation is consid-
ered, except that the distribution network expansion planning is first implemented
and the optimal location is obtained from the view of the electricity distribution
network after the gas distribution capacity and location have been determined,
and then the gas distribution network expansion planning is implemented. In this
case, since the distributed generation is implemented in order to reduce the cost of
operating power network, the cost of operating the electricity grid is at its lowest
value compared to other cases. However, the expense of developing a gas network
is high, because expansion planning must be in place for gas-fired distribution
facilities.

In the third case, integrated planning for the development of the electricity,
gas distribution network, and gas-fired distributed generations is implemented. The
results show that in this case, since the location of the gas distribution needs to be
determined in order to reduce the total cost of the two systems, the cost of operating
the distribution network is therefore far from its optimal value (the second case).
However, it should be noted that the total cost in this case is the lowest of the three
preceding cases. Therefore, the expansion co-planning of the electricity and gas
distribution network and the gas-fired distributed generation can provide a program
with the lowest total cost and with considering the constraints of both systems. Note
that since the optimal location of distributed generation is different in the second
and third cases, expansion co-planning is appropriate for organizations that own
both systems.
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Like transmission network expansion planning, in most distribution network
planning, total operating cost and network expansion are considered as the objective
function. The expansion of equipment such as capacitive banks can also be
considered in these plans [19]. Since the use of capacitive banks reduces the reactive
power output of gas-fired distributed generation, it means increasing the capacity
of distributed generation in providing active power, which in turn reduces the cost
of developing distributed generation. On the other hand, reducing the development
of gas-fired distributed generation means reducing the cost of expanding the gas
distribution network. Therefore, in integrated energy systems such as electricity and
gas infrastructure, investment decisions of one infrastructure can affect the costs
of investing in another infrastructure. Therefore, in order to reach the lowest cost
decisions, it is necessary to have integrated investment planning and development
of such infrastructure.

3.3 Operational Co-planning of Electricity and Gas
Networks

In addition to expansion planning, the relationship between the two electricity and
gas infrastructures should also be considered in short-term operational planning.
The most basic operational planning is the unit commitment. The system operator is
responsible for the short-term planning of the system. The operator must employ the
production units with regards to the anticipated load for each day and hour, so that
the total operating cost is minimized. The unit commitment determines this optimal
program. After the optimal sequence of units has been determined, the power output
of each unit in the system is determined by the economic dispatch. Before the
program can be announced to the units, the system security must also be checked in
order to consider whether the units can be loaded within the permissible range of the
transmission and all restrictions. This program is named Security Constrained unit
commitment (SCUC). As in today’s power systems we see a high penetration of gas-
fired units in the manufacturing sector, so the security constraints that is needed to
be considered after the unit commitment program are not just about the power grid,
because the constraints of the fuel infrastructure, i.e., the Gas network, should also
be considered in this planning. Figure 3.4 shows the SCUC program in integrated
electricity and gas networks.

First, the unit commitment program whose modeling is shown in Eqs. (3.1)–
(3.19) is fulfilled. Equation (3.35) is the operating cost that is considered as the
objective function. Operating costs include, respectively, the cost of gas contracts,
the cost of producing non-gas plants, the cost of startup and shutdown of the units,
as well as the penalty for not supplying energy. Details of modeling are given in
[20]. It should be noted that there are usually two approaches to model the cost of
gas-fired units. In the first approach, the cost of these units is modeled as other units
using the quadratic cost function [20]. However, in the second approach, the cost
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of gas units is modeled by the cost of gas purchased from the gas network using
contracts.

min
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To examine the impact of considering gas network constraints on operation
planning and SCUC, suppose that the planning shown in Fig. 3.4 is implemented
on the gas and electricity network shown in Figs. 3.5 and 3.6 for both cases with
and without the gas network constraints.

Cuts

Energy 
Constraints
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Master UC Problem

Power Transmission Feasibility
Check Subproblem

Feasible
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Determine Gas Demand of
Gas-fired Power Plants

Yes

Collect Natural Gas Load, 
Transmission Parameters and 
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Natural Gas Transmission Feasibility
Check Subproblem
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No

End
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Fig. 3.4 SCUC program in integrated electricity and gas networks
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Fig. 3.6 Seven-node natural gas system

The results show that if the constraints of the gas network are not included in the
planning, the results are optimistic and any amount of required gas can be consumed
by both power plants and gas loads. In this case, since units 2 and 3 are more
expensive to operate than units 1, they will therefore shutdown at certain times to
avoid high operating costs.

The second case is assumed to include the constraints of the gas network in
operation planning. Since gas turbines require high pressure gas, these units are
therefore more vulnerable to gas fluctuations than other gas consumers, so the cost
of gas contracts with gas units is usually lower. On the other hand, since the cost of
gas contracts where gas can be cut off is lower, gas units are usually less costly in
order to lower their cost and be able to compete with other units in the electricity
market. Therefore, they choose the type of contract where gas units can choose low
cost and low priority contracts. In this context, if a fault occurs in the gas grid,
the loads of the power plant are in the priority of disconnection. The results of the
SCUC implementation, considering the constraints of the gas network in Fig. 3.6,
show that the operating cost has increased in this case. Unlike the previous case, in
which low-cost units were operated, in this case, due to the constraint of pipeline 1
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and also the higher priority of load 2, plant 1 produces less power and plants 2 and
3 compensate for this power loss, resulting in an increase in the operating costs.

Another difficulty that may occur in the electricity and gas networks is the
simultaneous peak in electricity and gas consumption, which may lead to power
plant outage and power disruption in the network accordingly, since the power
consumers, especially residential, have higher priority than power plants. Applying
demand response programs in the electrical sector can smooth the electrical
load curve, and thus reduce the peak load synchronization intensity of the two
infrastructures [21]. Pipeline exit can also be simulated in operational planning as
a factor that could threaten system reliability. For example, in Fig. 3.6, suppose
pipeline 2 between nodes 2 and 5 exits the circuit, followed by unit 1, which is
a large unit. Following the exit of unit 1 from the system, units 2 and 3, although
increasing their output power, but cannot compensate for the power output of a large
unit such as 1, which in turn causes a large power outage in the power grid.

As can be seen, the above presented programming is very vulnerable to the exit of
an element and incurs a great deal of cost. Therefore, it may be advisable to include
the exit of this element in operational planning to increase system reliability against
such events. As mentioned in the previous section, the k-element output can also
be considered. The results show that the greater the number of outbound elements,
the longer the execution time of a program that is used to evaluate such a definite
number in operational planning. This type of modeling is shown in Eq. (3.37).

min f
(
x0
)

s.t h0
(
x0
) ≤ 0

max min g
(
xk
) ≤ RFmax

hk
(
xk
) ≤ 0

(3.37)

This type of modeling is Master–Slave modeling. The Master section executes
the SCUC problem under normal conditions and calculates the optimal response
under normal conditions. Then the solution obtained by the Slave section is
examined in the worst case scenario, and the total gas consumption of the gas units
should not exceed its permissible value. So the obtained answer should ultimately
be able to comply with what is supposed in the worst of circumstances. Therefore,
unlike the method shown in Fig. 3.4, in this method, the results of the operation
of the normal conditions are obtained by looking at the worst outage and possible
condition, which can in turn increase the efficiency of the proposed method and
enhance the efficiency of the answers in real cases.

Applying gas storage is another method that can improve the performance of
the gas network under abnormal conditions. The use of gas storages can make the
consumption curve of the gas grid smoother and thus prevent problems such as
overloading pipelines during peak hours of consumption. For this purpose, assume
in Fig. 3.4 that power plant 1 has a reservoir, so by cutting off pipeline 2, the unit can
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remain in network with gas stored during off-peak hours. As a result, the amount of
power outage and the cost of operating the power grid are significantly reduced. Gas
storage devices also have an operating cost, which is shown in Eq. (3.38), which is
a function of the gas charged and discharged.
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As noted in the sections above, the gas and electricity infrastructures have a great
deal of interdependence in the operation sector, thus, it has been seen that the outage
of a single element can have economic and security consequences. Therefore, it
may be possible to reduce the impact of each infrastructure from changes in the
other infrastructure, despite the physical link between the two electricity and gas
infrastructure. One of the approaches employed in a number of studies is the use
of units capable of changing fuel input. That is, units that can use two fuels, for
example, oil and gas. The effect that these units can have is the change in the peak
hours of gas consumption, which has been found to be very problematic in both
systems if they are within the same range as peak hours. Therefore, the use of these
units is an appropriate strategy to reduce the gas consumption peak that can increase
the security of the power system during peak hours of gas consumption.

Another product whose presence in the power grids is increasing is renewables.
Global pollution and the reduction of fossil fuels are some of the factors that have
led to the development of these resources. These resources, despite their benefits,
are not predictable and controllable because of the natural source of energy in such
products and create power fluctuations in the power grid. One way of controlling
these oscillations is to use fast-reacting units, such as gas units, which can control
these oscillations to some extent by rapidly changing the output power. The use
of gas units to control these fluctuations may reduce the fluctuations to some
extent, but by changing the output power of the gas units and thereby changing
the amount of gas consumed by these units, these fluctuations are transmitted to
the gas network. It should be noted, however, that due to the existence of gas
pipelines that enable gas storage, its inertia to change is lower than the power grid
and in fact it fluctuates and moves from zero power system with high inertia to the
gas grid with low inertia. Therefore, the uncertainty of renewable DGs, especially
wind turbines, leads to fluctuations in the gas grid, which can in some cases cause
gas to break again many times in the gas grid. To this end, the planning of the
operation of the power grid should be re-programmed to avoid interruptions [22].
In power distribution networks, the use of gas-fired units such as CHP and CCHP
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units increases the flexibility of the distribution network in eliminating the power
fluctuations of renewable units. Flexibility is the use of existing capacity (distributed
load and generation) in the distribution network to improve system performance. By
eliminating fluctuations in the distribution grid by gas-fired distributed generation,
the power fluctuation of the distribution grid is prevented to enter the upstream and
local capacities of the grid have been used instead of being compensated by the
reservation of larger units [23].

Given the benefits of renewables, especially wind turbines, it may be perceived
that the greater the penetration of wind turbines on the power system, the lower
the operating cost. This is not a general term, as the economic system for the
development of wind turbines needs to be examined, as well as the power system
in which these renewables will be installed. For example, in a power system
where units such as gas-fired units are capable of significantly increasing and
decreasing power, turbine power fluctuations are well controlled and power outages
are avoided, resulting in decreasing operating costs. However, inadequate capability
of increasing and decreasing power leads to expensive units being operated or load
curtailment, which can increase the operating cost itself. Therefore, the installation
and development of renewable products, especially wind turbines, should be
subjected to the provision of infrastructure to control the fluctuations created by
these renewable DGs [24].

It has been observed that fluctuations in the electricity and gas networks can
affect the operating cost as well as the security of the integrated system. One of the
factors that can increase this impact is the presence of electric compressors in the gas
grid. To examine this more closely, consider two modes. In the first case, the power
grid load is assumed to be constant, but the gas grid load changes and increases over
a given interval. In this case, as the amount of gas consumed increases, the flow
of gas in the grid increases, resulting in an increase in the power consumption of
the compressors, which in turn increases the cost of operating the power grid, and
the greater the number of electric compressors available in the grid, the greater the
cost of operation will be [25]. Compressors delay the expansion of the network by
increasing the transmission capacity of the gas network.

As the presence of renewable production units increases, due to the physical
limitations of the power grid in power transmission, overcapacity or Excess Power
may emerge that is not applicable. In addition to gas-fired units, PtG equipment
can help make better use of renewable productions. PtG equipment, such as
electrolyzers, not only make better use of renewable products like solar cells, but
are also environmentally friendly for carbon dioxide absorption. In order to develop
deployment of PtG equipment, assessments should be made of the amount of extra
energy generated over a period of time and appropriate bids should be invested
accordingly. For example, the development of PtG equipment is not economical in
a way that its full capacity can be used only 1% of the time per year [26].

Given the relationship between the gas and electricity infrastructures in different
sectors, the results show that the use of co-planning methods can provide more
comprehensive, economical, as well as safer planning than planning separately.
As shown in the sections above, by shifting planning from separate planning to
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integrated planning, the results are different, resulting in the benefits of integrated
planning for countries and companies that own both of the electricity and gas
infrastructure. While in some countries they may have separate ownership of these
two infrastructures. So is it possible that the above methods lose their effectiveness
under such circumstances? The answer is that in a number of studies the issue
of separate ownership of these infrastructures has also been taken into account in
planning. In such systems where information exchange is limited, the problem can
be subdivided into two subproblems, using a decentralized solution framework, each
of which is solved separately and in this case information security is also respected.
Reference [27] is one of the references that fully explains the decentralized solution
framework.

3.4 Conclusion

Electricity and gas are important infrastructures to supply energy, and gas is
regarded as primary energy and electricity as secondary energy. These two infras-
tructures are interconnected through different equipment and at different levels of
transmission and distribution networks. As a result, the investment and operation
decisions of either of these infrastructures can have significant economic and relia-
bility impacts on the other infrastructure. Therefore, these two infrastructures should
be considered as an integrated energy infrastructure, in which the planning needs to
be implemented simultaneously. This chapter examined the physical relationship
between the two gas and electricity infrastructures in the transmission, distribution,
and consumption sectors. Initially, factors linking the two infrastructures such as
gas units and PtG equipment were mentioned. Also, in part of this chapter’s intro-
duction, some of the similarities and differences between the two infrastructures
were explained. The rest of this chapter is divided into two parts: expansion co-
planning and operational co-planning. In the expansion co-planning of electricity
and gas infrastructure section, the first common modeling that has been considered
in many studies so far has been presented. Then the equipment and approaches
that could be considered in this development plan were also examined. Equipment
such as gas storages, PtG equipment, as well as approaches such as reliability and
flexibility are among the items described in the expansion co-planning section. In
the operational co-planning section, unit commitment modeling was presented for
both infrastructures. Then, the impact of N − 1 criteria on planning and other
topics was discussed. The relationship between gas and electricity infrastructures
can be investigated from not only the physical perspectives but also other aspects
such as market approaches in future works. Moreover, since technologies and
other research areas have employed artificial intelligence in order to enhance the
efficiency and productivity of such systems, machine learning and big data can be
used in decision-making and data science research topics to help researchers to have
better forecasting and proper co-planning of electricity and natural gas systems.
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Chapter 4
Transmission Pricing: Right Insights for
Suitable Cost Allocation Methods

M. A. Benetti and M. Sperandio

4.1 Introduction

The ongoing energy transition process modifies many of the electric power system
fundaments and leads to a paradigm change [1–5]. New technological elements are
being inserted into the networks, different generation technologies are arising, and
clients are becoming more engaged, with active participation in system decisions
[6–10]. The current power system is getting pretty distinct from the traditional
model, where consumers were passive, disengaged, and unresponsive to the market
price signals [11–13]. Several publications expose particularities and challenges
that arise mainly as a consequence of new generation technologies and advances
in communication, the main drivers of this process [14–19].

Facing this scenario, it is essential to analyse the main changes caused by this
transition energy process, its repercussions in the power sector, and the trends that
may be inferred [20, 21]. Additionally, regulatory and economic fundaments that
guide the pricing of transmission systems must be explored, in order to identify
which characteristics are appropriate for the development of modern TCA strategies
[22, 23].

From this context, some reflections emerge and a central inquiry may be made.
Are the TCA methods adequate to provide efficient tariffs in this energy transition
context? To answer it some issues need to be defined, such as: which criteria to
employ for evaluating the quality of TCA methods, and which changes are ongoing
across the electric power systems. To investigate these issues, a review about the
state-of-the-art of TCA methods is performed and two other questions arise. Is there
consensus about the best TCA method? Does the literature present a significant
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number of recent and relevant publications about the TCA topic? The chapter
answers these questions and specifies the most suitable TCA publications in terms
of their adherence to the modern transmission fundaments.

Therefore, the great contribution of this chapter is to evaluate the current TCA
methods and to provide appropriate insights that may be applied to the development
of modern TCA algorithms. Future directions about transmission pricing in the
face of energy transition process are inferred and the right strategies to obtain
efficient TCA algorithms are pointed. The chapter is innovative because it considers
the classical principles of transmission pricing, but also the modern requirements
that arise with the energy transition. This strong set of TCA fundaments allows to
evaluate methods and to point right strategies in an updated format.

The next sections of this chapter are organised as follows. Section 4.2 presents
the modern electric power systems in the energy transition context and the changes
that arise. Additionally, transmission pricing fundaments with focus on TCA are
approached. In Sect. 4.3, a wide review about the published TCA methods is
realized, and the most suitable publications are indicated. Finally, Section 4.4 brings
the chapter conclusions and future directions that may be inferred.

4.2 Transmission Pricing in Modern Electric Power Systems

Several issues have recently dominated the debate over electricity market reforms
around the world [24–27]. The main ones are: energy matrix with low carbon
emissions, renewable energies, energy efficiency, distributed generation (DG), and
demand response (DR) [28–32].

The reduction of carbon emissions has been sought by a number of countries
through the adoption of goals linked to a specific year [25, 33, 34]. The insertion
of renewable energies into the energy matrix, besides promoting the decreasing of
emissions, aims to promote the following aspects: sustainable growth, job creation,
energy security, and technological development [35–37].

Another important issue, the energy efficiency, remains a technological challenge
for the power and industrial sectors [32, 34, 38]. In terms of DG, its feasibility
is verified in an increasing number of regions due to technological advances in
the processes of electricity generation, combined with the electricity prices raising
[39–43]. Thus, the growth of prosumers, consumers who may also produce energy
surplus compared to their load, is modifying the traditional dispatch paradigm
[44–46]. The customer involvement is another issue. As they are becoming active
participants, distinct dynamic tariff designs are been proposed. Their modelling
considers the customer responses in face to the network charges [47–49].
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4.2.1 Energy Transition Ongoing

Some direct repercussions may be identified from the energy transition process.
Among them, difficulty in distinguishing the boundaries between transmission and
distribution systems [50, 51]. It implies in a redefinition of the planner aims and of
the operator roles in these two systems. Uncertainties associated with all segments of
the power sector are increasing [52–54]. Thus, the major challenge in planning and
operation areas is the creation of strategies that manage distributed and centralized
generation, in an efficient way, considering the greater dynamism of agents, and the
higher level of uncertainty about their behaviour [55–58].

4.2.1.1 Major Changes and Repercussions

We may observe that distinct areas are undergoing relevant changes in their
framework and design due to the energy transition process that happens across the
power systems. Figure 4.1 summarizes these areas in an integrated arrangement.

In the following, the major changes and repercussions that arisen from the energy
transition are discussed, and contributory publications in terms of strategies to deal
with the challenges are highlighted.

Market Models and Tariff Approaches

Market improvements need to be made through adapting models to the new
reality that includes the presence of renewable energy sources (RES) and plug-in
electric vehicles (PEVs), as suggested in [59–61]. Besides, other articles propose
modifications in the approaches that generate tariffs in regulated segments, as shown
in [62, 63].

Fig. 4.1 Electricity areas
with intense modifications



64 M. A. Benetti and M. Sperandio

In [59], the authors discuss the need to adjust the market design regards to
ancillary services, network charging, and balancing. According to them, flexible
resources must have better prices, and locational signals need to be introduced
to avoid transmission and distribution congestion. The effects of RES in markets,
exploring the weather dynamics and price arbitrage concerning to wind source, is
analysed in [60]. The impact of PEVs in market rules of the transmission system
operator (TSO) is discussed in [61]. As the TSO priority is the security of supply,
changes in its rules are challenging, because their impact are uncertain with regard
to supply. However, the rules must be improved looking for sustainability and com-
petitiveness. Different tariff candidates for residential microgrids are investigated
in [62]. The evaluation is conducted analysing their effects on load and generation
profiles, as well as on energy bills. Insights about different electricity network tariff
designs are provided in [63]. According to it, a tariff may aggravate the regional
distribution disparities, if it neglects the prosumer impacts. Furthermore, deep first
connection charges and tariff corridors may increase the equity among regions.

Real-Time Pricing

Another important issue related to the modern electricity markets is the adoption of
real-time pricing. It has been employed and improved in several power systems, as
reported by [64–66].

A review about real-time electricity markets (RTMs) in North America, Australia
and Europe, detailing their market architectures and incentive policies, is presented
in [64]. RTMs maintain the flexibility and reliability of power systems. The total
value of distributed energy resources (DER) must be measured besides the impact on
the customer. The DER impact on the grid and surrounding market participants must
be considered. A new model to measure the importance of customer peak shaving
with DG technologies is presented in [65]. It compares the customer incentives
provided by utility rates with the real-time prices market in New England. Policy
and customer-utility interactions must integrate new technologies, such as the DG
systems, expanding the traditional business models. The financial impacts of these
systems may be improved, becoming the customers well informed participants of
the electricity market. A comparative analysis between zonal and nodal designs
concerning to real-time and day-ahead operational signals is performed in [66]. It
compares the data and practices of several TSOs, placed in interconnected zones
in Europe and in the USA. The authors conclude that a nodal signal is natural for
RTM with topological changes, with flow control procedures included in the pricing
algorithm, and a zonal design is best suited for real-time corrective actions through
bilateral contracts. Further studies are needed to evaluate market design at the long-
term timeframes, on the matters of grid development and locational signals.
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Flexibility and Demand Response

Flexibility is a resource that gains importance in a scenario where the presence of
generation sources with high uncertainty is growing. Moreover, DR is a mechanism
that is becoming possible due to advances in measuring and communications. An
expressive number of publications address these issues providing a set of future
perspectives [67–71].

A review about flexibility products summarizes the main necessary attributes
and some approaches to market designs [67]. The authors indicate the necessity
of standardized and simple definitions to flexibility products, considering energy-
constrained resources, such as PEV and storage. A market structure is proposed in
[68] to contract jointly transmission and distribution services from load flexibility.
The market presents great potential in providing economic benefits to its users and
solutions to congestion management. The multi-dimensional flexibility (MDF) of
energy consumers is an important issue addressed in [69], which proposes a day-
ahead market design for MDF services. This market may help flatten the locational
marginal prices (LMPs) across the peak load period and may help the operator to
have an optimal strategy of adopting different MDF bids. In [70], expressions regard
to DR are aggregated in a novel framework which unifies concepts and terminology
used in the literature. The role of aggregators and the need to incentive their entry
are discussed in [71], which assesses their economic features to enable the increase
of DER. Different scenarios are explored to define the factors that determine their
role in power systems.

4.2.1.2 How the Energy Transition Impacts on the TCA Paradigm

As the energy transition process increases the uncertainties and the speed of changes
in the power sector, TCA methods must contemplate these characteristics in their
modelling. Large power plants are being replaced by RES, which profoundly impact
distribution networks. This segment goes through a revolution with the insertion
of several new technological elements. In addition, measurement devices in real-
time and communication advances allow new interactions among different agents.
Therefore, TCA methods need to capture this new dynamic phenomenon. There is
a wide challenge in this regard. With greater uncertainties, regulation must extend
its traditional role of ensuring the predictability of investment. The strong emphasis
of transmission pricing approaches on long-term investment may be revised. They
must focus on pricing the system usage, in terms of costs and benefits, by the agents.
Mechanisms to improve the system discipline, reducing generation uncertainties and
the transmission congestion are positive. In our view, these mechanisms should be
gradually adopted to improve short-term operational and market conditions without
long-term contradictions.

An important aspect to note is that RES are already competitive, so their
participation on power systems is increasing, which forces regulation to update
more frequently. In mature electricity markets, monomial tariffs have been replaced
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by binomial tariffs, which separate the energy price from the transportation cost.
It represents a clear withdrawal of subsidies, as RES already stand on their own.
Additionally, it grows the importance of TCA methods, as they impact an increasing
number of agents. About the flexibility, it has become a scarce resource that
represents a challenge to the system operation, but also to the regulatory model.
In our view, agents who provide this resource must be rewarded by TCA methods,
because if someone is providing this resource, it means that someone is not.

4.2.1.3 Integration of Devices and Systems

Smart grid is a topic whose technology and experience have been acquired for more
than 10 years, although various challenges and issues need to be properly faced, as
addressed by [72, 73]. New technological devices spread throughout the systems are
treated mostly in isolated approaches. However, the integration is an evident aspect
that emerges from the energy transition process. Figure 4.2 exposes the main fields
involved with this process.

Based on a wide set of publications, the mains fields of this integration are
presented in the following.

Fig. 4.2 Integrated fields of modern electric power systems
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Plug-in Electric Vehicles and Storage

PEVs are a significant source of uncertainty because their departure time, location
and load are unknowns. Thus, a stochastic model for day-ahead energy resource
scheduling is proposed in [74], integrated with the dynamic electricity pricing for
PEVs. Results show that this model is more effective than similar deterministic
models. The impact of PEVs in market rules of the TSO is discussed in [61]. As the
TSO priority is the security of supply, changes in its rules are challenging because
the consequences are uncertain in relation to supply. However, the rules must
be improved looking for sustainability and competitiveness. The energy storage
development allows new applications and it naturally creates practical challenges,
such as the proper usage in distribution networks to overcome voltage unbalances
due to PEV and RES penetration [75]. Regulation rules are a frequent barrier to the
storage development in several countries [76]. The most relevant regulatory barrier
is the classification as a generation asset, and not as a complementary source that
provides flexibility to the system. To decrease barriers, a market structure that values
the storage as a complementary element of flexibility is necessary. Then, there is still
an implementation issue in TCA design of how to minimize the unavoidable effect
of distortion of the long-term charges on the reaction of these flexible assets over
short-term prices. Another issue that must be faced is the development of an efficient
manner of charging a storage system connected in the transmission level with tariffs
for generators and loads. It remains an open issue with great importance.

Renewable Sources and Distributed Generation

The need of flexible resources, like storage and DR, arises with large amounts of
RES, as the development of more integrated approaches to address the interdepen-
dence between technical and institutional elements to achieve a main policy goal
for shaping the energy system of the future [77]. Concerning to the dispatchable
photovoltaic units, their increase causes the lack of distribution network capacity
in some systems [78]. Thus, distribution systems must be updated with the most
advanced technologies as much as possible. The batteries’ lifetime should be
investigated for the implementation of effective operating tools [79]. Schemes
that integrate RES into power sector are a controversial issue. The Feed-in Tariff
(FiT) scheme needs further investigations to improve its rules in order to decrease
the integration costs and to avoid the subsidy dependent pathway [80]. In [81],
the authors present state-of-the-art DG deployment methodologies, discussing two
specific questions: the optimal location for DG installation and its optimal capacity.
Reference [82] reviews the planning of DG in distribution networks, pointing out
that artificial intelligence techniques are very suitable for optimal planning of DG.
In [83], a local market with agents trading electricity directly among each other is
presented. From the analysis, a peer-to-peer market with intelligent agents shows to
be the most advantageous.
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Transmission and Distribution Systems

In [84], an integrated charging mechanism between transmission and distribution
is proposed. New investments are divided in four groups: technical innovation,
sustainability, services promotion, and others. The mechanism seeks to ensure
sustainable modernization of the Chinese power system, which requires substantial
investments. This mechanism is analysed in [85] through a dynamic approach to
optimize investment policies on the electrical network of a Chinese city, practical
recommendations are accomplished. In [50], a planning model for the distribution
network expansion is proposed, which employs transmission system usage tariff
information, in a coupled way. This integrated model minimizes system charging
while expanding the distribution system. An economic and technical model that
combines the transportation and distribution processes of energy is presented in
[51]. This model may be employed in the wholesale or retail market, demanding
complex measurement systems and high processing capacity. At last, a new method
to obtain coordinated economic dispatch between transmission and distribution
systems is proposed in [86]. The method employs LMP sensitivities to enhance
convergence, and it may be very useful to settle problems caused by great
participation of DG on networks.

4.2.1.4 How the Power Sector Integration Trend May Be Captured
by TCA Methods

It is essential that economic incentives noticed by individual agents lead to the
global optimum. To do this, the regulation needs to provide adequate incentives
for individuals, allowing them to make their own decentralized decisions, but
moving the system towards the global optimum. To achieve this purpose, an
important aspect that may be improved by TCA methods is the distribution network
modelling. It must be made because the major technological changes have occurred
in distribution level and these changes reverberate across the transmission system.
Traditionally, the greatest focus has been given to generation due to the possibility
of generators plan their location depending on tariffs, which is less probable for the
loads. Therefore, it is necessary to assess better the impact on distribution due to
transmission tariffs, and the opposite way as well. Stability is an important attribute
of TCA methods to planning activities. However, when the coupling between
transmission tariffs and distribution planning is desired, tariffs must not be overly
stable as they should respond to dynamic load changes in distribution.

To capture the integration trend, TCA methods must refine their approaches
in other important aspects. First, the slack bus definition is critical for indicating
which generators will response the load changes, whose dynamics are increasingly
unpredictable and faster. In terms of the generation dispatch used to calculate
transmission tariffs, it is essential to establish a clear criterion. We believe that
the dispatch must prioritize the reduction of electrical losses into the transmission,
which provides an overall gain to the system. Moreover, generators who contribute
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to this reduction must be valued through discounts on transmission tariffs. Another
important aspect to capture the integration trend is the employment of quite
representative models of the transmission system, which allows to obtain realistic
power flows. For instance, PEVs may behave as a load or as a generation for the
power system. They may still be in different geographical locations over time,
connecting in distinct electrical points of the system. Therefore, it is critical for
the accurate modelling of new technological elements as described.

4.2.1.5 Outlook over Selected Transmission Systems

We may notice that the energy transition process affects the transmission systems in
different ways, because each one has particular characteristics. Table 4.1 approaches
some selected transmission systems and their main issues, as described in distinct
publications.

From the Table 4.1, it may be verified that some issues are common, even with the
particularities, such as: power flow congestion, presence of RES, cost adjustments,
and regulatory discussions. One general aspect is the necessary evolution of actual

Table 4.1 Main issues of the selected transmission systems

System region Main issues

Australia Nowadays: a restructuring process has been tackled
Transmission pricing: an important theme [87]

Brazil Hydroelectric resources: far from the load centres
Transmission costs: relevant to investments [88, 89]

Central Europe Wind and solar power growth: affects considerably the
transmission networks
Transmission grid: faces congestion troubles [90]

China Long distance transmission: fundamental to pricing
Trans-regional power transmission: multiple interests and
controversial applied technology [91, 92]

India Inter-state transmission system: evolution of the employed cost
allocation method
Targets: to reduce congestion and losses [93]

Mexico Regulation: guarantees the efficient usage of the grid
Not solved issue: how to promote effective investment in
transmission expansion [94]

South America Transmission regulatory rules are being analysed in: Argentina,
Brazil, Chile, Colombia, and Peru
Three topics are discussed: network expansion, transmission
remuneration, and cost allocation [95]

United States of America DG: reduces the utility revenue but it does not necessarily
decrease the costs
Trend: growth of the costs with kWh energy sales decline, if the
recovery is based on kWh sales [96]
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rules in all systems. Finally, the selected regions represent broad geographic areas
with physical barriers, which increase the importance of appropriate transmission
strategies.

4.2.2 Transmission Fundaments

The power sector is subject to a set of principles, requirements, and laws that
drives both the physical features of electricity and the fulfilment of stakeholder
expectations. This set, together with other practical implications, limits the number
of possibilities in which this sector may be regulated. Therefore, before addressing
TCA methods, the core of this chapter, a brief characterization about network
economics and regulation is realized based on [97–99].

4.2.2.1 Economics and Regulation

Transmission network is the key element to guarantee competition conditions in
electricity markets. The network access and usage must be regulated by an equitable
and non-discriminatory set of rules. In addition, costs incurred in the construction,
maintenance, and operation of the network must be shared fairly post. Regulation
may be understood as a set of rules employed to control, drive, or manage an activity,
institution, or system. Therefore, the main purpose is to modify the outcome that
would be obtained if the human beings were authorized to interact freely. It prevents
inefficient results in distinct places and time frames which otherwise may occur. In
terms of performance, regulation must guide the industry towards improving the
collective benefit perceived by its participants. It is important to emphasize that
regulation is not the only manner to protect investors and consumers. Their interests
are advocated by courts, which uses legislation and laws to judge the actions. The
difference is that regulation constitutes an ex-ante action, whereas a judicial action
is ex-post.

Considering the regulatory spectrum, two questions may be made to guide
the actions. Which criteria must be employed to specify when one outcome is
better than another? Moreover, which is the most efficient strategy to reach the
aimed purpose? To answer these questions, three basic elements must guide the
regulatory framework. First, the employed rules design, to drive behaviours towards
the objectives determined by the regulator. Second, the power industry structure,
which must have a sufficient number of similar competitors. Third, the supervision
of behaviour, which involves the monitoring of possible infractions and the constant
revision of rules to ensure their effectiveness. The growth of renewable sources
with their intrinsic uncertainty, often located far from load centres, is taking the
transmission regulation to its limits. Total transmission costs must be driven by
investment costs, because maintenance and operation are nearly proportional to
the volume of assets. On reinforcements, their costs must be borne by those for
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whom they were built. Therefore, there is a close relationship between network cost
allocation and network planning.

The employment of several transmission lines in parallel to connect two distinct
locations is not an economical practice. The economies of scale impute relevant
implications to the grid. It is not rational for a competition among several small
networks when power may be transmitted over a single large line in a cheaper
way, as long as a significant part of the capacity is used. Transmission is a
service that could not be effectively provided by competing firms. Line construction
may be assigned via a competitive auction, but after built just the winner firm
may provide the transmission service between two buses. In short, it represents
a natural monopoly. Another distinguished transmission feature is that the lines
are forever. Networks are extended and reinforced, however transmission lines are
rarely dismantled. Finally, the burden of transmission investments and costs in the
overall electricity bill may be substantially distinct, according to the particularities
of a specific power system.

4.2.2.2 Principles to Allocate the Costs

Investment in a new network facility may just be justified if its cost is less than
the aggregated benefits provided for the users. Transmission expansion is necessary
since the generation and load are getting more connected, and it is justifiable because
the benefits for all agents exceed the transmission investment cost. Thus, the cost
allocation to beneficiaries may be approached as a sub-product of the network
expansion planning. The allowed annual revenues that transmission firms receive
are established by the regulator. So, network users are charged with a transmission
tariff.

All transmission costs must be recovered from the charges paid by users. They
are constituted by network investment costs, operation and maintenance costs, and
other administrative costs related to transmission business. Line losses and grid
constraint costs constitute in generation costs. Thus, these costs, besides system
operator costs and ancillary service costs, should be collected from system users
through other charges. Transmission charges may be separated into connection
charges and system usage charges. The last is the focus of this chapter. Typically,
each new user who is being connected pays for its access into transmission facilities,
whereas system usage charges must cover the remaining costs of the network.

The process of allocating transmission network costs among users must obey a
set of principles and requirements that arise as a combination of microeconomic
theory, regulatory practice, power systems engineering, and technological context.
In the following, four high level principles are presented, based on [97], which we
consider a powerful reference in relation to this content. These principles, together
with three additional requirements, form the guide used to evaluate several TCA
methods proposed by different articles.



72 M. A. Benetti and M. Sperandio

Principle 1: Costs in Proportion to Benefits

The responsibility of each user in grid investment must be the key concept of
any TCA method, even if it is hard to implement. Though fairness is important,
consistent incentives for investments are the main reason for embracing this
principle. Additionally, transmission tariffs must play the useful role of sending
proper locational signals for the agents. Thus, the total network investment cost may
be minimized through optimum decisions of siting. To gain economies of scale, new
facilities are built with capacities above what will be needed in their early years.
make that new facilities be constructed with capacities above what is necessary in
their initial years. Therefore, the total asset cost must not be charged to the current
users, who may not need the entire capacity. This cost must consider the entire
lifetime of the asset and the respective users over the total period.

Principle 2: Independence of Commercial Transactions

Transmission tariffs must not depend on commercial transactions that occur across
the users. Tariffs must be charged to those who benefit from the presence of a
facility, regardless of business relationships. The resulting bilateral trades will be
all different towards distinct scenarios, since generators and loads may buy or sell
from different players each time. But in the end, the loads will be supplied and
the cheaper generators will be dispatched. Therefore, this context leads to the same
pattern of flows through the grid. Thus, there is no justification to discriminate the
users according to commercial transactions. Instead, tariffs must depend on location
of users within the system topology and on the pattern of power injections over
time. When tariffs fail to be independent of commercial transactions, it may cause
an accumulation of transmission charges. Such practice tends to strangle trade and
to prevent buyers from accessing cheaper sellers.

Principle 3: Establishment of Tariffs Ex-Ante

The transmission tariff for a new user must be specified ex-ante and not updated,
at least not for a considerable period of time. Ideally, when a new agent requests
connection to a specific point of the grid, the operator must provide the transmission
tariffs to be charged from the agent for approximately 10 years ahead. The tariff
trajectories for potential new agents applying for connection at the year X must not
be modified during the next 10 years for these agents. However, with additional
information over the year X, the tariff trajectories announced at the year X + 1 and
applied for new entrant agents during this year (X + 1) must be different, that is,
updated.
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Principle 4: Adoption of Appropriate Tariff Formats

In the transmission tariff design, two issues must be clearly distinguished: the
amount paid by each agent and the specific format of the tariff. The format may
present a volumetric characteristic ($/MWh), a capacity characteristic ($/MW), a
fixed characteristic ($), or to be a combination of them. The volumetric tariff to
generators represents an added component of their variable production costs. So,
it distorts their efficiency in the wholesale market and it increases the short-term
electricity price. The capacity tariff is the appropriate format, since the generators
consider it as an additional fixed cost for investors in new facilities.

