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Preface

On behalf of the entire Organizing Committee, we welcome you to the 15th Interna-
tional Conference on Information Systems Security (ICISS 2019).

ICISS is a selective venue for disseminating scientific results related to the theory
and practice of security. In recent years, the acceptance rate of the submitted papers has
been around 30%. This year, 17 papers were accepted from 63 submissions (an
acceptance rate of less than 27%). Of the accepted papers, 13 are regular full-length
papers reporting mature work, and 4 are shorter work-in-progress papers. Most papers
received three or four reviews largely carried out by the Program Committee. In some
cases, external experts provided reviews. A few papers were rejected based on only two
reviews when it was clear that the papers could not be accepted.

In addition to the accepted papers, the conference program also featured four invited
talks by eminent speakers working in different sub-areas of security. The invited
speakers, in alphabetical order of last names, were Karthikeyan Bhargavan (Inria),
Krishna Gummadi (MPI-SWS), Manoj Prabhakaran (IIT-Bombay), and Reza Shokri
(NUS). We hope that you found the entire program engaging, educational, and helpful
to your own research.

Many people contributed substantially to the organization of ICISS 2019. Program
Committee (PC) members provided careful reviews and helped select the conference
program. Several tutorials were affiliated with ICISS 2019, and their organizers put in a
tremendous amount of effort making the tutorials interesting and accessible. The
Steering Committee provided valuable inputs on PC selection and advertising.
Numerous people at IDRBT provided logistical support in organizing the conference
and its website. We would specifically like to mention the administrative section, the
publications office, the program office, and the faculty members. The IDRBT man-
agement, led by Director A. S. Ramasastri, kindly agreed to host the conference and
extended a generous amount of funding, including the institution of the Best Practice
Paper Award, which was awarded at the conference for the first time this year and will
continue to be presented at future ICISS conferences. We would also like to
acknowledge the generous contributions of our platinum sponsors the National
Payments Corporation of India (NPCI) and the State Bank of India (SBI), our silver
sponsor Thales, and others who confirmed their sponsorship after this writing. Springer
and its staff handled all the copyediting and the production of the proceedings. Finally,
a conference succeeds primarily due to the active participation of its community year
after year, so we extend a very warm thanks to all of you for participating!

We hope you had an excellent and productive time at ICISS 2019 and in the city of
Hyderabad, and hope to see you again at next year’s ICISS.

October 2019 Deepak Garg
N. V. Narendra Kumar
R. K. Shyamasundar
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Secure Messaging: Towards Verified
Standards and High Assurance

Implementations

Karthikeyan Bhargavan

Inria, France

Abstract. Modern messaging applications like WhatsApp and Skype rely on
sophisticated cryptographic protocols to provide end-to-end security against
powerful adversaries. These protocols are hard to get right, and harder still to
implement correctly. Any logical flaw or cryptographic weakness in the design
of a protocol, or any software bug in its implementation may lead to an attack
that completely break its expected security guarantees. I advocate for the use of
formal modeling and software verification to build verified messaging protocols
with high assurance implementations. I will illustrate this proposed methodol-
ogy using examples taken from the Signal protocol, which is used in a number
of popular messengers, as well as new protocols proposed by the IETF Mes-
saging Layer Security working group.



Trusting Machine Learning: Privacy,
Robustness, and Interpretability Challenges

Reza Shokri

National University of Singapore, Singapore

Abstract.Machine learning algorithms have shown an unprecedented predictive
power for many complex learning tasks. As they are increasingly being
deployed in large scale critical applications for processing various types of data,
new questions related to their trustworthiness would arise. Can machine learning
algorithms be trusted to have access to individuals’ sensitive data? Can they be
robust against noisy or adversarially perturbed data? Can we reliably interpret
their learning process, and explain their predictions? In this talk, I will go over
the challenges of building trustworthy machine learning algorithms in central-
ized and distributed (federated) settings, and will discuss the inter-relation
between privacy, robustness, and interpretability.



Privacy, Fairness, Transparency, and Abuse
of Targeted Advertising on Social Media

Krishna Gummadi

Max Planck Institute for Software Systems (MPI-SWS), Germany

Abstract. All popular social media sites like Facebook, Twitter, and Pinterest
are funded by advertising, and the detailed user data that these sites collect about
their users make them attractive platforms for advertisers. In this talk, I will first
present an overview of how social media sites enable advertisers to target their
users. Next, I will pose and attempt to answer the following four high-level
questions related to privacy, fairness, transparency, and abuse of social media
advertising today.

1. Privacy threats: what personal information about users are the sites leaking to
advertisers to enable targeted ads?

2. Fairness: can an advertiser target users in a discriminatory manner? If so, how
can we detect and prevent discriminatory advertising?

3. Transparency: can users learn what personal data about them is being used
when they are targeted with an ad?

4. Abuse: can malicious advertisers exploit personal data of users to increase
societal discord?



An Introduction to the CellTree Paradigm

Manoj Prabhakaran

IIT Bombay

Abstract. This note is a brief introduction to CellTree, a new architecture for
distributed data repositories, drawing liberally from our article which introduces
the concept in greater detail.
A CellTree allows data to be stored in largely independent, and highly pro-

grammable cells, which are “assimilated” into a tree structure. The data in the
cells are allowed to change over time, subject to each cell’s own policies; a cell’s
policies also govern how the policies themselves can evolve. A design goal
of the architecture is to let a CellTree evolve organically over time, and adapt
itself to multiple applications. Different parts of the tree may be maintained by
different sets of parties and the core mechanisms used for maintaining the tree
can also vary across the tree and over time.
We outline the architecture of a CellTree, along with provable guarantees of

liveness, correctness and consistency that can be achieved in a typical instan-
tiation of the architecture. These properties can be guaranteed for individual
cells that satisfy requisite trust assumptions, even if these assumptions don’t
hold for other cells in the tree. We also discuss several features of a CellTree that
can be exploited by applications. Finally, we briefly outline a sample application
that can be built upon the CellTree, leveraging its many features.
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A Transparent and Privacy-Aware
Approach Using Smart Contracts for Car

Insurance Reward Programs

Lucas M. Palma(B), Fernanda O. Gomes, Mart́ın Vigil, and Jean E. Martina

Federal University of Santa Catarina, Florianópolis, Brazil
{lucas.palma,fernanda.gomes}@posgrad.ufsc.br,

{martin.vigil,jean.martina}@ufsc.br

Abstract. Car insurance companies worldwide have launched reward
programs that provide benefits (e.g., cash-back) to good drivers. How-
ever, two issues may arise from these programs. First, drivers cannot eas-
ily verify whether their insurer is properly following the program rules
upon computing their rewards. The second issue is that privacy can be
violated when sensing data is collected from policyholders’ cars to iden-
tify whether they are good drivers. This paper proposes a smart contract-
based solution that trades off user privacy for reward transparency. A
smart contract computes rewards based on sensing data policyholders
provide to the Ethereum blockchain. To preserve privacy, a policyholder
can (i) select what sensing data is sent to the blockchain, (ii) use distinct
pseudonyms to hide his or her real identity, (iii) choose what accuracy
sensing data has, and (iv) verify whether his or her sensing data allows
him or her to remain indistinguishable from other drivers whose data has
been already disclosed in the blockchain.

Keywords: Blockchain · Smart contracts · Privacy · Car insurance

1 Introduction

Since the early 2000s, car insurance companies have offered discount programs to
bring more awareness to their customers about driving behavior [45]. These pro-
grams reward good drivers by giving discounts on insurance premiums. Insurers
usually refer to good drivers as those who respect traffic rules. Moreover, good
drivers can be identified by lacking aggressive driving behavior, such as exces-
sive speeding, improper following, erratic lanes changing, and making improper
turns [20]. To allow an insurance company to decide whether drivers are good,
onboard sensing devices have been installed in cars to collect data such as
wheel angle, brake status, acceleration status, vehicle speed, and spatial coordi-
nates [14,17,19,24]. Examples of such devices are GPS and CAN-bus sensors.

A usual problem is that the way insurers calculate premiums may not be
transparent to customers [27,29]. One can expect a similar issue when it comes

c© Springer Nature Switzerland AG 2019
D. Garg et al. (Eds.): ICISS 2019, LNCS 11952, pp. 3–20, 2019.
https://doi.org/10.1007/978-3-030-36945-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36945-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-36945-3_1
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to computing discounts or rewards using sensor data collected from cars. More
precisely, a policyholder is likely to find hard to verify whether insurers are
offering the proper discount they are supposed to offer based on his or her driving
data. Since this verification can be hard for customers, insurance companies could
easily advertise a reward program to attract new customers but not follow their
program rules in practice. Moreover, insurers can tamper with data received
from customers’ car sensors to manipulate the discounts offered to their clients.

A further issue that arises from feeding cars sensor data into rewards pro-
grams is violating customers’ privacy. Besides, the disclosure of this data runs
into privacy problems due to the fact that location and personal data allow
intrusive inferences, which may reveal habits, social behavior, religious and sex-
ual preferences of individuals [1]. If malicious people have access to this data,
stalking can be facilitated, as well as operational support for committing crimes,
leading to a threat to the safety of people [13].

To address such issues, the insurance industry has been moving towards the
blockchain technology. This was first devised to realize the so-called Bitcoin
cryptocurrency [26] but has been recently applied in many areas. For instance,
medicine [32,33] and internet of things [6,11].

A blockchain is a chain of blocks where each block but the first is crypto-
graphically chained to the previous block. On the top of a blockchain and a
peer-to-peer network, a distributed ledger can be built as follows. Blocks are
used to compute the next state of the ledger. More precisely, for every two con-
secutive, distinct states of the ledger, there is a block containing the difference
between the states. As such, one can compute the current state of the ledger by
transversing the blockchain and computing the updates every block provides.

The ledger is often used to keep track of the balance of cryptocurrency
accounts, for example, in Bitcoin [26]. Accounts are usually identified and con-
trolled with the help of public-key cryptography. Every account is identified by
a public key. The corresponding private key allows the account owner to issue a
transaction moving funds from his or her account to another account. We refer to
such a public-private key pair as wallet. For privacy reasons, a user is encouraged
to create a new account and wallet for each transaction to be received in order
to make it harder to link multiple transactions to the same user. To help users to
do so, hierarchical deterministic wallets (HD wallets) have been proposed [44].

Note please that transactions change accounts state. Correspondingly, the
distributed ledger should have its current state updated by creating a new block.
Peers that keep a copy of the blockchain reach consensus on what the next block
is as follows:

– Peers broadcast transactions on the peer-to-peer network;
– A subset of the peers usually called miners confirms these transactions. More

precisely, on a regular basis a miner is selected to validate a set of transactions
(e.g., to check that the signature on a transaction is valid) and pack this set
to a new block;

– The miner chains the new block to the last block in his or her local copy of
the blockchain;
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– He or she then adds the new block to his or her blockchain, and propagates
the new block in the network;

– The remaining miners learn the new block and add it to their local copy of
the blockchain if the block is properly chained to their last block and contains
only valid transactions;

– The miner selected to broadcast a new, correct block is often rewarded with
new coins or transaction fees.

Because of conflicting transactions or propagation delays, peers may differ
in their blockchain copy. As a rule of thumb, peers solve such differences by
accepting the copy that contains the longest blockchain. Thus, the transactions
in the blockchain are secure, trusted, immutable, and auditable [38].

A further advance in blockchain technologies is smart contracts [36]. A smart
contract is a script comprising procedures and optionally a state. These scripts
are stored in the blockchain. Whenever a transaction addresses a procedure
contained in a smart contract, miners execute this procedure and agree on the
outcome. The internal state of smart contracts can change when miners run their
procedures. Every state from the initial state to the current state is stored in
the blockchain.

Blockchains and smart contracts have been used to improve processes stake-
holders in the insurance market carry out. For example, to buy insurance [30],
change policies [22], and securely store logs [15]. However, to the best of our
knowledge, we are the first to propose a smart contract-based solution that
trades transparency for privacy when it comes to compute insurance premium
discounts. More precisely, we propose that insurance company provide smart
contracts to transparently compute premium discounts from driving data poli-
cyholders. Sensors installed in policyholders’ cars collect such data and an addi-
tional, programmable device helps policyholder to prepare and store sensing
data in the blockchain. As to privacy, the five approaches are used. First, the
programmable device allows the policyholder to select a subset of the sensing
data to be stored to the blockchain. Second, the programmable device allows the
policyholder to generalize his or her sensing data by using the so-called (k, δ)-
anonymity, so that his or her sensing data is similar to other policyholders’ data
stored in the blockchain. Third, to send the selected data to the blockchain, the
programmable device uses HD wallets to keep the policyholder’s identity secret
and to prevent every two transactions containing sensing data from being linked
to the same policyholder. Fourth, the policyholder can provide a subset of the
stored data as input to the smart contract upon requesting his or her reward to
be computed. The less suppressed or generalized the input data has been, the
more accurately the smart contract can compute the reward, but the narrower
the privacy protection. Furthermore, to redeem his or her discount, the poli-
cyholder personally demonstrates to the insurer company that he or she is the
origin of the data used as input to the smart contract. This process is off-chain
and the policyholder’s identity is not disclosed in the blockchain.

The remaining of this manuscript is organized as follows. Section 2 provides
the background needed for this work. Section 3 outlines our proposal and Sect. 4
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presents the prototypical implementation. Section 5 discusses the proposed solu-
tion and Sect. 6 compares it to the literature. In Sect. 7 we draw our conclusions
and plan future work.

2 Background

This section presents the basic concepts on which our proposal is built.

2.1 Cryptographic Hash Functions and Digital Signatures Schemes

A cryptographic hash function H is a map from the set {0, 1}∗ of binary strings
of arbitrary length to the set {0, 1}k of k-bit strings [16]. We refer to an ele-
ment of the set {0, 1}k as a hash. We assume H is collision resistant. More
precisely, finding distinct x, x′ ∈ {0, 1}∗ such that H(x) = H(x′) is computa-
tionally infeasible. This allows us to use H to securely verify that a piece of data
m ∈ {0, 1}∗ has not been changed (i.e., integrity) as follows. First, compute a
hash y = H(m) and store it at a safe place. Later, to check that m has not
been changed, compute a new hash y′ = H(m) and verify that y′ equals y. An
example of a cryptographic hash function is Keccak-256 [40], where k = 256.

A digital signature scheme consists of three algorithms. The first algorithm
generates a public-private key pair. The second algorithm receives the private
key and a message as input and computes a signature on the message. The third
algorithm receives the message, signature, and public key as input and decides
whether the signature is valid. A valid signature shows that the message has
not been changed (integrity) and has been signed by who holds the private key
(authenticity). A choice for a digital signature scheme is ECDSA [16].

2.2 Blockchain and Smart Contracts

The concept of blockchain was introduced by Satoshi Nakamoto as a building
block for the so-called Bitcoin cryptocurrency [26]. A blockchain is a sequence of
linked blocks as illustrated in Fig. 1. A block is a container that stores arbitrary
pieces of data. For example, a message describing a transfer of some Bitcoins
between two individuals. Moreover, when blocks other than the first are created,
they must include a pointer to the previous block. This pointer is realized as a
hash calculated from the previous block. Please note that the integrity of every
block but the most recent is guaranteed by its hash stored in the next block.

The blockchain is grown in a decentralized way. More precisely, no central
party is trusted to grow the blockchain. Instead, a peer-to-peer network of par-
ticipants jointly maintains the blockchain. Every participant keeps a replica of
the blockchain and engages a consensus protocol to agree on what the next block
to be created is. To tackle issues commonly found in a distributed system (e.g.,
Sybil attacks [9]) participants should demonstrate they have spent some compu-
tational effort to be able to propose the next block. To pay participants for such
an effort and incentivize them to collaborate properly, monetary rewards apply.
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Fig. 1. The blockchain structure [7].

This consensus protocol together with hash links between consecutive blocks
allows a blockchain to be an immutable, trustless database.

Szabo [36] proposed the idea of smart contracts to formalize and secure agree-
ments between parties over a network. The author proposed clauses of a con-
tract to be translated to programmable scripts that can be executed without
the interference of a third party. However, the idea has become realizable when
the blockchain technology matured. Platforms such as Ethereum [43] implement
the idea presented by Szabo using programming languages. In this way, one can
translate the clauses of a contract to a piece of code. Any node in the network
can broadcast a transaction instantiating a smart contract. Upon request, nodes
execute instantiated smart contracts and come to consensus about the execution
results.

2.3 Anonymity and Pseudonymity

Privacy can be defined as the option that a person has in limiting access to their
personal information [34]. Anonymity is considered a state of privacy [42]. To
Warekar and Patil [41] the central idea of anonymization is to ensure that a
person cannot be identified, reached and tracked [41]. To guarantee anonymity
of a subject, a set of subjects with potentially the same attributes is necessary.
Pseudonymity can be regarded as “means to process personal data in such a
manner that the personal data can no longer be attributed to a specific subject
without the use of additional information” [12]. Note please that, in contrast
to anonymity, pseudonymity is lost if such additional information is publicly
available. Next, we will explain how to achieve the anonymity in trajectories
and pseudonymity on the data published on the blockchain.

According to Monreale et al. [25], a trajectory is a discrete sequence of points.
A point is a tuple that contains spatial coordinates and a timestamp [4]. A seg-
ment of the trajectory is considered a sub-trajectory. The disclosure of trajectory
data runs into privacy problems since location and personal data allows intrusive
inferences, which may reveal habits, social behavior, religious, and sexual pref-
erences of individuals [1]. In this work, we are dealing with personal trajectory
data and a user can choose when to publish it to insurance companies for them
to classify him or her as a good or bad driver.

In order to achieve anonymity on trajectories, one of the most used tech-
niques in the literature is k-anonymity. This method of anonymization makes
a data item indistinguishable from at least k − 1 others that have the same
quasi-identifiable attributes, making the chance of re-identification of an indi-
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vidual reduced to 1/k [35]. The techniques most used to achieve the k-anonymity
in a data set are generalization and suppression [13]. Generalization overrides
attribute values by more generic values. Suppression is a technique that excludes
attribute values from the data set.

One example of the application of k-anonymity on trajectories is the so-called
Never Walk Alone (NWA) approach [1]. It takes advantage of the inherent
uncertainty of the location of a moving object and introduced the concept of (k,
δ)-anonymity. In this approach, the location of an object at a given moment is
not a space-time point, but a circle of radius δ/2. The object can be anywhere
within this area. To achieve k-anonymity, first the authors propose to generalize
the trajectories by assigning each of them to a group of at least k other trajec-
tories that are entirely located within the same cylinder (area of uncertainty) of
radius δ/2 in order to be published, otherwise they are suppressed, as can be
seen in Fig. 2.

Fig. 2. Example of an anonymity set with (2, δ)-anonymity [1]

As to guaranteeing pseudonymity to data published in a blockchain, one can
replace real names by pseudonyms. Blockchains such as Ethereum do so by using
public keys as pseudonyms.

3 Proposal

This section presents our smart contract-based solution for insurance rewards
programs as follows. We start by providing an overview of the solution in 3.
Section 3.2 describes how we address privacy in our proposal. Section 3.3 details
the protocol used in our solution.

3.1 Overview

We start by introducing the types of entities and objects involved in our pro-
posal. Namely, car drivers, insurers, onboard car hardware, and smart contracts.
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Car drivers are policyholders of insurance companies. Drivers have two types of
onboard hardware installed in their cars. The first type is the CAN-Bus sen-
sors. For example, sensors like Positioning System (GPS), acceleration, speed,
steering wheel angle, and brake status. The second type of hardware is a pro-
grammable device (e.g., an Arduino) which stores data from sensors. It is needed
because such sensors are shipped with limited storage. Moreover, drivers use this
programmable device to send sensing data to smart contracts. We assume both
types of hardware are tamper-proof. That is, policyholders should not be able to
manipulate sensing data. Smart contracts are deployed in a public network of the
Ethereum blockchain by insurers to compute rewards to their customers as part
of a reward program. The reason we select this public blockchain is to expose
a reward program to public scrutiny, thereby allowing anyone to check program
rules as well as to compare distinct rewards programs. Figure 3 illustrates the
introduced entities and objects.

Fig. 3. Entities and objects involved in our proposal.

The interaction among policyholders, smart contracts, and insurers occurs
in three phases. In the first and second phases, policyholders interact with the
smart contract without revealing their real identities. More precisely, in the first
phase, policyholders send data collected from their cars to a smart contract on
a regular basis. For example, they send sensing data after every journey they
finished.

In the second phase, a policyholder can ask the smart contract to compute
his or her reward. The smart contract computes the reward based on the sensing
data the policyholder sent in the first phase and on the rewarding rules the
insurer has provided. The computed reward is ready to be redeemed by the
policyholder.

In the third phase, the policyholder can redeem his or her reward. In contrast
to the previous phases, the third phase is carried out off-chain (i.e., outside the
blockchain) as follows. The policyholder should personally visit the insurance



10 L. M. Palma et al.

company to authenticate him or herself and claim his or her reward. Then, the
insurer verifies that he or she is an eligible customer for the reward program and
that he or she can redeem the reward claimed. If the verification succeeds, the
employee pays the reward to the policyholder. The policyholder’s real identity
is not disclosed in the blockchain.

3.2 Privacy Measures

This section details the privacy measures we adopt in our solution. Namely,
we adopt suppression, generalization, a method based on k-anonymity, and
pseudonymity (see Sect. 2.3). Next, we explain how we apply these techniques
in the phases presented earlier.

In the first phase, we allow the policyholder to select what sensing data he
or she wants to send to the blockchain. By doing that, the user can suppress
information by choosing when turn on and off the programmable device. Then,
when the device is turned on the data starts to be collected. At this moment, we
generalize the sensitive data that has been collected, e.g., we create time ranges
for the timestamp and delete the last digits of the coordinates. It can be seen
in the flow chart in Fig. 4. The generalization guarantees data privacy against
the insurance company, which will have access to the data needed to identify
the policyholder only in phase three. The more generalized these attributes,
the greater the percentage of distorting, which will impact negatively on the
reward. Since the distortion can impact the quality of the data, we also send
to the blockchain an attribute that represents the percentage of distortion of
the sensitive attributes. This percentage will be taken into account when the
reward is evaluated in phase two. It is important to say that when we generalize
the timestamp of the points, we can calculate neither brakes, acceleration, nor
vehicle speed. In order to get this data, it will be necessary to use CAN-Bus
or other vehicle sensors. With this mechanism, we only consider the trajectory
data needed to learn where and when the user has been.

Also, in phase one, we create to the customers an extra privacy layer on the
smart contract. This step is executed when the device sends the data to the
blockchain and was partially based on (NWA) method [1]. The programmable
device installed on the vehicle sends the driver’s data and three more values to the
smart contract. The first value is the percentage of distortion of the attributes,
that will be only used on the evaluation. The second, that we will call as k,
represents the minimum quantity of sub-trajectories on the blockchain that are
similar to the sub-trajectory sent as parameter. The second value, that we will
call as r, represents a radius distance. Each point of the sub-trajectory will be
represented as a circle of radius r. It will form a cylinder, instead of having a
sequence of points we will have a sequence of circles. All the sub-trajectories
of the blockchain that are within this circle are considered similar to the sub-
trajectory send by as parameter. If the quantity of similar sub-trajectories found
is greater than k, then the smart contract can publish this data on the blockchain.
Even if there are no k similar trajectories, the device asks for the user if he or



A Transparent and Privacy-Aware Approach for Car Insurance 11

she still wants to send it anyway, otherwise, the data is discarded, as we can see
in Fig. 4.

Fig. 4. Privacy process represented by a flow chart

The k, and k, values are set by the policyholder. So, he or she can choose the
desired privacy level. By taking this measure it becomes more difficult to link a
trajectory to an individual as there are more people with similar trajectories in
the blockchain. The first sub-trajectories added to the blockchain will need to
be included without this verification. The application of this approach, which is
similar to k-anonymity, guarantees a certain level of data privacy since the data
is added in plain-text.

In the second phase, distinct pseudonyms (addresses) are used to send data
to the blockchain without revealing the policyholder’s identity.. We do this by
using a distinct wallet (then, a new address), it means a different key pair to
sign each transaction. When the addresses are used more than once, it allows
the easier re-identification of the true identity of the owner of the address.

3.3 Protocol

This section presents a protocol describing the interactions among participants
and considering the above privacy measures.
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We start by fixing the protocol notation. Let E be an insurer, A a driver
insured by E, D the programmable device that receives and stores CAN-Bus
sensing data from A’s car. Moreover, we have C as a smart contract which imple-
ments insurer E’s reward program rules. Also, let seed be a 12-world mnemonic
which allows to compute an HD wallet W = {(Sk1 ,Pk1), . . . , (Skn

,Pkn
)}, where

Sk and Pk are public and private keys, respectively. We refer to {T ()}Sk
as a

blockchain transaction signed with private key Sk. We label the steps of the pro-
tocol with numbers from I to VIII. We use letters to identify the subactivities
carried out in each step of the protocol.

The protocol is presented below and explained in the following.

(I) A −→ D : pinA

(a) A resets the programmable device D and sets a new personal identification
number pinA.

(b) D generates a 12-word mnemonic seedA.
(II) D −→ A : seedA
(a) A backs up seedA at a safe place.
(b) D generates a new wallet W = {(Sk1 ,Pk1), . . . , (Skn

,Pkn
)} from seedA.

(III) D −→ C : {{T (entry1)}Sk1
, . . . , {T (entryj)}Skj

}, 1 ≤ j < n

(a) D selects sensing data entry
(b) D signs transaction T (entry) using a fresh private key Sk.

(IV) A −→ D : pinA, Z ⊆ {entry1, . . . , entryj}
(V) D −→ C : {{T (Pkn

)}Sk1
, . . . , {T (Pkn

)}Ski
}, 1 ≤ i ≤ j

(a) D asks C to compute a reward based on subset Z of the sent entries.
(b) C issues a reward token I to public key Pkn

(VI) A −→ E : {I}Skn

(a) A sends {I}Skn
to E off-chain.

(b) E pays the reward I to A.
(VII) A −→ C : {ok}Skn

(VIII) E −→ C : {ok}SkE

(a) C marks reward I as redeemed.
(b) C marks subset Z as deprecated.

In steps (I)–(II), driver A sets up programmable device D. After that, D is
ready to collect a set of data from A’s car and upload it to smart contract C in
the form of signed blockchain transactions. Moreover, the driver can optionally
set values for the k and r parameters presented in Sect. 3.2.

In step (III) driver A uploads disjoint sets entry1 to entryj of sensing data
to smart contract C. For every set to be sent, a distinct transaction signed using
a different key Sk is created. Once a transaction containing set entry has been
confirmed in the blockchain, entry should not be uploaded again.

Driver A takes steps (IV)–(V) when he or she wants smart contract C to
compute his or her reward. In (IV), A selects a subset Z of sets entry1, . . . , entryj
containing the sensing data he or she has uploaded to C. Note please that A
can rule out any uploaded set for privacy reasons. In (V), driver A demonstrates
that he or she controls the private keys used to upload every entry ∈ Z and that
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he or she is the owner of public key Pkn
to redeem the reward to be computed

from Z. Smart contract C grants a reward token I to public key Pkn
.

Driver A and insurer E perform step (VI) outside the blockchain so that A’s
real identity is not disclosed in the blockchain. Driver A claims his or her reward
by proving he or she is the owner of the public key Pkn

. More precisely, he or
she presents a valid signature {I}Skn

on token I using private key Skn
. If the

presented signature is valid and A is a policyholder participating in the reward
program, E pays A the claimed reward.

Steps (VII)–(VIII) prevent a token reward from being redeemed again. The
steps also avoid that insurer E marks a reward token as redeemed without
having paid it to some policyholder. Moreover, by labeling sensing data with
deprecated insurers prevent policyholders from reusing such data for claiming
further rewards.

4 Prototype

This section describes the prototypical implementation of our proposal. More
precisely, we present the main structures, variables, and functions presented in
a smart contract written in the Solidity language [10]. The complete prototype
code can be found at https://pastebin.com/Vu336Src.

The main smart contract is called Storage. It works as a basic framework
which insurers can use to write their contracts implementing their reward pro-
grams. More precisely, the contract provides standardized structures, variables,
and functions needed to store sensing data but intentionally leaves function
evaluate blank. This function is to compute rewards. Insurers should extend this
contract overwriting evaluate according to their reward program rules. As such,
the contract should not be deployed in the Ethereum blockchain and is marked
as abstract.

We now highlight the main implementations of contract Storage (see Code
1.1).

The smart contract has four functions: store, linkto, update and evaluate.
Function store allows a driver to store sensing data from his or her car in the
blockchain (see Sect. 3.3, step (III)). Function linkto refers to step (V) of the
protocol. In line 26, we define the update function that is executed as the last
agreement between the policyholder and the insurer. More precisely, in this func-
tion both entities confirm that the reward has been redeemed and the sensing
data has been consumed. Please note that function evaluate is marked as abstract
and has no body. In this way, every contract that extends Storage should provide
a body to evaluate implementing the rules of a reward program.
1 contract Storage {

2 struct Data {

3 uint8 size;

4 uint8[] code;

5 int256[] data;

6 uint8 valid;

7 }

8

https://pastebin.com/Vu336Src
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9 enum Codes {SPD, ACC, BRE}

10

11 address owner;

12 mapping (address => Data) public entry;

13 mapping (address => address[]) link;

14 mapping (address => uint8) token;

15

16 constructor () public {}

17

18 function store(uint8 s, uint8[] c, int256[] d) public {

19 entry[msg.sender] = Data({size:s, code:c, data:d, valid:2});

20 }

21

22 function linkto(address addr) public {

23 link[addr].push(msg.sender);

24 }

25

26 function update(address addr) public {

27 if(msg.sender == owner && entry[addr].valid >= 1)

28 entry[addr].valid -= 1;

29 else if(entry[addr].valid >= 1)

30 entry[addr].valid -=1;

31 if(entry[addr].valid == 0)

32 token[addr] = 0;

33 }

34

35 function evaluate() public;

36 }

Code 1.1. Smart contract to store the driver’s data.

4.1 Costs

In this section, we estimate the costs of running our solution in the Ethereum
public network. More precisely, we approximate the costs of storing driving data
and computing rewards. Costs are provided in terms of gas (Ethereum price
unit) and are to be covered by policyholders.

We start by estimating the cost of storing data in the blockchain. We take
into account the worst-case when a policyholder wants to store every piece of
data collected from his or her car’s sensors. The formula below can be used to
compute the costs of storing data. The parameters of this formula are message
size (ms), sampling rate (sr), the standard cost to store a message of 256 bits
in the blockchain (20,000 gas) and the transaction cost (21,000 gas). For more
information about gas prices, we refer the reader to Appendix G, in the Ethereum
yellow paper [43].

(�ms ∗ sr

256
� ∗ 20.000) + 21.000

To conduct this estimation, we use the following real-world information. We
consider the American average driving time of 50.6 min per day [37]. Yet, we
consider the sampling rate sr to be 1 CAN-Bus message for every 10 seconds
and message size ms to be 126 bits long as defined in the J1939 protocol [18].
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In this way, the storage cost for an average American driver is 3,021,000 gas
per day. As of the time of writing, this amount of gas is $1.42 worth. In one year,
the driver would have to pay $518.30 to store his or her data in the blockchain.

As to the insurer costs to read these data on the time of the driver’s data
evaluation. We simply replace storage cost (sc) by reading cost (rc) of 9,000 gas.
In this way, the cost to read one day of driver’s data is 1,709,850 gas or $0.80.
Therefore, the insurer would have to pay $292.00 per year.

5 Discussion

We now discuss privacy and costs with respect to our proposal. The level of
privacy of our solution depends on design and policyholder choices. Let us start
with design choices. Recall please that a policyholder uses distinct public keys
rather than his or her identities whenever he or she uploads sensing data to
the blockchain. By doing so, uploaded sensing data sets are pseudonymized.
Nonetheless, pseudonymization is lost in relation to the insurance company and
the trajectories can be linked to a single public key when the policyholder asks
a smart contract to compute his or her reward by providing the public key to
claim the reward (see Sect. 3.3, step (V)). This issue can be solved by dropping
step (V). However, a policyholder will need to demonstrate personally that he
or she controls a subset of the private keys he or she used to upload the sensing
data. Therefore, the policyholder has the option to not prove the ownership of all
their data stored in the blockchain. Therefore, the solution to this issue trades
off privacy for usability.

We now turn to policyholders’ choices. We took some precautions related
to privacy in order to protect the policyholder’s data. Related to the general-
ization of the trajectory data, the user needs to be aware that the more the
generalization, the worst the quality of the data. On the other hand, the lack of
generalization can compromise the user’s privacy. So, the idea is to find a middle
ground between the generalization and the quality of the data. Basically, if the
data is very generalized, it has a high level of privacy but loses its value and
quality, making the reward low since it becomes harder to evaluate the driver
with this low-quality data. When the policyholder asks a reward to the insurer,
if the policyholders find a middle ground between the generalization and privacy
it can guarantee that the insurer will not know exactly their location but at the
same time will have enough information to evaluate the policyholder.

A further choice regards the variables k and r in the anonymization of tra-
jectories. The policyholder should be also aware that a low value of k makes
re-identification easier since few people have similar trajectories. The value of r
also impacts privacy. The higher the r the higher the chances of finding similar
trajectories within this radius. However, these trajectories may not be so similar
due to the large area being considered. Therefore, one should pick a value for r
such that it covers the closest areas where the policyholder and further people
take similar paths. One open problem is to find the ideal values for those two
attributes since it is not an easy task for the user to find it by him or herself.
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As to the costs of running our solution in the public Ethereum network, the
average reward given to the driver must be greather than the annual cost of
storing his or her data in the blockchain. A similar assessment must be made
by the insurer. Therefore, a different blockchain platform could be used. For
instance, the Hyperledger permissioned blockchain [5], where transaction fees do
not apply.

6 Related Work

There are distinct blockchain-based solutions for the insurance market. They
apply to car insurance, cyber insurance (i.e., insurance against cyber threats),
and general insurance. Their common goals are to automate and prevent fraud in
the insurance process. Next, we first introduce these solutions and then compare
them to our work.

Raikwar et al. [30] propose a solution for general insurance use cases (e.g.,
client registration, policy assignment, paying a premium, claim submission, and
processing refunds). The goal is to prevent customers from falsely accusing the
insurer of offering some service and to hold insurer accountable for the provided
service. To this end, the customer and insurer interact through a smart contract
in a permissioned Hyperledger network. Claim verifications are off-chain and
interactions are logged in an external database, making the user to trust this
database is secure.

WISChain [15] is a blockchain-based solution devised to cyber insurances.
The goal is to avoid fraud with respect to claim evidence. Customers are indi-
viduals whose authentication data may be leaked from online password managers
and commercial websites which may be hacked. In this proposal, the insurance
companies select policies and pay premiums via smart contracts. The policy-
holders send authentication or firewall logs to a third party, who also is trusted
to solve claims. The hash of these logs is also written in a blockchain.

A further solution to be used for cyber insurance is BlockCIS [23]. The objec-
tive of that work is to allow to assess customer risk and premium value online
and transparently. Moreover, BlockCIS records data that can be used to pro-
cess claims in the blockchain. They propose to combine private channels, selec-
tive disclosure of data, and homomorphic encryption to achieve confidentiality
and privacy. However, such a solution seems not to be feasible yet. More pre-
cisely, premiums are often computed based on simple formulas, e.g., flat rates,
or weighted sums [31]. The problem is that homomorphic encryption supports
either addition or multiplication [28], so for the metrics that need to use both
it will be necessary to use fully homomorphic encryption (FHE). However, FHE
approaches have a lot to improve in order to be practical, since they are extremely
expensive for real-life systems. For example, the computational cost of such an
approach can be prohibitive for several scenarios [2,21].

Vehicle insurers can also use the help of blockchains [3,8,22,39]. Bader et
al. [3] propose an Ethereum-based solution to reduce costs and improve trans-
parency when dealing with claims. More precisely, smart contracts allow cus-
tomers to fill a claim and check their status. Data from drivers’ car is collected
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from tamper-proof sensors, encrypted using AES encryption, and stored in the
blockchain. Because of sensor’s data is encrypted, smart contracts do not process
claims. This is why claim processing occurs off-chain.

Lamberti et al. [22] present a system for vehicle insurance that uses Ethereum
smart contracts, mobile apps and sensors data. The work aims to enable cus-
tomers to buy and change insurance policies and fill a claim on-chain. The smart
contract stores the history of changes in the a insurance policy coverage. The
electronic device is used to enable automatic changes in the coverage based on
the vehicle’s location and the number of passengers on board. The location and
safety belt connection data are saved periodically on the company’s database
raising trust and privacy concerns. Pictures are taken and sent to the insurance
company to fill the claim. Also, a hash of the picture is recorded in the blockchain
in order to guarantee immutability.

Dorri et al. [8] propose a blockchain-based architecture to protect the privacy
of users and to increase the security of the vehicular ecosystem. They collect data
through sensors and authenticate them on the blockchain. The privacy of the
users is guaranteed by using changeable public keys. The authors provide an
example of use case for automotive services by providing a secure and trustwor-
thy mechanism but with a lack of transparency. In their work, the user cannot
know how the data is used after being decrypted since some processes are exe-
cuted off-chain.

Vahdati et al. [39] propose a framework for insurance based on IoT and
blockchain. This framework allows assessing customer risk and computing pre-
miums online and transparently. The authors show an example for vehicle insur-
ance. In this study, each user and vehicle has an identifier, and their information
is saved as plaintext on the blockchain with no privacy protection.

Our proposal differs from the related work in transparently computing
rewards to drivers with the help of smart contracts and privacy measures. These
measures include suppression, generalization, k-anonymity, and pseudonymity.
We make all data analysis on-chain, making this process as transparent as pos-
sible.

7 Conclusion

In this paper, we proposed a smart contract-based, privacy-aware solution to
transparently compute rewards to drivers that participate in reward programs
offered by car insurance companies. A smart contract computes rewards based
on sensing data policyholders provide in the Ethereum Blockchain. To preserve
privacy, we propose the use of: (i) distinct pseudonyms to hide real identities in
the blockchain, (ii) suppression to allow policyholders to select what sensing data
is sent to the blockchain, (iii) generalization of sensitive data and k-anonymity to
verify whether user’s sensing data allows him or her to remain indistinguishable
from other drivers whose data has been already disclosed in the blockchain. We
evaluated our work by analyzing costs and bring some discussion.

As future work, we plan to the use of real data collected from sensors to
perform a more precise evaluation of the costs and privacy choices. We also want
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to develop a procedure that enables the updating of the driver’s data evaluation
metric, in a dynamic way, in the same instance of the smart contract. The update
should be transparent and does not affect running evaluations. With this new
feature, the companies could use the same contract instead of deploying a new
one for each rule change.
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Abstract. Cryptocurrencies such as Bitcoin [1], Ethereum [2] are
becoming very popular among people due to their properties such as
pseudo-anonymity which can be used for both good and bad. In this
paper, we show how smart contracts can be used to build criminal appli-
cations. Here we construct an application that allows contractors to get
the stolen private key of a target user from perpetrators in an end to end
encrypted message application.

Keywords: Smart contract · Criminal smart contract · Blockchain ·
Cryptography · End to end encryption

1 Introduction

On 3rd January 2009, the bitcoin [1] network came into existence with Satoshi
Nakamoto mining the genesis block of bitcoin which had a reward of 50 bitcoins.
Since then the publicity of bitcoin steeply increased which led to a bitcoin boom
during which the value of bitcoin reached a peak. Bitcoin became very popu-
lar quickly because of its characteristics such as pseudo-anonymity, no central
authority, etc. Soon Ethereum [2] came into existence which gave the freedom
to write better smart contracts [3] easily that holds the business logic of the
application. This helped in developing various decentralized applications using
blockchain [4] technology. This paved the way for the existence of many criminal
applications as well. Such decentralized criminal applications [5] make it difficult
to keep a track of the crime. This opened the gateway to build such criminal
applications using blockchain which makes it difficult to trace back. Also, such
applications support commission-fairness where there is a fool-proof reward sys-
tem. In this paper, we build one such application that can be used to trade the
stolen private key of a targeted user in an end to end encrypted system between
a contractor and perpetrator. We also discuss the various security issues that
arise even in such a fool-proof workflow.
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2 Background and Related Work

2.1 Blockchain

A blockchain [4] is a distributed ledger technology that consists of a linked list of
records that are linked using cryptographic schemes. Each block has a collection
of transactions or data records stored in the form of a Merkle tree. Each block
stores a hash pointer pointing to the previous block which stores the address of
the previous block along with the hash of its contents. Blockchain technology is
immutable and relies on a peer to peer network of nodes that follow distributed
consensus algorithms to generate blocks, validate them and store them on the
blockchain.

2.2 Smart Contracts

Smart contracts [3] hold the business logic of the decentralized application. It
can be built using Turing complete languages such as solidity and compiled
using a framework such as Truffle. Smart contracts are generally visible to all
the users in the blockchain network. Contracts can be made partially or fully
self-executing, self-enforcing, or both. Smart contracts aim to provide security
that is superior to traditional contract laws and to reduce other transaction costs
associated with contracting.

Smart contracts are advantageous than traditional cryptocurrencies like Bit-
coin because of the reasons listed below:

– Mutually distrustful parties can have fair exchange by abiding by rules embed-
ded in the contracts without any need for third-party intermediaries.

– Minimal interactions happen between the parties which reduce unwanted
monitoring and tracking.

– Input can be taken from external sources with the help of authenticated data
feeds.

The usage of smart contracts in Ethereum [6,7] is growing at a fast rate
with arising utilization in criminal applications. The decentralized platform with
smart contracts is particularly conducive for criminal activities because of the
reasons listed below:

– Parties can have fair exchange without any third party involvement, so any
kind of law enforcing body stays uninvolved and hence the criminal transac-
tions can happen unchecked.

– Minimal interactions between the parties make it harder to monitor or track
criminal transactions.

– Usage of authenticated data feeds enhances criminal smart contracts.
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2.3 Criminal Smart Contracts

Definition. Criminal smart contracts (CSCs) [5] can facilitate leakage of confi-
dential information, theft of cryptographic keys, and real-world crimes (murder,
arson, terrorism). We refer to smart contracts that facilitate crimes in distributed
smart contract systems as criminal smart contracts (CSCs). An example of a
CSC is a smart contract for private-key theft [5]. Such a CSC might pay a
reward for confidential delivery of a target key sk, such as a certificate author-
ity’s private digital signature key.

The following properties should be held by criminal smart contracts to build
a foolproof criminal application in the blockchain:

– Fair exchange. The contract should ensure that the perpetrator is paid only
for a fair exchange of the requirement specified by the contractor.

– Commission fairness. The execution of a smart contract should ensure that
both the commission of a crime and the payment of reward should be atomic.
The following challenges may occur if the above-mentioned properties are
ignored:

• Challenge 1A. Contractor C posts a request for theft and delivery of the
signing key skV of a victim certificate authority(CA). C offers a reward
$reward to a perpetrator P for (confidentially) delivering the private key
skV to C. In this scenario, the contract should ensure that the perpetrator
has completed the task committed. There can be a challenge possible
where perpetrator P fools contractor C by giving him a false private key.
P should not be allowed to access the reward without submitting a valid
key to the contract which should be given to the contractor.

• Challenge 1B. The Certificate Authority can act as a perpetrator and
reveal the valid secret key, gain all the $reward and immediately change
its secret key. These challenges should also be handled by the contract to
ensure a fair exchange. These challenges are discussed in [5].

– Fool proof-verification methods. The verification methods for commission fair-
ness depend on the type of criminal applications to be built. This should be
unbiased and no authority should have control over it. The practicality of
building such criminal smart contracts is still a difficult task. In this paper,
we have presented one such application which allows theft of private keys
in the end to end encryption. There is much scope to explore multiple such
criminal applications and the construction of their criminal smart contracts.

3 CSC for End to End Encryption Key Theft

3.1 End to End Encryption

Definition. End to end encryption [8] is a secure way of communication between
two or more parties so that any third party despite having access to the network
used for communication cannot have access to the data that is being communi-
cated amongst the parties involved in the communication. When data is end to
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end encrypted between two clients, the data is encrypted on the sender’s device
in such a way that it can be decrypted only by the recipient device.

In today’s age of widespread usage of numerous messaging and file sharing
apps end to end encryption is being used widely for ensuring secure commu-
nication. Here we have worked with an end to end encryption system that is
implemented by the LINE messaging application [9].

Algorithms Used. The end to end encryption scheme, chosen for the attack
is defined using the following algorithms.

– Key exchange algorithm. ECDH over Curve25519
– Message encryption algorithm. AES-256 in CBC mode
– Message hash function SHA-256

Private Message Encryption. A message between two parties is encrypted
by using the schemes listed below:

– Key Generation and Registration. Each client generates an ECDH key pair
that gets saved securely in the storage area reserved for the application. The
key pair is generated when the application is first launched in a client device.
The public key of the key pair is then registered with the application server
which replies with a unique key ID for the client that represents the current
version of the user’s public key. Every time the application is re-installed or if
the user migrates to a new device a new key(ECDH pair along with a unique
key ID to be used as the client’s public key) is generated.

– Client-to-Client Key Exchange. In order to exchange encrypted messages, the
two parties must have a shared secret. Each of the two clients in a conversation
generates a shared secret by using its own private key and the other client’s
public key. The shared secret formed on both sides is the same. Shared secret
is generated as illustrated below.

SharedSecret = ECDHcurve25519(keyuser1private, key
user2
public) (1)

SharedSecret = ECDHcurve25519(keyuser1public, key
user2
private) (2)

– Message Encryption. Each message is encrypted with a unique encryption
key and IV. The encryption key and IV are derived from the shared secret
and a randomly generated 8-byte salt is also generated as follows

Keyenc = SHA256(SharedSecret||salt||“Key”) (3)

IVpre = SHA256(SharedSecret||salt||“IV ”) (4)

IVencrypt = IVpre[0 : 15] ⊕ IVpre[16 : 31] (5)

AES in CBC mode is used to encrypt the message using the encryption key
and IV generated above and a MAC is calculated for the message to confirm
that it has been sent from the stated sender.

C = AESCBC(Keyencrypt, IVencrypt,M) (6)



WiP: CSC for Private Key Theft in E2E Encrypted Apps 25

MACpl = SHA256(C) (7)

MACenc = AESECB(Keyenc,MACpl[0 : 15] ⊕ MACpl[16 : 31]) (8)

The sender key ID, the recipient key ID, salt and MAC are sent along with the
ciphertext. The sender key ID helps to retrieve the public key of the sender
and the recipient ID helps to check whether the message can be decrypted
with the recipient’s private key and once it is verified the recipient can gen-
erate the shared secret and derive the symmetric encryption key and the IV
with the help of the salt sent. The MAC of the received ciphertext is also cal-
culated and compared with the MAC sent. If it matches, the recipient goes
ahead with decrypting the message with the generated symmetric encryption
key and IV.

3.2 E2EE Key Theft Model

We introduce a CSC which is created and deployed by a contractor C, who wants
to decrypt the end to end encrypted messages exchanged between two clients.
To accomplish this, according to the end to end encryption model demonstrated
in the above section, stealing the private key of one of the victim clients is suffi-
cient. C deploys the contract with the public key pkv of one of the victim clients
V whose private key skv is to be stolen. The reward money for the commission of
the crime is transacted to the contract during deployment. So the CSC is imple-
mented such that it rewards the perpetrator P who reveals the skv associated
with pkv to the contractor C.

After submission of the stolen private key in a claim message by a perpe-
trator P, the contractor will verify the claim message. The perpetrator will get
the reward money if it is valid. If the claim message is invalid, the contractor
invalidates the claim and checks for other submissions. If the contract reaches its
termination time without anyone submitting a valid claim message, the contract
returns the reward money to C.

Once the private key of the victim is stolen, to decrypt any arbitrary cipher-
text exchanged between any targeted pair of clients, the contractor has to inter-
cept the ciphertext and the salt associated with it. The contractor can use the
stolen private key of the victim, the public key of the other client to generate the
shared secret. The contractor has to use the salt and shared secret to generate
the symmetric encryption key and IV. With the help of the IV and symmetric
encryption key, the intercepted ciphertext can be decrypted. Both the scenarios
have been shown in Fig. 1.

Improvements: Our improvement of the above existing scheme comes in with
the implementation of how the perpetrator submits the claim message and how
the contractor invalidates the claim if it is invalid without loss of fair-exchange
and commission-fairness.

The list of claim messages submitted by perpetrators is stored in the contract
and verified one by one. Each such submitted claim message is given a time
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Fig. 1. Valid (top) and Invalid (bottom) key submission flow.

window within which the contractor either invalidates the claim by proving it
to be invalid or chooses to do nothing, which makes the claim valid by default.
The perpetrator can then claim the reward. Given below is the implementation
of the steps mentioned above.

– The stolen secret key is submitted to the contract as a claim message after
encrypting the key with the public key of the contractor. The contractor will
be given some time within which he can choose to invalidate the claim.

claim message = enc(pkc, skv) (9)

– The contractor takes up the submitted claim message, decrypts it and verifies
if it is a valid secret key. If the key is invalid, the contractor tries to invalidate
the claim by sending the decrypted key back to the contract.

sk∗
v = dec(skc, claim message) (10)

– The contract verifies whether the key is indeed invalid and if found so, invali-
dates the claim. If the key is found to be valid by the contract, it does nothing
and so the deadline to invalidate the claim passes. The perpetrator can then
claim the reward. The contract verifies the validity of the key by constructing
the shared key used in the end-to-end encryption and verifying a known pair
of (message, ciphertext) (Fig. 2).

verify ( claim message == enc(pkc, sk∗
v) )

shared key = construct E2EE shared key from sk∗
v

if ( ciphertext == E2EE enc(shared key, message) )
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do nothing
else
invalidate the claim

Algorithm

– CREATE. On receiving (“create”, $reward, pkv, intent end, report duration,
token window, contract end, message, cipher text, pkrecipient, salt) from a
contractor C,

Transfer $reward to contract.
Set state = CREATED
Set counter = 0

– INTENT TO REVEAL. On receiving (“intent”, commit) from a perpetrator
P,

Assert state = CREATED
Assert time <intent end
(counter = counter + 1)
Store the pair (commit, P)
return counter

– CLAIM. On receiving (“claim”, claim message, token) from a perpetrator P,
Assert token belongs to P
Assert intent end + token window ∗ token<time<intent end +
token window ∗ (token + 1) − report duration
commitP = Fetch commit of perpetrator P
Assert SHA256(claim message || pkp) == commitP
Store (claim message, pkp, token)

– INVALIDATE CLAIM. On receiving (“invalidate claim”, sk∗
v, token) from

contractor C,
claim messagetoken = Fetch claim message corresponding to token
AssertEnc(sk∗

v) = claim messagetoken
shared secret∗ = ECDH(sk∗

v , pkrecipient)
message key∗ = SHA256(shared secret∗ ||salt|| “key′′)
IV ∗

pre = SHA256(shared secret∗ ||salt|| ”IV ”)
IV ∗

encrypt = IV ∗
pre[0 : 15]xor IV ∗

pre[16 : 31]
ciphertext∗ = AESCBC(message key∗, IV ∗

encrypt,message)
if ciphertext∗! = ciphertext
(Invalidate claim messagetoken)

– RECEIVE REWARD. Upon receiving (“receive reward, token”) from perpe-
trator P,

Assert the token belongs to P
claim messagetoken = Fetch claim message corresponding to token
Check if report duration time has elapsed since the claim messagetoken
submission time
Assert the claim messagetoken has not been invalidated by contractor
Transfer $reward to P
Set STATE = CLAIMED



28 P. Pal et al.

– RETRACT REWARD. On receiving (“retract reward”) from contractor C,
Assert time >contract end
Assert state = CREATED
Transfer $reward to C
Set STATE = ABORTED

Fig. 2. Algorithm flow

3.3 Contract Protocol

The algorithm assumes the contractor has a message and its corresponding
data intercepted when the message was sent to the recipient in an end to end
encrypted form. One can get access to such data by snooping into the commu-
nication network. The data we need from the interception are ciphertext, salt,
and pk recipient. So, the contractor knows, the message, its ciphertext, and the
salt used to generate the message key.
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Contract Deployment. The contractor deploys the contract with the following
parameters:

– $reward, the amount transferred to contract while deploying which will be
paid to the perpetrator on submitting the valid key

– pkv, public key of the victim
– salt, salt from the intercepted data
– message, plaintext message corresponding to the intercepted data
– pk recipient, public key of the recipient to whom the message was sent
– ciphertext, ciphertext of the message
– report duration: the duration within which the contractor has to report if the

key is invalid
– token window, the time interval for each perpetrator to reveal the key
– intent end, end time for the perpetrators to commit his intent to reveal
– contract end, end time of the contract

Intent Reveal Phase. As soon as the contract is deployed, the perpetrators
will be given the option to submit a commit and get a token number. The
contract will have a counter which will allow a unique token value for each of
the commit submitted. The maximum number of commits that can be submitted
is,

max commits = (contract end − intent end)/token window (11)

The commit is calculated as follows,

commit = SHA256(Enc(pkc, skv)||pkp) (12)

where, pkc -> public key of the contractor
skv -> secret key of the victim
pkp -> public key of the perpetrator

There will not be any spam of commits as each commit requires the perpetrator
to pay some amount of gas for their commits to be stored in the contract. The
ith commit submission will be returned the token value of i starting from 1.

Key Reveal Phase. The token given in the previous step is used to allot time
intervals at which the perpetrator can choose to reveal the encrypted secret
key(encrypted with the public key of the contractor) of the victim as a claim
message. The perpetrator having token i can reveal the claim message between,
(intent end + token window ∗ i) and (intent end + token window ∗ (i + 1) −
report duration).

claim message = Enc(pkc, sk∗
v) (13)

The stolen secret key encrypted with the public key of the contractor is
submitted in the claim by perpetrator P. The contract then verifies if the hash of
claim message appended with the public key of perpetrator matches the commit.
Check,

SHA256(claim message||pkp) == commit (14)
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Invalidate Claim Phase. For each such claim, the contractor decrypts the
key and checks if it is valid. If the key is not valid, the contractor sends a request
to the contract to invalidate the claim. This request is sent with the decrypted
secret key sent by the perpetrator and the perpetrator’s address. The reporting
of an invalid claim has to be done before the report duration ends. The contract
then verifies the data and invalidates the claim if it is invalid. Once a claim is
invalidated, the next claim is checked. If there are no more claims left, then the
reward money is refunded back to the contractor.

Transfer Reward Phase. Once a claim has passed report duration since it
is submitted and it has not been invalidated yet, the perpetrator can claim the
reward and the state is set to CLAIMED.

If the contract end time has passed and there has been no valid claim till
then, the contractor gets back the reward money with which the contract had
been deployed.

3.4 Security Analysis

Need for Sequencing Key Reveal Phase. The above approach has a limit
on how many perpetrators can participate in the scheme. The removal of tokens
and allowing the perpetrators to submit commits and claims may seem to solve
the problem, but it introduces 2 other problems.

1. If all the perpetrators submit the claim message within a short period, it
will be difficult for the contractor to report back the invalid ones within the
report duration.

2. The contractor himself can pose to be a perpetrator who can commit with
a random commit and then a claim message with a random invalid key. He
can choose not to report his claim message as invalid and later claim the
reward. The reward money will get refunded to the contractor while an actual
perpetrator might have revealed the valid key, thus contradicting commission
fairness.

where, vp -> perpetrator with valid key
cp -> contractor posing as a perpetrator

Intent Reveal phase

commitcp = SHA256(Enc(pkc, ‘invalid’)||pkcp)

commitvp
= SHA256(Enc(pkc, skv)||pkvp)
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Key Reveal phase

claim messagecp = Enc(pkc, ‘invalid’)

claim messagevp = Enc(pkc, skv)

If vp submits claim message after cp submitted and before report duration
time from cp’s submission, then the contractor will learn the valid secret key
from vp’s submission and will not report cp’s claim message, allowing cp to get
the reward.

Rushing Attack. Theoretically, when a perpetrator gets hold of the private
key skv of the victim, he can encrypt it with the public key of the contractor
and send it to the contract but an attack called the rushing attack mentioned in
[5] might take place where a corrupt C can decrypt and use the skv to construct
a valid claim and make it reach the contract before the valid one.

To avoid the rushing attack, we proposed the following scheme. The perpe-
trator reveals the key in two phases. In the first phase, the perpetrator expresses
an intent to reveal the key by submitting a commitment of the claim message.
He then waits until the start of the next phase to reveal the claim message.
The previous sections explain the commitment and claim message formats. The
contractor will then verify the claim message, and the perpetrator will receive
the reward if it is valid. If the claim message is invalid, the other submissions
are checked. If the contract reaches its end without anyone claiming the reward,
the reward is returned to the contractor’s account.

3.5 Scope for Improvement

To verify that the stolen key submitted is a valid one, we have presented in
our algorithm an interactive mechanism whereby the contractor reports an
invalid key submission within a deadline and the contract verifies the reporting.
Since the tools and features implementable in Smart Contracts are very limited,
using these interactive mechanism solves a lot of implementation challenges and
removes the need for the smart contract building tools to support every required
feature for automation. This deadline-based interactive mechanism also opens up
more opportunities to design CSCs which require the contractor’s verification.

The obvious downside for the approach is that the contractor is required to
be online to check every claim within the report duration from the moment the
claim arrived. The solution to this might be to have a script running at all times
watching for any new claim and perform required checks and invalidate the claim
if it is invalid. We can go for an alternative non-interactive zero-knowledge proof
mechanism to serve the same purpose by using ZK-SNARKS [10].

4 Conclusion

We have worked on formulating a criminal smart contract that helps to achieve
commission fairness in the scenario of an end to end encryption key theft. This
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can be extended to other such criminal activities. Even though it is fool-proof,
there are security issues that arise in such scenarios as well such as thwarting
attacks. This work along with other criminal applications supported by smart
contract systems like Ethereum demonstrated in [5] stresses the urgent need to
develop safeguards against such criminal usage of smart contracts that otherwise
are used for numerous beneficial applications.
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Abstract. We present a mechanism to trustworthy isolate I/O devices
with Direct Memory Access (DMA), which ensures that an isolated I/O
device cannot access sensitive memory regions. As a demonstrating plat-
form, we use the Network Interface Controller (NIC) of an embedded
system. We develop a run-time monitor that forces NIC reconfigura-
tions, defined by untrusted software, to satisfy a security rule. We for-
malized the NIC in the HOL4 interactive theorem prover and we verified
the design of the isolation mechanism. The verification is based on an
invariant that is proved to be preserved by all NIC operations and that
ensures that all memory accesses address allowed memory regions only.
We demonstrate our approach by extending an existing Virtual Machine
Introspection (VMI) with the monitor. The resulting platform prevents
code injection in a connected and untrusted Linux (The HOL4 proofs and
the source code of the monitor are published at https://github.com/kth-
step/NIC-formalization-monitor.).

Keywords: Formal verification · System security · Network Interface
Controller

1 Introduction

Formally verified execution platforms (microkernels [10], hypervisors [11] and
separation kernels [6]) constitute an infrastructure for implementing secure
IoT devices. By guaranteeing memory isolation and controlling communication
between software components, they prevent faults of non-critical software (e.g.
HTTP interfaces, optimizations based on machine learning, and software provid-
ing complex functionality or with short life cycle) from affecting software that
must fulfill strict security and safety requirements. This enables verification of
critical software without considering untrusted software.

A problem with these platforms is that the verification does not consider
devices with direct memory access (DMA). Current systems either disable them,
use a special System MMU (which is usually not available in embedded systems)
to isolate potentially misconfigured devices, or trust the (usually large) control-
ling software.

We address this issue by designing a secure IoT system based on component
isolation and the principle of complete mediation: The software controlling the
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I/O device is untrusted and monitored by a secure component, which verifies
that the configurations defined by untrusted software cannot enable the device
to access sensitive memory regions. This monitor preserves a security policy
which can be described by an invariant. The rationale is that the monitor can
be substantially simpler than the untrusted software and therefore it is easier
to analyze and verify. In this context, security depends mainly on three prop-
erties: (1) The monitor is correctly isolated from the other, possibly corrupted,
components of the system (e.g. the execution platform is formally verified or
vulnerabilities are unlikely due to the small code base of the kernel); (2) The
monitor is functionally correct and denies configurations that violate the invari-
ant (e.g. the monitor is verified or its small code minimizes the number of critical
bugs); (3) The security policy (i.e. the invariant) is strong enough to guarantee
that the I/O device cannot violate memory isolation.

We contribute with the first formal verification of (3) for a real I/O device
of significant complexity. As a demonstrating platform we use the development
board/embedded system Beaglebone Black and its Network Interface Controller
(NIC). We provide a formal model of the NIC and we define the security policy
as an invariant of the state of the NIC. We then demonstrate that this policy is
sound: The invariant is preserved by the NIC and it restricts memory accesses
to predetermined memory regions. The analysis is implemented in the HOL4
interactive theorem prover, which guarantees soundness of our reasoning.

To demonstrate the applicability of this approach we implemented a secure
connected system. Real systems often: need complex network stacks and applica-
tion frameworks, have short time to market, require support of legacy features,
and adopt of binary blobs. For these reasons many applications are dependent on
commodity OSs. Our goal is to provide a software architecture that satisfies some
desired security properties (e.g. absence of malware), even if the commodity soft-
ware is completely compromised. Here, we extend the framework MProsper [5]
with secure support for network connectivity to guarantee that a connected
Linux system, which is in control of the NIC, is free from code injection.

2 DMA Controllers

We briefly summarize the main traits of DMA controllers (DMAC). These are
hardware modules that offload the CPU by performing transfers between mem-
ory and I/O devices. From a security point of view, it is important to restrict
the memory accesses performed by DMACs to certain memory regions, since
unrestricted accesses can overwrite or disclose code and sensitive data. DMACs
can be standalone hardware modules, or embedded in I/O devices such as NICs
and USBs.

There are three common interfaces to configure DMACs (we reviewed 27
DMACs, including NICs, USBs, and standalone DMACs from twelve vendors:
ARM, Intel, and Texas Instruments, among others). In the simplest DMACs
(3 USBs), source, destination, and size of memory buffers to transfer are con-
figured via dedicated registers of the controller. The seemingly most common
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configuration method (22 controllers of all kinds) is by means of linked lists of
Buffer Descriptors (BD), an example of which is given in Fig. 1. Finally, some
DMACs (2 standalone DMACs) are programmable: A program is stored in mem-
ory, and which is subsequently fetched and executed by the DMAC to perform
the specified memory transfers.

Fig. 1. An example DMAC that performs memory-to-memory transfers and is config-
ured via linked list of BDs. The list is stored in memory, where BDs specify source
(buf1 to buf3) and destination buffers (buf4 to buf6) by means of pointers and sizes.
DMA transfers are activated by writing the address of the head of the list to a specific
DMAC register. The DMAC then processes the list in order. First, the current BD is
fetched to its local memory. Then a number of bytes are read from the source buffer
and written to the destination buffer via local memory. This step is repeated until all
bytes of the buffer have been transferred, at which point the complete bit is set to
signal that the transfer is complete. The DMAC then processes the next BD, which is
addressed by the next descriptor pointer. This procedure continues until the DMAC
reaches the end of the list. In this example, the first BD has been processed and the
DMAC is currently processing the second BD.

3 Security Threats, Challenges, and Scope

The main concern when DMACs are controlled by untrusted software is that
the destination addresses of BDs can be set arbitrarily. Therefore a malicious
software could use the DMAC to inject code and data into the execution platform
or other components, or modify page tables and escalate its privileges. Similarly,
by controlling the source addresses of BDs, an attacker can use a DMAC to
leak arbitrary regions of memory. Finally, the untrusted software may configure
a DMAC in ways that do not follow the specification, causing the system to
perform unpredictable operations.

Easy protection against these threats is to completely isolate the DMAC from
sensitive memory regions via a System MMU. This is a hardware component
that restricts the memory accesses of I/O devices. Unfortunately, even capable
embedded systems do not have a System MMU. Moreover, a System MMU may
negative impacts on cost, performance, and power consumption, and introduce
I/O jitter.
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Software prevention against these threats requires a clear understanding of
the DMAC. We address this by defining an unambiguous mathematical model of
the DMAC under analysis: The NIC of BeagleBone Black. This task is challeng-
ing because the NIC specification is ambiguous, dispersive, self-contradictory
and vague, and contains many details that are not security relevant.

An additional challenge is the identification of the security invariant. Each
transition of the NIC model describe a small set of operations, leading to many
state variables. Also, the NIC writes BDs after transmission and reception of
frames. Many of these state variables, and all these writes must be considered
when defining the invariant. For instance, if BDs are overlapping, when the NIC
writes a BD the destination address of another BD might be modified. All these
details make the formal verification challenging, but allowed us to identify bugs
in the Linux NIC device driver, errors in the NIC specification, and define a
monitor policy that includes security relevant details that may otherwise be
overlooked. These findings are summarized in Sect. 9.