4.2.2.3 Requirements to Develop Algorithms

In addition to the presented principles that must guide the development of new
approaches to deal with the TCA theme, the algorithms must consider some
practical requirements. They are associated to the energy transition process ongoing
throughout the power sector and to general regulatory basis. Meticulous description
of several issues in the current energy context may be found in [16, 17].

Requirement 1: Deployment of Effective Benefits and Costs

The algorithms must be developed in a proper way that allows the clear perception of
incentives and costs by the agents. This requirement is a challenge to the algorithms,
since the agents need to be induced to make individual decisions that lead the power
system to its global optimum, in terms of operational resources and grid investments.
That is, the agents must receive locational signals that incentive them to exploit all
system gaps, conditioned to operational, market, and system security constraints. A
relevant aspect that must be considered by algorithms is the flexibility, a resource
that is becoming increasingly scarce with the growth of RES. The transmission
tariffs must encourage the agents to contribute to increase this important operational
resource.

Requirement 2: Provision of Predictable Signals

The agents must also receive price signals that allow to plan the locations of future
facilities and the annualized fixed costs. Predictable signals do not necessarily
mean uniform signals, but stable outcomes that permit an accurate planning. This
predictability characteristic is particularly important in a context with the growth
of uncertainties across the whole power sector. Predicable tariffs are essential for
the decision of which places are advantageous to install wind and solar generation,
which has several candidate points. Thus, algorithms need to provide tariffs that
contribute to the overall uncertainty reduction in the power sector, but they must
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not suppress the locational characteristics of the previous requirement. Such set of
requirements evidences the complexity of the TCA topic.

Requirement 3: Fulfilment of General Regulatory Basis

Finally, the main regulatory fundaments must be observed and followed by the
algorithms, because the transmission system is considered a natural monopoly, and
therefore it need to be designed in this regard. As a consensus, the major fundaments
are:

• economic sustainability;
• economic efficiency;
• transparency;
• simplicity, as far as possible;
• equity or non-discriminatory access;
• stability to reduce the regulatory uncertainty and;
• consistency with liberalization and with the regulatory framework of each region.

4.2.2.4 The Ideal TCA Method

The employment of fundamental principles and requirements in a practical TCA
method is not a trivial task. A great difficulty is to characterize the benefits of
each agent associated with the transmission network. Traditionally the strategy has
been to emphasize the loading of transmission lines without exploring in detail
the dynamic changes at load and generation buses. The ex-ante tariff publication,
which allows an agent plans its future location, is the most difficult principle
to apply. Two reasons may be identified for this. First, since the theme is very
complex and controversial, usually other theoretical and practical issues emerge
as the focus. Second, the theme is rarely addressed together with the transmission
expansion planning. It may be noted over the years an undesirable decoupling
between transmission expansion and transmission pricing. These fields must follow
the current integration trend that it is observed across the power sector.

4.3 Transmission Cost Allocation Methods: Review
and Analysis

About modern pricing methods for transmission systems, the cost allocation may be
identified as the major theme and the focus of this chapter. Many different strategies
may be employed to discriminate the total cost of transmission across the agents in
a fair and viable manner.
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Table 4.2 Categories of TCA methods

Postage-stamp or Pro-rata
Contract path

Non-power flow based MW-mile

Power flow based Distribution factors Direct current (DC)
Generation shift
Generalized generation
Generalized load

Tracing algorithms Bialek’s method
Kirschen’s method

Power flow comparisons Marginal
Incremental
Aggregated

Current based Current conjugate
Cross term

Alternating current (AC) flow
sensitivity indices

Line utilization factors

Reactive power adjustment factor
Full AC power flow solutions
Power flow decomposition

Incremental cost Standard long-run incremental
cost
Long-run fully incremental

Marginal cost Long-run marginal cost Investment cost-related pricing
DC load flow pricing

Corrected short-run marginal cost
Alternative strategies Participation factors

Benefit factors
Cooperative game
MVA-mile methodology
Equivalent bilateral exchange
Nodal method
Zbus method

These TCA methods have been divided into an extensive list of distinct cate-
gories, depending on the reference adopted [14, 16, 97, 99–103]. A comprehensive
set classifying the TCA methods in categories is presented in Table 4.2.

It may be noted from Table 4.2, that each category possesses various different
mathematical techniques. This broad set of techniques demonstrates the specific
characteristic of the TCA theme, which depends on local particularities of each
power system, such as regulatory framework, political interests, economic targets,
geographical barriers, and technological limitations.



76 M. A. Benetti and M. Sperandio

Fig. 4.3 TCA categories used to organize the relevant publications

4.3.1 Relevant Publications

In this chapter, to organize the analysis carried out on a wide range of relevant
publications found in the literature, we subdivided the published TCA methods
in five categories: power flow based, incremental cost, marginal cost, alternative
strategies, and newfound approaches. Figure 4.3 illustrates these categories.

To classify the evaluated publications into one of the five used TCA categories,
we adopted the following statements. Power flow based methods examine the
transacted power quantity and the electrical distance between the source and the sink
point. In incremental cost methods, agents pay the full cost of new facilities required
by the transaction. The charges are evaluated considering the new transmission costs
caused by them. The marginal cost category is characterized by focusing on the
distinctions across nodal prices that arise due to transmission constraints in the grid.
Alternative strategies form the group composed by different methods developed
from other categories, modifying or mixing some characteristic. Finally, newfound
approaches constitute the most innovative publications proposed to allocate the
transmission costs.

4.3.1.1 Power Flow Based

A cross-regional TCA technique that considers reactive power flows is presented in
[104]. It is based on the share of usage by trade, being applicable to power markets
with bilateral trades and pool. In [105], a transmission pricing scheme employing
a tracing method is proposed. Transmission fixed, congestion and loss cost are
regarded in the scheme, and results demonstrate that the tracing method may be
a fairly way to calculate them. In [106], a methodology based on power transfer
distribution factors is presented. These factors provide topological sensitivity to the
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methodology and results show that the charges are influenced by location of buses,
network connectivity, and proximity to generation.

4.3.1.2 Incremental Cost

A transmission charging methodology based on long-run incremental cost (LRIC)
is presented in [107]. It recognizes the trade-offs between short-run congestion cost
and future investment cost, attributing positive tariffs for charges and negative ones
for rewards in congestion areas. Thus, the methodology may decrease congestion
and network investment costs. The article [108] proposes an approach based on
a min-max optimization technique. It provides less-dispersed tariffs seeking to
contribute to a safer environment for investors in generation. A TCA method that
embraces scheduled incremental cost and unscheduled interchange cost components
is illustrated in [109]. The scheduled component is used to recover the incremental
cost for extra MVA flow, whereas the unscheduled component is designed for
monitoring, protecting, and retaining the grid discipline.

4.3.1.3 Marginal Cost

In [110], an approach for the TCA problem is developed with fundaments of
long-run marginal cost (LRMC) and nodal exchange factors. A bi-level model is
formulated and results indicate that the locational tariffs and the congestion level
may be determined under distinct load conditions. A zoning algorithm is proposed in
[111], aggregating nodal tariffs to constitute tariff zones. It ensures zonal tariff diver-
sification and aggregates the nodal usage tariffs geographically through a weighted
average approach. Reference [112] shows that variants of marginal participation
approach may not be effective to allocate the costs. Modifications to the min-max
fair marginal participation approach are tackled providing a satisfactory allocation.
A methodology that divides a power system into a set of zones, considering
transmission usage and transmission loss tariffs, is presented in [113]. It enables
to illustrate the results on a unique zonal tariff map, indicating the reinforcement
requirements to the network.

4.3.1.4 Alternative Strategies

A novel approach based on an economic principle to allocate fixed cost of trans-
mission systems is presented in [114]. It uses the critical capacity concept of a line
and takes into account the congestion to share the transmission revenue requirement
that must be provided by each agent. This approach is most suitable with congested
systems. A min-max fair tracing algorithm to allocate the transmission usage cost
is introduced in [115]. The algorithm realizes a non-iterative procedure to min-max
fair price determination, handling with numerical problems expected in large sys-
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tems. The authors in [116] approach the TCA problem at large systems with multiple
interconnected regions. A new multi-area decoupled scheme is developed, allowing
that each region performs its own cost allocation from its chosen rules. An economic
strategy focused on user benefits is used in [117] to allocate transmission costs. It
provides a fair cost allocation to those producers and consumers that utilize the
network, proportionally to transmission benefits. In [118], a method based on agent
responsibilities of the network usage in terms of physical and economic resources
is proposed. It employs the resolution mechanisms of cooperative game theory to
obtain a fair and effective cost allocation. Its weakness is the game dimension, which
increases exponentially with the number of agents. Game-theoretic models taking
into account the Nucleolus and Shapley value techniques are discussed in [119] to
allocate transmission costs between generators and loads. The employed techniques
provide stable and unbiased outcomes to participants. A min-max fairness policy is
applied to choose an appropriate economic slack bus in a cooperative game theoretic
approach formulated to allocate transmission costs [120]. Results demonstrate a fair
characteristic of the approach, leading to an equilibrium price vector. The authors
in [121] introduce a novel method that uses the equivalent bilateral exchanges
principle. This guarantees the slack bus independence, counter-flows recognition,
and transmission usage charges always positive. A new technique to allocate
transmission costs in markets with interconnected regions is presented in [122].
The technique aims for improving the nodal methodology in certain aspects,
and it permits the definition of zonal tariffs. Reference [123] develops a novel
methodology to TCA at systems with high participation of RES. It is based on the
equivalent bilateral exchange and intends to provide tariffs with low dispersion.
The TCA problem is dealt with a procedure based on circuit theory in [124],
which considers the physical network usage. It allows a simple implementation
and behaves similarly to the underlying electrical laws employed to derive it. A
new technique is presented in [125] to allocate transmission fixed costs taking into
account the power flow equation and modifying the network impedance matrix. It
is an independent slack bus technique, which provides a fair estimation based on
the current contribution of each agent. An approach based on circuit theory that
employs equal sharing principle and orthogonal projections is developed in [126].
Power flow contributions are identified through employing game theory solutions,
and a concept of effective contribution is defined. The approach provides results
little influenceable by counter-flows and with locational characteristics. A method
to allocate transmission cost based on a set of line utility factors is presented in
[127]. The method evaluates the power transaction impact on each network element
through the relation between line flows with generators and loads. Transaction costs
are allocated to the participants proportionally to the power flow ratio occasioned
by each participant.
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4.3.1.5 Newfound Approaches

In [128], a new method, is presented, that decomposes transmission costs into
two components: one associated with the used network capacity and the other
related to the unused capacity available. Flexibility is its main feature because
it allows the use of economic and technical criteria at single or interconnected
systems. A methodology based on real power tracing is developed to obtain ex-
ante point-of-connection (POC) rates for decentralized market agents [129]. POC
charges consider the network usage, and they recover sunk costs, providing price
signals. An approach to allocate transmission costs by controlling the nodal prices of
electricity is introduced in [130], through generation injections and nodal penalties
into the classic economic dispatch. As a result, the approach charges more from
intensive system users and provides credits to agents that contribute to alleviate
the network usage. Distinct schemes are suggested in [131] to deal with the
TCA problem in a deregulated environment based on different TSO visions for
generation and load. The schemes encourage the efficient contribution of users
to recover the network costs. A comprehensive design of transmission charges is
developed in [132] to retrieve the regulated network costs. The charges aim for
encouraging the users to internalize transmission costs in local decisions, interfering
the minimum as possible in short-term behaviours, because this must be made for
regulatory mechanisms in the operational time range. In [133], a method based
on the magnetic field caused by currents is proposed. The electro-magnetic field
extension is identified and employed to determine the network usage. A drawback
is the need to calculate the magnetic induction intensity, what is a complex task. A
new technique based on load following and correlation factors is presented in [134].
The technique estimates the transmission cost of each agent before its entrance in
the market, and it takes in account the reactive loads in its framework. The slack bus
dependence is its major drawback.

4.3.2 Literature: Broad Findings

In the literature, there is no consensus about the best TCA method. The evaluation
criteria are highly dependent on specific local characteristics and particular interests.
Concerned to the number of recent and relevant publications in the area of TCA,
it may be noted a low quantity. It happens because currently the publications
are focused on energy price advances in modern electricity markets. Losses and
congestion are issues already considered by the nodal pricing, the most sophisticated
expression to form nodal prices of energy, also called spot prices and LMPs.
Therefore, most of the TCA methods do not consider these two issues. As the
transmission portion does not represent a very high percentage of the electricity
bill in many countries, regulatory agencies do not prioritize the modernization of
TCA methods. However, this area is becoming more important nowadays with DG,
since the cost of transmission charges may be decisive for the location of new
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facilities. Furthermore, many publications emphasize economic aspects and neglect
operational aspects of electric power systems. A strategy of maximizing the use of
an asset to extract the maximum benefits from facilities is not adequate because
it decreases their lifetime and hazards the whole system reliability. The physical
particularities on power systems must always be respected.

4.3.3 Publications with the Most Suitable Features

Different publications containing methods to specify the transmission network
usage by stakeholders have been developed and applied around the world. Their
strategies vary considerably due to distinct purposes by the regulators, and due to
particular features on power systems in terms of political, economic, geographic,
and electrical issues. However, the final TCA purpose is to specify the agent
responsibility in grid investment. To achieve this purpose, the most suitable TCA
publications are indicated in the following. They were judged as such because they
meet the greatest number of principles and requirements previously exposed.

The TCA method presented in [132] provides locational tariffs while making
temporal considerations. Thus, tariffs of new network users are computed before
they take part in the system, and that provides the possibility of deciding their
expansion investments. Another feature is that the transmission tariffs are not able
to recover the total cost of the grid. The not-recovered fraction should be socialized
among the load, according to the authors. Power flow quantities are attributed to
each generator and load responsible for them. For this, the employment of an
algorithm based on network electric utilization, such as average participations,
which is used on the article, is recommended. This algorithm has the assumption
that power inflows into a bus contribute to the outflows from the bus proportionally
to the volume (of the later). The need of transmission grid reinforcement is evaluated
by the method associating incremental changes in the flows with generator and load
activities. The attribution of responsibility about incremental flows created by new
generators and loads is a tough task that is introduced by the method. The principle
adopted to deal with this task is intuitive and with a simple mathematical framework.
The first step in the method is to specify which fraction of the cost concerned to
each line is allocated according to cost-causality principles. After, the cost of each
fraction that is used in the lines is divided into a portion to be paid by generators and
the remaining portion to be paid by loads. These portions may be defined based on
aggregated incremental flows that are expected to be produced by each type of agent.
The discussion of several distinct issues is dealt with thoroughly and didactically
in [132] and is a useful guide. In terms of practical considerations, broad ideas and
strategies are provided by this reference. The great merit of the method is to consider
an expressive set of requirements in its framework.

In [109], a TCA approach comprised by two components is proposed to keep the
grid discipline in terms of unscheduled power flows. The first component, scheduled
incremental cost (SIC), is allocated to transmission network users according to
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their injections or withdrawals. This component is associated with the planned
load growth rate. Whereas the second one, unscheduled interchange cost (UIC),
deals with the unscheduled interchange in load or generation that may emerge
with high uncertainty. Incremental active and reactive power flow is employed to
assess and to allocate these components across the agents. An innovative element
employed by the article is the generator participation factor concept. It is used to
determine the scheduled incremental generation to supply the load growth rate.
The SIC component is formulated to capture the future investment in transmission
grid reinforcement. It corresponds to a long-term signal which is strongly coupled
with the fundamental principle of allocation, wherein the responsibility of network
users in grid investment must be the conceptual basis. This component may be
added to the nominal transmission tariff as an incremental cost component. On
the other hand, the UIC component aims to impose a heavy penalty on users since
unscheduled power flows constitute the main problem in some countries, according
to the authors. So, this component intends to discipline the users, increasing the
grid predictability. The UIC corresponds to the variation between the present
value and the future value that must be invested on a component, constituting an
additional charge to users. Positive UIC values represent a penalty to be imposed
on undisciplined users, whereas negative values constitute a discount to disciplined
users. The equations presented in the article are simple and direct without complex
steps. A relevant aspect of the method is the chosen operational scenario and the
reference values to be used in the analysis, as they will strongly influence the results.
The approach considers both active and reactive power flows that become the model
rather representative in terms of operational issues.

A TCA method that distinguishes generation and load technologies based on
LRIC pricing is proposed by [107]. The method provides positive transmission
tariffs for agents who contribute to the congestion (loads) and negative tariffs
for those who decrease the congestion (generators) in critical areas. The proposal
distinguishes generation technologies and the tariffs are updated based on changes
in generation mix. So, the proposed method intends to induce a proper generation
behaviour, reducing congestion and postponing transmission expansion cost. The
growth of generation cost due to transmission limits is defined as the congestion
cost, which is used as a trigger to transmission network investment. Congestion
management may be considered a better alternative until its cost exceeds the
annualized network investment cost. The employed equations are straight and the
mathematical framework is perfectly understandable and based on present values of
annualized investment cost. The main contribution of this article is the development
of distinct tariffs to reduce network congestion. Although this mechanism considers
short-term conditions, which is not the usual framework that takes into account
long-term variables, it may be useful for an electrical energy system. Moreover
than reducing the congestion, it may increase system discipline and generation
flexibility through tariff distinction. In a context of deep insertion of RES, this kind
of mechanism must be deployed and evaluated because discipline and flexibility are
scarce resources in an environment with high presence of generation uncertainty.
Although the network model used is linear, the insights generated by this article are
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very expressive. The charging philosophy used to define costs and benefits among
the agents is adherent with the main principle that considers the responsibility of
each user in grid investment.

In [124], a physically based network usage method is proposed to allocate the
transmission costs. The TCA method consists of three direct steps. First, the active
power flow of any transmission line is mathematically split and associated with
nodal currents. After, the line cost is allocated to all loads and generators. Finally,
this procedure is repeated for all transmission lines. The formulated proposal is
based on the impedance matrix of the system with a detailed model that includes
the actual shunt admittances. An outstanding feature highlighted by the authors
is the proximity effect provided by the method. This means that generators and
loads use more intensively the lines electrically close to them, what is supported
by the circuit theory. Two other features are the slack bus independence and the
fact that is not necessary to split costs between generators and loads before running
the process. To process the method firstly it is required to run a full power flow to
determine the flow directions and the current injections in all buses. The equations
are based on electrical features of the system with complete grid representation. The
math development involves simple manipulations that allow direct understanding.
The model may represent generation and load values on the same bus. It is a
contributory feature because it gives flexibility and representativeness to the method.
Thus, independent rankings (to generators and loads) may be created to be used in
distinct applications, such as locations to new agents, capacity evaluation of assets,
and network expansion planning.

In [125], it is proposed a TCA method based on power flow equation in a math
framework very similar to [124]. Active power flows are expressed in terms of
generator currents and load currents through power invariant matrixes that represent
modifications of the impedance matrix. The theoretical basis is quite complete and
provides a guide with the necessary stages to generate the equations employed by
the method. As in [124], the method published in [125] uses a π equivalent model to
represent transmission lines. Through manipulations, a coefficient that measures the
electrical distance between a specific line and each bus is obtained. Firstly, the power
into the lines is calculated in terms of generator currents, defining the total load
current as the sum of all single load currents. After, generator currents are expressed
in terms of load currents, using information from a power flow solution. As result,
two conversion matrixes are obtained with invariant properties, which are used to
calculate the real power flows. Specifically, on the calculation process, the following
variables are used: bus voltage, electrical distance coefficient, conversion matrixes,
and injection currents. In short, transmission costs are calculated considering power
flows into the lines and the contribution of each load and generator in the line usage.
A flexible feature of the proposal is the possibility of assigning real power flows
only for load buses or generator buses. The flows may be still allocated considering
simultaneously a 50–50% proportion between generators and loads. Finally, another
interesting feature is the independence of a slack bus, which avoids the controversial
issues on this topic.
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A TCA approach based on the principle of equivalent bilateral exchanges (EBE)
is presented in [121]. According to this principle each load is attributed to a fraction
of each generation, and analogously each generator is attributed to a fraction of
each generation uniformly. The EBE method constitutes in a flow-based network
cost allocation with two major features. Firstly, a slack bus does not need to
be defined. Secondly, counter-flows are allowed, which limits the volatility of
charge outcomes. This method uses a direct current load flow model to emphasize
clarity and concision on the work. However, the framework may employ more
representative load flow models. With vectors containing numerical results obtained
from an optimal power flow, the EBE principle may be applied. The equivalent
bilateral power exchange (GD) is defined as the portion of a generation that supplies
a specific load bus. Thus, each individual generator and load may be decomposed
into linear combinations of EBE. With this, the effect of GD on power flows
is determined by an operation that is independent of the slack bus and satisfies
the Kirchhoff laws. The equations employed are simple and direct, characterizing
the method as a suitable proposal to diverse applications. Three network usage
properties that may be derived from the EBE principle: generator and loads at the
same bus does not use the network; nonzero GDs involving different buses affect
all line flows (except in some radial subnetworks); and even if the power flow in
a line is zero, the usage of this line is nonzero. The last property is particularly
important to provide stability to the method. The method produces tariffs with low
volatility comparatively with other approaches, but the locational characteristic is
kept. Finally, the results indicate great adherence to the fundamental principle of
allocating costs proportionally to agent benefits.

4.4 Conclusions and Future Directions

It is increasingly difficult to quantify the economic benefits that each transmission
facility provides to each user of the network. Therefore, actual TCA methods need
to be improved and new approaches developed based on some good insights, which
may be drawn from the discussed literature, and also based on the fundaments
indicated in this chapter. New approaches must be evaluated considering the partic-
ularities of each application obviously. But they must capture the current dynamic
processes that the power sector is going through, and they should also induce the
agents to the optimal system usage as a way to fully exploit its capabilities, retarding
the expansions. We may say that suitable methods to allocate the transmission costs
are straight and without a mathematical framework that depends on arbitrary and
subjective decisions.

With regard to decision-making processes, it is clear that decisions are becoming
increasingly scattered, but coordinated. Therefore, TCA methods must have clear
and fair strategies with robust approaches that prevent the contamination of results
caused by specific factors, such as the slack bus choice and the simulation scenario.
All the modifications, imposed by the energy transition process, force the TCA
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methods to be inserted into a more integrated and shorter-term planning. Integrated,
as they must be part of a systemic planning, where distribution networks consider
the TCA charges in their load management, through switching feeders, and where
RES consider the locations with cheaper TCA charges to install new units. About
the shorter-term planning, faster dynamics that arise from the energy transition force
shorter-planning horizons and more frequent long-term planning updates.

Finally, the electricity consumption may not be represented anymore by a static
amount. The consumption behaviour needs to be incorporated into TCA models. Its
evolution along the time (historical data) must be considered and the response action
(demand response) must be evaluated. This kind of modelling will allow that TCA
methods form fair tariffs for individual agents, according to the costs and benefits
that they cause to the system. With this, individual behaviours will be induced in
a way that leads the power system to a better use of its global resources. As the
result, transmission system gaps will be reduced, avoiding unnecessary expansions
of facilities and optimizing the existing resources.
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Chapter 5
Quantifying the Effect of Autonomous
Demand Response Program
on Self-Scheduling of Multi-carrier
Residential Energy Hub
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Nomenclature

Sets and Indices

c Index of controllable loads
ce Index of carbon emission
ch Index of charging
dch Index of discharging
e Index of power
es Index of energy storage
g Index of natural gas
GB Index of gas boiler
h Index of heat
l Index of load
Net Index of network
t Index of time (h)
uc Index of uncontrollable loads

Parameters

αt Natural gas distribution coefficient between CHP and Boiler
ηCHP, e Efficiency of CHP power generation
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ηCHP, h Efficiency of CHP heat generation
ηe, L Efficiency of electric loads
ηes, ch Energy storage charge efficiency
ηes, dch Energy storage discharge efficiency
ηGB Efficiency of heat generation by boiler
ηh, L Efficiency of thermal loads
μ Mean value of sunlight
πce Price of carbon emission (cent/kW)
πt

e Price of purchasing power (cent/kW)
πt

g Price of purchasing natural gas (cent/kW)
σ Standard deviation
Cmax

CHP Maximum natural gas imported into CHP (kW)
DSMt Participation of load in the proposed DSM at t
Ec, e Energy consumed by controllable electric loads in 24 h (kWh)
Ec, h Energy consumed by controllable thermal loads in 24 h (kWh)
E0

es Initial value of energy storage SOC (kWh)
Emax

es Upper bound of energy storage SOC (kWh)
Emin

es Lower bound of energy storage SOC (kWh)
FF Fill factor
Ht

max Upper bound of controllable thermal loads at t (kW)
Ht

min Lower bound of controllable thermal loads at t (kW)
Ht

uc Uncontrollable thermal loads at t (kW)
IMpp Current at maximum power point (A)
Isc Short circuit current (A)
Ki Current temperature coefficient (A

◦
C)

KMPPT Maximum power temperature coefficient
Kv Voltage temperature coefficient (V

◦
C)

lDSMt Load curtailed by DSM program at period t
Loadt Load after DSM running at t (kW)
Loadt

0 Load before DSM running at t (kW)
NOT Nominal operating temperature of cell (◦C)
P max

es,ch Upper bound of energy storage charging (kW)
P max

es,dch Upper bound of energy storage discharging (kW)
P t

max Upper bound of controllable electric loads at t (kW)
P t

min Lower bound of controllable electric loads at t (kW)
PPV Output power of solar panel (kW)
PSTC Output power of solar panel at standard test conditions (kW)
Psy Output power of the PV module during state y (kW)
P t

uc Uncontrollable electric loads at t (kW)
s Solar radiation
say Average solar irradiance of state y
SSTC Solar irradiance at standard test conditions
TA Temperature of ambient (◦C)
Tcy Cell temperature over state y (◦C)
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VMPP Voltage at maximum power point (V)
Voc Open-circuit voltage (V)

Variables

E24
es SOC of battery at hour 24 (kWh)

Et
es SOC of battery at t (kWh)

Gt
Net Imported natural gas at t (kW)

Ht
c Controllable thermal loads at t (kW)

Ht
CHP Heat generated by CHP at t (kW)

Ht
GB Heat generated by boiler at t (kW)

Ht
hs,ch Charged heat of heat storage at t (kW)

Ht
hs,dch Discharged heat of heat storage at t (kW)

Ht
L Total thermal loads at t (kW)

ltes,ch/ltes,dch Binary values preventing battery from charging/discharging simulta-
neously

P t
c Controllable electric loads at t (kW)

P t
CHP Power generated by CHP at t (kW)

P t
es,ch Charged power of energy storage at t (kW)

P t
es,dch Discharged power of energy storage at t (kW)

P t
L Total electric loads at t (kW)

P t
Net Power imported from grid at t (kW)

Functions

C Total objective function (cent)
Cce Cost of carbon emission (cent)
Ce Cost of purchasing power (cent)
Cg Cost of purchasing natural gas (cent)

5.1 Introduction

The gradual decrease in fossil fuels as one of the most important sources of
energy production as well as the environmental pollution problem has created many
concerns in the world so that many international treaties (i.e., Paris Treaty) have
signed [1]. These issues have caused to increase the attention to the subject of energy
management and environmental protection at the international level [2]. Currently,
energy resources such as electricity and natural gas networks are independently
managed and operated that these matters cause to reduce energy efficiency and as
a result, reduce the reliability in energy supply, increase the operating costs and
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excessive pollution. Energy consumers need different energy carriers to meet their
living needs, but the most important energy carriers used by the consumers are
natural gas and electricity because they are easy to operate and also many appliances
depend on electricity and natural gas.

In conventional systems these needs are provided independently, that is, natural
gas and electricity are supplied to consumers individually. However, with the
advancement of the technology of combined heat and power (CHP) generation
systems as an effective factor in the supply of natural gas and electricity, in addition
to the gas needs of the consumers, they can simultaneously meet their thermal and
electrical requirements. CHP systems can have an efficiency of between 60 and 80%
which will increase the efficiency of energy supply [3]. On the other hand, combined
cycle power plants with more than 60% efficiency, which are economically viable,
have been able to conquer the power market. With the growth of global energy
consumption and the environmental impacts of fossil fuels used in conventional
power plants, the tendency to use renewable sources has increased. In addition,
natural gas plays an important role in the global energy market by producing
electricity in large scale namely in gas-fired power plants and in small scale in
CHP systems. As a result, combining different sources of energy from renewable
sources to natural gas in one set can facilitate the achievement of a sustainable
energy network [4].

Since natural gas and electricity are interconnected, the operation of integrated
energy systems increases the efficiency of the supply of energy to customers who
need natural gas and electricity and heat. But since one of the most important issues
regarding energy supply is economic subject, in order to improve consumer comfort
and reduce government spending, we will try to minimize the cost of operation,
namely to purchase natural gas and electricity. Another important issue in supplying
energy is the matter of air pollution, which must be carefully investigated. To this
end, we need to determine how much and when to use the source of energy to
minimize operating costs, for example, it should be determined when the storage
will be charged or discharged, or how much renewable resource production per
hour is, and the rest of the resources and equipment are similarly. In the direction
of optimizing utilization costs, we are faced with the uncertainty of renewable
resources. The production capacity of wind turbines and solar panels is uncertain,
since power generation by wind turbines and solar panels depends on the speed of
wind and the amount of sunlight, respectively, and this makes it impossible for us to
accurately describe the generation of electricity by these sources. Although the wind
and sunlight are predictable, it cannot be commented on precisely and definitively,
and this affects the process of modeling and simulation of the problem. On the
other hand, there are several methods, including scenario production, for modeling
uncertainties that we use to model the uncertainty of the output of renewable
resources and consider these uncertainties in the optimization problem. On the other
hand, there are constraints and limitations that will add to the optimization problem.
Among these constraints are the limited capacity of gas pipelines and power lines,
the limitation of wind turbine and solar cells production, and the storage capacity
limitations.
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The need for energy is one of the most fundamental human needs, so that
without energy resources, such as electricity and natural gas, human life will be
impossible. Regarding the gradual completion of fossil fuels, including natural gas,
and the dependence of electricity generation on natural gas in gas-fired units and
the problem of air pollution, energy management becomes increasingly important.
Utilization of energy resources (gas and electricity), in addition to reducing energy
efficiency, will result in excessive consumption of these resources, which will
have economic consequences. The simultaneous operation of energy resources can
prevent the above problems, because if we know what kind of energy source and
when and how much must be used, we can manage energy resources and solve
economic problems caused by excess energy consumption. On the other hand,
greenhouse gas emissions and increased energy needs will lead us to utilize new
sources and technologies. New technologies, such as CHP systems, have made
possible the operation of energy resources with high profits. Reducing greenhouse
gas emissions, improving reliability and efficient operation, have been considered
as the advantages of combining different energy networks [5].

In this section, we will investigate the research on energy hubs. With the
advancement of technology, the issue of energy management has been given
particular attention. Considerable research has been done on energy management
in the form of energy hub in various aspects. Some of the research related to energy
hub done are the reduction of operating costs [5, 6], reduction of air pollution [7,
8] and increase in profits due to the sale of energy in the market [9, 10]. Among
the technologies used in the energy hub, renewable sources are one of the most
important equipment, because they cause to reduce the dependence of the energy
hub on the grid and increase the reliability of energy supply and also decrease
air pollution [11]. In some studies, the output of renewable resources has been
deterministically modeled [12, 13], and in some other research outputs of these
resources have been modeled uncertainly [13, 14]. Electric vehicle [15, 16] is one
of the other technologies that has attracted particular attention to the fact that, in
addition to reducing air pollution, it delivers its stored energy to energy hub at peak
time. One of the most important equipment used in energy hub is energy storage
[17, 18], which plays a key role in energy management by storing energy at off-peak
times and delivering energy stored at peak hours. Another important equipment is
CHP systems [19, 20], which produces electricity and heat from natural gas to meet
part of the needs of consumers in the energy hub.

In short, the contributions of this chapter are as follows:

• A novel cost-emission based modeling for energy management in residential
sectors

• Utilizing various equipment such as renewable resources and co-generation
devices to reduce the cost of operation and air pollution

• Considering responsible loads to investigate the effect of the demand response
program

• Formulating the model as a mixed-integer linear programming
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The remainder of this chapter is organized as follows: In Sect. 5.2, the concept
of the energy hub and its general structure are expressed. Mathematical modeling
and problem formulation of the proposed scheme is shown in Sect. 5.3. In Sect. 5.4,
simulation results are presented and discussed. Finally, in Sect. 5.5, the conclusions
of this chapter are given.

5.2 Energy Hub

Today energy plays an indelible role in the development of human societies.
Especially the electrical energy that can easily change into different forms of energy
and eliminate the needs of consumers. Recently, the concept of energy hub [21, 22]
has been proposed for the use of integrated energy systems. The energy hub is a
super node that receives different energy carriers at its input, and then determines
which technology and energy carrier to meet the needs of the subscriber according
to planning [5]. In a typical energy hub, its entrances are natural gas and electricity,
and its outputs are electricity and heat. Structure of the energy hub is composed
of different equipment such as a CHP system for generating electricity and heat
from natural gas, a transformer for converting electrical voltage levels, an electric
heater for generating heat from electricity and energy storages for storing electricity
and heat. Subscribers who feed on energy hub can be residential, industrial, and
commercial consumers. The energy hub supplies its consumers and sells its energy
surplus to the grid. Figure 5.1 shows the general model of an energy hub. As you
can see, the electrical energy is converted to an acceptable voltage level by the
transformer after entering the energy hub, and then a part of it has been given to
consumers and the other part is stored and its surplus is sold to the network. Natural
gas after converting to the heat and electricity is given to consumers.

Local Loads
Energy Hub

Grid

Solar

Wind

Natural gas

Boiler

CHP

Transformer

Electrical 
Storage

Heat
Storage 

Network

Fig. 5.1 Overview of energy hub
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5.3 Problem Formulation

In this section, a residential building is considered as an energy hub whose general
structure is shown in Fig. 5.2. Various and sometimes conflicting issues, such
as system reliability, environmental protection, profitability, comfortable life, and
economic should be considered in optimal utilization of residential energy hub [23].
The proposed energy hub for a smart home receives two energy carriers, including
natural gas and electricity, at its entrances. The energy hub is also composed
of various equipment and tools including solar panels, power, and heat storage
units and a CHP system to meet the needs of its consumers, which require heat
and power. The consumers connected to the smart energy hub divide into two
categories. The first type is uncontrollable loads that have an invariable profile, and
the second category is controllable loads that have specific energy consumption and
the operating time of these loads is controllable. The electricity loads are supplied
by the electricity purchased from the grid, electricity generated by the CHP unit,
solar panels, and battery. The heat loads are fed by the boiler, the heat storage, and
thermal energy generated by the CHP unit.

Air pollution today is one of the most serious global concerns that should to be
addressed seriously and the most important way to prevent its release is to reduce
greenhouse gas emissions from fossil fuels. One of the important tasks that can
be done to increase the efficiency of the energy hub and thereby reduce air pollution

Fig. 5.2 The proposed residential energy hub
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Fig. 5.3 Model of the proposed residential energy hub control

and reduce operating costs in residential buildings is the management of controllable
loads [24]. In other words, it can reduce operating costs and air pollution by shifting
the use of controllable loads from peak hours to off-peak hours, and the energy hub
can sell its energy surplus at peak time to the grid and thereby earn money for itself
and play a role in reducing air pollution. For this purpose, in the energy hub, the
Internet of Things technology has been used. In this method, as shown in Fig. 5.3,
inputs and loads, as well as the performance status of the equipment, are measured
by the sensors, and their information is delivered to the central smart controller. The
central controller also receives electricity and gas prices from the electricity and gas
market, and then, based on the proposed energy management plan, optimizes energy
consumption.
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5.3.1 Component Modelling

In this section, introducing and modeling the components of the energy hub and the
objective function in the form of mathematical formulas are discussed to be used in
the optimization problem.

5.3.1.1 Energy Storage

Nowadays, due to the rise in the price of energy carriers and the sharp fluctuation
of energy prices in the spot market, the use of storage in the energy sector has
increased significantly. On the other hand, electrical storages also increase the use
of renewable resources, as fluctuations in the production of these resources are
controlled, which increases the quality of the system, reduces energy costs, and
increases system profits [25]. Therefore, energy storage units are one of the most
important and most profitable parts of the energy hub [26, 27]. Energy storage has
been considered for economic benefit and reliability. Using energy storage units in
energy hubs helps greatly reduce the cost of purchasing energy because they can
be charged at low energy costs and supply consumers when energy is high. In the
proposed model of this chapter, electric and thermal storage devices are used, and
their mathematical equations are as follows.

Battery Energy Storage

As stated, the storage device is charged at low energy cost hours and discharged at
high energy cost hours to feed local loads [28]. In this section, the mathematical
equations of the electric storage are shown, which shows the state of charge of
the battery in Eq. (5.1). Equation (5.2) shows the minimum and maximum storage
capacity. Equation (5.3) emphasizes that the energy stored in the battery at hour 24 is
equal to its initial energy value. Equations (5.4) and (5.5) show the maximum charge
and discharge power of the storage device. Equation (5.6) also prevents charging and
discharging battery simultaneously.