We remark that our goal is to define and verify the security policy of the
NIC monitor, that is, validating the security of the system design described in
Sect. 7. Verifying that the NIC hardware implements its specification and that
the C implementation of the monitor is correct are not considered in this work.

4 Hardware Platform and Formal Model

Our analysis concerns the development board BeagleBone Black. We take into
account only the Ethernet NIC and assume that the other DMACs of the SoC
(e.g. USB) are disabled.

Our formal model of the SoC uses the device model framework by Schwarz
et al. [15], which describes executions of computers consisting of one ARMv7
CPU, memory and a number of I/O devices. The state of the CPU-memory
subsystem [8] is represented by a pair s = (c,m), where c is a record representing
the contents of the CPU registers, and m is a function from 32-bit words to 8-bit
bytes representing the memory.

The state of the NIC is described by a pair n = (reg, a). The first component
describes the interface between the CPU and the NIC, consisting of the memory-
mapped NIC registers: Ten 32-bit registers reg.r and an 8-kB memory reg.m.
The second component, a = (it, tx, rx, td, rd), describes the internal state of the
NIC, consisting of five records storing values of five automata. Each automaton
describes the behavior of one of the five NIC functions: initialization (it), trans-
mission (tx ) and reception (rx ) of frames, and tear down of transmission (td)
and reception (rd).

The NIC specification [1] describes a programming guideline for device
drivers, but it does not describe the behavior of the NIC when this guideline
is not followed. A NIC transitions results in the undefined state ⊥ if the tran-
sition models a NIC operation that is either: (1) not consistent with the device
driver guideline, (2) not described by the specification (e.g. the behavior in the
case of a DMA request that does not address RAM is unspecified), or (3) not
supported by our formal NIC model.
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The execution of the system is described by a transition relation (s, n) −→
(s′, n′), which is the smallest relation satisfying the following rules

s
τcpu−−−→ s′

(s, n) −→ (s′, n)
s

request(add)−−−−−−−−→ s′′ s′′ process(add,n.reg[add])−−−−−−−−−−−−−−−→ s′

(s, n) −→ (s′, n)

s
write(add,v)−−−−−−−−→ s′ n

update(add,v)−−−−−−−−−→ n′

(s, n) −→ (s′, n′)

n
τatm−−−→ n′

(s, n) −→ (s, n′)
n

write(add,v)−−−−−−−−→ n′

(c,m, n) −→ (c,m[add := v], n′)

n′ request(add)−−−−−−−−→ n′′ n′′ process(add,m[add])−−−−−−−−−−−−−→ n′

(c,m, n) −→ (c,m, n′)

where s
l−→ s′ and n

l−→ n′ denote the transition relations of the CPU-memory
subsystem and the NIC, respectively. Notice that these rules are general enough
to handle other types of DMACs. To include fine-grained interleavings of the
operations of the CPU and the NIC, each NIC transition describes one single
observable hardware operation: One register read or write, or one single memory
access of one byte.

The first two rules do not affect the NIC: The CPU can execute an instruc-
tion that (1) does not access a memory mapped NIC register (s

τcpu−−−→ s′), or

(2) that reads the NIC register at address add (s
request(add)−−−−−−−−→ s′′) and pro-

cesses the result (s′′ process(add,n.reg[add])−−−−−−−−−−−−−−−→ s′). The third rule describes exe-
cutions of CPU instructions writing a value v to the NIC register at address

add (s
write(add,v)−−−−−−−−→ s′). Register writes configure the NIC and may activate an

automaton (n
update(add,v)−−−−−−−−−→ n′).

The other three rules involve transitions of active automata. An internal
transition of an automaton atm ∈ {it, tx, rx, td, rd} (n τatm−−−→ n′) does not affect
the CPU. Memory write requests of writing a byte value v to a location with

the address add (n
write(add,v)−−−−−−−−→ n′) are issued only by the transmission automa-

ton tx. Memory read requests of reading the memory byte at an address add

(n′ request(add)−−−−−−−−→ n′′) are issued only by the reception automaton rx, and the
byte value at the addressed memory location (m[add]) is immediately processed

by the NIC (n′′ process(add,m[add])−−−−−−−−−−−−−→ n′).
The remainder of this section describes the five automata.

Initialization. Figure 2 depicts the initialization automaton. Initially, the
automaton is in the state power-on (n.a.it.s = power-on). Initialization is acti-
vated by writing 1 to the reset register, causing the automaton to transition to
the state reset. Once the reset is performed, the automaton transitions to the
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Fig. 2. Initialization automaton: r is the address of the reset register. p ranges over
the addresses of those NIC registers that are cleared to complete the initialization of
the NIC.

Fig. 3. A buffer descriptor queue consisting of three BDs located in the memory of the
NIC. The queue starts with the topmost BD, which addresses the first buffer of the
first frame (SOP = 1) and is linked to the middle BD. The middle BD addresses the
last (and second) buffer of the first frame (EOP = 1) and is linked to the bottom BD.
The bottom BD is last in the queue (NDP = 0) and addresses the only buffer of the
second frame (SOP = EOP = 1).

state init-reg. The CPU completes the initialization by clearing some registers,
causing the automaton to enter the state idle. The NIC can now be used to
transmit and receive frames. If any register is written with a different value or
when the initialization automaton is in a different state than described, then the
NIC enters ⊥ (i.e. n′ = ⊥).

Transmission and Reception. The NIC is configured via linked lists of BDs.
One frame to transmit (receive) can be stored in several buffers scattered in mem-
ory, the concatenation of which forms the frame. The properties of a frame and
the associated buffers are described by a 16-byte BD. Differently than the exam-
ple of Fig. 1, the lists of BDs are located in the private NIC memory n.reg.m.
There is one queue (list) for transmission and one for reception, which are tra-
versed by the NIC during transmission and reception of frames. Each BD con-
tains among others the following fields: Buffer Pointer (BP) identifies the start
address of the associated buffer in memory; Buffer Length (BL) identifies the
byte size of the buffer; Next Descriptor Pointer (NDP) identifies the start address
of the next BD in the queue (or zero if the BD is last in the queue); Start/End
Of Packet (SOP/EOP) indicates whether the BD addresses the first/last buffer
of the associated frame; Ownership (OWN) specifies whether the NIC has com-
pleted the processing of the BD or not; End Of Queue (EOQ) indicates whether
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Fig. 4. Transmission automaton: tx-add is the address of the transmission head descrip-
tor pointer register, which is written to trigger transmission of the frames addressed by
the BDs in the queue whose head is at bd-add. The address mem-add is the memory
location requested to read, and v is the byte value in memory at that location.

the NIC considered the BD to be last in the queue when the NIC processed that
BD (i.e. NDP was equal to zero). Figure 3 shows an example of a BD queue.

The initial state of the transmission automaton (Fig. 4) is n.a.tx.s = idle. The
CPU activates transmission by writing the transmission head descriptor pointer
register with the address of the first BD in the queue addressing the frames
to transmit. Such a NIC register write causes n.a.tx.bd-add to be assigned the
written address, recording the address of the currently processed BD, and the
next state to be fetch-bd.

The transition from fetch-bd reads the current BD from n.reg.m located at
n.a.tx.bd-add, assigns fields of the record n.a.tx to values identifying the memory
location of the buffer addressed by the current BD, and sets the state to mem-req.

As long as there are bytes of the buffer left to read, the automaton transitions
between mem-req and mem-rep, fetching and processing in each cycle one byte
via DMA. When the last byte of the buffer addressed by the current BD has been
processed, and if the currently transmitted frame consists of additional buffers
(i.e. the EOP-flag is not set of the current BD) then the automaton moves from
mem-rep to fetch-bd and sets n.a.tx.bd-add to the address of next BD. Once all
bytes of the currently transmitted frame have been processed (i.e. the EOP-flag
is set of the current BD), the automaton moves to eoq-own.

Once in state eoq-own, if the current BD is not last in the queue (i.e. the
NDP-field of the current BD is not 0) then the automaton clears the OWN-flag
of the SOP-BD (the BD of the currently transmitted frame with the SOP-flag
set; signaling to a device driver that the NIC memory area of the BDs of the
transmitted frame can be reused), sets n.a.tx.bd-add to the address of next the
BD, and enters the state complete. If the current BD is last in the queue then
the automaton sets the EOQ-flag of the current BD (used by a device driver to
check whether a BD was appended just after the NIC processed a BD, which
would result in the NIC not processing the appended BD, meaning that a device
driver must restart transmission) and enters the state own-hdp.

The transition from own-hdp clears the OWN-flag of the SOP-BD and the
head descriptor pointer register (the latter register clear signals to a device driver
that transmission is complete).
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The transition from complete writes the address of the processed BD to a
register to inform a device driver of which is the last processed BD. Further-
more, if all BDs in the BD queue have now been processed, or initialization or
transmission teardown was requested during the processing of the BDs of the
last transmitted frame, then the next state is idle. Otherwise the next state is
fetch-bd to begin the processing of the first BD of the next frame.

The structure of the reception automaton is similar to the structure of the
transmission automaton but with four notable differences: (1) After the reception
head descriptor pointer has been written with a BD address to enable reception,
it is non-deterministically decided when a frame is received to activate the recep-
tion automaton. (2) The BDs in the reception queue address the buffers used to
store received frames. Since reception do not get memory read replies there is
only one state related to memory accesses. (3) The transmission automaton has
two states (eoq-own and own-hdp) to describe BD writes (of the flags EOQ and
OWN). Reception writes sixteen BD fields (e.g. the length of a frame and the
result of a CRC check), leading to fourteen additional states. (4) Since content
of received frames are unknown, values written to memory and some BD fields
are selected non-deterministically.

Tear Down. Transmission and reception tear down are similar to each other,
and are activated by writing 0 to the associated tear down register. First, the
NIC finishes the processing of the currently transmitted (received) frame (the
corresponding automaton enters the state idle). Then the tear down automa-
ton performs four (six) transitions, each one describing one observable hard-
ware operation (for the CPU). If the corresponding queue has not been com-
pletely processed (n.a.tx.bd-add �= 0), then certain fields are written of the BD
(n.a.tx.bd-add) that follows the last processed BD. The last two transitions clear
the head descriptor pointer register and n.a.tx.bd-add, and writes a specific value
to a register to signal to the CPU that the tear down is complete, respectively.

5 Formal Verification of Isolation

The main verification goal is to identify a NIC configuration that isolates the
NIC from certain memory regions. This means that the NIC can only read and
write certain memory regions, denoted by R and W , respectively. We identify
such a configuration by an invariant I(n,R,W ) that is preserved by internal NIC
transitions (l �= update(add, v)) and that restricts the set of accessed memory
addresses:

Theorem 1. If I(n,R,W ) ∧ n
l−→ n′ ∧ l �= update(add, v), then

1. I(n′, R,W ),
2. l = request(add) =⇒ add ∈ R, and
3. l = write(add, v) =⇒ add ∈ W .
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5.1 Definition of the Invariant

The invariant states that the NIC state is not undefined and that the trans-
mission and reception queues are not overlapping, and restricts the val-
ues of the state components of each automaton (stored in n.a.atm, atm ∈
{it, tx, rx, td, rd}) and the contents of the BDs in the BD queues:

I(n,R,W ) � n �=⊥ ∧ Iqs(n) ∧ Iit(n,R,W ) ∧ Itx(n,R,W ) ∧ Irx(n,R,W )

Disjoint Queues. Iqs states that when the transmission and reception
automata are active, their queues do not overlap (no byte in n.reg.m is used
by both a BD in the transmission queue and a BD in the reception queue):

Iqs(n) � n.a.tx.s �= idle ∧ n.a.rx.s �= idle =⇒ DISJOINT(qtx(n), qrx(n))

The functions qtx and qrx return the list of the addresses of the BDs in
transmission and reception queues respectively. A queue is considered empty
when the corresponding automaton is idle.

Initialization. Iit states that during initialization the transmission and recep-
tion automata are idle:

Iit(n,R,W ) � n.a.it.s �= idle =⇒ n.a.tx.s = idle ∧ n.a.rx.s = idle

This implies that when initialization finishes, the transmission and reception
automata are idle. Therefore, after initialization Itx and Irx hold vacuously (see
the definition of Itx in the next paragraph).

Transmission. Itx consists of two conjuncts:

Itx(n,R,W ) � (n.a.tx.s �= idle =⇒ Itx-wd(n) ∧ Itx-mr(n,R)) ∧
(n.a.tx.s = idle =⇒
n.a.tx.bd-add �= 0 =⇒ DISJOINT([n.a.tx.bd-add], qrx(n)))

The first conjunct ensures that the transmission automaton cannot cause the
NIC to enter ⊥ (Itx-wd(n)) and that only readable memory is read (Itx-mr(n,R)).

Itx-wd states for example that the transmission queue is acyclic; no pair of
BDs overlap; all BDs are appropriately configured (e.g. the OWN-flag is cleared);
the queue is not empty while a BD is processed (n.a.tx.s �= idle ∧ n.a.tx.s �=
complete); and the currently processed BD (n.a.tx.bd-add) is the head of the
queue.

Itx-mr states that the buffers addressed by the BDs in the queue are located
in R. Itx-mr also states that if the transmission automaton is in the DMA loop,
then the state components used to compute the memory addresses do not cause
overflow, and the addresses of the future memory read requests issued during the
processing of the current BD are in R; that is, if n.a.tx.s = mem-req ∨ n.a.tx.s =
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mem-rep then ∀0 ≤ i < n.a.tx.left (n.a.tx.mem-add+ i ∈ R), where n.a.tx.left
records the number of bytes left to read of the buffer addressed by the current
BD, and n.a.tx.mem-add records the address of the next memory read request
(see Fig. 4).

The second conjunct ensures that the transmission tear down automaton
does not modify the reception queue when writing the NIC memory n.reg.m.
This prevents the tear down automaton from affecting the reception automaton
to cause the NIC to enter ⊥ or issue a memory write request outside W .

Reception. The invariant for reception is similar to the invariant for transmis-
sion. The main difference is the definition of Irx-wd, since reception BDs specify
different properties than transmission BDs. Also, the invariant states that BDs
in the reception queue address buffers located in W , and that n.a.rx.bd-add is
disjoint from the transmission queue.

5.2 Proof of Theorem 1

Consider Theorem 1.2. Transitions of the form n
request(add)−−−−−−−−→ n′ occur only

when n.a.tx.s = mem-req, where add = n.a.tx.mem-add. Itx-mr(n,R) implies
n.a.tx.s = mem-req =⇒ n.a.tx.mem-add ∈ R. Hence, the requested address is
readable: add ∈ R. The proof of Theorem 1.3 has the same structure but follows
from Irx(n,R,W ).

Defining the invariant in terms of conjuncts specialized for each automa-
ton gives a natural structure to the proof of Theorem 1.1. The proof is
therefore described in terms of the three actions the NIC performs: initial-
ization, transmission and reception, act ∈ {it, tx, rx}. The labels of the tran-
sitions describing one of the three actions are identified by L(act), where
L(it) � {τit}, L(tx) � {τtx, τtd} ∪ ⋃

add,v{request(add), process(add, v)}, and
L(rx) � {τrx, τrd} ∪ ⋃

add,v{write(add, v)}.
The following two lemmas formalize properties of the NIC model: Transitions

of an action do not modify state components of other actions; and an automaton
can leave the idle state only when the CPU writes a NIC register.

Lemma 1. For every act if n
l−→ n′ and l �∈ L(act) then n′.a.act = n.a.act.

Lemma 2. For every atm if n
l−→ n′, n.a.atm.s = idle, and n′.a.atm.s �= idle

then l = update(add, v).

Lemma 3 states that all transitions of each action, act ∈ {it, tx, rx}, preserve
the corresponding invariant:

Lemma 3. For every act if I(n,R,W ), n
l−→ n′, and l ∈ L(act) then

Iact(n′, R,W ) and n′ �=⊥.

Proof. We sketch the proof for act = tx, since reception is analogous and ini-
tialization is straightforward. The transition l belongs to the transmission or the
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transmission tear down automaton. There are four cases depending on whether
n.a.tx.s and n′.a.tx.s are equal to idle or not.

The case n.a.tx.s = idle ∧ n′.a.tx.s �= idle cannot occur by Lemma 2.
If n.a.tx.s �= idle ∧ n′.a.tx.s �= idle then the transition is performed by

the transmission automaton. We first analyze modifications of the transmission
queue. The transmission automaton can only modify the flags OWN and EOQ
of the currently processed BD and advance the head of the transmission queue
(but not atomically). Itx-wd(n) implies that the current BD is the head of qtx(n)
and that the BDs in qtx(n) do not overlap. Therefore, the two flag modifications
do not alter the NDP-fields of the current BD nor the following BDs in qtx(n).
For this reason the queue is only either unmodified or shrinked, thereby implying
Itx-wd(n′). Moreover, the buffers addressed by the BDs in qtx(n′) are still located
in R, therefore Itx-mr(n′, R) holds. The modifications of OWN and EOQ of the
current BD do not violate the invariant, since the queue is acyclic, implying that
the current BD is not part of the queue when the head is advanced.

We now analyze modifications of the state components that are used for
address calculations and the DMA read requests, which are restricted by
Itx-mr(n,R). If the transition is from fetch-bd, then the automaton fetches
the current BD from the NIC memory, and assigns certain state components.
Itx-mr(n,R) ensures that the overflow restrictions are satisfied by the relevant
state components in n′ and that the buffer of the fetched BD is in readable mem-
ory. These properties are preserved by transitions from mem-rep and mem-req.

If n.a.tx.s �= idle ∧ n′.a.tx.s = idle then the transition is performed by the
transmission automaton and n.a.tx.s = complete. Such a transition does not
modify n.a.tx.bd-add, n.a.reg.m, nor n.a.rx. The BD at n′.a.tx.bd-add does not
overlap any BD in qrx(n′) due to Iqs(n), Itx-wd(n), and the fact that qrx is
unmodified since neither n.a.reg.m nor n.a.rx is modified.

The last case is n.a.tx.s = idle ∧ n′.a.tx.s = idle. These transitions are
performed by the transmission tear down automaton, and only assign fields of
the BD at n.a.tx.bd-add (provided n.a.tx.bd-add �= 0) and set n.a.tx.bd-add to 0.
The second conjunct of Itx(n,R,W ) implies that the BD at n.a.tx.bd-add does
not overlap qrx(n), therefore qrx(n) = qrx(n′) and Itx(n′, R,W ) holds. �

The following definitions, lemmas and corollary are used to prove that each
action preserves the invariant of other actions and it does not make the queue
overlapping. First, for each action act , we introduce a relation on NIC states,
n �act n′, with the meaning that the invariant Iact is preserved from n to n′.
For initialization, the relation n �it n′ requires that the state components of the
initialization automaton are equal (n.a.it = n′.a.it) and that the transmission
and reception automata remain in their idle states (∧atm∈{tx,rx}(n.a.atm.s =
idle =⇒ n′.a.atm.s = idle)). For act ∈ {tx, rx}, n �act n′ states that the:

– state components of the corresponding automaton are equal (n.a.act =
n′.a.act).

– locations of the corresponding queues are equal (qact(n) = qact(n′)).
– content of the corresponding queues are equal (∀add ∈ qact(n). bd(n, add) =

bd(n′, add), where ∈ denotes list membership and bd(n, add) is a record with
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its fields set to the values of the corresponding fields of the BD at address
add in the state n).

– other queue is not expanded (∀add. add ∈ qact′(n′) =⇒ add ∈ qact′(n),
where act ′ = tx if act = rx and act ′ = rx if act = tx).

The following Lemma states that n �act n′ indeed preserves the correspond-
ing invariant Iact :

Lemma 4. For every act if Iact(n,R,W ) and n �act n′ then Iact(n′, R,W ).

To complete the proof we introduce a relation for every action act , n �act n′,
which formalizes that the location of the corresponding queue is unmodified and
that all bytes outside the queue are unmodified:

n �act n′ � (∀add ∈ qact(n)(bd(n, add).ndp = bd(n′, add).ndp)) ∧
(∀add �∈ A(qact(n))(n.reg.m(add) = n′.reg.m(add)))

(where A(qact(n)) is the set of byte addresses of the BDs in qact(n), and the
imaginary “initialization-queue” is defined to be empty: qit(n) � [ ]). The fol-
lowing Lemma states that each action preserves this relation, provided that the
corresponding invariant holds in the pre-state:

Lemma 5. For every act if Iact(n,R,W ), n
l−→ n′ and l ∈ L(act) then n �act

n′.

Proof. The lemmas follows immediately for initialization since the initialization
automaton does not modify n.reg.m.

For transmission and reception, the first conjunct of n �act n′ holds since
the corresponding automaton does not modify the NDP-fields of the BDs in
qact(n), and qact(n) contains no overlapping BDs (by Iact(n,R,W )). The second
conjunct holds since the automaton assigns only fields of BDs in qact(n) (by
Iact(n,R,W )). �

The next Lemma states that each action either shrinks the corresponding
queue or does not modify its location (the symbol @ denotes concatenation):

Lemma 6. For every act if Iact(n,R,W ), n
l−→ n′, and l ∈ L(act) then

∃q (qact(n) = q@qact(n′)).

Proof. qact(n) is non-overlapping (by Iact(n,R,W )) and no automaton assigns
an NDP-field of a BD. Therefore, no automaton can change the location of the
BDs in its queue. If the state component identifying the head of qact is not
modified, the location of the queue is not modified; and if it is modified, then
it is set to either zero (emptying the queue) or to a member of qact(n) (by
Iact(n,R,W ); shrinking the queue). �

We finally show that each action preserves the invariant of the other actions:
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Corollary 1. For every act �= act ′ if I(n,R,W ), n
l−→ n′, and l ∈ L(act) then

n �act′ n′.

Proof. For act ′ = it, act ∈ {tx, rx}. Lemma 1 gives n �act′ n′, and Lemma 2
gives n.a.atm.s = idle =⇒ n′.a.atm.s = idle for atm ∈ {tx, rx}. Therefore,
n �it n′ holds.

If act = it then the transition is performed by the initialization automaton,
which does not modify n.a.tx, n.a.rx (by Lemma 1), nor n.reg.m. Therefore the
qtx and qrx are unchanged.

If act = tx and act ′ = rx, then Lemmas 1, 5, and 6 imply n �rx n′. The
same reasoning applies for act = rx and act ′ = tx. �

Corollary 2. For every act �= act ′ if I(n,R,W ), n
l−→ n′, and l ∈ L(act) then

Iact′(n′, R,W ).

Proof. Follows from Corollary 1 and Lemma 4. �

Corollary 3. For every act if I(n,R,W ), n
l−→ n′, and l ∈ L(act) then Iqs(n′).

Proof. Lemmas 5, 1 and Iqs(n) imply that an action cannot modify the queue
of another action. This property, Lemma 6, and Iqs(n), imply that the queues
remain disjoint. �

6 HOL4 Implementation

The model and the proof have been implemented with the HOL4 interactive
theorem prover [16]. Hereafter we briefly summarize some details of the imple-
mentation.

The HOL4 model uses an oracle to decide which automaton shall perform
the next NIC transition and to identify properties of received frames (e.g. when
a frame is received, its content, and presence of CRC errors). The oracle is also
used to resolve some of the ambiguities in the NIC specification [1].

The NIC transition relation is defined in terms of several functions, one for
each automaton state: n

l−→ n′ is represented in HOL4 as n′ = δatm
n.a.atm.s(n),

where atm is the automaton causing transition l and δatm
n.a.atm.s is the transition

function of atm from the state n.a.atm.s.
The implementation of the proof of Lemma 5 is based on the following strat-

egy:

1. For each BD-field f we introduce a HOL4 function, wi(m,add, v), which
updates the NIC memory m by writing the BD-field f of the BD at address
add with the value v.

2. The HOL4 function write performs several field writes sequentially:

write([],m) � m

write([(w1, a1, v1), . . . , (wk, ak, vk)],m) �
write([(w2, a2, v2), . . . , (wk, ak, vk)], w1(m,a1, v1))
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3. For each transition function δatm
s , we define a (possibly empty) list

W atm
s (n) = [t1(n), . . . , tk(n)], where ti(n) is a triple of the form (w, a, v)

(denoting a field writer, address and value, respectively) and w, a and v
depend on the state n. We prove that δatm

s and W atm
s update n.reg.m iden-

tically: δatm
s (n).reg.m = write(W atm

s (n), n.reg.m). For tx and rx, we also
prove that the written BDs are in the corresponding queue ({t1.a, . . . , tk.a} ⊆
qatm(n)), and for td and rd that the written BD is the BD following the
last processed BD ({t1.a, . . . , tk.a} ⊆ {n.a.tx.bd-add} and {t1.a, . . . , tk.a} ⊆
{n.a.rx.bd-add} respectively).

4. We prove that each wi writes only the BD at the given address and preserves
the NDP-field:

(∀add′ �∈ A([add]) (m(add′) = wi(m,add, v)(add′))) ∧
bd(m,add).ndp = bd(wi(m,add, v), add).ndp

5. Finally, we prove Lemma 5 for every update write(W atm
s (n), n.reg.m), pro-

vided that all possible pairs of BDs at the addresses in W atm
s (n) are non-

overlapping (that is, ti.a and tj .a are not overlapping for {ti, tj} ⊆ W atm
s (n)).

The non-overlapping is guaranteed by I(n,R,W ).

HOL4 requires a termination proof for every function definition. For this
reason the function qtx returning the list of BDs in the transmission queue cannot
be implemented by recursively traversing the NDP-fields of the BDs, since in
general the (linked) list can be cyclic and therefore the queue can be infinite.
This problem is solved as follows. We introduce a predicate BD Q(q, add,m)
that holds if the queue q is the list (which is finite by definition in HOL4) of
BDs in NIC memory m starting at address add, linked via the NDP-fields, and
containing a BD with a zero NDP-field (the last BD). This predicate is defined
by structural induction on q and its termination proof is therefore trivial. We
show that the queue starting from a given address in a given NIC memory m is
unique:

∀q q′ add m .(BD Q(q, add,m) ∧ BD Q(q′, add,m)) =⇒ q′ = q

Itx-wd includes a conjunct stating that there exists a list q satisfying
BD Q(q, n.a.tx.head-add, n.reg.m) (n.a.tx.head-add denotes the address of
the first BD in the transmission queue, which is defined to be empty if
n.a.tx.head-add = 0). This enables to define qtx(n) using Hilbert’s choice oper-
ator applied on the set {q | BD Q(q, n.a.tx.head-add, n.reg.m)}, returning the
unique queue satisfying the predicate. The same approach is used for the recep-
tion queue.

The model of the NIC consists of 1500 lines of HOL4 code. Understand-
ing the NIC specification, experimenting with hardware, and implementing the
model required (roughly) three man-months of work. The NIC invariant con-
sists of 650 lines of HOL4 code and the proof consists of approximately 55000
lines of HOL4 code (including comments). Identifying the invariant, formaliz-
ing it HOL4, defining a suitable proof strategy, and implementing the proof in
HOL4 required (roughly) one man-year of work. Executing the proof scripts take
approximately 45 min on a 2.93 GHz Xeon(R) CPU X3470 with 16 GB RAM.
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7 Prevention of Code-Injection in IoT System

To demonstrate the applicability of our approach we developed a software plat-
form to prevent code injection in an embedded connected Linux system running
on BeagleBone Black.

Existing Platform. MProsper [5] is a formally verified platform that guar-
antees component isolation and absence of code injection. The latter is based
on Virtual Machine Introspection (VMI) and code hashing: MProsper prevents
execution of code (i.e. memory page) whose hash value is not in the database of
trusted program hashes, referred to as the “golden image”.

MProsper and Linux are guests of the Prosper hypervisor [12], which has
been formally verified to isolate itself and its guests. Linux is paravirtualized,
implying that both Linux and the applications are executed in user mode. Only
the hypervisor is executed in privileged mode and which is invoked via hypercalls.
In order to guarantee isolation, the hypervisor is in control of the MMU and
virtualizes the memory subsystem via direct paging: Linux allocates the page
tables inside its own memory area and can directly modify them while the tables
are not in active use by the MMU; once the page tables are in active use by the
MMU, the hypervisor guarantees that those page tables can only be modified
via hypercalls.

Since the hypervisor supervises all modifications of the page tables, MProsper
can intercept all modifications of the virtual memory layout. Whenever Linux
requests to change a page table, MProsper identifies the physical pages that are
requested to be made executable (if the request involves executable permissions),
computes the hash values of those pages, and checks that the hash values are in
the golden image. Additionally, MProsper forces Linux to obey the executable
space protection policy: A memory page can be either executable or writable,
but not both. These policies guarantee that the hash values of the code have
been checked by MProsper before the code is executed and that executable code
remains unmodified after validation.

Attacker Model. Concerning the Linux guest it is not realistic to restrict
the attacker model, since it has been repeatedly demonstrated that software
vulnerabilities have enabled complete Linux systems to be overtaken via privilege
escalation. For this reason we assume that the attacker has complete control of
the Linux guest. The attacker can force applications and the kernel to execute
arbitrary code and access arbitrary data. It is assumed that the goal of the
attacker is to run an arbitrary binary program.

Secure Network Connectivity via Monitoring. MProsper prevents code
injection if the CPU is the only hardware component that can modify mem-
ory [5]. However, if Linux can control a DMA device then Linux can indirectly
perform arbitrary memory accesses with catastrophic consequences: modify page
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Fig. 5. The hypervisor prevents Linux from directly modifying the trusted components,
page tables, and NIC registers (gray elements). Mprosper intercepts all changes to page
tables, guaranteeing that executable code is read only (dashed gray elements) and that
the hash values of the executable pages (e.g. code of App 2) are in the golden image.
The NIC monitor intercepts all attempted NIC reconfigurations, guaranteeing that the
invariant is preserved.

1 bool n i c ram hand le r ( a : word , v : word )
2 update q heads ( ) ;
3 for op in [ tx , rx ] :
4 case q ove r l ap (a , op ) o f
5 LAST NDP:
6 i f ( not queue secure (v , op ) )
7 return f a l s e ;
8 ILLEGAL: return f a l s e ;
9 NO: cont inue

10 m[a] := v ;
11 return t rue ;

Fig. 6. Pseudo-code of the NIC Monitor handling writes to internal NIC memory.

tables, enabling Linux to escape its memory confinement; inject code and data
into the hypervisor or other guests (providing e.g. secure services); modify the
golden image; or inject code into Linux executable memory.

We extend the system with secure Internet connectivity while preventing
Linux from abusing the DMAC of the NIC. We deploy a new monitor within the
hypervisor that validates all NIC reconfigurations (see Fig. 5). The hypervisor
forces Linux to map the NIC registers with read-only access (NIC register reads
have no side effects). When the Linux NIC driver attempts to configure the
NIC, by writing a NIC register, an exception is raised. The hypervisor catches
the exception and, in case of a NIC register write attempt, invokes the monitor.
The monitor checks whether the write preserves the NIC invariant, and if so
re-executes the write, and otherwise blocks it.

Figure 6 presents the pseudo-code of the monitor that checks writes (of the
value v) to (the address a of) the NIC memory. The monitor uses the variables
tx q and rx q to store the addresses of the heads of the transmission and recep-
tion queues, respectively. Initially (line 2), the monitor updates tx q and rx q
by traversing the queues until a BD with a cleared OWN-flag is encountered



Trustworthy Isolation of DMA Enabled Devices 51

(i.e. the monitor updates its view of which BDs are in use by the NIC). The
monitor then checks the write with respect to both transmission and reception
queues (line 3). If Linux is attempting to overwrite a BD of a queue then the
queue is only allowed to be extended: The updated BD must be last in the
queue and the address a must be the corresponding NDP field (line 5). In this
case the appended queue (i.e. the one starting from address v) must be secure:
All BDs are properly initialized, it is not circular and does not point to BDs
of the existing nor have overlapping BDs, it does not overlap the other queue,
and all addressed buffers belong to Linux memory. Moreover, reception buffers
must not be executable. Any other update (line 8) of an existing queue is pro-
hibited. Finally, if the queue extension is secure or no queue is modified then the
monitor performs the write (line 10). The actual code of the monitor is slightly
more complex, due to data structures recording which BDs are potentially in
use by the NIC, in order to speed up the checks of whether a request attempts
to modify a BD that can affect the operation of the NIC.

In addition to the NIC monitor, we extended the checks of MProsper to
ensure that page tables and executable code are not allocated in buffers address
by BDs in the reception queue, since those buffers are written when frames are
received.

Secure Remote Upgrade. In addition to enabling Internet connectivity to
Linux applications, the new system design also enables connectivity for the secure
components, which can use Linux as an untrusted “virtual” gateway. We used
this feature to implement secure remote upgrade of Linux applications. New
binary code and corresponding hash values are signed using the administration
private key and published by a remote host. Linux downloads the new binaries,
hash values, and signatures and requests an update of the golden image via a
hypercall. The hypervisor forwards the request to MProsper. The signature is
checked by MProsper using the administration public key, and if it is valid, the
golden image is updated with the new hash values. The use of digital signatures
makes the upgrade trustworthy, even though Linux acts as a network intermedi-
ary, and furthermore, even if Linux is compromised. A similar approach is used
to revoke hash values from the golden image.

Having the NIC driver in Linux in contrast to developing a NIC driver for
the hypervisor has several advantages. It keeps the code of the hypervisor small,
avoiding verification of code that manages initialization, power management,
routing tables and statistics of the NIC. It makes the interface of the NIC inde-
pendent of the guest OS, since the monitor code does not depend on the Linux
networking stack. It also enables the same hypervisor and monitor to be used
with different OSs, OS versions, and device driver versions. Finally, it demon-
strates a general mechanism to secure DMACs that are configured via linked
lists and can easily be adapted to support other DMACs.

Evaluation. Network performance was evaluated for BeagleBone Black (BBB),
Linux 3.10, with netperf 2.7.0. BBB was connected with a 100 Mbit Eth-
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ernet point-to-point link to a PC, with netperf 2.6.0. The benchmarks are:
TCP STREAM and TCP MAERTS transfer data with TCP from BBB to the
PC and vice versa; UDP STREAM transfers data with UDP from BBB to
the PC; and TCP RR and UDP RR use TCP and UDP, respectively, to send
requests from BBB and replies from the PC. Each benchmark lasted for ten
seconds and was performed five times. Table 1 reports the average value for each
test.

Table 1. Netperf benchmarks. TCP STREAM, TCP MAERTS and UDP STREAM
are measured in Mbit/second, and TCP RR and UDP RR are measured in transac-
tions/second.

Configuration Benchmark

TCP STREAM TCP MAERTS UDP STREAM TCP RR UDP RR

Native 94.1 93.9 96.2 3365.1 3403.4

Native+Monitor 94.1 93.9 96.2 3317.6 3402.2

Hyper 16.2 45.6 29.3 924.9 1009.0

Hyper+Monitor 15.3 41.0 27.6 891.3 982.6

We compare the network performance of the system (Hyper+Monitor) shown
in Fig. 5 with the MProsper system (Hyper) where Linux is free to directly
configure the NIC, and therefore being able to violate all security properties.
The performance of the new system are between 89.9% and 97.4% of the original
system. This performance loss is expected due to the additional context switches
caused by the Linux NIC driver attempting to write NIC registers.

To validate the monitor design we also experimented with a different system
setup. In this case we consider a trusted Linux kernel that is executed without
the hypervisor but with a potentially compromised NIC driver (Native). This
is typically the case when the driver is a binary blob. In order to prevent the
driver from abusing the NIC DMA the monitor is added to the Linux kernel
(Native+Monitor). The Linux NIC driver has been modified to not directly
write NIC registers but instead to invoke the monitor function when a NIC
register write is required. The monitor is similar to the one in the hypervisor,
and the C file containing the monitor code is located in the same directory as the
Linux NIC driver. The overhead introduced by this configuration is negligible, as
demonstrated by the first two lines of Table 1. The same approach can be used
to monitor an untrusted device driver that is executed in user mode on top of a
microkernel (e.g. seL4 and Minix).

In addition to being OS and device driver version independent, the monitor
minimizes the trusted computing base controlling the NIC. In fact, the monitor
consists of 900 lines of C code (excluding address conversion) while the Linux
device driver consists of 4650 lines of C.
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8 Related Work

Several projects have done pervasive verification of low level execution platforms
(e.g. [6,9–11,19]). These projects usually do not take I/O devices into account.
If I/O devices are taken into account then there are four approaches to show
security properties of these platforms: (1) block disallowed memory accesses by
disabling DMA or using explicit hardware support, like IOMMU for x86 (e.g.
Vasudevan et al. [18]); (2) verify a privileged device driver; (3) monitor the
configurations established by an untrusted and unprivileged device driver; and
(4) synthesize a driver that is correct by construction. In the last three cases
formal models of the I/O devices (the NIC in our case) are necessary.

Alkassar et al. [2] and Duan [7] have verified device drivers for UART devices.
Alkassar et al. [3] have verified a page fault handler of a microkernel that controls
an ATAPI disk, proving that after the driver has terminated, a specific page in
memory has been copied to a sector of the disk. In all these cases, data transfers
to and from the device occur via the CPU and no DMA is involved, therefore
these devices do not constitute a threat to memory isolation.

The system design presented in [20] is similar to the system design of Fig. 5a
and consists of a hypervisor, a monitor, and untrusted guests. The hypervisor is
based on XMHF [18] and configures the hardware to protect: the hypervisor from
the monitor and from the guests; the monitor from the guests; and the guests
from each other. The monitor (called wimpy kernel) checks device configurations
built by guests to ensure isolation. Although memory integrity of the hypervisor
has been verified, I/O devices are not considered in the verification since their
memory accesses are checked by an IOMMU.

Device driver synthesis is a method for automatically generating device
drivers that are correct by construction. Some of these methods (e.g. [13,14])
require a specification of the protocol of the communication between the OS and
the device driver and between the device driver and the I/O device. Current
results cannot synthesize device drivers for I/O devices with DMA. When only
security properties are needed (and not functional correctness), communication
protocols are not necessary for synthesis and a security invariant can be used
to drive the synthesis of a run-time monitor (e.g. generation of a debugging
monitor [17]).

9 Concluding Remarks

We modeled the NIC of an embedded system and demonstrated that the NIC can
be securely isolated. Isolation is formally verified by means of an invariant, which
is preserved by all NIC operations, and which implies that all memory requests
address only readable and writable memory regions. The invariant provides a
blueprint for securing the NIC: Either the device driver ensures preservation of
the invariant, or a run-time monitor is used to prevent potentially compromised
software to violate the invariant. Section 7 demonstrates that the second method
is practical, by evaluating two different deployments of the monitor.
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Hardware specifications are often incomplete (e.g. tests on hardware show
undocumented updates of BD-fields), unclear, ambiguous, and self-contradictory
(e.g. one section of the specification specifies SOP-BD and another specifies
EOP-BD). To get a clear understanding of the NIC, in addition to reading the
specification, we inspected the source code of the Linux NIC driver and tested
on the hardware some unclear configurations. We also exercised the model by
means of several lemmas, each one representing a large set of test cases for one
usage scenario. Finally we developed a primitive model of the NIC and a device
driver in NuSMV [4]. This allowed us to identify an error in the model related
to the order of execution of some operations.

The verification identified some properties of secure NIC configurations that
are not explicitly stated by the specification and that may be overlooked by
developers. For example, a queue must not contain overlapping BDs, since that
could cause the NIC to modify the BP-field of a BD when updating the OWN-
field of an overlapping BD.

We also identified a bug in the Linux driver while testing the monitor. When
the driver module is unloaded, the driver (1) tears down reception; (2) frees the
buffers in memory used for reception; (3) inadvertently re-enables reception; and
(4) shuts down the DMA of the NIC. If a frame is received between (3) and (4),
then the NIC writes into a freed buffer. In case of interrupt or parallel execution,
this buffer may have been (re-)allocated to another software component, poten-
tially causing data corruption. Moreover, this write after free can leak frame
data to other software components.

Our approach can be adapted to secure other DMACs that are configured
via linked lists. In case the linked lists are stored in memory instead of being
stored in the DMAC, then their elements must not overlap with writable buffers
addressed by the BDs or be directly writable by untrusted software. Also, the
linked lists cannot reside in non-readable memory, since the DMAC can then
leak their configuration/content. In case the DMAC does not modify BDs, the
constraint of non-overlapping BDs and queues is not needed. Our approach can
also handle register based DMACs by considering the registers used to configure
memory accesses as a fixed queue. On the other hand, a general treatment of
programmable DMACs is challenging, since they require a formal model of their
instruction set, which can be used to define arbitrary behavior.
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Abstract. Role-Based Access Control (RBAC) restricts unauthorized
user accesses by ensuring that only the permissions necessary for exe-
cuting the respective tasks by the users are available through the roles
assigned to them. In order to effectively deploy and sustain RBAC in
an organization, a set of roles needs to be designed. This can be done
using an approach known as role mining. In many cases, it may be essen-
tial to limit the accessibility of the roles to certain locations and time
periods. Such kind of location and time dependent availability of roles
can be enforced by the spatio-temporal extensions of the RBAC model.
The implementation of these extended models requires the creation of
spatially and temporally constrained roles which cannot be directly done
using the traditional role mining algorithms. In this paper, we propose
an approach known as spatio-temporal role mining to generate the roles
for setting up spatio-temporal RBAC. We describe a suitable represen-
tation for depicting the input to spatio-temporal role mining, formally
define the Spatio-Temporal Role Mining Problem (STRMP) and propose
an algorithm for solving it. Experimental results obtained from synthetic
and real-world datasets provide the performance evaluation of our pro-
posed approach.

Keywords: Access control · Spatio-temporal RBAC · Spatio-temporal
role mining · Role minimization · Algorithm

1 Introduction

Role-Based Access Control (RBAC) [26] has been widely used as a suitable
means of enforcing access control. As the name of the model implies, roles is
possibly the single most crucial element of RBAC. Thus, in order to deploy
RBAC in any organization, a set of roles is required. The process of creating roles
for implementing RBAC is known as role engineering [6]. There are 3 approaches
to performing role engineering - (i) top-down, (ii) bottom-up and (iii) hybrid. A
top-down approach [23] works by analyzing and repeatedly dividing the business
processes to determine the permissions needed to complete a particular task.
On the other hand, a bottom-up technique accepts the information describing
c© Springer Nature Switzerland AG 2019
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the permissions assigned to each of the users, also known as user-permission
assignments, as input and creates a set of roles. Role mining [8,14,28,29] is
a bottom-up technique of role engineering. The third type of role engineering
approach, hybrid [22] combines both top-down and bottom-up techniques.

The input to role mining is a set of user-permission assignments which can
be represented in the form of a boolean matrix known as the User-Permission
Assignment or UPA matrix. The rows and columns of UPA correspond to users
and permissions respectively. The assignment or non-assignment of a permission
p to a user u is depicted by putting a 1 or a 0 respectively in the cell present
in row u and column p of the UPA. The output given by role mining consists
of a set of roles, a user-role assignment (UA) relation and a role-permission
assignment (PA) relation. The UA contains the information regarding the roles
given to each user and the PA describes the composition of each role in terms of
permissions. Like the UPA, the UA and PA also have suitable boolean matrix
representations.

Though RBAC has proven to be quite an appropriate means of access con-
trol, it is not without some inherent shortcomings. While in many cases, it may
be sufficient to simply have a set of roles without any additional constraints,
system administrators, sometimes, may want to prohibit the unrestricted avail-
ability of roles for the users. As a result, a system administrator may restrict a
role to be available or enabled only from a certain location or during a specific
time interval or both. Consequently, the permissions contained in the role will
also be subjected to the same location and time constraints. Such kinds of con-
straints cannot be accommodated by RBAC. Hence several extensions of RBAC
have been proposed. Some of these extensions allow enabling of roles based
on time constraints and are known as the temporal extensions of RBAC like
Temporal Role-Based Access Control (TRBAC) [2] and Generalized Temporal
Role-Based Access Control (GTRBAC) [11]. Other extended models allow roles
to be enabled from specific locations and are categorized as the spatial exten-
sions of RBAC like GEO-RBAC [7], Location-Aware Role-Based Access Control
(LRBAC) [24], and Proximity-based Spatially Aware RBAC (Prox-RBAC) [12].
Combining both spatial and temporal models, researchers have also proposed a
number of spatio-temporal extensions of RBAC like Location and Time-Based
RBAC (LoT-RBAC) [4], generalized Temporal and Spatial RBAC (TSRBAC)
[5], Spatio-Temporal Role-Based Access Control [25], Spatio-Temporal Role-
Based Access Control (STRBAC) [13], etc.

To implement the above mentioned extended RBAC models, roles having the
appropriate constraints are required. Such kind of roles cannot be directly output
by the traditional role mining algorithms since these approaches are capable of
handling only boolean input. For this reason, temporal role mining [17–20,27]
has been proposed to create roles suitable for the deployment of the temporally
extended RBAC models. However, to the best of our knowledge, few attempts
have been made for designing approaches for implementing the spatio-temporal
extensions.
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In this paper, we present an approach to mine roles for the deployment of
spatio-temporal RBAC models. We name this process as Spatio-Temporal Role
Mining. Spatio-temporal role mining takes as input a set of user-permission
assignments having location and time-based constraints associated with them.
We propose a representation for storing this input and name it as the Spatio-
Temporal User-Permission Assignment (STUPA) Matrix. The output of the pro-
posed role mining variant is a set of spatio-temporal roles. We formally define the
problem of mining a minimal set of such roles as the Spatio-Temporal Role Min-
ing Problem (STRMP). Moreover, we propose an algorithm for solving STRMP
which makes use of existing traditional role mining algorithms. The benefit of
using the existing role mining techniques is the seamless migration from RBAC
to spatio-temporal RBAC without having to create a new and computationally
complex algorithm to handle the space and time constraints. In case, spatio-
temporal RBAC is implemented from scratch, then also the proposed technique
can be easily applied. We have evaluated the performance of our approach both
on synthetically generated datasets as well as real-world datasets augmented
with appropriate spatio-temporal constraints.

The rest of the paper is organized as follows. Section 2 presents a brief sur-
vey of the current literature on role mining and Sect. 3 discusses some funda-
mental aspects of RBAC, role mining, extended RBAC models and role min-
ing approaches related to them. In Sect. 4, we introduce the Spatio-Temporal
User-Permission Assignment (STUPA) Matrix for storing the input of spatio-
temporal role mining and formally define the Spatio-Temporal Role Mining
Problem (STRMP). The algorithm for solving STRMP is discussed in Sect. 5
and explained using an example. Experimental results depicting the performance
evaluation of the proposed approach is presented in Sect. 6. Finally, Sect. 7 con-
cludes the paper along with some insights into future research efforts.

2 Related Work

The current literature contains several works related to role mining. Over the
years, the research in this area has progressed along 2 directions which are com-
plementary to one another. On one hand, a number of optimization problem
variants have been proposed and on the other, various algorithms for solving
these problem variants have been presented. Therefore, in this section, we shall
first discuss some of the role mining problem formulations and then review the
associated solution approaches.

Basic-RMP [28] is the role mining problem variant which minimizes the
total number of roles. It also derives an exact solution where the input matches
the output without any deviations. In other words, each user acquires exactly
those permissions through his/her assigned roles as the ones specified in the
input. This problem has been shown to be NP-complete. Instead of computing
an exact solution, a limited amount of inexactness can be allowed in the output
such that certain users are deprived of some privileges. By accommodating this
error margin, researchers have proposed 2 problem variants - δ-approx RMP [28]



62 A. Dubey et al.

and Min-Noise RMP [28]. The former one minimizes the total number of roles
by allowing for a limited degree of difference between the input and the output
and the latter minimizes the total amount of input-output deviation for a fixed
number of roles. Another problem similar to Min-Noise RMP is Usage RMP
[15] which takes a UPA and a PA as input and derives the UA by minimizing
the deviations of the output from the input. In addition to these, several other
problem variants are present such as Edge-RMP [14] that minimizes the sum of
the sizes of the UA and PA, Role Hierarchy Building Problem [10] which reduces
the number of hierarchical relations between senior and junior roles, Weighted
Structural Complexity Optimization (WSCO) Problem [22] which minimizes a
weighted sum of the sizes of different RBAC elements, etc.

Different types of approaches have been proposed for performing role mining.
In [28] and [29], Vaidya et al. present algorithms that create roles by combining
the similar permission assignments of multiple users for solving Basic-RMP and
δ-approx RMP. Graph theoretic approaches have been proposed in [8] and [10]
for generating solutions for Basic-RMP and Role Hierarchy Building Problem
respectively. For solving Usage RMP and Edge-RMP, researchers have come up
with matrix decomposition based techniques [14,15]. WSCO has been solved by
making used for formal concepts analysis [28]. Recently, role mining algorithms
capable of limiting the maximum number roles to be assigned to a user and the
maximum number of roles of which a permission can become a member of, have
been proposed by Blundo et al. [3]. Other recent role mining approaches include
role generation using multi-domain information [1] and role creation from web
usage patterns [9].

In the past few years, a number of works have focused on mining roles for the
deployment of the temporally extended RBAC models. In [17], the authors have
formally defined the Temporal Role Mining Problem (TRMP) as the problem
of creating a minimal set of temporal roles (roles having temporal constraints),
proved TRMP to be NP-complete and have proposed a heuristic to solve it. This
work has been extended in [18], where an inexact version of TRMP, known as
the Generalized Temporal Role Mining Problem (GTRMP) has been presented.
Apart from the number of temporal roles, other minimization metrics have also
been proposed such as the Cumulative Overhead of Temporal Roles And Permis-
sions (CO-TRAP) [19] and Weighted Structural Complexity (WSC) [27]. The
problem variant that minimizes CO-TRAP along with TRMP have been solved
using many-valued concepts in [19] and the one minimizing WSC has been solved
by a combination of subset enumeration and role hierarchy creation [27].

To the best of our knowledge, no attempts have been made to create roles for
the deployment of the spatio-temporal extensions of RBAC. A very recent work
[16] focuses on dataset generation that can associate spatial constraints with
user-permission assignments and also proposes a representation for depicting
such datasets. However, in [16], the authors have not presented any role mining
algorithm. This paper proposes an approach which can aid system administrators
to migrate to a spatio-temporal RBAC extension without much computational
overhead.
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3 Basic Preliminaries

In this section, we discuss some of the background concepts related to RBAC,
traditional role mining, spatial-temporal RBAC and temporal role mining.

3.1 Role-Based Access Control (RBAC)

RBAC [26] consists of the following components:

– A set of users, a set of permissions and a set of roles.
– A many-to-many relation known as the user-role assignment relation or UA

which describes the set of roles assigned to each user. The UA can be repre-
sented as a boolean matrix. The rows of the matrix correspond to users and
the columns correspond to roles. If a role r is assigned to a user u then the
cell (u, r) of the UA matrix is set as 1, otherwise it is set as 0.

– A many-to-many relation known as the role-permission assignment relation
or PA. The information regarding the set of permissions present in each role
is captured in the PA. Like the UA, the PA can also be depicted as a boolean
matrix where the roles are represented as rows and the permissions are rep-
resented as columns. The cell (r, p) of the PA matrix is set as 1 if role r
includes permission p, otherwise the cell contains a 0.

In the current context, we do not discuss about sessions, role hierarchy and
constraints like cardinality and separation of duty (SoD) constraints as these
RBAC components are not directly related to our work.

3.2 Role Mining

Role mining [8,14] is the approach that takes a set of user-permission assignments
as input and as output, creates a set of roles, a UA and a PA. The input to
role mining can be conveniently represented as a boolean matrix, the rows and
columns of which correspond to users and permissions respectively. This matrix is
termed as the UPA matrix. If a user is assigned a particular permission, then that
corresponding cell of the UPA is set as 1. The non-assignment of a permission
is represented by setting the corresponding cell as 0. During role mining, several
optimization criteria are considered such as the total number of roles [28], the
cumulative sizes of the UA and the PA [14] or a weighted structural complexity
[21]. Depending upon the role mining criterion, various role mining algorithms
have been proposed.

3.3 Spatio-Temporal Extensions of RBAC

The spatio-temporal RBAC extensions [4,13] have 2 types of constraints asso-
ciated with the enabling of roles - location and time. In these models, a role
is enabled from a specific location and during a specific set of time intervals.
As a result, the permissions present in a role are available to the users only in
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the corresponding locations and during the associated time intervals. The role
remains disabled in the rest of the locations and during rest of the time.

The spatio-temporal RBAC models use a notion of 3-dimensional space to
represent location based constraints. A location can correspond to a geometric
shaped area such as a line, a rectangle, a circle, a polygon, etc. or can resem-
ble a non-geometric irregular figure. In either case, a set of points lying on the
boundary of the area can be used to represent a location. The extended RBAC
models distinguish between a physical location and a logical location. When a
location is tangibly represented using a set of points (being parts of a co-ordinate
system), it is referred to as a physical location. A physical location, though can
be very precisely represented, does not directly resemble the notion of spaces
as perceived by human cognition. A logical location, on the other hand, corre-
sponds to areas or locations as recognized by individuals without having to think
about boundary points. Examples of logical locations include parking lot, play-
ground, library, etc. However, for computational purposes, it is easier to work
with physical locations rather than logical ones.

In order to represent the enabling durations of a role, the extended RBAC
models use a construct known as periodic expression. A periodic expression
denotes an infinite set of time intervals. The intervals recur according to a
specific frequency as dictated by the expression itself. For e.g., The periodic
expression all.Y ears + {6, 9}.Months + {1, 3}.Weeks + {2, 4}.Days +
{10}.Hours � 3.Hours represents the set of time intervals beginning at 10 am
of every Monday and Wednesday (Sunday being the first day of week) of the
first and third weeks of the months of June and September (January being the
first month) of every year and ending at 1 pm. Y ears, Months, Weeks, Days
and Hours are known as Calendars. Since a periodic expression does not bound
the size of the time interval set, this is done by using date expressions (writ-
ten in mm/dd/yyyy format). Repeating our previous example, if we write,
[01/01/2018, 12/31/2019], all.Y ears + {6, 9}.Months + {1, 3}.Weeks +
{2, 4}.Days + {10}.Hours � 3.Hours, the above mentioned time intervals will
apply only for the years 2018 and 2019.

It can be noted here that we do not discuss about any additional features of
the spatio-temporal models like role hierarchy, constraints, etc.

3.4 Temporal Role Mining

For successful deployment of temporal RBAC models, a set of temporal roles
is required which are enabled for specific sets of time intervals. The process to
create such temporal roles has been termed as temporal role mining [17]. It
takes as input a set of user-permission assignments having associated temporal
constraints. These assignments can be represented in the form of a matrix known
as the temporal user-permission assignment (TUPA) matrix. The number of rows
of TUPA is equal to the total number of users and the number of columns is equal
to the number of permissions. Each user is assigned one or more permissions for
a specific set of time intervals. Therefore, if user u is assigned permission p for
a set of time intervals t, then the cell (u, p) of TUPA contains t, otherwise it
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contains φ. After processing such a TUPA, temporal role mining generates a
set of temporal roles, a UA, a PA and a Role Enabling Base (REB). The REB
describes the set of time intervals for which each role is enabled. A number of
temporal role mining algorithms have been proposed till date such as the ones
presented in [17–20,27].

4 Mining Spatio-Temporal Roles

We name the roles having both spatial and temporal constraints as Spatio-
Temporal Roles and the process of generating them as Spatio-Temporal Role
Mining. These roles are crucial for the implementation of any spatio-temporal
extension of RBAC. In this section, we describe a suitable representation for the
user-permission assignments having spatial as well as temporal constraints and
also formally define the problem of mining the spatio-temporal roles.

4.1 Spatio-Temporal User Permission Assignment Matrix

Spatio-temporal role mining is a bottom-up method for creating spatio-temporal
roles. It takes as input a set of user-permission assignments having spatial
as well as temporal constraints associated with them and generates a set of
spatio-temporal roles. We propose that these spatio-temporal user permission
assignments can be represented in the form of a matrix which we name as the
Spatio-Temporal User Permission Assignment (STUPA) Matrix. The rows of
the STUPA correspond to users and the columns correspond to permissions.
Since each user-permission assignment has location and time constraints, each
cell of STUPA either contains a set of locations and a set of time intervals or
contains φ. The presence of φ in a cell, say (ui, pj) of STUPA denotes that user
ui has not been assigned permission pj . If, however, ui is assigned pj , then cell
(ui, pj) will contain a set of locations Lij and a set of time intervals Tij implying
that pj is available to ui for each location of Lij and for each time interval of
Tij . Tij is represented using one or more periodic expressions [2]. Each location
of Lij can be considered as an area which corresponds to either a geometric
or a non-geometric shape and can be represented using a set of points. In this
context, it should be mentioned that we are only considering physical locations
that are described in the spatio-temporal RBAC models and do not consider
the logical locations. Since locations can either belong to a 2-dimensional (2D)
space or a 3-dimensional (3D) space, we account for both in our STUPA matrix.
If the areas belong to a 2D space, then we can represent each of them as a set
of points in 2D space. If on the other hand, they belong to a 3D space, then
we consider that it implies that the areas are present inside a building having
multiple floors. In such a case, each area is represented using a floor number
and a set of points depicting the area boundary. Such a concept of depicting
locations has been discussed in [16].

An example STUPA matrix having 4 users and 4 permissions is depicted in
Table 1. Here, for the sake of brevity, instead of showing a set of time intervals
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Table 1. Example STUPA matrix

p1 p2 p3 p4

u1 {area1}, {10
am–11 am}

φ φ {area2}, {9
am–12 pm}

u2 φ {area1}, {10
am–11 am}

{area1}, {10
am–11 am}

{area2}, {9
am–12 pm}

u3 {area1}, {10
am–11 am}

{area1}, {9
am–12 pm}

{area1}, {9
am–12 pm}

{area2}, {10
am–1 pm}

u4 {area1}, {10
am–1 pm}

{area2}, {10
am–1 pm}

φ φ

and a set of locations, we have shown only one interval and one location. Each
time interval present in a non-empty cell of the STUPA corresponds to a bounded
periodic expression. For eg., For 10 am–11 am, the corresponding bounded peri-
odic expression is 〈[1/1/2015,∞], all.Days + {10}.Hours � 1.Hours〉. Also, the
areas are depicted by their names instead of actually describing the set of points.
The description of each area can be stored in a separate data structure.

In the example STUPA, user u1 is assigned permission p1 for the time inter-
val 10 am to 11 am on all days and for the location area1. Since u1 is not
assigned p2, the cell (u1, p2) contains φ. The remaining cells of the STUPA can
be interpreted similarly. The 2 locations area1 and area2 present in the exam-
ple STUPA are assumed to be disjoint. It may be noted here that the STUPA
representation has some similarities with the Temporal UPA (TUPA) represen-
tation proposed in [17] with respect to the depiction of the temporal constraints.
Also, the representation of the spatial constraints is similar to the Spatial UPA
(SUPA) representation proposed in [16].

4.2 Spatio-Temporal Role Mining Problem (STRMP)

The STUPA matrix described above is given as input to the process of spatio-
temporal role mining. The output that is derived from the process consists
of a set of spatio-temporal roles, a user-role assignment (UA) matrix, a role-
permission assignment (PA) matrix, a spatial role enabling base (SREB) and a
temporal role enabling base (TREB). SREB lists the set of locations in which
each role is enabled and TREB contains the set of time intervals for which each
role is enabled. Here, we consider 2 types of role enabling bases (REBs) - spatial
and temporal, since a set of locations as well as a set of time intervals is asso-
ciated with each individual role. In this paper, we consider that the output of
spatio-temporal role mining is produced in such a manner that each user gets
exactly the same set of permissions for the sets of locations and time intervals
as depicted in the input STUPA through his/her assigned roles. We refer to this
scenario as the output being consistent with the input.
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We define the problem of creating a minimum sized set of spatio-temporal
roles from an input STUPA as the Spatio-Temporal Role Mining Problem
(STRMP). The formal problem definition is as follows.

Definition 1. STRMP: For a set of users U , a set of permissions P and a
spatio-temporal user-permission assignment matrix STUPA given as input, find
a set of spatio-temporal roles STR, a user-role assignment matrix UA, a role-
permission assignment matrix PA, a spatial role enabling base SREB and a
temporal role enabling base TREB, such that the number of spatio-temporal
roles is minimized.

STRMP can be proved to be an NP-complete problem by reducing Basic-
RMP which is a known NP-complete problem to STRMP in polynomial time.
This reduction can be done by assuming that the same location and the
same time interval is associated with all the user-permission assignments of
the STUPA. In the current context, we only consider the number of roles as
the minimization criterion. However, other optimization metrics can also be
considered.

5 Algorithm for Mining Spatio-Temporal Roles

In this section, we present the algorithm for creation of the spatio-temporal roles.
The algorithm takes an STUPA matrix as input and produces a UA, a PA, an
SREB and a TREB. It works in several phases. In the first phase, we separately
create a set of spatial roles (roles having only location constraints) and a set of
temporal roles. In the next phase, these 2 sets of roles are combined to obtain
the set of spatio-temporal roles. For doing this, it needs to be ensured that after
combining, we do not end up with any role through which one or more users can
acquire any permission for any time duration or from any location which was
not specified in the input STUPA. In other words, we make sure that the output
exactly matches with the input. Finally, in the last phase, the spatio-temporal
roles are merged to reduce the size of the final role set. In the subsequent sub-
sections, we discuss each of the phases in detail.

5.1 Creation of Spatial and Temporal Roles

This phase accepts an STUPA matrix as input and segregates out the location
and time information from it. This is done by creating separate UPA matrices
for each distinct location and each unique set of time intervals present in the
STUPA. We consider each non-null element of the STUPA matrix as a quadruple
of the form 〈ui, pj ,Lij , Tij〉 implying that user uij has permission pij in each
location of the set Lij and in each time interval of the set Tij . This quadruple
can be considered to be a combination of 2 triples - 〈ui, pj ,Lij〉 and 〈ui, pj , Tij〉.
We refer to the former one as a spatial triple and the latter one as a temporal
triple. By scanning all the spatial triples present in the STUPA, we identify all
the distinct locations present. Similarly, all the distinct sets of time intervals
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existing in the STUPA are determined by scanning all the temporal triples. Let
SL and ST respectively denote the set of the unique locations and the set of the
distinct time interval sets present in the STUPA. For each location l ∈ SL, a
separate UPA is created as per the following steps - (i) if cell (i, j) of STUPA
contains φ or a location l′′ such that l ∩ l′′ = φ, then the corresponding cell of
the UPA contains 0 and, (ii) if cell (i, j) of STUPA contains a location l′ and
l ⊆ l′, then cell (i, j) of UPA contains a 1. We denote this UPA as UPAl. Each
such UPA is referred to as location-specific UPA. Similarly, for each distinct time
interval set T ∈ ST , we create a UPA which is denoted as UPAT and is named
as time-specific UPA. This process of creating the time-specific UPAs is similar
to the approach of generating the timestamped UPAs described in [20].

After creating the location-specific and time-specific UPAs, a traditional role
mining algorithm that minimizes the size of the role set is applied to each of
them to obtain a set of corresponding type of roles. Since the location and
time information have been segregated out from the input and the individual
UPAs contain information only for a particular location or time interval, any
conventional role mining approach capable of handling only boolean input can
be used. Mining each location-specific UPA will generate a set of roles having
spatial constraints and the output will consist of a UA, a PA and an SREB.
Hence, the spatially-aware roles obtained from each UPAl will be enabled from
location l. From each time-specific UPA, we shall obtain a set of temporal roles
and thus a UA, a PA and a TREB will constitute the output. As a result, the
temporal roles generated from a UPAT will be enabled for a set of time intervals
T .

Algorithm 1 (Create Spatial Temporal Roles) depicts the steps for this phase.
It takes a p x q STUPA as input and generates a set RL of spatial roles and a
set RT of temporal roles. Initially, both sets are initialized as empty sets (Lines
1 and 2). Line 3 identifies all distinct locations present in the STUPA and stores
in set SL. Now, for each unique location l present in SL, a p x q location-specific
UPAl containing all 0s is created (Line 5). In Lines 6–12, each cell of the STUPA
is scanned and if a cell containing a location l′ is found where l is a subset of
or equal to l′, then the corresponding cell content of UPAl is changed to 1. Line
13 creates a set SRl of spatial roles from UPAl by applying a traditional role
mining algorithm and these spatial roles are added to RL in Line 14. Similarly,
in Lines 16–28, all distinct time interval sets of the STUPA are identified, for
each unique time interval set T , a time-specific UPAT is created, a temporal role
set TRT is computed from UPAT and added to RT . RL and RT generated out
of this phase is input to the next phase.

5.2 Generate Spatio-Temporal Roles

This phase takes as input the set of spatial roles and the set of temporal roles
created in the first phase. These spatial and temporal roles are now combined
to generate the spatio-temporal roles. Each spatial role rl has 3 components -
(i) the set Ul of users who are assigned this role, (ii) the set Pl of permissions
contained in the role and (iii) the location l from which the role is enabled. Also,
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Algorithm 1. Create Spatial Temporal Roles
Require: INPUT: p x q STUPA
Require: OUTPUT: RL (set of spatial roles), RT (set of temporal roles)
Require: SL: Set of all distinct locations of STUPA
Require: ST : Set of all distinct time interval sets of STUPA
Require: SRl: Set of spatial roles generated from UPAl

Require: TRT : Set of temporal roles generated from UPAT

1: RL ← φ
2: RT ← φ
3: Identify all distinct locations and store in SL
4: for each l ∈ SL do
5: Create p x q UPAl containing 0s
6: for i ← 1 to p do
7: for j ← 1 to q do
8: if cell (i, j) of STUPA contains l′ such that l ⊆ l′ then
9: Put 1 in cell (i, j) of UPAl

10: end if
11: end for
12: end for
13: Create SRl from UPAl using a role mining algorithm
14: RL ← RL ∪ SRl

15: end for
16: Identify all distinct time interval sets and store in ST
17: for each T ∈ ST do
18: Create p x q UPAT containing 0s
19: for i ← 1 to p do
20: for j ← 1 to q do
21: if cell (i, j) of STUPA contains T ′ such that T ⊆ T ′ then
22: Put 1 in cell (i, j) of UPAT

23: end if
24: end for
25: end for
26: Create TRT from UPAT using a role mining algorithm
27: RT ← RT ∪ TRT

28: end for

each temporal role rT has 3 components - (i) the set UT of users who are assigned
this role, (ii) the set PT of permissions present in the role and, (iii) the set T
of time intervals for which the role is enabled. Thus, we can use the following
notations - rl = (Ul, Pl, l) and rT = (UT , PT , T ). The notation for temporal role
was introduced in [17]. Combining of the spatial and temporal roles will be done
by considering all of the 6 components. rl and rT will be combined to create
a spatio-temporal role r if both the pairs Ul and UT and Pl and PT have non-
empty intersections. Thus, r = (Ul ∩ UT , Pl ∩ PT , l, T ). Thus, a spatio-temporal
role r will have 4 components. If either of the intersections of the user sets or
the permission sets of rl and rT empty, then no spatio-temporal role can be
constructed by combining rl and rT . We take the intersections of Ul and UT and
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Pl and PT because we need to ensure that no user acquires any permission from
any extra location or any additional time interval set other than those present
in the input STUPA.

Algorithm 2. Generate Spatio-Temporal Roles
Require: INPUT: RL (set of spatial roles), RT (set of temporal roles)
Require: OUTPUT: R (set of spatio-temporal roles)
1: R ← φ
2: for each rl ∈ RL do
3: for each rT ∈ RT do
4: if Ul ∩ UT �= φ and Pl ∩ PT �= φ then
5: Create spatio-temporal role r = (Ul ∩ UT , Pl ∩ PT , l, T )
6: R ← R ∪ {r}
7: else
8: Do not combine rl and rT
9: end if

10: end for
11: end for

The steps for the creation of the spatio-temporal roles is described in Algo-
rithm2 (Generate Spatio-Temporal Roles). Line 1 initializes the set R of spatio-
temporal roles as an empty set. In the for loops of Lines 2–11, each spatial role rl
and each temporal role rT are pairwise considered and are combined to create a
spatio-temporal role r if the requisite conditions are satisfied. Finally, r is added
to the set R (Line 6).

5.3 Merge Spatio-Temporal Roles

In the third and the final phase of our algorithm, we merge the spatio-temporal
roles generated out of the previous phase to further reduce their number since
our objective is to minimize the size of the final role set. For this, we consider
the roles in a pairwise manner and take into account all the 4 components of
the roles. Let rx = (Ux, Px, lx, Tx) and ry = (Uy, Py, ly, Ty) be 2 spatio-temporal
roles. rx and ry can be merged to create a new role rz if any one of the following
conditions are satisfied.

(i) If Ux and Uy, lx and ly and Tx and Ty are equal, then replace rx and ry
with rz = (Ux, Px ∪ Py, lx, Tx).

(ii) If Px and Py, lx and ly and Tx and Ty are equal, then replace rx and ry
with rz = (Ux ∪ Uy, Px, lx, Tx).

(iii) If Ux and Uy, Px and Py, lx and ly are equal and Tx ∩ Ty 	= φ or Tx and Ty

are consecutive, then replace rx and ry with rz = (Ux, Px, lx, Tx ∪ Ty).
(iv) If Ux and Uy, Px and Py, Tx and Ty are equal and lx∩ly 	= φ or lx and ly share

a common boundary, then replace rx and ry with rz = (Ux, Px, lx ∪ ly, Tx).
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After merging, a UA, a PA, an SREB and a TREB are created and these
along with the final spatio-temporal role set R constitute the output. Algorithm3
shows the steps of the merging phase. The 2 for loops beginning at Lines 1 and
2 respectively consider every pair of roles present in R. The conditions (i), (ii),
(iii) and (iv) are respectively checked in Lines 3, 5, 7 and 9 and accordingly, the
merged role rz is created. Finally, in Line 12, the 2 roles that are merged are
removed from R and the merged one is added to the set in Line 13.

Algorithm 3. Merge Spatio-Temporal Roles
Require: INPUT: R (set of spatio-temporal roles)
Require: OUTPUT: updated R
1: for x ← 1 to |R| do
2: for y ← 1 to |R| - 1 do
3: if Ux = Uy, lx = ly and Tx = Ty then
4: Create rz = (Ux, Px ∪ Py, lx, Tx)
5: else if Px = Py, lx = ly and Tx = Ty then
6: Create rz = (Ux ∪ Uy, Px, lx, Tx)
7: else if Ux = Uy, Px = Py, lx = ly and Tx ∩ Ty �= φ or Tx and Ty are

consecutive then
8: Create rz = (Ux, Px, lx, Tx ∪ Ty)
9: else if Ux = Uy, Px = Py, Tx = Ty and lx ∩ ly �= φ or lx and ly share a

common boundary then
10: Create rz = (Ux, Px, lx ∪ ly, Tx)
11: end if
12: R ← R - {rx, ry}
13: R ← R ∪ {rz}
14: end for
15: end for

5.4 Illustrative Example

In this sub-section, we explain the working of our proposed algorithm using the
STUPA presented in Table 1. It contains 2 distinct locations - area1 and area2

and 3 unique time intervals - 10 am–11 am, 9 am–12 pm and 10 am–1 pm. The
Spatial UPA (SUPA) and Temporal UPA (TUPA) corresponding to the STUPA

Table 2. SUPA matrix for STUPA of Table 1

p1 p2 p3 p4

u1 {area1} φ φ {area2}
u2 φ {area1} {area1} {area2}
u3 {area1} {area1} {area1} {area2}
u4 {area1} {area2} φ φ



72 A. Dubey et al.

Table 3. TUPA matrix for STUPA of Table 1

p1 p2 p3 p4

u1 {10 am–11 am} φ φ {9 am–12 pm}
u2 φ {10 am–11 am} {10 am–11 am} {9 am–12 pm}
u3 {10 am–11 am} {9 am–12 pm} {9 am–12 pm} {10 am–1 pm}
u4 {10 am–1 pm} {10 am–1 pm} φ φ

Table 4. UPAarea1

p1 p2 p3 p4

u1 1 0 0 0

u2 0 1 1 0

u3 1 1 1 0

u4 1 0 0 0

Table 5. UPAarea2

p1 p2 p3 p4

u1 0 0 0 1

u2 0 0 0 1

u3 0 0 0 1

u4 0 1 0 0

Table 6. UPA10 am−11 am

p1 p2 p3 p4

u1 1 0 0 1

u2 0 1 1 1

u3 1 1 1 1

u4 1 1 0 0

Table 7. UPA9 am−12 pm

p1 p2 p3 p4

u1 0 0 0 1

u2 0 0 0 1

u3 0 1 1 0

u4 0 0 0 0

Table 8. UPA10 am−1 pm

p1 p2 p3 p4

u1 0 0 0 0

u2 0 0 0 0

u3 0 0 0 1

u4 1 1 0 0

are shown in Tables 2 and 3 respectively. We show these 2 matrices for ease of
understanding of the example.

The location-specific UPAs obtained from the SUPA of Table 2 are shown in
Tables 4 and 5 and the time-specific UPAs created from the TUPA of Table 3
are depicted in Tables 6, 7 and 8.

Next, the minimum biclique cover based role mining algorithm [8] is applied
to each of the UPAs to obtain the spatial and the temporal roles. The spatial
roles created from UPAarea1 are -

– sr1 = ({u2, u3}, {p2, p3}, {area1})
– sr2 = ({u1, u3, u4}, {p1}, {area1})

The spatial roles generated from UPAarea2 are -

– sr3 = ({u4}, {p2}, {area2})
– sr4 = ({u1, u2, u3}, {p4}, {area2})

From UPA10 am−11 am, the following temporal roles are obtained -

– tr1 = ({u1, u3}, {p1, p4}, {10 am - 11 am})
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– tr2 = ({u2, u3}, {p2, p3, p4}, {10 am - 11 am})
– tr3 = ({u4}, {p1, p2}, {10 am - 11 am})

2 temporal roles that are created from UPA9 am−12 pm are -

– tr4 = ({u3}, {p2, p3}, {9 am - 12 pm})
– tr5 = ({u1, u2}, {p4}, {9 am - 12 pm})

Finally, from UPA10 am−1 pm, 2 temporal roles are obtained -

– tr6 = ({u4}, {p1, p2}, {10 am - 1 pm})
– tr7 = ({u3}, {p4}, {10 am - 1 pm})

On combining these roles, the following spatio-temporal roles are obtained:

– r1 = ({u1, u3}, {p1}, {area1}, {10 am - 11 am})
– r2 = ({u2, u3}, {p2, p3}, {area1}, {10 am - 11 am})
– r3 = ({u2, u3}, {p4}, {area2}, {10 am - 11 am})
– r4 = ({u4}, {p1}, {area1}, {10 am - 11 am, 10 am - 1 pm})
– r5 = ({u4}, {p2}, {area2}, {10 am - 11 am, 10 am - 1 pm})
– r6 = ({u3}, {p2, p3}, {area1}, {9 am - 12 pm})
– r7 = ({u1, u2}, {p4}, {area2}, {9 am - 12 pm})
– r8 = ({u3}, {p4}, {area2}, {10 am - 1 pm})

The merging phase does not reduce the number of roles any further and thus,
the final output consists of 8 spatio-temporal roles.

6 Experimental Results

In this section, we present the experimental results of our proposed approach.
Since currently, there are no real-world datasets directly available which have
associated spatio-temporal constraints, we have conducted the experiments in
a 2-fold manner. On one hand, we have generated synthetic datasets and on
the other, we have augmented the real-world datasets [8] reported in the exist-
ing literature by adding suitable spatio-temporal constraints. For both kinds of
datasets, a single location and a single time interval is associated with each user-
permission assignment. In Subsect. 6.1, we describe how the synthetic datasets
have been created and present the results obtained from them. In Subsect. 6.2, we
describe the process of augmenting the real-world datasets with spatio-temporal
constraints as well as present the experimental results generated by using them
as inputs.

6.1 Results from Synthetic Datasets

For creating the synthetic datasets, we have created several UA and PA matrices
of different sizes by varying the number of users and permissions. We have also
considered 3 locations (say l1, l2 and l3) and 3 time intervals (say t1, t2 and t3).
The UA and the PA are randomly generated and the total number of 1s for both
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UA and PA have been fixed at 2% of the total number of entries of the respec-
tive matrices. This has been done after analyzing the different characteristics of
the real-world datasets [8]. The number of roles for the UA and PA has been
considered to be 10% of the total number of users considered.

Out of the 3 locations, l1 and l2 are overlapping and l3 is completely con-
tained inside l1. Currently, we have considered all 3 locations as axis-parallel
rectangles belonging to a 2D space, each of which is represented using the fol-
lowing parameters - x and y co-ordinates of the bottom left vertex, length of
side along the x-axis and length of side along the y-axis. The rectangles can
also be represented using 4 pairs of x and y co-ordinates for the 4 vertices. Out
of the 3 time intervals, t1 and t2 and, t2 and t3 are overlapping and t1 is com-
pletely contained inside t3. For each role, one location and one time interval have
been randomly selected to create the SREB and the TREB respectively. Finally,
the UA, PA, SREB and TREB are combined together to create the respective
STUPA matrices. Since these datasets are randomly generated, for each combi-
nation of number of users and number of permissions, we have created 30 pairs
of UA and PA matrices and for each pair, a different SREB and TREB are gen-
erated. Consequently, we have obtained 30 STUPA matrices for each parameter
setting. The proposed algorithm has been implemented in Java and executed on
a desktop computer having Intel Xeon processor, 64 GB RAM and Ubuntu 18
as the operating system. The minimum biclique cover based approach have been
used as the traditional role mining algorithm which is applied to the individual
location-specific and time-specific UPAs in the first phase of our algorithm. We
report the median number of spatio-temporal roles (rounded off to the nearest
higher integer) and the average execution time of the 30 STUPA matrices cor-
responding to each parameter setting. The parameter settings along with the
results are presented in Table 9.

Table 9. Results for synthetic datasets

#Users #Permissions #Roles #Spatio-Temporal Roles Time (secs.)

200 200 20 24 0.18

400 400 40 114 0.51

600 600 60 434 1.74

800 800 80 1366 5.47

1000 1000 100 3176 16.47

In the above table, the first column denotes the number of users, the second
one the number of permissions and the third one the number of regular (uncon-
strained) roles considered to construct the UA and PA matrices. The number
of spatio-temporal roles output by our approach is shown in the fourth column
and the last column presents the average execution time in seconds. As can be
observed from the results, the number of spatio-temporal roles as well as the exe-
cution time increases as the size of the STUPA matrices increase. In fact, only
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for STUPAs of size 200 × 200, the number of spatio-temporal roles is close to
the number of unconstrained roles. The reason for the increase in the number of
spatio-temporal roles obtained is because of the fact that the role minimization
algorithm is applied to the individual UPAs and not the STUPA as a whole.
Using a role minimization approach on the entire STUPA can lead to lesser
number of roles, but probably at the cost of higher computation and greater
execution time. Moreover, it will require a new role mining algorithm capable
of handling the spatio-temporal constraints present in the input. The benefit of
our approach is that no new algorithm is required. The spatio-temporal roles
are obtained by utilizing an existing traditional role creation method along with
other steps. Thus, an organization using RBAC as an access control model can
easily migrate to any one of its spatio-temporal extensions without having to
integrate any sophisticated spatio-temporal role generation procedure. In addi-
tion to this, the execution time is also not too high.

6.2 Results from Real-World Datasets

The 9 real-world datasets reported in [8] have been extensively used to evaluate
the performance of role mining algorithms. However, these datasets are boolean
in nature (available as UPA matrices) and do not contain any associated spa-
tial or temporal constraints. Therefore, we have augmented the datasets using
spatio-temporal constraints to generate the corresponding STUPA matrices. For
this, we have used an approach similar to the one described in the previous
sub-section. First, for each dataset, we have obtained the UA and PA matrices
by applying the role mining algorithm based on minimum biclique cover. After
that, for every UA and PA pair, an SREB and a TREB is randomly gener-
ated. This is done by selecting 1 location and 1 time interval respectively out
of 4 equi-probable locations and 4 equi-probable time intervals for each uncon-
strained role of each dataset. The 4 locations are related among themselves via
containment, overlap and disjoint relationships. The same relationships apply for
the time intervals as well. Since the SREB and TREB are randomly generated,
30 such SREBs and TREBs are created for every real-world dataset. We report
the median number of roles (rounded off to the nearest highest integer) and
the average execution time over the 30 executions for the individual datasets.
Table 10 shows the number of users (#Users), number of permissions (#Perms),
number of user-permission assignments (#User-Perm Assignments), number of
unconstrained roles (#Roles) obtained from each dataset as well as the number
of spatio-temporal roles (#Spatio-Temporal Roles) generated by our role mining
method and its execution time in seconds (last column).

In case of the datasets having smaller sizes like emea, healthcare, domino and
firewall2, the number of spatio-temporal roles output by our algorithm is close
to the number of unconstrained roles. However, still there is an increase in the
number of roles given by our method. For the larger datasets like apj, firewall1,
americas small, americas large and customer, the increase in the number of
spatio-temporal roles over that of the unconstrained roles is quite significant.
The reason behind the increase in the size of the final role set is similar to
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Table 10. Results for real-world datasets

Dataset #Users #Perms #User-Perm

Assignments

#Roles #Spatio-Temporal

Roles

Time (secs.)

apj 2,044 1,164 6,841 456 694 36.96

emea 35 3,046 7,220 34 34 0.39

healthcare 46 46 1,486 15 31 0.08

domino 79 231 730 20 29 0.16

firewall2 325 590 36,428 10 18 0.39

firewall1 365 709 31,951 69 168 0.80

americas small 3,477 1,587 1,05,205 211 707 90.99

americas large 3,485 10,127 1,85,294 421 623 2549.33

customer 10,021 277 45,427 276 426 103.44

that discussed in the previous sub-section. Moreover, the execution time also
increases with the increase in the size of the datasets. The highest time required
for a single execution of our algorithm is recorded for the americas large dataset
and is around 45 min. This shows that the proposed approach computes the
output in a reasonable amount of time. In summary, it can be said that the trend
observed in the number of roles generated and the overall execution time for the
proposed spatio-temporal role mining algorithm is similar for both synthetic and
real-world datasets.

It may be noted here that our proposed approach can also be used for creating
roles having only spatial constraints. This can be done by eliminating the steps
of creating the time-specific UPAs in the first phase. This flexibility is possible
because of the segregation of the spatial and temporal information present in
the input. Moreover, our approach can also be extended and used for the RBAC
models where additional constraints are considered other than the location and
time-based ones.

7 Conclusion and Future Work

Implementing any spatio-temporal extension of RBAC in an organization enables
the system administrator to associate space and time constraints with the
enabling of roles which in turn, allows for a finer level of granularity in access
control. In order to deploy such an extended RBAC model, a set of roles capable
for enforcing the spatio-temporal constraints is required. Spatio-temporal role
mining is crucial in this regard. In this paper, we have proposed a suitable way of
representing user-permission assignments having spatial and temporal informa-
tion which serve as input to spatio-temporal role mining, have formally defined
the Spatio-Temporal Role Mining Problem (STRMP) and have presented an
approach for creating spatio-temporal roles. Our method separates out the loca-
tion and time information associated with the input to create several location-
specific and time-specific UPAs, mines each of the UPAs using a traditional
role mining algorithm, combines the roles obtained from the individual UPAs to
generate the final spatio-temporal roles.
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STRMP aims to minimize the total number of roles. In future, other opti-
mization metrics can be considered like the sizes of the user-role assignment and
role-permission assignment relations as well as the sizes of the spatial and the
temporal role enabling bases. This can result in the creation of more semantically
meaningful role. Also, other variants of the spatio-temporal role mining problem
can be taken up where a certain amount of deviation of the output from the
input may be allowed. The deviation will be in terms of the privileges acquired
by the users and the associated locations and time intervals through one or more
assigned spatio-temporal roles.
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Abstract. Policy mining has been identified as one of the most chal-
lenging tasks towards deployment of Attribute-Based Access Control
(ABAC) in any organization. This work introduces a novel approach
for visual mining of ABAC policies. The fundamental objective is to
graphically portray the existing accesses to facilitate visual elucidation
and mining of meaningful authorization rules. We represent the exist-
ing accesses in the form of a binary matrix and formulate the problem
of finding the best representation of the binary matrix as a minimiza-
tion problem. The authorization rules are then extracted from the visual
representation of the access control matrix in such a way that the num-
ber of rules required to satisfy all the existing accesses is minimum.
The problem is shown to be NP-Complete and hence, heuristic solution
is proposed. We experimentally evaluate our proposed approach on a
number of synthetically generated data sets to study its robustness and
scalability in a variety of situations.

Keywords: Attribute-Based Access Control · Policy mining · Visual
policy representation

1 Introduction

Access control models mediate controlled access to organizational resources. Tra-
ditional access control models include Mandatory Access Control [25], Discre-
tionary Access Control [27] and Role-Based Access Control (RBAC) [26]. Of
these, RBAC has emerged as the de facto standard in a majority of organiza-
tions. Roles are the primary elements of RBAC. Each role is assigned a set of
permissions and each user is assigned to a set of roles. While RBAC suffices in
mediating efficient access control in situations where all the users of an organi-
zation are known beforehand, it is not sufficiently flexible for handling scenarios
which mandate sharing of resources among organizations and the total number
of users cannot be precisely quantified. Attribute-Based Access Control (ABAC)
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[15] has recently been proposed to address such shortcomings of RBAC. Basi-
cally, attributes are properties of users, resources and environment conditions.
They capture information in the form of an attribute-value and entity is charac-
terized by a set of attribute-value pairs. A request for accessing any resource in
ABAC is permitted or denied by evaluating the sets of attribute-value pairs of
the requesting user, requested resource and the environment condition in which
the request is made against a set of authorization rules, called the ABAC policy.
Each rule is also defined by a set of attribute-value pairs. Therefore, the process
of devising an ABAC policy, known as policy engineering, is necessary for the
deployment of ABAC in any organization [28].

As manually defining an ABAC policy is both time consuming and cost
intensive [20], several algorithmic techniques [8,22–24] have been proposed for
efficient policy engineering. Generally, policy engineering techniques that con-
struct an ABAC policy from the existing access permissions in the organization
are referred as policy mining. The existing algorithms [12,32] have shown to be
efficient in mining legitimate authorization rules. However, in certain scenar-
ios, the automatically constructed rules may not reflect actual organizational
processes. Moreover, inadvertent presence of any unauthorized access adversely
affects the constructed policy. There is no easy way of identifying such unau-
thorized accesses. Further, despite forming the rules, it is difficult to visually
interpret the accesses allowed by each rule. In this work, we propose a method
that constructs rules from a given visual pattern of existing accesses. Addition-
ally, we propose another method called CovAc that enables visualization of the
existing accesses of an organization by arranging them into comprehensible pat-
terns.

The motivation behind our proposed approach is that visually representing
the existing accesses can improve the understandability of the organizational
processes. Further, correlations among rules are shown as overlapping patterns.
We depict the similarity between the authorization rules as overlapping clusters,
thereby helping in the identification of redundant rules, i.e., the rules whose
accesses can be granted by other rules in the policy. Besides improving the visual
interpretability of the rules, our proposed techniques also helps in identifying
possible unauthorized accesses.

The rest of the paper is organized as follows. Section 2 discusses the prelim-
inaries of an ABAC system. Section 3 formally defines CovAc and analyses its
complexity. In Sect. 4, we provide a heuristic solution called VisMAP that facili-
tates visual mining of ABAC policies. Section 5 presents experimental evaluation
of VisMAP on various data sets. Section 6 discusses related work. Finally, Sect. 7
concludes the paper and provides directions of future research.

2 Preliminaries

In this section, we describe the basic components of ABAC along with the
assumptions we consider in this work. A set of formal notations is given below
which will be used for precise formulation of the problem being addressed and
its solution.
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– U : Set of users. Each element of U is represented as ui, for 1 ≤ i ≤ |U |.
– R: Set of organizational resources. Each element of R is represented as ri, for

1 ≤ i ≤ |R|.
– E : Set of possible environmental conditions in which access to a resource can

be requested. Each element of E is represented as ei, for 1 ≤ i ≤ |E|.
– Ua: Set of user attributes. Each element of Ua is represented as uai, for

1 ≤ i ≤ |Ua|. Sets Ra and Ea are similarly defined for resource attributes and
environment attributes, respectively.

– OP : Set of operations. Each element of OP is represented as opi, for 1 ≤ i ≤
|OP |.

– AR: Set of authorization rules comprising an ABAC policy. Each element of
AR is an authorization rule represented as ari, for 1 ≤ i ≤ |AR|.

– UV : A set containing assignment of values to all the user attributes, also
referred to as user attribute-value pairs, for all the users. Likewise, RV and
EV denote the sets of attribute-value pairs for all objects and environments,
respectively.

Each rule ar ∈ AR is a 4-tuple of the form <UC,RC,EC, op>, where UC, RC
and EC represent a set of user attribute-value pairs, a set of resource attribute-
value pairs and a set of environment attribute-value pairs, respectively. An access
is represented by a 4-tuple. For example, an access <u, r, e, op> means that a user
u can perform an operation op on a resource r under an environment condition
e. For the sake of brevity, in this work, we have not considered the environment
attributes. We also limit the number of operations in the system to 1, i.e., either
a user is allowed to access a resource or not.

3 Visual Representation and Covering of Accesses

ABAC policy mining algorithms consider the existing accesses in an organiza-
tion in order to construct a set of authorization rules. Intuitively, these existing
accesses can be represented as a binary matrix A, where each row and each
column corresponds to a user and a resource, respectively. An element aij ∈ A
is assigned 1 if user ui is permitted to access resource rj , and 0 otherwise.
To make the binary access control matrix (ACM) visually appealing and more
understandable, each cell of the matrix having 1 is colored black and the others
are colored white. Consider a hypothetical organization having 10 users and 10
resources. The attributes and the associated values for the users and resources
of the organization are shown in Tables 1 and 2, respectively.

An illustrative ACM for the organization is shown in Fig. 1a. Although the
existing accesses are identifiable in this figure, the representation is rather con-
fusing. In other words, it is arduous to analyze and identify the rules from such
a representation. Therefore, an alternative representation is essential to facili-
tate the construction of rules. From Fig. 1b, it is evident that an intuitive re-
arrangement of the users and resources of the access matrix enhances its visual
interpretability. It is relatively easier to detect patterns in Fig. 1b where the
users and resources have been re-arranged. These patterns of black or 1s are
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Table 1. Attributes and their val-
ues for all users

User Designation U Department

u0 Clerk Finance

u1 Auditor Finance

u2 Technical staff Security

u3 Technical staff Research

u4 Manager Finance

u5 Auditor Finance

u6 Manager Research

u7 Technical staff Finance

u8 Technical staff Finance

u9 Clerk Finance

Table 2. Attributes and their values for all
users

Resource Type R Department

r0 Log book Finance

r1 Log book Finance

r2 Technical report Finance

r3 Technical tender Security

r4 Master key Security

r5 Technical report Finance

r6 Bill Security

r7 Technical report Finance

r8 Master key Research

r9 Log book Research

(a) Initial access matrix (b) Row-column re-arranged access matrix

Fig. 1. Access matrix for the organization

rectangular in shape and known as tiles. For instance, compared to Fig. 1a, from
Fig. 1b, it is easier to discern that users u8, u3, u2 and u7 are permitted to access
the same set of resources, i.e., r6, r3, r2 and r7, in Fig. 1b. ABAC authorization
rules that can easily be constructed from the four visible tiles. Therefore, such
representation also reduces the number of rules in an ABAC policy. Moreover,
singleton tiles that may depict inadvertently granted accesses, can easily be iden-
tified. Basically, the idea is to cover an ACM with the least possible number of
tiles. Since the accesses in the ACM are immutable, the only way to suitably
represent the ACM is by re-arrangement of the sequence of rows and columns.
Essentially, we aim to provide an intuitive re-arrangement of rows and columns
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of an ACM which ensures the coverage of all the accesses less number of tiles.
Additionally, rules are constructed corresponding to each of the identified tiles.

3.1 Problem Definition

We now formally define the problem of covering the accesses in an ACM with
the minimum number of tiles. We refer to this problem as Covering Accesses
Problem (CovAc). The formal definition of CovAc is given below.

Definition 1. Covering Accesses Problem (CovAc)
Given a binary ACM A where rows and columns correspond to a user ui ∈ U
and a resource rj ∈ R, respectively, cover all the accesses in A such that the
number of tiles required to cover all the 1s in A is minimum.

3.2 Complexity Analysis for CovAc

Now, we prove that CovAc is NP-Complete. To prove the NP-Completeness of
CovAc, first, we formulate a decision version of CovAc.

Definition 2. Decision version of CovAc (D-CovAc)
Given a binary ACM A where rows and columns correspond to a user ui ∈ U
and a resource rj ∈ R, respectively, is it possible to cover all the accesses in A
such that the number of tiles required to cover all the 1s in A less than or equal
to k.

We use the Minimum Set Cover problem (MSC) problem, which is a known NP-
Complete problem to show that CovAc is NP-Complete. The formal definition
of MSC is given below.

Definition 3. Minimum Set Cover Problem
Given a universal set U and a collection S of subsets of U , find a minimum
number of subsets s1, s2, . . . , sm, where each si ∈ ST and s1 ∪ s2 ∪ . . .∪ sm = U .

We now define a decision version of MSC.

Definition 4. Decision version of MSC (D-MSC)
Given a universal set U and a collection S of subsets of U , find a minimum
number of subsets s1, s2, . . . , sm which covers all the elements in U and m ≤ t?

Theorem 1. D-CovAc is NP-Complete.

Proof. First, we show that CovAc is in NP. Let A be an ACM, T be the set
of all the tiles of 1s and k be an integer. Therefore, 〈A, T, k〉 is an instance of
CovAc. Given a subset T ‘ ∈ T , it can be verified in polynomial time whether T ‘

is a valid solution of 〈A, T, k〉 by verifying that all the tiles in T ‘ cover all the
accesses of A in O(

∑|T ‘|
i=0|T ‘

i |) time. The checking whether |T |′ ≤ k takes O(1)
time.
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Now, we show that D-MSC ≤p D-CovAc. Let 〈U, S, t〉 be an instance of
D-MSC. Then, an instance of D-CovAc, 〈A, T, k〉 can be obtained in polyno-
mial time using a function f such that f(ui) = (

⌊
ui

c

⌋
, ui%c) where, ui ∈ U ,

(
⌊
ui

c

⌋
, ui%c) ∈ A and c is a constant. Essentially, the function f convert a

given element into an access (2-tuple). Here, A is an ACM with c columns and⌈
max(U)

c

⌉
rows. A collection T of sets of tiles of 1s can be obtained from S using

the function f . Finally, we set k = t where, k is an integer. Now, let Zm and Zr

be the solutions to the instances of D-MSC and D-CovAc, respectively. Next,
we show that a solution Zm to the instance of D-MSC is a valid solution if and
only if the solution Zr to the instance of D-CovAc is valid.

We now construct a solution to the instance of D-MSC from the solution to
the instance of D-CovAc, i.e., Zr. Since, each access (x, y) ∈ Zr can be mapped
to an element ui ∈ Zm using the function f−1 where, f−1(x, y) = (x × c) + y.
Therefore, if the number of tiles of 1s in Zr is less than or equal to t, the number
of sets in Zm is definitely less than or equal to t. Moreover, if Zr contains all the
tiles in A, that implies that Zm contains all the elements in U .

Thus, the solution to the instance of D-MSC constructed from the solution
to the instance of D-CovAc is a valid solution. Likewise, the converse can also be
proved. Therefore, D-CovAc is NP-Hard. Since D-CovAc is in NP and NP-Hard,
it is NP-Complete.

4 Heuristic Solution for Visual Mapping of ABAC
Policies (VisMAP)

Since CovAc is NP-Complete, it is unlikely that a polynomial time algorithm
can be designed for covering all the accesses of an ACM with the minimum
number of tiles. So we propose a heuristic approach for solving CoVAC. As
discussed in Sect. 3, first we find an appropriate sequence of rows and columns
of a given ACM which places the users with similar access patterns together.
The procedure for rearranging the sequence of rows and columns is referred
as VisMAP Rearranger (VisMAP R). Finally, the tiles are identified from the
ACM and rules are constructed from the identified tile. The procedure is given
in Algorithm 3. The steps are elaborately explained in the sub-sections to follow.
Visual mapping of ABAC policies is achieved using VisMAP R and CovAc. The
overall solution is termed VisMAP.

4.1 Rearrange the Rows and Columns (VisMAP R)

The algorithm for VisMAP R is given in Algorithm 1. First, VisMAP R (Lines
1–4) constructs the distance matrices for the rows and columns of the access
matrix A. Since the access matrix is binary in nature, each row (or column) is a
binary vector of the same length. Therefore, the difference or distance between
a pair of rows can be quantified using Hamming distance [14] as defined below.



VisMAP: Visual Mining of Attribute-Based Access Control Policies 85

Algorithm 1. V isMAP R

Input: An access matrix A
Output: An modified access matrix A

1 Ar ← sequential list of rows of A
2 Dr ← Hamming distance matrix for rows of A
3 Ac ← sequential list of columns of A
4 Dc ← Hamming distance matrix for columns of A
5 Rr ← generate-route(Dr)
6 A ← arrange the rows of A w.r.t. Rr

7 Rc ← generate-route(Dc)
8 A ← arrange the columns of A w.r.t. Rc

9 return A

Definition 5. Hamming Distance
Given two equal-length binary strings x, y ∈ {0 + 1}+, the Hamming distance
between x and y, D(x, y) is defined as the number of positions where x and y
differ.

For example, if x = 100110 and y = 110011, D(x, y) = 3. Intuitively, the distance
between any two rows of the ACM increases with the number of positions in
which they differ.

Jaccard similarity can also be used to measure the distance between a pair
of rows. Jaccard similarity is also capable of handling sets that are not binary in
nature and of different sizes. As the sets of authorizations (including granted and
denied accesses) are of binary nature, as well as of the same cardinality, we use
Hamming distance to calculate the difference. After the computation of Ham-
ming distances between each pair of row (and column) Algorithm VisMAP R
(Lines 5–8) finds an appropriate sequence of rows (and columns) such that the
sum of distances between the consecutive rows (and columns) is minimum. In
other words, it is required to arrange the rows (and columns) of the access matrix
in an order which places the similar rows (and columns) together. As discussed
above, row/column similarity is measured in terms of Hamming distance. We
consider each row of the access matrix as a city. The distance matrix for the
rows is obtained from the previous phase. Now, we need to find a sequence
where the distance between the adjacent rows (cities) is minimum. First, we
perform a complexity analysis of VisMAP R.

Complexity Analysis of VisMAP R
VisMAP R has two steps, finding an appropriate re-arrangement of the rows
and then, finding an appropriate re-arrangement of the columns. For nota-
tional simplification, we refer to finding a suitable re-arrangement of rows as
VisMAP R. To devise the proof, we first give a formal definition of VisMAP R.
Re-arrangement of columns is obtained similarly.

Definition 6. VisMAP R
Given an ACM A and a list D of Hamming distances between pairs of rows, find
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a re-arrangement of rows u1, u2, . . . , un−1 of A such that the sum of distances
between the adjacent rows in the re-arrangement is minimum, i.e.,

minimize

⎛

⎜
⎝

n−2∑

i=0

D(ui, ui+1)

⎞

⎟
⎠

where, D(ui, ui+1) is the distance between rows ui and ui+1.

Next, we formulate a decision version of VisMAP R.

Definition 7. Decision version of VisMAP R (D-VisMAP R)
Given an access matrix A and a list D of Hamming distances between each pair
of rows, is there a re-arrangement of rows u1, u2, . . . , un−1 of A such that the
sum of distances between the adjacent rows in the re-arrangement is less than or
equal to k, i.e.,

n−2∑

i=0

D(ui, ui+1) ≤ k

We use a known NP-Complete problem, namely, Hamming Traveling Salesman
Problem (HTSP) [10] to show that VisMAP R is NP-Complete. HTSP consists of
a salesman, a set of cities represented using bit strings and the list of Hamming
distances between each pair of cities. The salesman needs to visit each city
starting from a specific city, known as the hometown, and returning to the same
city. The objective of the salesman is to minimize the total Hamming distance
traveled for the complete trip. The formal definition of HTSP is given below.

Definition 8. Hamming Traveling Salesman Problem (HTSP)
Given a set of n cities C = {c1, c2, . . . , cn} represented by bit strings, and dis-
tances between each ci, cj ∈ C × C, determine a route Rc that starts from an
initial city cs, visits each ci ∈ C exactly once and returns to the starting city cs
in such a way that the Hamming distance covered by Rc is minimum.

We now define a decision version of HTSP.

Definition 9. Decision Version of HTSP (D-HTSP)
Given a set of n cities C = {c1, c2, . . . , cn} represented by bit strings, the Ham-
ming distances between each ci, cj ∈ C × C and an integer t, does there exist a
route Rc that starts from city cs, visits all the cities exactly once and returns to
the starting city cs in such a way that the Hamming distance covered by Rc is
less than or equal to t.

Theorem 2. D-VisMAP R is NP-Complete.
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Proof. First, we show that D-VisMAP R is in NP. Let A be an ACM, Dr be
a list containing the distances between each pair of rows in A and k be an
integer. Therefore, 〈A,Dr, k〉 is an instance of D-VisMAP R. Given a sequence
of rows SR, it can be verified in polynomial time whether SR is a valid solution of
〈A,Dr, k〉. Initially, the first and the last element of SR are checked for similarity
in O(1) time. Next, it is verified whether SR contains all the rows in A in O(|SR|)
time. Finally, the sum of distances between adjacent rows in SR is obtained from
Dr in O(|SR|) time.

Now, we show that D-HTSP ≤P D-VisMAP R. Let 〈C,Dc, t〉 be an instance
of D-HTSP where C is a list of cities where each ci ∈ C is represented by a bit
string, Dc contains the Hamming distances between each pair of cities in C and
t is an integer. Then, an instance of D-VisMAP R, 〈A,Dr, k〉 can be obtained
in polynomial time by setting A = C, Dr = Dc and t = k. Here, A is a matrix
having the same number of rows as the number of cities in C, Dr is the list of
Hamming distances between each pair of rows of A, and k is an integer. Now, let
Rc and Rr be solutions to the instances D-HTSP and D-VisMAP R, respectively.
For completing the proof, we show that a solution Rc to the instance of D-HTSP
is a valid solution if and only if the solution Rr to the instance of D-VisMAP R
is a valid solution.

We now construct a solution to the instance of the D-HTSP from the solution
to the instance of D-VisMAP R, i.e., Rc. Since each city in C corresponds to a
row of A, the distances between a pair of cities of C in Dc are mapped to the
distance between the corresponding rows of A in Dr. Therefore, if the sum of
distances for the sequence Rc is less than or equal to t, the sum of distances
between the sequence of rows of A is definitely less than or equal to t. Thus,
the solution to the instance of D-VisMAP R constructed from the instance of
D-HTSP is a valid solution. Likewise, the converse can also be proved. Thus,
D-VisMAP R is NP-Hard. Since D-VisMAP R is in NP and is NP-Hard, it is
NP-Complete.

Therefore, solving VisMAP R is similar to solving HTSP. Essentially, the
starting city for HTSP is fixed. In the majority of instances of access matrices,
if the starting row is made immutable, the resulting sequence may not be the
best one. To avoid such situations, an extra pseudo-row (city) is added to the
distance matrix having distance 0 to all the rows (cities). This pseudo-row is
considered as the starting row. After obtaining the desired sequence of rows
(cities), the pseudo-row and the last row (which essentially is the starting row)
are removed. Since HTSP is a known NP-Complete problem, in this work, we
use the 2-opt heuristic [6] for solving HTSP. Chandra et al. [1] show that the
2-opt heuristic approach has an approximation ratio with an upper bound of
4
√

m where m is the number of cities. The algorithm for the 2-opt heuristic is
given in Algorithm 2.

The 2-opt heuristic approach relies on local searches to solve HTSP. The
basic methodology of the 2-opt heuristic is shown in Fig. 2. Primarily, the 2-opt
heuristic removes a crossed-over path by re-ordering the nodes. For each distinct
pair of cities, if the distance of a cross-over route between them is greater than
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Algorithm 2. generate-route

Input: A distance matrix D
Output: A route of cities Rc

1 Rc ← a random initial route
2 for each pair of distinct cities (x,y), (u,v) do
3 if D(x, u) + D(y, v) < D(x, y) + D(u, v) then
4 Rc ← {Rc − {(x, y), (u, v)}} ∪ {(x, u), (y, v)}
5 Rc ← Rc− last city of Rc

6 return Rc

the distance of the route obtained by re-ordering the cities, the re-ordered route
is taken to obtain a feasible Hamiltonian cycle [11] (Lines 2–4). For instance,
considering each row of the access matrix given in Fig. 1a as a city, the pair of
edges (u0, u3) and (u1, u2) is a cross-over. Now, assume that the cross-over is part
of the path having the minimum distance. The total distance of the two edges in
the cross-over is the sum of Hamming distances between the corresponding rows.
As shown in Fig. 2a, the distance between u0 and u3 is 6. Likewise, the distance
between u1 and u2 is also 6. Therefore, the total distance in the cross-over is 12.
The cross-over is removed by considering the edges (u0, u1) and (u2, u3) where
the sum of distances is 0. Since the distance of edges (u0, u1) and (u2, u3) is
less than that of the distance of the edges (u0, u3) and (u1, u2), the former is
included in the route while the latter is removed. The modified route is shown in
Fig. 2b. This approach only finds locally optimal routes involving two edges at a
time. However, this does not guarantee an optimal solution for HTSP but finds
an optimal route in a short span of time. For this work, the complete cycle is
not required, therefore, we remove the last city from the obtained Hamiltonian
cycle (Line 5) to obtain an optimal sequence.

(a) Initial sequence (b) Sequence after 2-opt optimization

Fig. 2. Finding local optima using 2-opt heuristic

Finally, the rows of the access matrix are arranged with respect to the
sequence obtained using Algorithm 2. The ACM after arranging the rows is
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shown in Fig. 3. Likewise, the same procedure is repeated for the columns to
arrange them in the desired order. The final ACM after the row and column
re-arrangements is given in Fig. 1b.

(a) Row re-arranged access matrix (b) tiles in the access matrix

Fig. 3. Access matrix for the organization

As discussed in Subsect. 3.2, VisMAP is NP-Complete. Therefore, we propose
a heuristic solution for VisMAP. The overall algorithm for VisMAP is given in
Algorithm 3. Now, we elaborate a heuristic solution for VisMAP.

4.2 Find Tiles and Construct Rules from the ACM

Initially, Algorithm 3 (Lines 1–8) identifies all the tiles in the modified ACM
obtained from the previous step. Finally, it finds the minimum number of tiles
required for covering all the access. For finding the tiles, continuous rows with 1s
which share continuous columns are identified. The algorithm for detecting the
tiles is straight-forward and hence, omitted. Each tile is obtained as a collection
of two sets, containing the set of rows and the set of columns. For example, five
tiles obtained from the access matrix are highlighted in Fig. 3b. The tiles are as
follows.

t0 = 〈{u8, u3, u2, u7}, {r6, r3, r2, r7}〉 t1 = 〈{u6, u4}, {r5, r0}〉

t2 = 〈{u5, u0, u1, u9}, {r6}〉 t3 = 〈{u6, u4, u5, u0, u1, u9}, {r0}〉
t4 = 〈{u5, u0, u1, u9}, {r0, r1, r9}〉

In Fig. 3b, the tiles t1, t3 and t4 are overlapping. Next, VisMAP finds the
minimum number of tiles required to cover all the accesses. The problem is simi-
lar to the Minimum Set Cover (MSC) problem discussed in Sub-section comprex.
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Here, each tile is considered a subset and all the accesses taken together consti-
tute the universe. It is known that MSC is an NP-Complete problem [29]. We
therefore use a heuristic approach to find the minimum number of tiles. We use
the same heuristic [3] used for solving MSC, i.e., in each iteration, the tile which
covers the most number of uncovered 1s is selected. The greedy heuristic used
for solving MSC has been shown by Chvatal [3] to have an exact approximation
ratio of lnn − ln lnn + Θ(1) where n is the number of elements in the universe
set. The approach is given in Algorithm 3 (Lines 4–7). The procedure is repeated
while there are still uncovered accesses in the access matrix. As shown by high-
lighted borders in Fig. 3b, the four tiles, namely, t0, t1, t2 and t4 are required to
cover all the accesses.

Algorithm 3. CovAc

Input: An access matrix A, set of attribute-value pairs of all users UV , set of
all attribute-values pairs of all resources RV

Output: A policy P
1 T ← find all the tiles in A
2 U ← t0 ∪ t1 ∪ ... ∪ t|T |−1

3 Tm ← Φ
4 while U �= Φ do
5 Nj ← |tj | ∩ U
6 j ← argmaxi∈{0,1,...,|T−1|}Nj

7 Tm ← Tm ∪ {j}
8 U ← U \ tj

9 P ← extract-rules(Tm, UV, RV )
10 return P

Finally, Algorithm3 (Line 9) constructs the rules of the ABAC policy. Essen-
tially, there is a rule in the policy corresponding to each tile obtained by solv-
ing VisMAP M. For each tile, a rule is constructed by selecting the common
attribute-value pairs from the users and resources corresponding to the rows
and columns of the tile, respectively. For instance, tile t1 has users u6 and u4,
the attribute-value pair common to u6 and u4 is (Designation: manager). For
resources r5 and r0 in t1, the common attribute-value pair is (R Department:
finance). The selected attribute-value pairs are used to construct the rules.

The formed rule 1 corresponding to tile b1 along with the other rules is given
below. The authorization rules ar0, ar1, ar2 and ar4 correspond to tiles t0, t1,
t2 and t4, respectively.

ar0: 〈(Designation: technical staff), (R Department: finance)〉
ar1: 〈(Designation: manager), (R Department: finance)〉
ar2: 〈(U Department: finance), (Type: bill), (R Department: security)〉
ar4: 〈(U Department: finance), (Type: log book)〉
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Thus, VisMAP enables organizations to construct an ABAC policy as well as
visualize the policy for better understanding of the organizational processes.

It may be noted that, in the entire discussion above, for ease of understanding
of the basic approach, we consider only a single operation in the system. Handling
of more than one operation can be done by defining a separate ACM for every
operation and applying VisMAP for each such ACM independently. After the
independent rules are obtained, they can be merged if the same combination of
user and resource attribute values is given access to more than one operation,
thereby reducing the overall number of rules in the ABAC policy.

5 Experimental Results

ABAC is gradually being deployed in many organizations. However, no bench-
mark access data is yet available by any organization. VisMAP can be used
on a given ACM to enhance the visual interpretability, as well as to obtain a
minimal set of ABAC authorization rules. First, we evaluate the performance
of the proposed solution, i.e., VisMAP on the data sets given in [31]. While
these data sets have been widely used for comparative study of various ABAC
policy mining algorithms, for further analysis with more variations, we also eval-
uated the performance of VisMAP on a number of synthetically generated data
sets. These data sets comprise sets of users, resources and access matrices along
with the attribute-value pair assignments for all the entities. Both the proposed
approaches were implemented in Python 3.7.1 and run on an 1.60 GHz Intel i5
CPU having 8 GB of RAM.

Essentially, VisMAP produces a visually interpretable representation of a
given binary access matrix. Additionally, VisMAP attempts to find the mini-
mum number of tiles required to cover all the 1s in a binary matrix. Therefore,
the performance VisMAP depends on the size of the input binary matrix. We
present the obtained results using number of users |U |, number of resources |R|,
size of the constructed policy |P | and the execution time T measured in seconds.
The size of |P | and T are obtained by taking an average of 10 executions of
VisMAP on different synthetic data sets having similar parameters. The repre-
sented values of |P | and T are rounded off to the nearest integer and up to two
decimal places, respectively. For the data sets in [31], |Ua|, |Ra|, OP and |P[31]|
denote the number of user attributes, number of resource attributes, number of
operations and the number of rules in the policy, respectively.

Table 3. Policy size and execution time for the data sets in [31]

Data set |U | |Ua| |R| |Ra| |OP | |P[31]| |P | T (in s.)

Healthcare 21 6 16 7 8 11 7 0.02

University 20 6 34 5 10 10 10 0.02

Project management 16 7 40 6 11 19 12 0.03
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Table 3 shows the experimental evaluation of VisMAP on the data sets in
[31] which involve multiple operations. However, The aforementioned data sets
contain complex rules involving various constraints between attribute values. For
such complex rules, we have broken them into simpler rules of the form defined
in Sect. 2. For multi-valued attributes, we consider each set of such values as a
distinct atomic value. The values in Table 3 represent the modified data sets. For
each distinct operation, a separate ACM is constructed and VisMAP is applied
on each such ACM. It is seen that the execution of VisMAP constructs a policy
with lesser number of rules for the Healthcare and the Project management
data sets. The number of rules remains the same for the University data set.
Therefore, it is evident that the proposed approaches used sequentially are capa-
ble of forming a compact policy along with providing a visual representation.
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Fig. 4. Variation in the number of rules generated by using VisMAP with the number
of users and resources

For synthetically generated data sets, first, we evaluate the performance of
VisMAP for different number of users and resources. Figure 4 shows the variation
in the average number of rules in the constructed policy for different number of
resources. The average number of constructed rules increases with the number of
resources. For taking results, we have varied the number of users and resources
from 20 to 1000. From Fig. 4, it is seen that for a small number of resources,
e.g., for 50 resources, the average number of rules generated varies from 7 to
29, which a variation of 22 rules. In contrast, when the number of resources is
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1000, the average number of generated rules varies from 11 to 113 which is a
variation of 102 rules. Although the number of rules increases with the number of
resources, the increase is more prominent when the number of resources is large.
This is attributed to the fact that the tiles identified by VisMAP are basically
access patterns. Higher variation of access pattern is expected when the number
of resources is more. This results in a relatively larger variation in the number
of generated rules when the number of resources is large.

Next, we discuss the variation in the number of users. It is seen that, for a
small number of users, e.g., 20 users, the number of constructed rules vary by
6, i.e., from 5 to 11, when the number of resources is varied from 20 to 1000.
Conversely, the number of generated rules increases by 93, i.e., from 20 to 113,
when the number of users is 1000 and the number of resources is varied from 20
to 1000. Therefore, relatively greater variation in the number of generated rules
is observed when the number of users is large. This nature of variation is due to
an increase in distinct access patterns with the number of users.
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Fig. 5. Variation in execution time of VisMAP for different number of users and
resources

In Fig. 5, we show the variation in execution time of our proposed approach
for different number of users and resources. We use two iterations of HTSP for
arranging the rows and columns of the access matrix. Finally, we use an iteration
of MSC for obtaining the minimum number of tiles. Since we deploy heuristic
solutions to two NP-Complete problems in our implementation, it is crucial to
ensure that the time taken to solve VisMAP is within an acceptable range. It is
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observed that the execution time of VisMAP increases with the number of users
and resources. This is attributed to the fact that increase in the number of users
and resources implies a larger dimension of access matrices that require more
time to rearrange using the 2-opt heuristic. Moreover, larger access matrices have
a large number of tiles which increases the time required to find a minimum set
of tiles to cover all the accesses using VisMAP. In Fig. 5, it is seen that, for less
than 500 users, the total execution time of VisMAP is under 250 s. However, for
more than 500 users, the execution time increases exponentially. Specifically, for
1000 users and resources, VisMAP took more than 1000 s to terminate. In such
cases, an alternative way is to split the ACM into sub-matrices and solve each
one using VisMAP. This provides a trade-off between the policy size and the
execution time. Next, we show the results obtained by splitting an access matrix
into multiple sub-matrices.

Table 4. Variation in policy size and execution time with number of sub-matrices

|R| = 100 |R| = 200

Splits 1 2 4 1 2 4

|U | |P | T(in s.) |P | T(in s.) |P | T(in s.) |P | T(in s.) |P | T(in s.) |P | T(in s.)

100 19 0.59 38 0.72 62 0.35 23 1.63 48 1.57 78 0.95

200 26 1.77 55 1.11 84 1.03 37 4.25 77 3.33 114 2.14

500 34 10.18 76 5.38 108 5.90 54 21.54 96 12.36 146 10.78

1000 47 43.28 96 20.46 197 10.92 70 100.4 145 43.01 197 39.77

|R| = 500 |R| = 1000

100 28 8.27 50 9.78 89 4.72 31 33.84 60 47.46 109 10.09

200 45 17.64 91 16.41 156 9.39 53 62.47 100 70.63 180 33.43

500 67 75.23 141 49.92 224 33.57 78 248.87 175 174.30 282 100.21

1000 89 334.98 207 163.96 304 115.50 113 1052.78 218 695.67 335 452.52

Now, we consider access matrices corresponding to 100, 200, 500 and 1000
users and resources. For each matrix, we compare the number of rules generated
and execution time in these three scenarios: (i) the complete access matrix is
used as input (ii) the matrix is split into 2 sub-matrices which are used as
inputs (iii) the matrix is split into 4 sub-matrices which are used as inputs. The
obtained results are shown in Table 4. For a small number (say 100) of users
and resources, the execution time increases with the number of sub-matrices the
original matrix is divided into. However, when the number of users and resources
is varied between 200 and 1000, the execution time decreases with the number
of sub-matrices the original matrix is split into. For large data sets, involving
1000 users and resources, the execution time reduces to less than 50% when the
original matrix is split into 4 sub-matrices. However, splitting the access matrix
increases the number of rules generated. Splitting provides a trade-off between
execution time and policy size. Therefore, the benefit of splitting is expressed
only when the size of the access matrix is considerably large.
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6 Related Work

Krautsevich et al. [18] show that the problem of policy mining in ABAC is similar
to the problem of role mining in RBAC. Coyne [5] introduced the role engineering
problem of RBAC. However, it was substantially different from role mining.
The author defined the problem as a top-down approach. Kuhlmann et al. [19]
introduced the term role mining for leveraging data mining algorithms to extract
meaningful roles from access data. Mitra et al. [21] present a comprehensive
survey on various techniques used for role mining in RBAC.

Xu and Stoller [31] first introduced the policy mining problem for ABAC.
They use a set of candidate rules and an access control list (ACL) to derive an
ABAC policy. Their algorithm iterates over the given ACL for selecting accesses
to form a set of candidate rules. Next, a generalization of the candidate rules
is obtained to include further accesses in the ACL. Once all the accesses in
the ACL are satisfied by the candidate rules, the algorithm merges them and
removes those rules whose accesses are covered by other rules. In contrast, from
the policy mining perspective, the motivation behind VisMAP is to improve
the visual elucidation of a given ACM. Additionally, VisMAP facilitates the
identification of a minimal number of tiles to cover all the existing accesses.
Such minimization of the number of tiles reduces the number of rules.

Das et al. [9] present a solution to the problem of policy mining in ABAC
that uses Gini impurity to form an ABAC policy. They also include the environ-
ment attributes while mining the policy. Apart from role mining, policy mining
in ABAC is similar to other problems too. Talukdar et al. [30] show that the
problem of policy mining in ABAC is similar to that of identifying functional
dependencies in database tables. In this context, they propose an ABAC pol-
icy mining algorithm which exhaustively enumerates all possible subject-object
pairs. Iyer et al. [16] present a policy mining technique that constructs positive
as well as negative ABAC authorization rules. Das et al. present an elaborate
survey on various policy engineering techniques in RBAC and ABAC [7].

Various techniques have been proposed for visualization of data organized
in the form of matrices [2]. However, they are not explicitly suited for binary
matrices. As for visual representation of mined data, a few visualizers have been
proposed in the current literature, and most of them are not explicitly designed
for binary data [17]. Geerts et al. [13] present a method for tiled representation
of data in databases. The authors also devise an algorithm to cover a database
with a minimum number of tiles. Colantonio et al. [4] present a work involving
visual mining of roles in RBAC. The authors introduce a quality metric for
graphical representation of user-permission data in RBAC when a set of pre-
defined roles are given. Further, they introduce an algorithm for visual elicitation
of meaningful roles when a set of pre-defined roles is unavailable. In contrast,
VisMAP enhances the visual interpretabilty of a given ACM in the absence of
a pre-defined set of rules. Besides, VisMAP minimizes the number of rules in
the constructed ABAC policy by eliminating redundant rules. To the best of our
knowledge, the work proposed in this paper is the first-ever approach in ABAC
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paradigm that visually represents access data and extracts an optimal number
of authorization rules from it.

7 Conclusion and Future Work

In this work, we have formally defined VisMAP R that suitably represents the
existing accesses in an organization. We have also proposed CovAC which forms
an ABAC policy from a given ACM. We have shown both VisMAP R and CovAc
to be NP-Complete problems. We also provided a heuristic-based solution called
VisMAP. Experimental evaluation of the proposed solution VisMAP on vari-
ous data sets establishes the robustness of our proposed approach. The future
direction of research in this area involves designing new heuristics which reach a
solution in lesser time. Moreover, algorithms can be developed to merge the rules
obtained from the sub-matrices in order to reduce the overall number of rules
in a generated policy. Although the complete ABAC model description (Sect. 2)
includes environmental conditions as well, our algorithm has not taken them into
consideration. If these are to be considered, instead of black and white, different
colors will have to be used corresponding to different environmental conditions in
the ACM for visual elucidation. Suitably extending our algorithm for extracting
rules from such multi-colored ACMs will be an important contribution, which
is both interesting as well as challenging. Additionally, we plan to extend the
proposed approach by considering multiple operations and design a graphical
tool using which administrators can make manual decisions.
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Abstract. Today, organizations do not work in silos, but rather collab-
orate, work jointly and share data resources for various business benefits
such as storage, management, analytics, etc. In this scenario, organi-
zations want to ensure that their own security requirements are always
met, even though they may be sharing/moving their resources to another
organization. Hence, there is a need to evaluate the extent to which their
policies are similar (or equivalent) i.e., to what extent do they both agree
on a common set of security requirements (policy)? When the policies
are not identical, there is also a need to evaluate the differences and see
how these differences can be reconciled so that the organizations can be
brought to agreement in terms of their security requirements.

To address this issue, in this paper, we first propose the notion of pol-
icy equivalence and develop methods to evaluate the policy similarity.
We also propose two different approaches for accomplishing policy rec-
onciliation where one is based on ABAC mining and the other is based on
finding maximal common subsets. Both of the approaches guarantee that
the organization’s policies are never violated as they are both conserva-
tive in nature. Further, it is also possible that the organizations in the
collaboration decide to pick one organization and each of them migrates
to the policy. We propose a migration approach for organizations in this
setting which will incur least migration cost for all the organizations. We
compare both the reconciliation approaches and policy migration with
respect to their reconciliation results as well as performance.

Keywords: ABAC · Policy equivalence · Policy similarity · Policy
reconciliation · Policy migration

1 Introduction

Organizations of all types and sizes are collecting large amounts of data and
processing it to improve customers’ experiences and their business decisions and
processes. This leads to business needs that cannot be fulfilled by themselves
alone or by working in silos. Due to this, organizations outsource their needs
such as infrastructure, software, analytics, storage, computation needs, etc., and
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work together in collaborative environments. In this scenario, organizations want
to ensure that all their resources are protected under the same set of security
requirements, even though they are sharing/moving their resources to another
organization. Hence, there is a need to evaluate if their security policies are
similar (or equivalent) i.e., whether they both agree on a common set of secu-
rity requirements (policies). And, to what extent these policies are similar? In
case, their policies are different, there is a need to reconcile these differences so
that these organizations can be brought to an agreement in terms of their secu-
rity requirements. Further, Attribute Based Access Control (ABAC) is the most
amenable form of enforcing security by organizations in collaborative environ-
ments because of its fine-grained nature as well as its identity less enforcement.
Under ABAC, security policies are specified based on user attributes and object
attributes rather than user and object identities. As such, we develop solutions
for determining policy equivalence and reconciliation with minimum transition
cost for all. Further, we also propose a solution in case the organizations in the
collaboration decide to migrate to any one organization’s policy.

Towards this end, we first propose a definition for policy equivalence based on
the authorizations covered by a policy (or ABAC rules). To evaluate the policies
of the organizations in terms of how similar (or dissimilar) they are, we pro-
pose a policy similarity metric based on the maximum common possible subset
of accesses covered by their rules. In case of dissimilar policies among organi-
zations, there is a need to overcome these differences through reconciliation in
such a way that security requirements of no organization are compromised. We
propose two reconciliation approaches - subset based and mining based. In the
former approach, we compute the reconciled policy by identifying the maximal
subset of initial policies that ensures no additional accesses are added when
adopted by any organization. In the mining-based approach, we combine the
attribute conditions of all the users and objects that result in authorizations
and mine the policies from this set. Further in policy migration approach we
propose, how a set of policies decide which policy to migrate to based on least
possible migration cost and then how to migrate in an efficient way by modi-
fying least possible rules. We perform an experimental comparison of the two
approaches with respect to the resulting reconciliation policy in terms of changed
authorizations, as well as performance. While the subset-based algorithm pro-
vides less changes in terms of rules, the mining-based algorithm results in less
changes in the number of authorizations, thus providing a different tradeoff in
terms of rules/authorizations.

The rest of this paper is organized as follows. Section 2 provides a brief
overview of ABAC in the context of multiple organizations that wish to collabo-
rate, and describes how to find the set of authorizations covered by a given ABAC
policy. Section 3 defines equivalence between two ABAC policies and policy sim-
ilarity metric, and proposes a method to determine policy similarity. Sections 4
and 5 present our two policy reconciliation approaches and Sect. 6 presents the
policy migration algorithm. Section 7 presents an experimental analysis of these
approaches. Section 8 reviews the related work. Finally, conclusions and future
work are in Sect. 9.
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2 Preliminaries

In this section, we briefly review the attribute-based access control (ABAC)
model [10]. In ABAC, the authorization to perform an operation (e.g.,
read/write) is granted based on the attributes of the requesting user, requested
object, and the environment in which a request is made. We assume there exist
a set of organizations ORG, upon which we intend to perform policy reconcili-
ation. We use Gk to denote an individual organization where 1 ≤ k ≤ |ORG|.
The basic components of ABAC adapted from [4,18] are as follows:

Users and Objects: We use Uk to denote the set of users of organization Gk and
uki to denote a single user where uki ∈ Uk, Ok to denote the set of objects of an
organization Gk and oki to denote a single object where oki ∈ Ok.

Environment: The set of environment conditions in organization Gk are denoted
as Ek, and the set of environment conditions of all organizations are denoted as
E =

⋃|ORG|
k=1 Ek. We use ei to denote an environment condition such that ei ∈ E.

OPS: This represents a set of all possible operations/permissions on objects
allowed in ORG. We use opi to denote an operation where opi ∈ OPS. In this
paper, for the sake of simplicity, we have considered only one operation.

UA: This represents the set of user attribute names. Each attribute name uai ∈
UA is associated with a set of possible values it can acquire.

OA: This represents a set of object attribute names. Each oai ∈ OA is associated
with a set of possible values it can acquire.
For the sake of simplicity, in this paper, we ignore environmental attributes.

UC: This represents the user attribute conditions. The set of user attribute
conditions in organization Gk are denoted as UCk. The set of all user attribute
conditions of all organizations in ORG is

⋃|ORG|
k=1 UCk. We use uci to denote a

user attribute condition where uci ∈ UC. Each uci is represented as equalities
of the form n = c, where n is a user attribute name and c is either a constant
or any. We denote the user attribute condition set of a user uki, by uki.UC.

OC: This represents the set of object attribute conditions. The set of object
attribute conditions in organization Gk are denoted as OCk. The set of all object
attribute conditions of all organizations in ORG is

⋃|ORG|
k=1 OCk. We use oci to

denote a object attribute condition where oci ∈ OC. Each oci is represented
as equalities of the form n = c, where n is an object attribute name and c
is either a constant or any. For an attribute name n, if the value of c is any,
then the attribute n is not relevant for making the corresponding access decision.
Therefore, as above, the condition n = any does not have to be explicitly chosen.
It is set only if at least one other condition for n is present. We denote the object
attribute condition set of an object oki, by oki.OC.
ABAC policies φ: This represents the set of all ABAC policies for the
organizations in ORG. We use Πk to represent the set of ABAC policies of
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Table 1. UAR, OAR, and Π for organization G1

(a) UAR1

U1 uc1 uc2 uc3 uc4 uc6
u11 1 0 1 0 0
u12 1 0 1 0 0
u13 0 1 0 0 0
u14 0 0 0 1 1
u15 0 0 0 1 1

(b) OAR1

O1 oc1 oc2
o11 1 0
o12 0 1

(c) Π1

Rule Attributes
π11 uc3, oc1,r
π12 uc2, oc1,r
π13 uc4, oc2,r

Table 2. UAR, OAR, and Π for organization G2

(a) UAR2

U2 uc1 uc2 uc3 uc4 uc5
u21 0 0 0 0 1
u22 0 1 0 0 0
u23 0 1 0 0 0
u24 1 0 1 0 0
u25 0 0 0 1 1

(b) OAR2

O2 oc1 oc2
o21 1 0
o22 0 1

(c) Π2

Rule Attributes
π21 uc2, oc1,r
π22 uc1, oc1,r
π23 uc5, oc2,r

organization Gk ∈ ORG. We use πki to denote a policy (or rule) of organiza-
tion Gk, where πki ∈ Πk, which is a quadruple of the form 〈uc, oc, ec, op〉. We
use πki.UC, πki.OC, πki.OPS to express the user attribute condition set and
object attribute condition set and operations set of a rule πki, respectively. If
a user makes a request to access an object, the policy base is searched for any
rule through which the user can gain access. If such a rule exists, then access is
granted, otherwise it is denied.