Et
es = E0

es +
t∑

h=1

(

ηes,chP
h
es,ch − P h

es,dch

ηes,dch

)

(5.1)

Emin
es ≤ Et

es ≤ Emax
es (5.2)

E24
es = E0

es (5.3)
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0 ≤ P t
es,ch ≤ P max

es,chl
t
es,ch (5.4)

0 ≤ P t
es,dch ≤ P max

es,dchl
t
es,dch (5.5)

0 ≤ ltes,ch + ltes,dch ≤ 1 (5.6)

Heat Storage

Heat storage is another storage device used in this modeling that stores thermal
energy and, if necessary, provides it to consumers. In this section, the mathematical
modeling of heat storage is shown. Equation (5.7) shows the state of charge.
Equation (5.8) indicates the minimum and maximum storage capacity. Equation
(5.9) emphasizes that the energy stored in the heat storage at hour 24 is equal to
its initial energy value. Equations (5.10) and (5.11) show the maximum charge and
discharge power of the storage device. Equation (5.12) also prevents charging and
discharging the storage simultaneously.

Et
es = E0

es +
t∑

h=1

(

ηes,chP
h
es,ch − P h

es,dch

ηes,dch

)

(5.7)

Emin
es ≤ Et

es ≤ Emax
es (5.8)

E24
es = E0

es (5.9)

0 ≤ P t
es,ch ≤ P max

es,chl
t
es,ch (5.10)

0 ≤ P t
es,dch ≤ P max

es,dchl
t
es,dch (5.11)

0 ≤ ltes,ch + ltes,dch ≤ 1 (5.12)

5.3.1.2 CHP Unit

CHP unit is one of the most important technologies used in energy hub. This unit
receives natural gas at its input and generates electricity and heat. This device, which
is the most important factor in the connection between natural gas and electricity,
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Fig. 5.4 Feasible region of
CHP unit
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has been considered for high efficiency. The CHP unit has a feasible region for
operating as shown in Fig. 5.4. Electricity and heat generation by CHP depend on
each other, which means that it generates a certain amount of electricity for a certain
amount of heat production. The mathematical equations for CHP unit are shown in
Eqs. (5.13)–(5.15).

P t
CHP = ηCHP,eαtG

t
Net (5.13)

Ht
CHP = ηCHP,hαtG

t
Net (5.14)

αtG
t
Net ≤ Cmax

CHP (5.15)

Equations (5.13) and (5.14), respectively, represent the electrical and thermal
power generated by the CHP unit, and Eq. (5.15) denotes the input of natural gas to
the CHP unit for the production of electricity and heat.

P t
CHP − PA − PA − PB

HA − HB

(
Ht

CHP − HA

) ≤ 0 (5.16)

P t
CHP − PB − PB − PC

HB − HC

(
Ht

CHP − HB

) ≥ 0 (5.17)

P t
CHP − PC − PC − PD

HC − HD

(
Ht

CHP − HC

) ≥ 0 (5.18)
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Equations (5.16)–(5.18) show the feasible region of the CHP. According to the
equations, the CHP can generate power and heat within the feasible region.

5.3.1.3 Solar Panel

Today, due to air pollution, the trend toward the use of clean and renewable resources
has increased. One of these sources is the Solar Panels, which have attracted
special attention in recent years, because they are easy to install and use and also
generate electricity without contamination. It should be noted that the amount of
electricity produced by solar panels depends on the amount of sunlight [29] whose
mathematical relationships are as follows.

Tcy = TA + say

(
NOT − 20

0.8

)
(5.19)

Iy = say

(
Isc + Ki (Tc − 25)

)
(5.20)

Vy = Voc − KvTcy (5.21)

Psy

(
say
) = N.FF.Vy.Iy (5.22)

FF = VMPPIMPP

VocIsc
(5.23)

As it was said, the output of renewable resources is uncertain. In this modelling,
the normal distribution function is used to generate scenarios for the output of solar
panels, the equation of which is given from Eq. (5.24) [23].

f (s) = 1√
2πσ

e− (s−μ)2

2σ2 (5.24)

5.3.1.4 Load Modelling

Recently, consumer demand management systems have attracted much attention,
especially in smart cities, as an effective tool for optimizing demand management
at peak time [30]. In fact, demand management programs aim at changing con-
sumption pattern to reduce costs and increase system reliability, which encourages
consumers to use their programs and activities to optimize their consumption
[31]. This can be a great benefit for consumers in terms of lower costs and
better energy consumption control. In this modeling, loads are divided into two
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categories of electrical loads and thermal loads, each of which consists of two
groups of controllable loads and uncontrollable loads. In other words, some of
the electrical and thermal loads have a certain amount and time of consumption
that cannot be controlled. On the other hand, some other loads have a certain
amount of consumption that cannot be controlled, but their operating time can be
controlled, and they can be shifted from peak time to off-peak time. The modeling
of controllable loads is as follows.

Electrical Loads

Using demand-side management programs, consumers shift their consumption from
peak hours that the cost of electricity is high to off-peak hours to reduce operating
costs. Modeling of electric loads is as follows.

P t
e = P t

uc,e + P t
c,e (5.25)

P t
min,e ≤ P t

c,e ≤ P t
max,e (5.26)

24∑

t=1

P t
c,e = Ec,e (5.27)

Equation (5.25) denotes that the electric loads of the system consist of control-
lable and uncontrollable loads. Equation (5.26) shows the minimum and maximum
amount of consumable power for the electric loads. Equation (5.27) also states that
the total controllable load power in 24 h is equal to the total energy consumed by
these devices.

Heat Storage

In this modeling, demand-side management program is also used for controllable
heat loads, which is modeled as follows.

P t
h = P t

uc,h + P t
c,h (5.28)

P t
min,h ≤ P t

c,h ≤ P t
max,h (5.29)

24∑

t=1

P t
c,h = Ec,h (5.30)
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Equation (5.28) denotes that the thermal loads of the system consist of control-
lable and uncontrollable loads. Equation (5.29) shows the minimum and maximum
amount of consumable power for the thermal loads. Equation (5.30) also states that
the total controllable loads power in 24 h is equal to the total energy consumed by
these devices.

5.3.1.5 Uncertainty Modeling

Engineering modeling always is accompanied by uncertainties. There are a lot of
methods such as scenario generation, robust optimization to model uncertainties.
In this chapter, the scenario generation method has been applied to meet the
renewable resource uncertainty. In this method at the first, numerous scenarios have
been generated from probability density functions, and then the scenario reduction
method has been applied to decrease the number of the scenarios. In the end, one of
the scenarios that has the greatest probability value has been chosen as the expected
scenario. The mathematical formulas for scenario generation and reduction are as
follows:

φWS =
{(

WS1, ψ1
WS

)
,
(
WS2, ψ2

WS

)
, . . . ,

(
WSn,ψn

WS

)}
(5.31)

S =
∏

WS

φWS (5.32)

∑

s∈S

ψWS = 1 (5.33)

In this chapter, Normal PDF has been applied to the scenario generation for the
PV output at each hour. Equation (5.31) indicates the number of the scenarios and
their probability. Equation (5.32) shows the set of the scenarios. Equation (5.33)
expresses that the sum of the probabilities must equal to 1.

After generating the scenarios, the scenario reduction method is utilized in order
to decrease the burden of calculations. The mathematical formulas of the scenario
reduction method are as follows:

S1 = arg

[

Min
s′∈S

∑

s∈S

ψSW
(
S, S′)

]

S = {S1} (5.34)

Sn = arg

[

Min
s′∈S

∑

s∈S

ψS Min
s′′∈S

W
(
S, S′′)

]

(5.35)
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5.3.1.6 Heat and Power Balance

The balance of power and heat is the most important constraint in this model, which
indicates that the amount of generated power and heat must be equal to the demands.
According to Fig. 5.2, the equations of power and heat are written as follows:

P t
net + P t

PV + αtP
t
CHP + P t

Bat,d = P t
e + P t

Bat,c (5.36)

(1 − αt )H t
GB + αtH

t
CHP + Ht

HS,d = P t
h + Ht

HS,c (5.37)

Ht
GB = ηGBGt

net (5.38)

Equation (5.36) represents the balance of electrical power. Equation (5.37) also
expresses the heat equilibrium equation, and Eq. (5.38) is the amount of thermal
power generated by the boiler.

5.3.1.7 Objective Function

The purpose of this modeling is to reduce operating costs, including electricity and
natural gas purchase costs, as well as to reduce the carbon emissions in air using
various equipment and planning that are modeled as follows:

C = min (CE + CG + CC) (5.39)

CE =
24∑

t=1

πt
EP t

Grid (5.40)

CG =
24∑

t=1

πt
GGt

net (5.41)

CC = πC

24∑

t=1

(
βeP

t
Grid + βgG

t
net

)

s.t. : (3 − 1) to (3 − 30)

(5.42)

Equation (5.39) represents the objective function, consisting of three functions
that are the purchase cost of electricity, the cost of purchasing natural gas, and the
cost of carbon emissions in the air, and the equation of each of them is obtained
from Eqs. (5.40) to (5.42).
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5.4 Numerical Results

5.4.1 Data

In this section, the technical information of the system, including the price of energy
carriers, consumer information, and equipment information, will be shown for use
in the simulation process. Table 5.1 shows the price of electricity and natural gas in
the time of use tariff. The amount of the natural gas distribution coefficient between
the CHP and the boiler units is presented in Table 5.2. Also, information about
electricity and heat storage devices is given in Table 5.3. The amount of daily energy
consumption, the minimum and maximum allowable power consumption, and the
operating time for the controllable electric and thermal equipment are shown in
Table 5.4. In addition, the pattern of uncontrollable electric and thermal loads for
different times are shown in Fig. 5.5. The CHP unit has an electrical and thermal

Table 5.1 Price of energy carriers in TOU tariff

Electricity Natural gas
Off-peak Mid-peak On-peak Off-peak On-peak

Hour 1–8 13–17 9–12 1–9 10–14
22–24 18–21 15–18 19–21

22–24
Price (cent/kWh) 7 10 14 2 6

Table 5.2 Dispatch factor at different hours

Hour 1 2 3 4 5 6 7 8
αt 0.813 0.83 0.776 0.741 0.852 0.717 0.738 0.741
Hour 9 10 11 12 13 14 15 16
αt 0.801 0.834 0.769 1 0.858 1 1 1
Hour 17 18 19 20 21 22 23 24
αt 0.834 0.745 0.714 0.666 0.741 0.77 0.675 0.705

Table 5.3 Information of energy storages

P max
es,ch (kW) P max

es,ch (kW) Emax
es (kWh) Emin

es (kWh) E0
es (kWh) ηes, ch ηes, dch

Battery 0.7 0.9 5 1 2 0.88 0.88
Heat storage 0.5 0.5 3 0.5 2 0.6 0.8

Table 5.4 Controllable loads data

Electric
load Thermal load

Pmax
(kW) P t

min (kW)
Ec, e
(kWh)

Operating
time (h)

Ht
max

(kW) Ht
min (kW)

Ec, h
(kWh)

Operating
time
(Hour)

0.55 0.3 5.5 6–17 0.4 0.25 3.5 8–18
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Fig. 5.5 Profile of uncontrollable loads

Fig. 5.6 Solar panel outputs in different scenarios

efficiency of 45% and 35%, respectively, and the maximum input of natural gas
to it is 2.5 kW. Five scenarios are generated for modelling of solar panel output
uncertainty that are shown in Fig. 5.6.

5.4.2 Results

The CHP unit, by producing electricity from natural gas, can partly reduce operating
costs because in this modeling the price of natural gas is less than electricity.
Figure 5.7 shows the amount of electricity and heat generated by the CHP unit. As
can be seen, at different times, the ratio of generated heat to the generated electricity
is equal, and this is due to the approximate modeling of the CHP unit. Figure 5.8
also shows the controllable electrical and thermal load profile. It can be seen that
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Fig. 5.7 CHP outputs

Fig. 5.8 Profile of controllable loads

when the price of energy carriers is low, these loads work at their maximum power,
and when the price of energy carriers is high, they work at their minimum power,
that is, they are transferred to off-peak hours to reduce the costs of operation.

Energy storages store energy when the price of energy carriers is low, and give
stored energy to consumers when their cost is high. Figure 5.9 represents the state of
charge of electrical and thermal storage. For example, the battery is charged between
hour 13 and 17, with low electricity price, and discharged from hour 18 to 21, when
the price of electricity is high. Similarly, the heat storage is charged between hour
15 and 18, with low natural gas prices, and discharged when the price of natural gas
is high.

Solar panels, as clean energy sources, have a significant impact on reducing
carbon emissions, as well as reducing the cost of purchasing natural gas and
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Fig. 5.9 SOC of energy storages

Table 5.5 Impact of solar
panels output on cost of
operation (Cent)

Scenario Electricity Natural gas Carbon emission

Scenario 1 166.05 158.55 6.04
Scenario 2 184.44 158.55 6.32
Scenario 3 202.84 158.55 6.59
Scenario 4 221.23 158.55 6.87
Scenario 5 239.62 158.55 7.14

electricity from the networks. On the other hand, the output of the solar panels is
uncertain, and for this reason, using the Normal probability distribution function,
five scenarios have been generated to examine the effect of solar panels on the
energy hub. Table 5.5 shows the impact of each scenario on operating costs. As
can be seen, with the increase in the amount of electricity produced by solar panels,
the costs of air pollution, electricity, and natural gas have been reduced.

After completing simulations, the operating in the form of energy hub is
compared with the base case. Figure 5.10 shows the electricity and natural gas
purchases in this simulation. In the base case, the energy carriers were individually
operated and the amount of energy input to the energy hub per hour was dependent
on the amount of load consumed at that hour. With adding different equipment
to proposed residential building, the energy management has been optimized. The
CHP unit by generating power from natural gas, energy storages by storing energy
at off-peak times and delivering at peak times, and solar panels by generating power
from sunlight, help to reduce the operating costs and carbon emission. According to
Fig. 5.10, in the base case, the energy consumption at the peak times is high, but in
the operating in the form of the energy hub, the energy consumption shifts to off-
peak times, and also the energy hub can sell energy to the grid. Table 5.6 shows the
overall simulation results, including electricity, natural gas and carbon emissions, as
well as total operating costs, which are the total cost of each step of the simulation.
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Fig. 5.10 Energy hub inputs. (a) Base case, (b) energy hub

Table 5.6 Cost of operation (Cent)

Case Electricity Natural gas Carbon emission Total

Base case 500.9 102.25 9.162 612.31
Energy hub 166.05 158.65 6.04 330.65

5.5 Conclusion

So doing simulations and reviewing the results will be discussed in this chapter
by the conclusion of the modeling. In this chapter, optimal utilization of integrated
energy systems in the form of energy hubs was used to reduce operating costs and
reduce air pollution. In modelling, a smart residential building was considered as
an energy hub controlled by the Internet of Things technology. Simulations were
carried out in the presence of various equipment such as the CHP unit, power and
heat storage equipment and renewable resources, and the role of each of them was
investigated. Electricity and natural gas pricing was based on the time of use tariff
in order to see the impact of the price of energy carriers on optimal utilization. It
was observed that the existence of a CHP unit by generating electricity and heat
from natural gas and supplying part of the needs of consumers reduced the cost of
purchasing electricity in peak hours. In addition, the energy storage equipment had
an important role in reducing costs by storing energy at peak hours when the energy
costs are low and delivering the stored energy to subscribers at off-peak times when
energy costs are high. The presence of renewable resources as clean energy sources
contributed greatly to reducing operating costs and reducing air pollution.
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In the future works, various studies can be investigated as follow:

• Adding other energy carriers such as water and district cooling into the model
• Employing more efficient uncertainty modeling methods such as Information

Gap Decision theory or robust optimization
• Modelling the interactions between different energy hubs with private owners

through multi-agent based approaches
• Considering both energy and gas markets with detailed specifications
• Deploying cutting-edge technologies within the energy hubs
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Chapter 6
Offering Strategy of
Thermal-Photovoltaic-Storage Based
Generation Company in Day-Ahead
Market

Hooman Khaloie, Amir Abdollahi, Sayyad Nojavan, Miadreza Shafie-Khah,
Amjad Anvari-Moghaddam, Pierluigi Siano, and João P. S. Catalão

6.1 Introduction

Sustainability and environmentally friendly as well as diminishing fossil fuel
consumption are among the main benefits of turning to clean energy sources.
However, these sources of energy are not free from defects, high investment
costs, the intermittent output power of some of these resources (e.g., wind and
solar units), and dependence on climate can be enumerated as the disadvantages
of renewable energy sources. Nevertheless, the advantages of renewable energy
sources preponderate over its disadvantages. In 2016, 52.4% of the electricity
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consumed by Danish consumers was supplied by renewable energy sources, which
37.6 and 2% were the shares of wind and photovoltaic units, respectively [1]. It
should be mentioned that in 2017 43.7 % of Denmark’s electricity demand was
supplied through wind power share, which until now was the highest percentage of
wind power contribution in Denmark’s electricity industry [2].

Renewable energy sources with a large capacity or a group of renewable
energy sources owned by a generation company (GenCo) must design appropriate
offering strategies to achieve the maximum profit by participating in various
electricity markets. Different attitudes and approaches in this problem, along with
the representation of various mathematical models in accordance with the real
technical specifications of generation units, are among the unique aspects of these
studies in the literature of offering strategy problem. The offering strategy of a
pumped-storage power plant in energy and ancillary services market is studied in
[3, 4]. Contrary to [3], authors in [4] considered the risk associated with price
forecasting errors of target markets using the covariance matrix in the process of
maximizing profits. In [5], a risk-based offering strategy for a sample GenCo is
proposed. Modeling the uncertainty associated with rival’s behavior with the Monte
Carlo technique and optimizing the whole proposed problem via SPSO-TVAC (self-
organizing particle swarm optimization time-varying acceleration coefficients) is
the main contribution of this work. In [6], an optimal offering strategy model for an
emission-constrained GenCo is proposed. The authors modeled the electricity mar-
ket price uncertainty through a set of scenarios while several emission allowances
are considered to evaluate the impact of this parameter on GenCo’s expected profit.

Another challenge faced by researchers in the optimal offering strategy problem
is how to deal with the unspecified nature of parameters playing key roles in
the optimization process. To this end, various approaches have been proposed by
researchers of this field to deal with the uncertainties of the bidding strategy prob-
lem. Uncertainty management through a set of scenarios in the form of stochastic
programming has been considered in [7]. That paper focuses on the offering strategy
of a wind-hydro-pumped storage system, while water inflows for the reservoirs,
markets prices, and wind power output are the considered uncertainties in this
work. A stochastic bi-level self-scheduling framework for a GenCo in coordination
with an electric vehicle load aggregator is suggested in [8], while the uncertainties
related to wind power production and driving pattern of electric vehicle owners
are modeled using appropriate scenario generation techniques. Also, authors in [9]
have proposed a coordinated offering strategy for combined heat and power (CHP)
units and renewable energy sources through the concept of the virtual power plant
while the uncertain sources are taken into account with numerous scenarios. Robust
optimization is another common approach in engineering and economic studies that
assists the decision-maker in designing a suitable strategy for the worst realization of
the uncertain parameters [10]. Kabiri Renani et al. [10] developed the SS problem
for a transmission-constrained GenCo with incomplete market information while
the robust optimization is used to deal with locational market prices (LMPs) and
wind power production. In [11], the authors have developed a novel method for
optimal participating of the wind power producers (WPP) in the day-ahead (DA)
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electricity market while the uncertainty associated with wind power and electricity
prices are considered via stochastic scenarios. The authors benefit from kernel
density estimation for modeling wind power uncertainty. In [12], short-term offering
strategy for a price maker wind power producer has been introduced. The considered
WPP in that paper is treated as a price-taker agent in the day-ahead market while
its treatment in the balancing market is like a price-maker agent. Information gap
decision theory (IGDT) [13], interval optimization [14], and hybrid probabilistic–
possibilistic techniques [15, 16] are other approaches that have been repeatedly
investigated by diverse researchers to cope with uncertainties in electricity market
issues.

This chapter provides a risk-constrained offering strategy for a thermal-
photovoltaic-battery storage (TPVBS) GenCo in the DA market. The uncertainty
that stems from the DA and imbalance prices as well as photovoltaic (PV)
production are taken into consideration via a set of scenarios. The offering strategy
problem is formulated as a multi-stage stochastic programming problem while the
emission limitations concerning the thermal units are incorporated in the offering
process and the associated risk is modeled through conditional value at risk (CVaR)
technique. The optimal offering strategy of the TPVBS system is examined in
various risk levels, especially in both emission-constrained and emission-free
conditions, and finally, appropriate offering curves will be obtained.

In the next section, the uncertainty modeling of input parameters, including
electricity market prices and output power of the PV system, are described.
Then the precise formulation of the proposed problem is presented. In the next
section, numerical studies are conducted, and the simulation results are discussed.
Eventually, the research findings are explained.

6.2 Uncertainty Modeling

In this chapter, uncertain sources are split into two categories: electricity prices
and renewable production. The price of electricity in various markets is the most
substantial factor affecting the offering strategy problem, which is entirely faced
with many uncertainties. On the other hand, the output of the PV site is proportional
to the solar irradiance, which is an uncertain parameter. Despite the almost zero
irradiance during night-long, it is not even possible to consider a specified value for
this parameter throughout the daylight. A variety of factors, including season and
climatic conditions have the potential to affect the solar irradiance. For example,
during certain hours of the daylight, solar radiation may be at the highest level,
but due to specific weather conditions, such as cloudy weather, this potential can
be significantly reduced. In the present chapter, normal and beta distributions are
utilized to characterize the market prices and solar irradiance, respectively [17].

After modeling the probabilistic behavior of uncertain parameters with proper
distribution functions, the roulette wheel technique (RWT) will be applied for
scenario generation [18]. To this end, first, the continuous probability density
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Fig. 6.1 A typical PDF and its relevant roulette wheel technique. (a) PDF of electricity prices.
(b) Roulette wheel technique

functions (PDF) of each parameter are divided into 20 levels with their relevant
normalized probabilities as depicted in Fig. 6.1a for the normal PDF. It is noteworthy
to say that the number of levels for each parameter is selected in such a way
that it does not reduce the precision of the proposed method and not raise the
intricacy of the problem [18]. Next, as shown in Fig. 6.1, the interval [0, 1]
is occupied by the different levels of discretized probability density function
concerning their normalized probabilities. Then, a random number in the range of
[0, 1] pertaining to each uncertain parameter is generated. This random number
will be allocated to a specified level of the roulette wheel, which will represent
the corresponding realization of the uncertain parameter in each scenario. This
procedure will be reiterated till the required number of scenarios is attained. It is
undeniable that considering a large number of scenarios will lead to an intractable
problem. To this end, fast forward reduction technique is employed to reduce the
initially generated scenarios [19]. Consequently, by applying this method, the initial
scenarios pertaining to the electricity market prices (DA and imbalance prices) and
solar irradiance are reduced to ten scenarios for each separate parameter. Eventually,
the final set of scenarios for the proposed offering strategy problem will contain
1000 scenarios (103). It is worth highlighting that the current chapter does not cope
with the correlation between electricity prices and renewable power production. A
survey on the correlation between all uncertain parameters entails a new topic which
is outside the scope of this chapter.



6 Offering Strategy of Thermal-Photovoltaic-Storage Based Generation. . . 117

6.3 Problem Formulation

The offering strategy problem from the perspective of GenCos is an issue to
maximize total profit in the intended scheduling horizon. In this problem, a suitable
strategy for the participation of TPVBS system in the DA market is provided. The
scheduling period is 24 h, and the uncertainty that originates from market prices
(DA and imbalance prices) and production power of the PV site are characterized
via appropriate scenarios. The proposed decision framework in the offering strategy
problem is divided into three stages, which the classification of these decisions is
presented in Table 6.1.

In the following subsections, at first, the objective function of the coordinated
operation of all three sources, i.e., thermal units, PV site, and BSS, is presented,
and then, the relevant constraints of the offering strategy problem will be entirely
described.

6.3.1 Objective Function

The CVaR-based objective function of the suggested offering strategy for a sample
TPVBS system shown in Fig. 6.2 with the aim of profit maximization is developed
as a mixed integer programming (MIP) problem as follows:

Max PFT PV BS =
S∑

s=1

probs ×
[ T∑

t=1
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t,s

)
+
(
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Table 6.1 Classification of decisions in the proposed three-stage stochastic programming frame-
work

First stage decisions Charging power of BSS and operation status of BSS
and thermal units

Second stage decisions Offering curves of the TPVBS system in the DA
market

Third stage decisions Imbalance costs/incomes in the balancing market due
to energy deviations

in this market
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Fig. 6.2 Schematic of the proposed GenCo
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(6.1)

where the first two parentheses are related to the participation of thermal units and
PV site in the DA market, respectively. The next two parentheses represent the
income and expense terms of BSS for selling/buying energy in/from the DA market.
The third row refers to income and expense of TPVBS system in the balancing
market, while the fourth row calculates the costs arising from thermal units for
the energy production as well as their start-up and shut-down. Finally, the last row
represents the risk modeling term, namely CVaR.

6.3.2 Emission Constraint

In this chapter, it assumed that our TPVBS system is an emission-constrained
power producer, which in certain circumstances, it cannot exceed the specified
level of emission during the scheduling period. Equation (6.2) calculates the total
expected emission of thermal units while the emission limitation of TPVBS system
is imposed by (6.3).
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EMT PV BS ≤ Emax (6.3)

6.3.3 CVaR Constraints

The constraints related to the applied risk index, i.e., CVaR, are expressed by the
following equations:
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ηs ≥ 0, ∀s (6.5)

6.3.4 Imbalance Constraints

Constraints (6.6)–(6.8) are utilized to address the imbalances in the offering strategy
of TPVBS system. Constraints (6.6) and (6.7) are fulfilled to, respectively, limit the
negative and positive energy deviations of TPVBS system in the balancing market
while Eq. (6.8) calculates the total energy deviations in the aforementioned market.

0 ≤ δ−
t,s ≤ CAP PV +

G∑

g=1

CAP th
g ug,t + CAP disvdis

t , ∀t,∀s (6.6)

0 ≤ δ+
t,s ≤ χ
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t,s + χ
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t,s − T PR
ch,PV
t , ∀t,∀s (6.7)
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6.3.5 BSS Constraints

The operational constraints of the BSS are introduced in this subsection. The total
provided energy by all thermal units for charging the BSS is represented in (6.9).
Constraints (6.10) and (6.11) enforce the limitations pertaining to the maximum
charging and discharging capacities of BSS. Constraint (6.12) prevents concurrent
discharging and charging of BSS. The energy level of BSS will be updated according
to (6.13) while the boundaries of this energy level are imposed in (6.14).

G∑
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ch,th
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)
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0 ≤ ELBS
t,s ≤ ELBS,Max, ∀t,∀s (6.14)

6.3.6 Thermal Units Constraints

Thermal units are subject to several technical limitations which each of them will
be individually presented in the following. Equation (6.15) computes the aggregate
amount of units’ offer in the DA market, while constraint (6.16) ensures that the
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offered energy by each thermal unit should be bound within its allowable production
limit. Constraint (6.17) limits the provided power by each thermal unit for charging
the BSS. Constraints (6.18) and (6.19) are utilized to model the start-up and shut-
down costs of thermal units. Finally, the technical limitations pertaining to minimum
up/down times as well as ramp-up/-down rates of each thermal unit are imposed
by (6.20)–(6.25).

G∑

g=1

PR
DA,th
g,t,s = χ

DA,th
t,s , ∀t,∀s (6.15)

MINth
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6.3.7 PV System Constraints

Equations (6.26)–(6.29) are applied to bound the DA offer of the PV system, the
charging power provided by the PV system for BSS, and the aggregate amount of
DA power and the charging power within the maximum capacity of PV site.

0 ≤ χ
DA,PV
t,s ≤ CAP PV , ∀t,∀s (6.26)

0 ≤ T PR
ch,PV
t ≤ CAP PV , ∀t (6.27)

0 ≤ T PR
ch,PV
t ≤ CAP ch, ∀t (6.28)

0 ≤ T PR
ch,PV
t + χ

DA,PV
t,s ≤ CAP PV , ∀t,∀s (6.29)

6.3.8 Offering Curves Constraints

In many electricity markets, the power producer will be asked to submit non-
decreasing energy offers in the electricity markets. Consider two different scenarios
s and s̃ that ϑDA

t,s is greater than ϑDA
t,̃s . The non-decreasing constraints will enforce

that the offering quantity for a specific hour t in scenario s should be greater than or
equal to the bidding quantity in the scenario s̃. In fact, these constraints prevent the
submit of inconsequent offers by the power producer in the electricity markets. The
non-decreasing energy offer in the DA market is modeled according to the following
Eq. (6.30):

χ
DA,�
t,s ≤ χ

DA,�
t,̃s , ∀s, s̃ :

[
ϑDA

t,s ≤ ϑDA
t,̃s

]
, ∀t & � = th/PV/BS, dis

(6.30)

χ
DA,�
t,s = χ

DA,�
t,̃s , ∀s, s̃ :

[
ϑDA

t,s = ϑDA
t,̃s

]
, ∀t & � = th/PV/BS, dis

(6.31)
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where Eq. (6.31) is used to ensure that energy offers in two distinct scenarios with
the same realization of electricity prices must be identical. This limitation is called
non-anticipativity constraint.

6.4 Numerical Results

6.4.1 Input Data

In this section, the simulation results related to the offering strategy of a TPVBS
system are presented. The considered GenCo in this chapter comprises a PV site,
a BSS, and a thermal power plant with the nominal capacities of 150 MW, 50 MW,
and 794 MW, respectively. The technical specifications of the BSS have been shown
in Table 6.2. The nominal capacity of BSS has been assumed 50 MW while its
discharging and charging efficiencies are equal to 0.95 and 0.8, respectively. Data
on the characteristics of every thermal unit has been provided in Tables 6.3 and 6.4.
As can be seen from this table, the considered power plant includes fourteen units,
in which their quadratic cost function has been linearized with four blocks [20]. The
historical data of the first half of 2018 has been utilized for the uncertainty modeling
of electricity prices [21], and solar irradiance [22] has been given in Fig. 6.3. The
value of α is set to 0.95. The intended problem has been formulated as a MIP
problem which CPLEX under general algebraic modeling system (GAMS) has been
employed to solve the suggested offering strategy problem.

6.4.2 Simulation Results

First, the simulation results of the offering strategy of TPVBS system in the
DA market will be presented, and accordingly, the effect of imposing emission
limitations on the offering strategy problem will be investigated. In other words, in
the first study, the system maximizes its expected profit by ignoring constraint (6.3),
whereas in the second study, the results of the offering strategy problem are
examined under various emission limits.

Table 6.2 Information on
BSS

Parameter Value Unit

ϒBS,dis 95 %

ϒBS,ch 80 %

CAP dis 50 MW

CAP ch 50 MW

ELBS 250 MWh
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Table 6.3 Data on the cost curve and the emission rate of each thermal unit

Piece wise linearization Cost pertaining to each Emission ratios

Generation parameters (MW) block (e/MW) (lbs/MWh)

units MIN P(1) P (2) CAP C(1) C(2) C(3) C(4) ENOX,g ESO2,g

G1–G5 2.4 6 9.6 12 48.41 48.78 51.84 55.4 2.513 1.005

G6–G9 15.8 16 19.8 20 54.58 55.42 67.82 68.28 1.834 0.734

G10–G13 15.2 38 60.8 76 36.46 36.96 38.89 40.97 6.889 2.755

G14 140 227.5 280 350 35.08 35.66 36.09 36.72 18.371 7.348

Table 6.4 Technical data of each thermal unit

Generation RUg and RDg SRUg UCg DCg UTg DTg

units and SRDg (MW/hr) (e) (e) (hr) (hr)

G1–G5 12 87.4 8.74 4 2

G6–G9 20 15 1.5 1 1

G10–G13 35 715.2 71.52 8 4

G14 180 2298 229.8 4 4

The results of risk-based offering strategy for a TPVBS system have been
reported in Table 6.5. According to this table, in the risk-neutral scheduling, i.e.,
β = 0, the expected profit, CVaR, and expected emission of TPVBS system
are, respectively, equal to e244,454.898, e177,110.864, and 270,586.518 lbs.
By changing the system’s attitude towards a more conservative approach, i.e.,
increasing the value of β, the system’s expected profit will lessen, and on the other
side, the amount of CVaR will significantly grow. For example, by comparing two
situations β = 0 and β = 0.5, it can be seen that the CVaR gain will be 3.8% while
the expected profit will only reduce 0.07%.

Figure 6.4 illustrates the optimal participation of thermal units and PV site in the
DA market for two separate scheduling approaches, i.e., β = 0 and β = 4. Overall,
the participation level of these sources in the DA market by increasing parameter β

will decrease. It stems from the fact that the system tends to lessen its participation
in the market in the hope of diminishing its risk. The optimal behavior of BSS in the
suggested offering model in two different modes of operation, namely risk-neutral
and risk aversion, has been depicted in Fig. 6.5. By altering the operation mode of
the system from a risk-neutral case to a risk aversion situation, it can be seen from
these figures:

1. The charging period of BSS through thermal units will entirely change, except
hour 1.

2. In the risk-neutral condition, the BSS does not benefit from the DA market for
charging, while in the risk aversion situation, it purchases energy from the DA
market at hours 7 and 16.

3. The stored energy level of the BSS system will considerably change. In the risk
aversion case, it only includes one peak with the value of 155 MWh, while in the
risk aversion state, it experiences two peaks of 110 MWh.
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Fig. 6.3 Data on DA market price and solar irradiance. (a) DA market. (b) Solar irradiance

The offering curves of TPVBS system in the DA market for time interval t = 14
in two different values of β, i.e., β = 0 and β = 4 have been demonstrated in
Fig. 6.6. It can be observed from these figures that:
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Table 6.5 Results of the
suggested offering strategy
problem

Expected profit CVaR Expected emission

β (e) (e) (lbs)

0 244,454.898 177,110.864 270,586.518

0.5 244,278.972 183,839.477 270,843.719

1 243,485.075 185,033.449 270,909.745

2 242,642.108 185,668.329 270,556.397

4 242,421.594 185,737.515 270,556.397

6 242,313.791 185,783.973 270,556.397

1. The thermal units’ strategy at this hour will not change by varying parameter β.
2. In the risk-neutral case, the participation of the PV system will be the same in

a risk-free mode will be the same for all values of DA market price, while in
β = 4, it reduces its offering quantity for prices lower than 68 e/MWh.

3. In β = 0, the BSS will offer 50 MWh for DA prices higher than 56 e/MWh,
while in the risk aversion case, it will offer 50 MWh for prices higher than 68
e/MWh.

In the previous studies, the authors simulate the offering strategy problem for
a TPVBS system without any emission limitation. The results of the suggested
offering strategy problem for an emission-constrained TPVBS system have been
shown in Fig. 6.7. It should be noted that, contrary to the previous study, Eqs. (6.2)
and (6.3) are also considered in the optimization process, and the results are reported
for three values of Emax, i.e., Emax= 200,000, 175,000, and 150,000 lbs.

The presented results show that for all values of β, emission limit Emax=
200,000 lbs contains the highest values of expected profit, while the presented
results show that for all values of β, emission limit Emax = 200,000 lbs contains the
highest values of expected profit, while Emax = 150,000 lbs has the lowest profit. It
can also be seen that by changing the β = 0 to β = 0.5, the system will experience
the most increment in CVaR.

6.5 Conclusion

In the present chapter, a risk-constrained offering strategy for a GenCo comprising
thermal units, PV system, and BSS system was proposed. The DA electricity market
was considered as the target market. Decision-making in an uncertain environment,
i.e., electricity market, requires addressing significant sources of uncertainty by an
appropriate approach. To this end, all problem uncertainties, namely DA market
price, imbalance price, and PV production, were characterized by a set of scenarios.
Roulette wheel technique was employed to generate the desired number of scenar-
ios, and finally, in order to prevent computational burden in the optimization stage,
the fast forward reduction method was applied to reduce the initially generated
scenarios. In the proposed methodology, an applicable risk measure, namely CVaR
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Fig. 6.4 Participation of thermal units and PV site in the DA market. (a) Thermal units. (b) PV
site
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Fig. 6.5 Optimal behavior of BSS in the DA market. (a) Risk-neutral operation. (b) Risk aversion
operation
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Fig. 6.7 Results of offering strategy problem for the emission-constraint system

metric, was incorporated. The presented results have revealed that a very slight
decrement in the GenCo’s expected profit can be used for a considerable decrease
in the risk of experiencing low profits which accordingly, the system can design its
offering strategy with more safety margin. The suggested offering model was also
able to take into account the emission limitation that would probably be imposed by
the independent system operator.
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Nomenclature

Indices

t Index indicating period
g Index indicating each thermal unit
s Index indicating scenario
k Index indicating emission type
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Constants

probs Probability of a scenario incidence
CAP PV Nominal capacity of the PV site, MW
UCg/DCg Cost appertaining to start-up/shut-down of thermal units, e
DTg/UTg Minimum down/up times of thermal units, hr
RUg/RDg Rates appertaining to ramp up/down of thermal units, MW/hr
Emax Emission limitation of the system, lbs
CAP th

g /MINth
g Upper/lower bound of permitted production of thermal units,

MW
P dis,Max/P ch,Max Maximum allowed charging/discharging power for ESS, MW
PS

th,S,Max
g Maximum allowable power of every thermal unit for taking

part in spinning reserve market, MW.
Ek,g Rate of emission appertaining to each emission type and each

thermal unit, lbs/MWhr
SRUg/SRDg Ramp limits appertaining to start-up/shut-down of thermal

units, MW/hr
C(L) Cost appertaining to segment of L in linearized cost curve of

thermal units, e/MWh
ϒBS,dis /ϒBS,ch BSS efficiencies appertaining to discharging/charging mode.
ELBS,Max BSS maximum allowable stored energy, MWh

Variables

ϑDA
t,s Price appertaining to DA market, e/MW

χ
DA,th
t,s /χDA,PV

t,s Offering quantity from thermal units/PV system in
the DA market, MW markets, MW

χ
DA,BS,dis
t,s /χDA,BS,ch

t,s Selling/purchasing quantity of BSS in the DA mar-
ket, MW

RP PV
t,s Actual power of PV system, MW.