In UC and OC, we have represented the attribute conditions as equalities,
however, our approach is flexible to include the complex attribute condition
constructs (inequalities, negation, subset, etc.) by converting them to their cor-
responding list of attributes conditions. In the following, we define the map-
ping between users and user attribute conditions as well as objects and object
attribute conditions.

UAR: User attribute relation UAR ⊆ U × UC is a many-to-many mapping of
users and user attribute conditions. We use a m × n binary matrix to repre-
sent UAR, where UAR[i, j] = 1, if user ui satisfies an attribute condition ucj .
Specifically, we denote UARk to represent the User Attribute Relation for Orga-
nization Gk. UARk ⊆ Uk × UCk is a many-to-many mapping of users and the
user attribute conditions in Gk. We use a m × n binary matrix to represent
UARk, where UARk[i, j] = 1, if user uki satisfies an attribute condition ucj .

OAR: The Object attribute relation, OAR ⊆ O × OC is a many-to-many map-
ping of objects and the set of all attributes conditions, where we again use a
m × n binary matrix to represent OAR. OAR[i, j] = 1 if an object oi satisfies
an object attribute condition ocj . We denote OARk to represent the Object
Attribute Relation for Organization Gk. OARk ⊆ Ok × OCk is a many-to-many
mapping of objects and the object attribute conditions in Gk. We use a m × n
binary matrix to represent OARk, where OARk[i, j] = 1, if object oki satisfies
an attribute condition ocj .
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Table 3. UAR, OAR, and Π for organization G3

(a) UAR3

U2 uc1 uc2 uc3 uc4 uc6
u31 0 0 0 0 1
u32 0 0 0 1 1
u33 1 0 1 1 0
u34 0 1 1 0 0
u35 0 1 0 0 0

(b) OAR3

O1 oc1 oc2
o31 1 0
o32 0 1

(c) Π3

Rule Attributes
π31 uc1, oc1,r
π32 uc2, oc1,r
π33 uc6, oc2,r

Authcovered(Π,G): We now define a function called “Authcovered” that returns
a set of authorizations covered by Policy Π on an organization G. This function
essentially first considers the set of Users U and Objects O of G, and computes
UAR and OAR from the given UC and OC, and then computes all the autho-
rization covered by this policy on those users and objects using the Algorithm1.
For example, if we wish to compute authorization covered by applying policy Πl

on organization Gk, then we essentially compute Authcovered(Πl, Gk) by first
finding UARk and OARk. We use Al

k to denote these set of covered authoriza-
tions. Further, if we simply apply a specific rule πli, where πli ∈ Πl on Gk, we
simply compute Authcovered(πli, Gk) and use Ali

k to denote the authorizations
returned by it.

Each authorization a in Al
k is denoted by 〈uki, okj , opg〉, which states that the

user uki is allowed to perform an operation opg on the object okj . For example,
given an ABAC policy Π1, and organization G1 comprising of users and object
U1 and O1, respectively, we say that authorization set A1

1 is covered by Π1 if
for every user u1i and object o1j combination where u1i is allowed to perform
operation opg on o1j , there exists an authorization a = 〈u1i, o1j , opg〉 ∈ A1

1. We
use a.u, a.o and a.op to denote the user, object and operation of a, respectively.
For example, in the above authorization a, a.u = u1i. The set of authorizations
covered by rule πlm is denoted by alm. And the set of users and objects associated
with alm are denoted by alm.U and alm.O, respectively.

2.1 Generating Authorizations Al
k

The steps to find authorization set for a policy are described in Algorithm 1. We
have described the algorithm for one policy Πl. The procedure can be repeated
for all the policies. First, for each policy rule πlm in Πl, in Lines 3–7, we find
all the users in the organization user set Uk, that can get access based on the
user attribute conditions of the policy rule (πlm.UC) and the user’s attributes
(uki.UC). We store these users in alm.U . Similarly, in Lines 8–12, for each rule,
we go over all the objects okj in Ok and find the objects that satisfy the object
attribute conditions of the policy rules (πlm.OC) based on their object attributes
(okj .OC). We save these in alm.O. Next, in Line 13, for each policy rule, we take
all combinations of the users (in alm.U) and objects (in alm.O) in alm. From lines
14 to 16, we add the operation of the rule opg to each user object combination in
alm to get the authorizations given by each rule Alm

k and finally authorizations
Al

k (Tables 4, 5 and 6).
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Algorithm 1. Authcovered(Πl, Gk):Generating Al
k for policy Πl over users and

objects of organization Gk

Require: Uk, Ok, UARk, OARk, Πl

1: Initialize:Al
k , alm.U , alm.O= ∅

2: for (πlm ∈ Πl) do
3: for (uki ∈ UARk) do
4: if (uki.UC ⊇ πlm.UC) then
5: alm.U ← alm.U + uki

6: end if
7: end for
8: for (okj ∈ OARk) do
9: if (okj .OC ⊇ πlm.OC) then
10: alm.O ← alm.O + okj

11: end if
12: end for
13: alm ← ⋃

(uki-okj), ∀ uki ∈ alm.U and ∀ okj ∈ alm.O
14: for aq in alm do

15: Al
k ← aq + πlm.opg

16: end for
17: end for
18: return Al

k

Table 4. Authorizations of G1 when Π1, Π2 and Π3 are applied

(a) A1
1

Rule a
π11 〈u11, o11, r〉
π11 〈u12, o11, r〉
π12 〈u13, o11, r〉
π13 〈u14, o12, r〉
π13 〈u15, o12, r〉

(b) A2
1

Rule a
π21 〈u13, o11, r〉
π22 〈u11, o11, r〉
π22 〈u12, o11, r〉

(c) A3
1

Rule a
π31 〈u11, o11, r〉
π31 〈u12, o11, r〉
π32 〈u13, o11, r〉
π33 〈u14, o12, r〉
π33 〈u15, o12, r〉

Table 5. Authorizations of G2 when Π1, Π2 and Π3 are applied

(a) A1
2

Rule a
π11 〈u24, o21, r〉
π12 〈u22, o21, r〉
π12 〈u23, o21, r〉
π13 〈u25, o22, r〉

(b) A2
2

Rule a
π21 〈u22, o21, r〉
π21 〈u23, o21, r〉
π22 〈u24, o21, r〉
π23 〈u21, o22, r〉
π23 〈u25, o22, r〉

(c) A3
2

Rule a
π31 〈u24, o21, r〉
π32 〈u22, o21, r〉
π32 〈u23, o21, r〉

UOP op: User Object Permission Matrix UOP op, is a M × N matrix, where
M = |U |×|O| comprising of a row for each user-object pair, and N = |UC|+|OC|
+ 1, comprising of a column for each object attribute condition, a column for
each user attribute condition, and a column for the permission op. Specifically,
we denote UOP k

op as the UOP of permission op for organization k. Given a set
of authorizations Ak

k, we construct UOP k
op for a permission type opn as follows:

the columns of this matrix are all possible user attribute conditions and object
attribute conditions of users and objects in Ak

k, respectively, and a column for
opn. There is a row in UOP k

op for each user object pair of organization k. For each
row, if the user attribute condition (object attribute condition) is true for a user
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(object), the corresponding cells to ukl.UC(okl.OC) is filled with 1, otherwise
with 0. If there exists an a = {ukl, okm, opn}, we insert a 1 in the opn column of
that ukl − okm. For the remaining rows, the opn column is 0.

3 Policy Equivalence and Policy Similarity

The goal of policy equivalence to identify the policy rules in a set of organizations
that lead to same access decisions (or authorizations). In this section, we formally
define the notion of Policy Equivalence and the Policy Similarity Metric, and
present an approach to calculate it, with a detailed example illustrating it.

Table 6. Authorizations of G3 when Π1, Π2 and Π3 are applied

(a) A1
3

Rule a
π11 〈u33, o31, r〉
π11 〈u34, o31, r〉
π12 〈u34, o31, r〉
π12 〈u35, o31, r〉
π13 〈u32, o32, r〉
π13 〈u33, o32, r〉

(b) A2
3

Rule a
π21 〈u34, o31, r〉
π21 〈u35, o31, r〉
π22 〈u33, o31, r〉

(c) A3
3

Rule a
π31 〈u33, o31, r〉
π32 〈u34, o31, r〉
π32 〈u35, o31, r〉
π33 〈u31, o32, r〉
π33 〈u32, o32, r〉

Table 7. ABAC Policy Πa when applied to organization G1 and G2

(a) Πa

Rule Attributes
πa1 uc3, oc1,r
πa2 uc2, oc1,r

(b) Aa
1

Rule a
πa1 〈u11, o11, r〉
πa1 〈u12, o11, r〉
πa2 〈u13, o11, r〉

(c) Aa
2

Rule a
πa1 〈u24, o21, r〉
πa2 〈u22, o21, r〉
πa2 〈u23, o21, r〉

Table 8. ABAC Policy Πb when applied to organization G1 and G2

(a) Πb

Rule Attributes
πb1 uc2, oc1,r
πb2 uc1, oc1,r

(b) Ab
1

Rule a
πb1 〈u13, o11, r〉
πb2 〈u11, o11, r〉
πb2 〈u12, o11, r〉

(c) Ab
2

Rule a
πb1 〈u22, o21, r〉
πb1 〈u23, o21, r〉
πb2 〈u24, o21, r〉

3.1 Policy Equivalence

First, we define Policy Equivalence for two policies of two different organizations
based on the authorizations they cover on each other’s users and objects.

Definition 1 (Policy Equivalence). Given two organizations Gi and Gj , and
their corresponding ABAC policies Πi and Πj , we say Πi ≡ Πj , iff, Ai

i = Aj
i

and Aj
j = Ai

j .



106 G. Batra et al.

Essentially, the above definition states that, two policies are equivalent if
both policies give the same set of authorizations for each organization (even if
the actual authorizations across both organizations are different). When only a
single organization exists and would like to check if a different policy is equivalent
to its policy, we can define policy equivalence as follows:

Definition 2 (Policy Equivalence with respect to Gi). Given an organi-
zation Gi and its corresponding ABAC policy Πi and another policy Πj we say
Πi ≡i Πj , iff, Ai

i = Aj
i .

Example 1. Consider two ABAC Policies Πa and Πb as shown in Tables 7a and
8a, respectively. When Πa and Πb are applied on G1, we use UAR1 (Table 1a)
and OAR1 (Table 1b) and obtain Aa

1 and Ab
1 as shown in Tables 7b and 8b,

respectively. Also, when Πa and Πb are applied on G2, we use UAR2 (Table 2a)
and OAR2 (Table 2b), we get Aa

2 and Ab
2, shown in Tables 7c and 8c, respectively.

Since Aa
1 = Ab

1 and Aa
2 = Ab

2, we have Πa ≡ Πb.

Since policies are a set of rules, similar to policy equivalence, it is also possible to
describe equivalence in terms of ABAC rules and find Equivalent ABAC Rules,
i.e., the subset of rules in two policies that cover the same set of authorizations.

3.2 Policy Similarity

In many cases, apart from equivalence, an organization may wish to know how
similar another policy (Πj) is with respect to its policy (Πi). This can be done
by measuring the degree of overlap between the authorizations obtained when
each policy is adopted by the organization. Note however, that we measure the
overlap in terms of the subset of rules of the policies that give the same set of
authorizations (i.e., we measure the number of authorizations that are derived
from equivalent ABAC rules across both policies). The reason for this is that
we assume that a specific policy cannot simply be completely replaced with
another policy, even if it is equivalent in terms of authorizations, but rather that
once authorizations are excluded, the rules containing these authorizations are
themselves revoked and need to be removed.

Definition 3. (Policy Similarity Metric). We define the Policy Similarity
Metric between two policies Πi and Πj with respect to Gi as |ASi

i |/|Ai
i ∪ Aj

i |
where Si ⊆ Πi and Sj ⊆ Πj such that Si ≡i Sj , and there does not exist another
Sk ⊆ Πj where A

Sj

i ⊂ ASk
i and Si ≡i Sk.

Note that in the above definition we divide by the number of authorizations
across both policies, assuming that both have the same importance. However,
when one policy is more significant (i.e., it is the currently adopted policy of
the organization), then the denominator can be changed to only the number of
authorizations given by this policy (instead of the union across both policies).
Furthermore, when we are interested in measuring similarity of several different
policies with this specific policy, then since the denominator is the same across
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Algorithm 2. Evaluate Policy Similarity from G1’s perspective:
Require: UAR1, OAR1, Π1, Π2
1: Πx ← Π1, Πy ← Π2
2: UARx ← UAR1, OARx ← OAR1
3: Compute Ax

x, Ay
x

4: repeat
5: ExtraA x ← Ax

x \ Ay
x

6: ExtraA y ← Ay
x \ Ax

x
7: for (ai ∈ ExtraA x) do

8: if (ai ∈ Axj
x ) then

9: Πx ← Πx \ πxj

10: end if
11: end for
12: for (al ∈ ExtraA y) do

13: if (al ∈ Ayj
x ) then

14: Πy ← Πy \ πyj

15: end if
16: end for
17: until (ExtraA x == {} ) ∧ (ExtraA y == {} )
18: return(Πx, Πy, |Ax

x|, |Ay
x|)

all the similarities, we can ignore it, and only compare by checking the numer-
ator (the number of common authorizations) across the policies. We follow this
procedure below.

To determine the policy similarity metric from Gi’s perspective between its
own policy and Πi and another policy Πj , we need to find Si and Sj such
that when Si and Sj are applied to Gi they lead to a maximum possible set of
authorizations that are essentially the same. On the other hand, if we were to
find out policy similarity from Gj ’s perspective we need to determine Si and Sj

such that when Si and Sj are applied on Gj they lead to a maximum possible set
of authorizations that are same. The rules discovered Si and Sj are Equivalent
Rules and the authorizations covered by the rules Si and Sj are the same.
The Policy Similarity Metric is nothing but |ASi

i | = |ASj

i |. The key idea to
compute |ASi

i | = |ASj

i | is to remove rules iteratively from each policy that cover
extra authorizations that are not covered by the other policy. When there are no
such rules remaining in either policy, then the remaining set of rules are indeed
equivalent. The detailed steps are given in Algorithm2.

Example 2. Consider the 3 Organizations G1, G2, and G3 having with User
Attribute Relations UAR1, UAR2, UAR3, Object Attribute Relations OAR1,
OAR2, OAR3 and ABAC policies Π1, Π2, and Π3 respectively (all as depicted in
Tables 1, 2 and 3). Organization G1 has bids to be acquired by G2 and G3; G1 is
looking to find policies of which firm has more synergy with its own policy, so that
it’s Users and Objects can be easily integrated into the acquiring organization.
Therefore, organization G1 would like to find the policy Πe among Π2 and Π3,
which has a larger Policy Similarity with itself. Hence, we compute the Policy
Similarity metric between G1 and G2, and between G1 and G3.

Now we begin with the evaluation of policy similarity metric. Policies Π1,
Π2, and Π3, lead to authorization sets A1

1, A2
1 and A3

1 when applied on UAR1,
OAR1.
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Policy Similarity Metric Between G1 and G2:
Π1 = {π11, π12, π13}, Π2 = {π21, π22, π23}, Πx = Π1, Πy = Π2, UARx =
UAR1, OARx = OAR1

Iteration 1:
ExtraA x = Ax

x\Ay
x

= {〈u14, o12, r〉, 〈u15, o12, r〉}
ExtraA y = Ay

x \ Ax
x = {}

⇒ Delete rule π13 from Πx

Πx = {π11,π12}, Πy = {π21,π22,π23}

Iteration 2:
ExtraA x=Ax

x\Ay
x={}

ExtraA y=Ay
x\Ax

x={}
Πx = {π11, π12}, Πy = {π21, π22, π23}
Πx ≡ Πy

Policy Similarity Metric = 3; Authorizations: 〈u11, o11, r〉, 〈u12, o11, r〉,
〈u13, o11, r〉
Policy Similarity Metric Between G1 and G3:
Π1 = {π11, π12, π13}, Π3 = {π31, π32, π33}, Πx = Π1, Πy = Π3, UARx = UAR1,
OARx = OAR1

Iteration 1:
ExtraA x=Ax

x\Ay
x={}

ExtraA y=Ay
x\Ax

x={}

Πx={π11,π12,π13}, Πy={π31,π32,π33}
Πx ≡ Πy

Policy Similarity Metric = 5; Authorizations: 〈u11, o11, r〉, 〈u12, o11, r〉,
〈u13, o11, r〉, 〈u14, o12, r〉, 〈u15, o12, r〉

Hence organization G1 will choose G3 as Π1 is more similar to Π3.

4 Subset-Based Policy Reconciliation

When organizations want to collaborate, they desire to move to a conservative
policy that does not lead to any additional accesses for any organization. In
this section, we formally define the notion of Reconciled Policies for a set of n
organizations, and show how to compute it, along with an example illustrating
the process.

Definition 4. Given a set of organizations {G1, . . . , Gn} and their correspond-
ing ABAC policies Π1, . . . ..Πn, respectively; we define the reconciled policy of
each Gi as Si where Si ⊆ Πi and ∀j∈{1,..,n} ASi

i ⊇ A
Sj

i , and there does not exist
another Sk ⊆ Πi, where ASi

i ⊂ ASk
i and ASk

i ⊇ A
Sj

i .

This essentially means that the reconciled policy for every organization is such
that it does not give any additional authorizations for any of the other organi-
zations, i.e., it does not violate the existing security policy of any organization.
Similar to how an equivalent rule set was computed earlier, to create the recon-
ciled policy, for every policy, we simply iteratively remove the rules that lead to
additional authorizations in any other policy until there are no more changes.
Note that it is acceptable if the authorizations produced by the reconciled policy
are less than the original authorizations of the organization since we are adopting
a conservative approach. The detailed steps are given in Algorithm 3.
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Algorithm 3. Computing Reconciled Policies using subset-based approach
Require: Π1,...Πn

Require: UAR1,..,UARn

Require: OAR1,..,OARn

1: {S1,...,Sn} ← {Π1,...Πn}
2: repeat
3: for i ∈ {1, . . . , n}, j ∈ {1, . . . , n}, j 	= i do
4: Gx ← Gi

5: Gy ← Gj

6: Compute: Ax
x, Ay

x
7: ExtraAx

y ← Ax
y \ Ay

y

8: end for
9: for (al ∈ ExtraAi

j) ∀i ∈ {1, ..n}, j ∈ {1, ..n} do

10: if (al ∈ Aik
j ) then

11: Si ← Si \ πik

12: end if
13: end for
14: until (ExtraAi

j == {} ) ∀ i ∈ {1, ..n}, ∀ j ∈ {1, ..n}
15: return {Si,...Sn}

Example 3. Again consider the 3 Organizations G1, G2, and G3 having with
User Attribute Relations UAR1, UAR2, UAR3, Object Attribute Relations
OAR1, OAR2, OAR3 and ABAC policies Π1, Π2, and Π3 respectively (all as
depicted in Tables 1, 2 and 3).

Organizations G1, G2 and G3 intend to reconcile their policies conservatively
in such a way that maximum possible accesses in the three policies are covered
and no extra accesses are given based on another policy i.e., they would like to
find ({S1 ⊆ Π1, S2 ⊆ Π2, S3 ⊆ Π3}) as per Definition 4, as follows:

Iteration 1:
i=S1 and j=S2:
Πx=S1, UARx=UAR1, OARx=OAR1

Πy=S2, UARy=UAR2, OARy=OAR2

ExtraAx
y=Ax

y\Ay
y, ExtraA1

2=A1
2\A2

2={}

i=S1 and j=S3:
Πx=S1, UARx=UAR1, OARx=OAR1

Πy=S3, UARy=UAR3, OARy=OAR3

ExtraA1
3=A1

3 \ A3
3={〈u33, o32, r〉}

i=S2 and j=S1:
Πx=S2, UARx=UAR2, OARx=OAR2

Πy=S1, UARy=UAR1, OARy=OAR1

ExtraA2
1=A2

1 \ A1
1={}

i=S2 and j=S3:
Πx=S2, UARx=UAR2, OARx=OAR2

Πy=S3, UARy=UAR3, OARy=OAR3

ExtraA2
3=A2

3 \ A3
3={}

i=S3 and j=S1:
Πx=S3, UARx=UAR3, OARx=OAR3

Πy=S1, UARy=UAR1, OARy=OAR1

ExtraA3
1=A3

1 \ A1
1={}

i=S3 and j=S2:
Πx=S3, UARx=UAR3, OARx=OAR3

Πy=S2, UARy=UAR2, OARy=OAR2

ExtraA3
2=A3

1 \ A2
2={}

S1=S1–π13 = {π11,π12};

S2=S2–{} = {π21, π22, π23};

S3=S3–{} = {π31, π32, π33}

Iteration 2:

i=S1 and j=S2: ExtraA1
2=A1

2\A2
2={}

i=S1 and j=S3: ExtraA1
3=A1

3\A3
3={}

i=S2 and j=S1: ExtraA2
1=A2

1\A1
1={}

i=S2 and j=S3: ExtraA2
3=A2

3\A3
3={}

i=S3 and j=S1:

ExtraA3
1=A3

1\A1
1={〈u14, o12, r〉, 〈u15, o12, r〉}

i=S3 and j=S2: ExtraA3
2=A3

2\A2
2={}
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S1=S1–{}={π11,π12};
S2=S2–{}={π21,π22,π23};
S3=S3–{π33}={π31,π32}

Iteration 3:
i=S1 and j=S2: ExtraA1

2=A1
2\A2

2={}
i=S1 and j=S3: ExtraA1

3=A1
3\A3

3={}

i=S2 and j=S1: ExtraA2
1=A2

1\A1
1={}

i=S2 and j=S3: ExtraA2
3=A2

3\A3
3={}

i=S3 and j=S1: ExtraA3
1=A3

1\A1
1={}

i=S3 and j=S2: ExtraA3
2=A3

2\A2
2={}

S1 = {π11,π12}; S2 = {π21,π22,π23};

S3 = {π31,π32}

5 Mining-Based Policy Reconciliation

A very intuitive method of performing reconciliation is to combine the cross
product of the UC and OC across each organization, and to perform ABAC
Mining on the combined set. Note that when we consider authorizations across
organizations, it is possible that a specific policy rule (combination of user and
object attributes) might lead to a valid authorization in one organization, while
it is invalid in another organization. Since our approach is conservative, we disal-
low such conflicting authorizations. We now formalize the concept of conflicting
authorizations which will not be granted access in any organization:

Conflicting Authorizations (CAj
i ): Consider organizations Gi and Gj . An

authorization ax in Gi is called conflicting if the set of user conditions and object
conditions associated with ax are possessed by some user u and object o in Gj

and u is not permitted to carry out the same operation on o in Gj .

Definition 5. Given a set of n Organizations {G1, . . . , Gn}, each with ABAC
policy {Π1, . . . , Πn}, the Reconciled Policy, ΠR for all the organizations is the
minimum possible set of policy rules which cover the authorization set (Ai

i−
(CAj

i )) ∀ i, j ∈ {1, . . . , n}.

This essentially means that we mine those policy rules that cover only all autho-
rizations except the subdued authorizations. Whenever, conflicting authoriza-
tions are discovered in an organization, we adopt a conservative approach and
remove them while mining rules for the reconciled policy Πr.

Steps to Evaluate Reconciled Policy
Firstly, we create a UOP i

op matrix for every organization. For simplicity we have
considered only one operation. Next, from each UOP i

op we remove the rows of
conflicting authorizations. After this, we concatenate all the UOP i

op create a
combined UOP. Then we use an ABAC Mining algorithm [18] (ABAC-SRM)
to mine the reconciled policy ΠR. Finally, the participating organizations will
replace their existing policies and implement the new policy generated by ABAC
Mining algorithm.

The ABAC Mining algorithm ABAC-SRM requires the UOP , permission1
Rules and permission0Rules. permission1Rules are the rows in the UOP
where the permission op is 1 and permission0Rules are the rows in UOP where
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permission op is 0. The algorithm is based on the concept of functional depen-
dencies in a database. The idea of the algorithm is to find the set of user-object
attribute conditions that covers all the permission1Rules and doesn’t cover any
permission0Rules. Given an authorization set, the algorithm mines the mini-
mum set of ABAC policy rules by first discovering a candidate set of ABAC
rules and then finding the most general rules from this candidate set of rules,
thus finding the minimum set of ABAC rules covering a set of authorizations. In
this paper, we refer to the algorithm as function abacMining(permission1Rules,
permission0Rules) and pass the set of attribute condition set as arguments.

Example 4. Consider once again the 3 organizations G1, G2 and G3 in Sect. 2.
We separate the rows with op = 1 and op = 0 in the combined UOPr, and
perform ABAC Mining. We obtain the reconciled policy rules as follows:

πr1 = uc1, oc1, r, πr2 = uc2, oc1, r, πr3 = uc6, oc2, r

6 Policy Migration for Reconciliation

When organizations want to collaborate, an alternative approach to reconcilia-
tion is that these organizations choose to migrate to the policy of one organiza-
tion such that the cost of migration is minimum.

Calculating the Optimal Policy: We find out the Optimal policy to which
all organizations should migrate to by first calculating Migration Cost (MC) as
follows and then choose the one with the minimum MC. For each organization
for k = {1, . . . n}:

MC(Πk) = |A1
1 −Ak

1 |+ |Ak
1 −A1

1|+ |A2
2 −Ak

2 |+ |Ak
2 −A2

2|+ . . .+ |An
n −Ak

n|+
|Ak

n − An
n|. We pick the policy with lowest MC(Πk) as the Optimal Policy.

To migrate to the Optimal policy, we need to modify the ABAC policies of
participating organizations. There are two ways to do this:

1. Directly applying the Optimal Policy: Replace the policy rules of an existing
policy Πk, entirely with the set of rules of the Optimal policy Πx.

2. Policy Modification using Algorithm 4: Modifying policy by changing the
existing rules by the following methods: Adding attributes to ABAC rules;
Adding ABAC Rules; and Deleting ABAC Rules.

In the method of Policy Modification approach we try to achieve this by
incurring least possible changes to the original policy. By least possible changes
to an ABAC policy we mean to say that, in the process of migration, the number
of Rule Changes(RC) in an ABAC Policy should be minimum.

Rule Changes(RC) = |Rules Added| + |Rules Deleted|
Now, let us discuss the process of Policy Migration in detail. In an ABAC

Policy System φ, with n organizations, each having its own ABAC policy, and
User-Object set. For each organization Gi, and ABAC policy Πi we use it’s
policy rules to create the set of Authorizations on the User-Object sets of rest of
the organizations (for k = 1 to n) using Algorithm 1, Ai

1, A
i
2, A

i
3, . . . , A

i
n. Then
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we calculate the migration costs for each policy and choose the Optimal policy
(Πx) (one which has the lowest Migration Cost). Once we find the Optimal
policy, we perform the policy modification algorithm to find how to transform
each policy Πi such that it covers authorizations Ax

i as (Πx when applied on Ui

and Oi).

Algorithm 4. Generating the modified policy Π
′
i (A

x
i ) for policy Πi(Ai

i)
Require: : UARi,OARi, Πi, Πx

1: Initialize Π
′
i = Πi

2: DelAe
i ← Ai

i \ Ax
i , AddAe

i ← Ax
i \ Ai

i
3: Editπi ← Rule set to which authorizations in DelAe

i belong
4: for πij in Editπi do
5: keepa=[ ] , removea=[ ] , Allow=[ ] , Deny=[ ]

6: keepa ← (A
πij
i \ DelAe

i ), removea ← (A
πij
i \ keepA)

7: if keepa == φ then
8: Π′

i ← Π′
i \ πij

9: else
10: Allow ← [Allow + ((ap.UC ∪ ap.OC) \ (πij .UC ∪ πij .OC)) for ap in keepa]
11: Deny ← [Deny + ((aq .UC ∪ aq .OC) \ (πij .UC ∪ πij .OC)) for aq in removea]
12: semirules←abacMining(Allow,Deny)
13: rules ← [rules.UC +rules.OC + πij .UC + πij .OC] for rules in semirules

14: Π
′
i ← Π

′
i - πij +rules

15: end if
16: end for
17: Denytotal ← DelAe

i + (Ai - Ai
i - AddAe

i ) or Denytotal ← Ai \ Ax
i

18: perm1 ← [q.UC+q.OC for q in AddAe
i ]

19: perm0 ← [q.UC+q.OC for q in Denytotal]

20: Π
′
i ← Π

′
i + abacMining(perm1,perm0)

21: return Π
′
i

The idea of the policy modification algorithm (Algorithm4) for organization
i, is to modify each policy, Πi, in such a way that only the authorizations allowed
by the Optimal policy Πx on Org i (Ax

i ) are allowed, whereas, all other autho-
rizations covered by Policy Πi besides Ax

i are denied. The authorizations covered
by policy Πi, besides the Ax

i are called DelAe
i . These authorizations need to be

blocked. Also, we need to add authorizations that are present in Ax
i and are not

covered by policy Πi. These authorizations are called AddAe
i . To begin with, in

Line 1, we assign the Policy Πi to modified policy Π ′
i. Next, in Line 2, we find

these set of authorizations, DelAe
i and AddAe

i .
First, we modify policy Πi so as to block the authorizations in DelAe

i in
Lines 1–16. After that, we modify the policy to add the authorizations in Lines
17–20. In Line 3, we find the set of rules (Editπi) in policy Πi to which the
authorizations in DelAe

i belong to. These are the set of rules on which we need
to work on (modify rule/delete rule) in order to block authorization set DelAe

i .
From Lines 4–16, we edit each rule one by one in Editπi. For every rule, we

create two empty sets: (1) keepa, (2) removea; and two empty lists: (a) Allow,
(b) Deny. ‘keepa’ is the set of authorizations that should be allowed by the rule.
We find ‘keepa’ in Line 6 by subtracting set DelAe

i from A
πij

i (the authorizations
covered by rule πij). We also find ‘removea’ in Line 6 by subtracting ‘keepa’ from
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A
πij

i . In Line 7, we check if (keepa == Φ). If it’s true, it means that there are
no authorizations to be covered by the rule πij and so we delete rule πij from
the policy Π ′

i in Line 8.
In case, keepa is not NULL, in Lines 10–14, we modify the rule to allow the

authorizations ‘keepa’ and block the authorizations ‘removea’. We remove the
attribute conditions of rule πij from the attribute condition set for each of the
authorizations in ‘keepa’ and create the ‘Allow’ list in Line 10. Similarly, we
create the ‘Deny’ list by removing the attribute conditions of rule πij from the
attribute condition set for each of the authorizations in ‘removea’ and creating a
list. In Line 12, we mine ABAC rules using the lists Allow and Deny in function
abacMining. Allow and Deny signify the permission1rules and permission0rules
in the abacMining algorithm by Talukdar et al. [18]. After we get the mined
ABAC rules, we add back the attribute conditions of rule πij to the mined ABAC
rules in Line 13. In Line 14, we remove the rule πij from the policy Π ′

i and add
the new rules instead. In Line 17–20, we describe how to add the authorizations
AddAe

i to the policy. First, in Line 17, we find the total authorizations that
should be denied (Denytotal). Denytotal is Ax

i subtracted from Ai (all possible
authorizations) (Denytotal ← Ai \ Ax

i ).

Example 5. Consider once again the 3 organizations G1, G2 and G3 in Sect. 2.
We now calculate the Migration Cost (MC) for the three policies in each of the
organizations.
MC(Π1) = |A1

2 − A2
2| + |A2

2 − A1
2| + |A1

3 − A3
3| + |A3

3 − A1
3| = 0 + 1 + 1 + 1 = 3

MC(Π2) = |A1
1 − A2

1| + |A2
1 − A1

1| + |A3
3 − A2

3| + |A2
3 − A3

3| = 2 + 0 + 2 + 0 = 4
MC(Π3) = |A1

1 − A3
1| + |A3

1 − A1
1| + |A2

2 − A3
2| + |A3

2 − A2
2| = 0 + 0 + 2 + 0 = 2

Since lowest Migration Cost of of Policy Π3, we decide to migrate to Π3.

For Policy Π1:
DelA = A1

1 \ A3
1 = NULL

AddA = A1
1 \ A3

1 = NULL
Do nothing as A3

1 = A1
1

For Policy Π2 :
DelA = A2

2 \ A3
2 = {(u21,o22,r),(u25,o22,r)}

AddA = A3
2 \ A2

2 = NULL
Editπi = {π23}
For π23, keepa = NULL

Π ′
2 = Π2 \ π23

7 Experimental Evaluation

We now evaluate the effectiveness of the three approaches. Since it is difficult
to find suitable real data sets, we have created synthetic data sets with specific
parameter values. In the following experiments we only create data with a single
permission, though the time required would scale linearly with the number of
permissions. We consider a set of three organizations, {G1, G2, G3} each with
a policy Π1,Π2 and Π3. The key parameters in each organization are the set
of users (U1, U2, U3), set of objects (O1, O2, O3), user and object attribute con-
ditions (UC1, UC2, UC3), object attribute conditions (OC1, OC2, OC3), and the
set of rules (Π1,Π2,Π3). Each policy and the corresponding user object set were
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created such that a pre-defined percentage of rules in each policy were equivalent
to one-another, called ‘Overlap Percentage - Rules’ (ovpr). The percentage of
authorizations covered by these rules over total possible authorizations is called
‘Overlap Percentage - Accesses’ (ovpa) amongst the organizations. We have used
the following default value of these parameters for experiments, unless the value
of a specific parameter is varied for study.

|Π1|\|Π2|\|Π3|=40\40\40,
|U1|\|O1|=100\100,
|U2|\|O2|=100\100,
|U3|\|O3|=100\100,

|UC1|\|OC1|=400\400,
|UC2|\|OC2|=400\400,
|UC3|\|OC3|=400\400,
ovpa=10

ovpr in Π1 = 20,
ovpr in Π2 = 50,
ovpr in Π3 = 70

We use the following metrics to evaluate the performance of the approaches
proposed above:

1. T : Runtime required for the algorithm.
2. RCT : Count of rule changes during the transition when using the algorithm.

RCT = (|Rules Deleted| + |Rules Added|) combined across all three policies.
3. RCA: Count of rule changes in the policy administratively.

RCA = (|Final Rules| − |Initial Rules|) combined across all three policies.
4. AC: Count of Authorization Changes in the algorithm.

AC = |New Authorizations added| + |Authorizations lost|) combined across
all three policies.

We performed the experiments to evaluate the metrics keeping the following two
goals in mind. Also, for each set, we varied the parameters mentioned below.

1. Comparing reconciliation approaches (Sects. 4 and 5)
– varying # rules in each of the policies
– varying # users-objects in each of the organizations

2. Comparing reconciliation approaches with Policy Migration (Sects. 4, 5 and
6)

– varying Overlap among the policies

Further, we repeated each experiment 5 times (each time generating a new ran-
dom set of policies) and reported the results by averaging over the five runs. The
experiments are performed on an Intel Core i7 3.20 GHz machine with 32.00 GB
memory running 64-bit Windows 10. As discussed before, for Mining-based rec-
onciliation, we use the ABAC Mining algorithm (ABAC-SRM) proposed by
Talukdar et al. [18].

Comparing Reconciliation Approaches
Our observations are similar when we observe the metrics discussed above for
both Varying the # of Rules in each of the policies and Varying the # of
Users/Objects in each of the organizations. Figures 1 and 2 show the results
obtained for different metrics while varying count of Rules and User-Objects
respectively while keeping the remaining parameters constant at their default
value. It is intuitive that as # of rules in a policy or # of user-object of an
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(a) |Π| v/s Time(T) (b) |Π| v/s of RCT

(c) |Π| v/s RCA (d) |Π| v/s AC

Fig. 1. Increasing # of Rules(Π) in G1, G2, G3

organization increase, the count of authorizations covered by each of the policy
sets also increases. Now let us see the effect on individual metrics when we vary
the parameters.

Time: For Mining-based reconciliation, time increases with increase in number
of rules as more rules lead to more authorizations to mine. For subset based
reconciliation also, time increases as the number of rules are increasing as the
algorithm will have to check more rules for reconciling. Comparing the two,
since Mining-based reconciliation, goes over every authorization and its attribute
conditions to evaluate the rules, it’s time is much more and increases more
rapidly, than Subset-based Reconciliation which only identifies the rules cover-
ing extra authorizations and removes them from the policy set policy (Figs. 1a
and 2a).

Rule Changes in Transition: The rule changes during transition are more
for Mining-based reconciliation as mining has to replace an entire rule set with
a new one for all the policies where as Subset-based reconciliation only deletes
rules (Figs. 1b and 2b).

Rule Changes Administrative: Mining-based reconciliation has a higher
RCA, which means more administrative cost as the new rule set covers autho-
rizations of all the three organizations (policies). For subset based reconciliation,
RCT is always negative, as the rules are removed from the policy to achieve the
reconciled policies, leading to a lower administrative cost (Figs. 1c and 2c).
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(a) |U |-|O| v/s Time(T) (b) |U |-|O| v/s RCT

(c) |U |-|O| v/s RCA (d) |U |-|O| v/s AC

Fig. 2. Increasing # users and objects (|U |-|O|) in G1, G2, G3

Authorization Changes: AC for mining is 0 as we have considered non-
conflicting policies for our experiments. For reconciliation, AC increase with
increasing users-objects/rules, as total authorizations generated by each policy
are increasing, but the overlapping authorizations are constant (Figs. 1c and 2c).

Comparing Reconciliation Approaches and Policy Migration
Figure 3 show the results obtained for different metrics when the percent over-
lap in the authorizations of the three organizations is varied while keeping
the remaining parameters constant at their default value. As the % of over-
lap increase, more percentage of the authorizations are covered by equivalent
rules in the three organizations.

Time: For Mining-based reconciliation, time decreases with increase in ovpa;
equivalent rule sets are covering the authorizations are increasing, thus making
mining of rules faster. For Subset-based reconciliation, time increases slowly with
the ovpa as the algorithm will have to check more extra authorizations while
making the decision to eliminate/keep a rule, until it reaches its peak at highest
overlap percentage and drops suddenly due to very less extra authorizations. And
for migration, the time increases initially but then goes on decreasing with the
increase in overlap due to less changes required in authorizations among policies.
Policy Migration takes less time than both types of reconciliation approaches at
any degree of overlap (Fig. 3a).

Rule Changes in Transition: Rule changes during transition go on decreasing
for all the three approaches with increasing overlap. For Mining-based reconcil-
iation the RCT is maximum among the three, a new ruleset (covering all three
policies) replaces the previous one for all the policies, whereas, Subset-based rec-
onciliation only deletes rules and migration works on selected rules or sometimes
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(a) ovpa v/s Time(T) (b) ovpa v/s of RCT

(c) ovpa v/s RCA (d) ovpa v/s AC

Fig. 3. Increasing % of overlap authorizations (ovpa) in G1, G2, G3

adds few rules. To be fair, while counting rule changes in migration we included
the rules that we modified by adding or deleting attributes (Fig. 3b).

Rule Changes Administrative: At low overlap, Mining-based reconciliation
has the highest administrative cost followed by Migration and Subset-based
reconciliation. However, as ovpa increases, the RCA for both decreases. With
increasing overlap RCA for Subset-based reconciliation increases.

Authorization Changes: The number of authorization changes for mining is
0 as we have considered non-conflicting policies for our experiments. For both
reconciliation and migration, the authorization changes increases with increas-
ing overlap (Fig. 3d). All our results are intuitive in nature. Note that all of
the above results are statistically significant. We formulated the null hypothesis
and the alternative hypothesis in each case, and carried out a paired t-test to
determine if the null hypothesis can be rejected. Overall, comparing reconcilia-
tion approaches, Mining based reconciliation is more accurate and optimal, as it
covers all the authorizations of the three organizations. However, it generates a
much larger number of rule sets, leading to more transition and administrative
cost for the organizations. The subset-based reconciliation approach, covers less
authorizations but has less rule changes in transition and low administration
cost once the change is in effect. Migration and Subset based reconciliation per-
form better than Mining-based reconciliation in terms of time, transition cost
and administrative cost, however, Mining-based reconciliation is able to cover
all the authorizations for all the organizations. We see that migration performs
fairly better considering all the metrics.
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8 Related Work

Policy Equivalence: Concepts of Equivalence in policies have been discussed
previously by Bertino et al. [5] and Bonatti et al. [6]. Comparing sets of autho-
rizations in two policies, is analogous to the idea of multiset equivalence. We have
modified their definition for a multiple organization setting as per our work.

Policy Similarity: One of the widely accepted notions of policy similarity was
presented by Lin et al. [13] for XACML policies. They consider both categorical
and numerical attributes in evaluating similarity and also integrate dictionary
lookup and ontology matching in their extended work [13]. It provides a pol-
icy similarity measure that can be used as a filter phase to quickly reduce the
number of policies for further analysis. We attempt to use the Policy Similar-
ity measure as a basis of Policy Reconciliation and Policy Migration eventually.
Another approach proposed by Vaidya et al. [20] is based on change detection
tool XyDiff. They also deal with the problem of Policy Migration by using the
results to further develop a policy composition algorithm and migrate to one of
the policies at lowest transition cost. We take inspiration from them in defin-
ing policy similarity in terms of common access decisions. A similar notion of
similarity is that of semantic similarity, used by Xu et al. [21], specifically for
ABAC policies. However, we consider only those accesses covered by equivalent
rules in two policies while evaluating similarity. Other work is in the area of
policy analysis, which is about approaches for checking policy refinement and
change analysis and can be used to verify that the policies are equivalent (which
is complimentary to our work). Specifically, Fisler et al. [8] presented Margrave
represents policies using MTBDDs and presents a policy verification and policy
version change analysis algorithm. Backes et al. [2] proposes a policy refinement
technique to compare policies and check if one policy is a subset of the other.
Turkmen et al. [19] consider SMT as reasoning method to create a policy analysis
framework to verify policy properties such as refinement, subsumption, change-
impact. Many policy analysis approaches are based on the concept of model
checking, e.g., [9].

Policy Reconciliation: Many approaches have been proposed to develop lan-
guages that can express multiple access control policies in single unified system
(e.g., Jajodia et al. [11]). Barker et al. [3] describe a general access control model
that could also be used for ABAC. Besides, several research efforts were made
in the area of composing policies Bonatti et al. [6], Bruns et al. [7], McDaniel
et al. [16]. In these the different access control policies can be integrated while
retaining their own independence. Mazzoleni et al. [15] propose an XACML
extension as a policy integration algorithm, which also includes an approach
to evaluate policy similarity based on identifying most restrictive policy based
on each common attribute in policies. Koch et al. [12] describe a graph-based
approach for policy comparison, policy evolution, policy integration and policy
transition. Other relevant work for policy reconciliation is that of policy ratifi-
cation by Agarwal et al. [1] and policy conflict by Lupu et al. [14]. There are
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also works for secure interoperation in multi-organization environment (e.g. by
Shafiq et al. [17], Lupu et al. [14]. These do not consider definition of policy
similarity and are not directly related to our work.

9 Conclusions and Future Work

In this paper, we assumed the security policies of organizations in a collabora-
tive setting are enforced using ABAC. We have proposed the notion of policy
equivalence based on some past work and policy similarity metric and developed
algorithms to evaluate policy similarity. We have also proposed two different
approaches for accomplishing policy reconciliation where one is based on ABAC
mining and the other is based on finding maximal common subsets. We have also
proposed a Policy migration approach for the organizations in such a setting.
We have performed extensive experiments to compare the performance of the
proposed approaches with respect to a variety of metrics. Mining-based recon-
ciliation is a straightforward way to reconcile policies and results in less changes
in the policy in terms of authorizations, but may require more changes in the
rules. Migration performs average for all the parameters. In the future, we plan
to evaluate the performance of the approaches when the organizations in the col-
laborative setting are increased and by introducing conflicting authorizations.
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Abstract. In this digital world, numerous credit card-based transactions take
place all over the world. Concomitantly, gaps in process flows and technology
result in many fraudulent transactions. Owing to the spurt in the number of
reported fraudulent transactions, customers and credit card service providers
incur significant financial and reputation losses respectively. Therefore, building
a powerful fraud detection system is paramount. It is noteworthy that fraud
detection datasets, by nature, are highly unbalanced. Consequently, almost all of
the supervised classifiers, when built on the unbalanced datasets, yield high false
negative rates. But, the extant oversampling methods while reducing the false
negatives, increase the false positives. In this paper, we propose a novel data
oversampling method using Generative Adversarial Network (GAN). We use
GAN and its variant to generate synthetic data of fraudulent transactions. To
evaluate the effectiveness of the proposed method, we employ machine learning
classifiers on the data balanced by GAN. Our proposed GAN-based oversam-
pling method simultaneously achieved high precision, F1-score and dramatic
reduction in the count of false positives compared to the state-of-the-art syn-
thetic data generation based oversampling methods such as Synthetic Minority
Oversampling Technique (SMOTE), Adaptive Synthetic Sampling (ADASYN)
and random oversampling. Moreover, an ablation study involving the over-
sampling based on the ensemble of SMOTE and GAN/WGAN generated
datasets indicated that it is outperformed by the proposed methods in terms of F1
score and false positive count.

Keywords: Fraud detection � Supervised classification � Deep learning �
Generative Adversarial Network � Oversampling � SMOTE

1 Introduction

With the spectacular digitalization witnessed in the last decade, online payment methods
become one of the significant offerings in the financial services industry. Online
shopping, ticket booking, bill payments using credit card become the norm nowadays.
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Fraudulent transactions involving credit cards for online payments are increasing owing
to the shortcomings in the processes, technology and social engineering. Detecting these
online card-based frauds and preventing them is a thriving research area. Implementing
a powerful and versatile fraud detection system is paramount for any organization as
they incur heavy monetary and reputational loss. State-of-the-art fraud detection systems
take recourse to machine learning techniques which attempt to learn the profiles of
fraudulent transactions from a dataset that contains normal as well as fraudulent
transactions.

We now present the challenges in data-driven fraud detection. Data-driven fraud
detection collapses into the classification task of supervised machine learning. Due to a
disproportionately small number of fraudulent transactions vis-à-vis the normal ones,
traditional classifiers incorrectly predict the fraudulent transaction as normal ones. For
instance, fraudulent transactions account for 0.1% to 5% of the total data leading to the
problem of data imbalance. Almost all machine learning based binary classifiers per-
form badly on the unbalanced data. However, fuzzy rule based classifiers, one-class
classification using SVM, 3-layered or 5-layered auto encoders can work well in case
of unbalanced data without having to balancing the data. Generating synthetic data of
fraudulent transactions having the same distribution as that of the original data is a big
challenge. There are many ways to oversample minority class data in data mining
literature. But the problem with these methods is that they replicate the data, without
bothering to learn the distribution of minority class. Consequently, false positive rates
becomes very large. Cost of manually verifying false positives is much high compared
to the cost incurred due to fraud.

We now briefly survey the related work. Sisodia et al. [1] evaluated the perfor-
mance of class balancing techniques for credit card fraud detection. They used different
SMOTE versions and performed undersampling and oversampling. They validated
their methods using different classifiers. Randhawa et al. [2] employed a host of
machine learning classifiers and designed an ensemble too using majority voting for
credit card fraud classification. Vega-Márquez et al. [3] used the conditional GAN for
generating synthetic data for both classes. They found that synthetic data improved the
F1-score with the Xgboost classifier. They did not compare it with other synthetic data
generation techniques and did not report the false positive count. Dos Santos Tanaka
et al. [4] used GAN for generating minority class data in medical domain. They found
that it is useful in the context of privacy preservation of sensitive data. Mottini et al. [5]
proposed Cramer GAN for PNR data generation that is a combination of categorical
and numerical data. They used softmax function in place of sigmoid for categorical
data generation. Fiore et al. [6] has used vanilla GAN to increase the effectiveness of
credit card fraud detection. Douzas et al. [7] used conditional GAN for generating the
samples of the minority class containing fraudulent transactions. We propose GAN for
generating the continuous data. The architecture of the generator in our proposed
method is different from that of Cramer GAN.

The motivation for the present research is as follows: In credit card fraud detection,
the major challenge is to obtain high sensitivity and low false positive rate simulta-
neously from statistical and machine learning classifiers. A supervised classifier can
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work properly if the data set is balanced. One way of balancing the data is to over-
sample the minority class. While simple oversampling replicates the minority class
observations, oversampling based on synthetic data generation does not generate data
that follows the same probability distribution as that of the minority class because it is
based on the nearest neighbor method. Consequently, classifiers yield high false pos-
itive rate, which in turn increases the cost, as it needs manual verification of the false
positives. The motivation is to oversample minority class by using GAN. This strategy
could reduce the number of false positives thereby making the fraud detection system
cost effective.

The main contributions of the present paper are as follows:

• We developed a generator and a discriminator for GAN. After training, the gen-
erator of GAN can generate synthetic data from the minority class.

• We demonstrated the effectiveness of the proposed oversampling method using
machine learning classifiers.

• We compared our method with the extant oversampling techniques. We could
reduce the number of false positives dramatically.

• We proposed Wasserstein GAN (WGAN) as well for structured data generation.
WGAN was used in literature for image data. But, here, we used it for generating
the structured data of fraudulent transactions of credit card. We compared the
performance of the WGAN with that of vanilla GAN.

• We performed an ablation study too, where we designed an ensemble combining
the data generated using GAN and SMOTE. We compared all methods using F1-
score, precision and Recall.

The rest of the paper is organized as follows: Sect. 2 presents the detail of back-
ground knowledge to understand model; Sect. 3 presents in detail our proposed model;
Sect. 4 presents the dataset description and evaluation metrics; Sect. 5 presents a
discussion of the results and finally Sect. 6 concludes the paper and presents future
directions.

2 Background

2.1 Generative Adversarial Networks (GANs)

Of late, GAN has gained traction across the machine learning community with
excellent results replicating real-world rich content such as images, languages, and
music. It is inspired by game theory. It consists of two models, namely, a generator,
and a discriminator, both of which compete while supporting each other and making
progress together. But training GAN is not an easy task, because since Goodfellow
et al. [8] proposed this concept, it has been a problem of unstable training and easy
collapse. The architecture of GAN depicted in Fig. 1. The two models of GAN are as
follows:

Discriminator model is responsible for predicting the probability that a sample is from
a real data set. It trains on real data and the generator’s generated fake data and tries to
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discriminate both type of data as accurately as possible, thus pointing out the inade-
quacy of newly generated samples. In a sense, it is like a critic which tries to dis-
criminate generator’s generated data from the real data.

Generator G. This model is responsible for synthesizing the input noise signal z into a
new sample (z contains the potential real data distribution) and then feeding it to the
discriminator for judgment. Its goal is to capture the true data distribution based on the
output of the discriminator, making the samples it generates as realistic as possible.

These two models compete with each other during the training process: the gen-
erator G tries to “spoof” the discriminator D, and the discriminator is constantly
improving itself to avoid being cheated. It is this interesting zero-sum game that has
given immense strength to GAN.

GAN [8] is a generative model that is built by combining two feed-forward neural
networks. Generator component of GAN is used to generate synthetic data that looks
like the original data in terms of probability distribution and quality. In the Fig. 1, z is a
random input to the generator G. Discriminator D receives input as a combination of
real data x and the data G(z) generated by the generator. hd and hg are parameters of
discriminator and generator networks respectively. Discriminator and generator both
have their respective objective functions as depicted in Fig. 2. In GAN, the generator
must be a differentiable, feed-forward network. In GAN, the motive is to achieve a well
trained generator so that it can generate the synthetic data that looks like the original
data. Hence, optimizing the generator’s weights is critical. The presence of the dis-
criminator changed the way the generator is optimized. Discriminator of GAN works as
a critic that helps in optimizing generator’s weights. The goal of the discriminator is to
distinguish the generated sample from the real sample as accurately as possible. That
means the generator’s objective is to generate synthetic samples that look so similar to
the real ones that it can fool the discriminator. Therefore, the optimization of GAN is a

Fig. 1. Architecture of GAN with generator and discriminator
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min-max game. We optimize the weights of the generator and the discriminator
alternately by freezing the weights of one of them.

min
G

max
D

V D;Gð Þ ¼ Ex�Pdata xð Þ ½log D xð Þð � þEz�Pz zð Þ log 1� D G zð Þð Þð Þ½ �

Wasserstein GAN [9] (WGAN) employs Wasserstein distance as the loss function.
Wasserstein Distance is a measure of the distance between two probability distribu-
tions. It is also called Earth Mover’s (EM) distance. Wasserstein distance is better than
Kullback-Leibler divergence and Jensen-Shannon divergence to measure the similarity
between distributions [10].

2.2 Oversampling Methods

Random Oversampling: It simply replicates the data points of the minority class to
reduce imbalance. So, no new data is generated. Due to replication, the classifier does
not learn a variety of patterns of the minority class.

Synthetic Minority Over-Sampling Technique (SMOTE): Proposed in [12]
SMOTE, instead of replicating the minority class, it generates synthetic data based on
the position of original samples. It selects a random data point from the minority class
and finds its k nearest neighbors. It then creates a synthetic point near these neighbors.

Adaptive Synthetic (ADASYN) Sampling: Proposed in [13], ADASYN is an
updated version of SMOTE. This method adds a small bias to artificial points so that
they are not linearly correlated to their parent data points. In this paper, to implement
SMOTE and ADYSYN, we used the imbalanced-learn python library [11].

Log probability of D predicting that 
G’s generated data is not genuine

Log probability of D predicting that 
real world data is genuine

z~ N(0,1)                                  Optimize the G using Adam optimizer

D

G

Cost

Real Data x

Optimize the D using SGD  

Fig. 2. Architecture of GAN with generator and discriminator objective functions.
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3 Proposed Model

The schematic of our proposed model is depicted in Fig. 3. We used GAN for gen-
erating the synthetic records of the fraudulent class and machine learning classifiers to
validate the quality of artificially generated data and classification purpose.

First, we consider the whole data and perform some pre-processing like dropping
the column, column standardization. We split the data using the hold-out method in the
ratio of 70%:30%. Then, we oversample the training data by concentrating on the
minority class of fraudulent transactions, while keeping the test data intact because the
latter represents the reality.

3.1 GAN Architecture

Both generator and discriminator of GAN should be differentiable and feedforward
networks [14]. As our data is a structured one, CNN and LSTM are not suitable. CNN
is used for image data and LSTM is used in case of sequential data. Therefore, in our
case, we used multilayer perceptron for both generator and discriminator. We used
WGAN (consists of MLP as a generator) for structured data generation and to the best
of our knowledge it is not attempted earlier. We used the following architectures for
generator and discriminator of the vanilla GAN and WGAN. Only the objective
function is different in them.

Architecture of the Generator:
Input Layer. The input layer receives randomly generated latent input of fixed length.
Input data is transformed to synthetically generated data by the generator.

Hidden Layers.
• First hidden layer has 500 neurons with leaky ReLU activation [15].
• Second hidden layer has 500 neurons with leaky ReLU activation.
• Third hidden layer has 500 neurons followed by leaky ReLU activation.

Fig. 3. Schematic diagram of the proposed method
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Output Layer. This layer outputs generated data that has the same dimension as that of
the original data. It uses the hyperbolic tangent (tanh) activation function to get non-
linearity. We update the weights of this network so that generated data achieves the
same distribution of as that of the original data. That update in weights is accomplished
with the help of discriminator in GAN.

Architecture of the Discriminator:
Input Layer. The input layer of the discriminator receives the input vector with the
same length as that of the original data.

Hidden Layers.
• First hidden layer has 500 neurons with leaky ReLU activation.
• Second hidden layer has 300 neurons with leaky ReLU activation.

Output Layer. This layer with sigmoid activation function, yields a binary output.

3.2 Classifiers

In the current work, we did not focus on the power of the classifier. We chose two
traditional machine learning classifiers. We employed logistic regression (LR) with the
elastic net regularization and support vector machine (SVM) with the elastic net
penalty. We used Linear kernel and SGDClassifier [16] of Sklearn1 library for SVM
and LR by choosing hinge loss and log loss respectively. We trained the GAN with the
minority class only. When training of GAN is completed, we generated synthetic
samples from the trained generator. We then augmented the generated data with the
samples of the fraudulent as well as non-fraudulent classes and used it to train the SVM
and LR. The trained classifiers are then tested on the test data.

3.3 Experimental Setting

We used Adam [17] optimizer (with learning rate = 0.001) for generator and stochastic
gradient descent optimizer with (learning rate = 0.001) for the discriminator. We gen-
erated 15000 data samples for each oversampling method. We trained GAN for 10,000
epochs. Input dimension of generator and discriminator is 100 and 30 respectively,
while the output dimension of generator and discriminator is 30 and 1 respectively. We
used Tensorflow [18] framework for deep learning and Python language for the clas-
sifiers. The combination of all the hyperparameters is obtained by a grid search.

4 Data Set Description and Evaluation Metrics

We validated the effectiveness of our proposed models on the Kaggle credit card data
set [19]. This data set is highly unbalanced having 284,807 normal transactions and
492 fraudulent transactions. Thus, the positive class represents only 0.172% of the
whole data. The data has 31 columns out of which Time and Amount are two named

1 https://scikit-learn.org/stable/.
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features and the names of V1 to V28 features have not been reported due to confi-
dentiality reasons. All are continuous features. Feature Time represents time in seconds
between transactions and feature Amount shows the amount value of the transaction.
Last feature Class represents the label fraudulent or normal transaction. We divided the
dataset in train and test parts in 70%:30% ratio as presented in Table 1.

4.1 Evaluation Metrics

The data set is highly unbalanced. Here our main intention is to reduce the count of
false positives and not to measure the accuracy. We used precision, F1-score as
additional performance measures. We also computed false positive, true positive,
specificity and recall.

Precision = TP/Predicted Positive = TP/(TP + FP)
Recall = TP/Actual Positive = TP/(TP + FN)
Specificity = TN/Actual Negative = TN/(TN + FP)
F1-Score = 2 * (Precision * Recall)/(Precision + Recall)

Where True Positive (TP): Predicted positive and actual is also positive.
True Negative (TN): Predicted negative and actual is also negative.
False Positive (FP): Predicted positive but actual is negative.
False Negative (FN): Predicted negative but actual is positive.

5 Result and Discussion

Our main intention, in this research work, is to build a good oversampling method or
synthetic data generator. We investigated the effectiveness of the proposed GAN and
WGAN based oversampling methods. We compared the performance of the proposed
oversampling methods with that of the existing oversampling methods using SVM and
LR classifiers. The results of the classifiers on test data are presented in Tables 2 and 3
respectively. It can be seen from Table 2 that AUC scores are not good measures to
check the effectiveness of the oversampling method. In fraud detection case, we would
like to have high true positive count and less false positive count simultaneously.
According to the Tables 2 and 3, we can say that false positive count is very high on
the unbalanced data without using any oversampling method. But, compared to all
oversampling methods, our proposed method performed the best in terms of controlling
false positives.

Table 1. Train and test data

Data Fraudulent samples Normal samples % of the whole data

Train set 338 199364 0.17% fraud
Test set 155 85443 0.18% fraud
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It is common knowledge that the fraudulent transactions are considered as positive
class. Supervised machine learning classifiers misclassify non-fraudulent (normal)
samples as fraudulent ones thereby increasing the false positive count. Even the true
positive count is high due to soft boundary of a classifier separating the fraudulent and
non-fraud datasets. Thus, even if a model yields high true positive count, it also
misclassifies the normal transactions, that are near the soft boundary, as fraudulent
ones. This increases the false positive count. Hence, such models are not preferred
because every sample predicted as fraudulent will have to be manually verified and
during the verification if they turn out to be false positives, it is a wastage of time and
money. Therefore, reducing false positive count along with increasing the true positive
count is the main concern nowadays.

GAN and WGAN based oversampling methods controlled the false positive count
spectacularly without affecting the true positive count significantly. Precision and F1-
score are very high compared to other oversampling methods. Our GAN with LR/SVM
is better than plain LR/SVM because the latter, unsurprisingly, yielded high false
positive count as well as high precision.

Our proposed method yielded excellent results (see Tables 2 and 3) compared to
SMOTE, random oversampling and ADASYN because these oversampling methods
generate the synthetic data without learning the distribution of the original class.
Random oversampling does not generate any synthetic data. It replicates the existing
minority class data to balance the classes. Therefore, it does not bring any variety to the
data thereby afflicting the performance of the classifiers. While SMOTE and ADASYN
generate new synthetic data points based on neighbors, they too do not learn the
distribution of the data. Therefore, the data generated by them does not have variety.

Our proposed GAN generated data that has the same distribution as that of the
minority class because the objective function of GAN is designed so as to learn the
distribution There are many types of objective functions such as KL-divergence, JS-
divergence used in GAN. These objective functions have a limitation in terms of
learning the data distribution as follows: if the two distributions are in lower dimen-
sional manifolds without overlaps, then KL- divergence would not perform better. We
used WGAN to overcome this problem. WGAN employs Wasserstein distance that can
provide meaningful and smooth representation of the distance if distributions are not

Table 2. Performances comparison with SVM

Method TP FP Specificity Precision Recall F1-score AUC

Plain SVM 145 2951 0.97 0.05 0.94 0.09 0.95
Random oversampling + SVM 139 1046 0.99 0.12 0.90 0.21 0.94
SMOTE + SVM 145 1595 0.98 0.08 0.94 0.15 0.96
ADASYN + SVM 145 4874 0.94 0.03 0.94 0.06 0.94
GAN + SVM 135 170 0.99 0.58 0.85 0.69 0.93
WGAN + SVM 132 95 0.99 0.58 0.85 0.69 0.92
SMOTE + GAN + SVM 142 512 0.99 0.22 0.92 0.35 0.96
SMOTE + WGAN + SVM 141 422 0.91 0.25 0.91 0.39 0.95
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overlapped. Reducing the distance between the distribution of artificially generated
data and true data makes GAN perform better for data oversampling. WGAN out-
performed GAN because WGAN has a better objective function. Training time of
model is system and data dependent but after training we can use trained model for
deployment and response will depend on the server. But we noticed that it is very fast
(10–15 s for generating 15000 data points).

An ablation study was also conducted by taking the union of the datasets generated
by both SMOTE and GAN/WGAN along with the original dataset as the new dataset
and invoking classifiers on them. It is a sort of ensemble of the datasets generated by
SMOTE and GAN/WGAN. Tables 2 and 3 clearly indicate that even this ensemble
strategy failed to yield higher F1 score and lower false positive count compared to the
GAN/WGAN based oversampling methods. Therefore, we infer that the proposed
GAN/WGAN based oversampling method demonstrates its strength and power con-
clusively and convincingly.

6 Conclusion and Future Directions

In this paper, we proposed a GAN based minority oversampling method for credit card
fraud detection. We compared GAN based oversampling method with the existing
oversampling algorithms like random oversampling, SMOTE, ADASYN. We observed
that the GAN based oversampling method is more effective compared to other over-
sampling methods in terms of reducing the false positive count. We have successfully
generated a variety of data samples from the minority class after learning the distri-
bution of the minority class using GAN and tested the quality using standard machine
learning algorithms. We observed that the false positive count reduced drastically
without affecting the true positive count significantly. We also proposed WGAN for
data oversampling. WGAN has better objective function compared to the vanilla GAN
for comparing the distribution of the generated data and with that of the original data.
We found that WGAN is more effective compared to vanilla GAN. Further, an ablation
study conducted involving ensembling the SMOTE and GAN/WGAN generated

Table 3. Performance comparison with logistic regression

Method TP FP Specificity Precision Recall F1-score AUC

Plain LR 145 3394 0.96 0.04 0.94 0.08 0.95
Random oversampling + LR 144 1476 0.98 0.09 0.93 0.16 0.95
SMOTE + LR 144 1454 0.98 0.09 0.93 0.16 0.95
ADASYN + LR 148 7215 0.92 0.02 0.95 0.04 0.93
GAN + LR 132 120 0.999 0.52 0.85 0.65 0.93
WGAN + LR 132 78 0.999 0.63 0.85 0.72 0.92
SMOTE + GAN + LR 141 588 0.94 0.19 0.91 0.32 0.95
SMOTE + WGAN + LR 143 561 0.99 0.22 0.92 0.33 0.96

*LR = Logistic Regression
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datasets also failed to outperform the proposed GAN/WGAN based oversampling
methods in terms of F1 score and false positive count.

In the future, we would like to try different generator architecture in GAN. We will
use the Variational Autoencoder (VAE) [20] in the generator part. We will extend the
capacity of learning of GAN by using appropriate loss function. We want to investigate
the effectiveness of the proposed model in another type of structured data that contain
categorical, integer and numerical features. We want to use GAN in data privacy case
also.
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Abstract. This note is a brief introduction to CellTree, a new architec-
ture for distributed data repositories, drawing liberally from our article
which introduces the concept in greater detail [15].

A CellTree allows data to be stored in largely independent, and highly
programmable cells, which are “assimilated” into a tree structure. The
data in the cells are allowed to change over time, subject to each cell’s
own policies; a cell’s policies also govern how the policies themselves can
evolve. A design goal of the architecture is to let a CellTree evolve organ-
ically over time, and adapt itself to multiple applications. Different parts
of the tree may be maintained by different sets of parties and the core
mechanisms used for maintaining the tree can also vary across the tree
and over time.