PR
tot,th
g,t,s Final generated power of each thermal unit, MW

δ+
t,s /δ−

t,s Upward/downward imbalance, MW
Ug,t /Dg,t Cost appertaining to start-up/shut-down of thermal

units, e
CFg,t,s() Cost function of thermal units
PR

DA,th
g,t,s Offering quantity from each thermal unit in the DA

market, MW
PRch

g,t /T PR
ch,th
t /T PR

ch,PV
t Supplied charging power through each thermal

unit/whole thermal units/ PV system for the BSS,
MW
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vdis
t /vch

t Binary variable appertaining to each operation
mode of BSS, i.e., discharging/charging

ug,t /xg,t /yg,t Binary variable appertaining to online/start-
up/shut-down status of thermal units

ELBS
t,s Stored energy in the BSS, MWh

ρ+
t,s /ρ+

t,s Price ratios for upward/downward imbalance
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Chapter 7
Risk-Based Purchasing Energy for
Electricity Consumers by Retailer Using
Information Gap Decision Theory
Considering Demand Response Exchange

Ramin Nourollahi, Sayyad Nojavan, and Kazem Zare

Nomenclature

Parameters

Cb Minimum expected cost of retailer
Co Critical cost for opportunity function
Cr Critical cost for robustness function
d(t) Time period
f

pen
po (t) Penalty of not running pool-order DR in time period t

P
DR,MAX
f,b (t) Highest demand in block b of forward DR f in time period t

P MAX
f,b (t) Highest demand in block b of forward contract in time period t

P
DR
j (t) Demand in jth step of reward-base DR in time period t

P MAX
po (t) Highest demand in pool-order DR in time period t

Preq(t) Value of purchased power by retailer in period t

R
DR
j (t) Highest value in jth step of reward-base DR in time period t

λpo(t) Price of pool-order DR in period t
λDR

f,b(t) Price of block b of forward DR f option in time period t

λF
f,b(t) Price of the block b of forward contract f in time period t
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λ̃p(t) Forecasted pool market price
ω Percentage increase in cost for retailer
ϒ Percentage decrease in cost for retailer

Numbers

NBDR Number of blocks in forward DR
NF Number of forward contracts
NFB Number of blocks in forward contracts
NFDR Number of contract in forward DR
NJ Number of steps in reward-base DR
Npo Number of pool-order options

Variables

C(F) Total cost of forward contracts
C(FDR) Total cost of forward DR program
C(PO) Total cost of pool-order options
EC(P) Total cost of power procurement from pool market
EC(RDR) Total cost of reward-base DR
PDR(t) Purchased power from reward-base DR in time period t
Pp(t) Purchased power from the pool market in time period t
Ppo(t) Purchased power from pool-order in time period t
P DR

f,b (t) Purchased power from block b of forward DR f in time period t

P F
f,b(t) Purchased power from block b of forward contract f in time period t

RDR(t) Value of reward in time period t
RDR

j (t) Value of reward of step j in time period t
vDR, j(t) Binary variable that shows which step is executed in time period t
vpo(t) Binary variable which is 1 if pool-order is run in time period t
λp(t) Actual pool market price

Functions

C(p, λ) Procurement cost function of retailer
α̂ (Cr) Robustness function
β̂ (Co) Opportunity function
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7.1 Introduction

In the restructured electricity market retailer has an important role in procuring
consumer energy which tends to reduce their energy procurement cost by using
efficient DR programs. Also, in this markets retailer can sign contracts with
aggregators and consumers to reduce their operation costs. Pool market and forward
contracts are two main sources to supply consumer’s demand by retailers, where
retailers can buy their own power from these sources [1]. Also, DR programs are
options that the retailer can use to improve the market efficiency [2]. Retailer can
flatten the load curve using DR programs and reduce the cost of purchasing power at
peak times [3]. Also, retailer should offer optimal bidding curves to the pool market
in order to participate in the day-ahead market.

7.1.1 Literature Review

In [4], binary imperialist competitive algorithm and binary particle swarm opti-
mization have been used to find optimal energy procurement for retailer using the
combination of two algorithms. An appropriate optimal strategy is presented in
[5] to procure energy of retailer from the pool market and bilateral contracts. In
[6], a stochastic model helps retailers to maximizing their profits at an acceptable
level of risk which is pool market price uncertainty in the short-term horizon and
sets up appropriate contracts with suppliers and end users. Retailer problems in
providing final selling prices to consumers and setting high prices for forward
contracts are evaluated in [7], in which consumer’s elasticity is considered against
increasing or decreasing prices. Also, in order to analyze the retailer’s risk in
meeting with the uncertainties in the load and wholesale market price, a multistage
stochastic optimization method has been introduced in [8]. One of the important
issues for retailers is determining the optimum price for energy sales to consumers
and procurement of its energy from the market which is studied in [9]. In [10], the
financial risks caused by the uncertainty of the market price are addressed and solved
in the mixed-integer stochastic optimization problem. Selling energy pricing to
consumers with the time-of-use (TOU) rate is another problem for retailers which is
addressed in [11]. In [12], in order to avoid the need to buy energy at the peak times
from the pool market, shiftable load is proposed at the peak times according to TOU
tariff. In [13], a linear programing method for mid-term contracts is provided, in
which retailers offer the right consumer price considering the consumers’ demand,
market competition demand, and market prices. In [14], information gap decision
theory (IGDT) approach is considered for handling and analyzing the uncertainty
of pool price for mid-term scheduling. Comprehensive information on DR and
its benefits as well as its positive effects in the electricity market is descripted
in [15]. On the other hand, to properly handle multiple uncertainties inherent
in the micro-grids, probabilistic energy management techniques are deployed in
[16]. In [17] an algorithm for electricity market participant to obtain optimal bid
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under price uncertainty. The model is based on the known probability density
functions of forecast prices. Reference [18] introduced a new approach to simulate
electricity prices with hourly resolution for several months up to 3 years. In [19],
the market elasticity caused by market price volatility is addressed. In [20], it can be
seen that new DR schemes include several options for customer’s satisfaction and
improvement of load profiles. Retailers implant the coupon incentive-based demand
response (CIDR) scheme in [21]. Authors in [22] first examined the implications
of RES concentration on electricity price uncertainty and then decomposed the
variance in electricity price into permanent and transitory components and explained
what drives these trends. Also [23] used the toolkit of interest rate theory in the day-
ahead electricity market in Asia.

In [24], distributed demand-side energy management strategy is proposed in
which each user applied its best strategy to the total load and tariffs in the power
distribution system. [25] mainly focuses on demand side management and demand
response, including drivers and benefits, shiftable load scheduling methods, and
peak shaving techniques. Authors in [26] model a residential customer in a multi-
energy system (MES). In addition, demand response schemes have been classified
based on their potential for field deployment in [27]. In [28] a multi-objective mixed
integer linear programming model has been developed to minimization of peak
load and cost of smart grids. Also, [29] determined selling price and compared
by the retailer in the smart grid in three cases containing fixed pricing, time-of-
use (TOU) pricing, and real-time pricing (RTP). In [30], an optimization model is
proposed in which the consumer’s hourly response to hourly changes in electricity
prices. The beneficial results of TOU pricing is accessed through [31], in which
the welfare of the TOU pricing is compared with fixed pricing. Technical aspects
of DR programs have been investigated in order to control load management such
as water heater, air conditioners, space heating, and cooling systems in [27, 32–
35]. In [36], a new concept of DR is introduced as DR expected (DRX), in which
DR is exchanged directly as a public good and traded between buyer and seller of
DR. Also, the modified model of this design has been improved in [37]. For help
to consumers in choosing a type of DR, three types of DRs are introduced and
evaluated in [38]. The result of this evaluation is applied in several articles and the
result can be seen in [39, 40]. In [41], a stochastic programming approach is used
to measure the load curtailment capability of industry consumers in a short time
period. In [42], a new demand response, called consumer preference, based demand
response model introduced in a game-theoretic framework. As a good work, authors
in [43] in an integrated energy system (IES) propose the pricing and operation
strategy considering DR for an MG retailer. Retailers usually use DR programs to
reduce their cost and risk. Several researches have addressed this issue to contain the
uncertainty issues of load-serving entity, interruptible loads which is used in [44]. In
[45], two interruptible load contracts, pay-in-advance and pay-as-you-go, are used to
prevent power outages and reduce retailer damage at a time of falling prices. Also, in
[46], self-production has been used to reduce the risk of market price fluctuations.
In [47], it has been shown that interruptible loads can be used as energy sources
for distribution companies (DISCOs). In [48], DISCOs use interruptible loads as
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energy sources in the day-ahead market. Also, in [49], in addition to interruptible
loads, time-of-use and real-time pricing are used in order to reduce consumption of
consumers. In [50, 51], a robust optimization method is used to model pool price
uncertainty in order to obtain an optimal bidding strategy which is offered to the
day-ahead market by the retailer.

In order to maximize the profit for suppliers and minimize the payments of
customers, the building of bidding strategies is a major concern in the restructured
power market because their profits depend on their bids. Still, now wide research
work has been done on developing bidding strategies for generation-side market
participant only and little work is done on demand-side participants. The problem
of developing optimal bidding strategies for competitive generation companies was
first introduced by David [52] and then surveyed by several researchers. Most of
the researchers have used a linear bid function or quadratic bid function to build
the bidding strategy for the electricity market participant. In [53, 54], a linear
bid function is assumed to build the bidding strategies for the participant and
the system is dispatched to maximize the social welfare. In [55], market clearing
price with and without wind power has been evaluated in double sided bidding
for linear bid and block bid trading model. Using graphical analysis, the MCP and
schedules are determined under different market conditions in which quadratic bid
function from both generating side and consumer side is considered [56]. In [57], a
conceptual study is carried out on optimal bidding strategies of power suppliers in
the operating Zhejiang provincial electricity market in which the stepwise bidding
protocol is used. Finally, as a similar work [58] proposed a new framework in which
demand response (DR) is incorporated as an energy resource of electricity retailers
in addition to the commonly used forward contracts and pool markets.

In Table 7.1 reviewed papers above are clarified in order to compare difference
between reviewed papers.

The work done in researches about DR programs can be categorized as follow:

1. The works in the articles focus on the basic concepts, formulation, and technical
aspects of DR programs. Also, in a few articles, DR is traded directly between
the seller and buyer of DR.

2. Few articles have reviewed DR from financial aspects in which most of these
articles have been from the consumer’s point of view.

3. Few articles have focused on DR options from the retailer’s point of view.

7.1.2 Novelty and Contributions

According to the above, the work done in this study differs in four directions as
follow:

1. DR is a public benefit and also is directly traded between the buyer and the seller.
2. This work proposes several schemes of DR for the retailer to implement them

in accordance with his needs (Sect. 7.2, Fig. 7.1). This scheme covers the long
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Table 7.1 Reviewed paper comparison

Reference
Considered
DRP

Uncertain
parameter

Uncertainty
modeling Time period

[1] — 1. Market price IGDT Short term
(24 h)

Retailer

[3] 1. TOU 1. Market price
2. Demand
3. Outage RERs

Scenario Short term
(24 h)

Retailer

[5] – 1. Market price
2. Demand

Scenario 1. Medium
term
2. Short term

Retailer

[6] – 1. Demand Scenario Long term Retailer
[7] – 1. Market price Scenario Long term Retailer
[8] – 1. Market price Scenario Long term Retailer
[9] – 1. Market price

2. Demand
Scenario Medium term Retailer

[10] – 1. Market price
2. Demand

Scenario Medium term Retailer

[11] – 1. Market price
2. Demand

Scenario Long term Retailer

[12] 1. TOU 1. Market price
2. Demand

Scenario Medium term Retailer

[13] – 1. Market price
2. Demand
3. Rival-retailer
prices

Scenario Medium term Retailer

[14] TOU 1. Market price IGDT Medium term Retailer
[20] 1. RTP

2. TOU
3. CPP

– – Short term Consumers

[21] 1. RTP
2. TOU
3. CPP
4. PLP

– – Short term Consumers

[24] 1. RTP
2. TOU
3. CPP

1. Market price
2. Demand

Scenario Short term Utility
company
and its cus-
tomers/users

[29] 1. TOU 1. Market price Scenario Short term
(24 h)

Retailer

[30] 1. RTP 1. Market price
(for consumer)

Robust
(for
consumer)

Short term Consumers

[31] 1. TOU – – Short term Electricity
markets

[36] 1. Pool-based
demand response

– – Short term DR buyers
and sellers

(continued)
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Table 7.1 (continued)

Reference
Considered
DRP

Uncertain
parameter

Uncertainty
modeling Time period

[37] 1. Demand
response
exchange (DRX)

– – Short term DR buyers and
DR sellers

[39] 1. CPP – – Short term Energy service
provider

[40] 1. CPP – – Short term Utilities
[41] 1. Other DRP 1. Demand Scenario Medium

term
Consumers

[44] – 1. Demand Scenario Short term Consumers
[45] – 1. Market price Scenario Medium

term
Retailer

[46] – 1. Market price Scenario Long term Large
consumer

[47] – 1. Market price Scenario Short term Retailer
[48] 1. RTP

2. TOU
– – Short term Electricity

markets
[52] – 1. Market price

2. Demand
Probabilistic
methods

Short term Consumers
Bidding curve

[53] – Suppliers profit Mont
Carlo
Method

Short term Consumers

Bidding curve
[58] TOU Market price Robust

optimiza-
tion
approach

Short term Consumers
Bidding curve

[61] 1. Reward-base 1. Demand Scenario Short term Retailer
[62] Other types – – Short term Ancillary

service market
[63] Other types – – Short term Electricity

markets
This
paper

1. Pool-order
DR
2. Forward DR
3. Reward-base
DR

1. Pool market
price

IGDT
approach

Long term Electricity
retailer

term or short term, which retailers choose according to their circumstances.
These schemes are presented in the form of contracts which include: forward
DR contracts, which are agreements for future periods in which a certain amount
of energy is traded at a given price. The second option is a pool-order contract
that will be used by the retailer at a time when the pool market is fluctuating; this
contract is derived from the concept of well-known financial options referred in
[59, 60]. Also, finally, a reward-base contract [61] is introduced, which is used
as a real-time resource in proposed DR scheme. By using this option, the retailer
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Retailer

Forward-DR
contracts

Consumers/aggregator

Reward-base DRPool-order options

Fig. 7.1 Available DR programs for energy supply of retailers

can increase the amount of load reduction by increasing rewards. These schemes
include long-term and short-term contracts that the retailer can use to procure
their needed energy. From the viewpoint of difference between this work with
previous works, proposed DR scheme allows a retailer to decide how to buy DR
from aggregators and consumers.

3. Furthermore, IGDT technique is proposed to handling of market prices uncer-
tainty. Using this technique, different strategies of increase and decrease in
market prices are considered in which robustness and opportunity functions will
provide the risk-averse and risk-taker strategies for retailer.

4. Finally, based on IGDT technique and using opportunity and robustness func-
tions, optimal bidding strategy is obtained which the retailer can offer bidding
strategy to day-ahead market to purchase its energy from the pool market. In
general, IGDT analyzes effects of various amounts of deviation from optimal
solution on the uncertain parameter.

According to mentioned contexts, novelty of this chapter can be summarized as
follow:

1. Direct trade demand response between retailer and consumers.
2. Pool-order DR, forward DR, and reward-base DR are proposed as new DRP

scheme.

7.1.3 Chapter Organization

The structure of this chapter is organized as follows: Sect. 7.2 introduces the
mathematical formulation of the new DR scheme, market options, and objective
function. The concept and formulation of the IGDT technique and the two important
functions including opportunity and robustness will be presented in Sect. 7.3. The
IGDT approach is applied to the base formulation to handling the uncertainty in
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the pool price in Sect. 7.4. The method for obtaining optimal bidding strategy is
explained in Sect. 7.5. The input data and the detailed results are presented in Sect.
7.6. Finally, the conclusion of the chapter is presented in Sect. 7.7.

7.2 Problem Formulation

This chapter introduces a new design for direct DR exchange between retailer
and consumer and aggregators; structure of this scheme is illustrated in Fig. 7.1.
According to Fig. 7.1, retailer can use three options to buy DR from the consumers
or aggregator in which each contract will be employed according to its price in
different periods. Three DR options are set up in long-term and short-term contracts,
and aggregated between consumers and retailers. In general consumers can sell their
DR in different markets (for example, pool market or ancillary services [62, 63]),
but this chapter considers only consumers who are able to sell their DR to retailers.

7.2.1 Objective Function and Power Balance Constraint

The objective function for retailer’s cost is proposed in Eq. (7.1) in which total
power procurement cost from the pool market, forward contracts, pool-order DR,
forward DR, and reward-base DR are presented. Finally, power balance constraint
is provided in Eq. (7.2) in which the total required power by the retailers is equal
to the total demand reduction of the DRs and the power purchased from forward
contract and pool market.

Min C (p, λ) = Ec (P) + C (F) + C (PO) + C (FDR) + C (RDR) (7.1)

P erq(t) = P p(t) + P F(t) + P total
po (t) + P FDR(t) + P DR(t) (7.2)

Equation (7.1) indicates that retailer total cost is equal to the cost of all used
option, which includes the two market option such as pool market, forward contract,
and three DR options such as pool-order DR, forward DR, and reward-base DR.

7.2.2 Wholesale Market Suppliers

Retailers can use two other market options other than DR in order to supply their
consumer’s energy. These two options include pool market and forward contract
option.
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7.2.2.1 Pool Market

The retailers can use the pool market as an option to buy or sell energy. But in this
study, retailers use pool market only as a source to buy their energy. Also, in this
study, pool price has been considered as an uncertain parameter in which IGDT
technique is used to handle the pool price uncertainty in order to obtain optimal
bidding strategy of retailers.

The total cost of purchasing energy from the pool market is calculated by Eq.
(7.3).

EC (P) =
∑

t∈T

P p(t).λp(t).d(t) (7.3)

Equation (7.3) points out that the total cost of purchased power from pool market
is equal to the amount of power purchased from pool market according to pool
market price condition.

7.2.2.2 Forward Contract

Forward contract is an agreement to procure energy from market in which each
contract has different blocks and each block has a specific price and volume. These
blocks have a stepwise additive price.

Total forward contracts’ cost is considered as follows:

C (F) =
∑

t∈T

NF∑

f =1

NFB∑

b=1

P F
f,b(t).λ

F
f,b(t).d(t) (7.4)

0 ≤ P F
f,b(t) ≤ P MAX

f,b (t) (7.5)

P F(t) =
NF∑

f =1

NFB∑

b=1

P F
f,b(t) (7.6)

Equation (7.4) shows the total cost of forward contract for all blocks of all
forward contracts in all periods. So, total cost of forward contract is equal to total
used power from forward contracts which is equal to sum of the used power from
each block of each forward contracts multiple price of the each block of the each
forward DR contract in all periods.

Similar to other contracts, demand range of forward contract is shown in Eq.
(7.5). The total demand of each block in forward contracts is shown in Eq. (7.6).
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7.2.3 Pool-Order Option

Pool-order option is one of the options for retailers, which can be used to buy
DR from the consumers or aggregator. In other words pool-order DR is a contract
with few power volumes, which is proper when pool market price a low vitiations.
Retailers usually use from this option when the market price increased. But, at the
execution time use of this contract depends on profitability of this contract for the
retailers. In other words, when the execution time of contract is coming, depending
on the market price retailers will decide to run the contract or not. So, the execution
of the contract depends on the market price at the time of execution of the contract
and if the execution of the contract is not profitable, retailers with the payment of
penalty to consumers or aggregator will be discontinued from the execution of the
contract. In other words, if the cost of purchasing energy from the pool market is
lower than the cost of pool-order options and penalties, the retailers will buy energy
from the market. Figure 7.2 shows the structure of pool-order option.

Total cost of pool-order options is formulated as follows:

C (PO) =
∑

t∈T

Npo∑

po=1

[
Ppo(t).λpo(po).νpo(t).d(t) + (

1 − νpo(t)
)
.f

pen
po (t)

]
(7.7)

0 ≤ Ppo(t) ≤ P Max
po (t) ∀po = 1, 2, . . . , Npo (7.8)

Fig. 7.2 Configuration of
pool-order option Pool-order option

DR cost ≤
(pool cost +

penalty)

Retailer

P
en

al
ty

F
ee

No

DR seller

Ye
s

Retailer DR seller
Cash flow

Energy
flow
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P total
po (t) =

Npo∑

po=1

Ppo(t).νpo(t) (7.9)

Equation (7.7) shows the total cost of the pool-order option for all periods. This
equation consists two parts, the first part is the cost of employed contract and second
part of the fine is due to the not execute the contract as penalty cost. The power
range of pool-order option is limited in Eq. (7.8). Also, total demand of all the
executed pool-order options is shown in Eq. (7.9) which is equal to the sum of the
total used contract poth, so that if pool-order poth is selected by consumers vpo is
one, otherwise it will be zero.

7.2.4 Forward DR

Forward DR contracts are agreements that are agreed for future periods in which a
certain amount of energy is traded at a given price [55]. The pricing of forward DR
contracts is usually done in two ways:

Over-the-Counter Market: In this type of pricing, both forward contract parties
(seller and buyer) directly determine prices.

Exchange-Trade Market: This is a market in which standard contracts are traded
at a specified volume and price. The benefits and prices in this type of pricing are
determined through a centralized clearing house.

Because DR is directly traded by retailers and DR providers, over-the-counter
market type of pricing is used for forward DR contracts. Forward DR contracts
consist of various blocks that are offered through retailers. The total cost of forward
DR contracts is calculated as follows:

C (FDR) =
∑

t∈T

NFDR∑

f =1

NBDR∑

b=1

P DR
f,b (t).λDR

f,b(t).d(t) (7.10)

Equation (7.10) shows the total cost of forward DR for all blocks in all periods.
So, total cost of forward DR contract is equal to total used demand from forward
DR contracts which is equal to the sum of the used demand from each block of
each forward DR contracts multiple price of the each block of the each forward DR
contract at any time.

Also, total contracted power and the range of each block is introduced as follow:

0 ≤ P DR
f,b (t) ≤ P

DR,Max
f,b (t) (7.11)
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P FDR(t) =
NFDR∑

f =1

NBDR∑

b=1

P DR
f,b (t) (7.12)

Equation (7.11) shows the demand range of each block of forward DR contracts.
Also, Eq. (7.12) shows total demand of all the executed forward DR contracts. In
other words, total used demand by forward DR contracts is equal to sum of the used
demand from each block of each forward DR contracts.

7.2.5 Reward-Base DR

The reward-base DR curve is shown in Fig. 7.3. According to this figure, the offered
rewards by the retailers are increased while the volume of load reduction is increased
in a stepwise curve. It should be mentioned that proposed reward function has been
a linear function, which in this chapter, in order to simplify education to amateur
consumers, is considered as a stepwise function. Therefore, the amount of traded
DR in reward-base DR will depend on consumer’s behavior.

Reward-base DR is modeled as follows:

P DR(t) =
NJ∑

j=1

P
DR
j (t).νDR,j (t) (7.13)

RDR(t) =
NJ∑

j=1

RDR
j (t) (7.14)

Fig. 7.3 The reward-base
DR curve
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R
DR
j−1(t).νDR,j (t) ≤ RDR

j (t) ≤ R
DR
j (t).νDR,j (t) (7.15)

NJ∑

j=1

νDR,j (t) = 1 (7.16)

Equation (7.13) shows the total demand reduced by consumers in reward-base
DR which is equal to the sum of the selected steps demand by each consumer. Total
reward paid by retailers because the reduced load is shown in Eq. (7.14), which is
equal to total paid reward for reduced load. The range of each step is shown in Eq.
(7.15). Equation (7.16) also shows that only one step can be selected from reward-
base DR curve so that if step jth is selected by consumers vj is one, otherwise it will
be zero.

Total cost of reward-base DR is modeled as follows:

EC (RDR) =
∑

t∈T

⎡

⎣
NJ∑

j=1

P
DR
j (t).RDR

j (t).d(t)

⎤

⎦ (7.17)

7.3 IGDT Technique

Uncertainty is usually one of the main challenges in power system. This uncertainty
may be detrimental or profitable for power system. One of the methods for handling
these uncertainties is IGDT technique in which opportunity and robustness functions
simulate cost and damage [64]. Each uncertainty is evaluated by this method in three
sections: (a) system model, (b) operation requirements and (c) uncertainty model.

7.3.1 System Model

C(p, λ) is the system model function, which include the system input/output
structure. In this model, λ(lambda) is uncertain parameter (in this paper is pool
market price) and p is the decision variable. This model can be expressed for a
variety of aims, which in this study objective function is the retailers cost.

7.3.2 Operation Requirements

This section describes the operation requirements of the studied system in the
form of different objective functions. The IGDT technique uses robustness and
opportunity functions to evaluate uncertainty. The opportunity and robustness
functions for retailers cost, which are objective functions, can be defined as follows:
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α̂ (Cr) = max
α

{α : max (C (p, λ)) ≤ Cr } (7.18)

β̂ (Co) = min
α

{α : min (C (p, λ)) ≤ Co } (7.19)

The immunity and degree of robustness to the uncertainty parameter versus high
operation cost is measured in the robustness function. Furthermore, it illustrates
the greatest level of uncertainty parameter at which the minimal requirements are
always satisfied; therefore, a great α̂ value is favorable. In other words, the risk-
aversion model of procurement strategy is provided in Eq. (7.18) which is robustness
function. The decision will be robust versus uncertainty parameter for a great value
of α̂ (Cr).

Also, the favorable perspective of uncertainty parameter is expressed in the
opportunity function. Furthermore, it provides the opportunity of obtaining benefits
from low upstream grid prices. Here, β̂ is defined as the minimum value of α which
enables the possibility of low operation cost as a result of decisions. It should be
noted that the opportunity function is the least value of α for which the operation
cost of MG can be as small as a given value, Co. Therefore, a small value of β̂

is useful. A small value of β̂ (Co) illustrates the condition in which the benefit is
accessible versus low upstream grid prices. The related mathematical formulation
of opportunity function in IGDT approach is expressed in Eq. (7.19), where Co
is generally smaller than Cr which are minimum and maximum variation in the
uncertain parameter.

By analyzing and obtaining information from operation of the uncertain param-
eter λ, can be modeled this parameter (λ) using the IGDT technique. The modeling
is described in the following section.

7.4 Proposed IGDT-Based Risk-Constraint Formulation

In this section, the IGDT technique is applied to the base formulation to handling
the uncertain parameter at different risk levels.

7.4.1 Uncertainty Modeling

Equation (7.20) models a fractional info-gap uncertainty model. It should be noted
that the uncertain parameter in this chapter is the pool price (λ).

U
(
α, λ̃p(t)

)
=
⎧
⎨

⎩
λp(t) :

∣∣∣λp(t) − λ̃p(t)

∣∣∣

λ̃p(t)
≤ α

⎫
⎬

⎭
, α ≥ 0 (7.20)
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Eq. (7.20) presents information gap uncertainty model, where the scale of gap
depends on the forecasted parameter value λ̃p(t).

7.4.2 Robustness Function (Risk-Averse Strategy)

In the robustness function, the maximum retailers’ resistance (lowest loss against
pool market price rises) against the pool price rise is shown by the parameter α̂ (Cr).
This retailer’s strategy against rising prices is risk-averse strategy. The robustness
function is modeled as follows:

α̂ (Cr) = max

⎧
⎨

⎩
α :
⎛

⎝ max
l∈U

(
α,λ̃p(t)

) cos t total ≤ Cr = (1 + ω)Cb

⎞

⎠

⎫
⎬

⎭
(7.21)

The value of the opportunity function is obtained by minimizing α as follow:

α̂ (Cr) = max α (7.22)

Subject to:

Max {Ec (P) + C (F) + C (PO) + C (FDR) + C (RDR)} ≤ Cr (7.23)

(1 − α) λ̃p(t) ≤ λp(t) ≤ (1 + α) λ̃p(t) (7.24)

Equations (7.2)–(7.17) (7.25)

Since in the robustness function, maximum pool market price increase is obtained
fromλp(t) = (1 + α) λ̃p(t), the robustness function is reformulated as follows:

α̂ (Cr) = max α (7.26)

Subject to:

Max {Ec (P) + C (F) + C (PO) + C (FDR) + C (RDR)} ≤ Cr (7.27)

λp(t) = (1 + α) λ̃p(t) (7.28)

Equations (7.2)–(7.17) (7.29)
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7.4.3 Opportunity Function (Risk-Taker Strategy)

Any reduction in the pool prices will be beneficial for retailers, which will be
modeled by opportunity function. Using the opportunity function, the value of a
reduction in pool price that guarantees a certain profit for the retailers is obtained.
This retailer’s performance is called risk-taker strategy. According to the above, the
opportunity function derived from the IGDT technique is defined as follows:

β̂ (Co) = min

⎧
⎨

⎩
α :
⎛

⎝ min
l∈U

(
α,λ̃p(t)

) cos t total ≤ Co

⎞

⎠ = (1 − ϒ)Cb

⎫
⎬

⎭
(7.30)

The value of the opportunity function is obtained by minimizing α as follow:

β̂ (Co) = min α (7.31)

Subject to:

Min {Ec (P) + C (F) + C (PO) + C (FDR) + C (RDR)} ≤ Co (7.32)

(1 − α) λ̃p(t) ≤ λp(t) ≤ (1 + α) λ̃p(t) (7.33)

Equations (7.2)–(7.17) (7.34)

Since in the opportunity function, the pool price reduction is considered than the
real price is obtained from λp(t) = (1 − α) λ̃p(t). So the opportunity function is
reformulated as follows:

β̂ (Co) = min α (7.35)

Subject to:

Min {Ec (P) + C (F) + C (PO) + C (FDR) + C (RDR)} ≤ Co (7.36)

λp(t) = (1 − α) λ̃p(t) (7.37)

Equations (7.2)–(7.17) (7.38)
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7.4.4 Base Function (Risk-Neutral Strategy)

In risk-neutral strategy (without IGDT), retailers cost is calculated with the esti-
mated value for pool market price.

The formulation of this strategy for the retailer is as follows:

Min C (p, λ) = Ec (P) + C (F) + C (PO) + C (FDR) + C (RDR) (7.39)

Subject to

Equations (7.2)–(7.17) (7.40)

7.5 Proposed Algorithm for Obtaining Optimal Bidding
Strategy

To buy energy from the day-ahead market, retailers will need an appropriate buying
strategy due to pool market price uncertainty. The appropriate buying strategy can
be derived from the IGDT technique which is done using robustness and opportunity
functions. Moreover, the proposed equations of IGDT technique are used to create
the bidding curves for purchasing energy from day-ahead market. Day-ahead market
is a future days market in which the pool price is uncertain. An instruction is
presented to create an appropriate optimal bidding curve using opportunity and
robustness functions. Figure 7.4 shows the performance of this curve in detail.

Different levels of cost are selected which are lower and higher than the expected
cost (Cex), i.e., CO2 < CO1 < Cex < CR1 < CR2. CR and CO is retailer’s costs in the

Fig. 7.4 The creation of a
four-step bidding curve
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robustness and opportunity functions, respectively. For each amount of costs, the
optimum purchased price and the purchased power are obtained. Finally, using of
the result based on IGDT technique, optimal bidding curve is obtained to bid to the
day-ahead market. The proposed method for obtaining the optimal bidding curve is
presented as follows:

1. The proposed cost function (1) is minimized subject to constraints (7.2)–(7.17)
in which the obtained cost is set as without IGDT (risk-neutral) cost (Cex).

2. After obtaining the result of the minimized cost from step 1, critical costs for
robustness function as CR are defined in which these costs increase in a fixed step
versus Cex. It should be noted that the minimum value of obtained cost in step 1
is smaller than the defined value for CR. In each stage, the robustness function
(7.26) subject to constraints (7.27)–(7.29) is solved and the optimal amount of the
confidence level (α̂k > α̂k−1 > · · · > α̂2 > α̂1) is obtained. By using of it, can
obtain the optimal purchased price (

(
α̂k + 1

) × λ) and the amount of purchased
power in proportion to it is obtained in solving the robustness function.

3. After obtaining the result of the minimized cost from step 1, critical cost (CO) for
opportunity function is defined; this cost decreases in a fixed step. It should be
noted that the minimum value of cost obtained in step 1 is larger than the defined
value of CO. In each stage, the opportunity function (7.35) subject to constraints
(7.36)–(7.38) is solved and the optimal amount of the confidence level according
to Fig. 7.4 (β̂k > β̂k−1 > · · · > β̂2 > β̂1) is obtained. By using it, can obtain the

optimal purchased price (
(

1 − β̂k

)
× λ) and the amount of purchasing power in

proportion to obtained from solved the opportunity function.
4. After solving the opportunity and robustness functions, and obtaining the α̂ and β̂

values in each iteration K (α̂k > α̂k−1 > · · · > α̂2 > α̂1 and β̂k > β̂k−1 > · · · >

β̂2 > β̂1), the purchased price will be calculated in accordance with Fig. 7.4.
Finally, Fig. 7.5 shows the proposed algorithm to create optimal bidding curve.

7.6 Case Study

The proposed scheme intended for 32 periods includes peak times of summer and
winter. Each period includes the peak times of 1 week. This scheme includes 12
weeks of January–March, 17 weeks of June–September, and 3 weeks of December.
The amount of demand is obtained by averaging the peak times from Monday to
Friday each week. Note that the peak time of summer days is from 11 am to 9 pm,
while those of winter days are from 6 am–10 am to 4 pm–10 pm. According to the
used method in [65, 66], selected peak times come from the Queensland daily curve
in 2012 [67].

The selected forward contracts in this chapter include three contracts (F1–F3).
F1 covers the first three months of the time horizons. F2 also covers the 17 weeks
of winter and finally, F3 has been selected for 3 weeks in December. Each forward
contract consists of 6 blocks, which have specific volume and maximum demand.
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No Yes
k=K END

Set the price-power pairs for obtaining of optimal

bidding curves based on the resulted price and schedule

power of this step and the previous step.

No Yes

Applied IGDT-based

robust optimization
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opportunistic optimization

Cost level (K)

<Risk-neutral

cost

K=K+1

K=1

Input price forecast and determine

number of steps for the curves (K)

Define K cost levels

Fig. 7.5 The proposed algorithm to create optimal bidding curve

Forward price for each quarter of Queensland in 2012 are used here [69]. It should
be noted that the maximum demand for each block is 450 MW.

Four pool-order options are considered to be used when the market price has been
increases. Each contract has a specific volume of demand and a negotiated price for
any period. Also, the maximum demand for each pool-order option is 50 MW. If the
contract is not profitable, the penalty will be 15% of the total price of the contract.

Forward DR contract is set for a 1-month period. Therefore, eight contracts for
the forward DR are set up which is like the forward contract, and each forward DR
contract consist of six blocks. Maximum demand for each block of forward DR
contract is 75 MW.
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Reward-base DR consists of 14 steps which has a defined reward to reduce
demand. Consumers can get more rewards from retailers by increasing the load
reduction. Figures 7.6, 7.7, and 7.8 and Tables 7.1 and 7.2 indicate required inputs
data. Required demand data are achieved from ref [69].
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Table 7.2 Forward contract
prices ($/MWh)

B1 B2 B3 B4 B5 B6

F1 40 45 50 55 60 65
F2 38 42 46 50 54 58
F3 39 44 49 54 59 64

The optimal performance of retailers has been investigated to procure its energy.
After obtaining optimal cost for retailers, IGDT technique has been used to analyze
risk of retailers. It should be noted that the opportunity and robustness functions are
modeled as mixed-integer nonlinear programming (MINLP) which can be solved
using SBB solver [70] under the GAMS optimization software [70] on Intel(R)
Core(TM) i7-7500U CPU @ 2.70 GHz (4 CPUs), ~2.9 GHz, RAM 8 GB system.

7.6.1 Risk-Neutral Results Without IGDT

By solving the proposed objective function (7.17) under the constraints (7.2)–(7.17),
the retailers cost is obtained for a risk-neutral strategy. This strategy will be solved
without considering pool market price uncertainty. Results of considered problems
can be considered in two cases as follow:

Case A: Solving the proposed model without considering DRP
Case B: Solving the proposed model with considering DRP
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Table 7.3 Forward DR
prices ($/MWh)

B1 B2 B3 B4 B5 B6

FDR1 35 37 39 41 43 45
FDR2 32 34 36 38 40 42
FDR3 29 31 33 35 37 39
FDR4 33 35 37 39 41 43
FDR5 45 47 49 51 53 55
FDR6 51 53 55 57 59 61
FDR7 56 58 60 62 64 66
FDR8 69 71 73 75 77 79

Table 7.4 Results of
risk-neutral strategy

Case A Case B

The expected cost ($) 4,873,026.5$ 4,681,597.4$
The decreased
operation cost ($)

0 191447.1$

The decreased
operation cost (%)

0 3.93%

Effect of the new DR schemes on the retailers total cost in risk-neutral strategy
can be proposed in a table similar to Table 7.3. According to the noted result in
risk-neutral strategy, the retailers’ costs for case B and case A is 4,681,597.4$ and
4,873,026.5$, respectively. In comparison with cases A and B, beneficial results
of DR are applied in case B; therefore, the reduced expected cost in this case is
191,447.1$, which is 3.93% less than case A (Table 7.4).

7.6.2 Robustness and Opportunity Functions

The simulation results of robustness function in IGDT approach are used by retailers
when it has a risk-averse strategy. Figure 7.9 indicates the robustness function
α̂ (Cr)versus the robust cost. Figure 7.9 is obtained by solving the robustness
function (7.26) and considering the constraints (7.27)–(7.29). This figure represents
the risk-averse strategy of retailers, in which the retailers by paying more money
than risk-neutral strategy is more robust against market price rises. In other words
according to Fig. 7.9, the robustness function increases as CR increases as expected,
and the retailers should pay more cost to have more robust strategy. Fig. 7.9 shows
the positive impact of the proposed new DR scheme on retailers costs. For example,
the retailers pays 4,903,026.5$ which is 30,000$ more than the risk-neutral strategy,
robustness function values are 1.6% in “without DR” mode and 20.4% in “with
DR” mode. Therefore, using DR mode, retailers is 18.8% stronger than without DR
mode. In other words, retailer by paying 30,000$ more than the risk-neutral strategy
can be 1.6% and 20.4% stronger against pool market price increases, in “without”
and “with DR” mode. This shows the importance of the proposed DR schemes in
this study.



158 R. Nourollahi et al.

0.4
Robustness function

Robustness cost ($)

R
o

b
u

st
n

es
s 

fu
n

ct
io

n
 (

%
)

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
4.6 4.7 4.8 4.9 5 5.1 5.2

x 106

Without DRP
With DRP

Fig. 7.9 Robustness function
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Figure 7.10 is obtained from solving the opportunity function (7.35) and consid-
ering the constraints (7.36)–(7.38). This figure represents the risk-taker strategy of
retailers, which the opportunity function increases by reducing opportunity cost. In
other word, if retailers pays lower cost, it will be risk-taking strategy. For example,
with 11% drop in pool market prices, energy purchase costs are 4,471,597.4$ and
4,633,026.5$ for “with DR” and “without DR” modes which indicates that by
decreasing 11% in the pool market price, total cost of retailers will decrease 4.6%
and 4.1 for “with DR” and “without DR” modes. It can be seen that with the
downward prices of the pool market, the retailers achieved more profit by using
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DR. The reason is that by pool market price reduction, retailers can use lowest price
DRs to supply their consumers energy and achieve more profit than without DR
case.

Mentioned results in the above figures indicate the positive effects of proposed
new DR schemes. In particular, effects of the DR schemes in the risk-averse strategy
is significant but cannot be ignored from positive effects on the risk-taking strategy.
Therefore, proposed DR scheme has more effect on the retailers’ cost in the presence
of pool market price uncertainty.

7.6.3 Optimal Bidding Strategy Result

It should be mentioned that the optimal bidding curves for each time periods are
obtained based on the results of solving robustness and opportunity functions.
Figure 7.11 illustrates the obtained optimal bidding curves for the 9th, 16th, 17th,
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Fig. 7.11 Optimal bidding curve; (a) the 9th hour, (b) the 16th hour, (c) the 17th hour, (d) the 19th
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and 19th periods considering with and without DRP, respectively. These figures
show optimal bidding strategy for retailers in with and without DRP modes, which
are drawn based on obtained results from robustness and opportunity functions.
Optimal bidding curves of the retailers are obtained to bid to the day-ahead market
in each period. The bidding price and power are provided in these curves for bidding
the day-ahead market to purchase energy for the next day. These curves present the
required data for retailers to successfully bid the day-ahead market for the consumer
demand considering with and without DRP. The presented results illustrate that the
optimal bidding curve considering DRP is more robust than without DRP.

7.6.4 Comparison of Risk-Based Results

In this section, the obtained results are compared in three different strategies as risk-
averse, risk-neutral, and risk-taker strategies for retailers performance. This section
consists of two parts in which first part analyzes new DR scheme options and second
part analyzes market options.

7.6.4.1 Analysis Results of Proposed DR Schemes

At the beginning of this section, we need to first define the common retailer
strategies to better understanding of readers:

Risk-averse strategy: Pool market price is more than the forecasted price.
Risk-neutral strategy: Pool market price is equal to forecasted price.
Risk-taker strategy: Pool market price is less than the forecasted price.

As shown in Fig. 7.12, due to the proper design of contract prices (pool-order
option) for small variation in the pool market prices, in all strategies the purchased
energy by retailers is virtually the same. But, in the risk-averse strategy, retailers buy
more energy than risk-neutral and risk-taker strategy. Also, in risk-taker strategy,
retailers buy energy less than risk-neutral and risk-averse strategy. Therefore, pool-
order option demand response is designed to few pool-market price increased
condition. In addition can be shown that in the last periods due to the high pool-
order price power purchase from this option reduced and in order to harness the
pool market price variations retailers more relying on other option specially such as
forward contract and forward DR contract.

In addition, forward DR contracts is another option for retailers to reduce their
costs and future risk. According to Fig. 7.13, because forward DR is a safe DR
contract for the future, retailers will be able to use more of this option in the
risk-averse strategy to reduce their energy procure costs and risk in future. Also
this option will decrease in the risk-taker and risk-neutral strategies. In addition,
purchasing energy from this contract in risk-neutral strategy is more than a risk-
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Fig. 7.12 Traded power from the pool-order DR

taker strategy. In addition, it can be shown that this option is an important option to
use by retailers to reduce their risk in day-ahead market. Actually, this option is very
similar to forward contracts in electricity market, each block contains DR options.

Another option is reward-base DR option, which by encouragement and reward
pays, tray to reduce customers’ demands. According to Fig. 7.14, purchasing energy
from this contract in the risk-taker strategy is less than other strategies. Also, in
the risk-aversion strategy, reduced power by cosumer has been increased beacuse
of the pool ragket price in this strategy increased and Consumers tend to reduce
their consumption. is more than the risk-natural strategy. Because, in the risk-taking
strategy, market downturns are considered, retailers are more likely to buy energy
from the pool market. Therefore, reward-based DR is different option from used DR
schems in this work, which encourages consumers to participate in this DR option
in any period (expensive and inexpensive).
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Fig. 7.13 Traded power from the forward DR

7.6.4.2 Analysis Results of Wholesale Market Suppliers

One of the important options in the electricity markets is pool market option, in
which electricity power can be exchanged between retailers and wholesalers in the
real-time price. As according to Fig. 7.15, purchased power from the pool market
by retailer in the risk-taker strategy which considered pool market price decrease, is
more than the risk-neutral and risk-aversion strategies which considered pool market
price increased. Purchased power from the pool market by retailers in the risk-neural
strategy is more than the risk-aversion strategy. It should be noted that purchasing
energy from market has reduced in all strategies using the proposed DR programs.

Forward contract is the last option, which is considered in this work. Forward
contracts have been created to reduce power procurement risks for power sellers and
buyers, which is due to uncertainty in the electricity markets. It can be seen from Fig.
7.16, power purchasing from forward contract in the risk-aversion is more than risk-
neutral and risk-taker strategies. Because this contract is for the future, the retailers
will buy energy from this contract. It should be noted, purchasing energy from
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Fig. 7.14 Traded power from the reward-base DR

forward contract has been reduced in all strategies using DR. In addition forward
contract has an important role in the peak times due to the possibly exceeded
demand from generation capacity.

7.7 Conclusion

In this chapter, new schemes of DR are defined and their impacts on power
procurement strategies of retailers are shown. Then, IGDT technique and two
important functions of opportunity and robustness are proposed to handle the
uncertainty of the market price. Finally, both opportunity and robustness functions
are used to obtain optimal bidding curves for the retailers to purchase power
in day-ahead market. In risk-neutral strategy, using DR, cost has reduced 3.93%
(191,447$). Then, the retailers in the risk-averse strategy can be paid a higher
amount of cost to increase their resistance against rising price in pool market which
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Fig. 7.15 Traded power from the pool market

in using DR has 18.8% higher resistance (lowest loss against pool market price
rises) to increasing the market prices. In other words, using DR mode, retailers are
18.8% stronger than without DR mode. This shows the importance of the proposed
DR scheme in this study. Also, in the risk-taker strategy, which was determined by
the opportunity function, using of DR, the retailers could 161429.1$ increase its
profit. Then, it is showed that in the risk-taker strategy of retailers with 11% drop
in pool market prices, energy purchase costs are 4,471,597.4$ and 4,633,026.5$
for “with DR” and “without DR” modes, respectively. Retailers in the risk-taking
strategy would be able to purchase more power from the market, because this
strategy considers market price reduction. Also, the purchased power in the natural
risk strategy for all options has been between the two risk-aversion strategy and
the risk-taker strategy. Finally, using the two opportunity and opportunity functions,
optimal bidding strategy was determined in order to bid to the day-ahead market in
each period by electricity retailer.



7 Risk-Based Purchasing Energy for Electricity Consumers by Retailer Using. . . 165

With DRP

Without DRP

With DRP

Without DRP

With DRP

Without DRP

Risk-averse

0 5 10 15 20 25 30

0 5 10 15 20 25 30

0 5 10 15 20 25 30
Time period

Risk-taker

Risk-neutral

T
ra

d
ed

 p
o

w
er

 f
ro

m
 t

h
e 

b
ila

te
ra

l c
o

n
tr

ct
s 

(M
W

)

4000

3000

2000

1000

0

4000

3000

2000

1000

0

4000

3000

2000

1000

0

Fig. 7.16 Traded power from the forward contract

References

1. S. Nojavan, K. Zare, B. Mohammadi-Ivatloo, Risk-based framework for supplying electricity
from renewable generation-owning retailers to price-sensitive customers using information gap
decision theory. Int. J. Electr. Power Energy Syst. 93, 156–170 (2017)

2. M. Marzband, M.H. Fouladfar, M.F. Akorede, G. Lightbody, E. Pouresmaeil, Framework for
smart transactive energy in home-microgrids considering coalition formation and demand side
management. Sustain. Cities Soc. 40, 136–154 (2018)

3. S. Nojavan, K. Zare, B. Mohammadi-Ivatloo, Selling price determination by electricity retailer
in the smart grid under demand side management in the presence of the electrolyser and fuel
cell as hydrogen storage system. Int. J. Hydrogen Energy 42(5), 3294–3308 (2017)

4. S. Nojavan, M. Mehdinejad, K. Zare, B. Mohammadi-Ivatloo, Energy procurement manage-
ment for electricity retailer using new hybrid approach based on combined BICA–BPSO. Int.
J. Electr. Power Energy Syst. 73, 411–419 (2015)

5. M. Nazari, A.A. Foroud, Optimal strategy planning for a retailer considering medium and
short-term decisions. Int J. Electr Power Energy Syst. 45(1), 107–116 (2013)

6. S.A. Gabriel, A.J. Conejo, M.A. Plazas, S. Balakrishnan, Optimal price and quantity determi-
nation for retail electric power contracts. IEEE Trans. Power Syst. 21(1), 180–187 (2006)



166 R. Nourollahi et al.

7. M. Carrion, A.J. Conejo, J.M. Arroyo, Forward contracting and selling price determination for
a retailer. IEEE Trans. Power Syst. 22(4), 2105–2114 (2007)

8. J. Kettunen, A. Salo, D.W. Bunn, Optimization of electricity retailer’s contract portfolio subject
to risk preferences. IEEE Trans. Power Syst. 25(1), 117–128 (2010)

9. A.R. Hatami, H. Seifi, M.K. Sheikh-El-Eslami, Optimal selling price and energy procurement
strategies for a retailer in an electricity market. Electr. Power Syst. Res. 79(1), 246–254 (2009)

10. A. Ahmadi, M. Charwand, J. Aghaei, Risk-constrained optimal strategy for retailer forward
contract portfolio. Int. J. Electr. Power Energy Syst. 53, 704–713 (2013)

11. A. Hatami, H. Seifi, M.K. Sheikh-El-Eslami, A stochastic-based decision-making framework
for an electricity retailer: time-of-use pricing and electricity portfolio optimization. IEEE
Trans. Power Syst. 26(4), 1808–1816 (2011)

12. R. Garcia-Bertrand, Sale prices setting tool for retailers. IEEE Trans. Smart Grid 4(4), 2028–
2035 (2013)

13. M. Carrion, J.M. Arroyo, A.J. Conejo, A bilevel stochastic programming approach for retailer
futures market trading. IEEE Trans. Power Syst. 24(3), 1446–1456 (2009)

14. M. Charwand, Z. Moshvash, Midterm decision-making framework for an electricity retailer
based on information gap decision theory. Int. J. Electr. Power Energy Syst. 63, 185–195
(2014)

15. M.H. Albadi, E.F. El-Saadany, A summary of demand response in electricity markets. Electr.
Power Syst. Res. 78(11), 1989–1996 (2008)

16. P. Fazlalipour, M. Ehsan, B. Mohammadi-Ivatloo, Optimal participation of low voltage
renewable micro-grids in energy and spinning reserve markets under price uncertainties. Int. J.
Electr. Power Energy Syst. 102, 84–96 (2018)

17. V. Oboskalov, T. Panikovskaya, Bid strategy under price uncertainty, in Power and Electrical
Engineering of Riga Technical University (RTUCON), 2014 55th International Scientific
Conference on 2014 Oct 14 (pp. 251–254). IEEE

18. F. Ziel, R. Steinert, Probabilistic mid-and long-term electricity price forecasting. Renew.
Sustain. Energy Rev. 94, 251–266 (2018)

19. D.S. Kirschen, G. Strbac, P. Cumperayot, D. de Paiva Mendes, Factoring the elasticity of
demand in electricity prices. IEEE Trans. Power Syst. 15(2), 612–617 (2000)

20. H.A. Aalami, M.P. Moghaddam, G.R. Yousefi, Modeling and prioritizing demand response
programs in power markets. Electr. Power Syst. Res. 80(4), 426–435 (2010)

21. H. Zhong, L. Xie, Q. Xia, Coupon incentive-based demand response: theory and case study.
IEEE Trans. Power Syst. 28(2), 1266–1276 (2013)

22. P.K. Adom, M. Insaidoo, M.K. Minlah, A.M. Abdallah, Does renewable energy concentration
increase the variance/uncertainty in electricity prices in Africa? Renew. Energy 107, 81–100
(2017)

23. V. Fanelli, L. Maddalena, S. Musti, Asian options pricing in the day-ahead electricity market.
Sustain. Cities Soc. 27, 196–202 (2016)

24. A.H. Mohsenian-Rad, V.W. Wong, J. Jatskevich, R. Schober, A. Leon-Garcia, Autonomous
demand-side management based on game-theoretic energy consumption scheduling for the
future smart grid. IEEE Trans. Smart Grid 1(3), 320–331 (2010)

25. L. Gelazanskas, K.A. Gamage, Demand side management in smart grid: a review and proposals
for future direction. Sustain. Cities Soc. 11, 22–30 (2014)

26. A. Sheikhi, M. Rayati, A.M. Ranjbar, Demand side management for a residential customer in
multi-energy systems. Sustain. Cities Soc. 22, 63–77 (2016)

27. F.C. Robert, G.S. Sisodia, S. Gopalan, A critical review on the utilization of storage and
demand response for the implementation of renewable energy microgrids. Sustain. Cities Soc.
40, 735–745 (2018)

28. H. Shakouri, A. Kazemi, Multi-objective cost-load optimization for demand side management
of a residential area in smart grids. Sustain. Cities Soc. 32, 171–180 (2017)

29. S. Nojavan, K. Zare, B. Mohammadi-Ivatloo, Optimal stochastic energy management of
retailer based on selling price determination under smart grid environment in the presence
of demand response program. Appl. Energy 187, 449–464 (2017)



7 Risk-Based Purchasing Energy for Electricity Consumers by Retailer Using. . . 167

30. A.J. Conejo, J.M. Morales, L. Baringo, Real-time demand response model. IEEE Trans. Smart
Grid 1(3), 236–242 (2010)

31. E. Celebi, J.D. Fuller, Time-of-use pricing in electricity markets under different market
structures. IEEE Trans. Power Syst. 27(3), 1170–1181 (2012)

32. L. Kreuder, C. Spataru, Assessing demand response with heat pumps for efficient grid
operation in smart grids. Sustain. Cities Soc. 19, 136–143 (2015)

33. F. Sehar, M. Pipattanasomporn, S. Rahman, Integrated automation for optimal demand
management in commercial buildings considering occupant comfort. Sustain. Cities Soc. 28,
16–29 (2017)

34. C. Eid, E. Koliou, M. Valles, J. Reneses, R. Hakvoort, Time-based pricing and electricity
demand response: existing barriers and next steps. Utilities Policy 40, 15–25 (2016)

35. P. Guo, V.O. Li, J.C. Lam, Smart demand response in China: challenges and drivers. Energy
Policy 107, 1–10 (2017)

36. D.T. Nguyen, M. Negnevitsky, M. De Groot, Pool-based demand response exchange—concept
and modeling. IEEE Trans. Power Syst. 26(3), 1677–1685 (2011)

37. D.T. Nguyen, M. Negnevitsky, M. de Groot, Walrasian market clearing for demand response
exchange. IEEE Trans. Power Syst. 27(1), 535–544 (2012)

38. O. Sezgen, C.A. Goldman, P. Krishnarao, Option value of electricity demand response. Energy
32(2), 108–119 (2007)

39. J.Y. Joo, S.H. Ahn, Y.T. Yoon, J.W. Choi, Option valuation applied to implementing demand
response via critical peak pricing, in Power Engineering Society General Meeting, 2007. IEEE
2007 Jun 24 (pp. 1–7). IEEE

40. R. Tyagi, J.W. Black, J. Petersen, Optimal scheduling of demand response events using options
valuation methods, in Power and Energy Society General Meeting, 2011 IEEE 2011 Jul 24 (pp.
1–5). IEEE

41. S.C. Oh, J.B. D’Arcy, J.F. Arinez, S.R. Biller, A.J. Hildreth, Assessment of energy demand
response options in smart grid utilizing the stochastic programming approach, in Power and
Energy Society General Meeting, 2011 IEEE 2011 Jul 24 (pp. 1–5). IEEE

42. S. Pal, S. Thakur, R. Kumar, B.K. Panigrahi, A strategical game theoretic based demand
response model for residential consumers in a fair environment. Int. J. Electr. Power Energy
Syst. 97, 201–210 (2018)

43. M. Jin, W. Feng, C. Marnay, C. Spanos, Microgrid to enable optimal distributed energy retail
and end-user demand response. Appl. Energy 210, 1321–1335 (2018)

44. A.R. Hatami, H. Seifi, M.K. Sheikh-El-Eslami, Hedging risks with interruptible load programs
for a load serving entity. Decis. Support Syst. 48(1), 150–157 (2009)

45. R. Baldick, S. Kolos, S. Tompaidis, Interruptible electricity contracts from an electricity
retailer’s point of view: valuation and optimal interruption. Oper. Res. 54(4), 627–642 (2006)

46. M. Carrion, A.B. Philpott, A.J. Conejo, J.M. Arroyo, A stochastic programming approach to
electric energy procurement for large consumers. IEEE Trans. Power Syst. 22(2), 744–754
(2007)

47. A.A. Algarni, K. Bhattacharya, A generic operations framework for discos in retail electricity
markets. IEEE Trans. Power Syst. 24(1), 356–367 (2009)

48. H. Li, Y. Li, Z. Li, A multiperiod energy acquisition model for a distribution company with
distributed generation and interruptible load. IEEE Trans. Power Syst. 22(2), 588–596 (2007)

49. I. Horowitz, C.K. Woo, Designing pareto-superior demand-response rate options. Energy
31(6), 1040–1051 (2006)

50. S. Nojavan, B. Mohammadi-Ivatloo, K. Zare, Robust optimization based price-taker retailer
bidding strategy under pool market price uncertainty. Int. J. Electr. Power Energy Syst. 73,
955–963 (2015)

51. S. Nojavan, B. Mohammadi-Ivatloo, K. Zare, Optimal bidding strategy of electricity retailers
using robust optimisation approach considering time-of-use rate demand response programs
under market price uncertainties. IET Gener. Transm. Dis. 9(4), 328–338 (2015)

52. A.K. David, Competitive bidding in electricity supply, in IEE Proceedings C (Generation,
Transmission and Distribution) 1993 Sep 1 (Vol. 140, No. 5, pp. 421–426). IET Digital Library



168 R. Nourollahi et al.

53. F. Wen, A.K. David, Optimal bidding strategies and modeling of imperfect information among
competitive generators. IEEE Trans. Power Syst. 16(1), 15–21 (2001)

54. J.V. Kumar, D.V. Kumar, Optimal bidding strategy in an open electricity market using genetic
algorithm. Int. J. Adv. Soft Comput. Appl. 3(1), 55–67 (2011)

55. S.N. Singh, I. Erlich, Strategies for wind power trading in competitive electricity markets. IEEE
Trans. Energy Convers. 23(1), 249–256 (2008)

56. T. Joshi, G. Uberoi, Graphical scheme for determination of market clearing price using
quadratic bid functions. Int. J. Adv. Eng. Technol. 1(2), 144 (2011)

57. L. Ma, W. Fushuan, A.K. David, A preliminary study on strategic bidding in electricity markets
with step-wise bidding protocol, in Transmission and Distribution Conference and Exhibition
2002: Asia Pacific. IEEE/PES 2002 Oct 6 (Vol. 3, pp. 1960–1965). IEEE

58. N. Mahmoudi, M. Eghbal, T.K. Saha, Employing demand response in energy procurement
plans of electricity retailers. Int. J. Electr. Power Energy Syst. 63, 455–460 (2014)

59. J.C. Hull, S. Basu, Options, Futures, and Other Derivatives (Pearson Education India, Noida,
2016)

60. D.S. Kirschen, G. Strbac, Fundamentals of Power System Economics (Wiley, New York, 2004),
p. 22

61. N. Mahmoudi, T.K. Saha, M. Eghbal, Developing a scenario-based demand response for short-
term decisions of electricity retailers, in Power and Energy Society General Meeting (PES),
2013 IEEE 2013 Jul 21 (pp. 1–5). IEEE

62. Y. Chen, J. Li, Comparison of security constrained economic dispatch formulations to
incorporate reliability standards on demand response resources into Midwest ISO co-optimized
energy and ancillary service market. Electr. Power Syst. Res. 81(9), 1786–1795 (2011)

63. C.L. Su, D. Kirschen, Quantifying the effect of demand response on electricity markets. IEEE
Trans. Power Syst. 24(3), 1199–1207 (2009)

64. Y. Ben-Haim, Information Gap Decision Theory, Designs Under Severe Uncertainty (Aca-
demic, San Diego, 2001)

65. K. Bhattacharya, Competitive framework for procurement of interruptible load services. IEEE
Trans. Power Syst. 18(2), 889–897 (2003)

66. T.F. Lee, M.Y. Cho, Y.C. Hsiao, P.J. Chao, F.M. Fang, Optimization and implementation of
a load control scheduler using relaxed dynamic programming for large air conditioner loads.
IEEE Trans. Power Syst. 23(2), 691–702 (2008)

67. AEMO price & demand Data [Online], http://www.aemo.com.au/data/pricedemand.html
68. AER, State of the Energy Market, Melbourn, Australia (2011)
69. Power of choice-giving consumers options in the way they use electricity, Direction Paper,

March, 2012
70. The GAMS Software Website; 2016 [Online], <http://www.gams.com/dd/docs/solvers/

sbb.pdf>

http://www.aemo.com.au/data/pricedemand.html
http://www.gams.com/dd/docs/solvers/sbb.pdf


Chapter 8
Stochastic Cooperative Charging
Scheduling of PEV Fleets in Networked
Microgrids Considering Price Responsive
Demand and Emission Constraints

Mehdi Shamshirband, Farhad Samadi Gazijahani, and Javad Salehi

8.1 Introduction

8.1.1 Motivation

The exponential worries about climate change, CO2 emission, as well as concerns
regarding the available amount of fossil fuel resources have led to an increase in
research and study on the using of renewable energy resources (RES). Using RESs
not only can lessen air pollutions, but also can diminish the attachment to fossil
fuels. On the other hand, a significant increase in energy demand because of growing
population, industry, and the advancement of technology are the most important
challenges that networked microgrids (NMG) have encountered [1]. In Canada, for
example, the public transportation sector is accounted as the second biggest origin
of greenhouse gas emissions. According to Canadian transportation statistics, about
35% of all energy demanded by this country is for the public transportation sector
[2]. In this context, increasing concerns about reducing the amount of fossil fuels,
along with augmenting air pollution, which mainly came from combustion engines
of gasoline-based cars, require to increase the using of RESs as well as electric
vehicles (EV) in NMGs [3–5]. In fact, governments with replacing EVs instead
of cars with combustion engines can play a momentous role in preventing climate
change and also postponing the early warming of the earth.

EV is considered as an alternative to existing transportation systems because of
their considerable advantages like less pollutant emissions, low energy expenditures,
and high energy efficiency. Hence, rapid improvement and development of electric
vehicles can simultaneously reduce the amount of pollution, reduce oil dependency,
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Fig. 8.1 US report for plug-in car sales

and also reduce the effects of greenhouse gases [6]. Therefore, governments and
automotive companies made an agreement to replace the EVs instead of cars with
combustion engines in the public transport section by 2020 [7]. In addition, by
investigating and reviewing the reports from the InsideEVs monthly Plug-In electric
vehicle (PEV) sales report, it can be seen that the demand for purchase and use of
these vehicles is also increasing day by day. Figure 8.1 shows the monthly sales of
PEVs from 2011 to 2018 [8]. With regard to Fig. 8.1 and investigation on reports can
realize that the demand for EVs is increasing day by day. Thus, with these reports,
concern about the uneven charging demand of these vehicles is one of other major
challenges facing the power grids. Considering that the demand for these vehicles
is much higher than the residential buildings. Therefore, this excessive demand for
electric vehicles can create a separate peak load for the power grids, and causing
problems such as reducing system reliability, increasing load demands, violating
voltage limits, and increasing the losses in NMGs [9, 10]. For example, the Nissan
Leaf vehicle needs an average of 3.3 kilowatts of energy, and this demand is about
twice as high as the demand for residential homes [11, 12]. Besides that, Tesla’s
fully electric car also needs an average of 10 kilowatts of battery charge [13].
As a result, this huge load demand is causing many problems such as mentioned
above to the power grids. With regard to the issues mentioned before, there is a
public welcome in the using of optimized electric vehicles charging coordination
(EVCC) plan for charging and discharging these vehicles in NMGs. However, a
large number of EVs will result in detrimental impacts on the efficiency of the
distribution grids, such as reducing power quality, increasing power losses, voltage
changes, and reversing on the customer’s energy costs, but combination of using
these vehicles with RESs will have significant benefits for the distribution network
(DN).

In recent years, various proceedings have been taken to optimize and change
power grids from a traditional structure to a new and privately owned one.
During this time, the electric power industry has undergone major changes in
terms of management and ownership, due to increased utilization efficiency and
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encouragement of investors. In order to create a suitable competitive environment,
various parts of it including generation, transmission, and distribution, became
independent. In a restructured environment of the electricity industry, convincing
market players is not easy to invest in multibillion-dollar projects. These changes
along with the other factors stated above such as environmental pollution, the
problems of the creation of new transmission networks, and the advancement of
technology in the field of economics of manufacturing small-scale generation units
in comparison with large generation units have increased use of small generation
units referred to as distributed generation resources (DGR), which are mainly
connected to DNs. Aside from this, increasing the portfolio on the DGRs, associated
with environmental issues related to this energy development, especially the carbon
dioxide linked “greenhouse effect” and the polluting effects of acid rain, increase
public and political attention and also increase the importance of planning to reduce
these contaminations and decrease in use of fossil fuel-related DGRs, increases the
tendency to using renewable energy resources in distributed generation resources.
Figure 8.2 is collected by the US Energy Information Administration. This figure
illustrates the amount of generation increase in using of RESs in recent years, as well
as growing influence of these energy resources by 2040. Figure 8.3 has also been
collected by the US Energy Information Administration, which shows the influence
of these RESs in recent years, as well as the increase in the penetration of these
resources by 2040 [14].

The increasing use of digital devices, increasing the utilization of EVs, growing
of industries and communities, and the requirements to reduce greenhouse gas
emissions in power grids, as well as feeding the customers’ high load demands,
along with increased penetration of DGRs, RESs and uncertainties in the generation
of these resources are causing many problems in terms of coordinating their
relevance. For this reason, increasing the contribution of RESs instead of fossil fuel-
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related resources of energy, as well as increase in the reliability of the system under
the conditions above and to provide a relevance between all of these components
of the network along with the optimal operation of EVs, it has led designers to use
smart grids (SMG).

8.1.2 Literature Review

Ever-increasing growth of the community and the increasing use of electrical
equipment, as well as the development of electricity-based industries have led to
an ever-increasing enhancement in electricity consumption in the recent years. On
the other side, the increasing use of EVs and the uncertainties of their charging
demands, which themselves have the ability to create a new and separate peak load
for the power grids, have led designers to focus on using NMGs and DGRs to local
feeding of these EV demands, because local feeding of demands not only reduces
the pressure on the current energy resources but also improves power quality,
increases reliability, and also reduces power losses.

Today the debate about the early warming of the earth and the increase in green-
house gas emissions is one of the main challenges facing distribution companies
(DISCO). Because currently, the main source of electrical energy generation is fossil
fuel-related sources of energy. Hence, researchers and governments have made
many efforts and investments in using RESs and the replacement of these clean
energy sources with fossil fuel-related sources of energy. On the other hand, there is
uncertainty about the generation of RESs and the unavailability of these resources,
as well as the advancement of technology and population growth, which leads to
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an ever-increasing demand for energy making it difficult to coordinate balance
between generation and demands of energy to DISCO in NMGs. In addition,
community acceptance of using electric vehicles, which was mentioned before
could bring a new and separate peak load demands to the power grids, making the
requirement of EVCC programs on NMGs urgent more than ever. These problems
of generation and demands, as well as the issue of creating coordination between
these components of NMGs, have led DISCO and designers to focus on using SMGs
which have the ability to monitor accurately and communicate bilaterally between
the consumer and the generator by the distribution network operator (DNO). Thus,
by monitoring accurately and bilateral power and information exchange between
consumers and manufactures, as well as creating scheduling planning, problems
such as uncertainties in the generation of RESs, charging and discharge of EVs, as
well as the high demands of energy can be solved, as well as increasing reliability
of systems and loss reduction in power systems.

To date, multiple researchers all around the world have already done various
extensive studies in this area; some investigators have utilized different models
like mixed integer linear programming (MINLP) to precisely handle the energy
scheduling of PEVs in unbalanced DGRs. Different layouts have been proposed
for energy management of PEVs in the literature consisting energy exchange from
grid to vehicle (G2V), vehicle to the grid (V2G), and vehicle to a vehicle (V2V)
[15]. In addition, integrated analysis of PEVs in power grids shows that PEVs have
the ability to exchange power to the grids. Using this feature allows the DNOs to
use energy stored in PEV batteries and by using this technology, the amount of
reserve energy required from conventional energy resources has decreased [16]. In
addition, [17] proposed water filling algorithm to solve the EVs charging scheduling
considering V2G capability in a decentralized manner so that the energy transaction
between them has been regarded as bilateral.

Today, using metaheuristic algorithms has been very effective in solving opti-
mization problems. Hence in many studies, using these algorithms was conducted
to optimize the load demands in order to optimally charging of EVs. This method
has been used aiming to increase the system reliability and DN security in order
to minimize voltage, overload, and power losses compared to an uncoordinated
charging scheduling program of EVs, assuming there is a two-way information
exchange between the DNO and charging points in order to control the recharging
process of EVs. This algorithm divides time periods into different distances, to allow
users to prioritize their EVs charging program to different distances. Also in each
step, the algorithm uses the sensitivity index to identify and use a more suitable
electric vehicle with the aim of reducing power loss [18].

In electricity markets, demand response (DR) is a mechanism for managing
consumers, under certain conditions of supply. Advantage and purpose of DR are
for both the consumer and the DISCO, to benefit from having a smart method
to schedule energy consumption. While the rules for using the classical power
systems were such that the demand for the load was immediately fed by the existed
sources of generation, in the new philosophy, attempts are made to keep demand
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fluctuations small in order to increase the efficiency of the system. Therefore,
the main objective of DR is flattening of the system’s load curve, which takes
into account changing hours of using energy from peak hours to off-peak hours.
Hence, in [19], a scheduling model was introduced along with a series of plug-in
hybrid electric vehicles (PHEV), wind turbines (WT), and DR. The above model
was implemented on the Illinois grid considering four different charging scenarios
including limited charging with 3-h delay and smart charging with executing DR.
As a result, the outcomes indicate the useful effect of the DR on the profit of whole
system.

As discussed earlier, the increase in greenhouse gas emissions and the limitation
of fossil fuels in the future is a worrying issue. Using PHEVs is one of the solutions
to this problem. Although the coordination of these vehicles with the DNs is
significant, and in case of inconsistency it is possible to create a new demand peak
load, or even worse than the current peak in the power grids, on the other hand, if the
coordination of these vehicles is done correctly, it can be used to help service in the
DN, which is the demand-side management (DSM). For this purpose, this chapter
examines the scheduling problem of charging and discharging of PEVs in NMGs
with the aim of reducing greenhouse gas emissions as well as reducing the cost of
the DISCO.

8.1.3 Contributions

As mentioned earlier, today the use of electric vehicles is growing. On the
other hand, concerns about increasing environmental pollution and greenhouse
gas emissions are also rising. So far, there have been a lot of works investigated
regarding introducing new plans for EVs scheduling in NMGs. But along with these
studies, there exist so many problems in the state-of-the-art. In this regard, DSM, as
well as the expansion of the influence of RESs and also the uncertainty surrounding
the generation of these sources of energy, have caused several new problems for
DISCO. Hence, this chapter outlines an optimized method to properly manage
the charge and discharge of two different types of EVs including battery electric
vehicle (BEV) and PHEV in NMGs aimed at increasing the benefit of operators,
decreasing the operation outlays of DGRs and power losses as well as decreasing
the emission of greenhouse gases. In addition, in this study different types of DGRs
have been used including DGRs with fossil fuels as well as RESs, including the
wind turbine (WT) and photovoltaic (PV) to reduce the dependence on fossil fuels.
The proposed EVCC program allows the DNO to use energy from EV batteries
using V2G and G2V technology to feed the demands of grid consumers during peak
load hours. EVs used in this study include various travel patterns such as separate
routes, different arrival and departure times to smart parking lots (SPL), as well as
the different duration of travel time. This novel EVCC program is presented aimed
at reducing power losses, reducing the cost of power bought from the main grid and
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the operating cost of DGRs, and ultimately increasing the benefit of DISCO along
with decreasing greenhouse gas emissions. Further, this chapter develops an efficient
scenario-based model to bridge the defects of the state-of-the-art approaches for
uncertainty management. On the other side, if the car owners would decide to
apply their combustion engines instead of electric ones, the emissions of greenhouse
gases emitted by these engines, pollution from the grid as well as greenhouse gases
emitted by DGRs will be penalized by grid operator in order to minimize the air
pollution. Finally, by modeling the smart parking lots (SPL) such as smart home
parking lots and smart workplace parking lots as an aggregator to store the energy
of EV batteries, modeling the EVs and managing their charging and discharging
plans, the proposed problem with the grey wolf optimizer (GWO) algorithm was
solved.

In accordance with the explanations discussed above, the major participations of
this chapter can be briefly presented as below:

• Presenting an eco-environmentally friendly approach to optimally assess the
various models of EVs with different driving patterns to reduce overall system
operation costs, increase DISCO profits, and reduce greenhouse gas emissions in
the presence of heterogeneous distributed energy resources units.

• Providing a stochastic model, in order to control the uncertainties related to
the generation of RESs. Further, the multi-objective economic-emission cost
functions are modeled as a MINLP and converted to single objective one through
applying weighted sum method (WSM) and eventually find the best optimal
answer with using the GWO algorithm.