We outline the architecture of a CellTree, along with provable guar-
antees of liveness, correctness and consistency that can be achieved in a
typical instantiation of the architecture. These properties can be guar-
anteed for individual cells that satisfy requisite trust assumptions, even
if these assumptions don’t hold for other cells in the tree. We also dis-
cuss several features of a CellTree that can be exploited by applications.
Finally, we briefly outline a sample application that can be built upon
the CellTree, leveraging its many features.

Keywords: Distributed data repository · CellTree · Blockchain

1 Introduction

There has been an explosion of interest in the notion of a distributed ledger,
triggered by the popularity of Bitcoin [13]. The typical distributed ledgers today
have the form of a blockchain, where each new block points to an earlier block.
A variety of ingenious protocols have been developed to add and immutably
maintain the blocks in such a ledger in a trustless environment. Blockchain
applications today have gone well beyond that envisaged by Bitcoin (namely, a
decentralized cryptocurrency transaction ledger), and have been used in supply
chain management, gaming, maintaining public records, and general purpose
contracts.
c© Springer Nature Switzerland AG 2019
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However, such blockchain technologies have several issues and – despite sev-
eral proposed alternatives – many of them remain unresolved. These typically
face scalability challenges, as the underlying blockchain structure is ever-growing
and all the “full nodes” need to store this entire chain for fully validating any
block. Implementation bugs in contracts, if exploited, can create irreversible
effects, owing to the immutable nature of a blockchain. Another issue of note
is that the proof-of-work consensus protocol used in popular blockchains has
turned out to be ecologically costly.

Many recent works have proposed fixes to these – using secondary structures
[1,3] to reduce the on-chain storage, alternate consensus mechanisms [2,7,9],
and different graph topologies [4,14]. However, as these systems grow in scale, or
when new attacks emerge, the deployments of these solutions may need revisions.

In [15], we propose a very different approach to designing a large scale, long-
running system for distributed data storage. A distributed data repository is
a complex system, with several constituent components, addressing several dis-
parate sub-problems. A key philosophy of our approach is to let different solu-
tions coexist in the system, and to leave room for the system to organically evolve
over time and across applications. For this, various sub-problems are delegated
to modules, and the overall architecture is agnostic to how each module is imple-
mented.

An important consideration in the design is to let different users focus on
different parts of the system, unencumbered by the entire system’s data. Fur-
thermore, it allows part of the whole structure to function as a smaller version of
the system, complete with its security guarantees and trust assumptions. In par-
ticular, it naturally admits multi-level confirmation of new data, so that clients
trusting lower levels in this hierarchy can get quick confirmation of the addition
of data to the structure, and those who do not trust those levels can wait for a
higher level of confirmation.

The CellTree Architecture. A CellTree consists of largely independent cells,
which carries the data, as well as a (typically smaller) nucleus with the rules
for collecting and updating data. The data can evolve subject to these policies
programmed into the cell, and even these policies can evolve as they permit
themselves to.

Each cell is “operated” by a crew selected for it and is addressed by associ-
ating it with a node in a binary tree. The crew is also in charge of monitoring
the nodes in a relatively small subtree rooted at that node. Monitoring involves
verifying that the evolution of a nucleus is consistent with its own policies. If so,
the data is periodically assimilated into the tree by updating the node’s hash
pointer with the new cell’s nucleus. This is then propagated to its ancestors and
a proof of assimilation is propagated towards the nodes monitored. These proofs
will be verified by a client accessing a cell.

The algorithms executed by the crew members operating a node (or clients
accessing a node), to carry out a cell’s evolution, to monitor the evolution of
some other cells, and to assimilate updates and propagate assimilation signals
up and down the tree are specified as procedures. Many tasks like selecting the
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next step in a cell’s evolution, selecting crews for new nodes, communicating to
other crews, etc. however, are left to modules.

Each cell’s integrity and availability guarantees would depend only on (the
crews of) the cells in the path from it to the root of the tree (or to any ancestor
node whose crew is considered to have an honest-majority). Subtrees could be
easily excised from the CellTree, or grafted to multiple locations (effectively
making the structure a directed acyclic graph, rather than a tree), with little
effect on cells outside the subtree.

The cell structure and the tree structure are complementary, and it is primar-
ily the interface between them that is fixed by the CellTree architecture. The
individual cells themselves can be programmed to evolve in customized ways,
and the tree’s protocols can also be customized using various modules at the
level of nodes, edges and paths.

Organization. The rest of this paper is organized as follows. We start with
a high-level discussion of various aspects taken into consideration during the
design of the CellTree architecture, in Sect. 2. Section 3 outlines the architec-
ture, including the different modules that need to be plugged into the design
to instantiate a CellTree. Section 4 discusses the formal properties that can be
guaranteed by the CellTree architecture. Section 5 illustrates a sample CellTree
application. Section 6 sketches several features of the CellTree architecture that
applications can exploit. Before concluding, we discuss a few related construc-
tions in Sect. 7.

2 An Organic Design

The key design goals of the CellTree are to be a flexible distributed repository,
where multiple solutions to various sub-problems can co-exist, and even evolve
over time, to address different use-cases and attack scenarios. The framework
strives to meet this by being modular, cellular and evolving, as sketched below.

Modular. There are separate processes (a) for assigning responsibilities to par-
ties, (b) for selecting updates to be applied to the data in the system, and (c)
for parties to enforce integrity and availability of the data they are responsible
for. The CellTree design largely deals with (c), with support for a wide variety of
options for the modules for (a) and (b). Indeed, concepts from prior blockchain
constructions, like different consensus mechanisms and incentivisation, as well
as relying on permissioned systems, are all possible means to achieving the goals
of (a) and (b). Even in the solution for (c), various sub-tasks are left as modules,
which can be implemented in a variety of ways to achieve different efficiency-
robustness trade-offs.

Cellular. The notion of blocks in a blockchain is generalized to add more func-
tionality and flexibility. For clarity, the term cell is used instead. The system is
designed to allow cells to operate somewhat independent of each other, while
retaining a cohesive structure overall:
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– As time progresses more cells can be added to the system. Cells could also
be excised from the system, with limited impact on the rest of the system.

– The parties hosting the distributed system can choose to focus on cells of
interest to them, and ignore the remaining.

– Each cell may use its own set of mechanisms for implementing the modules
mentioned above.

Evolving. Cells can be envisaged as having static addresses, but their data
content could change over time. Data updates in a cell must follow an evolution
policy associated with the cell. The evolution policy in a cell itself can evolve,
and this is also dictated by the evolution policy.1

There is one more sense in which a CellTree can evolve: the modules used by
various nodes in the tree can evolve, subject to their own evolutionary policies.
However, framework for how modules are chosen and modified are also left to a
module.

2.1 CellTree vs. Blockchains

The CellTree architecture and conventional blockchains have several overlapping
features. Yet, the CellTree architecture differs from blockchains in several impor-
tant and fundamental ways. It is instructive to contrast the two along several
dimensions.

Distributed vs. Replicated. Both CellTrees and blockchains rely on a large
network of participants to maintain the data in a repository. But in a typical
blockchain, many participants (“the full nodes”) are expected to replicate the
entire contents of the repository. In contrast, in a CellTree no single entity is
required to do so. Instead, the data is distributed among the participants, with
each data item (i.e., contents of a cell) maintained only by a relatively small
number of participants associated with it (i.e., the crews of the node hosting the
cell), and cryptographically monitored by some other participants. In a large
CellTree, the amount of data any party is required to maintain would be a small
fraction of the entire data in the CellTree.

Multi-level Confirmation. In a CellTree, a crew operating a node can update
its cell autonomously, based on its own local policies, and then have it assimilated
into the tree. Unlike in a blockchain architecture, where the whole system has to
approve the update, the updates within a cell are wholly determined by the crew
of the node hosting the cell (subject to the policies programmed into the cell);
a client that trusts the node’s crew has immediate confirmation of the update.
The purpose of assimilation and higher levels of confirmation is only to protect
against (and hence disincentivize) misbehaving crews.

Reversed Hash Pointers. One of the easily spotted difference between the
CellTree architecture and blockchains is that the former uses a tree topology,
1 For meaningful guarantees, when a policy rewrites itself, the newly resulting policy

needs to validate that the old policy is acceptable to it as a policy to evolve from.
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instead of a chain. At first glance, one may view a blockchain as a unary Merkle
Tree [11,12] (i.e., each node has a single child), while a CellTree uses a binary
Merkle tree. However, this comparison is misleading. In a CellTree, the “hash
pointers” point from a parent (older node) to its children (newer nodes), whereas
in a blockchain, newly added nodes carry hash pointers to existing nodes.2

Distributed Ownership. An alternate attempt to relate the CellTree structure
to a blockchain would be to compare it to a blockchain that “forks” often (and
retains the forks). Though this analogy too misses the mark due to the reversed
hash pointers, there is a further difference that this comparison brings to light. In
a blockchain, if multiple forks have to be permanently retained, consensus across
the entire system will be needed for each fork. In the CellTree architecture, on
the other hand, each individual node is owned and operated by its own crew.
Distributing the ownership of nodes to relatively small crews which can operate
in parallel, vastly improves the scalability of the system.

Selecting a crew to entirely own a node, however, does raise some issues.
Firstly, one needs to ensure that a sufficiently large majority of the parties
selected are honest, and secondly, in the event that the crews for some nodes are
compromised, the system retains as many security guarantees as possible. The
first issue is left for a module to solve while the second issue is addressed by
the CellTree architecture via monitoring: Even if a node’s crew is corrupt, any
updates to the node’s cell will be assimilated into the CellTree only if they are
validated and agreed upon by the crews monitoring it.

Dynamic Nodes. Crucial to implementing a Merkle tree based data structure
is the ability to dynamically update the contents of previously existing nodes in
the tree, so that they can assimilate newly created cells (even if the evolution
of individual cells are not supported). But allowing cell data itself to evolve,
in a programmable manner, brings a whole new dimension to distributed data
repositories.

Though persistence is sometimes desirable, many a time it can be a burden
on the system. While prior constructions have focused on the immutability or
“persistence” guarantee of the blocks in a blockchain, for dynamic data we intro-
duce a notion of consistency, to assure that a cell has evolved into its current
form in accordance with the policies declared by the cell. These policies govern
the modification of the cell’s data as well as the policies themselves.

Excising Malignant Cells. A blockchain, by design, does not allow removing
any blocks already accepted to be part of the chain. This (exacerbated by the
need to store the entire chain) creates practical socio-legal complications when
illegal data is hosted on a blockchain. A CellTree, in contrast, makes it possible
to deactivate “malignant” cells, with little impact on the rest of the tree. The
node containing a deactivated cell could be brought back to service (with a fresh
cell in it), if all the nodes monitoring it cooperate.

2 Even architectures like IOTA’s Tangle [14], that do not stick to a chain structure
use hash pointers in the same direction as blockchains.
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3 CellTree Design

This section briefly discusses the CellTree architecture. We refer the reader to
[15] for further technical details. As mentioned in Sect. 1, a CellTree has the
structure of a (binary) tree, with each node associated with a cell that carries
dynamic data. Below, we shall describe the expected behaviour of a cell, followed
by how this behaviour is enforced by the parties that operate the CellTree.

3.1 The Cell

Each cell consists of two components: cell-data cdata, and a nucleus nuc. The cell-
data contains the actual contents of the cell while the nucleus has information
that constrains the trajectory of the data evolution (in the past and the future).
The nucleus contains some data ndata (typically, a summary of the cell-data),
in addition to some code ncode. The nuclear code consists of three algorithms
that dictate cell evolution:

– chkCell: checks if its own nucleus is consistent with a given cdata.
– chkNext: checks if its own nucleus can evolve into a given (next) nucleus.
– chkPrev: checks if its own nucleus can evolve from a given (previous) nucleus.

For an update of a cell evolve from (cdata, nuc) to (cdata′, nuc′) to be valid,
both the nuclei involved should agree to the evolution. This is required to enable
making inferences about the past and future of a cell from the current nucleus.
For efficiency purposes, nuclei should arrive at this agreement without seeing
the cell data, using only the nuclear data. Furthermore, since the nucleus is
available outside of the node containing the cell (to the nodes monitoring it), if
the contents of the cell are to be protected, the nucleus should retain the cell’s
secrecy.

The machine model for the nuclear code is implemented using a module exec
that, apart from standard operations, may allow references to certain external
resources, like current time, cells in other nodes of this CellTree, or even data
blocks or code in other blockchains.

Depending on the contents of the nuclear code, cells can emulate a variety of
functionalities like static data, a blockchain ledger, a state machine, etc. Details
of simple constructions for these can be found in [15].

3.2 The Tree

In order to maintain the cells in a single structure, the address space of a binary
tree structure is used. Each cell will be exclusively associated with a unique node
v in the tree, and will be implemented by a set of parties – called the node’s
crew (or sometimes, simply the node). Each crew member is uniquely identified
by (a hash of) its verification key in a signature scheme. As time progresses,
new nodes can be added to the tree and also, each node’s cell may evolve as
permitted by its nuclear code.
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One may expect that a typical crew has a majority of honest parties. But this
may not be true for every node’s crew. To make the tree robust to corruption of
even entire crews of some nodes, we shall have each cell’s evolution monitored
and certified by several other crews (specifically, by the crews of several nodes
that are ancestors of the cell’s node in the binary tree).

Proof of Assimilation. An updated cell is not immediately assimilated into
the tree until a certification – or a proof of assimilation – is made available to
the hosting node’s crew. The proof of assimilation relies on an underlying Merkle
tree structure, as described below.

When a node’s cell evolves, it submits the nucleus of the cell for assimilation
into the tree, to the nodes monitoring it (see Rootward Propagation, below).
Along with this nucleus, the node would include fingerprints (or hashes) of its
children’s nuclei which it has certified for assimilation. In turn, the fingerprint of
this nucleus incorporates the fingerprints of its children. These “hash pointers”
form a Merkle tree (or rather, a slight generalization of Merkle trees, allowing
not only leaves, but the internal nodes also to hold data).3

A proof of assimilation of a nucleus consists of (1) a signature on the root
of a Merkle tree consisting of the node, and (2) the hashes along the path from
that node to the root (which serves as a proof that the nucleus at the node was
indeed accumulated into the hash at the root). The signature on the root hash
would be by the crew of the root node. (The role of the root of assimilation could
be played by any ancestor of the node being assimilated.)

3.3 CellTree Procedures

The core procedures of the CellTree architecture specify how data is accessed
and maintained, leaving several other tasks—like choosing how to modify
the data in a cell, or choosing crew members for a cell—to modules. There
are four CellTree procedures: Read, Evolve, RootwardPropagation and
LeafwardPropagation. These procedures themselves rely on several modules
which can be variably instantiated. The detailed specification of these procedures
can be found in [15]. Below we outline their functionality.

– Reading a Cell. A client that wishes to read a cell in node v can invoke
a procedure read, which works as follows. First, it discovers the crew for
the node v as well as for a trusted assimilation root aroot. (aroot need not
necessarily be the root of the CellTree, but can be any ancestor of v in the
CellTree that offers to certify the Merkle tree hashes it receives, and is con-
sidered trustworthy by the client.) Then it fetches, from v’s crew, a cell along
with a valid proof of assimilation signed by aroot. If the proof of assimilation
(which relates to only the nucleus of the cell) verifies and if the fetched cell’s

3 Note that the same version of a cell may be part of multiple such Merkle trees, if for
instance, an ancestor of that cell evolves through multiple versions before the cell
itself evolves. This in fact, gives rise to a Merkle Multi-Tree, which is a collection of
Merkle trees in which any two may share some subtrees.
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contents match its nucleus (as checked by the program chkCell in the nucleus),
then the client accepts the cell. The subtasks for discovering crews, fetching
a cell from a crew, verifying the crew’s signature, and executing the chkCell
program are all implemented by modules (see later).

– Cell Evolution. To replace the current cell cell with a new cell cell(+)

(selected using a module that achieves consensus among the crew members),
a procedure evolve is invoked at each crew member. The procedure use
chkNext and chkPrev procedures in the nuclei of cell and cell (+) respectively,
as well as chkCell in cell (+), to verify that the evolution is permissible. If so,
the crew updates its storage accordingly. The tasks carried out by modules
include selecting the cell, executing the verification programs, and updating
the storage. (Typically, the update can be carried out locally by each crew
member, without communicating with each other.)

– Cell Assimilation. Assimilation is carried out by propagating assimilation
signals from cells towards the root (Rootward Propagation) and proofs of
assimilation back from the root to all the cells (Leafward Propagation). This
process is designed such that the amount of work a node needs to carry out
does not grow as the tree grows. However, the amount of storage required at a
node does depend on the depth of that node, as a version of the cell is retained
at least until all proofs of assimilation for a later version are received.

• Rootward Propagation: In the procedure RootwardPropagation,
each crew member accepts and verifies a list of nuclear updates from each
node it is monitoring. Here, verification involves verifying the consistency
between consecutive updates (using chkNext and chkPrev methods in the
two nuclei), as well as ensuring that the hash pointers included in an
updated node points to valid cells that resulted from verified updates. (In
case of verification failure, the previous version of the node is retained.)
Then, the crew prepares a node in the Merkle multi-tree, with the current
version of its cell, with hash pointers to the verified versions of the cells of
its two child nodes. This information is propagated to crews monitoring it,
along with a the local list of updates since the last rootward propagation.
The communication between the node’s crew and the crews monitoring
it is accomplished through a module.

• Leafward Propagation: The procedure LeafwardPropagation is
used by a crew to propagate proof of assimilation from an ancestor node
aroot (possibly itself) to one or more of its subtree nodes. The proce-
dure verifies the proof received, extends it to proofs of assimilation for its
descendent nodes, and propagates the extended proofs to them. A module
is used to collect the proofs, determine the set of nodes to which proofs
should be propagated, and to actually communicate with those nodes.

3.4 Modules

A CellTree relies on several modules, but is oblivious to their implementation.
While many of the modules are entirely local to a node’s crew, some modules
need to coordinate across multiple nodes.
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– Node Creation and Crew Selection. Creating a new node and selecting
a crew for it are tasks carried out collectively by the nodes which would be
monitoring the new node, using a module createNode. This module could
use, e.g., the committee selection protocol used within Algorand [7].

– Cell Selection. As mentioned before, cell evolution is triggered by a module
selectCell, which is responsible for obtaining a consensus among the crew
members as to the next version of a cell.

– Propagation. As described earlier, the modules rootward and leafward are
used by crews to send and receive assimilation signals and proofs of assimi-
lation. Typically, the send and receive methods operate in the background
and would involve consensus mechanisms and secure communication proto-
cols used within and across crews.

– Local Storage. The module store is used by each party in a crew to locally
store and retrieve various values across separate invocations of the algorithms.
Typically, this module requires no communication among crew members (as
the consistency guarantees of values being stored are ensured by the other
modules).

– Client Access to a CellTree. Modules fetch and discover are used by
the procedure Read. These modules may implement mechanisms for access
control and denial-of-service protection.
The proofs of assimilation involve a collective signature by the crew (on a
hash value). The protocol for creating such signatures and the algorithm for
locally verifying them are encapsulated in the module crewSign.

– Code Execution. The machine model used to execute the nuclear code is
specified as a module exec. The module may support multiple languages and
library functions.

– Hashing. The hash algorithm and Merkle tree evaluation are implemented
by the module hash. A method hash.generateNonce included in this module
can be used to create onces that control the hash evaluation (e.g., if a time-
stamp in the nonce is in the future, the hash evaluation could return an
error).

– Scheduling. The sched module decides when the CellTree procedures are
run by the members of a crew.

– Selection and Evolution of Modules. The CellTree framework admits
different implementations of the various modules to coexist. But the frame-
work does not specify how modules are chosen, and possibly changed over
time, instead delegating it to a module moduleManager (which governs its
own evolution).

4 Robustness Properties

Listed here are the desirable properties for a CellTree. These properties are
parametrized by a node v, since, even if parts of the tree are malfunctioning, we
seek to guarantee these properties to other nodes.
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– consistency(v): Let C be the set of cells returned by a set of successful invo-
cations of Read(v) by honest clients. Then, there exists a sequence of nuclei
nuc(0), · · · , nuc(N) such that for all i ∈ [1, N ], both chkNext(nuc(i−1), nuc(i))
and chkPrev(nuc(i), nuc(i−1)) hold and further, for all cell ∈ C, there exists
i ∈ [0, N ], such that cell.nuc = nuc(i) and chkCell(cell) holds.

– correctness(v): Any cell returned by Read(v) to an honest client is equal to
a cell assigned to v using the procedure Evolve by the crew Gv prior to that
(or is the empty cell that every node is initialized with).

– liveness(v): If a cell is assigned to a node v at any point in time (by the crew
Gv using the procedure Evolve), eventually every invocation of Read(v) by
any honest client will return this cell, or a cell assigned to v subsequently.

The definitions of correctness and liveness refers to the crew Gv. However, the
actual members in a crew are defined recursively by the opinion of its ancestor
crews (using information they obtained via the module createNode). Also, to
define a crew’s opinion we need the crew to have an honest majority, and they
should all agree on this opinion. A node v is considered good if there is a set of
parties Ĝ such that (1) Ĝ has an honest majority, (2) Ĝ considers itself to be
the crew of v, and (3) there is an ancestor of v that is itself good which also
considers Ĝ to be the crew for v. The base case of this recursive definition is
with respect to a given set of parties Gε, and only the first two of the above
two conditions hold. We shall require the protocol to be such that the above
definition always uniquely defines a crew Ĝ for every good node v. When this is
the case, the consistency, correctness and liveness properties are well-defined.

In [15], a somewhat simplistic instantiation of a CellTree architecture, called
CT0, is presented and consistency, correctness and liveness guarantees for each
node v are provided based on assumptions regarding the goodness of the ances-
tors of v. Specifically, for a node v and a set of parties Gε, the following assump-
tions were defined:

– Av(Gε) stands for the assumption that the node v is good with respect to Gε.
– Ai

v(Gε) stands for the assumption that in any set of i consecutive nodes in
the path from the root node ε to v (or if no such set exists, then in the entire
path) there is at least one node that is good with respect to Gε.

Then it was shown that, when Gε is the root node crew used by the discover
module of CT0, the following guarantees hold:

A�
v(Gε) ⇒ consistency(v),

Av(Gε) ∧ A�
v(Gε) ⇒ correctness(v),

A1
v(Gε) ⇒ liveness(v).

This follows from the fact that, when A�
v holds, the discover module of CT0

would indeed return the “correct” crew of v, and all updates made at v will
be verified by a good node’s crew. Further, the correctness of the merkle hash
value propagated to the root would be verified by a chain of good nodes. These
checks are enough to ensure consistency(v). correctness(v) is (and needs to be)
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guaranteed only when v is also a good node. The strongest assumption A1
v(Gε)

is used for guaranteeing liveness(v). In CT0, for the sake of simplicity, a node’s
crew directly communicates only with the crews of its parent and its two children.
Thus, for any ancestor u of v, if u’s crew fails or turns corrupt (which requires
a majority of the crew members to fail/turn corrupt), then v will not be able
to communicate its updates towards the root, beyond u. A more sophisticated
instantiation of the CellTree architecture can base liveness(v) also on a similar
assumption as A�

v, rather than A1
v.

Even so, we point out that A1
v is not an overly strong assumption. It requires

only the nodes in the path from the root to v being good, which is only an
exponentially small fraction of all the nodes created in the tree (assuming a well-
balanced tree); also it is a set of nodes that are known at the time of creating
the node v. Nodes created in the future (even descendents of v) have no effect
on any of these guarantees, including liveness.

4.1 Performance Parameters

The CellTree architecture is designed to be scalable, so that a node’s communi-
cation, computation and storage stay bounded even as the tree grows. The only
parameter of the size of the tree that affects a node’s complexity is the depth of
the node itself (due to the need to store old versions of a cell until newer versions
are assimilated at the root), which does not change once the node is created.

Latency: The latency for assimilation and receiving the proof of assimilation
depends linearly on the length of the path from the assimilation root aroot to
that node, l. During the leafward propagation step, at each node the procedure
LeafwardPropagation can be triggered right after the parent node has fin-
ished their leafward propagation procedure. Therefore, the proof of assimilation
arrives at the node within time given by the sum of time differences for root-
ward propagation between each node and its parent, and leafward propagation
between a node (bounded by φ) and its child for l nodes.

Storage: Each crew member of a node at depth d stores the following: (1) a
nucleus for each of the nodes monitored by it, (2) the last cell (of its own node)
for which a proof of assimilation was received, all the cells whose nuclei have been
propagated rootwards but whose proofs of assimilation have not yet arrived, and
the current cell, (3) proofs of assimilation from the root consisting of at most
O(d) hash values and a single crew-signature, and (4) the nuclei of all the local
updates since the last rootward propagation. At steady state, the total storage
needed can be bounded by the cell size β and dφ the dominant terms in latency
between receiving two proof of assimilation as all the state between these need
to be stored.

Communication: Typically, a crew member communicates with its peers in
the crew for consensus (left to a module), as well as with members of the crews
of nodes that monitor it or that it monitors. Addressing the amount of data
communicated between nodes, it depends on the size of the messages and the
number of such messages during assimilation.
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During RootwardPropagation, assimilation signals consisting of a list
of unassimilated nuclei from each monitored node is sent to the node. During
LeafwardPropagation, the proof of assimilation of size at most O(d) is com-
municated.

5 Using a CellTree: A Banking Application

In this section we explore how the CellTree architecture can be used in a real-
life application. For illustration, we consider a decentralized banking application,
that allows speedy transactions between account holders (possibly from different
banks).

Unlike a typical blockchain implementation, we shall not require a single
ledger that holds all the transactions. Instead, it is natural in a CellTree to
allocate a separate cell for each user (with the binary address of the cell in the
tree playing the role of an account number). The cell holds all the relevant data
related to the account, including additional information required to carry out
transactions (as described below). The crews maintaining the cells can be drawn
from a pool of service providers, including regulatory agencies, banks’ agents and
other commercial agents. The correctness, consistency and liveness conditions of
the CellTree along with the programs in the cells’ nuclei (described below) ensure
the integrity of the account information.

We briefly sketch how a transaction is carried out between two accounts.
At a high-level, the individual cells would locally update their cell information,
with the monitoring cells ensuring that this is done correctly. Since different cells
evolve asynchronously, the update would be carried out in a few steps.

Firstly, outside of the CellTree infrastructure, the two account holders agree
on the details of the transaction – the account addresses, amount transferred,
timestamps and sequence numbers, and random nonces contributed by the two
parties. A transaction ID is computed by hashing these transaction details.

To evolve, the two cells play the role of an initiator and a responder. First, the
initiator evolves, and after its evolution is (sufficiently) assimilated, the respon-
der evolves. The initiator incorporates the transaction into an outstanding trans-
actions list, and then the responder will evolve to incorporate this transaction
into its recently accepted transactions list. For this to be a valid evolution for
the sender (according to the programs in the nuclear code), the account balance
of the sender should permit the current transaction, after subtracting all the
outgoing amounts in the outstanding transactions, but not adding any of the
outstanding incoming amounts (some flexibility consistent with a bank’s poli-
cies could be programmed into the cell). For the responder (whether it is the
sender or the receiver), it is also verified that a transaction with this transaction
ID exists in the initiator’s outstanding transactions list (using an appropriate
fetch module).

Finally, the initiator’s cell should evolve to close the outstanding transac-
tion (moving it to a recently closed transactions list), and update its account
balance. For this it is checked that the transaction ID being closed appears in
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the responder’s recently closed transactions list. During every evolution it is also
checked that there are no outstanding transactions that have expired (i.e., too
old to be accepted); all such transactions must be closed or canceled, depending
on whether the initiator has accepted the transaction or not. Also, the “recent”
lists must be cleared of sufficiently old entries.

Note that the transaction between two accounts does not involve any action
from a bank (except if there are agents of the bank involved as crew members in
the transacting cells or their monitors). However, if a transaction occurs between
accounts in different banks, the banks do need to carry out a transaction between
each other. Such transactions are carried out periodically (say, once every day),
using a similar process as above to update their balance sheets.

A customer can also carry out direct transactions with the bank, correspond-
ing to deposits, withdrawals, interest payments and banking charges. The link
between physical currency deposited at the bank branches or withdrawn from
ATMs is established by the bank. Other instruments like cheques, demand drafts
and bank transfers using other digital means (other than on the CellTree) will
also require the banks to be involved in the transaction.

We rely on the CellTree for the correctness, consistency and liveness condi-
tions. To ensure this, the crews have to be sufficiently trustworthy. These crews
could consist of agents of the banking system as well as commercial agents that
the account holders can hire. One may also use an instance of the CellTree
architecture which provides better liveness guarantees than CT0.

Another important consideration in using a CellTree for bank accounts is
that of privacy. This can be addressed using the following measures:

– The fetch modules will incorporate access control layers to ensure that only
authorized users can read the contents of a cell.

– To facilitate transactions, crews of other cells are allowed to check if a trans-
action ID is present in the outstanding transactions list of the cell. The fetch
module will require that the transaction ID is communicated by the reader
and the cell responds only with a boolean answer confirming or denying the
existence of the transaction ID. Since the transaction ID itself is a hash includ-
ing random nonces, an untrusted cell’s crew cannot learn anything using such
queries.

– The crews of an account’s own cell as well as the cell’s monitoring it need
access to the contents of the cell or the cell nucleus. As mentioned before,
these could be considered trustworthy. But for further security, the crew could
use secure multi-party computation to protect against a fraction of the crew
members being corrupt (we call such cells “secret cells”). Since secret cells
involve more computational effort, one may consider a business model that
provides crew members for a secret cell for a fee.

Finally, before such a scheme can be practically deployed, it should also
include mechanisms for recovery from errors and failures. This can be accom-
plished within the framework of the CellTree architecture by suitably defining
the various modules.
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6 Extended Features

Above and beyond the features discussed so far, a CellTree can provide richer
functionality and stronger security guarantees. We discuss some of these features
can be implemented using appropriate modules.

– Improved Liveness. The liveness guarantee of the simple construction CT0

from [15] requires the assumption A1
v (see Sect. 4). But this can be improved

to hold under A�
v, by using rootward and leafward modules that allow crews

to directly communicate with all the crews they monitor or which monitor
them.

– Removing the Reliance on a Single Root. This can be done by allowing
more nodes in the CellTree to perform the duties of the root: issuing proofs
of assimilation, and acting as the starting point for the discover module.

– Modifying the Crews. In a realistic instantiation, provisions for adding
and removing members to the crew after its formation need to be added for
use in revoking the public keys of crew members, for replacing misbehaving
crew members, or for resizing a crew.

– Quality of Service. The assimilation rate for the CellTree in our usecase
is fixed by certain parameters. However, one could support different rates of
assimilation to different nodes, thereby providing varying levels of quality of
service in terms of efficiency. Further, different nodes could be monitored by
different number of nodes, providing different levels of assurance.

– Pruning, Grafting and Mirroring. Subtrees can be detached (pruned)
from a CellTree, or grafted on to a CellTree – possibly in multiple locations,
in case of mirroring – with little effect on the other nodes (which are not
monitoring any part of the subtree in question).

– Excising Cells. A cell’s contents can be deleted, or altered without respect-
ing its program, if the crews of all the nodes monitoring it cooperate.

– Computed Reads. It is possible to support access to a function of a cell’s
content (with proof).

– Secret Cells. The crew members of a node need not be aware of the con-
tents of the cell, but can still provide authorized clients with access to the
cell contents, or functions thereof, via secret-sharing or secure multiparty
computation protocols.

– Computing on Multiple Cells. Concurrent algorithms can be designed to
operate on multiple cells, working independently on each cell. This enables
maintaining multiple views of a database in different nodes (e.g., in a banking
application, each customer’s ledger is a partial view of a bank’s central ledger).

– Saplings. A sapling is a CellTree whose root is assimilated into another
parent CellTree. While the parent’s crews do not monitor a saplings nodes’,
they do provide commitment guarantees.

– Higher Arity Trees. Higher arity nodes can be easily simulated by allowing
the same crew to operate a subtree instead of a single node.

– Incentivization The CellTree architecture is agnostic about higher level
mechanisms that could be used for incentivizing parties to play the role of
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crew members. Different parts of the CellTree may employ different incen-
tivization mechanisms.

Finally, we emphasize that a major feature of the CellTree architecture is the
ability for different implementations of the same modules to coexist in the tree,
offering application specific features in different parts of the tree. Designing such
modules and analyzing their effect on the robustness and performance guarantees
of a CellTree are left for future research.

7 Related Work

Merkle trees [11,12], and succinct proofs using them [10] have been valuable
tools in cryptographers’ toolkit for a long time. Cryptographically authenticated
blockchains and public ledgers can be traced back to the work of Haber and
Scott [8], but became popular only with the advent of Bitcoin [13] and other
crypto currencies that used them for recording their transactions. It is outside
the scope of this work to survey all the ensuing innovations in this area.

But below we shall discuss a few distributed data repositories which deviate
from the blockchain topology, and mention how the CellTree architecture is
different from them in its goals and features.

The Hashgraph [4] is a distributed ledger with high transaction throughput
as compared to blockchains. Its efficient functioning, however, requires that the
set of parties involved in the protocol be aware of all the others. (This is compa-
rable to how a single node’s crew operates in a CellTree.) The blocks (or events
as they are called) in the Hashgraph form a directed acyclic graph (DAG) with
hashpointers as edges (unlike in a blockchain, where the graph is a single path),
with new blocks pointing to old blocks (like in a blockchain). As in standard
blockchains, the selection and confirmation of new blocks in the ledger are prob-
abilistic, but the ability of all the parties to interact with each other allows the
use of an efficient voting protocol (rather than one based on, say, proof-of-work).
Also, as in standard blockchains, the desired guarantee is that of immutability
or persistence of blocks that are confirmed.

The Tangle [14] is a permissionless distributed data structure which also uses
a DAG structure to store the transactions, again with the goal of increasing the
throughput compared to a blockchain. Tangle allows users to be aware of only
parts of the entire data structure. Incidentally, the specific algorithms used for
building the DAG structure and considering a node confirmed are known to be
susceptible to “parasitic chain attacks,” and is the subject of ongoing research
[6].

The above two systems store data in a graph with hashpointers as edges
that has the form of a DAG (rather than a path), to increase the throughput
of transactions. The CellTree architecture shares this feature, but promises even
better performance when multi-level confirmation can be exploited. Also, the
other differences that CellTree has with blockchains continue to apply to these
systems as well.
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The Inter-Planetary File System (IPFS) [5] is a peer-to-peer version con-
trolled file system in which data items, with (optional links to other data items)
can be stored. While different in its goals from blockchains, IPFS is also a dis-
tributed data repository, with parties storing some of the IPFS objects in local
storage, and accessing others from a peer. The IPFS uses content-addressed shar-
ing, where the address is a hash of the content (with linked objects replaced by
their hashes). To detect and avoid duplication, IPFS uses deterministic hashing
(no nonces used) so that the same file is hashed to the same address.

Unlike a data repository that is queried using addresses (e.g., the node
address in a CellTree), IPFS does not attempt to provide any form of consensus
on the “correct” data. All data items, linking to previously existing data items,
are valid, and they have their own content-based address. As such, only liveness
(all stored data can be retrieved) is of concern to IPFS.

8 Conclusion

A CellTree [15] is designed to be flexible and heterogeneous. It allows data and
policy evolution, allows parties to focus on only parts of the repository that
are of interest to them, and separates out sub-tasks into modules that can be
instantiated differently in different parts of the tree. We present its formal secu-
rity guarantees and discuss the parameters that bound the performance. We also
illustrated how a practical application can be built on a CellTree platform.

We leave it for future work to exploit this novel architecture for more powerful
applications.

References

1. Enabling blockchain innovations with pegged sidechains (2014). https://
blockstream.com/sidechains.pdf

2. Cardano (2015). https://www.cardano.org
3. The bitcoin lightning network: scalable off-chain instant payments (2016). https://

lightning.network/lightning-network-paper.pdf
4. Leemon, B., Mance, H., Paul, M.: Hedera: a governing council and public hashgraph

network (2017). https://www.hederahashgraph.com/whitepaper
5. Benet, J.: IPFS - content addressed, versioned, P2P file system. CoRR,

abs/1407.3561 (2014)
6. Cullen, A., Ferraro, P., King, C.K., Shorten, R.: Distributed ledger technology for

IoT: parasite chain attacks. CoRR, abs/1904.00996 (2019)
7. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzan-

tine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on
Operating Systems Principles, pp. 51–68. ACM (2017)

8. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. In: Menezes,
A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 437–455. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3 32

9. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

https://blockstream.com/sidechains.pdf
https://blockstream.com/sidechains.pdf
https://www.cardano.org
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://www.hederahashgraph.com/whitepaper
https://doi.org/10.1007/3-540-38424-3_32
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12


An Introduction to the CellTree Paradigm (Invited Paper) 153

10. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Proceedings
of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, pp. 723–
732. ACM (1992)

11. Merkle, R.C.: Method of providing digital signatures. US Patent 4309569 (1982)
12. Merkle, R.C.: A digital signature based on a conventional encryption function.

In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

13. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). http://www.
bitcoin.org/bitcoin.pdf

14. Popov, S.: The tangle (2017). http://iotatoken.com/IOTA Whitepaper.pdf
15. Prabhakaran, M., Trehan, A., Acharya, A.: CellTree: a new paradigm for dis-

tributed data repositories (2019). https://eprint.iacr.org/2019/516

https://doi.org/10.1007/3-540-48184-2_32
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://iotatoken.com/IOTA_Whitepaper.pdf
https://eprint.iacr.org/2019/516


Secure Information Flow Analysis Using
the PRISM Model Checker

Ali A. Noroozi(B), Khayyam Salehi, Jaber Karimpour, and Ayaz Isazadeh

Department of Computer Science, University of Tabriz, Tabriz, Iran
{noroozi,kh salehi,karimpour,isazadeh}@tabrizu.ac.ir

Abstract. Secure information flow checks whether sensitive informa-
tion leak to public outputs of a program or not. It has been widely used
to analyze the security of various programs and protocols and guarantee
their confidentiality and robustness.

In this paper, the problem of verifying secure information flow of con-
current probabilistic programs is discussed. Programs are modeled by
Markovian processes and secure information flow is specified by observa-
tional determinism. Then, two algorithms are proposed to verify obser-
vational determinism in the Markovian model. The algorithms employ
a trace-based approach to traverse the model and check for satisfiabil-
ity of observational determinism. The proposed algorithms have been
implemented into a tool called PRISM-Leak, which is constructed on
the PRISM model checker. An anonymity protocol, the dining cryptog-
raphers, is discussed as a case study to show how PRISM-Leak can be
used to evaluate the security of programs. The scalability of the tool is
demonstrated by comparing it to the state-of-the-art information flow
tools.

Keywords: Information security · Secure information flow ·
Observational determinism · Markovian processes · PRISM-Leak

1 Introduction

Secure information flow is an important mechanism to discover leakages in vari-
ous programs and protocols [3,28]. Leakages occur when an attacker infers infor-
mation about secret inputs of a program by observing its public outputs. In order
to detect leakages and prevent insecure information flows, a security property
needs to be defined to specify secure behavior of the program and a verification
method is used to check whether the property holds or not.

Many security properties have been introduced in the literature, including
observational determinism, which specifies secure information flow for concur-
rent programs. Introduced by McLean [17] and Roscoe [26] and improved by
Zdancewic and Myers [32] and many others [9,12,14,15,20,21,31], observational
determinism requires a concurrent program to produce traces, i.e., sequences
of public values, that appear deterministic and thus indistinguishable to the
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attacker. However, existing definitions of observational determinism are not pre-
cise enough and are rather too restrictive or too permissive. An ideal security
property should be restrictive enough to reject insecure programs and permis-
sive enough to accept secure programs. Furthermore, most of these definitions are
scheduler-independent [9,12,14,15,21,31,32]. Since the security of a concurrent
program depends on the choice of a scheduler and might change by modifying
the scheduler, observational determinism needs to be defined scheduler-specific
[20].

For verifying satisfiability of observational determinism, various methods,
including type systems [31,32], logics [9,12,14] and algorithmic verification
[15,20,21] have been used. Type systems are often too restrictive and non-
automatic. Logic-based methods can be precise, but require a significant amount
of manual effort. Algorithmic verification is automatic, but existing methods are
not scalable. In fact, there is no automatic and scalable algorithmic verification
tool for checking observational determinism.

In this paper, an automatic approach is proposed to specify and algorith-
mically verify observational determinism for concurrent probabilistic programs
using the PRISM model checker. Assume a concurrent program that contains
probabilistic modules with shared variables and a probabilistic scheduler that
determines the execution order of statements of the modules. The program con-
tains public, secret and possibly neutral variables. The set of public variables is
denoted by L. Furthermore, assume an attacker that is able to pick a scheduler,
run the program under control of the scheduler and observe the program traces.
The attacker does not influence the initial values of the public variables, i.e., the
program has no public input.

Considering these assumptions, we model programs using Markovian pro-
cesses. Observational determinism is defined to be scheduler-specific and more
precise. It contains two conditions, OD1 and OD2, which a program needs to
satisfy both to be observationally deterministic. OD1 requires prefix and stutter
equivalence for traces of each public variable and OD2 enforces existential stutter
equivalence for traces of all public variables. To verify these conditions, two trace-
based algorithms are proposed. The proposed approach has been validated by
implementing the algorithms in PRISM-Leak [24], which is a tool for evaluating
secure information flow of concurrent probabilistic programs. PRISM-Leak has
been built upon the PRISM model checker [16] to check the security of PRISM
programs. Finally, a case study is discussed and the scalability of the proposed
algorithms is compared to the state-of-the-art tools of information flow analy-
sis. The experimental results show that PRISM-Leak has the best performance
among the tools that are capable of analyzing the case study.

In summary, the paper contributes to the literature by

– a formal definition of observational determinism on a Markovian program
model,

– two algorithms to verify the conditions of observational determinism,
– an automatic and scalable tool to verify observational determinism for con-

current probabilistic programs defined in the PRISM language.



156 A. A. Noroozi et al.

The paper proceeds as follows. Section 2 provides the core background on the
Markovian processes, the dining cryptographers protocol and various types of
information flow channels considered in this paper. Section 3 discusses the related
work and their strengths and weaknesses. Section 4 presents a formal definition
of observational determinism and Sect. 5 proposes two verification algorithms. In
Sect. 6, the verification algorithms are evaluated and compared to the existing
approaches. We conclude the paper in Sect. 7 and discuss some future work.

2 Background

2.1 Markovian Models

Markovian models allow us to define states and transitions containing enough
information to extract all traces of a program that are visible to the attacker.
Markov decision processes (MDPs) are used to model operational semantics of
concurrent probabilistic programs. Furthermore, memoryless probabilistic sched-
ulers, a simple but important subclass of schedulers, are used to denote sched-
ulers of concurrent programs. When a memoryless probabilistic scheduler is
applied to an MDP, a Markov chain (MC) is produced, which is the final model
used in this paper for specifying observational determinism and verifying it. Here,
the notations used throughout the paper are formally defined. For more infor-
mation on how Markovian models and schedulers work, please see chapter 10 of
[1].

Definition 1. A Markov decision process (MDP) is a tuple M =
(S,Act,P, ζ, V alL, V ) where S is a set of states, Act is a set of actions,
P : S × Act × S → [0, 1] is a transition probability function such that ∀s ∈
S. ∀α ∈ Act.

∑

s′∈S

P(s, α, s′) ∈ {0, 1}, the function ζ : S → [0, 1] is an initial

distribution such that
∑

s∈S

ζ(s) = 1, V alL is the finite set of values of the public

variables and V : S → V alL is a labeling function.

An MDP M is called finite if S, Act, and V alL are finite. An action α is
enabled in state s if and only if

∑

s′∈S

P(s, α, s′) = 1. Let Act(s) denote the set

of enabled actions in s. In our program model, actions represent the program
statements.

An MDP with no action and nondeterminism is called a Markov Chain.

Definition 2. A (discrete-time) Markov chain (MC) is a tuple M =
(S,P, ζ, V alL, V ) where P : S × S → [0, 1] is a transition probability function
such that ∀s ∈ S.

∑

s′∈S

P(s, s′) = 1. The other elements, i.e., S, ζ, V alL and V

are the same as MDP.

Given a state s, a memoryless probabilistic scheduler returns a probability
for each action α ∈ Act(s). This random choice is independent of what has
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happened in the history, i.e., which path led to the current state. This is why
it is called memoryless. Let D(X ) denote the set of all probability distributions
over a set X . Formally,

Definition 3. Let M = (S,Act,P, ζ, V alL, V ) be an MDP. A memoryless
probabilistic scheduler for M is a function δ : S → D(Act), such that δ(s) ∈
D(Act(s)) for all s ∈ S.

As all nondeterministic choices in an MDP M are resolved by a scheduler δ,
a Markov chain Mδ is induced. Formally,

Definition 4. Let M = (S,Act,P, ζ, V alL, V ) be an MDP and δ : S → D(Act)
be a memoryless probabilistic scheduler on M. The MC of M induced by δ
is given by

Mδ = (S,Pδ, ζ, V alL, V )

where
Pδ(s, s′) =

∑

α∈Act(s)

δ(s)(α).P(s, α, s′).

In what follows, we fix an MC MP
δ = (S,Pδ, ζ, V alL, V ) which models the

executions of the concurrent probabilistic program P under the control of a sched-
uler δ. A state of MP

δ indicates the current values of variables, together with the
current value of the program counter that indicates the next program statement
to be executed. The function V labels each state with values of the public vari-
ables in that state. In fact, a state label is what an attacker observes in that
state.

The set of successors of s is defined as Post(s) = {s′ | Pδ(s, s′) > 0}. The
states s with ζ(s) > 0 are considered as the initial states. The set of initial
states of MP

δ is denoted by Init(MP
δ). To ensure MP

δ is non-blocking, we include
a self-loop to each state s that has no successor, i.e., Pδ(s, s) = 1. Then, a state
s is called final if Post(s) = {s}. It is assumed that all final states correspond
to the termination of the program.

A path (or execution path) π of MP
δ is an infinite state sequence s0s1 . . . sω

n

such that s0 ∈ Init(MP
δ), si ∈ Post(si−1) for all 0 < i ≤ n, sn is a final state

and ω denotes infinite iteration (self-loop over sn). The set of paths starting
from a state s is denoted by Paths(s). The set of all paths of MP

δ is denoted by
Paths(MP

δ).
A trace of a path π = s0s1 . . . sω

n is defined as T = trace|L(π) =
V (s0)V (s1) . . . V (sn)ω. We refer to n as the length of T , i.e., length(T ) = n. The
labeling function, instead of all public variables, can be restricted to just a single
public variable l ∈ L, i.e., V|l : S → V all. Then, the trace of π on l is defined
as T|l = trace|l(π) = V|l(s0)V|l(s1) . . . V|l(sn)ω. Note that T|L = trace|L(π). The
set of traces starting from a state s is denoted by Traces(s). The set of all trace
of MP

δ is denoted by Traces(MP
δ).

Two traces T and T ′ are stutter equivalent, denoted T � T ′, if they
are both of the form A+

0 A+
1 A+

2 . . . for A0, A1, A2, · · · ⊆ V alL where A+
i is the
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Kleene plus operation on Ai and is defined as A+
i = {Ak

i | k ∈ N, k ≥ 1}. A
finite trace T1 is called a prefix of T , if there exists another infinite trace T2 such
that T1T2 = T . Two traces are prefix and stutter equivalent, denoted by
�p, if one is stutter equivalent to a prefix of another. For example, the traces
[0, 0, 0, 1, 1ω] and [0, 1, 1, 1ω] are stutter equivalent and the traces [0, 0, 0, 2, 1ω]
and [0, 2, 1, 1, 4, 4ω] are prefix and stutter equivalent.

A state s is low-equivalent to another state s′, written s =L s′, if V (s) =
V (s′). Low-equivalence can also be defined on a single public variable l ∈ L:
s =l s′ if V|l(s) = V|l(s′). This relation corresponds to the observational power
of the attacker. When two states are low-equivalent, they are the same to the
attacker, even if secret values differ in these states.

DAG Structure of Markovian Models. We assume the programs always terminate
and states indicate the current values of the variables and the program counter.
Furthermore, loops of the program are unfolded. This implies that Markovian
models of every program takes the form of a directed acyclic graph (DAG),
ignoring later-added self-loops of final states. Initial states of the program are
represented as roots of the DAG and final states as leaves. Therefore, there is no
loop in the Markovian models (except later-added self-loops) and all path lead
to a final state.

2.2 Dining Cryptographers Protocol

We use the dining cryptographers protocol [7] as a base to compare precision
of various definitions of observational determinism. It is well-known and highly-
studied anonymity protocol and thus suitable for comparison purposes.

In the dining cryptographers protocol, n cryptographers are having dinner
at a round table. After dinner, they are told that the dinner has been paid
by their master or one of the cryptographers. They want to know whether the
master has paid the dinner or not, without revealing the identity of the payer
cryptographer, if the master did not pay. Hence, each cryptographer tosses an
unbiased coin and shows the result only to the right cryptographer. If the two
coins that a cryptographer can observe are the same, then she announces ‘agree’;
otherwise, announces ‘disagree’. However, if she is the actual payer, then she
announces ‘disagree’ for the same coins and ‘agree’ for the different ones. If n
is odd, then an even number of ‘agree’s implies that one of the cryptographers
has paid, while an odd number implies that the master has paid. The latter is
reverse for an even n.

Assume an external attacker (none of the cryptographers or the master)
who tries to find out the payer’s identity. The external attacker can observe the
announcements of the cryptographers. Two cases are assumed for the secret, i.e.,
the payer:

1. one of the cryptographers, i.e., V alpayer = {c1, . . . , cn},
2. the master (m, for short) or one of the cryptographers, i.e., V alpayer =

{m, c1, . . . , cn}.
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For the first case, where the payer is one of the cryptographers, the protocol is
secure and there is no leakage. But for the second case, where the master is also
a candidate to be the payer, the protocol is insecure [7]. Therefore, it is expected
for a security definition to classify the first case as secure and the second case
as insecure.

2.3 Information Flow Channels

Information flow channels are mechanisms that transfer secret information to
the attacker. There are various types of channels: direct, indirect, possibilistic
[6], termination behavior [14], internally observable timing [27], probabilistic [6],
and externally observable timing [29].

Direct channels occur when the value of a secret variable is directly assigned
to a public variable. Indirect channels occur when the control structure of the
program reveals secret information. Possibilistic channels occur in concurrent
programs when an interleaving of the components results in a direct or indirect
channel. Termination channels reveal secret information through the termination
or non-termination of program execution. Internally observable timing channels
happen when secret information affects the timing behavior of a module, which,
through the scheduler, influences the execution order of updates to public vari-
ables. Probabilistic channels leak sensitive information through the probabilistic
behavior of the program. Externally observable timing channels occur when sen-
sitive information affect the timing behavior of the program.

3 Related Work

In this section, existing definitions of observational determinism are presented
and compared to each other. We formalize all these definitions in our program
model MP

δ in order to make the comparison and discussion easier. Since we
assumed the attacker does not influence the initial values of the public variables,
all the initial states are low-equivalent, i.e., s0 =L s′

0. A concurrent program P
under a scheduler δ satisfies observational determinism, according to

– Zdancewic and Myers [32], if and only if all traces of each public variable are
prefix and stutter equivalent, i.e.,

∀T, T ′ ∈ Traces(MP
δ), l ∈ L. T|l �p T ′

|l;

– Huisman et al. [14], iff all traces of each public variable are stutter equivalent,
i.e.,

∀T, T ′ ∈ Traces(MP
δ), l ∈ L. T|l � T ′

|l;

– Terauchi [31], iff all traces of all public variables are prefix and stutter equiv-
alent, i.e.,

∀T, T ′ ∈ Traces(MP
δ). T|L �p T ′

|L;
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– Huisman and Blondeel [12], Karimpour et al. [15] and Dabaghchian and
Abdollahi [9], iff all traces of all public variables are stutter equivalent, i.e.,

∀T, T ′ ∈ Traces(MP
δ). T|L � T ′

|L;

– Ngo et al. [20], iff the following two conditions are satisfied:
SSOD-1: ∀T, T ′ ∈ Traces(MP

δ), l ∈ L. T|l � T ′
|l;

SSOD-2: ∀s0, s
′
0 ∈ Init(MP

δ),∀T ∈ Traces(s0),∃T ′ ∈ Traces(s′
0). T|L � T ′

|L;
– Noroozi et al. [21], iff all paths of all public variables are divergence weak

low-bisimilar, i.e.,

∀π, π′ ∈ Paths(MP
δ). π ≈div

L π′,

where divergence weak low-bisimulation (≈div
L ) is an equivalence relation that

relates two paths that mutually mimic behavior of each other.

Note that all these definitions, except Ngo et al. [20], are scheduler-independent
and consider all possible interleavings of the modules. We redefined them in our
scheduler-specific model in order to make the comparison easier.

Zdancewic and Myers define observational determinism in terms of prefix
and stutter equivalence of traces of each public variable. This definition cor-
rectly accepts the first case of the dining cryptographers protocol. However, it
incorrectly accepts the second case too. This shows that the definition is too per-
missive. On the other hand, requiring stutter equivalence of traces of each public
variable, as in Huisman et al. [14], is too restrictive and incorrectly rejects the
first case of the protocol. Furthermore, requiring traces to agree on the updates
to all public variables, as in [9,12,15,21,31], is too restrictive. For example, the
first case of the dining cryptographers protocol is incorrectly rejected by all
of these definitions. In our experiments with different programs, we found the
definition of Ngo et al. [20] the most precise of all. However, SSOD-1 was not
permissive enough. For example, it incorrectly rejected the first case of the dining
cryptographers.

Observational determinism has also been defined using traces of opera-
tions that read or write on public variables, instead of traces of public values.
Well-known examples of these definitions are LSOD [10] and its improvements,
RLSOD [10] and iRLSOD [6]. These definitions have been implemented in a tool,
named JOANA [11], which uses program dependence graphs to model JAVA pro-
grams and verify them. JOANA does not explicitly classify variables into public
or secret. However, it offers the ability to classify program statements into low
(public) or high (secret). Thus, a variable might contain a public value at one
point of the program, but a secret value at another point. This allows JOANA
to detect intermediate leakages if a statement in intermediate steps is labeled as
low. The use of program dependence graphs makes JOANA a scalable tool but
reduces its precision. LSOD [10] and its relaxed forms, RLSOD [10] and iRLSOD
[6] incorrectly produced security violations for many examples we tried, includ-
ing the first case of the dining cryptographers protocol. JOANA only works
with dependencies and does not take into account concrete values of variables or
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explicit probability distributions, as in the dining cryptographers protocol. This
is an inherent limitation for all analyses that are based on program dependence
graphs.

There are probabilistic versions of observational determinism for concurrent
programs, such as probabilistic noninterference [19,23,29,30]. These properties
match transition probabilities, in addition to the traces. This is a rather strong
condition which can detect probabilistic channels but is too restrictive for most
cases and programs.

To verify observational determinism, Zdancewic and Myers [32] and Terauchi
[31] use type systems, which are widely used to verify secure information flow.
However, they are not extensible [2]. They can be defined compositional, but at
the cost of either being too restrictive or losing automatic analysis [6].

Huisman et al. [14], Huisman and Blondeel [12], Huisman and Ngo [13] and
Dabaghchian and Abdollahi [9] use logic-based methods to specify observational
determinism and verify it. These methods build a self-composed model [2] of the
program. Then, observational determinism is specified using a program logic,
such as CTL*, modal μ-calculus, LTL or CTL. Out of these methods, Huis-
man and Blondeel [12] and Dabaghchian and Abdollahi [9] have verified the
specified property using the model checking tools Concurrency Workbench and
SPIN, respectively. In contrast to type systems and program dependence graphs,
logical-based methods can specify arbitrarily precise definitions for observational
determinism. Most of these methods are compositional. However, they are often
non-automatic and require a significant amount of manual effort.

Ngo et al. [20], Karimpour et al. [15] and Noroozi et al. [21] use algorith-
mic verification methods. These methods mostly model the program as a state
transitions system and specify the property using states, paths, and traces of
the transition system. Ngo et al. [20] model programs using Kripke structures
and use a trace-based method to verify SSOD-1. In order to verify SSOD-2, they
determinize the Kripke model and compute a bisimulation quotient of the deter-
minezed model. The time complexity of verifying SSOD-1 is linear in the size
of the model, whereas verifying SSOD-2 is exponential. Karimpour et al. [15]
and Noroozi et al. [21] compute a weak bisimulation quotient of the model and
then verify observational determinism. Algorithmic verification methods make
it possible to specify secure information flow with arbitrary precision. They are
fully-automatic but generally less scalable, in comparison with type systems and
program dependence graphs.

A closely-related filed to secure information flow is quantitative information
flow, in which information theory is used to measure the amount of information
leakage of a program. If the leakage is computed to be 0, then the program is
secure. Many methods and tools are available to compute the information leak-
age of various programs, including LeakWatch [8], QUAIL [5], HyLeak [4] and
PRISM-Leak [24]. LeakWatch [8] estimates leakage of Java programs, includ-
ing multi-threaded programs and taking into account the intermediate leakages.
QUAIL [5] precisely computes leakage at final states of sequential programs, writ-
ten in the QUAIL imperative language. HyLeak [4] is an extension of QUAIL
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and combines estimation and precise methods in order to improve the scalability.
Finally, PRISM-Leak [24] contains a quantitative package that uses a trace-based
method [22] to precisely compute leakage of concurrent probabilistic programs,
written in the PRISM language [16]. In quantifying information leakage, PRISM-
Leak takes into account the intermediate leakages occurred in the intermediate
steps of the program executions.

4 Specifying Observational Determinism

In this section, observational determinism is defined in the Markovian model
MP

δ. The definition should be able to detect direct, indirect, possibilistic, inter-
nally observable timing and termination channels. In order to detect external
timing or probabilistic channels, the security property should be strengthened
further. For example, to detect external timing channels, the property should
require equivalence of traces. This makes the property too restrictive, which is
the exact opposite of this paper’s goal. Therefore, external timing and proba-
bilistic channels are not considered in this paper.

As Ngo et al. [20] discuss, a concurrent program might be secure with a
scheduler and insecure with another one and thus defining observational deter-
minism to be scheduler-independent makes the definition imprecise. Therefore,
we define observational determinism to be scheduler-specific. Another benefit of
a scheduler-specific property is that it is able to find those schedulers that the
program is insecure under control of them. This makes the property immune to
refinement attacks, in which the attacker selects a scheduler in order to limit
the set of possible traces of the program and infer secret information from these
traces.

Observational determinism requires a concurrent program to be determin-
istic to the attacker and produce indistinguishable traces. It demands that
low-equivalent inputs produce low-equivalent traces and thus changes in the
secret inputs do not change the public behavior. Inspired by Ngo et al. [20], we
define observational determinism scheduler-specific and require existential stut-
ter equivalence for traces of all public variables. However, we relax the require-
ment of stutter equivalence for traces of each public variable to prefix and stutter
equivalence in order to improve precision and thus reduce the number of false
alarms.

Definition 5. Let MP
δ be a Markov chain, modeling executions of a concurrent

probabilistic program P under the control of a scheduler δ. Formally, P satisfies
observational determinism, iff OD1 and OD2 hold:

OD1: ∀T, T ′ ∈ Traces(MP
δ), l ∈ L. T|l �p T ′

|l,
OD2: ∀s0, s

′
0 ∈ Init(MP

δ),∀T ∈ Traces(s0),∃T ′ ∈ Traces(s′
0). T|L � T ′

|L.

OD1 requires that traces agree on the updates to each public variable. This
requirement enforces deterministic observable behavior and thus the secret data
do not affect the public variables.
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OD2 requires that there always exists a matching trace of all public variables
for any possible initial states. This requirement results in the independence of
the relative ordering of updates to the public variables from the secret values.

Both OD1 and OD2 correctly recognize the first case of the dining cryptog-
raphers protocol as secure. OD1 labels the second case secure, but OD2 labels
it insecure. Therefore, our definition of observational determinism correctly rec-
ognizes the first case as secure and the second case as insecure.

For an example of an indirect channel, consider the following program, from
Huisman et al. [14]

P1 ≡ while h>0 do
l1:=l1+1;
h:=h-1

od;
l2:=1

where h is a secret variable and l1 and l2 are public variables, initially set to 0.
The program is insecure, because the final value of l1 contains the initial value
of h. It produces the following traces of all public variables

h ≤ 0 : [(0, 0), (0, 1)ω],
h == 1 : [(0, 0), (1, 0), (1, 1)ω ],
h == 2 : [(0, 0), (1, 0), (2, 0), (2, 1)ω ],
h == 3 : [(0, 0), (1, 0), (2, 0), (3, 0), (3, 1)ω ],

...

If we consider the public variables separately, the traces [0ω], [0, 1ω], [0, 1, 2ω],
[0, 1, 2, 3ω], . . . for l1 and the traces [0+, 1ω] for l2. Obviously, the separate
traces are stutter and prefix equivalent and thus OD1 holds for this program.
However, OD2 does not hold, because for the trace [(0, 0), (0, 1)ω], for example,
there does not exist a stutter equivalent trace of other initial states. Therefore,
our definition of observational determinism detects the termination channel of
this program.

Allowing prefixing in OD1 makes it vulnerable to termination channels [14].
However, these channels are detected by OD2, which requires existential stut-
ter equivalence. For example, consider the following program, which contains a
termination channel

P2 ≡ if h>0 then l:=1 else S1 fi

where

S1 ≡ while true do skip od

where l is a public variable, with the initial value of 0. The attacker can infer
truth value of h>0 from termination of the program. P2 has the following traces

h > 0 : [0, 1ω],
h ≤ 0 : [0ω].
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OD2 does not hold and thus observational determinism detects this channel.
As an example of a possibilistic channel, consider the following program, from

Ngo [18]

P3 ≡ [S2 || S3]

where

S2 ≡ if l=1 then l:=h else skip fi
S3 ≡ l:=1

and l is initially set to 0 and || is the parallel operator with shared variables.
The modules S2 and S3 are secure if they are run separately. However, concurrent
execution of the modules under a uniform scheduler might reveal the whole value
of h. P3 under a uniform scheduler has the following traces

S2 is executed first: [0, 0, 1ω],
S3 is executed first: [0, 1, hω].

OD2 does not hold and thus our definition correctly labels this program as inse-
cure. This example also demonstrates the importance of defining observational
determinism scheduler-specific. If P3 is executed by a scheduler that always picks
S2 first, then the program would be secure. However, it is insecure for a uniform
scheduler. Therefore, the security of a concurrent program should be discussed
in the context of a given scheduler.

For internally observable timing channels, consider the following program,
from Russo et al. [27]

P4 ≡ [S4 || S5]

where

S4 ≡ if h ≥ 0 then skip; skip
else skip fi;

l:=1
S5 ≡ skip; skip; l:=0

and l has the initial value of 0. Under a one-step round-robin scheduler that
picks S5 for the first step, the following traces are produced

h ≥ 0 : [0, 0, 0, 0, 0, 0, 1ω ],
h < 0 : [0, 0, 0, 0, 1, 0ω].

The truth value of h ≥ 0 is leaked into l. OD2 does not hold and hence obser-
vational determinism detects this channel.

5 Verifying Observational Determinism

In this section, two algorithms are proposed for verifying the conditions OD1

and OD2. The algorithms take MP
δ as input and return true or false for the

satisfaction of the conditions. Both algorithms incorporate a path exploration
and trace analysis approach to traverse MP

δ and check the required conditions.
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5.1 Verifying OD1

OD1 requires that all traces of MP
δ be prefix and stutter equivalent. To verify

this, a depth-first exhaustive path exploration of MP
δ is performed and prefix and

stutter equivalence is checked between the traces. Once a violation is detected,
the algorithm stops the exploration and returns false; otherwise, it continues
until the exploration is complete and returns true.

The detailed steps are outlined in Algorithm1. For each l ∈ L, the algorithm
uses a witness stutter-free trace for checking whether prefix and stutter equiva-
lence between the traces holds or not. The witness might be changed to another
stutter-free trace running the algorithm. First, an empty string is considered as a
witness for each l (lines 1 and 2). Then, MP

δ is explored by a depth-first recursive
function, i.e., explorePathsOD1(). In order to explore all reachable states, the
function is called for each initial state (lines 4 and 5). It starts from a state and
traverses all successors of that state (lines 25–26) until a final state is reached
(line 11), which shows that a path has been found. When the algorithm finds a
path, for each public variable l (line 12) it performs the following steps to check
prefix and stutter equivalence (lines 12–23). It extracts a trace (line 13), removes
stutter data from it (line 14) and picks the corresponding witness (line 15). If
the witness is longer than the trace, then a prefixing test is done: if the trace is
not a prefix of the witness, then a violation of OD1 has been found and the algo-
rithm returns false (lines 16–18). If the witness is shorter than the trace, then
the second prefixing test is done: if the witness is not a prefix of the trace, then
a violation of OD1 has been found and the algorithm returns false; otherwise
(the witness is a prefix of the trace), the trace is longer than the witness and it
should be the witness for l (lines 19–23). This process continues until a violation
is found, for which false is returned; or all paths are explored without finding a
violation and true is returned.