• Numerical results indicate a significant reduction in greenhouse gas emissions,
power losses, and network operation costs, as well as a significant increase
in DISCO profits. Also, using the DR program, V2G and G2V technology in
SPLs and energy stored in EV batteries show significant load changes from peak
intervals to off-peak ones. Moreover, the results highlighted the effectiveness of
the EVCC program in NMG and reducing the cost of power purchased from the
upstream network.

8.1.4 Chapter Organization

The rest of the chapter is constructed as follows: in Sect. 8.2, DR program is
shown. Section 8.3 is assigned with the categorization of electric vehicles and their
explanation. Section 8.4 mathematically formulates the EV scheduling problem.
Section 8.5 shows the uncertainty modeling approach by constructing scenarios.
Section 8.6 indicates the case studies and simulation results which are specified to
show the efficiency of the proposed method and finally, the last section presents the
main results of this chapter and the conclusion.
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8.2 Incentive-Based DR Programs

8.2.1 Concepts

In recent years, many factors have contributed to increase the penetration of DGRs
in power systems. These factors include increased energy consumption, increased
fossil fuels prices, technology advances, increased costs associated with the con-
struction of the new power plant, and increased environmental concerns. Hence,
using DGRs could potentially reduce the need to expand traditional power systems.
Although controlling a large number of these resources, along with increasing the
penetration of RESs and uncertainties in the generation of these DGRs, will create
a difficult challenge for the secure and efficient operation of power grids, this
challenge can be largely managed by establishing two-way communication between
these resources and the DNO in the concept of SMGs.

So far, the SMGs have provided significant interests for the power sector, and one
of its important components is demand side management (DSM) system. However,
in the early days of DSM, peak load demand reduction was a way to increase the
power systems capacity. But in recent decades, the DSM program has changed to
manage the load profiles. The purpose of these programs is to encourage energy
consumers to manage their consumption time, while balancing supply and demand
with electrical energy, reducing costs, and increasing the reliability of the power
system [20]. DR is one of the superlative important programs of DSM in SMG that
can be used to ensure a balance between supply and load demand. Additionally,
the DR program has a high potential for reducing high peak load demand. This
capability can help to delay the development of generation capacity, as well as
decrease the operating costs and air pollutions.

In general, DR program is divided into two major groups: time-based DR
(TBDR) and incentive-based DR (IBDR). As shown in Fig. 8.4, TBDR group
includes three programs, such as RTP, TOU, and CPP. Moreover, the IBDR group
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Fig. 8.4 Categories of demand response programs
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contains six separate programs including DLC, I/C, DB, EDRP, CAP, and A/S [21].
RTP program gives consumers the incentive to reduce their energy consumption
during hours with high electricity price. Since the electricity prices in an electricity
market depend on the demands and the availability of energy generation, the high
price occurs usually when the demand for energy is high or the grid has a shortage of
energy in the generation. In addition, in the opposite situation, customers may shift
their energy consumption to the hours when the electricity generation is excessive
and the costs are at the lowest levels. This demand shifting could allow higher
amount of RESs that could be integrated in the power system without increased need
for curtailment [22]. TOU program is a less complicated way to introduce variations
in the price of electricity to the customer and it is one of the most commonly used
residential consumer programs. In fact, this method can be seen as a very long time
lag in the RTP tariff, which is based on two or three different predefined prices
of time throughout the day, i.e., tariffs at on-peak and off-peak times. Each of
these predefined prices is somehow a reflection of the average price of electricity
generated during the hours belonging to that interval. The intention of the CPP
program is to offer consumers to reduce their energy consumption under normal
circumstances while the retailer has the possibility to increase the energy rates for
some hours every year when the total energy demand is high. CPP hours are usually
the same for all region, but with the advancement of measuring technology, CPP
program could also be based on the peak demand in a local electrical distribution
system [23].

IBDR are voluntary incentive-based and usually based on economic motivation
and are often not included in the electricity rates. As shown in Fig. 8.4, IBDR
program is divided into two categories of classical programs and market-based
programs. The classical IBDR program category includes DLC and I/C, while the
market-based category includes DB, EDRP, CAP, and A/S. In the classic IBDR
programs, customers who want to participate in this program will usually receive
the bill credit or rebate in return for their requested actions by operator. In the IBDR,
customers participating in this program will be awarded proportion to reduction in
their consumption at critical situations. In DLC, the operator is able to remotely
turn off the participant’s remote control equipment such as air conditioners and
water heaters on short notice. These types of schemes are mostly for the benefit of
residential customers as well as small commercial customers. Similar to the DLC
program, the customers who would participate in I/C program can earn incentive
payments or rate discounts. In this program, participants are asked to lessen their
energy consumption to a predetermined value. On the other hand, participants who
do not respond may be fined according to the program terms and conditions.

DB program (also known as Buyback program) is a program in which consumers
bid a specific reduction in their energy consumption in electricity sale market. If
the bid offer is lower than the price in the market, it will be accepted. Once the
customer bid is accepted, a customer participating in the program should curtail
its consumption, otherwise it will be penalized. Additionally, in EDRP, the amount
of reward is paid incentives to the customers for measured load reductions during
emergency conditions. Besides, in the CAP the customers who are able to reduce
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their demand when the system is at the risk (i.e., unmoral conditions). Participants
in this type of program usually receive a day-ahead notice of possible events and
amount of load reductions and if they do not respond to the load reduction call,
they will be penalized. A/S program allows the customers to participate in this
program with biding consumption reduction in the wholesale market. Then, when
the customers bid for participation in this program is accepted, the participants are
paid the price cleared in the day-ahead market for perpetrating to be on standby
[24].

8.2.2 Modeling

This chapter will cover and discuss IBDR program. To assess consumer engagement
in DR programs, it is essential to develop a model that determines load profiles,
profit and loss for consumers in terms of electricity prices, incentive payments, and
fines. Hence, in order to demonstrate the sensitivity of the load to price changes,
we can use a concept called “elastic” or “load elastic.” Load elastic is defined as
the sensitivity of demand to price changes. Equation (8.1) presents the elastic math
expression of the load elastic.

ε = ρ0

d0

∂d

∂ρ
(8.1)

in which ρ is equal to the price of electricity, d is the demand, ε is equal to elastic, ρ0
and d0 respectively represent the price and load quantities before the price changes.
With respect to Eq. (8.1), the elasticity of the i period is defined as Eq. (8.2) with
the respect to price changes over the j period [25].

ε (i, j) = ρ0(j)

d0(i)

∂d(i)

∂ρ(j)
(8.2)

Figure 8.5 shows that due to the load sensitivity to the price, decrease in the
demand side will greatly affect the price of electrical energy [25].

Frequently, the prices of different electrical energy in different periods of time
are divided into two categories which include single-period and multi-period. Loads
that cannot be displaced in different periods, which only turn on or off (like loads of
light), are single-period loads, and the response of these kinds of loads versus price
is called single-period sensitivity which is evaluated by self-elasticity. The sign of
self-elasticity is always negative, because when the price increases in a period, the
amount of demand decreases during the same period or vice versa. On the other
hand, loads that move in different periods, so that consumption from peak duration
to mid-time load or low-load, is called multi-period load. The response of this type
of load versus price is multi-period sensitivity and is evaluated with cross elasticity.
The sign of this coefficient is always positive, because when the price increases in a
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Fig. 8.5 Effect of load
elasticity on electricity prices
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specific time, the level of consumption will be increased at other times. Eventually,
considering the amount of incentive and penalty in the DR program, the economic
model of demand can be expressed as Eq. (8.3) [26].

d(i) = d0(i) {1+
12∑

j=1

ε (i, j)

[
ρ(j) − ρ0(j) + Inc(j) − Pen(j)

ρ0(j)

]}
(8.3)

where Inc(j) is equal to the amount of encouragement and Pen(j) shows the amount
of penalizing. Based on the amount of incentive and fines, the position of each
demand response program is deployed and affected by its final priority.

8.3 Electric Vehicle

8.3.1 Aim

With increasing concerns about the energy crisis, the issue of using the EVs
as a substitute for cars with combustion engines in transport has been seriously
considered. One of the main problems of these vehicles is the lack of long-distance
travel as well as the need to recharging. On the other hand, the low cost of energy and
the compatibility of these vehicles with the environment can be named as their most
important advantages. In addition, increasing concerns about rising greenhouse
gases is one of the main issues facing industrialized countries. One of the main
sources of greenhouse gas emissions in industrialized countries is the use of cars
with combustion engines. Also, in addition to over-emission of greenhouse gases,
these cars also have several other disadvantages. Disadvantages such as [27]:

• Size of the combustion engines is such that they can provide the necessary power
for the desired acceleration for the car. So these engines are usually bulky and
heavy.
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• The thermal efficiency of these motors depends on their operating point and
constantly changes depending on the conditions during the car’s motion.

• All the kinetic energy of the car during braking is turned to the heat and wasted.

Therefore, given the above, investments are being made to move toward less
polluting and cleaner vehicles, and the automotive industry is leading toward the
use of EVs.

8.3.2 Stages of EV Development

The stages of EV development are categorized into three generations including
EVs, Hybrid electric vehicles (HEV), and PHEVs. EVs are typical electric cars and
are made up with a battery pack connected to an electric motor that provides the
required power to the wheels. The main drawback of these vehicles is their limited
driving time, depending on the type of battery. HEVs are a common type of EV that
has two engines including fuel and electric engine. The disadvantages of EVs have
been mostly overcome in these vehicles. It can also be said that the disadvantages
of cars with internal combustion engines have also been somewhat resolved. The
important advantages of these vehicles compared to the car with internal combustion
engines are the ability to drive in a steady load and optimum working point. This
advantage will increase engine efficiency and reduce pollution as well as lower fuel
consumption. In addition, during braking or negative acceleration, kinetic energy is
stored electrically in the battery of these vehicles. This function will result in less
engine operation and thus reduce pollution and reduce fuel consumption. But on
the other hand, the disadvantages of these vehicles include the lack of the ability
to charge batteries from the power grid and its dependence on the fuel engine. But
ultimately, PHEVs have eliminated the disadvantages of HEVs. PHEVs are able to
receive energy through the power grid or an internal combustion engine.

8.3.3 Classification of EVs

In general, EVs can be divided into two large groups:

• Autonomous EVs, including HEV and Fuel cell electric vehicle (FCEV)
• Plug-in EVs, including a PHEV and an EV based on an electric battery (BEV)

Figure 8.6 shows the division of these two EVs categories. On the other hand,
solar EVs are not considered as an independent group. Because the addition of
photovoltaic cells (for battery charging, power supply to electric motors, or power
supplies for vehicle systems) can be done in vehicle of each of the above categories.
As can be seen in Fig. 8.6, Autonomous vehicles include HEVs and FCEV. HEVs
combine an internal combustion engine system with an electric propulsion system.
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FCEVs are also a kind of EVs where the fuel cell is replaced instead of conventional
internal combustion gasoline engines. In addition to autonomous EVs, there are
plug-in EVs as well. PEVs are also divided into two groups of PHEVs and BEVs.
While BEVs are known to use their batteries energy for their electric propulsion
system, PHEVs typically have smaller batteries because they are also using an
internal combustion engine. This hybrid system makes the driving range of these
vehicles more than electric vehicles based on batteries. As a result, there is no need
to worry about the completion of battery charge.

Recent research and the growing use of PEVs, along with the advent of smart
grids in power systems, which have provided two-way communication capabilities
for power grids, has led to a reduction in energy consumption and a reduction
in greenhouse gas emissions. PEVs are able to communicate bilaterally with the
DNO, while they are in SPLs or smart charging stations. By doing this bilateral
communication, they are simultaneously able to play the role of loads or power
sources in SMGs. Therefore, using these PEVs can be divided into two categories:
PEVs which can only be charged, named G2V, as well as PEVs that include both
G2V and V2G technologies [28].

8.3.4 V2G Technology

V2G technology has been much considered in recent years. This technology reduces
the dependence on small expensive power generation units, reduces the costs of
launching these units, as well as managing load and peak load volatility, increasing
spinning reserve and system reliability. In addition, PEVs can exchange energy
stored in their batteries with electricity markets and participate in the economic
aspects of power systems. In order to exchange this stored energy in markets,
aggregators and NMGs can participate together as an interface. Also, with the
assumption that there is uncertainty in the DN, V2G technology can create a two-
way power flow and increase the interaction between the DN and PEV. Finally,
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considering two ways of power exchange between PEVs and the power grid, two
types of V2G technology are defined as one-way and two-way V2G technologies.

In one-way V2G technology, the PEV battery charge rate is controlled in a one-
way power transmission between the EV and grid. One-way V2G technology is
possible by adding a simple controller to manage charge rates and also required a
low cost. Using this technology will increase the flexibility of network operation.
Also, the notion of two-way V2G technology provides the two-way power circula-
tion between the PEVs and power grid to achieve multiple benefits.

Figure 8.7 shows a typical two-way charger within the PEV, consisting both
AC/DC and DC/DC converters. When it is charging mode, to control active and
reactive power the charger must receive a sinusoidal current with predetermined
phase angle from the network. Also in the mode of injection into the grid, the charger
must return a sine current to the grid. In this figure, an AC/DC converter is used to
rectifying the AC power taken from the power grid and is converted to DC power
during charging the PEV. Also in discharging mode, the DC power is converted to
AC power before being injected into the network. Moreover, the DC/DC converter is
responsible for bidirectional power transactions via different control methods. The
DC/DC converter, respectively, behaves as a buck or boost converter during charge
and discharge modes [29].

Two-way V2G technology provides more flexibility and capabilities including
active and reactive power patronage, and power factor adjustment to ameliorate the
operation of power grids. In addition, reactive power support by two-way V2G
technology can provide peak-load modification and flattening load profile. This
service is available through the charging of PEVs during off-peak hours and the
injection of PEVs energy to the power grid during peak hours. Two-way V2G
technology has also the capability to provide reactive power to regulate network
voltages. This service could be done with the proper measurement of DC Capacitor,
charger, and correct control keying. In order to further explain, if at the same time
DN needs reactive power and at the same time the PEV would be in the charge
mode, the charger should be operated in charging (i.e., capacitive mode). So, the
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Fig. 8.8 Capability curve of
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power grid will furnish the active power for the PEV battery charging and the PEV
injects the reactive power to the grid by using V2G two-way technology. The overall
structure of the charging and discharge curve of the PEV is shown in Fig. 8.8 [30].

8.4 Problem Formulation

8.4.1 Objective Function

This chapter provides a novel planning for optimal active power management of
NMG in the presence of decentralized PEVs in order to decrease the overall cost of
DISCO, operating costs of various DGRs including WTs, PVs and combined heat
and power (CHP), and greenhouse gas emissions reduction.

Minimize
{
F Cost + F Emission

}
(8.4)

8.4.1.1 Total Cost Function

The total cost of system containing WTs and PVs, CHPs and participation of PEVs
associated with the air pollution cost are expressed in Eq. (8.5).

FCost =
T∑

t=1

[(PGrid(t) × �t) + (CDG(t)) + (CPEV(t)) + (CEM(t))] (8.5)
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in which PGrid(t) and �t are the power purchased from the grid and the energy price
in the period t, respectively. CDG(t), CPEV(t), and CEM(t) also denote the cost of
DGRs, PEVs, and CO2 emissions during the period of t.

8.4.1.2 Operation Cost of DGRs

Since in the model presented, three different kinds of DGRs including WTs, PVs,
and CHP were used, in order to minimize the operating costs of each unit, an
economic dispatch should be fulfilled. Ultimately, the total cost of these DGRs is
obtained through Eq. (8.6).

CDG =
T∑

t=1

[(PCHP × a(t) + SU(t)) + (PWT(t) × b(t)) + (PPV(t) × c(t))] (8.6)

where a, b, and c represent the cost coefficiencies of DGRs. SU(t) expresses the
startup cost of CHP over the time t and PCHP, PWT and PPV, respectively, represent
the active output power of CHP, WTs, and PVs.

8.4.1.3 Operation Cost of PEVs

The objective from utilization of V2G in PEV was to decrease the costs of power
grids and thereby reduce the cost of DISCO as well as reduce greenhouse gas
emissions. In fact, PEVs with using an optimal EVCC program can detract losses
in NMG, and minimize the costs of whole system and reduce the greenhouse gas
emissions. So, the charging/discharging costs of PEVs can be determined through
Eq. (8.7).

CPEV =
T∑

t=1

NPEV∑

n=1

[
k × PCharge/Discharge (n, t)

+ (PCharge (n, t) × CCharge − PDischarge (n, t) × CDischarge
)]

(8.7)

where k represents the operation factor of PEVs in dollars per kilowatt-hour and
CCharge, CDischarge are cost factor for charging and discharging PEVs in period t.

8.4.1.4 Cost of Greenhouse Gas Emission

Equation (8.8) is used to minimize the amount of greenhouse gas emissions. This
amount includes greenhouse gas emissions by the main grid and CHP power source.
Also, two different types of PEV including BEV and PHEV have been used in
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the presented model. Therefore, in order to obtain the most accurate amount of
greenhouse gas emissions in this equation, the amount of greenhouse gas emitted
by PHEV when their owners decided to use their PHEVs combustion engine was
taken into account.

CEM =
T∑

t=1

[

(PGrid(t) × EmGrid) + (PCHP(t) × EmDG)

+
NPHEV∑

n=1

(PPHEV (n, t) × EmPHEV)

⎤

⎦

(8.8)

where EmGrid, EmDG, and EmPHEV, respectively, represent the greenhouse gas
emission cost factor by main grid, CHP and PHEVs when the owners decided to
use PHEVs combustion engine.

8.4.2 Constraints

In order to minimize the proposed program, it is necessary to consider different
constraints as presented here.

8.4.2.1 Power Mismatch Constraint

PEVs can be regarded as portable storage which charge at off-peak periods and
inject the stored energy to the NMG at on-peak periods. According to Eq. (8.9), the
amount of energy produced by this portable energy storage as well as DGRs should
be equal with load and losses.

PGrid(t) +
I∑

i=1

PDG (i, t) +
NPEV∑

n=1

P Dischare
PEV (n, t)

= Dt +
NPEV∑

n=1

P
Charge
PEV (n, t) + Loss(t) ∀t ∈ {1, . . . , T }

(8.9)

where P
Charge
PEV , P Dischare

PEV represent power charge and discharge of nth PEV in period
t and Dt and Loss(t), respectively, show the total hourly demand and power loss of
the distribution network in period t.
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8.4.2.2 Lines Limit

The capacity of lines must transmit the power over a given range due to restrictions
such as thermal limits as Eq. (8.10).

S(i,j) ≤ Smax
(i,j) (8.10)

where S(i, j) is the power flow of lines between bus i and j, and Smax
(i,j) is their

maximum capacities.

8.4.2.3 Limit of Power Flow in the Lines

With respect to Eq. (8.11), the power transmission through the lines must not exceed
the maximum value.

∣∣P(i,j)

∣∣ < P max
(i,j), ∀t ∈ T ,∀s ∈ Ns (8.11)

where P(i, j) is power flow in the line connected between bus i and j, as well as P max
(i,j)

denotes the maximum capacity of line between bus i and bus j.

8.4.2.4 Under/Over Voltage Limits

One of the constraints in the operation of power systems is the limitation of the
voltage limit in a given range, which can be seen in Eq. (8.12).

Vmin ≤ V ≤ Vmax, ∀t ∈ T , ∀s ∈ Ns (8.12)

where Vmin and Vmax, respectively, show the minimum and maximum values of
voltage.

8.4.2.5 PEVs Limitations

In addition, PEVs cannot simultaneously be charged and discharged in each period
of time. This limitation is shown in Eq. (8.13).

Xn,t + Yn,t ≤ 1 ∀n ∈ NEV,∀t ∈ {1, . . . , T } (8.13)

where Xn, t and Yn, t, respectively, declare the binary variables for charg-
ing/discharging modes of nth PEV at tth hour.

Additionally, in the operation of the PEVs, their battery charge balance should
be taken into account. Hence, in Eq. (8.14), SOC(n, t) indicates the amount of
energy stored in PEVs batteries in EV n and at period t. The traveling energy
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over hour t
(

SOCTrip
(n,t)

)
is with the energy remaining in the previous hour and

charging/discharging over the time interval.

SOC (n, t) = SOC (n, t − 1) + ηC
n × P

Charge
PEV (n, t) − SOCTrip

(n,t)

− 1

ηD
n

× P
Discharge
PEV (n, t) ∀t ∈ {1, . . . , T } ; ∀n ∈ {1, . . . , NPEV}

(8.14)

where in this equation, ηC
n and ηD

n are, respectively, efficiency coefficients of G2V
and V2G charging. According to Eq. (8.15), charging/discharging of PEV batteries
are also limited in a certain range.

Emin
PEV ≤ EPEV ≤ Emax

PEV (8.15)

where Emin
PEV and Emax

PEV, respectively, display the minimum and maximum energy
stored in the PEVs.

8.4.2.6 DGRs Constraints

In the proposed problem, various models of DGRs including CHP, WTs, and PVs
have been used. According to Eqs. (8.16)–(8.18), the amount of power generated by
these DGRs is limited to the minimum and maximum range.

P min
CHP ≤ PCHP ≤ P max

CHP (8.16)

P min
WT ≤ PWT ≤ P max

WT (8.17)

P min
PV ≤ PPV ≤ P max

PV (8.18)

in which P min
CHP, P max

CHP, P min
WT , P max

WT , P min
PV , and P max

PV are the minimum and maximum
generation capacity of CHP, WT, and PV, respectively.

8.5 Scenario Modeling

The scenario generation method is one of the Looking ahead methods, according to
which the future conditions are designed by stochastic scenarios. In fact, generating
a scenario is not just a prediction of a particular future, it is a description of all
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probabilities. Therefore, if the scenario includes all future approaches, it can be a
powerful tool for power systems planning.

In the operation of power systems, there are some uncertain parameters such as
sun irradiation and wind speed. The probable behavior of these parameters can lead
to significant changes in the production of RESs, including PVs and WTs. On the
other hand, the amount of load demand in DNs by consumers has an unexpected
temperament. Hence, in this chapter, a scenario-based model has been used to
simulate the stochastic behavior of these parameters. In addition, for decreasing the
computational burden of the optimization process, the Kantorovich distance method
is used. In the scenario-based approaches, the values of uncertain parameters are
determined from their PDF figures. To this end, each PDF is divided into several
parts with defined probability for each part. Subsequently, these parts are combined
with each other to the scenarios and eventually the optimization process will be
implemented for all scenarios [31]:

C(s) = [load(s)solar(s)wind(s)] (8.19)

£s = £D
s × £PV

s × £WT
s (8.20)

S∑

s=1

£D
s × £PV

s × £WT
s = 1 (8.21)

8.6 Simulation Results

8.6.1 Data and Case Study

As shown in Fig. 8.9, the optimal NMG management planning in the presence of
BEV and PHEV and DGRs has been implemented in the 69-bus IEEE test system
[32]. This NMG consists of three interconnected MG with separate forecasted daily
load profiles including residential, commercial, and industrial microgrids. Each MG
along with various forecasted daily load patterns in addition to feeding their own
load demands are also able to cover the demanded load in the other MGs for the
purpose of flattening the load curve.

Table 8.1 shows the energy price in the day-ahead market [28]. As shown in Fig.
8.9, in the network implemented, various models of DGRs including the source of
fossil fuels including CHP, as well as the source of renewable energy generation
including WTs and PVs have been used. Also, the location of these DGRs is also
specified in this testing network. The CHPs are located at Bus 69, the WTs are
located at buses 11, 31, and 40, and also the PVs are located at buses 46, 50, 56,
and 63. The operation of these DGRs also includes costs to the electricity company.
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Table 8.1 Energy price at the power market

t$/kWh 1 2 3 4 5 6 7 8
0.033 0.027 0.020 0.017 0017 0.029 0.033 0.054

t$/kWh 9 10 11 12 13 14 15 16
0.215 0.572 0.572 0.572 0.215 0.572 0.286 0.279

t$/kWh 17 18 19 20 21 22 23 24
0.086 0.059 0.050 0.061 0.181 0.077 0.043 0.037

Therefore, in order to operate them optimally and to calculate the cost of these
DGRs, the start-up and fuel cost factors of CHP are assumed to be 10$ and 4.5$,
respectively. Also, in the planning calculations, for the operation of RESs, there are
also charges called maintenance and repair cost that are shown for WTs and PVs
with the cost coefficient of b and c, respectively, where both of them are considered
to be $ 2.

To implement the proposed EVCC program, the system operator is able to control
the amount of generation and demand in NMG by using two-way communication
with SPLs in the SMG. As shown in Fig. 8.9, the location of these SPLs includes
two categories of residential smart parking lots and workplace smart parking lots
are considered. The task of these SPLs is to manage charge and discharge of PEVs
by checking the hourly prices of energy, as well as the amount of energy stored in
the PEV batteries, as well as the load status of NMG (peak and off-peak) by using
two-way communication with the DNO. The site of residential smart parking lots is



190 M. Shamshirband et al.

Table 8.2 PEVs scenario

Parked time
Type Number Home Workplace

BEV1 200 01:00–06:00, 17:00–24:00 08:00–15:00
PHEV2 200 01:00–06:00, 17:00–19:00 08:00–15:00
BEV3 100 01:00–05:00, 17:00–24:00 –
PHEV4 200 01:00–05:00, 17:00–19:00 –
BEV5 150 01:00–09:00, 13:00–18:00, 22:00–24:00 –
BEV6 100 01:00–09:00, 21:00–24:00 –

Table 8.3 PEVs travel
duration

Trip type/trip duration (h)
PEV owner Home to work Work to home Others

PEV1 1 1 –
PEV2 1 1 5
PEV3 2 2 –
PEV4 2 2 5
PEV5 – – 3 and 3
PEV6 – – 10

Table 8.4 Greenhouse gas
emissions cost coefficient

Type Coefficient Cost

Grid EmGrid $ 0.143
CHP EmCHP $ 0.127
PHEV EmPHEV $ 0.03

considered in buses 6, 22, 47, 53, 60, and 66. Moreover, the location of workplace
smart parking lots is also considered in buses 17 and 37.

EVs used in this EVCC planning include two types of PEVs such as PHEV
and BEV. These vehicles have a variety of patterns, such as travel time, hours of
arrival and departure to SPLs, as well as different charging and discharging periods.
Tables 8.2 and 8.3 show the number of each PEVs, duration of their presence in
SPLs, as well as the travel time of these vehicles. On the other hand, at some
hours of the day, PHEV owners decide to use their own EV combustion engine.
Hence, at these hours, these vehicles also emit greenhouse gases. For this reason,
in order to study and accurately calculate the emitted greenhouse gases, the amount
of greenhouse gas emissions released by these PHEVs during the period of using
combustion engines is also calculated. Besides, the average air pollutions released
from fossil fuel-based power plants would be calculated at off-peak hours (1–6 and
23–24), average hours (6–20), and peak hours (19–22). The emission coefficients
are assumed to be 0.050, 0.562, and 0.985 kg/kW for the main grid [33]. Finally, to
determine the greenhouse gases emitted by the main grid, CHP, as well as PHEVs,
the cost coefficients of EmGrid, EmCHP, and EmPHEV, respectively, are considered
in Table 8.4 [34, 35].
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8.6.2 Numerical Results

Three linked MGs with different load profiles were examined with the aim of
reducing the cost of electricity companies, as well as reducing greenhouse gas
emissions. The proposed model reduces the cost of DISCO and greenhouse gas
emissions with the EVCC program by using PEVs V2G and G2V capability.
Here, the results of proposed method will be shown. In order to implement
the EVCC planning in NMG, DR program was used to flatten the system load
forecasted profiles. These three interconnected MGs load forecasted profile, such
as commercial, industrial, and residential networks, are visible before and after the
implementation of the DR program in Fig. 8.10.

The amount of power purchased from the upstream network by the DISCO as
well as the power generated by DGRs in the studied network are shown in Figs. 8.11
and 8.12, respectively. Regarding Fig. 8.11, the presence of PEVs, and DR program,
have reduced the power purchased by the DISCO from the upstream network. In
addition, according to section b in Fig. 8.12, the power generated by DGRs has
decreased in the presence of PEVs, which reduces the operation cost of these DGRs
as well.

Regarding the fact that the planning was implemented to reduce the cost of
the DISCO and along with it, reducing greenhouse gas emissions. Hence, after
implementation of the DR program as well as the EVCC program, the emission
of greenhouse gases by the main grid, the source of CHP, as well as the amount
of greenhouse gas emissions by PEVs when the owners decide to using their
combustion engines in Fig. 8.11 is visible. Also, in Fig. 8.13, greenhouse gas
emission reductions are observed before and after the implementation of the EVCC
and DR planning, partially for the main grid, the source of CHP and PEVs.
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Fig. 8.12 Power generated by each DGRs without (a) and with (b) presence of PEVs

According to Fig. 8.14, it is obvious that the implementation of the proposed
DR program, as well as the optimal use of EVCC program during PEVs presence
in SPLs, causes a significant reduction in greenhouse gas emissions. Figure 8.15
illustrates the daily charge and discharge schedule of PEVs in this NMG. As can be
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Table 8.5 Objective functions at different cases

Cost ($) Grid cost DGR costs PHEV Emission cost Loss cost Total

Without PEV 92,694.39 244,440.00 – 117,688.44 4915.66 302,047.88
With PEV + DR 66,315.06 179,201.80 2369.30 83,332.98 3280.01 225,360.87

seen in this figure, PEVs 2 and 4 are PHEV type and their owners decided to utilize
their PHEVs combustion engines at the last periods of day. In addition, according to
the EVCC planning, during the peak hours of energy consumption (18–21), PEVs
in the SPLs use V2G ability to inject the energy stored in their batteries into the grid
to preserve the network performance and contribute to increase the reliability of the
system during these hours.

Finally, Table 8.5 shows the overall results of this study before and after the
applying DR program as well as the implementation of the EVCC program. Based
on the results obtained, it can be concluded that the DR program, as well as the
optimal management of PEVs charging and discharging in the grid under discussion,
would reduce the overall cost of the DISCO, cost of DGRs operation, cost of
greenhouse gases emission, and reduces the network losses as well.

8.7 Conclusion

Today, one of the major problems facing power systems is energy management.
Increasing demand for energy, increasing the use of RESs and uncertainty about
their availability, increasing the use of EVs and their uneven charging demand
threaten the reliability of power grids. Hence, in this study, we presented a new
methodology for the optimal operation of three interconnected MGs to manage
energy in the presence of DGRs, including CHP, WTs, and PVs in the 69-bus IEEE
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test system. The purpose of this method is to reduce the cost of DISCO, along with
the simultaneous reduction of greenhouse gas emissions. Hence, using V2G and
G2V technology in PEVs, and the ability to exchange power between SPLs and
DNO, we exchanged the power between the consumer and the DISCO.

Additionally, in this planning, each of these MGs studied has a separate daily
load forecasted profile, including commercial, industrial, and residential. Therefore,
with the implementation of the DR program, we plan to flatten the load profile of
these three interconnected MGs. Finally, the intermittencies induced by renewables
were modeled by scenarios. The presented multi-objective problem was converted
into a single-objective one and minimized by an integrated population-based
metaheuristics algorithm namely GWO and Taguchi test method that can acquire
a satisfactory solution.

The results obtained from simulations show that the proposed scheme not only
significantly reduces the operating cost of system and power losses, but also
decreases the greenhouse gas emission pollution. The charging of PEV is done
when the price is low and then PEVs discharge when the price is high at the power
market. It should be emphasized that the inclusion of environmental objectives into
the problem modifies the charging/discharging pattern of PEVs which this issue
is subject to an increase in the economic costs of system. Besides, applying DR
program could smooth the load profile which leads to decrease the power bought
from the main grid.

Some future works developed from this work can be as follows:

• Multi-agent based modeling of EV aggregators within the power markets
• Assessing the impact of price-maker EV aggregators on the revenue adequacy of

market
• Enforcing other uncertainty management instruments to curb the market partici-

pation risk
• Considering the reserve and frequency regulation services provided by different

EVs along with their energy management problem
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Chapter 9
Robust Scheduling of Plug-In Electric
Vehicles Aggregator in Day-Ahead
and Reserve Markets

Amir Farahmand-Zahed, Sayyad Nojavan, and Kazem Zare

Nomenclature

Set

t Time period (hour)
v PEV groups

Parameters

λt Electricity market price at time interval t ($/MWh)
λR

t Reserve market price at time interval t ($/MWh)
λd Tariffs of selling energy to the owners of PEVs ($/MWh)
∂ t Availability percentage of PEVs
α Status of delivering energy in the reserve market
cd Battery degradation cost
Äv Charging efficiency of the battery
εv Degradation coefficient of discharging
SOCv Minimum capacity limit of the battery (MWh)
SOCv Maximum capacity limit of the battery (MWh)
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Ev Minimum limit of the rate of charge of the battery (MWh)
Ev Maximum limit of the rate of charge of the battery (MWh)
cb Battery cost for one kilowatt-hour ($/kWh)
cl Battery replacement labor cost
Eb Energy capacity cost of battery
Lc Cycle life of the battery
DOD Depth of discharge

Numbers

Nv Number of PEV groups
nv Number of PEVs with the same driving pattern

Variables

P sale
t.v Power sold in the day-ahead market from vth vehicle at time interval t

(MW)
P R

t.v Power sold in reserve market from vth vehicle at time interval t (MW)

P
buy
t.v Power charged to the vth vehicle at time interval t (MW)

Gt. v Power required by the vth vehicle at time interval t (MW)
DEt. v Total discharged energy from vth vehicle in energy markets at time

interval t (MW)
SOCt. v State of charge of the vth vehicle at time interval t (MWh)
Et. v Purchased power from the grid for the vth vehicle at time interval t

(MW)

9.1 Introduction

Global warming, energy crisis, and other environmental effects caused by fossil
fuels increase the popularity of electric vehicles (EVs) [1]. On the other hand,
growing EV technology and government’s motivations for using EVs speed up their
rapid growth. So in the near future, EVs will have a large share of the transportation
system and they can be used as demand-side resources [2]. Participation of a single
plug-in electric vehicle (PEV) in the power market is not possible because of market
regulation, but a group of PEVs can provide enough energy for participating in
electricity markets. Aggregation of PEVs has benefits for both PEV owners and
the grid. It is possible for PEV aggregators to participate in electricity markets to
maximize its benefit by charging PEVs at time intervals with lower energy price
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and selling it at time intervals with higher energy price. So it is necessary for a PEV
aggregator to have an optimal schedule to participate in electricity markets.

In recent years, the scheduling problem of PEVs is analyzed and modeled in
many studies. In [3], an algorithm for unidirectional vehicle-to-grid (V2G) charging
regulation is developed, which is able to modulate the charging around the charging
rate of each EV. A model of an aggregate battery for an EV fleet is presented
in [4]. An aggregate model of a V2G fleet is presented in [5] with the goal of
demonstrating the energy and power constraints of the V2G fleet, then this model is
used to develop an evaluation method to obtain the V2G capacity. In [6], the PEV
aggregators operation is optimized in order to maximize their benefit considering
market price variations. A hybrid method based on multi-agents and dynamic game
theory is provided to model market players, and also, the effect of the contract on the
behavior of EV owners is modeled in [7]. In another framework, an integrated model
based on Time of Use and Price-Based Demand Response for the EV aggregator’s
G2V charge scheduling is studied [8]. The existence of uncertainties makes the
scheduling problem of PEVs more complicated. Different methods for handling
the uncertain parameter are reviewed, classified, and evaluated in [3]. In [9], an
optimal stochastic programming model is studied to maximize the profit of EV
aggregator from participating in the regulation market. The participation of EV
and energy storage aggregators in frequency regulation markets is studied in [10],
their presented formulation is a stochastic mixed integer linear programming model,
and the uncertainties of energy and frequency regulation prices are considered in
their model, as well as the degradation costs of energy storages. In [11], a mixed-
integer stochastic linear program model for coordination of unidirectional V2G
services and energy trading is presented. Unidirectional charging pattern is used
for the short-term scheduling of aggregators in [12]. A stochastic mixed integer
linear programming model for the optimization of the participation of aggregators
in real-time and day-ahead electricity markets and power quality services is
investigated in [13]. A dynamic stochastic optimization method with a stochastic
linear programming formulation is studied in [14] to optimize the charging schedule
of electric vehicles. Furthermore, the uncertainties of load, electricity pricing,
and renewable energy generation are considered in [14]. Charge and discharge
managing tools have been developed in order to track automatic generation control
(AGC) signal, also a real-time controller is presented which considers bidirectional
charging efficiency in [15]. A linear programming model for real-time charging
management of an EV aggregator in order to participate in energy and regulation
markets is presented in [16]. The self-scheduling problem of a PEV aggregator to
participate in balancing services for a wind power producer is studied in [17], and a
scenario-based robust approach is used to consider the uncertainties of wind power
generation. An approach based on information gap decision theory is analyzed in
[18] in order to manage the risks of EV aggregator’s revenue caused by electricity
price uncertainty. In [19], a framework for efficient charging of PEVs is studied
where multiple aggregators exist in a city and they cooperate with each other to
schedule the charging of PEVs in different charging stations, either owned by
them or not. Furthermore, a bi-objective charging schedule model is presented to
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maximize both the aggregators’ total profit as well as the total number of charged
PEVs [19]. In [20], a stochastic programming model is presented for the optimal
scheduling problem of PEV aggregators to participate in day-ahead and reserve
markets and autoregressive integrated moving average (ARIMA) technique is used
to produce scenarios for market price; furthermore, conditional value at risk (CVaR)
is employed in the scheduling process of the PEV aggregator.

In this chapter, the optimal scheduling of PEV aggregator for participation in
day-ahead and reserve markets is presented. The impact of pool market price
uncertainty is considered. Robust optimization approach is used to specify pool
market price uncertainty and find the optimal short-term schedule for the aggregator.
The proposed model is applied to a case study which consists of 10,000 PEVs. The
simulation is done in two cases: deterministic case and robust optimization case.
The results indicate that the aggregator can be robust against 20% changes in the
market price with just 2.51% decrease in its total profit in robust optimization case.
The contributions of this chapter can be summarized as below:

• The optimal short-term scheduling of PEV aggregator for participation in day-
ahead and reserve markets considering the market price uncertainty is proposed.

• Robust optimization approach is used to handle the market price uncertainty.

The remainder of this chapter consists of the following sections: Sect. 9.2 intro-
duces the optimal scheduling problem of PEV aggregator, its objective function,
and mathematical formulation. In Sect. 9.3, the robust optimization approach is
introduced and formulated. A case study, its input data, and the obtained results
are presented in Sect. 9.4. The conclusion of the chapter is presented in Sect. 9.5.

9.2 Deterministic-Based Scheduling of PEV Aggregator

The cost of the PEV aggregator is from the energy bought from the grid and
battery degradation cost caused by discharging energy due to participation in energy
markets. And, the aggregator’s revenue is from selling energy to PEV owners and
participating in electricity markets. So an optimal schedule is needed to maximize
the total benefit of the PEV aggregator considering the uncertainties of market
energy price and PEV availability. This can be obtained by charging the PEVs
in time intervals with lower electricity price and selling the electricity at time
intervals with higher electricity price. The PEVs charging tariffs is assumed to
be constant because determining the energy tariff is a long-term decision and it
is an input data for short-term scheduling problem and determined based on market
competitions and regulatory constraints. In this chapter, the impacts of pool market
price uncertainty and the uncertainty of the availability of PEVs on PEV aggregator
scheduling problem are considered. Robust optimization approach is used to specify
these uncertainties and find the optimal short-term schedule for the aggregator.

Finding the optimal schedule for the participation of PEV aggregators in the
power markets is more complicated due to the pool market price uncertainty. The
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objective of solving the PEV aggregator scheduling problem is to maximize the
aggregator’s total profit. The aggregator’s revenue comes from two sources: the first
one is from PEV owners that would pay for charging their vehicles and the second
source is from selling electricity in the day-ahead and reserve markets. And, the
aggregator’s cost is from the energy bought from the grid and battery degradation
cost caused by discharging energy due to participation in energy markets. The
formulation of the objective function is represented in (9.1).

Max
Nv∑

v=1

(
nv ×∂t

)
{

T∑

t=1

λtP
sale
t.v +λR

t P R
t.v +αλtP

R
t.v + λdGt.v − λtP

buy
t.v − cdDEt.v

}

(9.1)

where, nv and ∂ t are the number of PEVs with the same driving pattern and the
availability percentage of PEVs, respectively. λR

t and λt are the reserve market price
and pool market price at time interval t ($/MWh), respectively. λd is the constant
tariffs of selling energy to the owners of PEVs. cd is battery degradation cost and
DEt. v shows the total discharged energy from vth vehicle in energy markets at time
interval t. The status of delivering energy in the reserve market is modeled by α,
α = 1 is equal to be called to deliver energy in the reserve market. Total discharged
energy from the vth vehicle in day-ahead and reserve markets at time interval t can
be stated as:

P sale
t.v + P R

t.v = DEt.v ∀t,∀v (9.2)

The SOC of each battery at each time interval as below:

SOCt.v = SOCt−1.v + (ÄvEt.v − Gt.v − εvDEt.v) ∀t,∀v (9.3)

Its elements are the battery’s SOC at the previous hour (SOCt − 1. v), the power
required for driving (Gt. v), power sold in day-ahead and reserve markets (DEt. v),
the power delivered by the grid (Et. v), charging efficiency (Äv) and the degradation
coefficient of discharging (εv). The limits of SOC and the rate of charge are applied
using (9.4) and (9.5).

SOCv ≤ SOCt.v ≤ SOCv ∀t,∀v (9.4)

Ev ≤ Et.v ≤ Ev ∀t,∀v (9.5)

where, SOCv and SOCv are the minimum and maximum limits of the vth PEV’s
battery. Ev and Ev are minimum and maximum limits for the rate of charge.

It is ensured that PEV batteries only can be charged or discharged when they are
plugged in using (9.6). Charge and discharge of batteries cannot happen at the same
time which is constrained by (9.7).
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If
{∀t,∀v|Gt,v �= 0

}
then : Et.v, P

sale
t.v P R

t.v = 0 (9.6)

If
{∀t,∀v|Et,v �= 0

}
then : P sale

t.v P R
t.v = 0 (9.7)

The following constrain is added to the model to limit the rate of change SOC
charging:

P R
t.v ≤ SOCt.v − SOCv ∀t,∀v (9.8)

Degradation cost of batteries due to discharging energy is calculated using (9.9).

cd = cbEb + cl

Lc Eb DOD
(9.9)

where, cb and cl are the battery cost for 1 kWh and replacement cost, respectively.
Battery’s energy capacity cost is shown by Eb and Lc is the cycle life of the battery
at a special depth of discharge (DOD).

9.3 Robust Optimization-Based Scheduling of PEV
Aggregator

The existence of uncertainties would increase the complexity of the investigated
problems. Many methods have been developed in order to handle the uncertain
parameter. One of these methods is Robust Optimization Approach. The basis of
Robust Optimization Approach is on representing the effect of the uncertain param-
eter on the optimal solution and reducing the sensitivity of the optimal solution to
the uncertain parameter. The advantages of this method can be summarized as below
[21]:

• The Robust Optimization Approach requires less calculation effort than stochas-
tic programming.

• The obtained solutions are reliable since the Robust Optimization Approach
considers the worst conditions.

• The Robust Optimization Approach does not exert probabilistic distribution
functions.

The standard MILP model is formulated in (9.10)–(9.13).

Min
n∑

t=1

ctxt (9.10)
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Subjected to

n∑

j=1

aij xj ≤ bi ∀i = 1, . . . , m (9.11)

xt ≥ 0 ∀t = 1, . . . , n (9.12)

xt ∈ {0, 1} for some t = 1, . . . , n (9.13)

where ct is a coefficient with an unknown value and its range is [ct − dt ct + dt].
dt shows the deviation of ct from its nominal value. In order to formulate the robust
mixed-integer linear programming, an integer control parameter is needed which is
named Γ (GAMA). Γ must be a real value in the range of [0, |T0|]. The worst case
happens when the value of Γ is equal to |T0|.

And the deterministic case is obtained when Γ = 0. The robust formulation of
(9.10)–(9.13) can be defined as (9.14)–(9.22):

Min
n∑

t=1

ctxt + β.� +
n∑

t=1

ζt (9.14)

n∑

j=1

aij xj ≤ bi ∀i = 1, . . . , m (9.15)

xt ≥ 0 ∀t = 1, . . . , n (9.16)

xt ∈ {0, 1} for some t = 1, . . . , n (9.17)

β + ζt ≥ dt θt t ∈ T0 (9.18)

β ≥ 0 (9.19)

ζt ≥ 0 ∀t = 1, . . . , n (9.20)

θt ≥ 0 ∀t = 1, . . . , n (9.21)

θt ≥ xt ∀t = 1, . . . , n (9.22)
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Pool market price is considered to be the only uncertain parameter in the studied
base problem (Eqs. (9.1)–(9.9)). The uncertainty of this parameter is modeled using
Robust Optimization Approach. The robust formulation of the main problem is as
follows:

Max −β.� −
n∑

t=1

ζt +
Nv∑

v=1

(
nv × ∂t

)

×
{

T∑

t=1

(λt ) P sale
t.v +

(
λR

t

)
P R

t.v +α (λt ) P R
t.v + (λd)Gt.v − (λt ) P

buy
t.v − (cd) DEt.v

}

(9.23)

β + ζt ≥
(
λmax

t − λmin
t

)
θt ∀t (9.24)

θt ≥ P sale
t.v + P R

t.v + α.P R
t.v − P

buy
t.v ∀t = 1, . . . , T (9.25)

Eqs. (9.2) − (9.9) (9.26)

where β and ζ t are two variables which are used to manage the variations of λt, and
θ t is an auxiliary variable used to linearize the problem. For

(
λmax

t − λmin
t

) = 0 the
value of Γ will be zero.

9.4 Case Study

The proposed robust optimization approach is used for optimal scheduling problem
of PEVs to participate in day-ahead and reserve markets for the 24-h time period.
The characteristics of PEV batteries are taken from [22]. In order to simplify the
problem, it is assumed that PEVs with the same driving pattern would act in the
same way. Driving patterns and the count of vehicles with the same driving pattern
are illustrated in Table 9.1. In order to calculate the degradation cost of batteries
using (9.9), the values of parameters cb and cl are considered 300 $/kWh and 240$
[23], respectively. And according to [24], at 100% discharge battery’s lifetime is
3000-cycle. Maximum and minimum capacity of each battery is assumed to be
25 kWh and 0 kWh, respectively. Also charging efficiency (Äv) and the degradation
coefficient of discharging (εv) of PEV batteries are considered to be 100%. Other
parameters of PEVs are represented in Table 9.2. It is assumed that an empty battery
can fully charge in 2 h, which means that a battery is able to charge 50% of its total
capacity in 1 h with its maximum charging speed. The hourly pool price data is
represented in Table 9.1 [25]. The hourly price of reserve market (λR

t ) is assumed to
be equal to the day-ahead market prices (λt).
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Table 9.1 Driving patterns of PEVs

Power requirements of PEVs (Gt. v) (kW)
Hour (h) 1 2 3 4 5 6 7 8 9 10 Market price

1 0 0 0 0 0 0 0 0 0 0 31.3780
2 0 0 0 0 0 0 0 0 0 0 31.0648
3 0 0 0 0 0 0 0 0 0 0 30.7052
4 0 0 0 0 0 0 0 0 0 0 30.7284
5 0 0 0 0 0 0 0 0 0 0 30.8560
6 1.486 1.916 2.049 2.209 1.179 1.720 1.676 1.839 0.856 0.847 31.3316
7 2.264 2.425 2.586 2.528 2.679 1.815 1.700 1.490 1.137 1.307 32.5264
8 2.835 2.812 2.810 3.139 3.919 0 0 0 1.633 1.373 35.2988
9 0 0 0 0 0 0 0 0 0.946 0.831 46.9220
10 0 0 0 0 0 2.232 2.701 3.060 0 0 48.6852
11 0 0 0 0 0 3.803 2.775 4.070 0 0 43.5580
12 1.239 1.183 1.296 1.173 0.906 0 0 0 0 0 41.7832
13 1.051 1.146 1.132 0.944 0.939 0 0 0 0 0 41.2148
14 0 0 0 0 0 0 0 0 0 0 40.9480
15 0 0 0 0 0 1.644 1.930 1.976 0 0 41.5628
16 2.033 1.888 1.466 2.034 1.521 1.888 1.767 2.053 0.769 0.93428 48.7664
17 2.897 3.659 2.480 3.716 3.079 0 0 0 1.191 0.952 49.3348
18 1.892 1.626 2.564 1.870 2.154 0 0 0 0.9781 0.9435 59.6588
19 0 0 0 0 0 0 0 0 0 0 57.9536
20 1.477 2.338 1.503 1.836 1.674 2.178 1.829 1.602 0 0 54.2068
21 2.037 2.143 1.961 1.401 2.027 2.109 1.272 1.624 0 0 48.2212
22 0 0 0 0 0 0 0 0 0 0 43.0244
23 0 0 0 0 0 0 0 0 0 0 37.6884
24 0 0 0 0 0 0 0 0 0 0 32.5380
nv 900 500 570 600 770 1200 1300 830 1830 1500

Table 9.2 Characteristics of batteries

Parameters SOCv (kWh) SOCv (kWh) Ev Ev Äv εv

Values 0 25 0% 50% 100% 100%

The optimal scheduling problem of PEVs is formulated as a mixed-integer linear
programming (MILP) and is solved using CPLEX solver under GAMS software.

The scheduling of PEVs is investigated in two cases: deterministic case and
robust optimization case. The deterministic case is determined with Γ = 0 and
robust optimization case is the result of Γ = 1.

Figure 9.1 demonstrates the relation of Γ and the total profit of the aggregator.
As parameter Γ increases, the total profit of the aggregator decreases. Total profit of
the aggregator at deterministic case (Γ = 0) is 12,811.16 $ which will be decreased
by 2.51% at robust optimization case, bringing the total profit to 12,490.09 $. In
other words, with a 2.51% decrease in aggregator’s total profit, the aggregator will
be robust against 20% changes in the market price in robust optimization case.
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Fig. 9.1 The relation of Γ and the total profit of the aggregator

Total energy sold in the day-ahead market in 1 day is illustrated in Fig. 9.2.
According to Fig. 9.2, PEVs are planned to sell energy in the day-ahead market
at 9:00, 10:00, 19:00, 20:00, and 22:00. As illustrated in Fig. 9.2, there is an
increase of 9.59% in energy sold in the day-ahead market at hour 19:00 in the robust
optimization case in comparison to the deterministic case, as well as a small increase
at 22:00.

Total energy sold in the reserve markets is illustrated in Fig. 9.3. According to
Fig. 9.3, PEVs are scheduled to contribute to the reserve market at 11:00, 12:00,
18:00, and 19:00. The results show that the energy sold in the reserve market in
the robust optimization case is 7.63% less than the deterministic case at 18:00, also
there is a small increase at 19:00.

Bought energy from the grid is shown in Fig. 9.4. According to Fig. 9.4,
the energy bought from the grid is the same in both deterministic and robust
optimization cases and PEVs are scheduled to be charged at 8:00, 11:00, 13:00,
14:00, 15:00, and 17:00. The highest amount of bought energy is at 14:00 with 125
MW. According to Figs. 9.2 and 9.4, both charging and discharging of PEVs are
planned at 11:00; however, this does not ignore the constraint (9.7), because the
same batteries are not scheduled to be charged and discharged at the same time, and
they are different batteries.

The state of charge of the batteries is illustrated in Fig. 9.5. According to Fig.
9.5, the SOC of batteries is decreased between 7:00 and 12:00, because of selling
energy in reserve and day-ahead market. Also charging PEVs at 13:00 to 16:00 has
resulted in an increase of SOC of the batteries at these hours.
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9.5 Conclusion

In this chapter, the optimal scheduling problem of plug-in electric vehicle (PEV)
aggregators participation in day-ahead and reserve markets is studied. The uncer-
tainty of market price is considered using Robust Optimization Approach. Robust
optimization model of the scheduling problem of PEVs is presented. The proposed
model is tested using a case study consists of 10,000 PEVs, which are divided into
10 groups with the same driving pattern for simplicity. The simulation is done in
two cases: deterministic and robust optimization. The results indicate that with a
2.51% decrease of aggregator’s total profit, the aggregator will be robust against
20% changes in the market price in robust optimization case.
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Chapter 10
Optimal Scheduling of Water
Distribution Systems’ Participation
in Demand Response and Frequency
Regulation Services

Amir Farahmand-Zahed, Alireza Akbari-Dibavar,
Behnam Mohammadi-Ivatloo, and Kazem Zare

10.1 Introduction

In past decades the global demand for electricity has been growing, and in order
to face this growth the electricity generation capacity has been increasing as well.
But sometimes, at peak times or as a result of the grid contingencies, the generation
capacity cannot meet the electricity demand of customers [1]. One possible solution
is to create a methodology in which the load responds to the contingencies instead
of the generation. In other words, consumers tend to decrease their demand in order
to reduce the failure risk of the system. These methodologies are called Demand
Response (DR) plans [2]. Demand response is an essential program for restoring
the balance between electricity demand and supply in a smart grid.

Water distribution systems (WDSs) are energy-intensive substructures that con-
sume energy to deliver water to consumers. WDS consists of pumps, pipes,
reservoirs, valves, and tanks to transfer water from reservoirs to the costumers
[3]. In this operation, a great volume of water is being pumped, which requires
a high amount of energy. The cost of the energy consumed by pumps can be
reduced through scheduling the pumps to consume energy during hours with lower
electricity tariffs. This flexibility is possible due to the existence of water tanks,
which can store water during hours with cheaper tariffs and deliver the water at
high tariff hours [4]. The operation of water storage tanks and pumps have to be
optimized to minimize the operation cost of WDS while supplying the water demand
and respecting the constraints of WDS. The flexibility caused by pumpsand tanks
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enables WDS to participate in DR and frequency regulation up/down capacity offer
services.

In recent years, lots of researches have proposed different methods for mini-
mizing the energy cost of the operation of WDS pumps, but they did not consider
the potential of WDS for participating in DR or other services [4–9]. A systematic
review of the published models and methodologies for the optimization of the
operation of WDS is studied in [10]. A model is provided in [11] that enables
power system to use the energy flexibility of WDS. The implementation of demand
response programs in the management of water transfer stations is investigated in
[12]. A mixed-integer linear programming (MILP) model of WDS is studied in [13],
then a robust stochastic programming model considering the uncertainties of rain
and water demand is presented for the optimization of WDS. In another framework,
a linear optimization model for the pump scheduling problem in drinking water
systems while trading demand response in the power market is studied [14], and the
uncertainties water demand are considered. A model for the participation of WDS
with variable speed pumps in DR is studied in [15, 16], and the comparison of the
effects of variable speed pumps in comparison to fixed speed pumps is studied, but
the energy flexibility caused by water tanks is not taken into account in these works.
A two-step model for the participation of WDS in DR and regulation up and down
services is provided in [17], which takes into account the flexibility caused by both
variable speed pumps and water tanks. However, these works do not consider the
uncertainty of energy market price.

In this chapter, a model for the participation of water distribution system
(WDS) in DR and frequency Regulation Up/Down capacity offers is presented,
and the uncertainty of wholesale energy price forecast is considered using Robust
Optimization Approach. The objective of the optimization is to find the best
schedule for operation of water tanks and pumps, in which the WDS’s water
purchase cost is minimized and the WDS’s profit for providing the DR services
is maximized.

In the rest of the chapter, at first, the formulation of the proposed method
is presented. Then a case study is presented in which the proposed model is
implemented on a 15-node test WDS and the obtained robust day-ahead schedule
for the operation of water pumps is reported and the results are discussed. And in
the last section, a conclusion of the chapter is provided.

10.2 Problem Formulation

In this section, at first robust optimization approach will be introduced briefly.
Then the proposed model for the optimal operation of WDS and its participation
in DR and frequency regulation services considering the uncertainty of market
price forecasts is presented. This model is made of two steps. In the first step, the
operation of pumps and water tanks is optimized to minimize the cost of purchasing
water and electricity consumption, taking into account the operating constraints of
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WDS. Then the optimal result of the first step for the operation of water pumps is
used in the second step. In the second step, DR and frequency regulation up/down
offers are optimized to maximize the WDS profits, taking into account the operating
constraints of WDS. Second step model optimizes the market participation offers
by improving the optimal solution of step 1. In order to make sure that the provided
offers are practical, a comprehensive model of the water distribution system (WDS)
considering its related constraints was combined with the proposed model in both
first and second steps.

10.3 Robust Optimization Approach

In recent years many methods have been developed in order to analyze the different
uncertainties of studied problems. Recently a novel method has been proposed to
model the uncertainty of parameters; this method is named Robust Optimization
Approach. The theory of robust optimization method is to show the effect of
the uncertain parameter on the optimal result and decrease the optimal result’s
sensitivity to the uncertain parameter. Dealing with the uncertainty in robust
optimization approach is done by the worst case, while stochastic programming
applies scenario production. Calculating the probability of the uncertain parameter
is the most important part of stochastic programming.

Some advantages of robust optimization approach are [18]:

• It has less computation volume than the stochastic programming, so it gives more
effective results.

• Worst conditions are considered so the results are very reliable.
• Probabilistic distribution functions are not used in robust optimization approach.

The standard MILP of the model can be formulated as follows:

Min
T∑

t=1

ctxt (10.1)

Subjected to

T∑

j=1

aij xj ≤ bi ∀i = 1, . . . , m (10.2)

xt ≥ 0 ∀t = 1, . . . , T (10.3)

xt ∈ {0, 1} for some t = 1, . . . , T (10.4)
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where, ct is a known coefficient which is considered for the objective function,
and its value is unknown, but its bound is known. The value of ct must be in the
range of [ct−dt ct+dt], where dt is the deviation of ct from its nominal value. An
integer control parameter must be defined to formulate the robust mixed-integer
linear programming. This integer control parameter is named Γ (Gama), and it has
a real value in the interval of [0,|T0|]. Γ = 0 results in the deterministic case and its
other values are used for the stochastic case. The worst possible deviations happen
for Γ = |T0| and it is used as the most conservative strategy.

The robust formulation of Eqs. (10.1–10.4) is defined as follow:

Min
∑n

t=1
ctxt + β.� +

∑n

t=1
ζt (10.5)

∑n

j=1
aij xj ≤ bi ∀i = 1, . . . , m (10.6)

xt ≥ 0 ∀t = 1, . . . , n (10.7)

xt ∈ {0, 1} for some t = 1, . . . , n (10.8)

β + ζt ≥ dtθt t ∈ T0 (10.9)

β ≥ 0 (10.10)

ζt ≥ 0 ∀t = 1, . . . , n (10.11)

θt ≥ 0 ∀t = 1, . . . , n (10.12)

θt ≥ xt ∀t = 1, . . . , n (10.13)

10.4 Water Distribution System Model

The proposed model for market participation of WDS consists of two steps [17].
The objective of step 1 is to minimize the water purchase cost as well as the cost of
electricity consumed by pumps, taking into account the WDS hydraulic constraints.
A WDS can be modeled using N nodes and J arcs. Each node may be connected to
a reservoir (R) or a water tank (T), also each arc consists of a tube (S) and it may
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contain a water pump. Suppose that Wt
r is the amount of water purchased from the

reservoir r at time t and P t
p is the power consumption of pump p at time t. Also

πw
r and πe

t represent the water price of reservoir r and Energy market price at time
t, respectively. The objective function of step 1 can be modeled as (10.14–10.26),
which are the constraints of the objective function of the first step.

min
∑

r

∑

t

W t
r π

w
r +

∑

p

∑

t

P t
pπe

t (10.14)

The water balance constraint of the water network is modeled in (10.15).

∑

i

Qt
in −

∑

j

Qt
nj − Rt

s = Wt
r − W

t,n
d ∀t ∈ T , n ∈ N (10.15)

where W
t,n
d is the water demand of node n at time t. Rt

s indicates the water inflow
of tank s at time t, its positive values demonstrate the inflow of water into the tank,
and the negative values demonstrate the outflow of water from the tank. Qt

ij is the
volumetric flow rate of arc ij (from node I to node j) at time t. The constraints related
to water tanks are formulated in (10.16–10.19).

V t+1
s = V t

s + τRt
s ∀t ∈ T , s ∈ T a (10.16)

Vs ≤ V t
s ≤ Vs ∀t ∈ T , s ∈ T a (10.17)

V 0
s = V init

s ∀s ∈ T a (10.18)

−Rs ≤ Rt
s ≤ Rs ∀t ∈ T , s ∈ T a (10.19)

The amount of stored water in tanks at each time interval is calculated in (10.16).
V t

s is the water stored in tank s at time t, and it is limited to its upper and lower
bounds in (10.17). The number of seconds of the time interval t is demonstrated
by τ . Vs and Vs are the minimum and maximum volume of tank s, respectively.
The initial amount of stored water in tanks is set in (10.18). The water inflow rate of
tanks is constrained in (10.19), where Rs is the maximum water inflow rate of tank s.

The pressure head of node i at time t is shown with Ht
i which depends on the

pressure loss of pipes. The empirical Hazen–Williams pressure loss equation [19] is
used to calculate Ht

i in (10.20).

Ht
j − Ht

i = 10.67
Lijabs

(
Qt

ij

)

C1.852dij
4.8704 Qt

ij
0.852 + α

ij
p H t

p ∀t ∈ T , i, j ∈ N (10.20)
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where, Lij and dij are the length and the diameter of the pipe that connects node i to
node j, and C is the Hazen–Williams roughness constant which depends on the type
of the pipe. Ht

p is the water pressure increase produced by pump p at time t. And

α
ij
p is a pump-arc binary parameter which has the value 1 when pump p is located

in arc ij. The pressure head of each node is limited to its upper bound Hi and lower
bound Hi in (10.21), and volumetric flow rate of arc ij at time t is bound in (10.22)
where Qij is the maximum water flow rate of arc ij.

Hi ≤ Ht
i ≤ Hi ∀t ∈ T , i ∈ N (10.21)

−Qij ≤ Qt
ij ≤ Qij ∀t ∈ T , i, j ∈ N (10.22)

The limits mentioned in (10.21) and (10.22) depend on the design characteristics
of pipes. The pressure heads of reservoir nodes are fixed to the water pressure of the
source which depends on the geographical height of the source.

Water pump constraints are applied in (10.23–10.26). The pressure increase
caused by pumps (Ht

p), is calculated in (10.23), also the power consumption of
pump p at time t P t

p is computed in (10.24).

Ht
p = ωt

p
2

(

a − b

(
Qt

ij

ωt
p

)c)

∀t ∈ T , p ∈ P (10.23)

P t
p = ωt

p
3

(

d − e
Qt

ij

ωt
p

)

∀t ∈ T , p ∈ P (10.24)

where, ωt
p is the speed of pump p at time t and a, b, c, d, and e are parameters of

the pump [19]. The power consumption of pumps is bounded in (10.25), where Pp

is the maximum capacity of pump p. The direction of water flow in an arc with a
pump cannot be negative, which is forced in (10.26).

0 ≤ P t
p ≤ Pp ∀t ∈ T , p ∈ P (10.25)

α
ij
p Qt

ij ≥ 0 ∀t ∈ T , p ∈ P (10.26)

The objective function (10.14) is solved subject to constraints (10.15–10.26) and
the optimal power consumption of pumps are calculated. P t

p
∗ is the optimal power

consumption of pump p at time t which is resulted from the first step and is used
to provide optimal DR and frequency regulation offers of the WDS in the second
step. The objective function of the second step it is formulated in (10.27) in order to
maximize the profit of WDS from participating in electricity markets.
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max
T∑

t=1

P∑

p=1

(
P

t,p

DR πe
t + R

t,p
u πu

t + R
t,p
d πd

t − P
t,p
sh λe

t

)
(10.27)

where P
t,p

DR and P
t,p
sh are the load reduction and the shifted load of pump p at time

interval t, respectively. Also, Rt,p
d and R

t,p
u are the variables of frequency regulation

down and up offers, respectively. The prices of the regulation up, regulation down,
and energy markets were denoted by πu

t , πd
t , and πe

t , respectively. λe
t is the retail

tariff that is used to calculate the cost of the shifted load. The amounts of shifted
load and load reduction due to DR are computed from the difference of scheduled
power consumption of pumps in step 1 and 2 in (10.28).

P
t,p
sh − P

t,p

DR = P t
p − P t

p
∗ ∀t ∈ T , p ∈ P (10.28)

The maximum load reduction of each pump is set to their first step power
consumption schedule in (10.29), where β

t,p

DR is a binary variable that indicates the
DR participation of pump p at time interval t. When the amount of β

t,p

DR is equal to
one it means that pump p is scheduled to participate in DR at time interval t. β

t,p

DR is
used to separate the time intervals of load reduction and load shifting which cannot
occur at the same time. The maximum amount of shifted load cannot exceed the
maximum power consumption of pumps which is constrained in (10.30).

0 ≤ P
t,p

DR ≤ P t
p

∗
β

t,p

DR ∀t ∈ T , p ∈ P (10.29)

0 ≤ P
t,p
sh ≤ Pp

(
1 − β

t,p

DR

)
∀t ∈ T , p ∈ P (10.30)

The limits of the new power consumption of the pumps are constrained in
(10.31) and (10.32). These constraints are applied to ensure the deliverability of
the regulation up and down offers. The maximum capacity of regulation down and
up offers are limited in (10.31) and (10.32), respectively. The upper and lower
limits of the power consumption of pumps are constrained in (10.33) and (10.34),
respectively.

P t
p ≤ P t

p
∗ − P

t,p

DR + P
t,p
sh + R

t,p
d ∀t ∈ T , p ∈ P (10.31)

P t
p

∗ − P
t,p

DR + P
t,p
sh − R

t,p
u ≤ P t

p ∀t ∈ T , p ∈ P (10.32)

P t
p

∗ − P
t,p

DR + P
t,p
sh + R

t,p
d ≤ Pp ∀t ∈ T , p ∈ P (10.33)

0 ≤ P t
p

∗ − P
t,p

DR + P
t,p
sh − R

t,p
u ∀t ∈ T , p ∈ P (10.34)
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The frequency regulation market requires changes in the power consumption at a
5-min period, so ramp up (RU) and ramp down (RD) rates of pumps are considered
in (10.35) and (10.36) to set the bounds on regulation up and down offers. In (10.36),
β

t,p

DR is used to ensure that DR and regulation down offers do not occur at the same
time.

0 ≤ R
t,p
u ≤ 5 × RD ∀t ∈ T , p ∈ P (10.35)

0 ≤ R
t,p
d ≤ 5 × RU

(
1 − β

t,p

DR

)
∀t ∈ T , p ∈ P (10.36)

In the next section, a case study is presented, and the proposed model is
implemented on a 15-node test WDS, and the results are presented.

10.5 Case Study

The proposed method was tested on a 15-node test WDS. A schematic diagram of
the test WDS is presented in ref. [3]. This test system includes 15 nodes, 14 arcs,
3 pumps in arcs 1, 4, and 7, 2 water tanks at nodes 10 and 13, and 1 reservoir
at node 1. The maximum power consumption of each pump is considered to be
4.5 MW. The California ISO prices for electricity and ancillary services markets are
used in the simulation [20]. The price data of energy, regulation up, and regulation
down markets are illustrated in Fig. 10.1. The water demand provided in [21] is
used. The electricity retail tariff and water price of the reservoir are considered to
be 0.015 $/kWh [22] and 0.65 $/m3 [23], respectively. The volume of stored water
in tanks is assumed to be zero. The results of the simulation are reported in the
following.

The results obtained for WDS profits, costs, and revenues from both Risk-Neutral
and Risk-Averse cases are summarized in Table 10.1. According to Table 10.1, the
total profit of WDS at Risk-Neutral case (Γ = 0) is 590.558$ which is reduced
to 588.596$ at Risk-Averse case (Γ = 1). In other words, with a 0.33% decrease
in the total profit of WDS, the schedule will be robust against 30% changes in
electricity market price. The revenue of DR at Risk-Neutral case is 289.901$,
but 151.997$ is spent to supply the shifted load. The profit of WDS from DR is
137.904$ at Risk-Neutral case which is decreased to 129.05 (6.42% reduction) at
Risk-Averse case. The profit of WDS from Regulation Down services is decreased
from 166.68$ to 163.98$ (1.62%). However, the WDS profit from Regulation Up
services is increased by 3.35%, bringing the profit from 285.977$ (Risk-Neutral
case) to 295.57$ (Risk-Averse case). This increase relieves the reductions of DR
and Regulation Up profits.
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Table 10.1 Results obtained for the day-ahead profit of the WDS

Risk-neutral Risk-averse
Revenue ($) Cost ($) Profit ($) Revenue ($) Cost ($) Profit ($)

Demand
response

289.901 151.997 137.904 270.536 141.487 129.049

Frequency
regulation up

285.977 – 285.977 295.570 – 295.570

Frequency
regulation down

166.677 – 166.677 163.977 – 163.977

Total profit 742.555 151.997 590.558 730.083 141.487 588.596

Total electricity consumption of pumps before participation, participation with-
out considering risk (Risk-Neutral), and risk-based participation (Risk-Averse) in
markets are illustrated in Fig. 10.2. The results of Risk-Neutral and Risk-Averse
cases are almost the same at all hours except 8:00, 19:00, 20:00, and 21:00 as
shown in Fig. 10.2, where the maximum power consumptions obtained from Risk-
Neutral case are 128.67, 375.36, and 319.15 kW less than Risk-Averse case at hours
8:00, 19:00, and 20:00, respectively, but at 21:00 it is 815.89 kW more than Risk-
Averse case. Demand Response offer and load recovery schedule resulted from
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Fig. 10.2 Total electricity consumption of three pumps

Risk-Neutral and Risk-Averse cases are shown in Fig. 10.3. During hours 8–9 and
19–23, WDS has participated in DR because of the high electricity price of these
hours and the load recovery is scheduled to be done at lower price hours. This
flexibility is possible due to the existence of water tanks. According to Fig. 10.3, the
DR offers in Risk-Neutral case are more than Risk-Averse case at hours 8:00, 19:00,
and 20:00, with the amounts of 128.671, 375.366, and 319.156 kW, respectively.
However, the DR offer in Risk-Averse case is 459.76 kW more than Risk-Neutral
case at 21:00. Also, the highest difference in load recovery schedule of Risk-Neutral
and Risk-Averse cases happens at 21:00, where the mentioned number for Risk-
Neutral case is 356.13 kW more than Risk-Averse case.

The flow rate of water tanks is illustrated in Fig. 10.4. According to Fig. 10.4,
in Risk-Neutral case water is stored in the water tank 1 during hours 1–6 and 15–
17 and this water is released during hours 7–14 and 18–22. Also during hours 1–6
and 15 water is stored in tank 2 and is released during hours 7–14 and 16–22. The
water inflow and outflow of the tank in both Risk-Neutral and Risk-Averse cases is
happened at the same time, as shown in Fig. 10.4 and there are just small differences
in the amount of flow rate in two cases at hours 19, 20, and 21. The volume of stored
water in tank 1 and 2 Risk-Neutral and Risk-Averse cases is illustrated in Fig. 10.5.
According to Fig. 10.5, the volume of stored water in tanks in two cases are almost
the same.
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The WDS frequency regulation up/down offers in both Risk-Neutral and Risk-
Averse cases are illustrated in Fig. 10.6. According to Fig. 10.6, the WDS has
provided frequency regulation up offer at all hours except 13 and 14 in both Risk-
Neutral and Risk-Averse cases. The differences between the results of Risk-Neutral
and Risk-Averse cases for regulation up offers are at hours 19, 20, and 21. At the rest
of the hours, the results are almost the same. The regulation up offers in Risk-Neutral
case at hours 19 and 20 are more than Risk-Averse case, but it is less at 21:00. The
frequency regulation down capacity offers are provided at all hours except 8 and 22,
and the only difference between the offers of Risk-Neutral and Risk-Averse cases
happens at 21:00, where regulation down offer is more in Risk-Neutral case.

The relation of Γ and the total profit of WDS is shown in Fig. 10.7. The relation
of WDS Demand Response profit and Recovery Load Cost and Γ is illustrated in
Fig. 10.8. Figure 10.9 shows the relation of WDS profit from Regulation Up and
Down services and Γ . According to Fig. 10.7, there is a small decrease in the total
profit of WDS in the Risk-Averse case. The reason for the smallness of the reduction
of WDS total profit can be concluded from Figs. 10.8 and 10.9. According to Figs.
10.8 and 10.9, with the increase of Γ , WDS Demand Response profit decreases but
WDS profit from Regulation Up services increases. And this relieves the reduction
of WDS total profit.
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10.6 Conclusion

A model for optimizing the participation of WDSs in Demand Response market
and frequency regulation capacity services considering the uncertainty of wholesale
energy price forecast is presented in this chapter. Robust Optimization Approach
is used to handle the uncertainty of energy price. This model optimizes the
operation schedule of water tanks and pumps in order to minimize the WDS’s water
procurement cost and maximize the WDS’s profit for providing the DR services.
The model is tested on a WDS consisting of 15 nodes. The results indicate that
there are possibilities for the WDS to gain more profit through participating in
Demand Response and frequency regulation up/down capacity offers. On the other
hand, this profit can be robust against 30% changes of market price, with only a
0.33% decrease in the total profit of WDS, and that is because with the increase of
risk, WDS Demand Response profit decreases but WDS profit from regulation up
services increases, and relieves the reduction of WDS total profit.
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Chapter 11
Optimal Power Scheduling of a GenCo
Using Two-Point Estimate Method

Kittisak Jermsittiparsert

Nomenclature

Set

t Index of time interval
i Index of generation units
j Auxiliary index for linear modeling of minimum up-time and minimum

down-time constraints

Known Parameters

ai, bi, ci Quadratic, linear, and fixed coefficients of operation cost func-
tion for generation unit

SDi,SUi Shut-down and start-up costs of generation unit
P

G,min
i ,P G,max

i Minimum and maximum powers of generation unit
URi,DRi Ramp-up and ramp-down limits of generation unit
MDTi,MUTi Minimum down/up time limits of generation unit
Dni, j,Upi, j Auxiliary parameters for the MDT and MUT constraints
λD

t Electricity price
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Decision Variables

Ui, t Binary variable {0,1}, It is 1 if generation unit is ON; otherwise,
it is 0.