Time Complexity. The number of possible paths of a DAG can be exponential
in the number of its states. This implies that the core of Algorithm1, i.e., finding
all the possible paths using depth-first exploration takes time O(2n) in the worst
case, where n is in the number of states of MP

δ. Lines 13–23 for extracting the
trace of a path, removing stutter steps and checking prefixing takes O(n) in the
worst case. These lines repeat for all l ∈ L and take time O(n ∗ |L|). Therefore,
the worst-case time complexity of Algorithm 1 is exponential in the number of
states of MP

δ. Note that if the program is insecure, Algorithm 1 does not traverse
all the paths and stops as soon as a violation is found. Another point worthy of
note is that in most of our experiments, programs had a linear number of paths
and a few public variables and hence the total time complexity was linear in the
size of MP

δ.



166 A. A. Noroozi et al.

Algorithm 1. Verifying OD1

Input : finite MC MP
δ

Output : true if the program satisfies OD1; otherwise, false

// Consider an empty string as a witness for each public variable
1: for l in L do
2: Let witnesses[l] be an empty string;

3: Let π be an empty list of states for storing a path;
4: for s0 in Init(MP

δ) do
5: result = explorePathsOD1(s0, π, witnesses);
6: if not result then
7: return false;

8: return true;

9: function explorePathsOD1(s, π, witnesses)
10: π.add(s); // add state s to the current path from the initial state
11: if s is a final state then // found a path stored in π
12: for l in L do
13: T|l = trace|l(π);

14: Remove stutter data from T|l, yielding stutter-free trace T sf
|l ;

15: Tw = witnesses[l];
16: if length(T sf

|l ) ≤ length(Tw) then

17: if T sf
|l is not prefix of Tw then

18: return false;

19: else
20: if Tw is not prefix of T sf

|l then
21: return false;
22: else
23: witnesses[l] = T sf

|l ;

24: else
25: for s′ in Post(s) do
26: result = explorePathsOD1(s′, π, witnesses);
27: if not result then
28: return false;

29: π.pop(); // done exploring from s, so remove it from π
30: return true;

5.2 Verifying OD2

OD2 requires that, given two initial states s0 and s′
0 of MP

δ, for each trace of s0
there exists a stutter equivalent trace of s′

0. This condition can be interpreted
as requiring the initial states to have the same set of stutter-free traces:

OD2 : ∀s0, s
′
0 ∈ Init(MP

δ). T racessf (s0) = Tracessf (s′
0).

where Tracessf (s0) denotes the set of stutter-free traces of s0. To verify this,
a depth-first exhaustive path exploration of MP

δ is performed to store all the
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Algorithm 2. Verifying OD2

Input : finite MC MP
δ

Output : true if the program satisfies OD2; otherwise, false

1: Let π be an empty list of states for storing a path;
2: for s0 in Init(MP

δ) do
// Consider an empty set of stutter-free traces for each initial state

3: Let allT races[s0] be an empty set;
4: explorePathsOD2(s0, π, allT races);

5: for each pair of initial states (s0, s
′
0) do

6: if allT races[s0] ! = allT races[s′
0] then

7: return false;

8: return true;

9: function explorePathsOD2(s, π, allT races)
10: π.add(s); // add state s to the current path from the initial state
11: if s is a final state then // found a path stored in π
12: T|L = trace|L(π);

13: Remove stutter data from T|L, yielding stutter-free T sf
|L ;

14: s0 = π[0]; // initial state of π
15: allT races[s0].add(T sf

|L );
16: else
17: for s′ in Post(s) do
18: explorePathsOD2(s′, π, allT races);

19: π.pop(); // done exploring from s, so remove it from π
20: return ;

stutter-free traces of each initial state in a set and then the equivalence of the
sets is checked.

Algorithm 2 shows the detailed steps. It initiates an empty set for each initial
state (lines 2–3). Each set will contain stutter-free traces of the corresponding
initial state. The set of traces are extracted by the function explorePathsOD2(),
which recursively explores all states of MP

δ. When a final state is reached (line
11), the trace of the path from the initial state to the final state is extracted
(line 12), stutter removed (line 13) and stored in the corresponding set (lines
14–15). After extracting the set of stutter-free traces of all the initial states, the
equivalence of the sets is checked (lines 5–7). If they are all equivalent, then the
algorithm returns true; otherwise, false is returned.

Time Complexity. The core of Algorithm 2 is a depth-first exploration to find all
paths of MP

δ, which takes time O(2n) in the worst case. The final check for the
equivalence of the sets of traces takes worst-case complexity of O(t2), where t is
the number of initial states of MP

δ. Therefore, the time complexity of Algorithm 2
is dominated by a depth-first exploration of paths, which is exponential in the
size of MP

δ. As discussed in the complexity of Algorithm1, real-world programs
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in our experiments had linear time complexity and both algorithms showed a
high performance in practice.

6 Experimental Evaluation

In this section, the proposed algorithms are compared to other state-of-the-art
tools for information flow analysis. The algorithms have been integrated into
PRISM-Leak [24], which is a tool to evaluate secure information flow of concur-
rent probabilistic programs, written in the PRISM language [16]. PRISM-Leak
contains two packages, a qualitative package that checks observational determin-
ism using the algorithms of this paper and a quantitative package which measures
various types of information leakage using a trace-based algorithm [22].

PRISM-Leak is based on the PRISM model checker [16]. PRISM is a formal
modeling and analysis tool for probabilistic and concurrent programs. It has
been widely used in many application domains, including security protocols,
distributed algorithms, and many others. It uses the PRISM language to describe
programs and build Markovian models of them. It builds the models using binary
decision diagrams and multi-terminal binary decision diagrams. PRISM-Leak
accesses these data structures to create an explicit list of reachable states and a
sparse matrix containing the transitions. It then traverses the model based on
Algorithms 1 and 2 to check observational determinism. The source codes and
binary package of PRISM-Leak are available for download at [24].

The dining cryptographers protocol is used as a comparative case study.
As discussed in the related work, other definitions of observational determin-
ism [9,12,14,15,20,31,32] are imprecise for the dining cryptographers protocol.
JOANA, a scalable information flow tool, is also imprecise. The only remaining
choice for runtime comparison is the quantitative tools that were introduced in
the related work: LeakWatch [8], QUAIL [5], HyLeak [4] and PRISM-Leak [24].
These tools compute a leakage of 0 for the first case of the protocol and a leakage
greater than 0 for the second case.

We compare the runtime of the proposed algorithms and the quantitative
tools in Table 1 for the first case of the dining cryptographers protocol, where
the attacker is external and the master is not a candidate of being the payer.
Two columns of the table are allocated for PRISM-Leak: the first column, i.e.,
quantitative method, is for the quantitative package and the second column, i.e.,
observational determinism, is for the qualitative package which contains the algo-
rithms of this paper. Since QUAIL and HyLeak did not support concurrency, we
considered a sequential version of the dining cryptographers, which is available
at [24]. Table 2 compares the runtime of the tools for the second case, where the
attacker is external and the payer is the master or one of the cryptographers.
These run times have been obtained on a laptop with an Intel Core i7-2640M
CPU @ 2.80 GHz × 2 and 8 GB RAM.

As demonstrated by the results in both Tables 1 and 2, the proposed algo-
rithms are faster and more scalable than LeakWatch, QUAIL, and HyLeak and
comparable to the quantitative method of PRISM-Leak. In Table 1, the quan-
titative method of PRISM-Leak is faster than the proposed algorithms, but
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Table 1. Runtime comparison of the proposed algorithms to other tools for the first
case of the dining cryptographers protocol. Runtime is in seconds and timeout is set
to five minutes.

n LeakWatch [8] QUAIL [5] HyLeak [4] PRISM-Leak [24]

Quantitative
method [22]

Observational
determinism

7 2 1.8 30.5 0.6 0.7

8 3.7 3.1 39.7 0.8 1.2

9 7.5 6.3 55 1.3 1.9

10 15 12.6 72.2 2.9 3.9

11 32.2 26.5 97 7.3 9.6

12 72.4 62.1 135.4 18.7 25.2

13 150.7 151.6 249.3 49.9 66.7

14 Timeout Timeout Timeout 145.7 192.4

in Table 2, algorithms of this paper perform a little better. Note that cores of
both qualitative and quantitative packages of PRISM-Leak are the same. They
both rely on PRISM to construct the Markov model and use a sparse matrix
to access the model transitions. However, the quantitative method traverses the
model once to compute the leakage, but the qualitative package traverses it twice
(first for OD1 and second for OD2). In Table 2, observational determinism does
not hold and as soon as the qualitative package discovers that, stops the traver-
sal. This is why the qualitative package outperforms the quantitative method in
Table 2.

Table 2. Runtime comparison of the proposed approach to other tools for the second
case of the dining cryptographers protocol. Runtime is in seconds and timeout is set
to five minutes.

n LeakWatch [8] QUAIL [5] HyLeak [4] PRISM-Leak [24]

Quantitative
method [22]

Observational
determinism

7 3.1 2.4 30.8 0.6 0.6

8 6 4.5 41.7 1 0.9

9 12.3 9.7 57 1.5 1.4

10 28.2 17.5 75.3 3.5 3.3

11 60.5 35 99.3 7.7 7.4

12 122.1 78.5 144 20.4 20.5

13 Timeout 156.2 277.1 60.5 58.8

14 Timeout Timeout Timeout 215 211.8
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Runtime efficiency of PRISM-Leak mainly depends on the size of the Marko-
vian model built by the PRISM model checker and the model size can easily get
large. There are a few heuristics that can be performed when writing PRISM
descriptions in order to avoid large models. For example, closely-related variables
should be defined near each other; or variables that have a relationship with most
of the other variables should be defined first in the PRISM descriptions. For more
information on these heuristics, please see [25].

7 Conclusion

An algorithmic verification approach was proposed to check secure informa-
tion flow of concurrent probabilistic programs. Observational determinism was
defined as a specification of secure information flow. Comparisons to existing
definitions of observational determinism demonstrated that the proposed def-
inition is more precise. Furthermore, two algorithms were proposed to verify
observational determinism. The proposed algorithms have been integrated into
the PRISM-Leak tool. Experimental evaluations showed promising scalability
results for PRISM-Leak.

As future work, we aim to develop symbolic algorithms based on binary
decision diagrams to verify observational determinism. This can further improve
the scalability of PRISM-Leak. We also aim to use PRISM-Leak to evaluate
secure information flow of case studies from newer application domains.
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Abstract. Cloud-based services enable easy-to-use data-sharing
between multiple parties, and, therefore, have been widely adopted over
the last decade. Storage services by large cloud providers such as Drop-
box or Google Drive as well as federated solutions such as Nextcloud
have amassed millions of users. Nevertheless, privacy challenges ham-
per the adoption of such services for sensitive data: Firstly, rather than
exposing their private data to a cloud service, users desire end-to-end
confidentiality of the shared files without sacrificing usability, e.g., with-
out repeatedly encrypting when sharing the same data set with multiple
receivers. Secondly, only being able to expose complete (authenticated)
files may force users to expose overmuch information. The receivers, as
well as the requirements, might be unknown at issue-time, and thus the
issued data set does not exactly match those requirements. This mis-
match can be bridged by enabling cloud services to selectively disclose
only relevant parts of a file without breaking the parts’ authenticity.
While both challenges have been solved individually, it is not trivial to
combine these solutions and maintain their security intentions.

In this paper, we tackle this issue and introduce selective end-to-
end data-sharing by combining ideas from proxy re-encryption and
redactable signature schemes. Proxy re-encryption provides us with the
basis for end-to-end encrypted data-sharing, while redactable signatures
enable to redact parts and selectively disclose only the remaining still
authenticated parts. We overcome the issues encountered when naively
combining these two concepts, introduce a security model, and present a
modular instantiation together with implementations based on a selec-
tion of various building blocks. We conclude with an extensive perfor-
mance evaluation of our instantiation.

Keywords: Data-sharing · End-to-end confidentiality · Proxy
re-encryption · Redactable signatures

1 Introduction

The advancement of cloud-based infrastructure enabled many new applications.
One prime example is the vast landscape of cloud storage providers, such as
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Google, Apple, Microsoft, and others, but also including many solutions for fed-
erated cloud storage, such as Nextcloud. All of them offer the same essential and
convenient-to-use functionality: users upload files and can later share these files
on demand with others on a per-file basis or a more coarse level of granularity.
Of course, when sharing sensitive data (e.g., medical records), the intermediate
cloud storage provider needs to be highly trusted to operate on plain data, or
a protection layer is required to ensure the end-to-end confidentiality between
users of the system. Additionally, many use cases rely on the authenticity of the
shared data. However, if the authenticated file was not explicitly tailored to the
final receivers, e.g., because the receivers were yet unknown at the issuing time,
or because they have conflicting information requirements, users are forced to
expose additional unneeded parts contained in the authenticated file to satisfy
the receivers’ needs. Such a mismatch in the amount of issued data and data
required for a use case can prevent adoption not only by privacy-conscious users
but also due to legal requirements (c.f. EU’s GDPR [24]). To overcome this mis-
match, the cloud system should additionally support convenient and efficient
selective disclosure of data to share specific parts of a document depending on
the receiver. E.g., even if a doctor only issues a single document, the patient
would be able to selectively share the parts relevant to the doctor’s prescribed
absence with an employer, other parts on the treatment cost with an insurance,
and again different parts detailing the diagnosis with a specialist for further
treatment. Therefore, we aim to combine end-to-end confidentiality and selective
disclosure of authentic data to what we call selective end-to-end data-sharing.

End-to-End Confidentiality. In the cloud-based document sharing setting,
the näıve solution employing public-key encryption has its fair share of draw-
backs. While such an approach would work for users to outsource data storage,
it falls flat as soon as users desire to share files with many users. In a näıve app-
roach based on public-key encryption, the sender would have to encrypt the data
(or in a hybrid setting, the symmetric keys) separately for each receiver, which
would require the sender to fetch the data from cloud storage, encrypt them
locally, and upload the new ciphertext again and again. Proxy re-encryption
(PRE), envisioned by Blaze et al. [6] and later formalized by Ateniese et al. [2],
solves this issue conveniently: Users initially encrypt data to themselves. Once
they want to share that data with other users, they provide a re-encryption
key to a so-called proxy, which is then able to transform the ciphertext into a
ciphertext for the desired receiver, without ever learning the underlying mes-
sage. Finally, the receiver downloads the re-encrypted data and decrypts them
with her key. The re-encryption keys can be computed non-interactively, i.e.,
without the receivers involvement. Also, proxy re-encryption gives the user the
flexibility to not only forward ciphertexts after they were uploaded, but also to
generate re-encryption keys to enable sharing of data that will be uploaded in
the future. However, note that by employing proxy re-encryption, we still require
the proxy to execute the re-encryption algorithms honestly. More importantly,
it is paramount that the proxy server securely handles the re-encryption keys.
While the re-encryption keys generated by a sender are not powerful enough to
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decrypt a ciphertext on their own, combined with the secret key of a receiver,
any ciphertext of the sender could be re-encrypted and, finally, decrypted.

Authenticity and Selective Disclosure. Authenticity of the data is easily
achievable for the full data stored in a file. Ideally, the issuer generates a signa-
ture only over the minimal subset of data that is later required by the receiver
for a given use case. Unfortunately, the issuer would need to know all relevant
use cases in advance at sign time to create appropriate signed documents for
each case or later interactively re-create signatures over specified sub-sets on
demand. The problem becomes more interesting when one of the desired fea-
tures involves selectively disclosing only parts of an authenticated file. Naively,
one could authenticate the parts of a file separately and then disclose individual
parts. However, at that point, one loses the link between the parts and the other
parts of the complete file. More sophisticated approaches have been proposed
over the last decades, for example, based on Merkle trees, which we summarize
for this work as redactable signature schemes (RSS) [27]. With RSS, starting
from a signature on a file, anyone can repeatedly redact the signed message and
update the signature accordingly to obtain a resulting signature-message pair
that only discloses a desired subset of parts. Thereby it is guaranteed, that the
redacted signature was produced from the original message and the signature
does not leak the redacted parts.

Applications of Selective End-to-End Data-Sharing. Besides the use in
e-health scenarios, which we use throughout this paper as an example, we believe
this concept also holds value for a broader set of use cases, wherever users want to
share privacy-relevant data between two domains that produce and consume dif-
ferent sets of data. A short selection is introduced below: (1) Expenses: To get a
refund for travel expenses, an employee selectively discloses relevant items on her
bank-signed credit card bill, without exposing unrelated payments which may
contain privacy-sensitive data. (2) Commerce: Given a customer-signed sales
contract, an online marketplace wants to comply with the GDPR and preserve its
customers’ privacy while using subcontractors. The marketplace redacts the cus-
tomer’s name and address but reveals product and quantity to its supplier, and
redacts the product description but reveals the address to a delivery company.
(3) Financial statements: A user wants to prove eligibility for a discount/service
by disclosing her income category contained in a signed tax document, without
revealing other tax-related details such as marriage status, donations, income
sources, etc. Similarly, a user may need to disclose the salary to a future land-
lord, while retaining the secrecy of other details. (4) Businesses: Businesses may
employ selective end-to-end data-sharing to securely outsource data storage and
sharing to a cloud service in compliance with the law. To honor the users’ right
to be forgotten, the company could order the external storage provider to redact
all parts about that user, rather than to download, to remove, to re-sign, and
to upload the file again. (5) Identity Management: Given a government-issued
identity document, users instruct their identity provider (acting as cloud storage)
to selectively disclose the minimal required set of contained attributes for the
receiving service providers. In this use case, unlinkability might also be desired.
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Contribution. We propose selective end-to-end data-sharing for cloud systems
to provide end-to-end confidentiality, authenticity, and selective disclosure.

Firstly, we formalize an abstract model and its associated security properties.
At the time of encrypting or signing, the final receiver or the required minimal
combination of parts, respectively, might not yet be known. Therefore, our model
needs to support ad-hoc and selective sharing of protected files or their parts.
Besides the data owner, we require distinct senders, who can encrypt data for
the owner, as well as issuers that certify the authenticity of the data. Apart from
unforgability, we aim to conceal the plain text from unauthorized entities, such
as the proxy (i.e. proxy privacy), and additionally information about redacted
parts from receivers (i.e. receiver privacy). Further, we define transparency to
hide whether a redaction happened or not.

Secondly, we present a modular construction for our model by using cryp-
tographic building blocks that can be instantiated with various schemes, which
enables to tailor this construction to specific applications’ needs. A challenge for
combining was that RSS generally have access to the plain message in the redac-
tion process to update the signature. However, we must not expose the plain
message to the proxy. Even if black-box redactions were possible, the signature
must not leak any information about the plaintext, which is not a well-studied
property in the context of RSS. We avoid these problems by signing symmetric
encryptions of the message parts. To ensure that the signature corresponds to
the original message and no other possible decryptions, we generate a commit-
ment on the used symmetric key and add this commitment as another part to
the redactable signature.

Finally, we evaluate three implementations of our modular construction that
are built on different underlying primitives, namely two implementations with
RSS for unordered data with CL [11] and DHS [18,19] accumulators, as well as
an implementation supporting ordered data. To give an impression for real-world
usage, we perform the benchmarks with various combinations of part numbers
and sizes, on both a PC as well as a mobile phone.

Related Work. Proxy re-encryption, introduced by Blaze et al. [6], enables a
semi-trusted proxy to transform ciphertext for one user into ciphertext of the
same underlying message now encrypted for another user, where the proxy does
not learn anything about the plain message. Ateniese et al. [3] proposed the first
strongly secure constructions, while follow-up work focused on stronger security
notions [12,30], performance improvements [16], and features such as forward
secrecy [20], key-privacy [1], or lattice-based instantiations [13].

Attribute-based encryption (ABE) [25,34,35] is a well-known primitive
enabling fine-grained access to encrypted data. The idea is, that a central author-
ity issues private keys that can be used to decrypt ciphertexts depending on
attributes and policies. While ABE enables this fine-grained access control based
on attributes, it is still all-or-nothing concerning encrypted data.

Functional encryption (FE) [7], a generalization of ABEs, enables to define
functions on the encrypted plaintext given specialized private keys. To selec-
tively share data, one could distribute the corresponding private keys where the
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functions only reveal parts of the encrypted data. Consequently, the ability to
selectively share per ciphertext is lost without creating new key pairs.

Redactable signatures [27,37] enable to redact (i.e., black-out) parts of a
signed document that should not be revealed, while the authenticity of the
remaining parts can still be verified. This concept was extended for specific data
structures such as trees [8,36] and graphs [29]. As a stronger privacy notion,
transparency [8] was added to capture if a scheme hides whether a redaction
happened or not. A generalized framework for RSS is offered by Derler et al. [22].
Further enhancements enable only a designated verifier, but not a data thief, to
verify the signature’s authenticity and anonymize the signer’s identity to reduce
metadata leakage [21]. We refer to [17] for a comprehensive overview.

Homomorphic signatures [27] make it possible to evaluate a function on the
message-signature pair where the outcome remains valid. Such a function can
also be designed to remove (i.e., redact) parts of the message and signature. The
concept of homomorphic proxy re-authenticators [23] applies proxy re-encryption
to securely share and aggregate such homomorphic signatures in a multi-user
setting. However, homomorphic signatures do not inherently provide support
for defining which redactions are admissible or the notion of transparency.

Attribute-based credentials (ABCs or anonymous credentials) enable to only
reveal a minimal subset of authentic data. In such a system, an issuer certi-
fies information about the user as an anonymous credential. The user may then
compute presentations containing the minimal data set required by a receiver,
which can verify the authenticity. Additionally, ABCs offer unlinkability, i.e.,
they guarantee that no two actions can be linked by colluding service providers
and issuers. This concept was introduced by Chaum [14,15] and the most promi-
nent instantiations are Microsoft’s U-Prove [33] and IBM’s identity mixer [9,10].
However, as the plain data is required to compute the presentations, this oper-
ation must be performed in a sufficiently trusted environment.

In our previous work [26], we have identified the need for selective disclosure
in a semi-trusted cloud environment and informally proposed to combine PRE
and RSS, but did not yet provide a formal definition or concrete constructions.

The cloudification of ABCs [28] represents the closest related research to
our work and to filling this gap. Their concept enables a semi-trusted cloud
service to derive representations from encrypted credentials without learning
the underlying plaintext. Also, unlinkability is further guaranteed protecting
the users’ privacy, which makes it a very good choice for identity management
where only small amounts of identity attributes are exchanged. However, this
property becomes impractical with larger documents as hybrid encryption triv-
ially breaks unlinkability. In contrast, our work focuses on a more general model
with a construction that is efficient for both small as well as large documents.
In particular, our construction (1) already integrates hybrid encryption for large
documents avoiding ambiguity of the actually signed content, and (2) supports
features of redactable signatures such as the transparency notion, signer-defined
admissible redactions, as well as different data structures. These features come
at a cost: the proposed construction for our model does not provide unlinkability.
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Fig. 1. Algorithms performed by actors (dashed lines denote trust boundaries)

2 Definition: Selective End-to-End Data-Sharing

We present an abstract model for selective end-to-end data-sharing and define
security properties. It is our goal to formalize a generic framework that enables
various instantiations.

Data Flow. As an informal overview, Fig. 1 illustrates the model’s algorithms
in the context of interactions between the following five actors: (1) The issuer
signs the plain data. For example, a hospital or government agency may certify
the data owner’s health record or identity data, respectively. (2) The sender
encrypts the signed data for the owner. (3) The owner is the entity, for which
the data was originally encrypted. Initially, only this owner can decrypt the
ciphertext. The owner may generate re-encryption keys to delegate decryption
rights to other receivers. (4) The proxy redacts specified parts of a signed and
encrypted message. Then, the proxy uses a re-encryption key to transform the
remaining parts, which are encrypted for one entity (the owner), into ciphertext
for another entity (a receiver). (5) Finally, the receiver is able to decrypt the
non-redacted parts and verify their authenticity. Of course, multiple of these
roles might be held by the same entity. For example, an owner signs her data (as
issuer), uploads data (as sender), or accesses data she outsourced (as receiver).

Notation. In our following definitions, we adapt the syntax and notions inspired
by standard definitions of PRE [2] and RSS [22].

Definition 1 (Selective End-to-End Data-Sharing). A scheme for selec-
tive end-to-end data-sharing (SEEDS) consists of the PPT algorithms as defined
below. The algorithms return an error symbol ⊥ if their input is not consistent.

SignKeyGen(1κ) → (ssk, spk): On input of a security parameter κ, this proba-
bilistic algorithm outputs a signature keypair (ssk, spk).

EncKeyGen(1κ) → (esk, epk): On input of a security parameter κ, this probabilis-
tic algorithm outputs an encryption keypair (esk, epk).

ReKeyGen(eskA, epkB) → rkA→B: On input of a private encryption key eskA

of user A, and a public encryption key epkB of user B, this (probabilistic)
algorithm outputs a re-encryption key rkA→B.
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Sign(ssk,m,ADM) → σ: On input of a private signature key ssk, a message m
and a description of admissible messages ADM, this (probabilistic) algorithm
outputs the signature σ. The admissible redactions ADM specifies which mes-
sage parts must not be redacted.

Verify(spk,m, σ) → valid: On input of a public key spk, a signature σ and a
message m, this deterministic algorithm outputs a bit valid ∈ {0, 1}.

Encrypt(epkA,m, σ) → cA: On input of a public encryption key epkA, a message
m and a signature σ, this (probabilistic) algorithm outputs the ciphertext cA.

Decrypt(eskA, cA) → (m,σ): On input of a private decryption key eskA, a signed
ciphertext cA, this deterministic algorithm outputs the underlying plain mes-
sage m and signature σ if the signature is valid, and ⊥ otherwise.

Redact(cA,MOD) → c′
A: This (probabilistic) algorithm takes a valid, signed

ciphertext cA and modification instructions MOD as input. MOD specifies
which message parts should be redacted. The algorithm returns a redacted
signed ciphertext c′

A.
ReEncrypt(rkA→B , cA) → cB: On input of a re-encryption key rkA→B and a

signed ciphertext cA, this (probabilistic) algorithm returns a transformed
signed ciphertext cB of the same message.

Correctness. The correctness property requires that all honestly signed,
encrypted, and possibly redacted and re-encrypted ciphertexts can be correctly
decrypted and verified.

∀κ ∈ N, ∀(ssk, spk) ← SignKeyGen(1κ)

∀(eskA, epkA) ← EncKeyGen(1κ)

∀(eskB , epkB) ← EncKeyGen(1κ)

∀rkA→B ← ReKeyGen(eskA, epkB)

∀m, ∀ADM � m, ∀σ ← Sign(ssk, m,ADM)

∀cA ← Encrypt(epkA, m, σ)

∀cB ← ReEncrypt(rkA→B , cA),

∀MOD �ADM

m, ∀c′
A ← Redact(cA,MOD)

∀c′
B ← ReEncrypt(rkA→B , c′

A),

:

Decrypt(eskA, cA) = (m, σ),

Decrypt(eskB , cB) = (m, σ),

Verify(spk, m, σ) = 1,

(m′, σ′) ← Decrypt(eskA, c′
A),

Verify(spk, m′, σ′) = 1,

(m′, σ′′) ← Decrypt(eskB , c′
B),

Verify(spk, m′, σ′′) = 1,

with m′ MOD←−−− mi.

Oracles. To keep the our security experiments concise, we define various ora-
cles. The adversaries are given access to a subset of these oracles in the security
experiments. These oracles are implicitly able to access public parameters and
keys generated in the security games. The environment maintains the following
initially empty sets: HU for honest users, CU for corrupted users, CH for challenger
users, SK for signature keys, EK for encryption keys, and Sigs for signatures.
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Add User Oracle, AU(i, t): Generates and
tracks all key pairs for a user.

if i ∈ HU ∪ CU ∪ CH or t = CH: return ⊥
add i to set of type t
EK[i] ← (eski, epki) ← EncKeyGen(1κ)
SK[i] ← (sski, spki) ← SignKeyGen(1κ)
if t = CU: return ((eski,epki), (sski,spki))

if t = HU: return ((⊥, epki), (⊥, spki))

Sign Oracle, SIG(i, m,ADM): Signs mes-
sages for the challenge and honest users,
and tracks all signatures.

if i /∈ CH ∪ HU or SK[i][0] = ⊥: return ⊥
σ ← Sign(SK[i][0], m,ADM)
Sigs ← Sigs

∪{m′ | ∀MOD �ADM

m ∀m′ MOD←−−− m}
return (m, σ)

Sign Encrypt Oracle, SE(i, j, m,ADM):
Signs and encrypts messages for any user,
and tracks all signatures.

if i, j /∈ CH ∪ HU ∪ CU: return ⊥
σ ← Sign(SK[i][0], m,ADM)
CA ← Encrypt(EK[j][1], m, σ)
Sigs ← Sigs

∪{m′ | ∀MOD �ADM

m ∀m′ MOD←−−− m}
return CA

Re-Encryption Key Generator Ora-
cle, RKG(i, j): Generates keys for re-
encryptions keys except for re-encryptions
from the challenge user to a corrupted
user.

if i ∈ CH and j ∈ CU: return ⊥
if i, j /∈ HU∪ CU∪ CH or i = j: return ⊥
return ReKeyGen(EK[i][0], EK[j][1])

Re-Encrypt Oracle, RE(i, j, cj): Performs
re-encryption of a ciphertext as long as the
target user is not corrupted and the cipher-
text is not derived from the challenge.

if i, j /∈ HU ∪ CU ∪ CH or i = j: return ⊥
if ci is not a proper 2nd level ciphertext
for EK[i][0]: return ⊥
if 1) the oracle is called in the guess
phase, and 2) j ∈ CU, and 3) ci is a
derivative of C∗, that is if (m, σ) ←
Decrypt(EK[i][0], ci) and m ⊆ m0 or m ⊆
m1: return ⊥
rki→j ← ReKeyGen(EK[i][0], EK[j][1])
return ReEncrypt(rki→j , ci).

Decrypt Oracle, D(i, ci): Decrypts a
ciphertext as long as it is not derived from
the challenge ciphertext.

if i /∈ HU ∪ CU ∪ CH: return ⊥
if ci is not a proper ciphertext for
EK[i][0]: return ⊥
if the oracle is called in the guess phase,
and ci is a derivative of C∗, that is if
(m, σ) ← Decrypt(EK[i][0], ci) and m ⊆
m0 or m ⊆ m1: return ⊥
return (m, σ) ← Decrypt(EK[i][0], ci)

Unforgeability. Unforgeability requires that it should be infeasible to compute
a valid signature σ for a given public key spk on a message m without knowledge
of the corresponding signing key ssk. The adversary may obtain signatures of
other users and therefore is given access to a signing oracle (SIG). Of course, we
exclude signatures or their redactions that were obtained by adaptive queries to
that signature oracle.

Experiment ExpUnfSEEDS,A(1κ)

CH←{0}, SK[0]←(ssk∗, spk∗) ← SignKeyGen(1κ), O ← {SIG}, (m, σ) ← AO(spk∗)
if Verify(spk∗, m, σ) = 1 and m /∈ Sigs, then return 1, else return 0

Experiment 1. Unforgeability Experiment for Signatures of SEEDS Schemes
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Definition 2 (Unforgeability). A SEEDS scheme is unforgeable, if for any
PPT adversary A there exists a negligible function ε such that

Pr
[
ExpUnfSEEDS,A(1κ) = 1

]
< ε(κ)

Proxy Privacy. Proxy privacy captures that proxies should not learn anything
about the plain data of ciphertext while processing them with the Redact and
ReEncrypt operations. This property is modeled as an IND-CCA style game,
where the adversary is challenged on a signed and encrypted message. Since the
proxy may learn additional information in normal operation, the adversary gets
access to several oracles: Obtaining additional ciphertexts is modeled with a Sign-
and-Encrypt oracle (SE). A proxy would also get re-encryption keys enabling re-
encryption operations between corrupt and honest users (RE, RKG). Furthermore,
the adversary even gets a decryption oracle (D) to capture that the proxy colludes
with a corrupted receiver, who reveals the plaintext of ciphertext processed by
the proxy. We exclude operations that would trivially break the game, such as
re-encryption keys from the challenge user to a corrupt user, or re-encryptions
and decryptions of (redacted) ciphertexts of the challenge.

Experiment ExpPPSEEDS,A(1κ)

SK[0] ← (ssk∗, spk∗) ← SignKeyGen(1κ), EK[0] ← (esk∗, epk∗) ← EncKeyGen(1κ)
CH ← {0}, b ←R {0, 1}, O1 ← {AU, SE, RKG, RE, D}, O2 ← {SE, RE, D}
(m0,ADM0, m1,ADM1, , ) ← AO1(spk∗, epk∗)
if m0 	∼ m1, or ADM0 	∼ ADM1: abort

σ ← Sign(ssk∗, mb,ADMb), c∗ ← Encrypt(epk∗, mb, σ), b′ ← AO2(, c∗)
if b = b′, then return 1, else return 0

Experiment 2: Proxy Privacy Experiment for Ciphertexts of SEEDS Schemes
(X ∼ Y ... |X| = |Y | and corresponding items xi, yi have same length)

Definition 3 (Proxy Privacy). A SEEDS scheme is proxy private, if for any
PPT adversary A there exists a negligible function ε such that

∣∣∣Pr
[
ExpPPSEEDS,A(1κ) = 1

]
− 1/2

∣∣∣ < ε(κ)

Receiver Privacy. Receiver privacy captures that users only want to share
information selectively. Therefore, receivers should not learn any information
on parts that were redacted when given a redacted ciphertext. Since receivers
may additionally obtain decrypted messages and their signatures during normal
operation, the adversary gets access to a signature oracle (SIG). The experiment
relies on another oracle (LoRRedact), that simulates the proxy’s output. One of
two messages is chosen with challenge bit b, redacted, re-encrypted and returned
to the adversary to guess b. To avoid trivial attacks, the remaining message
parts must be a valid subset of the other message’s parts. If the ciphertext leaks
information about the redacted parts, the adversary could exploit this to win.
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Experiment ExpRPSEEDS,A(1κ)

SK[0] ← (ssk∗, spk∗) ← SignKeyGen(1κ)
EK[0] ← (esk∗, epk∗) ← EncKeyGen(1κ)
CH ← {0}, b ←R {0, 1}
O ← {AU, SIG, LoRRedact(· · · · ··, b)}
b′ ← AO(spk∗, epk∗)
if b = b′, then return 1
else return 0

LoRRedact(i,j,m0,MOD0,m1,MOD1,ADM,b):

if i /∈ CH or j /∈ HU ∪ CU: return ⊥
rkA→B ← ReKeyGen(EK[i][0], EK[j][1])
for both c ∈ {0, 1}

σc ← Sign(SK[i][0], mc,ADM)
cA,c ← Encrypt(EK[i][1], mc, σc)
c′

A,c ← Redact(cA,c,MODc)
c′

B,c ← ReEncrypt(rkA→B , c′
A,c)

(m′
c, σ

′
c) ← Decrypt(EK[j][0], c′

B,c)

if m′
0 = m′

1: return c′
B,b

else: return ⊥
Experiment 3. Receiver Privacy Experiment for SEEDS Schemes

Definition 4 (Receiver Privacy). A SEEDS scheme is receiver private, if for
any PPT adversary A there exists a negligible function ε such that

∣∣∣Pr
[
ExpRPSEEDS,A(1κ) = 1

]
− 1/2

∣∣∣ < ε(κ)

Transparency. Additionally, a SEEDS scheme may provide transparency. For
example, considering a medical report, privacy alone might hide what treat-
ment a patient received, but not the fact that some treatment was administered.
Therefore, it should be infeasible to decide whether parts of an encrypted mes-
sage were redacted or not. Again, the adversary gets access to a signature oracle
(SIG) to cover the decrypted signature message pairs during normal operation
of receivers. The experiment relies on another oracle (RedactOrNot), that sim-
ulates the proxy’s output. Depending on the challenge bit b, the adversary gets
a ciphertext that was redacted or a ciphertext over the same subset of message
parts generated through the sign operation but without redaction. If the returned
ciphertext leaks information about the fact that redaction was performed or not,
the adversary could exploit this to win.

Experiment ExpTransSEEDS,A(1κ)

SK[0] ← (ssk∗, spk∗) ← SignKeyGen(1κ)
EK[0] ← (esk∗, epk∗) ← EncKeyGen(1κ)
CH ← {0}, b ←R {0, 1}
O ← {AU, SIG, RedactOrNot(·, ·, ·, ·, b)}
b′ ← AO(esk∗, epk∗, spk∗)
if b = b′, then return 1
else: return 0

RedactOrNot(i, m,MOD,ADM, b):

if i /∈ CH: return ⊥
σ ← Sign(SK[i][0], m,ADM)
c ← Encrypt(EK[i][1], m, σ)
c′
0 ← Redact(c,MOD)

(m′, σ′) ← Decrypt(EK[i][0], c′
0)

σ′ ← Sign(SK[i][0], m′,ADM)
c′
1 ← Encrypt(EK[i][1], m′, σ′)
return c′

b.

Experiment 4. Transparency Experiment for Ciphertexts of SEEDS Schemes
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Definition 5 (Transparency). A SEEDS scheme is transparent, if for any
PPT adversary A there exists a negligible function ε such that

∣∣∣Pr
[
ExpTransSEEDS,A(1κ) = 1

]
− 1/2

∣∣∣ < ε(κ)

3 Modular Instantiation

Scheme 1 instantiates our model by building on generic cryptographic mecha-
nisms, most prominently proxy re-encryption and redactable signatures, which
can be instantiated with various underlying schemes.

Signing. Instead of signing the plain message parts mi, we generate a redactable
signature over their symmetric ciphertexts ci. To prevent ambiguity of the actu-
ally signed content, we commit to the used symmetric key k with a commitment
scheme, giving (O,C), and incorporate this commitment C as another part when
generating the redactable signature σ̂. Neither the ciphertexts of the parts, nor
the redactable signature over these ciphertexts, nor the (hiding) commitment
reveals anything about the plaintext. To verify, we verify the redactable signa-
ture over the ciphertext as well as commitment and check if the message parts
decrypted with the committed key match the given message.

Selective Sharing. We use proxy re-encryption to securely share (encrypt and
re-encrypt) the commitment’s opening information O with the intended receiver.
With the decrypted opening information O and the commitment C itself, the
receiver reconstructs the symmetric key k, which can decrypt the ciphertexts into
message parts. In between, redaction can be directly performed on the redactable
signature over symmetric ciphertexts and the hiding commitment.

Admissible Redactions. The admissible redactions ADM describe a set of
parts that must not be redacted. For the redactable signature scheme, a canon-
ical representation of this set also has to be signed and later verified against
the remaining parts. In combination with proxy re-encryption, the information
on admissible redactions also must be protected and is, therefore, part-wise
encrypted, which not only allows the receiver to verify the message, but also
the proxy to verify if the performed redaction is still valid. Of course, hashes
of parts that must remain can be used to describe ADM to reduce its size. In
the construction, the commitment C is added to the signature but must not be
redacted, so it is internally added to ADM.

Subject Binding. The signature is completely uncoupled from the encryption,
and so anyone who obtains or decrypts a signature may encrypt it for herself
again. Depending on the use case, the signed data may need to be bound to a
specific subject, to describe that this data is about that user. To achieve this,
the issuer could specify the subject within the document’s signed content. One
example would be to add the owner’s epk as the first message item, enabling
receivers to authenticate supposed owners by engaging in a challenge-response
protocol over their spk. As we aim to offer a generic construction, a concrete
method of subject binding is left up to the specific application.



186 F. Hörandner et al.

As public parameters, fix a proxy re-encryption scheme PRE, a symmetric encryption
scheme S, a commitment scheme C with fixed parameters cpp ← C.KeyGen(1κ), and a
redactable signature scheme RSS.

SignKeyGen(1κ) → (ssk, spk): return RSS.KeyGen(1κ)
EncKeyGen(1κ) → (esk, epk): return PRE.KeyGen(1κ)
ReKeyGen(eskA, epkB) → rkA→B: return PRE.ReKeyGen(eskA, epkB)

Sign(ssk, m,ADM) → σ:

k ← S.KeyGen(1κ)
c ← {S.Enc(k, mi) | mi ∈ M}
cADM ← {ci ∈ c | mi ∈ ADM}
(C, O) ← C.Com(k)
(·, σ̂) ← RSS.Sign(ssk,{C}∪c,{C}∪cADM)

return σ ← (O, C, c, σ̂)

Verify(spk, m, σ) → valid ∈ {0, 1}:
Parse m as {mi}n

i=1

Parse σ as (O, C, {ci}n
i=1, σ̂)

if the following holds, return 1
RSS.Verify(spk, {C}∪c, σ̂) = 1
∀i ∈ [1...n] : mi = S.Dec(k, ci)
with k ← C.Open(C, O)

else: return 0

Encrypt(epkA, m, σ) → cA:

Parse σ as (O, C, c, σ̂)
OA ← PRE.Enc2(epkA, O)
return cA ← (OA, C, c, σ̂)

Decrypt(eskA, cA) → (m, σ):

Parse cA as (OA, C, {ci}n
i=0, σ̂)

O ← PRE.Decj(eskA, OA),
with j as ciphertext-level

k ← C.Open(O, C)
m ← {mi}n

i=1, mi ← S.Dec(k, ci)
σ ← (O, C, c, σ̂)
if Verify(spk, m, σ) = 1: return (m, σ)
else: return ⊥
We assume that spk can always be cor-
rectly derived from any ciphertext cA.

Redact(cA,MOD) → c′
A:

Parse cA as (OA, C, c, σ̂)
({C}∪c′, σ̂′) ←

RSS.Redact({C}∪c, σ̂,MOD)
return c′

A ← (OA, C, c′, σ̂′)

ReEncrypt(rkA→B , cA) → cB:

Parse cA as (OA, C, c, σ̂)
OB ← PRE.ReEnc(rkA→B , OA)
return cB ← (OB , C, c, σ̂)

Scheme 1. Modular Instantiation

Tailoring. The modular design enables to instantiate the building blocks with
concrete schemes that best fit the envisioned application scenario. To support
the required data structures, a suitable RSS may be selected. Also, performance
and space characteristics are a driving factor when choosing suitable schemes.
For example, in the original RSS from Johnson et al. [27] the signature grows
with each part that is redacted starting from a constant size, while in the (not
optimized) RSS from Derler et al. [22, Scheme 1], the signature shrinks with
each redaction. Further, already deployed technologies or provisioned key mate-
rial may come into consideration to facilitate migration. This modularity also
becomes beneficial when it is desired to replace a cryptographic mechanism with
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a related but extended concept. For example, when moving from “classical” PRE
to conditional PRE [38] that further limits the proxy’s power.

Theorem 1. Scheme 1 is unforgeable, proxy-private, receiver-private, and
transparent, if the used PRE is IND-RCCA2 secure, S is IND-CPA secure, C
is binding and hiding, and RSS is unforgeable, private, and transparent.

The proof is given in AppendixA.

4 Performance

We evaluate the practicability of Scheme 1 by developing and benchmarking
three implementations that differ in the used RSS and accumulator schemes.
To give an impression for multiple scenarios, we test with various numbers of
parts and part sizes, ranging from small identity cards with 10 attributes to 100
measurements à 1 kB and from documents with 5 parts à 200 kB to 50 high-
definition x-ray scans à 10 MB.

Implementations. Our three implementations of Scheme 1 aim for 128 bit secu-
rity. Table 1 summarizes the used cryptographic schemes and their parametriza-
tion according to recommendations from NIST [5] for factoring-based and
symmetric-key primitives. The groups for pairing-based curves are chosen follow-
ing recent recommendations [4,31]. These implementations were developed for
the Java platform using the IAIK-JCE and ECCelerate libraries1. We selected
the accumulators based on the comparison by Derler et al. [18].

Table 1. Cryptographic building blocks for our three implementations

Impl. 1: Sets & CL Impl. 2: Sets & DHS Impl. 3: Lists & CL

PRE Chow et al. [16], 3072bit
S AES-CBC, 128bit
C Hash Commitment (SHA3), 256bit

Hash SHA3, 256bit
RSS DPSS [22, Scheme 1] DPSS [22, Scheme 1] DPSS [22, Scheme 2]

Accu. CL [11], 3072bit DHS [19, Scheme 3], 384bit CL [11], 3072bit
DSS RSA, 3072bit ECDSA, 256bit RSA, 3072bit

Evaluation Methodology. In each benchmark, we redact half of the parts.
While Redact and ReEnc are likely to be executed on powerful computers, for
example in the cloud, the other cryptographic operations might be performed by
less powerful mobile phones. Therefore, we performed the benchmarks on two
platforms: a PC as well as an Android mobile phone. Table 2 summarizes the
execution times of the different implementations for both platforms, where we

1 https://jce.iaik.tugraz.at/.

https://jce.iaik.tugraz.at/
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took the average of 10 runs with different randomly generated data. Instead of
also performing the signature verification within the Dec algorithm, we list Verify
separately. We had to skip the 500 MB test on the phone, as memory usage is
limited to 192 MB for apps on our Google Pixel 2.

General Observations. The growth of execution times is caused by two param-
eters: the number of parts and the size of the individual parts. Sign symmetri-
cally encrypts all parts and hashes the ciphertexts, so that the RSS signature
can then be generated independently of the part sizes. Verify not only hashes
the ciphertexts of all remaining parts to verify them against the RSS signature
but also symmetrically decrypts the ciphertexts to match them to the plain mes-
sage. Redact shows very different characteristics in the individual implementa-
tions. In contrast, the times for Enc and ReEnc respectively are almost identical,
independent of both parameters, as they only perform a single PRE operation
on the commitment’s opening information from which the symmetric key can
be reconstructed. Dec again depends on the number and size of (remaining)
parts, as besides the single PRE decryption, all remaining parts are symmetri-
cally decrypted.

Table 2. Execution times (in milliseconds) of three implementations for Scheme 1
(Dec∗ denotes decryption without additional signature verification)

Impl. 1: Sets & CL Impl. 2: Sets & DHS Impl. 3: Lists & CL
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PC (Intel i7-4790, 3.6 GHz, 16GB RAM)

10x 1kB 26 1 12 1 1 13 13 2 <1 2 1 47 37 1 36 1 1 18

25x 1kB 54 1 28 1 1 28 19 2 <1 1 1 89 97 1 129 1 1 43

100x 1kB 179 1 97 1 1 89 63 2 <1 1 1 302 852 1 1591 1 1 265

5x 200kB 23 1 6 1 3 16 12 1 <1 1 4 38 28 1 16 1 3 18

25x 1MB 142 1 39 1 40 85 101 1 <1 1 33 143 189 1 151 1 33 111

50x 10MB 1871 1 393 1 749 1100 1777 1 <1 1 752 1216 2310 1 905 1 733 1285

Mobile Phone (Google Pixel 2)

10x 1kB 198 13 112 7 21 121 716 13 <1 6 20 2327 212 11 204 6 19 153

25x 1kB 360 12 199 6 22 211 1171 12 <1 6 21 4649 451 12 623 6 20 258

100x 1kB 1194 12 695 6 24 607 3578 12 1 6 27 15982 2631 12 6835 6 27 973

5x 200kB 177 12 73 6 28 106 657 12 <1 6 28 1896 188 12 92 6 24 110

25x 1MB 777 12 370 6 111 480 1654 12 <1 7 111 4936 893 11 808 6 111 533

Impl. 1 for Sets Using CL Accumulators. Impl. 1 provides the best over-
all performance for verification. For the first implementation, we use an RSS
scheme for sets [22, Scheme 1] with CL accumulators [11], where we hash the
message parts before signing. With this accumulator, it is possible to optimize
the implementation, as described in [22], to generate a batch witness against
which multiple values can be verified at once. These batch operations are con-
siderably more efficient than generating and verifying witnesses for each part.
However, with this optimization, it becomes necessary to update the batch wit-
ness during the Redact operation. As only a single witness needs to be stored
and transmitted, the RSS signature size is constant.

Impl. 2 for Sets Using DHS Accumulators. In the second implementation,
we use the same RSS scheme for sets [22, Scheme 1] but move towards elliptic
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curves by instantiating it with ECDSA signatures and DHS accumulators [19,
Scheme 3] (extended version of [18]), which is a variant of Nguyen’s accumula-
tor [32]. This accumulator does not allow for the optimization used in the first
implementation. Consequently, Redact is very fast, as no witnesses need to be
updated. Instead, a witness has to be generated and verified per part. On the
PC, Sign is slightly faster compared to the first implementation, as signing with
ECDSA, evaluating a DHS accumulator, and creating even multiple witnesses
is overall more efficient. However, the witness verification within Verify is more
costly, which causes a significant impact with a growing number of parts. Inter-
estingly, phones seem to struggle with the implementation of this accumulator,
resulting in far worse times than the otherwise observed slowdown compared
with the PC. Considering space characteristics, while it is necessary to store one
witness per part instead of a single batch witness, each DHS witness is only a
single EC point which requires significantly less space than a witness from the
CL scheme. Assuming 384-bit EC (compressed) points per witness and an EC
point for the DHS accumulator, compared to one 3072-bit CL accumulator and
batch witness, the break-even point lies at 15 parts.

Impl. 3 for Lists Using CL Accumulators. For the third implementation,
we focused on supporting ordered data by using an RSS scheme for lists [22,
Scheme 2], while otherwise the same primitives as in our first implementation
are used. Of course, with a scheme for sets, it would be possible to encode
the ordering for example by appending an index to the parts. However, after
redaction, a gap would be observable, which breaks transparency. Achieving
transparency for ordered data comes at a cost: Scheme 2 of Derler et al. [22]
requires additional accumulators and witnesses updates to keep track of the
ordering without breaking transparency, which of course leads to higher compu-
tation and space requirements compared to the first implementation. Using CL
accumulators again allows for an optimization [22] around batch witnesses and
verifications. This optimization also reduces the RSS signature size from O(n2)
to O(n).

5 Conclusion

In this paper, we introduced selective end-to-end data-sharing, which covers
various issues for data-sharing in honest-but-curious cloud environments by pro-
viding end-to-end confidentiality, authenticity, and selective disclosure. First, we
formally defined the concept and modeled requirements for cloud data-sharing as
security properties. We then instantiated this model with a proven-secure modu-
lar construction that is built on generic cryptographic mechanisms, which can be
instantiated with various schemes allowing for implementations tailored to the
needs of different application domains. Finally, we evaluated the performance
characteristics of three implementations to highlight the practical usefulness of
our modular construction and model as a whole.

Acknowledgments. This work was supported by the H2020 EU project credential
under grant agreement number 653454.
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A Proof of Theorem1

We prove Theorem 1 by proving Lemma 1–4 to show the properties unforgeabil-
ity, proxy privacy, receiver privacy, and, finally, transparency. For proofs using
a sequence of games, we denote the event that an adversary wins game i by Si.

Lemma 1. If RSS is unforgeable and C is binding, then Scheme 1 is unforgeable.

Proof. We prove this lemma using a sequence of games.

Game 0: The original SEEDS unforgeability game.
Game 1: We adapt Game 0 to also abort when the signatures were generated

by SIG.

SIG(i, m,ADM):

if i /∈ CH ∪ HU or SK[i][0]=⊥: return ⊥
σ ← Sign(SK[i][0], m,ADM)

Parse σ as (O, C, c, σ̂)

Sigs ← Sigs

∪{m′ | ∀MOD �ADM

m ∀m′ MOD←−−− m}
Coms ← Coms ∪ {C}
return (m, σ)

Game 1:

(ssk∗, spk∗) ← SignKeyGen(1κ)
CH ← {0}, SK[0] ← (ssk∗, spk∗)
O ← {SIG}
(m, σ) ← AO(spk∗)

Parse σ as (O, C, c, σ̂)

if C ∈ Coms: return 0
if Verify(spk∗, m, σ) = 1 and m /∈
Sigs, then return 1, else return 0

Transition 0 ⇒ 1: Game 1 behaves the same as Game 0 unless A returned a
valid pair (m,σ) where the included RSS signature σ̂ on {C}∪c was generated
by SIG. We denote this failure event as F , thus |Pr[S0] − Pr[S1]| ≤ Pr[F ].
In this case, since C, c, and σ̂ are fixed, two different messages can only
be obtained, by decrypting with different keys k1 and k2. From the fixed
C, different keys can only be recovered with different opening informations
O1 and O2. To achieve this, the adversary would have to break the binding
property of C, therefore Pr[F ] = εBind

C (κ).

Finally, we build an efficient adversary B from an adversary A winning Game
1 for the unforgeability of RSS in RUnf

RSS → G1. We can simulate SIG except for
i = 0, where we obtain the RSS signatures using its signing oracle. Note that
all values are consistently distributed. Now, if we obtain a forgery (m,σ) from
A, then parse σ as (O,C, c, σ̂) and forward {C} ∪ c, σ̂ as a forgery. Therefore,
Pr[S1] = εUnf

RSS (κ), resulting in Pr[S0] = εBind
C (κ)+εUnf

RSS (κ), which is negligible.

Reduction RUnf
RSS → G1(pk):

(m, σ) ← ASIG(pk)
Parse σ as (O, C, C, σ̂)
return ({C}∪c, σ̂)

SIG(0, m,ADM):

k ← S.KeyGen(1κ)
c ← {S.Enc(k, mi) | mi ∈ M}
cADM ← {ci | ci ∈ c, mi ∈ ADM}
σ ← (O, C, c, OSign(sk, {C}∪c, {C}∪cADM))

Sigs ← Sigs ∪ {m′ | ∀MOD �ADM

m ∀m′ MOD←−−− m}
Coms ← Coms ∪ {C}
return (m′, σ)
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Lemma 2. If the PRE is IND-RCCA-2 secure, C is hiding, S is IND-CPA
secure, and RSS is unforgeable, then Scheme 1 is proxy private.

Proof. We prove proxy privacy using a sequence of games.

Game 0: The original SEEDS proxy privacy game.
Game 1: We restrict the decryption oracles to ciphertexts that contain messages

signed by the signature oracle. Therefore, we adapt SE as SIG in Lemma 1
to track the generated commitments, Coms ← Coms ∪ {C} . Also, we adapt

D to parse ci as (OA, C, c, σ̂) and if C /∈ Coms: return ⊥ .
Transition 0 ⇒ 1: The two games proceed identically unless the adversary

submits a valid signature to D. In that case the adversary produced a forgery,
i.e. |Pr[S0] − Pr[S1]| ≤ εUnf

SEEDS(κ).
Game 2: In the used Encrypt algorithm, we replace the opening information with

a random r from the same domain, and simulate the oracles accordingly:

Encrypt:

Parse σ as (O, C, c, σ̂)

r ←R Domain(CO)

OA ← PRE.Enc2(epkA, r )

Map ← Map ∪ {(OA, C, O)}
return cA ← (OA, C, c, σ̂).

RE(i, j, k, cj):

Parse cj as (OA, C, c, σ̂)
Look up (OA, C, O) ∈ Map

if not contained: run RE unmodified
else

OB ← PRE.ReEnc(rki→j , OA)
Map ← Map ∪ {(OB , C, O)}
return (OB , C, c, σ̂)

D(i, ci):

Parse ci as (OA, C, c, σ̂)
Lookup (OA, C, O) ∈ Map

if not contained: run D unmodified.
else

k ← C.Open(O, C)
m ← {S.Dec(k, cl) | cl ∈ c}
σ ← (O, C, c, σ̂)

if Verify(spk, m, σ) 	= 1 or m is a subset of chosen/forwarded m0, m1:
return ⊥

return (m, σ)

Transition 1 ⇒ 2: From a distinguisher D1→2, we build an IND-RCCA-2 adver-
sary against the PRE scheme. Indeed, let C be an IND-RCCA-2 challenger.
We modify Encrypt in the following way: Simulate everything honestly, but
sample r uniformly at random from the domain of openings of C and run

OA ← C(O, r) , where c ← C(m0,m1) denotes a challenge ciphertext with
respect to m0 and m1. The RE oracle calls the challenger’s RE oracle instead
of PRE.ReEnc. Consequently, |Pr[S1] − Pr[S2]| ≤ εIND−RCCA−2

PRE (κ).
Game 3: For the signature contained in the challenge ciphertext, we commit to

a random value, i.e., we set r ←R Domain(Sk) and (C,O) ← C.Com( r ).
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Transition 2 ⇒ 3: From a distinguisher D2→3, we obtain a hiding adversary
against C. Let C be a hiding challenger. We modify Sign in the following way:
Simulate everything honestly, but choose r uniformly at random from the
same domain as the S keys and run C ← C(k, r) , where C ← C(m0,m1)
denotes a challenge commitment with respect to m0 and m1. Therefore,
|Pr[S2] − Pr[S3]| ≤ εHide

C (κ).
Game 4: In the challenge ciphertext, we replace the message parts with random

values drawn from an identical domain with the same corresponding lengths,
i.e. for i ∈ [1..|M |]: ri ←R Domain(m) and c ← {S.Enc(k, ri ) | mi ∈ m}.

Transition 3 ⇒ 4: A distinguisher D3→4 is a (hybrid) IND-CPA adversary
against S. Let C be an IND-CPA challenger. We modify Sign in the following
way: Simulate everything honestly, but for each message part choose ri

uniformly at random from the message space and run ci ← C(mi, ri) , where
c ← C(m0,m1) denotes a challenge ciphertext with respect to m0 and m1.
Therefore, |Pr[S4] − Pr[S3]| ≤ |m| · εIND−CPA

S (κ), with |m| polynomial in
the security parameter κ.

Finally, we have that Pr[S4] = 1/2, since the adversary now cannot do better
than guessing. Combining the claims, we see that the following is negligible:

|Pr[S0] − 1/2| ≤εUnf
SEEDS(κ) + εIND−RCCA−2

PRE (κ) + εHide
C (κ) + |m| · εIND−CPA

S (κ)

Lemma 3. If RSS is private, then Scheme 1 is receiver private.

Proof. Assuming there is an efficient adversary A against the receiver pri-
vacy of Scheme 1, we build an adversary B against the privacy of RSS:

Reduction RPriv
RSS →RP

SEEDS (pk):
(esk∗, epk∗) ← SEEDS.EncKeyGen(1κ)
CH ← {0}
EK[0] ← (esk∗, epk∗), SK[0] ← (⊥, pk)
O ← {AU, SIG, LoRRedact(· · · · · · ·, b)}
return b∗ ← AO(pk, epk∗)

AU(i, t): This oracle is simulated honestly.

SIG(i, m,ADM): For i ∈ HU and i ∈ CU

everything is computed honestly, while we
use OSign for i ∈ CH as in Lemma 1.

LoRRedact(i,j,m0,MOD0,m1,MOD1,ADM,b):
For i 	= 0 or j 	∈ HU ∪ CU everything is
computed honestly, otherwise we run:

rk ← ReKeyGen(EK[i][0], EK[j][1])
k ← S.KeyGen(1κ; ω)
(C, O) ← C.Com(k)
OB ← PRE.ReEnc(rk,PRE.Enc(EK[i][1], O))
for both c ∈ {0, 1}:

cc ← {S.Enc(k, mi) | mi ∈ mc}
cADM,c ← {ci | ci ∈ cc, mi ∈ ADM}

X ← OLoRRedact(sk, pk,
({C}∪cc, {C}∪cADM,c,MODc)c∈{0,1}, b)

if X = ⊥: return ⊥
Parse X as ({C}∪cb′ , σ̂′

b)
return (OB , C, c′

b, σ̂
′
b)

The reduction extends the RSS public key to a SEEDS public key, and forwards it
to A. The oracle LoRRedact sets up everything honestly and obtains signatures
from LoRRedact of RSS. All values are distributed consistently, and B wins the
privacy experiment of RSS with the same probability as A breaks the SEEDS
receiver privacy of Scheme 1.
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Lemma 4. If RSS is transparent, then Scheme 1 is transparent.

Proof. Assuming there is an efficient adversary A against the transparency of
Scheme 1, we construct an adversary B against the transparency of the RSS:

The reduction extends the RSS public key to a SEEDS public key hon-
estly, and forwards it together with the secret encryption key to A. Simi-
larly, RedactOrNot sets up everything honestly and queries the RSS oracle
OSign/Redact to obtain the signature. Finally, it outputs a consistent ciphertext,
hence, B wins with the same probability as A.

References

1. Ateniese, G., Benson, K., Hohenberger, S.: Key-private proxy re-encryption. In:
Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 279–294. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-00862-7 19

2. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. In: NDSS. The Internet
Society (2005)

3. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9(1), 1–30 (2006)

4. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. J. Cryp-
tol. 32(4), 1298–1336 (2019)

5. Barker, E.: SP 800–57. Recommendation for Key Management, Part 1: General
(Rev 4). Technical report, National Institute of Standards & Technology (2016)

6. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054122

7. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

8. Brzuska, C., et al.: Redactable signatures for tree-structured data: definitions and
constructions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 87–
104. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13708-2 6

https://doi.org/10.1007/978-3-642-00862-7_19
https://doi.org/10.1007/BFb0054122
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-13708-2_6


194 F. Hörandner et al.

9. Camenisch, J., Herreweghen, E.V.: Design and implementation of the idemix
anonymous credential system. In: ACM CCS, pp. 21–30. ACM (2002)

10. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

11. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9 5

12. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
ACM CCS, pp. 185–194. ACM (2007)

13. Chandran, N., Chase, M., Liu, F.-H., Nishimaki, R., Xagawa, K.: Re-encryption,
functional re-encryption, and multi-hop re-encryption: a framework for achieving
obfuscation-based security and instantiations from lattices. In: Krawczyk, H. (ed.)
PKC 2014. LNCS, vol. 8383, pp. 95–112. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-642-54631-0 6

14. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84–88 (1981)

15. Chaum, D.: Security without identification: transaction systems to make big
brother obsolete. Commun. ACM 28(10), 1030–1044 (1985)

16. Chow, S.S.M., Weng, J., Yang, Y., Deng, R.H.: Efficient unidirectional proxy re-
encryption. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS,
vol. 6055, pp. 316–332. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-12678-9 19
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Abstract. Cloud-based storage services, such as Dropbox, Google
Drive, or NextCloud, are broadly used to share data with others or
between the individual devices of one user due to their convenience. Var-
ious end-to-end encryption mechanisms can be applied to protect the
confidentiality of sensitive data in a not fully trusted cloud environment.
As all such encryption mechanisms require to store keys on the client’s
device, losing a device (and key) might lead to catastrophic consequences:
Losing access to all outsourced data. Strategies to recover from key-loss
have various trade-offs. For example, storing the key on a flash drive
burdens the user to keep it secure and available, while encrypting the
key with a password before uploading it to the cloud requires users to
remember a complex password. These strategies also require that the key
can be extracted from the device’s hardware, which risks the confiden-
tiality of the key and data once a curious person finds a lost device or a
thief steals it.

In this paper, we propose and implement a cloud-based data sharing
system that supports recovery after key-loss while binding the keys to
the devices’ hardware. By using multi-use proxy re-encryption, we build
a network of re-encryption keys that enables users to use any of their
devices to access data or share it with other users. In case of device-loss,
we amend this network of re-encryption keys – potentially with the help
of one or more user-selected recovery users – to restore data access to the
user’s new device. Our implementation highlights the system’s feasibility
and underlines its practical performance.

Keywords: Cloud data sharing · Key-loss recovery ·
Hardware-protected keys

1 Introduction

Cloud storage services have seen broad adoption due to their convenience: These
services enable users to store their data in the cloud, to access these data from
any of their multiple devices (e.g., laptop, phone, tablet, etc.), and to share them
with others. To also support sensitive data (e.g., medical records or company
secrets), such services employ cryptographic mechanisms to ensure end-to-end
confidentiality, for example, in the form of hybrid encryption or more elaborate
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lockbox-constructions [9,10,18]. With such cryptography, sharing access to data
boils down to managing and distributing keys.

Employing cryptography to achieve secure data sharing requires to store the
involved key material on the users’ devices. If these devices (and their keys) are
lost, broken or stolen, users face dire consequences, i.e., losing access to their
important data. Therefore, applications that rely on client-side keys need to
employ a strategy to recover from device- or key-loss. In data sharing scenarios
where users own multiple devices, the loss of one device can be compensated as
the user’s other devices still have access. However, not all users own multiple
devices, and, thus, a single-device recovery option has to be offered as well.