P G
i,t Generation power of unit

�Pi, t An auxiliary variable for using the power generation of unit
SDCi, t,SUCi, t Shut-down and start-up costs of generation unit

Functions

Cost (t) Total cost of GenCo at each time
F(PG, λD) Total profit of GenCo

11.1 Introduction

Price-taker GenCo participates in the electricity market to maximize its profit [1]. It
has information about forecasted market price to obtain scheduling in order to offer
to the electricity market [2]. Therefore, market price uncertainty should be modeled
by GenCo to maximize profit [3, 4].

Optimal scheduling of GenCo is studied in many works. A GenCo maximizes
the own profit with participation in the energy and reserve markets in [5]. In [6],
a scenario-based stochastic framework is provided to obtain scheduling of GenCo
considering environment issue. In [7], offering strategy of GenCo is obtained to
offer to reserve and energy markets. Optimal offering strategies of GenCo and
Distribution Company are obtained using max–min fuzzy method and genetic
algorithm in [8]. In [9], a bi-level model is provided to obtain the offering curves of
GenCo in the spinning reserve and energy markets. Offering and bidding strategies
of a virtual power plant in the energy and reserve markets are provided in [10]. In
[11], a genetic algorithm is provided to maximize profit function of a GenCo in
the day-ahead market. A bi-level model considering emission issue is presented
in [12] to model offering strategy of GenCo. In [13], optimal scheduling of a
pumped-storage based GenCo is obtained with a multistage algorithm. Optimal
scheduling of GenCo in the oligopolistic electricity market is studied in [14]. In
[15], the risk, profit, and emission issues of a GenCo as a multi-objective model
are improved by differential evolution algorithm which the risk and emission are
minimized while the profit is maximized. Optimal offering strategy of a GenCo
is modeled via the supply function equilibrium approach in [16]. In [17], a bat-
inspired method is used to obtain supply function of a GenCo in the electricity
market. Optimal strategy of a GenCo is determined using a modified reinforcement
learning algorithm in the energy market in [18]. In [19], optimal offering curves of a
GenCo are developed in the day-ahead electricity market. Time-varying acceleration
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coefficients and self-organizing hierarchical particle swarm optimization is used to
obtain risk-based offering strategy of a GenCo in [20]. In [21], optimal scheduling
of a GenCo is provided in the pay-as-bid market. Finally, future contracts and
scheduling of a GenCo is studied using the supply function model in [22].

From the viewpoint of uncertainty modeling of electricity market price, self-
scheduling of a GenCo is studied in [23] considering the effects of inaccurate price
forecasts. Monte Carlo simulation (MCS) [24], probabilistic model [25], Markov
decision process [26], and scenario-based stochastic framework [27, 28] are used to
model electricity market price uncertainty to obtain robust scheduling of a GenCo
in the uncertain environment.

In this chapter, two-point estimate method (TPEM) is applied to model uncer-
tainty of electricity market price in order to obtain robust scheduling of GenCo
in the presence of uncertainty in order to maximize its profit. It should be noted
that the TPEM is used to model uncertainty in the power system problems such as
power flow [29], load flow [30], energy management of microgrid [31], power flow
problem considering wind power uncertainty [32], and renewable energy sources-
based distribution systems [33].

TPEM in comparison with MCS only requires resolving 2 × m deterministic
problem to obtain the behavior of m random variable. Mixed-Integer Quadratic
Constrained Programming (MIQCP) is used for solving the deterministic scheduling
problem using the SBB MIQCP solver of GAMS software. The objective function is
to maximize the expected profit. The main novelty and contributions of this chapter
are summarily presented below.

1. Two-point estimated method is proposed to model uncertainty parameter of mar-
ket price to obtain robust scheduling of a GenCo in the uncertain environment.

2. Appling the Monte Carlo Simulation to model uncertainty parameter of market
price.

3. Obtained results from proposed method are compared such as Monte Carlo
Simulation and deterministic approach.

The rest of the chapter is categorized as below. Deterministic-based scheduling
of a price-taker GenCo is presented in Sect. 11.2. Section 11.3 provides two-
point estimate method to model uncertainty parameter of energy market price. The
numerical study is studied in Sect. 11.4 in which obtained results are compared with
deterministic approach and MCS. Finally, the conclusion of this study is presented
in Sect. 11.5.

11.2 Deterministic-Based Scheduling of a GenCo

Deterministic-based scheduling of a price-taker GenCo in the day-ahead electricity
market is presented in this section. The profit function of GenCo is presented in Eq.
(11.1) in order to obtain optimal scheduling considering forecasted market price
[34].
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F
(
P G, λD

)
=

T∑

t=1

⎧
⎨

⎩

NG∑

i=1

λD
t × P G

i,t

⎫
⎬

⎭
−

T∑

t=1

Cost (t) (11.1)

The profit function (11.1) is equal to the revenue minus total operation cost.
The revenue is obtained with selling power to the day-ahead market. Also, total
operation cost of thermal generation unit for GenCo includes the fuel cost as a
quadratic function, start-up, and shut-down costs which are provided in Eq. (11.2).

Cost (t) =
NG∑

i=1

[{
ai ×

(
P G

i,t

)2 + bi × P G
i,t + ci × Ui,t

}
+ SUCi,t + SDCi,t

]

(11.2)

To obtain mixed-integer quadratic constrained program (MIQCP) for self-
scheduling of a GenCo, an auxiliary variable �Pi, t is defined to avoid the
complications of multiplied variables in (11.2). This auxiliary variable is limited
by Eq. (11.3).

0 ≤ �Pi,t ≤
[
P

G,max
i − P

G,min
i

]
× Ui,t (11.3)

and thus,

P G
i,t = Ui,t × P

G,max
i + �Pi,t (11.4)

By substituting Eq. (11.4) in Eq. (11.2) [35] and bearing in mind ΔPi, t × Ui, t =
ΔPi, t and U2

i,t = Ui,t , one can write:

Cost (t) =
NG∑

i=1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
bi + 2ai × P

G,min
i

]
× �Pi,t

+
[
ci + biP

G,min
i + ai

(
P

G,min
i

)2
]

× Ui,t

+ ai�Pi,t
2 + SDCi,t + SUCi,t

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(11.5)

Constraints pertaining to the objective function are modeled as follows: Start-up
and shut-down costs of thermal generation units are presented in Eqs. (11.6) and
(11.7), respectively [36].

SUCi,t ≥ SUi

[
Ui,t − Ui,t−1

]

SUCi,t ≥ 0; ∀t,∀i
(11.6)

SDCi,t ≥ SDi

[
Ui,t−1 − Ui,t

]

SDCi,t ≥ 0; ∀t,∀i
(11.7)
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To avoid inappropriate stresses on the combustion and boiler devices, ramp-down
and ramp-up constraints of a thermal generation units are stated in Eqs. (11.8) and
(11.9), respectively.

�Pi,t−1 − DRi ≤ �Pi,t ; ∀t,∀i (11.8)

�Pi,t ≤ �Pi,t−1 + URi; ∀t,∀i (11.9)

Finally, the constraints (11.10) and (11.12) express the minimum up and down
time limits, respectively. In these constraints, the auxiliary parameters Upi, j and
Dni, j are defined in (11.11) and (11.13) in order to linear model of minimum up and
down time constraints, respectively [37].

Ui,t − Ui,t−1 ≤ Ui,t+Upi,j
; ∀i,∀t,∀j (11.10)

Upi,j =
{

j j ≤ MUTi

0 j > MUTi

}
(11.11)

Ui,t−1 − Ui,t ≤ 1 − Ui,t+Dni,j
; ∀i,∀t,∀j. (11.12)

Dni,j =
{

j j ≤ MDTi

0 j > MDTi

}
(11.13)

In this study, the GenCo is assumed as price-taker player in the electricity market
in line with [3, 4, 36–38]. TPEM is applied to model market price uncertainty. The
implementation of TPEM on optimal scheduling problem is presented in the next
section.

11.3 Background of TPEM

The background of TPEM is provided in this section to show the uncertainty
model of market price in order to obtain robust scheduling of a GenCo in the
uncertain environment. TPEM focuses on the statistical data ready by the first few
central moments of random input parameters at s points for each parameter, named
concentration. Output random variables of the optimization problem and objective
function F in the presence of market price uncertainty are resulted according to these
points [39].

Assume that X{x1, x2, . . . , xl, . . . , xm} is a parameter with a mean amount μxl

and standard deviation amount σxl
. Also, Z is a the objective function of X (i.e.,

Z = F(X)). Each of the s concentrations of parameters xl can be defined as a pair
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composed of a weight wl, s and a location xl, s. In the proposed TPEM, objective
function F has to be optimized only s times for each input parameter xl at the points
made up of the sth location of input parameter xl and the mean amount (μxl

) of
remaining input parameters. Therefore, the total number of optimizations is 2 × m.
Equation (11.14) presents the location xl, sin TPEM.

xl,s = μxl
+ ξl,s · σxl

(11.14)

In Eq. (11.14), ξ l, s is the standard location of parameter xl. The weights and
standard locations of parameter of xl are calculated by Eqs. (11.15) and (11.16),
respectively.

wl,1 = − ξl,2

m
(
ξl,1 − ξl,2

) , wl,2 = ξl,1

m
(
ξl,1 − ξl,2

) (11.15)

and,

ξl,1 = λl,3

2
+
√

m +
(

λl,3

2

)2

, ξl,2 = λl,3

2
−
√

m +
(

λl,3

2

)2

(11.16)

where λl, 3 defines the skewness of the parameter xl which is computed by Eq.
(11.17).

λl,3 =
E
[(

xl − μxl

)3]

(
σxl

)3 (11.17)

Figure 11.1 illustrated the flowchart algorithm based on the proposed TPEM to
obtain robust scheduling of a GenCo in the presence of market price uncertainty.
Deterministic-based scheduling of a GenCo problem is formulated in the presence
of input data parameters and decision variables. In the proposed optimization prob-
lem, electricity market prices as uncertainty parameters have the known probability
distribution in which the weights and locations can be calculated as described
previously. A deterministic-based scheduling problem should be optimized for
each concentration. The procedure of optimal scheduling problem of a GenCo via
proposed TPEM is illustrated in Fig. 11.1.

Zl,s = F
{
xl,1, xl,2, . . . , xl,s , . . . , xm,s

}
(11.18)

where Zl, s as objective function shows the nonlinear model between the output
variables and input parameters in the sth concentration in the optimal scheduling
problem. The raw moments of output random variables are obtained as:

E(Z) ∼= E(Z) +
∑

s

wl,s · Zl,s (11.19)



11 Optimal Power Scheduling of a GenCo Using Two-Point Estimate Method 235

The solution steps of the proposed algorithm based on TPEM are clearly
presented below.

Step 1: Set the second and first moments of sth output random variables to zero;
E(Z) = 0.

Step 2: Choose the input parameter xl.
Step 3: Calculate λl, 3, ξ l, s, wl, s according to Eqs. (11.15)–(11.17).
Step 4: The two locations of xl, s is estimated.
Step 5: Solve the deterministic-based scheduling problem of a GenCo for each

concentration.
Step 6: Update the raw moments of output variables.
Step 7: Repeat the steps 2–6 until all concentrations of all input uncertainty

parameters are taken into account. Finally, calculate the statistical data of output
random variables.

11.4 Numerical Study

This section provides the numerical simulations to show the capability of proposed
approach. A price-taker GenCo including five thermal units is assumed to participate
in electricity market. Therefore, 24 time periods as 1 day is considered as the time
horizon in this chapter. The GenCo’s data and technical constraints are presented
in Table 11.1. Also, 54 thermal generation units from IEEE 118-bus test system
as large system are used in the second case study in order to show capability of
proposed TPEM in comparison with MCS and deterministic methods. All data of
85 thermal units are adopted from [40].

The problem formulation is modeled as a Mixed-Integer Quadratic Constrained
Program (MIQCP) which can be solved via GAMS [41] under SBB solver [42].

Table 11.1 Parameters of the generation 5-units

Parameter Unit 1 Unit 2 Unit 3 Unit 4 Unit 5

ai[$/MW2] 0.018825 0.039 0.00890 0.00000425 0.02265
bi[$/MW] 6.7495 2.3215 9.565 19.80375 6.10875
ci($) 250 250 350 300 225
P

G,max
i (MW) 335 232 260 440 250

P
G,min
i (MW) 125 150 50 160 130

DRi(MW/h) 335 232 260 440 250
URi(MW/h) 335 232 260 440 250
MUTi(h) 10 10 10 10 10
MDTi(h) 1 1 1 1 1
SUi($) 500 250 500 507.5 375



236 K. Jermsittiparsert

Step 7          Compute:

Statistical output information

Step 5 Solve:
Deterministic Optimal Bidding Strategy

Step 6 Update raw moment

Step 4 Determine the location 

(All 
concentration
considered ?) 

(All variables

considered?) 

Step 1 Initialize:
(First input variable)

Step 2 Select input random variable 

Step 3 Compute:

- Standard central moments  

- Standard location(*)

- Weights(*)

(*) According to the chosen scheme

(First concentration)

Fig. 11.1 The procedure of optimal scheduling problem of a GenCo via proposed TPEM
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Three case studies are clearly categorized to show the capability of proposed
TPEM in comparison with MCS and deterministic methods as follow:

Case I: Deterministic optimization (Without uncertainty modeling)
Case II: Uncertainty modeling via TPEM
Case III: Uncertainty modeling via MCS

Case I: Deterministic Optimization
In case I as deterministic optimization, only the mean amount of day-ahead
electricity market price is considered in the optimal scheduling problem. The
standard deviation and mean amounts of day-ahead electricity market price are
presented in Table 11.2. In other words, the deterministic optimization consists
of maximizing the objective function (11.1) under the constraints (11.2)–(11.13)
with considering the mean amounts of day-ahead energy market price. The expected
profit for 5 and 54 thermal units are equal to $119,680.6 and 481,304.0, respectively.

The expected profit may be reduced in the deterministic optimization which can
be expected in a self-scheduling of the price-taker GenCo. Note that the value of
deterministic expected profit which corresponds to the maximum profit is obtained
by ignoring the stochastic behavior of day-ahead energy markets price. The optimal

Table 11.2 Mean and
standard deviation amounts of
the electricity market price

Day-ahead market price
Hour Mean ($/MW) St. Dev. ($/MW)

1 14.92 1.865
2 12.5 1.5625
3 12.5 1.5625
4 12.5 1.5625
5 12.5 1.5625
6 12.5 1.5625
7 12.5 1.5625
8 13 1.625
9 13 1.625
10 19.7 2.4625
11 20 2.5
12 20 2.5
13 20 2.5
14 20.01 2.50125
15 13.28 1.66
16 14.78 1.8475
17 14 1.75
18 14 1.75
19 20 2.5
20 27.5 3.4375
21 32.5 4.0625
22 32.5 4.0625
23 19.5 2.4375
24 13.28 1.66
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dispatch of 5 thermal units and some units of 54 thermal units for offering to the day-
ahead energy market are presented in Tables 11.3 and 11.4, respectively. Moreover,
the profits, revenues, costs, and hourly offers to the day-ahead energy market for the
5 and 54 thermal units of GenCo are also summarized in Tables 11.3 and 11.4.

Case II: Uncertainty Characterization Using Two-Point Estimate Method
Due to the stochastic nature of the day-ahead market price, the market analysis
requires a probabilistic technique. In this subsection, the uncertainty of electricity
market price is modeled via proposed TPEM which the standard deviation and
mean amounts of price are considered. In this case, the expected profit for 5 and 54
thermal units are $120,746.1 and $492,961.4 which are higher than the deterministic
expected profit obtained from Case I.

The profits, revenues, costs, and the mean amounts of hourly offers to the day-
ahead energy market for the five thermal units of GenCo are presented in Table 11.5.
Also, the results of this case for 54 thermal units are presented in Table 11.6.

According to the results of Tables 11.5 and 11.6, it is shown that the generations
of thermal units differ from case I. In other words, the total profit of GenCo is higher
than case I because of considering the electricity market price uncertainty.

Case III: Uncertainty Characterization Using Monte Carlo Simulation
In this subsection, an MCS-based technique is applied to deal the electricity market
price uncertainty. If uncertainty parameters have known probability distribution
function (PDF) then the MCS technique as a numerical simulation method is
applied to the optimization problem. In the MCS technique, a set of amounts for
the random parameters as uncertainty parameters are generated based on PDF and
many deterministic-based optimization problems are solved in each simulation. The
result of MCS is similar to a sample of an experimental observation. By obtaining
results from many simulations in MCS technique, the inference to the data set and
statistical estimation are possibly obtained.

In optimal scheduling problem of a GenCo, the random parameters take into
account by MCS technique via electricity market price uncertainty modeling. It
should be noted that the electricity market price uncertainty is distributed with a
known mean amount (corresponding to the estimated amount) and a known standard
deviation.

In the MCS approach, 5000 random variables are generally achieved by the
MATLAB function RANDN for considering the stochastic nature of the electricity
market price. Then, the deterministic-based profit function (11.1) considering the
constraints (11.2)–(11.13) is solved using 5000 random variables for electricity
market price. In this case the expected profit for 5 and 54 thermal units are
$120,949.2 and $493,228.6, respectively.
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11.5 Comparison and Discussion

Table 11.7 shows the result of expected and standard division of profit using TPEM
in comparison with the MCS and deterministic approaches for 5 and 54 thermal
units. It should be mentioned that the total expected profits of GenCo in cases II
and III are higher than Case I because the electricity market price uncertainty are
modeled in cases II and III via TPEM and MCS, respectively. Moreover, the total
expected profit of GenCo obtained by the Monte Carlo simulation is better than
two-point estimate method. However, the execution time and number of runs of
two-point estimate method are much less than Monte Carlo simulation.

Therefore, from the view point of saving the time and with a reasonable
approximation for the total expected profit of GenCo, the performance of two-point
estimate method is acceptable.

MCS is a criterion usually used to test the accuracy and efficiency of algorithms.
This chapter uses the MCS with 5000 samples. The calculated equations of the
average value (μMCS) and the standard deviation (σMCS) are shown as follows:

μMCS = 1
N

N∑

i=1
Xi

σMCS =
√

1
N

N∑

i=1
(Xi − μMCS)2

(11.20)

Let FTPEM and FMCS denote the obtained results from TPEM and MCS,
respectively. The relative error therefore is defined as:

ε = |FMCS − FTPEM|
FMCS

× 100% (11.21)

The relative error of mean value and standard deviation of TPEM are, respec-
tively, less than %0.2 and %5 for 5 thermal units, and %0.1 and %2 for 54 thermal
units in case II which shows that the result of TPEM is credible. Finally, the
computation burden of the problem along with the number of binary variables, real
variables, and constraints are presented in Table 11.8.

Table 11.7 Comparison between the results of two-point estimate method and other methods

GenCo Methods
Expected
profit ($)

St. Dev.
profit ($)

Number of
run (no)

Computing
time (s)

5 thermal
units

Deterministic approach 119,680.6 0 1 0.067

54 thermal
units

Two-point estimate method 120,746.1 12,702.7 48 5.628

Monte Carlo simulation 120,949.2 12,685.3 5000 334.99
Deterministic approach 481,304.0 0 1 34.14
Two-point estimate method 492,961.4 56,870.6 48 1639.39
Monte Carlo simulation 493,228.6 56,787.2 5000 170729.16
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Table 11.8 Computational
size of the problem

Parameter 5-unit 54-unit

Number of binary variables 120 1296
Number of real variables 601 6481
Number of constraints 3076 35,627

11.6 Conclusion

This chapter proposes the deterministic-based and probabilistic-based scheduling
for a price-taker GenCo in a day-ahead electricity market. In the probabilistic-based
scheduling, market price uncertainty has been modeled using TPEM and MCS.
Mixed-Integer Quadratic Constrained Program is used for solving the deterministic-
based and probabilistic-based scheduling problem by the GAMS software. Three
case studies are used to show capability of proposed approach. The obtained results
via proposed TPEM are compared with MCS and deterministic methods. The
compared results show that expected profit of GenCo via TPEM is higher than
the deterministic method and less than the MCS. But, the execution time and the
number of runs of TPEM are much less than MCS. Therefore, TPEM is preferred
in comparison with MCS to model uncertainty of market price in the scheduling of
a GenCo in order to decrease the calculation time. Also, the relative error of mean
amount and standard deviation of the profit in the TPEM are less than the MCS,
which shows that the results of TPEM are credible.
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Chapter 12
Bidding and Offering Strategies for
Integration of Battery Storage System
and Wind Turbine

Kittisak Jermsittiparsert

Nomenclature

Indices

s, t Scenario, time

Input

Pr The rated power of WT
P ch

min Minimum amount of charging power of the BSS
P ch

max Maximum amount of charging power of the BSS
P disc

min Minimum amount of discharging power of the BSS
P disc

max Maximum amount of discharging power of the BSS
P

proc
max Maximum limit of power procurement from the grid

P sell
max Maximum limit of sold power to the grid

SOCB
max, SOCB

min Maximum and minimum limits of the BSS’s SOC
Vcut - out, Vcut - in, Vr The cut-out, cut-in, and rated speeds of WT
ηdisc, ηch Discharging and charging efficiencies of the BSS
ρs Probability of the each scenario
λt, s Power price
Vt, s The predicated wind speed
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Variables

P sell
t,s Sold power to the market

P
pro
t,s Procured power from the market

P WT
t,s Total produced power by the WT

P WT-G
t,s Injected power from WT to the grid

P WT-B
t,s Injected power from WT to the BSS

P B-G
t,s Injected power from the BSS to the grid

P
purchase
t,s Purchased power from the upstream grid

P G-B
t,s Procured power by the BSS from upstream grid

SOCB
t,s State of charge of the BSS

Udisc
t,s , U ch

t,s Binary variables of the discharging and charging states of the BSS

12.1 Introduction

By rising consumed electricity and depletion of conventional fuels [1] which are
used to produce electric power, using renewable energy sources is a vital issue
[2]. Considering environmental challenges such as greenhouse gas emissions and
climate change imposes more necessity on this issue [3]. According to extensive
availability [4] and mature technology [5], wind power generation is considered
as one of the most promising renewable energies [6]. Despite the conventional
power plant, wind power is non-dispatchable [7]. Because of that, there is different
uncertainty in planning and operation of wind power systems [8].

To cope with intermittent nature and uncertainty of wind power, integration of
wind farms and Energy Storage System (ESS) is proposed by [9, 10]. In restructured
power market, which provides a competitive environment [11], electricity prices
have high volatility [12]. So, presentation of the optimal offering and bidding curves
is very important and vital [13]. To obtain optimal offering and bidding strategies
different methods have been reported in the literature. In [14], a bi-level stochastic
programming is presented to make optimal offering curves for a wind generation
unit in the power market. In this work, the profit maximization function of the wind
generation unit is carried out in the upper level of the bi-level model, while the
market clearing proceedings of real-time and day-ahead markets are considered in
the lower level. In addition, wind speed and load uncertainties are modeled by a set
of scenarios. Optimal bids are driven for a wind generation under uncertainties in
[15]. To evaluate the proposed method in [15], different strategies for day-ahead
bidding are compared from a hypothetical wind site in the USA. According to
obtained results, the optimal bid is highly depended to the risk preferences of the
wind farm owner, and real-time and day-ahead prices. A novel bidding model for
large-scale BSS is proposed in [16] to increase its profitability. In this work, a profit
maximization of BSS is provided in the presence of a battery cycle life to develop
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the optimal bids strategy in spinning reserve, regulation, and day-ahead energy
markets. A two-stage stochastic model is presented in [17] to get optimal offering
strategy for renewable generation-based micro-grids. To capture various system
uncertainties, the Monte Carlo simulation method is utilized in [17]. In addition,
it is aimed to balance between maximizing the expected profit of the MG and
minimizing the MG performance cost under thermal comfort requirements of the
consumers. The same problem is studied in [18] by using hybrid robust optimization
and stochastic model. To do so, the uncertainties of the electricity price and power
output of intermittent generation units are modeled via generating scenarios and
the uncertainty of real-time price is considered by the robust optimization. The
same goal is pursued in [19] by using game theoretic approach for electric vehicle
aggregators in ancillary services and day-ahead energy markets with variable wind
generation. Robust bidding curve for arbitrage is provided in [20] by considering
uncertainties in electricity price and wind generation using a bi-level stochastic
model. In the presented method, the profit maximization of the wind generation
is pursued in the first level, while the market clearing is carried out in the second
level. To model the uncertainties of the wind speed and load, a set of scenarios
is used. IGDT for determining the optimal bidding curves for large consumer is
presented in [21]. In this work, different power procurement sources as distributed
generation, bilateral contracts, and the pool market are considered for the large
consumer. In addition, the impacts of load management are investigated. By
considering uncertainty, a stochastic decision-making model for a wind generation
is proposed in [22] by taking participation of demand response aggregators into
account. A new approach is proposed in [23] for determining the bidding curves
for a large-scale hybrid electric energy company by considering demand response
program. Hourly offering and bidding strategies is developed in [24] to sell and
purchase power for a BSS unit by using MIP approach. In order to guarantee the
increasing and decreasing nature of the offering and bidding curves, the sequential
constraints are implemented, and then, offering and bidding curves are developed
considering the optimal scheduling of the system. An offering/bidding strategy for
a hybrid VPP including a storage unit, wind-power unit, flexible demands, and
conventional power plant are developed by using a risk-constrained, stochastic-
based robust optimization (RO) formulation to model the problem in [25]. In this
reference, the uncertainties of power prices and wind speed in the market are
modeled considering confidence scenarios and bounds, respectively. An approach
for the offering curve of a VPP that participates which includes a wind-power unit,
conventional power plant, a storage facility as well as flexible demands is presented
in [26]. The bidding strategy problem is modeled via an RO and stochastic model
in which market prices uncertainties are taken into account in [27]. To maximize
profitability of the integrated wind turbine with BSS, MIP method is used to
develop the optimal offering and bidding curves considering wind speed and market
price uncertainties. Finally, summary of researches on bidding/offering strategy are
presented in Table 12.1.

According to [15], the renewable-based power plants in USA, especially the wind
farms, sell their power generation based on long-term power purchase contracts
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Table 12.1 The summary of proposed works on optimal bidding and offering strategies

Uncertainty
Refs. Method Bidding offering RES Storage Price Wind speed

[14] Bi-level stochastic
optimization

� � �

[15] Analytical methods � � � �
[16] Analytical methods � �
[17] Two-stage stochastic program � � �
[18] Hybrid stochastic/robust

optimization
� � �

[19] Stochastic optimization � �
[20] Bi-level stochastic

optimization
�

[21] Robust optimization � � � �
[22] Stochastic decision � � �
[23] Max–min bi-level

mathematical programming
� �

[24] Mixed-integer linear
programming

� � �

[25] Stochastic adaptive robust � � �
[26] Analytical methods � � �
[27] Stochastic robust optimization � � �
[28] Proposed chapter � � � � � �

which prevents the plant owners to benefit high power prices in short term. To
overcome this problem and to be immune against the imbalance penalties in the day-
ahead and real-time markets, a novel structure is proposed for the WT by integrating
with the BSS and developing optimal offering and bidding strategies. In this chapter,
first a new scheme for integration of WT and BSS is proposed in which the BSS can
get power from WT or the upstream grid and sell power to the market. Second
optimal offering and bidding strategies are provided by considering uncertainty of
electricity price.

The rest of this work is organized as follows: The proposed model is formulated
in Sect. 12.2. Required information beside the results analyzing are provided in Sect.
12.3. Finally, Sect. 12.4 provided the conclusion of this work.

12.2 Problem Formulation

In this part, a new scheme is introduced for integration of WT and BSS. As shown
in Fig. 12.1, according to market price, generated electrical power can be injected
to the grid or be stored in the BSS. On the other hand, the BSS can be charged
by WT or procure power from the upstream grid in off peak periods (low price) in
which charged or procured power can be sold in high price periods. Formulation of
proposed scheme is presented in the following section.



12 Bidding and Offering Strategies for Integration of Battery Storage System. . . 251

Fig. 12.1 Configuration of proposed model

12.2.1 Objective Function

In order to get maximum amount of profit for proposed structure in previous section,
the objective function is presented by Eq. (12.1).

max profit =
Ns∑

s=1

ρs

Nt∑

t=1

λt,s

[
P sell

t,s − P
pro
t,s

]
(12.1)

12.2.2 WT Model

The wind turbine is modeled by using Eqs. (12.2–12.5) [28]. The available power
of WT based on the wind speed is formulated as Eq. (12.2) [29].

P WT
t,s =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, Vt,s ≤ Vcut-in

Pr

[
Vt,s−Vcut-in
Vr−Vcut-in

]3
, Vcut-in ≤ Vt,s ≤ Vr

Pr, Vr ≤ Vt,s ≤ Vcut-out

0, , Vt,s > Vcut-out

(12.2)
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Generated power by the WT either is injected to the grid or stored in the BSS.
This issue is formulated by (12.3).

P WT
t,s = P WT-G

t,s + P WT-B
t,s (12.3)

Equation (12.4) describes that sold power to the electricity grid which is equal to
sum of produced power by WT and discharged power of the BSS.

P sell
t,s = P WT-G

t,s + P B-G
t,s (12.4)

In the proposed structure, procured power from the grid is directly stored in the
BSS which is modeled by Eq. (12.5).

P
pro
t,s = P G-B

t,s (12.5)

12.2.3 BSS Model

The dynamic model for BSS is presented by Eqs. (12.6–12.10). As said before, it
assumed that the BSS can be charged by WT or power purchased from the upstream
grid in low price times and sells the procured power to the upstream grid in high
price times. SOC of the BSS is modeled by using Eq. (12.6). Equation (12.7) is
applied to limit the SOC of the BSS.

SOCB
t,s = SOCB

t−1,s + ηch

(
P G-B

t,s + P W-B
t,s

)
− P B-G

t,s

ηdisc
(12.6)

SOCB
min ≤ SOCB

t,s ≤ SOCB
max (12.7)

In order to limit the charged and discharged power of the BSS on their maxi-
mum discharge and charge capacity, constraints (12.8) and (12.9) are considered,
respectively.

P ch
min · U ch

t,s ≤ P WT-B
t,s + P G-B

t,s ≤ P ch
max · U ch

t,s (12.8)

P disc
min · Udisc

t,s ≤ P B-G
t,s ≤ P disc

max · Udisc
t,s (12.9)

Also, at each time, the BSS can either charge or discharge. Therefore, Eq. (12.10)
is implemented to prevent the simultaneous discharging and charging of the BSS.

U ch
t,s + Udisc

t,s ≤ 1 (12.10)
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In order to obtain optimal bidding and offering curves, MIP method is applied. To
ensure that bidding/offering curve is continuously increasing/decreasing, which is a
common requirement in power market constraints (12.11) and (12.12) are applied.

P sell
t,s ≥ P sell

t,s′ | λt,s ≥ λt,s′ (12.11)

P
pro
t,s ≤ P

pro
t,s′ | λt,s ≥ λt,s′ (12.12)

The maximum amounts of sold and procured power to or from the grid are limited
on by Eqs. (12.13) and (12.14), respectively.

P sell
t,s ≤ P sell

max · U sell
t,s (12.13)

P
pro
t,s ≤ P

proc
max · U

pro
t,s (12.14)

To prevent simultaneously selling and purchasing power, Eq. (12.15) is applied.

U
pro
t,s + U sell

t,s ≤ 1 (12.15)

12.3 Numerical Simulation

The uncertainties of wind speed and market price are considered by using a set of
ten scenarios which are obtained with Weibull and normal distribution functions,
respectively. Required information of the WT and BSS are presented in Tables 12.2
and 12.3, respectively. Figures 12.2 and 12.3 present the power price and wind speed
scenarios, respectively. To obtain offering and bidding curves proposed model in
(12.1–12.15), the model is implemented by using CPLEX solver [30] under GAMS
[31].

Results show that by implementing proposed model, total profit is equal to $1433.
Discharging and charging powers of the BSS system are shown in Fig. 12.4 which
is shown by negative and positive numbers, respectively. According to Fig. 12.4, it

Table 12.2 Coefficients of
the WT [32]

Vcut - in (m/s) Vr (m/s) Vcut - out (m/s) Prated (MW)

5 14 25 2.05

Table 12.3 Coefficients of
the BSS [32]

SOCB
min (MW) SOCB

max (MW) P ch
min (MW)

2 10 1
P ch

max (MW) P disc
min (MW) P disc

min (MW)
5 1 5
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Fig. 12.2 Power price scenarios

Fig. 12.3 Wind speed scenarios

is obvious that discharged power in scenario 9 is slightly higher than other scenario
9. On the other hand, in scenario 5, charged power is slightly higher in comparison
with scenarios 6. As it has been expected, considering power price scenarios, the
BSS is discharged during high price periods which are 6–7, 11–12, and 19–21. On
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Fig. 12.4 Discharged and charged power of the BSS for different scenarios

Fig. 12.5 Exchanged power with the upstream for different scenarios

the other hand, in the low price times which are experienced at hours 3–4, 8, 15–17,
BSS is charged these periods.

Exchanged power with the electricity grid in each hour for all scenarios is shown
in Fig. 12.5. Procured power from the electricity grid is shown by positive numbers
while sold power to the electricity grid is shown by negative numbers. It should
be denoted that sold power to the electricity grid is aggregation of WT output and
discharged power of the BSS. By considering Fig. 12.5, it can be said that sold
power to the electricity grid in scenario 5 is more than scenario 6 while procured
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power form the grid in scenario 2 is higher than scenario 1. As it can be seen in
all scenarios, considering market price in each scenario, the maximum sold power
to the electricity grid is experienced between hours 19 and 20 when the market
price reaches its climax which increase the total profit of the system. Furthermore,
between hours 2–3, 8–9, and 15–16, when the power price reaches its lowest levels,
the system stated to purchase power from the electricity grid and store in the BSS to
sell during the high price periods.

The main purpose of this work is developing the bidding and offering curves.
Considering the uncertainty model of wind speed and market price, the proposed
system provides offering curves at hours 17–21, 14, 9–12, 4–6, and 2 and creates
bidding curves at times 8, 7, 3, and 1 to participate in the electricity market. So,
optimal bidding and offering curve are obtained for each hour, and among them,
only six curves are provided in the context.

The optimal bidding curves for periods 3, 7, and 8 are illustrated in Figs. 12.6,
12.7, and 12.8, respectively. By increasing power price, bid power to the electricity
market is decreased. In Fig. 12.6, which illustrates optimal bidding for hour 3, the
maximum bidding power is recorded equal to 4.66 MW when electricity price is
equal to $17.92 per MW. The optimal bidding curve for period 7 is presented in Fig.
12.7. As shown, at this hour, when market price is higher than $25 per MW, bidding
power amount to the market is equal to zero which means that it is not economic to
participate in the electricity market.

Figure 12.8 depicts the optimal bidding curve for period 8. The maximum
bidding power is recorded when electricity price is equal to $20.78 per MW, while
minimum bidding power is obtained when electricity price is equal to $25.08 per
MW. The maximum and minimum bidding power are equal to 4.76 and 4.27 MW,
respectively.

The optimal offering curves for times 2, 10, and 18 are depicted in Figs. 12.9,
12.10, and 12.11, respectively. As expected, offering curves are ascendant which

Fig. 12.6 Bidding profile for
hour 3
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Fig. 12.7 Bidding profile for
hour 7
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Fig. 12.8 Bidding profile for
hour 8
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is one the market’s necessity. According to Fig. 12.9 which shows offering curve
of hour 2, offering power is equal to zero when market price is less than $23.34
per MW. Figure 12.10 shows the offering profile for time 10. As seen in Fig. 12.10,
maximum and minimum offering powers, which are equal to 4.65 and 1.43 MW, are
recorded when market prices are equal to $43.29 and $36.06 per MW, respectively.
The optimal offering profile for hour 18 is illustrated in Fig. 12.11 in which the
maximum and minimum offering power are equal to 2.05 and 1.39 MW when power
market prices are $59.25 and $47.31, respectively.
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Fig. 12.9 Offering profile for
hour 2
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Fig. 12.10 Offering profile
for hour 10
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12.4 Conclusion

In this work, a novel model is proposed to integrate BSS and WT to maximize
the profit. In the proposed model the BSS can be charged with WT or can procure
power from market in low price periods. By selling stored power of the BSS in
high price periods, the system can maker profit. On the other hand, by considering
power market prices, output of WT can be directly injected to the grid or can be
used to charge the BSS. To model uncertainty of electricity price, a set of ten
discrete scenarios are used by applying a stochastic programming method. The
Weibull distribution is applied to model the wind speed uncertainty and the normal
distribution is applied to get power price scenarios. Obtained results conclude
that total profit of the proposed model is equal to $1433. In addition, in order to
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Fig. 12.11 Offering profile
for hour 18
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participate in the electricity market, the optimal bidding and offering strategies are
developed based on an MIP method. Obtained results indicate that the proposed
system intends to charge the produced power by the WT when the power price in
the market is low. Also, during these periods, the system purchases energy to store
in the BSS. Conversely, in the high price periods, the system sell produced power by
the WT and stored energy in the BSS to the upstream grid. In this way, considerable
profit can be achieved by the system.
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