Approaches for recovery from key-loss have different trade-offs: Key mate-
rial can be stored on a flash drive or printed as a QR code, which requires
a secure location that stays available as well as confidential. Password-based
encryption [17,21] or biometric encryption [8,16] can protect the key before
storing it on a cloud service. Such approaches rely on limited entropy, which
could be brute-forced by powerful attackers given sufficient time. Alternatively,
secret sharing [23] enables to split the key into parts, distribute these parts
across various semi-trusted entities, and reconstruct the key from a subset. This
splitting requires a trust decision but enables a user-defined trade-off between
confidentiality and availability.

However, all of these approaches for key distribution and recovery require
that the key can be extracted, which leaves users vulnerable if one device is lost
or stolen. Instead, we aim for a system which enables to bind the per-device keys
to the devices’ hardware with technologies such as Intel’s SGX [15] or ARM’s
TrustZone [2] so that they cannot be extracted by attackers.

Our Proposed System. In this work, we build a cloud-based data sharing sys-
tem, which supports multiple devices per user with keys bound to the hardware
but also offers recovery from device- and key-loss for users with only one device.
Highlighted features of our system are: (1) recovery with a threshold of users
that enables a better trade-off between availability to confidentiality for single-
device users, (2) improved key security through hardware protection, and (3)
consequently immediate full access after recovery without the need for manual
re-keying.

As a basis, we leverage proxy re-encryption (PRE) [3,5] and in particular its
multi-use property. When using PRE instead of traditional public key encryption,
the user generates re-encryption keys, which enable a proxy (i.e., the cloud stor-
age service) to transform ciphertexts encrypted for the data owner into cipher-
texts encrypted for an intended receiver. Multi-use PRE (MU-PRE) [6] allows to
further re-encrypt ciphertexts that were already re-encrypted.

To support multiple devices per user, we propose to build and maintain a set
of re-encryption keys, which enables to re-encrypt a user’s ciphertexts for any
of her (authorized) devices. With the multi-use property, any connected device
of the user may generate re-encryption keys to other users’ devices, which effec-
tively shares access to her ciphertexts, as these ciphertexts can be successively



198 F. Hörandner and F. Nieddu

re-encrypted. Building and maintaining such a network of re-encryption keys
enables full access and sharing capabilities on each device.

Recovery from key-loss not only needs to be supported for the trivial case
where the user owns a second device with access to all data, but also for users
who only own a single device: Single-device users select a sufficiently trusted
recovery user who is willing to assist in case recovery becomes necessary. This
recovery user is responsible for identifying and authenticating users who request
recovery to ensure that only new devices of legit users get access. Users need
to convince their recovery users to generate a re-encryption key for their new
devices. With that re-encryption key, the cloud storage service re-encrypts the
user’s data for the recovery user and further for the user’s new device, making
it accessible again. As the cloud storage service does not expose intermediate
ciphertexts, recovery users do not get access to the data. Recovery requires little
effort on the user’s side to make all data immediately available (i.e., generate
re-encryption keys).

Our approach also enables us to bind the keys to the devices’ hardware. The
data sharing and recovery processes are designed so that private key material
does not have to be extracted from the devices’ hardware. Therefore, we are able
to bind the keys to the device’s hardware and only unlock them for authorized
users. As attackers (e.g., thieves) are not able to extract and steal the keys,
time-consuming re-keying and re-distribution of keys is not necessary.

Implementation and Discussion. Additionally, we evaluate the feasibility
and performance of our system through a proof-of-concept implementation. In
particular, we give details on the implementation of the used MU-PRE scheme
and estimate costs of deployment on Amazon Web Services (AWS). Finally, we
discuss the recovery effort from the user’s perspective, elaborate on the perfor-
mance results in the data sharing setting, and argue the benefits of hardware-
bound keys as such approaches require no re-keying on the users’ devices.

2 Background and Related Work

Cloud Data Storage. Cloud storage services employ cryptography to achieve
end-to-end confidentiality for data that are handled in a not fully trusted cloud
environment. With hybrid encryption, the data is symmetrically encrypted, while
the used symmetric key is encrypted with a public key encryption scheme for
one or more intended receivers. Fu’s Cepheus [9] expands on hybrid encryption
and introduces the concept of a lockbox: A lockbox contains the key to access a
user’s data. As the lockbox is protected (e.g., public key encrypted), it can be
stored in public, and only authorized people are able to open it. Plutus [18] and
SiRiUS [10] further expand on this idea.

Encryption for Data Sharing. With hybrid encryption or lockbox-
constructions, public key encryption can be used to share access to a file by
distributing access to the symmetric content encryption key.

Proxy Re-Encryption (PRE) [3,5] can be used instead of public key encryp-
tion to share access to the symmetric keys or lockboxes. PRE extends asymmetric
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encryption by enabling a semi-trusted proxy to transform ciphertext encrypted
for one user into ciphertext encrypted for another user, without learning the
underlying plaintext in an intermediate step. The user controls the sharing
process by generating re-encryption keys towards other users, which the proxy
requires in the transformation process. Ateniese et al. [3] applied PRE to data
sharing: Users encrypt their files for themselves and generate re-encryption keys
for intended receivers. Given those re-encryption keys, the cloud storage service
(i.e., proxy) transforms the user’s data for authorized receivers, who are then able
to decrypt the ciphertext with their own key material. Previous work (e.g., [12])
has focused on single-use PRE schemes, where ciphertexts can be re-encrypted
once, but already re-encrypted ciphertext cannot be further transformed.

Attribute-Based Encryption (ABE) [11] represents another alternative to
share access to data. With ABE, data is encrypted for attributes rather than
for specific public keys (i.e., identities). Everyone with key material matching
the ciphertext’s attributes is able to decrypt. Such keys are issued by a trusted
third party, which entails high trust requirements, as this party can decrypt any
ciphertext.

Recovery from Key-Loss. The above-described encryption mechanisms either
rely on per-user master keys or individual keys per device. We summarize
approaches to recovery in case the device holding such keys breaks or is lost.

Password-based encryption can be used to wrap the user’s key before upload-
ing it to a cloud storage. This wrapped key is retrieved either by the user’s other
devices or on a new device once recovery becomes necessary. Such encryption
relies on keys generated from the user’s password through a key derivation func-
tion (e.g., PKDF2 [17], scrypt [21]). Increasing the derivation costs propagates
directly to attackers. Consequently, this approach offers little protection against
cloud attackers with plenty of resources and sufficient time to brute-force the
password.

When employing biometric cryptosystems (BCSs), e.g., based on fuzzy
extractors [8] or biohashing [16], the users’ biometric templates (e.g., finger-
prints) are used to protect the keys. After storing these protected keys at a
cloud service, they can be downloaded and decrypted on any device where the
user inputs her biometric template. Unfortunately, BCSs require additional data
to generate stable, high-entropy keys [19], which again need to be kept available
and confidential.

With secret sharing [23], users split their keys into multiple shares, hand
these shares to different trusted parties, and are later able to reconstruct the
key from a threshold of shares. For example, Huang et al. [14] propose to apply
secret sharing on keys in a cloud data sharing setting. However, they do not
suggest any authentication mechanisms to ensure that only authorized parties
obtain shares.

Password-Protected Secret Sharing [4,7] introducing password-based authen-
tication for secret sharing where entities holding the shares are able to verify
the user’s password but do not learn it. For example, Hörandner et al. [13]
have applied this concept to split the keys over a hierarchy of trusted services.
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However, secret sharing, as well as the previous key recovery mechanisms, require
that the users’ keys can be extracted from the devices’ hardware.

Hardware-Protection for Keys. We are interested in technologies that bind
the keys to the devices’ hardware and only unlock them for authorized users.

On phones with ARM’s TrustZone [2] technology, the CPU switches between
a less trusted and a more trusted state (so-called world), while preventing unin-
tended information leakage between them. The more trusted world has access
to secrets and is typically used to execute security code, while the less trusted
world runs the operating system and applications. Such technologies can be used
to establish a secure boot chain, which ensures that a valid version of the oper-
ating system is loaded on the device. Such a valid operating system only unlocks
the protected key material after the user has been authenticated. Devices with
hardware support for key protection are widely deployed: All devices shipped
with Android Nougat or newer are required to have such hardware protections.
That are >38%1 of 2.5 Billion devices2 as of Juli 2019, when conservatively only
counting devices with Oreo and Pie, as devices rarely receive more than one
major-version upgrade. iPhone 5S and later also support hardware-bound keys.

On PCs and servers, Intel’s SGX [15] introduces new instruction codes that
enable to deploy code in a private memory region, a so-called enclave. The mem-
ory contents cannot be read by any other process even if the operating system
is malicious. SGX employs on-the-fly encryption and integrity verification in the
CPU. This technology has been introduced with Intel’s Skylake CPUs in 2015.

Building Block. Multi-Use Proxy Re-Encryption (MU-PRE) [6] not only allows
to re-encrypt once but multiple times in succession, i.e., to re-encrypt ciphertexts
that have already been re-encrypted. We focus on unidirectional, non-interactive
MU-PRE schemes as a fundamental building block of our concept.

Definition 1 (MU-PRE). A multi-use proxy re-encryption (MU-PRE) scheme
with message space M consists of the following PPT algorithms:

KeyGen(1κ) → (sk, pk): On input of a security parameter κ, the algorithm outputs
a secret and public key (sk, pk).

Enc(pk,M) → C1: On input of a public key pk and a message M ∈ M, the
algorithm outputs a level-1 ciphertext C1.

Dec(sk, Cl) → M : On input of a secret key sk and level-l ciphertext Cl, the
algorithm outputs M ∈ M or {⊥}.

RKGen(skA, pkB) → rkA→B: On input of a secret key skA of user A and a public
key pkB of user B, the algorithm outputs a re-encryption key rkA→B.

ReEnc(rkA→B , Cl
A) → Cl+1

B : Given a re-encryption key rkA→B and a level-l
ciphertext Cl

A for A, the algorithm returns a l+1-level ciphertext Cl+1
B for B.

1 https://developer.android.com/about/dashboards/.
2 Announced at Google I/O 2019.

https://developer.android.com/about/dashboards/
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3 System Model

This section introduces the actors of our system, their main interactions, and
trust assumptions. Figure 1 illustrates our data sharing setting.

Fig. 1. System model

Actors and Data Flow. Multiple users want to store and share their data
securely. Every user has one primary device and possibly multiple secondary
devices. Each of those devices has its own key pair, where the private key is
stored in a secure environment (e.g., hardware-protected). The users instruct
their devices to encrypt the data before uploading it to the cloud storage service.
Of course, they may download that data again and decrypt it with appropriate
key material. To also share data with other users, the data owner generates a
re-encryption key towards the data receiver and hands that key to the cloud
storage service. Then, the cloud storage service can transform ciphertext of the
data owner into data encrypted for the intended receiver on demand. Our sys-
tem is based on multi-use proxy re-encryption to set up a network of proxy
re-encryption keys between the devices owned by a user as well as devices of
other users.

Such a network of re-encryption keys not only enables our system to sup-
port convenient data sharing between different users and different devices of one
user, but also offers user-friendly strategies to recover from device- and key-
loss. Strategies to recover from key-loss might also require one (or more) trusted
recovery users, which support the recovering user and thus accept further respon-
sibility.

Additionally, a trust infrastructure can be used to ensure the authenticity of
key material, which simplifies establishing the identity of data receivers.

Trust Assumptions. The user trusts the cloud storage service to operate hon-
estly, while it might be curious to learn about the data it handles (e.g., curious
insiders or cloud platform operators). To protect the data’s confidentiality, the
system employs end-to-end encryption (in our case, MU-PRE).

The user trusts her devices’ hardware to protect her keys and only unlock
them after successful authentication. Such hardware-protection for keys thwarts
two attacks: Neither malicious applications nor unauthorized people with phys-
ical access to the device (e.g., thieves) are able to steal the user’s keys and
data. The user also trusts the sharing system’s client application running on her
devices.
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Users with access permissions must not collude with the cloud storage service.
Otherwise, the service re-encrypts the user’s data and the corrupted receivers
can decrypt it. Data owners select receivers with this trust requirement in mind.

Likewise, recovery users must not collude with the cloud storage service.
While they might be curious, recovery users alone are not able to read another
user’s plain data, as honest cloud storage services do not expose the data. Recov-
ery users are required to be willing and able to cooperate when recovery becomes
necessary. As the development of users is hard to predict when selecting these
recovery users, we also enable to distribute the risk over a threshold of users.

4 Concept Employing Multi-use Proxy Re-encryption

In this section, we introduce our concept for cloud-based data sharing that
employs multi-use proxy re-encryption. First, we elaborate on how our concept
builds a network of re-encryption keys between the devices of a user and – to
enable data sharing – the devices of other users. Next, we give details on how
to amend the network of re-encryption keys to recover from key-loss if devices
are not available anymore, e.g., when they break. Also, this section considers the
authenticity of keys, outlines operations per process, and suggests performance
improvements.

Fig. 2. Concept for data sharing

4.1 Setup and Multi-device Data Sharing

Figure 2 illustrates the processes to store data at the cloud storage service, to
share the data with other devices and users, and, finally, to download and decrypt
the data. We describe the processes below and summarize them in Protocol 1.

0 Setup. When setting up an account, the user generates a key pair on
her primary device and registers the public key at the cloud storage service.
Additional steps to ensure the authenticity of her key are discussed in Sect. 4.3.

1 Register Secondary Device. To add a new secondary device, in addi-
tion to performing the above-described setup, the user approves this device by
generating a new re-encryption key from her primary device A1 to this sec-
ondary device A2: The secondary device sends its public key to the primary



Cloud Data Sharing and Device-Loss Recovery with Hardware-Bound Keys 203

0 Setup: on primary device A1
1. generate key pair: (skA1, pkA1) ← KeyGen(1κ)
2. certify authenticity of public key pkA1
3. install public key pkA1 at cloud storage service

1 Register Secondary Device:
on secondary device A2
1. generate key pair: (skA2, pkA2) ← KeyGen(1κ)
2. certify authenticity of public key pkA2
3. install public key pkA2 at cloud storage service
4. send public key pkA2 to primary device

on primary device A1
5. verify authenticity of public key pkA2
6. if user accepts, generate re-encryption key towards secondary device:

rkA1→A2 ← RKGen(skA1, pkA2)
7. install re-encryption key at cloud storage service

2 Upload Data: on any device
1. encrypt data for primary device A1: C1

A1 ← Enc(pkA1,M)
2. upload ciphertext C to cloud storage service

3 Grant Access:
on any device B∗ of requester (User B)
1. send request for access to data owner with pkB1

on any device A∗ of data owner (User A)
2. verify authenticity of the public key of B’s primary device pkB1
3. let data owner review and accept request
4. generate re-encryption key from current device to B’s primary device:

rkA∗→B1 ← RKGen(skA∗, pkB1)
5. install re-encryption key at cloud storage service

4 Download Data:
on any device B∗ of requester
1. request download for ciphertext C at cloud storage service

on cloud storage service
2. find chain of re-encryption keys from data owner’s primary device to requesting

device: (rk0→1, ..., rkn−1→n)
3. re-encrypt ciphertext along this chain (usually 0-3 re-encryptions):

Ci+1 ← ReEnc(rki→i+1, C
i)

on device B∗ of requester
4. decrypt ciphertext with device’s private key skB∗: M ← Dec(skB∗, C)

Protocol 1. Setup and Data Sharing

device, e.g., through a push notification or by showing a QR code at one
device and scanning it at the other. After the user reviewed and accepted the
request on her primary device, the primary device generates a re-encryption key
rkA1→A2 ← RKGen(skA1, pkA2) and registers this key at the cloud storage service.

2 Upload Data (and Download for Data Owner). All devices of a
user, as well as other users, always encrypt the data for the primary device of a
user, i.e. for the primary’s public key.
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Besides the primary device, the user’s secondary devices are also able to
access the encrypted data: Upon request, the cloud storage service uses the re-
encryption key rkA1→A2, which was generated during registration, to transform
the encrypted data CA1 for the secondary device, resulting in CA2. This ciphertext
CA2 can then be decrypted at the secondary device with its private key skA2.

3 Grant Access. Data sharing with other users can be initiated by the
data owner A, or requested by a receiver B, e.g., through a push notification. To
grant access, the public key of the receiver’s primary device pkB1 is required.
This key is registered at the cloud storage service or can be sent with the
receiver’s request. After verifying the key’s authenticity, A’s device generates a
re-encryption key for B’s primary device. Let us assume the more complex case,
where A is using her secondary device, giving rkA2→B1 ← RKGen(skA2, pkB1).
Next, A’s device installs this re-encryption key at the cloud storage service along
with an access control policy.

4 Download Shared Data. On request from B, the cloud storage service
re-encrypts A’s ciphertext CA1 up to three times in the default case as shown in
Fig. 2: These re-encryption operations use (1) the re-encryption key towards A’s
secondary device (CA2 ← ReEnc(rkA1→A2, CA1)), (2) the cross-user re-encryption
key towards B’s primary device (CB1 ← ReEnc(rkA2→B1, CB1)), and (3) the re-
encryption key towards B’s secondary device (CB2 ← ReEnc(rkB1→B2, CB1)).
Finally, the receiver B decrypts CB2 by M ← Dec(skB2, CB2). Thus, users can
initiate sharing from any of their devices, while receivers can access that data
from any owned device. Recovery may increase the re-encryption chain’s length.

Fig. 3. Recovery with rec.
user

Fig. 4. Recovery with threshold of rec. users

4.2 Recovery from Key-Loss

If a user’s device is not available anymore (e.g., lost or broken), the user aims
to regain access to her data and sharing capabilities. In our heterogeneous envi-
ronment, some users own secondary devices, while others do not, and users
transition between these groups over time when buying or losing devices. Thus,
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our recovery mechanisms also need to be seamlessly compatible with each other.
Protocol 2 details three recovery mechanisms: (1) We show recovery with a sec-
ondary device as the simplest and most convenient solution. (2) Users without a
secondary device may recover with the help of one recovery user. (3) We wish to
highlight our third mechanism, where users recover with the support of a thresh-
old of recovery users, and thereby improve their trade-off between availability
and confidentiality.

R1 Recovery with Secondary Device. With one or more registered
secondary devices, the user simply selects one of those secondary devices as her
new primary device. As new data will be encrypted for this new primary device,
old secondary devices or receivers would not have access to this data through the
existing network of re-encryption keys. To amend the network, the new primary
device re-generates all outgoing re-encryption keys from the old device, i.e., keys
that can transform ciphertexts from the primary device to other devices or users.

R2 Recovery with Recovery User. As some users might not own a sec-
ondary device, they may rely on the support of a trusted recovery user (e.g.,
a family member) in the recovery process, as shown in Fig. 3. During regis-
tration, the user selects another trusted user (i.e., recovery user), generates a
re-encryption key from her primary device to that recovery user (rkA1→RU), and
stores this key at the cloud storage service. Once the primary device’s key mate-
rial is not available anymore, the user convinces the recovery user to generate a
new re-encryption key to the user’s new primary device (rkRU→A1′). With this
key, the cloud storage service can re-encrypt the user’s data (encrypted for her
old primary device) for the recovery user and then re-encrypt it again for her
new primary device. Trusted (commercial) services might also offer to act as
recovery user. Relying on a single recovery user poses an availability risk in case
that user is no longer willing or able to help in recovery. This risk can be reduced
by using multiple independent recovery users, which, however, increases the risk
that one of these users colludes with the cloud storage service to access data.

R3 Recovery with Threshold of Recovery Users. We propose to rely
on a threshold of recovery users by employing secret sharing mechanisms [23],
as shown in Fig. 4. This process allows users to select a more favorable trade-off
between availability and confidentiality risks. The user initially selects a list of
n recovery users RUi and generates a re-encryption key towards each of them.
Instead of handing these keys directly to the cloud storage service, the user splits
each of these keys into n shares, takes the ith share of different keys, and encrypts
these ith shares for the corresponding ith recovery user. To complete the setup,
the user uploads the resulting n ciphertexts to the cloud storage service.

Once recovery becomes necessary, the user convinces a threshold of recovery
users to download their ciphertexts, decrypt them, and return the decrypted
shares to the cloud storage service. With those shares, the cloud storage service
can reconstruct at least one re-encryption key towards one of the recovery users
(rkA1→RUi

). When also given a re-encryption from that recovery user to the
user’s new primary device (rkRUi→A2), the cloud storage service is again able to
transform the user’s data for her new primary device.
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R1 Recover with Secondary Device: on secondary device A2
1. select a secondary device A2 as new primary and inform cloud storage service
2. re-generate and replace all outgoing re-encryption keys rkA1→∗ of old device:

rkA2→∗ ← RKGen(skA2, pk∗)

R2 Recover with Recovery User:

on old primary device A1, during setup/registration
1. select a recovery user RU
2. generate re-encryption key to recovery user: rkA1→RU ← RKGen(skA1, pkRU)
3. install this re-encryption key at the cloud storage service for recovery purposes

on new primary device A1’, during recovery
4. send recovery request to recovery user via cloud storage service with pkA1′

on any device of recovery user RU
5. perform out-of-band authentication of the device requesting recovery
6. generate a re-encryption key to new device: rkRU→A1′ ← RKGen(skRU, pkA1′)
7. install this key at the cloud storage service

on new primary device A1’
8. re-generate and replace all outgoing re-encryption keys of the old device

R3 Recover with Threshold of Recovery Users:

on old primary device A1, during setup/registration
1. select a list of recovery users {RUi}
2. for each recovery user RUi

(a) generate a re-encryption key: rkA1→RUi

(b) split re-encryption key: (si,1, ..., si,n) ← Split(t, n, rkA1→RUi)
(c) encrypt ith shares of different keys: RInfoi ← Enc(pkRUi

, {s1,i, ..., sn,i})
(d) upload RInfoi to cloud storage service

on new primary device A1’, during recovery
3. send recovery request to recovery users via cloud storage service with pkA1′

on any device of each recovery user RU
4. perform out-of-band authentication of the device requesting recovery
5. generate re-encryption key to new device: rkRU→A1′ ← RKGen(skRU, pkA1′)
6. decrypt RInfoi: {s1,i, ..., sn,i} ← Dec(skRU,RInfoi)
7. send re-encryption key and decrypted RInfoi to cloud storage service

on cloud storage service
8. reconstruct one rkA1→RUi ← Reconstruct({si,1, ..., si,t})
9. take the corresponding rkRUi→A1′ to close the re-encryption chain

on new primary device A1’
10. re-generate and replace all outgoing re-encryption keys of the old device

Protocol 2. Recovery from Key-Loss

4.3 Key Authenticity

When users operate on keys from other devices or users (e.g., registering a device,
encrypting, or sharing data), they rely on the authenticity of these keys. A
key’s authenticity can be established manually by comparing the received key’s
fingerprint with the key’s owner, e.g., via a call, or shown on the owner’s screen.
The process to establish can be simplified by relying on trusted infrastructure.
In this section, we give an example solution based on public key infrastructure
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Fig. 5. Certification chain Fig. 6. Certification with recovery
users

(PKI), but approaches employing decentralized PKI mechanisms can also be
conceived.

General Use. As shown in Fig. 5, we build a certificate hierarchy, where the
primary device and secondary devices act as intermediate certificate authorities
(CAs). We introduce an additional signing key pair per device, which certifies
the device’s encryption pk. During account setup, the primary device’s signing
key is certified by a trusted third party CA (TTP-CA) for the user’s human-
readable identifier. This CA must ensure that it issues a certificate for a given
identifier only once and that it does not accept similar identifiers, e.g., prevents
homoglyph attacks. When registering a secondary device, the secondary device
sends its signing pk to the primary device, which – acting as intermediate CA
– certifies the secondary’s signing pk given the user’s consent. If the signing pk
was transmitted by showing and scanning a QR code, the user’s consent is given
implicitly in this process. Other less direct communication mechanisms (e.g.,
push notifications) might require additional verification, for example showing the
pk’s fingerprint on both devices to be compared by the user. Before operating
on foreign keys (e.g., as a reaction to a sharing request), the receiving device
traverses the certificate chain to find and display the identifier of the owner.
This identifier serves as a basis for users to accept or deny the operation.

When Recovering with Secondary Devices. These authenticity measures
are directly compatible with our recovery process relying on a secondary device:
Any secondary device that has become the new primary device can act again as
intermediate CA to certify the keys of new secondary devices. Consequently, the
length of the certification chain increases by one.

When Recovering with Recovery Users. In case the user did not register
a secondary device, the problem becomes more interesting, as no such device
can be used as a link in a chain to ensure authenticity. Naively, the signing keys
of the old primary device could be extracted from hardware and backed up to
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Fig. 7. Re-encryption chain for data sharing after recovery

allow for certifying the new devices key, which however would lead us back to
the initial problem of having keys that are not bound to hardware. Instead, we
propose a process to convince the TTP-CA to issue another certificate for the
new device of the same user, as shown in Fig. 6. The TTP-CA uses the same
trust mechanism as for decryption rights and outsources the authorization check
to the user’s selected recovery user(s): First, the TTP-CA picks a challenge and
encrypts this challenge for the (certified) encryption key of the user’s old primary
device. If the recovery user(s) were convinced that the recovery request and new
device are legitimate, they help the new device to regain decryption capabilities
for the user. Thus, the new device can decrypt the challenge and present the
response to the TTP-CA, which then issues a certificate for the new signing
keys.

4.4 Operations

To elaborate on the performance of our concept, Tables 1 and 2 list the under-
lying operations required in the processes of Protocols 1 and 2. We focus on
MU-PRE and secret sharing operations as they reflect the novelty of our con-
cept and – depending on the scheme – might consume the most time. Pairing
this list of operations with times of used schemes allows estimating the overall
times for the processes. The tables refer to n users, t as threshold, o outgoing
re-encryption keys from the old device, as well as lA and lB re-encryption steps
(c.f. Fig. 7).

Re-encryption Chain Length. A chain of multiple re-encryption operations
might be necessary to download data, as shown in Fig. 7. While there might
be multiple re-encryption chains for a requested file, we are interested in the
shortest chain, i.e. shortest path in a graph of re-encryption keys. Such a chain
consists of (1) lA re-encryption steps between the devices of the data owner,
and – in case of sharing – (2) 1 re-encryption step between the owner and the
requester, as well as (3) lB steps on the side of another user. In the default case,
the requested data were not subject to a prior recovery operation. If the data
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Table 1. Operations for setup and data sharing

Setup and data sharing Client Cloud Service
0 Setup (once) 1 KeyGen -
1 Register Secondary Device (rarely) 1 KeyGen + 1 RKGen -
2 Grant Access (sometimes) 1 RKGen -
3 Upload Data (frequently) 1 Enc -
4 Download Data (frequently)

requester owns data 1 DeclA+1 lA ReEnc

requester does not own data 1 DeclA+lB+2 (lA + lB + 1) ReEnc

Table 2. Operations for recovery

Recovery (rarely) Registration During Recovery
Client Client Other Client Cloud Service

R1 Secondary Device - o RKGen - -

R2 Recovery User 1 RKGen o RKGen 1 RKGen -

R3 Threshold t of n Users n RKGen o RKGen 1 RKGen 1 Reconstruct

+ n Split + t Dec

+ n Enc

owner requests such data from her primary device, no re-encryption is necessary
(lA = 0). The sub-chains increase in length (a) by +2 each time the data was
recovered with the help of recovery users, (b) by +1 each time the data was
involved in recovery via a secondary device, (c) by +1 if the data is shared by a
secondary device, and (d) by +1 if the data is accessed by a secondary device.

4.5 Performance Improvements

After recovery, the added re-encryption steps have an impact on performance: (a)
the cloud storage service has to perform more re-encryption operations, which
lead to (b) ciphertexts at a higher re-encryption level that – depending on the use
MU-PRE scheme – usually take longer to decrypt. Therefore, in this section, we
discuss performance improvements, namely pre-computing and caching crypto-
graphic operations, updating the network of re-encryption keys, and reducing the
ciphertexts’ re-encryption level. Updating keys and data trades an initial effort
for a reduced subsequent effort. The actors may adaptively decide on when and
where it is beneficial to apply refresh operations (e.g., on frequently used data).

Caching and Pre-computing. Instead of re-encrypting data for the requester
on demand, the cloud storage service may pre-compute the re-encryption opera-
tions to reduce the response time. Such pre-computation entails a higher initial
computational effort and requires more storage space for the different cipher-
text versions of the same data. Thus, pre-computation pays off for data that
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is frequently requested by the same users. This can be achieved by caching re-
encryptions and deleting the least used when the cache grows too large.

The same approach may be applied for decryption: Clients pre-compute the
decryption operation in the background or cache results for frequently used
data to hide the computation costs from the users. We only apply this pre-
computation or caching for the symmetric content encryption keys as the sym-
metric cryptography on the content is very efficient anyway. By wrapping the
content encryption keys with a hardware-protected key, they can be securely
stored on the user’s device.

Re-generating Re-encryption Keys. Next, we consider re-generating re-
encryption keys that were connected to the old device of a user who went through
recovery. These keys can be (a) outgoing, i.e., they transform ciphertext from
the recovered user to other users, or (b) incoming, i.e., they transform ciphertext
from other users to the recovered user. Outgoing re-encryption keys of an old
device are re-generated during recovery by the new device with its sk to also
make new data that are encrypted for the new device accessible for the original
receivers.

The problem is more interesting for incoming re-encryption keys to the old
device: We need to convince the other user’s device (i.e., source) to use its sk
to generate a new re-encryption key towards the recovered user’s new device.
One possibility would be to prompt the source user to manually check if a re-
encryption key (and thus decryption rights) may be generated for the requesting
user. Instead, we suggest that the source user’s device relies on the key authentic-
ity mechanisms described in Sect. 4.3 to identify the key’s owner, which enables
to authorize requests without user interaction by comparing with previous deci-
sions. Such re-generated incoming keys reduce the re-encryption chain’s length,
as data can be transformed directly rather than via links generated for recovery.

Refreshing Ciphertext Level. Added re-encryption steps due to recovery
also increase ciphertext levels. MU-PRE schemes where the decryption time
grows with the ciphertext level benefit from resetting this ciphertext level. When
using hybrid encryption, the user’s device decrypts the wrapped key and newly
encrypts it as first level ciphertext, before uploading it. While the transmitted
data size of wrapped keys is rather small, the MU-PRE operations on the client
side might be more significant. However, these operations can be performed in
the background by multiple threads invisible to the user. Nevertheless, the cloud
storage service and user’s device might wish to negotiate for which ciphertexts
a refresh pays off.

5 Implementation

To validate and evaluate our proposed system, we first describe our proof of
concept instantiation. Next, we discuss the MU-PRE scheme’s implementation
details and benchmark its performance. Finally, we estimate the costs of deploy-
ing our system in the cloud and elaborate on the binding of keys to the hardware.
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Table 3. Execution times of our MU-PRE implementation (in Milliseconds)

Level KeyGen RKGen Enc ReEnc Dec

l M → Cl Cl → Cl+1 Cl → M

Cloud Server
(AWS c5.xlarge)

1 0.10 4.52 3.31 11.42 4.58
2 - - - 15.84 7.53
3 - - - 16.15 10.72
4 - - - 16.45 13.91
5 - - - 16.76 17.10
6 - - - - 20.29

Mobile Phone
(OnePlus 6T)

1 1.10 47.22 34.35 118.53 47.85
2 - - - 164.27 78.30
3 - - - 168.24 111.97
4 - - - 170.20 146.01
5 - - - 171.99 181.09
6 - - - - 211.37

5.1 Instantiation

We have developed the cloud storage service as a Java web server, which we
deployed on a cloud server (AWS c5.xlarge). An Android app acts as the client
for both primary and secondary devices to enable users to conveniently interact
with the data sharing and recovery capabilities. This app runs on a OnePlus 6T.
During registration of secondary devices, these apps communicate through dis-
playing and scanning QR codes. The apps employ push notifications via Google’s
Firebase for further communication between devices of one or different users.
Finally, we extended and deployed a CAPSO3 server as certification authority.

5.2 Cryptography Implementation

In this section, we describe our selection criteria for a MU-PRE scheme, give
implementation details, and present performance measurements.

Scheme Selection. We selected the MU-PRE scheme by Cai and Liu [6], as
it satisfies our requirements: Their scheme is unidirectional, non-interactive,
collusion-safe, and CCA-secure. Unidirectional means that a re-encryption key
from A to B can only be used to transform ciphertexts in that direction but not
vice versa, which – as opposed to bidirectional schemes – does not force users
to share decryption right in order to get access to the other users’ data. In non-
interactive schemes, a user can generate re-encryption keys towards another user
by herself with her sk and the other user’s pk. Collusion safeness captures that

3 https://ca.iaik.tugraz.at/.

https://ca.iaik.tugraz.at/
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even if the proxy and receiver collude, they are not able to derive the sender’s sk
from the proxy’s re-encryption key and receiver’s key pair. Finally, their scheme
is CCA-secure, which also covers processes where others encrypt data for a user
and write it to her account with appropriate permissions.

Implementation. We implemented the MU-PRE scheme by Cai and Liu [6] with
parameters chosen according to NIST’s recommendations [20] for 128 bit secu-
rity. While Cai and Liu have defined their scheme for type-1 pairings, we have
rewritten the scheme for more complex but also more efficient type-3 pairings.
Our C implementation of the rewritten scheme builds on the RELIC toolkit [1]
for their bilinear pairings on elliptic curves. We use the Java Native Interface
(JNI) to integrate the compiled binaries into the server’s and phone’s Java
environment.

Performance. Table 3 presents the benchmark results of our MU-PRE imple-
mentation, where a 128 bit AES key is encrypted, repeatedly re-encrypted, and
finally decrypted. Without previous recovery, ciphertexts are re-encrypted up to
3 times resulting in ciphertexts for level 1 to 4. The benchmark has been per-
formed on both a cloud server (AWS c5.xlarge) as well as a mobile phone (One-
Plus 6T). The presented times are an average of 100 runs on the phone and 10k
runs on the server. Note that the currently single-threaded implementation only
makes use of one core during the benchmark. For operations on different cipher-
text levels, we observe the following: ReEnc on first-level ciphertexts is faster
than on higher levels. The ReEnc time remains almost constant from second-
level ciphertexts onward. The time to perform Dec grows linearly for each level.
Using the least square method to fit a line to our measurements for Dec, we
arrive at 1.31 + 3.16l ms on the server and 13.43 + 33.14l ms on the phone.

5.3 Deployment Cost Estimation

In Table 4, we evaluate the additional costs required to integrate our advanced
cryptography into existing storage services, which includes storing/retrieving
ciphertexts and re-encryption keys as well as re-encrypting the ciphertexts.

Costs Factors. When employing hybrid encryption, the symmetric encryp-
tion of the payload usually introduces little space overhead. Thus, we ignore
the payload and focus on the symmetric key which is encrypted and trans-
formed by MU-PRE as Cl. To store at AWS DynamoDB, we consider $1.525/1M
requests and $0.306/1 GB-month for first-level ciphertexts (3×384 bit EC points
= 144B) and re-encryption keys (5 × 384 bit EC points = 240B), while incoming
traffic is free. To get data, we consider three aspects: Firstly, we have $0.305
per 1M requests and per 1kB block to obtain the ciphertext and l − 1 rele-
vant re-encryption keys. Secondly, to transform the ciphertext multiple times,
we add $0.194/h to run AWS EC2 c5.xlarge machines. Running multiple of our
single-threaded re-encryption operations in parallel (on 10k ciphertexts across
all ciphertext levels) shows that 2.15 times more operations can be performed by
utilizing both cores and Intel’s Hyperthreading technology on the AWS machine.
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Table 4. Deployment costs on Amazon Web Services (for 100M items in $)

DynamoDB EC2 (c5.xlarge) Traffic Example Scenario
C1 rk l C1 →Cl Cl #C #rk Costs

Store 156.91 159.84 - - free 100.0M 10.0M 172.89

Get

30.50 30.50 1 - 1.30 50.0M - 15.90
30.50 30.50 2 14.28 4.32 25.0M 25.0M 19.90
30.50 30.50 3 34.11 7.34 12.5M 25.0M 16.62
30.50 30.50 4 54.32 10.37 12.5M 37.5M 23.34

$248.64

We use this scaling factor on the measurements presented in Table 3. Finally, we
add $0.09/1 GB to return the re-encrypted ciphertexts, which have a size of
144+(l−1) ·336B. Our estimation is based on AWS prices for the EU-Frankfurt
region in Oct 2019.

Example Scenario. We estimate the added costs of 1M users, who each upload
100 files and share their data using 10 re-encryption keys (100M C1, 10M rk).
Further, we consider that of these 100M files, 50% are downloaded by the same
primary device (l = 1), and 25% by a secondary device or another user’s primary
device (l = 2), while the remaining downloads use an even longer re-encryption
chain (12.5% with l = 3 and with l = 4). Table 4 estimates a total of $248.64.

5.4 Hardware-Binding of Keys

In this section, we give details on how to bind MU-PRE keys to a device’s hard-
ware.

Mobile phones with technologies such as ARM’s TrustZone [2] set up a
trusted computing base by establishing a secure boot chain and eventually ver-
ifying the operating system’s validity. In Android and iOS, the hardware-based
protection for keys is integrated with the operating system’s key chain, which
ensures that the keys are only unlocked to be used in cryptographic operations for
authenticated and authorized users. As these operating systems do not allow to
run custom cryptographic code directly in the trusted execution environment,
we follow a hybrid approach: We use hardware-protected keys for traditional
cryptographic schemes to wrap our MU-PRE key material before storing them in
the phone’s file system. This MU-PRE key material is temporarily unwrapped for
individual operations of our MU-PRE implementation. This approach is sufficient
for our use case: Unauthorized people with physical access (e.g., thieves) are not
able to authenticate to unlock or extract the keys needed for the unwrapping
procedure. Further, a valid operating system sufficiently separates user-installed
apps, so that malicious apps do not learn the user’s data.

On PCs or servers supporting Intel’s SGX [15], the cryptographic code
can be deployed in a secure enclave, which protects (i.e., seals) the key material.
We further need to perform user authentication inside the enclave before offering
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cryptographic operations on the protected key to prevent unauthorized access.
Enclaves do not protect against malware on the operating system’s level, as
SGX was not designed to establish a secure boot chain that leads to a valid
system. Therefore, malware could try to sniff and replay authentication data,
e.g., by corrupting the drivers for the keyboard or fingerprint reader. Ruan [22]
describes a mechanism to prevent such attacks by achieving secure input via
secure output: The user is presented with a randomized keypad on her screen
(via secure output). After clicking, the click coordinates can be passed without
any further protection to the enclave for verification, as eavesdroppers cannot
learn which keys were pressed due to their randomized position.

6 Discussion

Recovery with Threshold. Strategies to recovery from key-loss entail a trade-
off between availability and confidentiality. When employing a strategy that
relies on one piece of information, there is a risk that this information is not
available when recovery becomes necessary. Distributing the recovery informa-
tion to multiple locations increases the chances that it will be available for recov-
ery, but leads to a higher risk that one location becomes corrupted. The same
argument applies for trusted recovery users, as they might no longer be willing
or able to help, or might even collude with the cloud storage service to decrypt
data.

We presented a recovery mechanism that enables users to choose a more
favorable trade-off for themselves: The user selects a set of recovery users and
specifies a threshold of how many recovery users need to cooperate in order to
recover successfully. This threshold also defines how many recovery users need
to betray the user by colluding with the cloud storage service to decrypt her
data.

Recovery Effort for Users. The effort to recover from key-loss depends on the
users’ recovery mechanism: If the user owns two or more devices, she can recover
from the loss of one device by herself. A user who only owns a single device needs
support from at least one other (recovery) user. After device- or key-loss, the
user authenticates out-of-band to the recovery user (e.g., via a phone call) and
convinces her to generate a re-encryption key for the user’s new device. To reduce
availability requirements, a user can also recruit multiple recovery users so that
only a subset of these users need to be convinced to cooperate for recovery.

Data Sharing Performance. Our implementation of the MU-PRE scheme
demonstrates the practical efficiency of the proposed system.

Cloud storage services perform re-encryption operations to make data acces-
sible. Re-encrypting 1st to 4th-level ciphertexts takes an accumulated ≈44 ms on
our benchmark server, while significantly more powerful machines are available
in cloud environments. Response times can be further reduced by adaptively
caching or pre-computing re-encryptions.

For clients on both PCs and phones, our implementation is sufficiently fast
for all operations. On our phone, re-encryption keys can be generated in ≈50 ms,
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while encryption needs ≈35 ms. To decrypt ciphertexts with levels ranging from
1st to 4th, our phone takes between ≈50 ms and ≈150 ms. These ciphertext
levels depend on which devices are used to share and access the data. Besides
optimizing the MU-PRE implementation or using more powerful phones, these
times can be further improved by (a) pre-computing and caching the decryption
of the small symmetric content encryption keys and storing the results securely
on the device given hardware-protection for keys, or (b) resetting the ciphertext
levels of ciphertexts that went through recovery in the background.

Improved Key Security. The data sharing and recovery mechanisms in our
concept were designed so that the involved client-side key material does not have
to be extracted from the client devices’ hardware at any point. Therefore, we
are able to employ technologies that bind the keys to the devices’ hardware and
only unlock the keys for authorized users. Consequently, attackers and malicious
apps are also not to obtain the user’s key material.

Fast Recovery without Re-keying. Without hardware-bound keys, device-
loss also implies potential key-compromise, e.g., if the device storing the key
was stolen or has been lost and found. As unprotected keys can be extracted
from the device, re-keying of all related ciphertexts becomes necessary. For a
“naive” storage system using hybrid encryption, re-keying requires that wrapped
symmetric keys for all ciphertexts are downloaded, decrypted, encrypted anew,
and again uploaded. This causes substantial computation and communication
effort for both the client as well as the cloud storage service. Until this costly
process is completed, affected user might not be able to fully use the system and
access their data. As our solution relies on hardware-binding, the keys cannot
easily be extracted, and, therefore, no re-keying is necessary. Instead of the high
re-keying effort, only re-encryption keys need to be generated, after which all
access and data sharing capabilities are immediately restored.

7 Conclusion

In this paper, we proposed and implemented a cloud-based data sharing system,
which (1) supports multiple devices per user, (2) offers three mechanisms to
recover from device- and key-loss, and (3) enables to bind the keys to the device’s
hardware.

Our concept is based on multi-use proxy re-encryption to achieve end-to-end
confidentiality. Users are not only able to store sensitive data at a semi-trusted
storage service that is operated in the cloud, but can also share these data with
authorized receivers via the cloud service. As users may own multiple devices,
our concept enables them to access data and initiate sharing from each device.

The proposed strategies to recover from device-loss protect users from losing
access to their encrypted data. While recovery is simple given a second device
with full access, we also present mechanisms to recover with the help of one or
more user-selected recovery users. We wish to highlight recovery with a threshold
of multiple recovery users, as it reduces the risk of recovery users who – over
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time – become no longer willing or able to participate in the recovery process.
The recovery mechanisms require little effort from the users: A user initially
selects her recovery user(s) and later convinces them to aid her in the recovery
process.

As our concept does not require to extract the devices’ keys, these keys can be
bound to the hardware. Hardware security features prevent thieves and malicious
apps from extracting keys and form using them to access the users’ data. This
leads to another benefit: If a device is lost, it is no longer necessary to suspend
access to the user’s data while performing time-consuming and communication-
intense re-keying of all ciphertexts on the user’s client.

The concrete instantiation of our concept demonstrates its feasibility. Bench-
marks of our MU-PRE implementation based on Cai and Liu’s scheme [6] as well
as our deployment cost estimation underline the concept’s practical efficiency.
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Abstract. Safeguarding privacy of ratings assigned by users is an
important issue for recommender systems. There are several existing
protocols that allow a server to generate recommendations from homo-
morphically encrypted ratings, thereby ensuring privacy of rating data.
After collecting the encrypted ratings, the server may require further
interaction with each user, which is problematic in case some users were
to go offline. To solve the offline user problem previous solutions use
additional semi-honest third parties. In this paper, we propose a privacy-
preserving recommender system that does not suffer from the offline user
problem. Unlike previous works, our proposal does not require any addi-
tional third party. We demonstrate with the help of experiments that
the time required to generate recommendations is efficient for practical
applications.

Keywords: Recommender system · Offline users · Homomorphic
encryption · Privacy · ElGamal encryption · Group key

1 Introduction

Recommendation systems (RS) are widely used by online retailers to help cus-
tomers find interesting products and thereby increase sales. To generate rec-
ommendations, the service providers ask users to rate items. In general, the
more a service provider knows about users’ interests the better is the accuracy
of the recommendations. However, users may be concerned about sharing their
personal information with a service provider. For example, a person may not
wish to disclose his political opinions or religious beliefs to anyone. This threat
becomes more severe when a service provider shares data collected from various
users with third parties for financial gain or some other reasons. To mitigate
the risks, there have been many proposals for recommender systems aimed at
achieving privacy. The goal of a privacy preserving recommender system (PPRS)
is to ensure that both the items rated by a user and the recommended items are
kept confidential from the service provider and other users.

c© Springer Nature Switzerland AG 2019
D. Garg et al. (Eds.): ICISS 2019, LNCS 11952, pp. 218–238, 2019.
https://doi.org/10.1007/978-3-030-36945-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36945-3_12&domain=pdf
https://doi.org/10.1007/978-3-030-36945-3_12


Item-Based PPRS with Offline Users and Reduced Trust Requirements 219

Following the definition in [25] we define the recommendation problem as
follows. Let there be a set of n users U = {u1, . . . , un}, set of m items I =
i1, . . . , im and a recommendation server. Users’ ratings are stored at server in
a n × m matrix referred to as rating matrix M = (R1, . . . , Rn)T , where Ri =
(ri,1, ri,2, . . . , ri,m) is a rating vector from user i. The value ri,j represents user
i’s rating to item j which can be real or integer from a specified range defined
by the system.

Definition 1. Each user u rates a subset of items from I, Iu = {ij1 , ij2 ,
. . . , ijk

}, where k < m. Given a user u and an item i which user has not rated
already, the job of a recommendation server is to predict ru,i. The items having
highest predicted ratings are shown to u as recommendations.

In PPRS, users’ ratings and generated recommendations must be kept private to
them. For a user, the availability of recommendations should not be dependent
on status of other users being online or offline.

Three approaches are commonly used to achieve privacy in recommender sys-
tems: perturbation [24], differential privacy [18] and encryption [2,10]. The first
two approaches add randomness to hide users’ data. There is an inherent prob-
lem with these approaches in that there is a trade-off between recommendation
accuracy and privacy. Encryption based approaches use homomorphic schemes to
allow computations over encrypted data. These approaches can generate accu-
rate predictions and provide strong privacy, but they can be computationally
costly. Many existing PPRS schemes which use homomorphic encryption based
protocols require all users to be online while generating recommendations.

A user of a RS is said to be offline when there is no active session between
the user and the server. Ideally, a recommender system should be able to provide
accurate recommendations even if some users are offline. To solve the offline user
problem several approaches have been proposed. Their main drawback is that
they rely on an additional third party between users and the recommendation
server.

Adomavicius and Tuzhilin [1] classified RS into three types: content based
filtering (CBF), collaborative filtering (CF) and hybrid. There are two variations
in CF: item-based CF and user-based CF. Item-based CF uses item-item sim-
ilarity for recommendation whereas, user-based CF utilizes similarity between
user profiles. Sarwar, Karypis, Konstan and Riedl [21] showed with experimen-
tal results that item-based CF approach can produce better rating predictions
for some applications. In general, the above two approaches are complementary
with some advantages over each other.

The offline user problem, which we focus on in this paper, is applicable to
both approaches. There are existing solutions which address this problem, but
in all of them the underlying CF approach is user-based CF [3,11,16].



220 P. Verma et al.

Table 1. Notations

n Total number of users

m Total number of items

ui ith user

ij jth item

ri,j Item rating given by user ui to item ij

fi,j Item flag value based on rating ri,j

αi,j Ephemeral key of ui used to encrypt ri,j

βi,j Ephemeral key of ui used to encrypt fi,j

T Size of plaintext message space

Epk(x) Encryption of x using public key pk

r̄j Average rating for an item j

s(ij , ik) Similarity score between items j and k

q Large prime number

G Cyclic group

g Generator of G

xi User i’s private key

yi User i’s public key

Y Common public key

RPi,k Predicted rating for user i for item k

1.1 Contributions

In this work, we propose a privacy-preserving protocol for item based CF that
does not require users to remain active while generating recommendations. The
main features of the scheme are:

– Our work is the first (as far as we know) to propose an item-based PPRS
that solves the offline user problem.

– It does not require any additional trusted (or semi-trusted) third party, unlike
the existing schemes for user-based PPRS. Since fewer parties have access to
data (encrypted or otherwise), it reduces the trust requirement for users and
recommender server.

– Unlike a previous approach by Jeckmans [16], our protocol generates recom-
mendations using inputs from entire user-base of the system.

– The time for recommendation generation is efficient for practical applications.

1.2 Organization

The remainder of this paper is organized as follows. In Sect. 2 we review the
previous literature related to our work. In particular, we review Badsha, Yi
and Khalil’s protocol (BYK) [2] based on the additive homomorphic variant of
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ElGamal encryption scheme. The protocol suffers from the offline user problem,
but we have adapted their architecture to build a solution described in Sect. 3.
In Sect. 3 we propose a protocol that allows a user to obtain recommendations
without requiring all users to interact with the recommendation server during
the generation process. Section 4 contains the privacy analysis of the protocol.
Section 5 gives a performance analysis in terms of computation and communi-
cation costs. Section 6 presents the experimental results. Section 7 concludes the
paper. Notations used in the paper are listed in Table 1.

2 Related Work

In the following, we briefly review four existing protocols proposed by: Erkin et
al. [10,11], Badsha, Yi, Khalil and Bertino [3] and Jeckmans [16].

2.1 Erkin-Veugen-Toft-Lagendijk Protocols

In the first protocol proposed by Erkin et al. [10], a user requests recommen-
dations by encrypting his rating vector and sending it to the server. The server
broadcasts the received vector to all users. Each user homomorphically computes
the similarity of the received vector with his own rating vector. The result is sent
to the server, which uses a threshold to filter out those users whose interests are
very similar to the user requesting recommendations. They also proposed pro-
tocols to compute similarity and generate recommendations homomorphically
using Paillier [19] and Brakerski and Vaikuntanathan [6] schemes.

The drawback of the above protocol is that all users must be online to par-
ticipate in the recommendation generation process. In a subsequent work [11],
they proposed a solution where users are not required to be online all the time.
The protocol requires a semi-trusted third party namely privacy service provider
(PSP). Once the users upload their encrypted rating data onto the server, the
server along with PSP performs homomorphic operations to generate recommen-
dations. The online presence of all users is not necessary while generating the
recommendations.

2.2 Badsha-Yi-Khalil-Bertino Protocol

In [3] authors adapted the architecture used in [11], using data server (DS) in
place of PSP. They proposed a privacy-preserving user-based collaborative filter-
ing protocol using Boneh, Goh and Nissim (BGN) [5] homomorphic encryption.
Here the target user sends encrypted ratings to the recommender server (RS)
and receives encrypted ratings of other users. The target user then computes sim-
ilarity with other users locally and sends the encrypted similarity score to RS.
RS computes recommendations, permutes those values and sends them to DS
which after decrypting recommendations forwards to the user. The user receives
permuted recommendations from DS and permutation order from RS. Finally,
the user retrieves the actual recommendations in the correct order.
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The similarity computation at the user side can be computationally expensive
if the user base of the recommender system is vast. DS and RS are assumed to
be semi-honest parties. The DS learns nothing about a user’s recommendations,
assuming there is no collusion between DS and RS.

2.3 Arjan’s Protocol

Arjan proposed forming groups of users based on friendship among them. Each
user u provides its list of friends to the server and how much their opinion matters
to u. In the literature [14,15,17,22] it is shown that the recommendation for
items like movies, songs, books, etc. a familiarity measure can be used instead
of computing user similarity. A user can define his familiarity by assigning a
’weight’ to other users (friends); the ratings of these friends will be more relevant
than other users. Arjan’s proposal uses a proxy re-encryption server [4] to solve
the offline user problem. It uses an additive secret sharing scheme [13]. Each
user sends one share of its rating to the recommender server (encrypted with
the server’s public key) and another share to the proxy re-encryption server
(encrypted with the user’s public key). When a user needs recommendations,
he collects one-half of his friends’ ratings from the proxy server and sends them
to the recommender server after encrypting them with his key. The server and
user then jointly compute the recommendations. The protocol has the following
drawbacks:

– The recommendations are generated using the ratings given by a limited num-
ber of users, which may not be as accurate as the recommendation generated
using the entire rating matrix.

– A friend is assigned a constant weight for all items; it is possible that two
friends have the same interest in mobile phones but very different liking on
computer hardware. This will decrease the recommendation accuracy.

– It assumes that all the friends of a user are using the same recommender
service.

2.4 Badsha, Yi and Khalil Protocol

This protocol uses the ElGamal encryption scheme [9], which is proven IND-
CPA secure under the decisional Diffie-Hellman (DDH) assumption [23]. The
IND-CPA security guarantees that the ciphertext reveals nothing about the
message. There is a small change from the original ElGamal scheme: for a mes-
sage m the public key y = gx, where x is the private key, the ciphertext is
defined by the pair: (C1, C2) = (gr, gmyr), where r is a random number. The
original ElGamal scheme is multiplicative homomorphic, whereas the modified
scheme has the additive homomorphic property, namely for all messages m1,m2,
Ey(m1 + m2) = Ey(m1)Ey(m2).

The BYK protocol assumes that the users and server have agreed on a com-
mon public key y =

∏n
i=1 yi, where yi = gxi is the public key of user ui and xi is
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PARAMETERS: U is set of n users: u1, . . . , un, P is set of m items: p1, . . . , pm, S is

the server, common public key: y, user i’s private key: xi.

INPUT: Each user i rates every item j as ri,j and sets corresponding flag fi,j as 0 or 1

OUTPUT: Average rating of item θ: p̄θ

PROTOCOL:

1. All users send their respective encrypted ratings and flags to S.
• ui → S : (gαi,θ , gri,θ yαi,θ )
• ui → S :

(
gβi,θ , gfi,θ yβi,θ

)

2. Server performs the following:

• Compute:
(
g

∑n
i=1 αi,θ , g

∑n
i=1 ri,θ y

∑n
i=1 αi,θ

)

• Compute:
(
g

∑n
i=1 βi,θ , g

∑n
i=1 fi,θ y

∑n
i=1 βi,θ

)

• Server broadcasts the following values:

S → ui : g
∑n

i=1 αi,θ , g
∑n

i=1 βi,θ

3. All users raise the received values with their private key and send result to S:

• ui → S :
(
g

∑n
i=1 αi,θ

)xi

,
(
g

∑n
i=1 βi,θ

)xi

4. S decrypts the aggregate values, and then computes the average rating for pθ:

• Compute: g
∑n

i=1 ri,θ =

(
g

∑n
i=1 ri,θ y

∑n
i=1 αi,θ

)

(
g

∑n
i=1 αi,θ

)∑n
i=1 xi

• Compute: g
∑n

i=1 fi,θ =

(
g

∑n
i=1 fi,θ y

∑n
i=1 βi,θ

)

(
g

∑n
i=1 βi,θ

)∑n
i=1 xi

• Compute:
∑n

i=1 ri,θ and
∑n

i=1 fi,θ using Pollard’s algorithm and computes p̄θ

Algorithm 1. BYK protocol

the private key. The protocol has three phases: average rating, similarity and rec-
ommendation computation. We will discuss the first phase of the BYK protocol
which computes the average rating for each item. Let U = {u1, u2, . . . , un} be a
set of users and let P = {p1, p2, . . . , pn} be a set of items. Each user encrypts the
ratings and corresponding flags; the flag value is 1 if a user has rated the item,
otherwise it is 0. Set of users’ ratings for the items is R = {ri,j |i ∈ U, j ∈ P}
and the corresponding set of flags is F = {fi,j |i ∈ U, j ∈ P}. To compute aver-
age rating for a single item, the server and users execute the protocol shown in
Algorithm 1.

Notice that the minimum and maximum values for the sum of ratings (respec-
tively, sum of flags) is known a priori. When x lies within a relatively small inter-
val, there are efficient algorithms available to solve for x given gx. The server
can compute the values

∑n
i=1 ri,θ and

∑n
i=1 fi,θ. Therefore, at the end of the

protocol, the server learns the average rating for item θ. The protocol requires
each user to be available online.
Table 2 summarizes the various approaches that we discussed.
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Table 2. Comparison of homomorphic encryption based protocols

Protocol HE scheme CF type Solves

offline users

Required

TTP

Erkin et al. (2011) Paillier, ElGamal User-based ✗ ✗

Erkin et al. (2012) Paillier, DGK User-based ✓ ✓

Arjan’s protocol (2014) Brakerski and Vaikunthnathan User-based ✓ ✓

BYK protocol (2016) ElGamal Item-based ✗ ✗

Badsha et al. (2017) Boneh, Goh and Nissim (BGN) User-based ✓ ✓

3 Our Privacy-Preserving Protocol with Offline Users

We extend the architecture of Badsha et al. [2] to construct our protocol. Their
protocol is based on item-item similarity and it suffers from offline user problem.
Our proposal on the other hand, addresses the problem without introducing
additional party for computations and without putting significant computation
overhead on users.

3.1 Adversarial Model

In our settings, the users are assumed to be semi-honest: users do not collude with
each other or with recommender server. The server too is assumed to be semi-
honest; it may try to gain some knowledge about a user’s ratings or recommended
items. However, the server does not deviate from the protocol. We assume the
communication channel between the users and the server is secure.

3.2 Group Key Protocol

In our scheme, the set of users is divided into groups by the server. Users belong-
ing to the same group, unlike in [16], are not required to be familiar with each
other. Each user in the group contributes to generating a group private key. The
group private key is known to every user belonging to that group, so any user
from the group can act on behalf of the entire group during the recommendation
generation step. There is no need for a leader or cluster head. The group public
keys are used by the server to generate the common key Y , which is used by all
users to encrypt their ratings.

To generate a public and private key pair for each group, we use the
Burmester-Desmedt (BD) protocol [7]. The BD protocol assumes that all par-
ties form a circle and communicate over authenticated links. It is provably secure
against a passive adversary under the DDH assumption [8]. In our setting, the
clients do not know each other; therefore the server acts as a mediator to help
users communicate. For a group consisting of z users, the protocol proceeds as
follows:

– Each user ui chooses at random an ephemeral private key ai and computes
an ephemeral public key as ti = gai . At the time of registration users send
respective ti to server.
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– Server maintains a table with user id and corresponding ti. It sends ti+1 and
ti−1 to ui, where the group ids are cyclic meaning for a group of 100 users
u101 = u1.

– Each user then computes Wi =
(

ti+1
ti−1

)ai

and sends it to server.
– Server sends the required values to each user so that they can compute the

group private key X as:

X =
(
tai
i−1

)z
W z−1

i W z−2
i+1 · · · W i−1

z W i−2
1 · · · Wi−2

= ga1a2 + a2a3 + · · · + az−1az + aza1

Here the server can not compute the group private key of any group since it
requires knowledge of ai, which is private to respective users. The group public
key is sent to the server and the group private keys are known only to the group
members. In the group key generation phase, the server does not perform any
computation, it simply forwards the messages to intended users.

3.3 Group-Oriented Average Computation

First, the server randomly divides all registered users into arbitrary size groups.
All the members of a group Gk, run the above group key generation protocol to
establish a group private key as Xk, where k denotes the group number. Each
user computes the group public key Yk = gXk .

Any one user who is available online from each group sends the group public
key to the server, and the server generates a common public key Y as: Y =∏k

i=1 Yi. Server broadcasts this common public key Y to all users. Each user
encrypt its ratings using Y and sends the resulting ciphertexts to the server.

Algorithm 2 shows the proposed protocol for computing the average rating
for item θ (the remaining phases are described in AppendixesA, B and C). The
first two steps are the same as that of BYK protocol. The main difference in the
remaining steps is that they do not require every user to be present as long as
at least one member of each group is online.

3.4 Adding New Users

The user base of a recommender system is dynamic. Thus, there could be some
existing users leaving the system and some new users joining. We define new
users as the users who join the system after the common public key Y has been
set up. To add users to one of the existing groups Gk, the new user should learn
the respective Xk, Yk and Y . Here only Xk is private to the group members
of Gk. This can be done using any public key encryption technique. Both users
first share their public keys via server and then uold sends Xk to unew via server
only. Since the server is semi-honest, it can eavesdrop but cannot retrieve Xk.

If there are very few groups when the recommender system is set up, the
server can create additional new groups. This will require re-computation of Y ,
which will be an overhead on every user.
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PARAMETERS: U is set of n users: u1, . . . , un, P is set of m items: p1, . . . , pm, S is
the server, common public key: Y , group private key: Xi

INPUT: Each user i rates every item j as ri,j and sets corresponding flag fi,j as 0 or 1
OUTPUT: Average rating of item θ: p̄θ

PROTOCOL:

Server first divides users into groups, those users generate group public and private

key pairs as: Xi, Yi, then server generates common key Y and broadcasts to all users.

1. All users send their respective encrypted ratings and flags to S. (This time they
encrypt using Y )

• ui → S : (gαi,θ , gri,θ yαi,θ )

• ui → S :
(
gβi,θ , gfi,θ yβi,θ

)

2. Server sends following values to the user uω,k. Here uω,k denotes any one user ω
from group Gk who is online.

• S → uω,k : g
∑n

i=1 αi,θ , g
∑n

i=1 βi,θ

3. Every user receiving the above value, raises it with the corresponding group private
key and returns result to S:

uω,k → S :
(
g

∑n
i=1 αi,θ

)Xk
,
(
g

∑n
i=1 βi,θ

)Xk

4. Server now decrypts the aggregate values:

• Compute: g
∑n

i=1 ri,θ =

(
g

∑n
i=1 ri,θ Y

∑n
i=1 αi,θ

)

(
g

∑n
i=1 αi,θ

)∑k
i=1 Xi

• Compute: g
∑n

i=1 fi,θ =

(
g

∑n
i=1 fi,θ Y

∑n
i=1 βi,θ

)

(
g

∑n
i=1 βi,θ

)∑k
i=1 Xi

• Compute:
∑n

i=1 ri,θ and
∑n

i=1 fi,θ using Pollard’s algorithm and computes p̄θ

Algorithm 2. Proposed protocol for computing average rating

4 Privacy Analysis

We model our protocol as a secure two-party computation protocol. We assume
that all users collectively form one party and their inputs are encrypted ratings.
Recommendation server is the other party, both parties jointly compute the
average rating of an item which only the server learns. Recall that the server is
a semi-honest party.

To prove that the protocol protects users’ privacy in presence of a semi-
honest server we adapt the privacy definition by Goldreich [12]. It states that
a computation protocol is privacy-preserving if the view of each party during
protocol execution can be simulated by a polynomial-time algorithm knowing
only the input and output. In our setup only server’s view needs to be simulated
as users are assumed to be honest. A view includes inputs, outputs and a security
parameter k for the party.

V iewideal/real : {input, output, k}
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Definition 2. The proposed protocol securely computes the average rating of an
item in the presence of a semi-honest server, if the server or simulator cannot
infer any information from their respective views.

Theorem 1. By assuming the semantic security of the encryption system E,
the proposed protocol is secure.

Proof. We assume that the encryption system E() is semantically secure (IND-
CPA secure). We denote the server’s real and ideal world views by V iewreal and
V iewideal, respectively.

V iewreal = {(g, Pu, PG, Epk(ri,j)), (sumr, sumf , (Cj , C
′
j), (Dj ,D

′
j)), k}

Here input g is the generator, Pu is set of users’ public keys, PG is set of
groups’ public keys, Epk(ri,j) is the encrypted rating submitted by the user.
The outputs that server computes are sumr and sumf as sum of ratings and
flags respectively, (Cj , C

′
j) and (Dj ,D

′
j) are the encrypted sum of ratings and

flags respectively and k it the security parameter.
Now we can design a simulator to represent server in the ideal world as

V iewideal. Here we assume the presence of a trusted party (TP) which always
returns the correct computation outputs. The simulated values are represented
using bar (̄ ) over them. The values g, Pu and PG are available to server as input.
TP generates 2n random numbers representing n ratings and n flags from the
specified range provided in the protocol and encrypts them using public key Y.
These values are sent to the server. Now server computes

(C̄j , C̄
′
j) =

(
n∏

i=1

gαi,j ,

n∏

i=1

gri,j Y αi,j

)

(D̄j , D̄
′
j) =

(
n∏

i=1

gβi,j ,

n∏

i=1

gfi,j Y βi,j

)

Next server sends values of C̄j and D̄j to TP and it returns (C̄j)xi , (D̄j)xi to
the server. Server then computes sum′

r and sum′
f as shown in the protocol. At

this point server’s view is:

V iewideal = {g, Pu, PG, sum′
r, sum′

f , (C̄j , C̄
′
j), (D̄j , D̄

′
j), k}

The difference between V iewreal and V iewideal is in output part i.e. (sumr,
sumf , (Cj , C

′
j), (Dj ,D

′
j) along with k and (sum′

r, sum′
f , (C̄j , C̄

′
j), (D̄j , D̄

′
j)). In

ideal world the simulator does not learn anything about individual rating from
the decrypted aggregate values. Further, the ratings given as inputs by TP are
encrypted which does not leak any information since E() is IND-CPA.

We have shown that the real world semi-honest server can be simulated in
ideal world and the users’ privacy is maintained, hence from Definition 2 the
claim is proved. ��
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Table 3. Computation cost for each phase. enc, exp, mul shows encryption, expo-
nentiation and multiplication costs,

√
Tenc is cost to solve discrete logarithm. Values

shown inside { } are additionally required by any one user from the group

Computation User Server

Group key

generation

(b + 1) exp + (b − 1) mul −

Average rating 2m enc, {2m exp} 4m(n − 1) mul + 2
√

Tm enc

Similarity
m(m + 1)

2
enc,

{
m(m + 1)

2

}

exp
2m − 1

2
(n + k − 1) mul +

m(m + 2)

2

√
T enc

CBF prediction (2m + 2) exp 2(m − 1) mul + 2 exp

CF prediction 2m exp m mul + 6 exp

In above proof we have not modeled the step-3 and step-4 of the proto-
col, where server decrypts the aggregate values. In these steps server computes
Cx1+···+xn

j and Dx1+···+xn
j . If a semi-honest server can find value of x1 + · · ·+xn

from these values, then it can read all individual ratings and flags in plaintext.
In the Sect. 3.2 it is shown that

xi = ga1a2 + a2a3 + · · · + az−1az + aza1

where ais are chosen randomly from a large prime group. In this space discrete
logarithm is unsolvable using any polynomial-time algorithm. Hence the server
can decrypt the aggregate rating and flags but cannot retrieve individual’s pri-
vate information.

Next we show that the aggregate values available to server in plaintext does
not compromise users’ private information, if there are more than one user.

Theorem 2. If the number of users is more than one, then a semi-honest server
cannot compute the ratings given by an individual user after the protocol run.

Proof. Let iθ be an arbitrary but fixed item. At the end of the protocol run,
the server receives sum of ratings and sum of flags in plaintext. For n users, the
server will have sum of ratings s for iθ as: s = r1,θ + r2,θ + · · · + rn,θ. From this
equation, the server cannot determine what rating a user has given to iθ as there
are multiple unknowns and only one equation. Hence, the claim holds. ��

5 Efficiency Evaluation

We evaluate the computation and communication costs for a single user, as
the steps performed by each user are identical. In the average rating phase, we
evaluate the costs per user and m items. In the similarity computation phase,
costs shown are again per user and m items which makes mC2 pairs. The costs of
CBF and CF phases are evaluated assuming the prediction for a user is computed
only once.
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Table 4. Communication cost for each phase (in bits)

Computation User Server

Group key generation len(ti) + len(Xi) 2n + n(n − 1)len(Xi)

Average rating 4ml, 2kml

{4m + 2m}l

Similarity
m(m + 1)

2
l,

{
m(m + 1)

2
l

}
2kml

CBF prediction 2(m + 2)l 2(m + 2)l

CF prediction 2(m + 2)l 2(m + 2)l

5.1 Computation Cost

We evaluate the computation costs for server and users for each phase of the
protocol. Here we only consider the key generation and average rating computa-
tion phases. The key generation is a one-time computation. As in the protocol,
there will be any one user from each group who will share the group key with
the server and any one who will act in step-2. So there will be a difference in
computation cost between all other users in the group and those users who par-
ticipate during run of the protocol. In Table 3 in user column, the values written
inside { } are with additional communication required by any one user from the
group.

Group Key Generation. We assume that server has divided the users into groups
and every user knows their group members. The group-wide communication is
required only once to generate the group public and private key pair. Assume
there are b users in each group, each user will have ephemeral key ri and corre-
sponding public key ti = gri .

Each user computes Xi =
(

ti−1

ti+1

)ri

which requires one division and one expo-

nentiation operation. Each user then computes the group private key as:

GK =
(
tri
i+1

)b
Xb−1

i Xb−2
i+1 · · · Xi−1

b Xi−2
1 · · · Xi−2

This requires b exponentiations and b − 1 multiplications.

Average Rating. In step-1, each user performs two encryptions (including flag)
and in step-3, only one user has to compute two exponentiations per item.
Total: for all users except one: 2m enc. For the user who acts during step-3 it
will be: 2m enc +2m exp.
For n users and m items in step-2 the server performs: 2m(n − 1) multiplica-
tions, whereas in step-3: 2m(n − 1) multiplications + m divisions + m discrete
logarithm solutions.
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5.2 Communication Cost

We evaluate the communication cost for the server and each user. Here we only
consider key generation and average rating computation phases. As mentioned
above any one user will have different cost in comparison to the rest of the group
members. We evaluate the amount of data that is communicated by users and
server while executing the different phases of the protocol. In Table 4 we assume
that each of the ciphertexts C1, C2 is of length l bits.

Group Key Generation. Say that there are b users in a group, they all have ri

and ti as their respective ephemeral input and ephemeral public key respectively.
Each user sends ti and Xi to server. Thus, the total cost for each user: len(ti) +
len(Xi) bits. Server forwards messages to all users in the group, total cost for
the server: 2b + (b(b − 1) ∗ len(Xi)) bits.

Average Rating. Each user sends the encrypted rating and flag for each item to
server in step-1: 4m(l) bits.
Any one user from each group will take part in step-3: 2(l) bits.
Total: 4m(l) bits for all users and additional 2(l) bits for one user from each
group.
For each item the server will send k (total number of groups) values for ratings
and flags in step-2: 2km(l) bits.

5.3 Comparison with Existing Protocols

The most recent work on the offline user problem is by Badsha et al. [3] so we
compare our protocol’s performance with it. To this end, we assume the cost of
encryption operation as enc irrespective of the scheme used. n and m denote the
number of users and items respectively, k denotes the number of groups present
in the proposed protocol.

User. In [3], the cost for a user ui at initialization stage is 2m enc. Whereas
during the similarity computation phase, for every other user the target user ui

has to perform (m − 1) multiplication and m encryption. Computing similarity
with all other users ui will take (n − 1)((m − 1)mul + menc) i.e. O(mn).

On the other hand, in our proposal, as shown in Table 3, total cost for a user

ui is: (2m + n + 1)exp + (n − 1)mul +
(

m2 + 5m

2

)

enc i.e. O(m2).

Server. In [3], there are two servers, recommender server and data server and
both the servers are used during recommendation phase only. The recommender
server first computes bilinear pairing between ratings and similarity value.
This has to be done (n − 1) times for a target user ui. Finally, to generate
recommendation for one item, server multiplies (n − 1) pairings which takes
(n − 1)p + (n − 2)mul time, where p is the cost of pairing. There are m items so
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Table 5. Computation and communication cost of protocols supporting offline users

Protocol Computation cost Communication cost

User Server TTP User Server TTP

Erkin et al. O(m) O(mn) O(mn) O(m) O(mn) O(mn)

Arjan O(fm) O(fm) O(f) O(m) O(m) O(f)

Badsha et al. O(mn) O(mn) O(m) O(mn) O(mn) O(m)

Our proposal O(m2) O(mn) − O(m2) O(km) −

the total cost: m((n− 1)p+(n− 2)mul). Data server decrypts the recommenda-
tions and solves discrete logarithm for each item which takes enc and

√
T (enc)

time, where T is the size of the message space.
Total server side computation cost is: m(n− 1)p+m(n− 1)mul +

√
Tm enc, i.e.

O(mn).
In the proposed protocol only recommender server is used and its total compu-
tation cost is O(mn)mul + O(m2)

√
T (enc) + 8 exp, i.e. O(m2).

Our scheme incurs higher computational cost than [3]. In [3] to compute
similarity, each user has to perform some computations (O(mn) encryptions)
when it requires the recommendations. This computation has to be done on the
fly while the user is online, the time required for this depends on the number
of users. In our proposal, the cost is higher in the similarity phase, but those
computations can be performed offline, computations for CBF and CF phases
shown in Table 3 are the online costs i.e., O(m) exponentiations. A comparison
of the overall costs of various protocols is shown in Table 5.

Below are some observations from the comparisons:

– In Arjan’s protocol f denotes the total number of friends in the group, where
f � n. In our proposal the group size is denoted by k where k � n.

– In evaluating the communication cost for the server in our proposed protocol,
we have not included the cost of generating group key as it is a one-time task.
Once the group keys are generated, they can be used over a long period.

– As noted in [3] the weighted sum approach is more efficient than simple
average ratings of similar users which was used in [11]. Our proposed protocol
too uses the weighted sum approach.

– In both [3] and [11], a user has access to encrypted ratings provided by the
other users which is avoided in our protocol.

6 Experimental Results

We evaluated our scheme on a virtual machine with Intel-i5 processor and 3 GB
RAM. We used the Sagemath library in Python to implement cryptographic
operations. We used a publicly available Movielens data set which contains 1
million records collected from 6040 users for about 3900 movies [20]. For our
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Fig. 1. Experimental results

experiments, we reduced the dataset by randomly choosing 900 users and 900
items. In our setting, we choose the size of the group G to be 2160, and the
length of the ephemeral keys α and β to be 80 bits. To compute one modular
exponentiation, it took 0.13 ms while for multiplication it took 0.0019µsec on
average. To compute the group key generation time, we took the varying number
of users and computed how much time it takes for one user to generate the group
key. Since we do not consider communication time. Further, we assume that all
the information required for computation is available to the user as input.
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User: In the average computation phase, each user encrypts ratings and flag
values for each item and sends it to the server. We take 900 items, so each user
encrypts 900 ratings and flags.

Server: In step-2 server receives the ratings and flags from each user for every
item, we compute time taken to find the average rating for one item. There are
900 users, so the server will have 900 encrypted ratings and 900 encrypted flags.
These encrypted messages are of the form (C1, C2), thus the server has to perform
1800 modular multiplications for ratings and flags separately. In step-4 server
has to perform 900 multiplications for rating and same for flags, then server
computes two discrete logarithms, and finally computes the average rating of an
item. The group key generation cost is shown for a group of 100 users. This is
only the computation time required without communication delays. In similarity
computation, we measure the time taken by a user to encrypt required values
for 900 items whereas, on the server side we measured the time taken to find
similarity between one pair. In CBF and CF phases, we have shown the time
required to generate rating prediction for one item.

Figure 1(a) shows the time required to generate the group key for a varying
number of users. For a group of 900 users, it takes 0.3082 ms of computation time
which can be acceptable for real applications. Figure 1(b) shows how computa-
tion time required for different phases of the protocol grows with an increase
in the total number of users. In the experiment, we have kept the number of
items constant at 900 items. We measure the time taken for each phase as the
time required to do computations while the server is online as some steps can
be executed offline. For example, the server can compute similarity and store
them in a similarity matrix once it has received the required information from
the user groups. A user can generate ephemeral keys in advance since a user
is unlikely to rate every item, its rating will contain most of the entries as
encryption of zero, which user can prepare offline. The graph shows that the
computation time for similarity computations is comparatively more; this can
be reduced as servers used in real-world applications will have higher computa-
tional power. The group key generation time, average rating computation and
similarity computation times need not be computed each time a user asks for
recommendations. These computations can be done periodically, only CF and
CBF phases are required to generate recommendations that take a fairly short
time and can be used in practical applications.

7 Conclusion

In this paper we considered a scenario where the server does not require par-
ticipation of all users after it receives the ciphertexts of the ratings from the
users. This scenario has been studied in the literature, but existing solutions use
third party. In this paper, we proposed an approach that does not require any
additional third party. We have shown with the privacy analysis of the protocol
that it meets the defined privacy goals. Experimental results show that the pro-
tocol can be implemented in practical applications as the computation cost for
recommendation generation is small and should be acceptable in practice.
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One interesting research challenge is how to ensure that there is at least one
online user in every group at all times. To satisfy this requirement, the server
can dynamically adjust the group membership. We leave this as future work.

A Similarity Computation

Cosine similarity is used here to show the similarity between two items. It com-
putes similarity between rating vectors of two items using cosine of angle between
the vectors, smaller angle represents more similarity.

Algorithm 3 shows the similarity computation phase. Before executing these
phases, the users would have been divided into groups and generated group keys
for respective groups. The common key Y is available to all users. The server
has computed the average rating of all items.

The similarity between two items θ and θ′ is computed as:

s (θ, θ′) =
∑n

i=1 ri,θri,θ′
√∑n

i=1 r2
i,θ

√∑n
i=1 r2

i,θ′

B CBF-Based Recommendation

To generate recommendations, the server computes predicted ratings for all items
and send them to the user. At the user end items with the highest ratings are
shown to the user as recommended items list. The server sends predicted ratings
encrypted under the target user’s public key so these predictions can be seen by
the intended user only. In CBF-Based recommendations, for a user u the rating
for item θ is computed as:

RPu,θ =

∑m
j=1 ru,θs (pj , pθ)
∑m

j=1 s (pj , pθ)

The user sends its encrypted ratings to the server, and the server computes
numerator and denominator values of rating predictions for all items, encrypts
them using the target user’s public key and sends back to the user. The user
decrypts all predicted ratings and receives the recommendations. Algorithm4
shows the detailed steps.

C CF-Based Recommendation

To generate recommendations using CF-based technique, the data flow is similar
to that of CBF-based technique with following equation for prediction:

RPu,θ =
p̄θ

∑m
j=1 s (pθ, pj) +

∑m
j=1 (ru,j − p̄j) s (pθ, pj)

∑m
j=1 s (pθ, pj)

Detailed steps are shown in Algorithm 5.
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PARAMETERS: U is set of n users: u1, . . . , un, P is set of m items: p1, . . . , pm, S is
the server, common public key: Y , group private key: Xi

INPUT: Each user i rates every item j as ri,j and sets corresponding flag fi,j as 0 or 1
OUTPUT: Similarity between two items θ and θ′: s(θ, θ′)
PROTOCOL:

1. All users send three values to S, encrypted using Y : r2i,θ, r2
i,θ′ , ri,θri,θ′

• ui → S :
(
gαi,θ , gr2

i,θ yαi,θ

)

• ui → S :

(

g
βi,θ′ , g

r2
i,θ′ yβi,θ′

)

• ui → S :

(

g
γi,θθ′ , g

r2
i,θθ′ yγi,θθ′

)

• Server gets encrypted
∑n

i=1 r2i,θ,
∑n

i=1 r2
i,θ′ ,

∑n
i=1 ri,θri,θ′ as:

• Compute:
(
g

∑n
i=1 αi,θ , g

∑n
i=1 r2

i,θ Y
∑n

i=1 αi,θ

)

• Compute:

(

g
∑n

i=1 βi,θ′ , g
∑n

i=1 r2
i,θ′ Y

∑n
i=1 βi,θ′

)

• Compute:
(
g

∑n
i=1 γi,θθ′ , g

∑n
i=1 ri,θri,θ′ Y

∑n
i=1 γi,θθ′

)

Now, if some users from each group are offline, then in order to decrypt these
values server sends following values the user uω,k. Here uω,k denotes any one user
ω from group Gk who is online.

S → uω,k :
(
g

∑n
i=1 αi,θ , g

∑n
i=1 βi,θ′ g

∑n
i=1 γi,θθ′

)

2. Users receiving above value raises it with group private key and returns result to S:

uω,k → S :
(
g

∑n
i=1 αi,θ

)Xk
,
(
g

∑n
i=1 βi,θ′

)Xk
,
(
g

∑n
i=1 γi,θθ′

)Xk

3. Server now decrypts the aggregate values:

• Compute: g
∑n

i=1 r2
i,θ =

(
g

∑n
i=1 r2

i,θ Y
∑n

i=1 αi,θ

)

(
g

∑n
i=1 αi,θ

)∑k
i=1 Xi

• Compute: g
∑n

i=1 r2
i,θ′ =

(

g
∑n

i=1 r2
i,θ′ Y

∑n
i=1 βi,θ′

)

(
g

∑n
i=1 βi,θ′

)∑k
i=1 Xi

• Compute: g
∑n

i=1 ri,θri,θ′ =

(
g

∑n
i=1 ri,θri,θ′ Y

∑n
i=1 γi,θθ′

)

(
g

∑n
i=1 γi,θθ′

)∑k
i=1 Xi

• Compute:
∑n

i=1 r2i,θ,
∑n

i=1 r2
i,θ′ and

∑n
i=1 ri,θri,θ′ using Pollard’s algorithm

• Compute similarity (sθ,θ′ ) between items θ and θ′ using cosine similarity:

s
(
θ, θ′) =

∑n
i=1 ri,θri,θ′

√∑n
i=1 r2i,θ

√∑n
i=1 r2

i,θ′

Algorithm 3. Proposed protocol to compute item-item similarity
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PARAMETERS: U is set of n users: u1, . . . , un, P is set of m items: p1, . . . , pm, S is
the server, common public key: Y , group private key: Xi

INPUT: Each user i rates every item j as ri,j and sets corresponding flag fi,j as 0 or 1
OUTPUT: Encrypted rating predictions for all items
PROTOCOL:

1. The user sends encrypted ratings for all items to S:
ui → S : (gαi,j , gri,j tαi,j )

2. Server computes encrypted numerator using homomorphic operation as:
(A, B) =

∏m
j=1 Et (gri,j )s(pk,pj), where k = 1, . . . , m

Server computes the denominator encrypted under user i’s public key for all items:

Et

(
g

∑m
j=1 s(pk,pj)

)

Server sends these numerator and denominator values for items to the user.
3. User now decrypts the received values corresponding to each item and solves discrete

logarithm to obtain
∑m

j=1 ru,θs(pj , pθ) and
∑m

j=1 s (pj , pθ).
Now user has the
predicted ratings for all items.

Algorithm 4. Proposed protocol to compute CBF-Based recommendation

PARAMETERS: U is set of n users: u1, . . . , un, P is set of m items: p1, . . . , pm, S is
the server, common public key: Y , group private key: Xi

INPUT: Each user i rates every item j as ri,j and sets corresponding flag fi,j as 0 or 1
OUTPUT: Encrypted rating predictions for all items
PROTOCOL:

1. The user sends encrypted ratings for all items to S:
ui → S : (gαi,j , gri,j tαi,j )

2. The server has average ratings of all items and similarity between every two items.
To compute encrypted numerator:

• compute: Et

(
gp̄θ

∑m
j=1 s(pθ,pj)

)
and Et

(
gp̄j

)

• compute: (A, B) = Et

(
gp̄θ

∑m
j=1 s(pθ,pj)

) ∏m
j=1

(
Et(g

ru,j )
Et(g

p̄j )

)s(pθ,pj)

Next, server computes denominator as:

• (A′, B′) = Et

(
g

∑m
j=1 s(pθ,pj)

)

3. User decrypts the received values corresponding to each item and solves discrete
logarithm to obtain
p̄θ

∑m
j=1 s (pθ, pj) +

∑m
j=1 (ru,j − p̄j) s (pθ, pj) and

∑m
j=1 s (pθ, pj) Now user has the

predicted ratings for all items.

Algorithm 5. Proposed protocol to compute CF-Based recommendation
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Abstract. In this paper, we initiated a degree evaluation technique for
the NFSR based stream cipher like Grain family where the degree of the
NFSR update bits is higher than the degree of the output function. Here,
we have applied the technique on Grain-v1 to evaluate degree NFSR
update bit and output bit during key scheduling phase of reduced round.
We are trying to improve this technique and correctness for the full paper.

Keywords: Cryptanalysis · Stream cipher · Grain-v1 · Degree
evaluation

1 Introduction

Most of the cryptographic primitives, specially NFSR based ciphers, consist of
by a Boolean functions, which take private (i.e., key) and public (i.e. IV) bits as
inputs. By exploiting the degree of the Boolean function, one can find out the
weaknesses of the primitives. The correct estimation of degree of a NFSR based
stream cipher is a challenging job. There are few tools such as statistical anal-
ysis, symbolic computation etc. to estimate the algebraic degree. By estimating
the algebraic degree, one can exploit so many attack like cube attacks, integral
attacks, algebraic attacks, higher order differential attacks etc.

The theories of estimating degree are based on the two ideas, first one uses
the Walsh spectrum [2–4] and second one uses the simple fact. Our work follows
the later. At CRYPTO 2017, Liu [9] has described an algorithm to find out
the upper bounds on the degrees of NFSR based cipher by using a new concept,
called “Numeric mapping”. A degree evaluation technique for Trivium like cipher
was designed and shown that the estimated bound is close to its original value
for maximum cases. They have used their degree estimation technique to identify
the number of rounds where the key and IV bits are mixed properly or not, and
further it is used for the distinguishing purpose as a cube tester. Our work is
similar to this work. After that, Ye et al. [13] have presented an algorithm to
find the exact super polynomial of a cube and also proved that it is not a zero
sum distinguisher for 838 rounds of Trivium given by Liu. To find the super
polynomial, they first compute the ANF of the output function by a backward
method iteratively and the ANF of the involved bits in the output function z
up to some manageable rounds and then compute the super polynomial.
c© Springer Nature Switzerland AG 2019
D. Garg et al. (Eds.): ICISS 2019, LNCS 11952, pp. 239–251, 2019.
https://doi.org/10.1007/978-3-030-36945-3_13
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At CRYPTO 2018, Fu et al. [6] considered the output function z as P1P2+P3,
where P1 should be selected by (a) frequency of P1 is high in higher degree term
(b) P1 has low degree (c) minimum number of key guessing in P1. The right key
guessing of P1 gives a simple polynomial as (1+P1)z = (1+P1)P3 and wrong one
gives (1 + P ′

1)z = (1 + P ′
1)(P1P2 + P3). Finally they have calculated the degree

of (1+P1)z = (1+P1)P3 as d by using their proposed algorithm and used d + 1
dimensional cube as distinguisher. There are other literature [14], where degrees
of NFSR based cryptosystem are discussed.

In this paper, we have simplified the h function of Grain-v1 by using some
static variables and then calculated the maximum degree over initial state bits
up to some round of Grain-v1. Our aim is to find out at which round the feedback
bit and output can achieve the highest degree and to claim that at this round
the key bits and IV bits mix properly.

1.1 Our Contribution

Our aim is to evaluate the degree of the feedback bits of NFSR and LFSR the
and output bit over the initial state bits (which includes the bits of key, IV and
nonce bits). In this paper, we have initiated a work to evaluate the degree of
the said bits using difference of involved tap points in the NFSR and the output
functions. The degree of NFSR update terms in Grain-v1 is higher than the
degree of its output function. To control the degree of output function we have
put some conditions on IV bits. Therefore, our degree evaluation is subjected to
some conditions on IV bits. We have followed the following steps to evaluate the
degree.

1. The differences between the state bits involved in the NFSR update function.
2. The common bits with shifted bits according to the differences.
3. Calculating the degree of the quadratic terms.
4. Common bits according to the difference trail.
5. The possibility of degrees of NFSR update terms.

We could calculate the degrees of the NFSR update bits up to 54 rounds i.e.,
the degree of feedback bits b80+t, l80+t and output bit z80+t for 0 ≤ t ≤ 54. We
have verified the degree up to 42 round by SAGE.

1.2 Organization of Paper

In first section, we introduce the degree evaluation techniques for NFSR based
stream cipher and present our aim and contribution. The main work is con-
tained in Sect. 2, where we present all steps and tools for the degree evaluation.
In Sect. 3, we apply the technique to evaluate the degrees in Grain-v1. In last
section, we conclude the paper with future work.
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2 Degree Evaluation of Grain-v1

Grain-v1 [7] is a hardware based stream cipher consisting of an 80-bit NFSR,
an 80-bit LFSR and a nonlinear filter function h of 5 variables, where bi, si, 0 ≤
i ≤ 79 are the state bits of the NFSR and LFSR respectively. The state update
functions of LFSR and NFSR are presented in Eq. 1 and Eq. 2 respectively.

st+80 = st+62 + st+51 + st+38 + st+23 + st+13 + st, for t ≥ 0. (1)

bt+80 = st + bt+62 + bt+60 + bt+52 + bt+45 + bt+37 + bt+33

+bt+28 + bt+21 + bt+14 + bt+9 + bt + bt+63bt+60 +
bt+37bt+33 + bt+15bt+9 + bt+60bt+52bt+45 + bt+33bt+28bt+21 +
bt+63bt+45bt+28bt+9 + bt+60bt+52bt+37bt+33 + bt+63bt+60bt+21

bt+15 + bt+63bt+60bt+52bt+45bt+37 + bt+33bt+28bt+21bt+15bt+9

+bt+52bt+45bt+37bt+33bt+28bt+21, for t ≥ 0. (2)

The algebraic normal form of the nonlinear filter function h is given by

h(st+3, st+25, st+46, st+64, bt+63) = st+25 + bt+63 + st+3st+64 + st+46st+64 +
st+64bt+63 + st+3st+25st+46 + st+3st+46st+64 + st+3st+46bt+63 +
st+25st+46bt+63 + st+46st+64bt+63. (3)

The keystream bit zt of the cipher is calculated by combining the output
of the nonlinear filter function and some state bits of the NFSR. The algebraic
expression of the keystream bit at t-th round is

zt = bt+1 + bt+2 + bt+4 + bt+10 + bt+31 + bt+43 + bt+56

+h(st+3, st+25, st+46, st+64, bt+63), for t ≥ 0. (4)

The NFSR is loaded with key bits and LFSR is loaded with 64 bits IV and rest
of the sixteen bits are padded as all one pattern. Then the cipher runs the KSA
(key scheduling algorithm) for 160 rounds, without generating any keystream
bit as output bit. Instead, these keystream bits are added with the feedback
bit of the NFSR and LFSR. After running 160 rounds of KSA the cipher starts
the PRGA (pseudorandom bit generation algorithm), where the cipher produces
keystream bits as output.

We see that during KSA, both the LFSR and NFSR feedback have a term zt.
Hence the degree of LFSR bits is dominated by the degree of zt. As the NFSR
has nonlinear terms, the degree of NFSR bits may not be dominated by the
degree of zt in all rounds. From Eq. 4, it is clear that the highest degree term of
zt (i.e., 3-degree terms) comes from h. So we vanish those 3-degree terms of h
by imposing some restrictions on IV bits for few initial rounds as following.

It can be seen from Eq. 3 that st+46 is present in all 3-degree terms (and one
2-degree term) in h. If the value of state bits s46 to s63 are equal to 0 (i.e., the
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last 18 bits of IV), then all 3-degree terms of h are vanished for first 18 rounds.
The equation of h for 0 ≤ t ≤ 17 becomes

h(st+3, st+25, 0, st+64, bt+63) = st+25 + bt+63 + st+3st+64 + st+64bt+63.

As during the key loading the LFSR bits from s64 to s79 are set 1 as padding
bits, h contains only two linear bits for first 16 rounds as the equation of h is

h(st+3, st+25, 0, 1, bt+63) = st+25 + st+3 for 0 ≤ t ≤ 15.

As round increases the conditions set (i.e., s46 = · · · = s63 = 0 and s64 = · · · =
s79 = 1), the conditions shifted to other state bits in the LFSR. Therefore, the
equation of h is simplified for higher rounds (i.e., t ≥ 16). The equation of h is
presented in Table 1 for first 77 rounds (i.e., 0 ≤ t ≤ 76).

Table 1. ANF of h function of Grain-v1 at different rounds

Static bit h function Rounds

st+46 = 0, st+64 = 1 h = st+3 + st+25 0−15

st+46 = 0 h = st+25 + bt+63 + st+3st+64 + st+64bt+63 16

st+46 = 0 h = st+25 + bt+63 + st+3st+64 + st+64bt+63 17

st+46 = 1 h = st+25 + bt+63 + st+64 + st+3st+25 +
st+3bt+63 + st+25bt+63

18−20

st+25 = 0, st+46 = 1 h = bt+63 + st+64 + st+3bt+63 21−32

st+25 = 0 h = bt+63 + st+3st+64 + st+46st+64 +
st+64bt+63 + st+3st+46st+64 +
st+3st+46bt+63 + st+46st+64bt+63

33−38

st+25 = 1 h = 1 + bt+63 + st+3st+64 + st+46st+64 +
st+64bt+63 +st+3st+46 + st+3st+46st+64 +
st+3st+46bt+63 +
st+46bt+63 + st+46st+64bt+63

39−42

st+3 = 0, st+25 = 1 h = 1 + bt+63 + st+46st+64 + st+64bt+63+
st+46bt+63 + st+46st+64bt+63

43−54

st+3 = 0 h =
st+25 + bt+63 + st+46st+64 + st+64bt+63 +
st+25st+46bt+63 + st+46st+64bt+63

54−60

st+3 = 1 h = st+25 + bt+63 + st+64 + st+64bt+63 +
st+25st+46 +st+46bt+63 +
st+25st+46bt+63 + st+46st+64bt+63

61−76

Grain-v1 is prone to be attacked by different way. There are several literature
[1,5,8,10–12,15,16] on this. Interested reader can go through this.
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2.1 Calculating Repeated Bits

In Grain-v1, the set of state bits B = {b9, b15, b21, b28, b33, b37, b45, b52, b60, b63}
are involved in the non-linear terms of the state update relation of NFSR (see
Eq. 2). We enumerate the differences between each pair of these state bits. The
differences can be computed using the following recursion.

Definition 1. Let there is a ordered set of n integers S = {a1, a2, · · · , an}. For
1 ≤ k ≤ n−1, the kth order difference of S is defined as ΔkS = {ak+1−a1, ak+2−
a2, · · · , an − an−k} and Δ0S = S. The i-th element of ΔkS (i.e,ak+i − ai)is
denoted as ΔkSi for 1 ≤ i ≤ n − k.

It can be easily checked that ΔkS can be recursively computed as the following.

Lemma 1. For 2 ≤ k ≤ n − 1, ΔkSi = Δk−1Si + Δ1Sk+i−1 for 1 ≤ i ≤ n − k.

For the Grain-v1 case, let take the set S as the index of the bits involved in
the nonlinear terms of the state update relation of NFSR i.e., in set B. Then
Table 2 presents the order difference of the indices of these state bits where the
differences and repeated indices can be identified. The value of the term ΔkSi

Table 2. Order difference Δk of the indices

Bits b9 b15 b21 b28 b33 b37 b45 b52 b60 b63

Order (k)

0 9 15 21 28 33 37 45 52 60 63

1 6 6 7 5 4 8 7 8 3

2 12 13 12 9 12 15 15 11

3 19 18 16 17 19 23 18

4 24 22 24 24 27 26

5 28 30 31 32 30

6 36 37 39 35

7 43 45 42

8 51 48

9 54

represents that in Grain-v1 the state value of (k + i)-th nonlinear bit in ordered
set S is shifted to i-th state after ΔkSi rounds. For example, Δ2S3 = 12 in
Table 2 represents that the state value of the 33-th state (i.e., b33) is shifted to
21-th state (i.e., b21) in the NFSR after 12 rounds.

The sorted list of differences (from Table 2) and the pair of bits where the
difference is occurred are present in Table 3.

When two terms multiplied, the degree of final term is lesser than the sum
of the individual terms if there are some common variables between the terms.
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Table 3. Table of Common bits according to differences

Difference Between pair of bits Difference Between pair of bits Difference Between pair

of bits

3 (b60, b63) 16 (b21, b37) 31 (b21, b52)

4 (b33, b37) 17 (b28, b45) 32 (b28, b60)

5 (b28, b33) 18 (b15, b33), (b45, b63) 35 (b28, b63)

6 (b9, b15), (b15, b21) 19 (b9, b28), (b33, b52) 36 (b9, b45)

7 (b21, b28), (b45, b52) 23 (b37, b60) 37 (b15, b52)

8 (b37, b45), (b52, b60) 22 (b15, b37) 39 (b21, b60)

9 (b28, b37) 24 (b9, b33), (b21, b45), (b28, b52) 42 (b21, b63)

11 (b52, b63) 26 (b37, b63) 43 (b9, b52)

12 (b9, b21), (b21, b33), (b33, b45) 27 (b33, b60) 45 (b15, b60)

13 (b15, b28) 28 (b9, b37) 48 (b15, b63)

15 (b37, b52), (b45, b60) 30 (b15, b45), (b33, b63) 51 (b9, b60)

54 (b9, b63)

The following theorem presents the degree of the multiplication of two nonlinear
terms in the case of feedback shift registers.

Theorem 1. Let denote Bk and Ck be two nonlinear terms at the k-th round
(i.e., multiplication of some state bits in a feedback shift register at k -th round).
Further denote that bi is i-th state bit in k-th round. If bi is a variable in
Bk and bi−j is a variable in Ck for some 0 ≤ j ≤ i then deg(BkCk+j) <
deg(Bk)+deg(Ck+j). If there are exactly m such pairs of bi and bi−j in Bk and
Ck respectively, then deg(BkCk+j) = deg(Bk) + deg(Ck+j) − m.

For an example, consider Bk and Ck as the highest degree term of the NFSR in
Grain-v1 i.e., Bk = Ck = b52b45b37b33b28b21. Since b37 is in Bk and b33 = b37−4

is in Ck, the deg(BkCk+4) = deg(Bk) deg(Ck) − 1 = 11. For a demonstration,
Table 4 represents the degrees of BkCk+j , k ≥ 80 for those shifts j for the terms
Bk = Ck = b52b45b37b33b28b21.

Table 4. Table of degrees of BkCk+j , i ≥ 80

Shift(j) Deg(BkCk+j) Bits in Bk, Ck Shifts(j) Deg(BkCk+j) Bits in Bk, Ck

4 11 b37, b33 15 11 b52, b37

5 11 b33, b28 16 11 b37, b21

7 10 b28, b21; b52, b45 17 11 b45, b28

8 11 b45, b37 19 11 b52, b33

9 11 b37, b28 24 10 b45, b21; b52, b28

12 10 b33, b21; b45, b33 31 11 b52, b21
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Further, if there is a common bit in m terms, then the degree of the multi-
plication of m terms reduced by m − 1 from the sum of the degrees of m terms
because of the m−1 times of repetition of the bit. Since we are checking common
terms between a pair of terms at a time, the repetition is subtracted

(
m
2

)
times

(instead of m − 1) from the sum of degree as in Theorem 1. This can be settled
by adding

(
m−1
2

)
common repetition again for correct degree calculation.

Observation 1. Let a bit b be present in m terms of a multiplication of n terms
where n ≥ m. The common bit b comes in

(
m
2

)
pairs of terms and each time the

degree is subtracted by 1 as in Theorem1. As a result, the actual degree of the
multiplication is reduced by

(
m−1
2

)
, which is the number of repeated counting of

the common bit b. Hence the number
(
m−1
2

)
needs to be added to the final degree

for the correct degree calculation.

By exploiting Observation 1, it is possible to make a list of trails of three
differences (i.e., i − j − (i + j)) with respect to a set (say B) such that a bit is
common in three terms. That is, if a bit bk+i+j , bk+i and bk are present in the
terms Xk, Yk and Zk respectively, then the terms Xk, Yk+j , Zk+i+j contains a

Table 5. Table of Repeated Common bit with difference Trail

Difference
Trail

Common bit-Via
bit-Shift bit

Difference
Trail

Common bit-Via
bit-Shift bit

Difference
Trail

Common bit-Via
bit-Shift bit

6 − 6 − 12 b9 − b15 − b21 27 − 3 − 30 b33 − b60 − b63 6 − 18 − 24 b9 − b15 − b33

7 − 5 − 12 b21 − b28 − b33 28 − 8 − 36 b9 − b37 − b45 6 − 16 − 22 b15 − b21 − b37

4 − 8 − 12 b33 − b37 − b45 30 − 7 − 37 b15 − b45 − b52 7 − 17 − 24 b21 − b28 − b45

7 − 8 − 15 b45 − b52 − b60 31 − 8 − 39 b21 − b52 − b60 19 − 5 − 22 b9 − b28 − b33

12 − 7 − 19 b9 − b21 − b28 32 − 3 − 35 b28 − b60 − b63 4 − 23 − 27 b33 − b37 − b60

13 − 5 − 18 b15 − b28 − b33 36 − 7 − 43 b9 − b45 − b52 8 − 18 − 26 b37 − b45 − b63

12 − 4 − 16 b21 − b33 − b37 37 − 8 − 45 b15 − b52 − b60 6 − 22 − 28 b9 − b15 − b37

9 − 8 − 17 b28 − b37 − b45 39 − 3 − 42 b21 − b60 − b63 6 − 24 − 30 b15 − b21 − b45

12 − 7 − 19 b9 − b21 − b28 43 − 8 − 51 b9 − b52 − b60 7 − 24 − 31 b21 − b28 − b52

15 − 8 − 23 b37 − b52 − b60 45 − 3 − 48 b15 − b60 − b63 5 − 27 − 32 b28 − b33 − b60

15 − 3 − 18 b45 − b60 − b63 6 − 7 − 13 b15 − b21 − b28 4 − 26 − 30 b33 − b37 − b63

19 − 5 − 24 b9 − b28 − b33 5 − 4 − 9 b28 − b33 − b37 6 − 30 − 36 b9 − b15 − b45

18 − 4 − 22 b15 − b33 − b37 8 − 7 − 15 b37 − b45 − b52 6 − 31 − 37 b15 − b21 − b52

16 − 8 − 24 b21 − b37 − b45 8 − 3 − 11 b52 − b60 − b63 7 − 32 − 39 b21 − b28 − b60

17 − 7 − 24 b28 − b45 − b52 6 − 13 − 19 b9 − b15 − b28 5 − 30 − 35 b28 − b33 − b63

19 − 8 − 27 b33 − b52 − b60 6 − 12 − 18 b15 − b21 − b33 6 − 37 − 43 b9 − b15 − b52

23 − 3 − 26 b37 − b60 − b63 7 − 9 − 16 b21 − b28 − b37 6 − 39 − 45 b15 − b21 − b60

24 − 4 − 28 b9 − b33 − b37 5 − 12 − 17 b28 − b33 − b45 7 − 35 − 42 b21 − b28 − b63

22 − 8 − 30 b15 − b37 − b45 4 − 15 − 19 b33 − b37 − b52 6 − 45 − 51 b9 − b15 − b60

24 − 7 − 31 b21 − b45 − b52 8 − 15 − 23 b37 − b45 − b60 6 − 42 − 48 b15 − b21 − b63

24 − 8 − 32 b28 − b52 − b60 7 − 11 − 18 b45 − b52 − b63
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common term bk+i+j . As our aim is to find out maximum degree, we need to
find the terms when the degree of their multiplication does not reduce. Hence,
it will be easier to find out such possible terms looking from the list of trails.
Table 5 presents the list of trails with respect to the set B (i.e., the bits involved
in the nonlinear terms of NFSR of Grain-v1).

Example 1. If the bits b37, b33 and b28 are present in the terms X28, Y28 and Z28

respectively, then there is difference trail 5 − 4 − 9 between b28 and b37. So the
terms X28, Y28+4, Z28+5+4 contains a common term b28+5+4 = b37.

The NFSR update function of Grain-v1 contains the terms of degree 6 and
less. Expecting the higher degree terms contribute for the highest degree term in
NFSR, we have taken terms of degree 6, 5 or 4. The terms are b21b28b33b37b45b52,
b37b45b52b60b63, b9b15b21b28b33, b9b28b45b63, b33b37b52b60 and b15b21b60b63. Hence,
there are 36 possibilities of pair wise multiplications among them self. Each
possibility will show the number of common bits and the differences. Based on
those differences we can estimate that which pair of terms give the maximum
degree of NFSR update bits. Table 6 contains all 36 possibilities, where one
can find the number of common bits and the differences of bits between each
pair. To explain the contents of the table, let consider the entry between the
row containing the term nk = b15b21b60b63 and the column containing the term
mk = b33b37b52b60. b33 : 27 implies that the multiplication mk+27nk contains
a common bit b33+27 = b60. Similarly the multiplication mk+30nk contains a
common bit b33+30 = b63 and other 5 cases.

In the following section, we present the algorithm to find the degree of NFSR
function (b80+t), LFSR function (s80+t) and output function (zt).

3 Calculating the Degree of Feedback and Output Bits

In key scheduling phase, the output bit zt is added with the NFSR function for
the feedback. Here, the degree of the NFSR update function is 6 and degree of
output function is 3. As round increases the degree of output bit zt increases. If
the degree of output bit zt can be resisted to increase it (using the conditional
equations in Table 1), then the degree of NFSR update bits are dominated by
NFSR update functions for some more rounds. We present a correct degree
estimation technique of NFSR update bit (b80+t) and output bit (zt) of Grain
like cipher in Algorithm 1.

Example 2. We evaluate the degree of b117 = b80+37 at round t = 37.

1. There are six terms of b117 of degree 4, 5 or 6. For the example we considered
the term, say T5 = b100b97b89b82b74 which gives the maximum degree.

2. There are differences of the indices of bits (which are greater than or equal
to 80) are 3, 8, 7, 11, 15, 18 using Table 2. Further b100 contain some terms.
For this example, we replace b100 by b83b80b72b65b57 and for other high
degree terms it can be done similar way. The term can be rewritten as



Degree Evaluation of Grain-v1 247

Table 6. Table of differences (i) between terms mk+i and nk contain a common bit

mk → b15b21 b33b37 b9b28 b9b15 b37b45 b21b28b33

nk ↓ b60b63 b52b60 b45b63 b21b28b33 b52 b37b45b52

b60b63

b15b21 b15 : 6, 45 b33 : 27, 30 b9 : 6, 12, b9 : 6, 12, 51, 54 b37 : 23, 26 b21 : 39, 42; b28 :

b60b63 48 b37 : 23, 26 51, 54 b15 : 6, 45, 48; b21 b45 : 15, 18 32, 35; b33 : 27, 30

b21 : 39, 42 b52 : 8, 11 b28 : 32, 35 : 39, 42; b28 : 32 b52 : 8, 11 b37 : 23, 26; b45 :

b60 : 3 b60 : 3 b45 : 15, 18 , 35; b33 : 27, 30 b60 : 3 15, 18; b52 : 8, 11

b33b37 b15 : 18, 22, b33 : 4, 19, b9 : 24, 28 b9 : 24, 28, 43, 51 b37 : 15, 23 b21 : 12, 16, 31, 39

b52b60 37, 45 27 43, 51 b15 : 18, 22, 37, 45 b45 : 7, 15 b28 : 5, 9, 24, 32

b21 : 12, 16, b37 : 15, 23 b28 : 5, 9, b21 : 12, 16, 31, 39 b52 : 8 b33 : 4, 19, 27

31, 39 b52 : 8 24, 32 b28 : 5, 9, 24, 32 b37 : 15, 23

b45 : 7, 15 b33 : 4, 19, 27 b45 : 7, 15; b52 : 8

b9b28 b15 : 13, 30, b33 : 12, 30 b9 : 19, 36, b9 : 19, 36, 54; b15 : b37 : 8, 26 b21 : 7, 24, 42; b28

b45b63 48 b37 : 8, 26 54 13, 30, 48; b21 : 7, b45 : 18 : 17, 35; b33 : 12,

b21 : 7, 24, b52 : 11 b28 : 17, 35 24, 42; b28 : 17, 35 b52 : 11 30; b37 : 8, 26

42; b60 : 3 b60 : 3 b45 : 18 b33 : 12, 30 b60 : 3 b45 : 18; b52 : 11

b9b15 b15 : 6, 30, b9 : 6, 12, b9 : 6, 12, 19, 24 b21 : 7, 12

b21 18 19, 24 b15 : 6, 30, 18; b21 b28 : 5

b28b33 b21 : 7, 12 b28 : 5 : 28, 12; b28 : 5

b37b45 b15 : 22, 30, b33 : 4, 12, b9 : 28, 36, b9 : 28, 36, 43, 51, b37 : 8, 15, b21 : 16, 24, 31, 39,

b52 37, 45, 48 19, 27, 30 43, 51, 54 54; b15 : 22, 30, 37 23, 26 42; b28 : 9, 17, 24,

b60b63 b21 : 16, 24, b37 : 8, 15 b28 : 9, 17, , 45, 48; b21 : 16, 24 b45 : 7, 15, 32, 35; b33 : 4, 12,

31, 39, 42 23, 26 24, 32, 35 , 31, 39, 42; b28 : 9, 18 19, 27, 30; b37 : 8,

b60 : 3) b52 : 8, 11 b45 : 7, 15, 17, 24, 32, 35; b33 : b52 : 8, 11 15, 23, 26; b45 : 7,

b60 : 3) 18 4, 12, 19, 27, 30 b60 : 3 15, 18; b52 : 8, 11

b21b28 b15 : 6, 13, b33 : 4, 12, b9 : 12, 19, b9 : 12, 19, 24, , 28, b37 : 8, 15 b21 : 7, 12, 16, 24

b33b37 18, 22, 30 19 24, 28, 36 36, 43; b15 : 6, 13, b45 : 7 , 31; b28 : 5, 9, 17

b45b52 , 37 b37 : 8, 15 43 18, 22, 30, 37; b21 : 24; b33 : 4, 12, 19

b21 : 7, 12, b28 : 5, 9, 7, 12, 16, 24, 31 b37 : 8, 15; b45 : 7

16, 24, 31 17, 24 b28 : 5, 9, 17, 24

b45 : 7 b33 : 4, 12, 19

T = b97b89b83b82b80b74b72b65b57. Now we will find out the degree of T . Since
last four bits are of degree one, for sake of simplicity, we consider T as
b97b89b83b82b80. Now we apply step 4 of the algorithm.

3. As per the step 4 in Algorithm 1, the rows of the difference table as Table 2
are 8, 6, 1, 2; 14, 7, 3; 15, 9; 17.

4. The differences of the pair of bits are found from Table 3:
(b9, b15), (b21, b28), (b28, b45), (b37, b52), (b45, b52), (b45, b60), (b15, b21),
(b28, b37), (b37, b45), (b45, b52), (b52, b60), (b60, b63).
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Algorithm 1. Algorithm for max degree of NFSR bits of Grain-v1.
Input : Round t
Output: A highest degree term of b80+t

1 List the high degree terms T1, T2, · · · , Tn in b80+t;
2 Set DEGi = 0, 1 ≤ i ≤ n and let Ti = bt+i1bt+i2 · · · bt+ik ;
3 for i from 1 to n do
4 Construct a difference table as Table 2 using the bits in Ti.;
5 Find out differences of the pair from Table 3.;
6 Find the terms involved in each bit bt+ij in Ti, which gives highest degree

using Table 6. Let the terms are Qt+i1 , Qt+i2 , · · · , Qt+ik ;
7 Set DEGi = Deg(Qt+i1) + · · · + Deg(Qt+ik)).;
8 Find out pairwise common key bits according to the difference of the bits

in the terms Qt+ij using Table 3 and count the number, say l.;
9 Set DEGi = DEGi − l.;

10 Count repeated common bits from Table 5, say m.;
11 Set DEGi = DEGi + m.;

12 end
13 Set DEG = MAX(DEGi).;
14 return DEG.;

5. Consider the pair (b9, b15). This pair indicates that b9 is in b89 and b15 in
b83, which is a common bit of both. We write such information of all pairs as
b89 : b9 and b83 : (b15) in step 1 in Table 7.

6. Now we select the suitable terms for each bit of b80, b82, b83, b89, b97, b100 step
by step (Step 2 to Step 5 in Table 7 respectively). As example, for b80 :
(b37, b45, b63), we will try to find the term from Table 6 where b37, b45, b63
are not involved or are least involved. So we set b80 = b33b28b21b15b9 and
corresponding pairs of b80 with others are deleted. Here, b28 is removed from
b97, b89 and b60 is removed from b83 in step 2 in Table 7.

7. The last step of Table 7 performs step 7 to step 9 of Algorithm 1, where the
degrees of all terms are added in step 7. Then we see from the step 8 that b28
is a common bit between b89 and b82, so l = 1. Hence DEG(b117) = Degb97 +
Degb89 +Degb83 +Degb82 +Degb80 +Degb74 +Degb72 +Degb65 +Degb57 =
5 + 6 + 6 + 5 + 5 + 1 + 1 + 1 + 1 − 1 = 30.

We used Algorithm 1 to calculate the degrees of the NFSR, LFSR update
bits and the output bit up to some rounds. Table 8 presents the degrees of these
bits. The degree of terms up to first 42 rounds in Table 8 are verified using the
software SAGE.
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Table 7. Table of Calculating Degrees of NFSR bit b117

Step 1:b100 : b45, b52, b60. Step 2:b100 : b45, b52, b60.

b97 : b28, b37, b45, b52(b63). b97 : b37, b45, b52(b63).

b89 : b9, b15, b21, b28, b45. b89 : b9, b15, b21, b45. (b45, b60, b63).

(b45, b60, b63).

b83 : b60(b15, b21). b83 : (b15, b21).

b82 : (b28, b52, b60, b63). b82 : (b28, b52, b60, b63).

b80 : (b37, b45, b63). b80 = b33b28b21b15b9.

Step 4:b100 : b60. Step 3:b100 : b60.

b97 : b37, (b63). b97 : b37, b52(b63).

b89 = b52b45b37b33b28b21(b21). b89 : b9, b15,b21. (b45, b60, b63).

(b45).

b83 :. b83 : (b15, b21).

b82 = b33b28b21b15b9(b28). b82 = b33b28b21b15b9(b28).

b80 = b33b28b21b15b9. b80 = b33b28b21b15b9.

Step 5:b100 :. Deg(b117) = Deg(b100b97b89b82) + 1.

b97 = b33b28b21b15b9. = Deg(b97b89b83b82b80) + 3 + 1.

b89 = b52b45b37b33b28b21(b21). = Deg(b97b89b83b82) + 5 + 3 + 1.

b83 = b52b45b37b33b28b21. = Deg(b97b89b83) + 5 + 5 + 3 + 1.

b82 = b33b28b21b15b9(b28). = Deg(b97b83) + 6 + 5 + 5 + 4.

b80 = b33b28b21b15b9. = 5 + 6 + 6 + 5 + 5 + 4 − 1 = 30.

Table 8. Table of Degrees of different non-linear functions

Rounds
(i)

Degree
of b80+i

Degree
of z80+i

Degree
of s80+i

Rounds
(i)

Degree
of b80+i

Degree
of z80+i

Degree
of s80+i

0−15 6 1 1 42 33 22 22

16 6 2 2 43 34 22 22

17−19 10 7 7 44 34 22 22

20−27 15 7 7 45 38 26 26

28−33 19 7 7 46 38 26 26

34 23 18 18 47 38 26 26

35 26 18 18 48 38 26 26

36 26 18 18 49 38 26 26

37 30 22 22 50 38 34 34

38 31 22 22 51 45 39 39

39 31 22 22 52 47 41 41

40 32 22 22 53 47 45 45

41 32 22 22 54 51 48 48
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4 Conclusion and Future Scope

In this paper, we are aiming to develop a degree evaluation technique for feedback
and output bits of the NFSR based stream cipher. Using our technique we are
able to calculate the degree of the said bits during the key scheduling algorithm of
Grain-v1 of reduced round. As in work in progress form, our aim is to a concrete
work which can evaluate the degree of feedback and output bits of NFSR based
stream ciphers. As a result, we will able to claim that how many iterations are
required for a proper mix of NFSR and LFSR bits of Grain like cipher. Further,
we can find out the degrees of the IV bits (key bits are taken as a constant) such
that one can mount a cube attack on Grain like cipher.
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Abstract. Social network data analysts can retrieve improved results
if mining operations are performed on collaborative social network data
instead of independent social network data. The collaborative social net-
work can be constructed by joining data of all social networking sites.
This data may contain sensitive information about individuals in its orig-
inal form and sharing of such data, as it is, may violate individual pri-
vacy. Hence, various techniques are discussed in literature for privacy
preserving publishing of social network data. However, these techniques
suffer from the insider attack, performed by colluding data provider(s)
to breach the privacy of the social network data contributed by other
data providers. In this paper, we propose an approach that offers protec-
tion against the insider attack in the collaborative social network data
publishing scenario. Experimental results demonstrate that our approach
preserves data utility while protecting collaborated social network data
against the insider attack.

Keywords: Collaborative social network data publishing · Insider
attack · m-privacy · k -anonymity

1 Introduction

A social network can be viewed as a mapping of relationships between vari-
ous organizations, individuals, groups, and other information processing entities
[30,35,38]. Formally, it is represented as an undirected graph G = (N,E,A),
where N is a set of nodes representing people, E is a set of edges showing
relationships between nodes and A is a set of attributes associated with peo-
ple. Typically, in social network analysis, data from such a social network is
published and subsequently analysed [25,28,38]. However, in practice, multiple
social networking sites work in collaboration to publish their data and perform
data analysis on aggregated data to retrieve improved data analysis results and
reduce overall data processing cost [8]. Such a setup is termed collaborative social
network data publishing and processing.
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(a) (b)

Fig. 1. (a) social network of employees from company P1 and (b) social network of
employees from company P2.

Table 1. Attribute information dataset
T1 of employees from company P1.

Name Node Age Zip Gender Salary

Ada X1 25 41076 Male 8000

Gladys X2 25 41075 Male 8000

Cathy X3 27 41076 Male 7000

George X7 30 41099 Male 7000

Table 2. Attribute information dataset T2

of employees from company P2.

Name Node Age Zip Gender Salary

Dell X4 35 41099 Male 8000

Henry X5 38 48201 Female 7000

Fred X6 36 41075 Female 5000

George X7 30 41099 Male 7000

Harry X8 28 41099 Male 7000

Irene X9 33 41075 Female 6000

To have an insight, consider an example of two social networks of employees
from companies P1 and P2 (Fig. 1(a) and (b)) respectively. The datasets T1

(Table 1) and T2 (Table 2) show attribute information of employees for P1 and P2

respectively where Name is an identifier, {Age, Zip, Gender} is a quasi-identifier,
and Salary is a sensitive attribute.

The executives of each company use this data to prepare classification model
to estimate the approximate salary for new employees. For accurate estimation,
data from a single social network may not be sufficient. Hence, executives may
collaborate with other companies and perform data estimation from the aggre-
gated data. However, concerning data privacy, companies do not agree to share
their data [23]. Hence, companies are required to aggregate their data in a way
that gives maximum data utility and preserves individuals’ privacy. As a conse-
quence, companies share their data with the trusted data publisher (Fig. 2). The
corresponding collaborative social network for companies and attribute informa-
tion at the trusted data publisher are shown in Fig. 3 and Table 3 respectively.

The data publisher then releases data to data recipients after applying
privacy-preserving approach(es) on the union of the collected data [10]. In
literature, several Privacy Preserving Data Publishing (PPDP) approaches viz.
k -anonymity [24,26], l -diversity [21], t-closeness [19] and differential privacy [6,9]
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are discussed. However, to apply these approaches on collaborative social net-
work data (as discussed above) along with preserving individuals’ privacy and
ensuring data utility is a challenging task. For the above example, we assume
that the publisher applies k -anonymity (k = 2) privacy-preserving mechanism on
the aggregated data and then publishes it. The published 2-anonymous collabo-
rative social network data and its attribute information are shown in Fig. 4 and
Table 4 respectively.

Fig. 2. Insider attack in privacy-preserving collaborative social network data
publishing.

1.1 Problem Formulation

The problem of inferring sensitive information from published data has been
studied in-depth in [10]. From literature, we observe that existing PPDP
approaches are based on a key assumption that attackers are among the data
recipients only, whose intention is to uncover sensitive information about indi-
viduals [1,10]. However, we believe that, in the above discussed collaborative
data publishing scenario, data provider(s) may also be colluding. These collud-
ing data providers can compromise the privacy of individuals whose data records
are shared by other data providers as shown in Fig. 2. This situation may lead to
an insider attack - a type of attack by colluding data provider(s). In an attack,
the colluding data provider(s) may use their own data records, in addition to
the published data and background knowledge, to infer the data records shared
by other data providers.

Formally, if n is a set of collaborative data providers and m is a set of
colluding data providers, where m ⊂ n and |m| < |n|, then the insider attack
can be carried out by a single or a group of up to m colluding data providers
out of total n data providers. Such m colluding data providers are also known
as an m-adversary.



258 B. Kadhiwala and S. J. Patel

Fig. 3. The collaborative social
network at trusted data publisher.

Table 3. Union of datasets T1 and T2 after collab-
oration at trusted data publisher.

Provider Name Node Age Zip Gender Salary

P1 Ada X1 25 41076 Male 8000

P1 Gladys X2 25 41075 Male 8000

P1 Cathy X3 27 41076 Male 7000

P2 Dell X4 35 41099 Male 8000

P2 Henry X5 38 48201 Female 7000

P2 Fred X6 36 41075 Female 5000

P1,P2 George X7 30 41099 Male 7000

P2 Harry X8 28 41099 Male 7000

P2 Irene X9 33 41075 Female 6000

Fig. 4. 2-anonymous social
network of Fig. 3.

Table 4. 2-anonymous attribute information of
social network of Fig. 4.

Provider Name Node Age Zip Gender Salary EQ

P2 Dell X4 [30–35] 41099 Male 8000 EQ1

P1, P2 George X7 [30–35] 41099 Male 7000

P1 Cathy X3 [25–27] 41076 Male 7000 EQ2

P1 Ada X1 [25–27] 41076 Male 8000

P1 Gladys X2 [25–28] 410** Male 8000 EQ3

P2 Harry X8 [25–28] 410** Male 7000

P2 Henry X5 [33–38] ***** Female 7000

P2 Fred X6 [33–38] ***** Female 5000 EQ4

P2 Irene X9 [33–38] ***** Female 6000

In the aforementioned example of two companies, if the data provider P1 is
colluding, then as depicted in Fig. 2, using the published dataset, he/she can
compromise Harry’s privacy by deriving his sensitive attribute “salary”. This
can be done with the help of background knowledge after removing all other
records from EQ3 of the published data (Table 4). The challenge is to publish
collaborative social network data to resist against this insider attack - the threat
introduced by m-adversary while preserving data utility.

The m-privacy notion [12–14] is utilized to protect the published social
network data against m-adversary. To offer such protection, the in-built data
knowledge of m-adversary and the data records they jointly contribute is taken
into account by the m-privacy notion while applying privacy-preserving mech-
anism(s). As a result, m-privacy promises that each generated equivalence
group satisfies privacy constraint even after excluding records owned by an m-
adversary.

1.2 Contribution

Our main contributions in this paper are as follows:
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– We introduce the insider attack in collaborative social network data publish-
ing scenario and emphasize the motivation for prevention of the same.

– We integrate m-privacy [12–14] to prevent insider attack in the clustering
based social network anonymization approach for collaborative social network
data publishing scenario.

– We present design and analysis of trusted third-party based m-privacy
anonymization approach for privacy preservation of collaborative social net-
work data against external data recipients and also against up to m colluding
data providers out of total n collaborative social network data providers.

1.3 Organization

The rest of the paper is structured as follows: Sect. 2 reviews the existing work
related to the problem domain. Section 3 discusses the social network privacy
model and other basic preliminaries in brief. The proposed approach for insider
attack prevention is described in Sect. 4. Section 5 presents the analysis of the
proposed approach. Section 6 discusses the obtained experimental results and
also highlights the key findings. Finally, Sect. 7 draws concluding remarks and
provides directions for future work.

2 Related Work

The replacing of the identifier attributes of individual users by meaningless
attributes or the removal of these attributes is not sufficient to provide privacy
when the social network data is to be published [2]. In this case, the privacy
of victim(s) can be breached by an adversary using his/her background knowl-
edge and the published social network data. To protect data against such attack,
Sweeney and Samarati proposed an anonymization approach known as the k -
anonymity model [26] that can be utilized for preserving privacy.

The anonymization approaches for privacy-preserving publishing of social
network data are classified into three categories. The aim of these approaches is
to prevent adversaries from identifying the existence of any target victim or the
target link between nodes.

In [4,15,17,32–34], the authors proposed the approaches that randomly mod-
ifies the social network structure with the help of edge switching, addition or
deletion operations. These randomized graph modification approaches introduce
perturbation in a way that satisfies privacy requirement and also optimizes the
data utility objectives.

In [20,31,37], the authors discussed the approaches that anonymize a social
network via a deterministic procedure of insertion and/or deletion of vertices
and/or edges for ensuring indistinguishability. These greedy graph modification
approaches assume that the adversary has background knowledge of its target
node and hence modify the graph structure in order to satisfy the privacy con-
straint, for example, k -anonymity constraint and data utility objectives.
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In [7,16,36], the authors proposed approaches that group vertices and edges
into a cluster of size at least k, where k is the anonymity parameter instead of
modifying the graph structure as in the approaches of previous two categories.
Then, the generated cluster of vertices and edges is anonymized into a super-
vertex by generalizing quasi identifiers of all nodes in that cluster. In this way, the
social network user’s attribute information is protected. The various clustering-
based approaches can further be divided into edge clustering approaches, ver-
tex clustering approaches, vertex and edge clustering approaches, and vertex-
attribute mapping clustering approaches [38].

Graph modification approaches may not be faithful to the original data as the
additions and/or deletions of edges and/or vertices by these approaches perturb
the graph structure to a large extent. Clustering based approaches cause less
damage to the graph structure as compared to graph modification approaches. In
addition, clustering based approaches for social network anonymization proposed
in [7,27] consider both node attribute descriptive information and structural
information. Sufficient privacy can only be provided to social network users, if
the privacy-preserving approach preserves the privacy of both the descriptive
information and the structural information. The graph modification approaches
provide privacy to structural information only without taking into account the
user’s descriptive information. Hence, in our work, we focus on clustering-based
anonymization approaches for privacy-preserving publishing of social network
data.

In [36], the authors proposed the first clustering based anonymization app-
roach for social networks that considers relationship between users in addition
to node attribute information. This works in two steps. In the first step, the
approach anonymizes node attribute information without taking into considera-
tion the relationship information. In the next step, it considers the relationship
information and provides privacy to it with the help of edge removal operations
in a controlled manner.

In [7], the authors proposed clustering based a Social Network Greedy Anony-
mization approach that also protects both structural information and node
descriptive information. This approach anonymizes the descriptive information
and the structural information simultaneously instead of anonymizing both one
after another in two steps.

These existing clustering based privacy preserving approaches can be adopted
for publishing of collaborative social network data. However, these approaches
do not protect the published social network data against an insider attack with
respect to the collaborative social network data publishing scenario. In [12–14],
the notion of m-privacy is discussed to protect anonymized data against the
insider attack for tabular data. It can be utilized using either a Trusted Third
Party based method or a Secure Multiparty Computation based method for a
collaborative data publishing scenario. In [11], the authors discussed the Trusted
Third Party (TTP) based method in which m-privacy is verified by a trusted
data publisher at a centralized place. In [12,13], the authors discussed Secure
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Multiparty Computation (SMC) based method in which m-privacy is verified
using cryptographic operations.

Looking at the complexities of both methods, time taken by the SMC based
method is higher than the TTP based method. Furthermore, as per our obser-
vation, the computation cost of SMC based method increases when the number
of collaborative parties in the distributed scenario increases. As a result, for an
application scenario in which number of collaborative parties is more, TTP based
method is preferable to use. In addition, both methods guarantee that there is
no intermediate disclosure of information during the anonymization process.

Hence, the main aim of our work in this paper is insider attack prevention
for collaborative social network data publication by incorporating the Trusted
Third Party based m-privacy with a clustering based anonymization approach.

3 Preliminaries

3.1 Social Network Privacy Model

A social network can be modeled as an undirected graph G = (N,E,A), where
N is a set of vertices represents individual entities, E ⊆ N × N is a set of edges
representing a relationship between two entities and A is a set of corresponding
tuples of the vertices containing identifier attributes, quasi-identifier attributes,
and sensitive attributes [7,29].

Definition (Masked Social Network): Given an initial social network mod-
eled as a graph G = (N,E,A), and a partition S = {cl1, cl2,..., clv} of the nodes
set N,

⋃v
j=1 clj = N , cli ∩ clj = φ, i, j = 1...v, i �= j, then the masked social

network MG is defined as, MG = (MN,ME,MA) [7,29], where:

– MN = {Cl1, Cl2, ..., Clv}, Cli is a node corresponding to the cluster clj ∈ S
that is described by the “tuple” gen(cl j) - the generalization information of
clj , w.r.t. quasi-identifier attribute set and the intra-cluster generalization
pair

(|clj | ,
∣
∣Eclj

∣
∣
)
;

– ME ⊆ MN × MN ; (Cli, Clj) ∈ ME iif Cli, Clj ∈ MN and ∃X ∈ cli, ∃Y ∈ clj ,
such that (X, Y) ∈ E. Each generalized edge is labeled with the inter-cluster
generalization value

∣
∣Ecli,clj

∣
∣;

– MA is the set of corresponding tuples of the clusters’ vertices containing
generalized quasi-identifier attributes and sensitive attributes.

Definition (k-anonymous Masked Social Network): The masked social
network MG = (MN,ME,MA), where MN = {Cl1, Cl2, ..., Clv}, and Clj =
[gen(cl j),

(|clj | ,
∣
∣Eclj

∣
∣
)
], j = 1,..., v is said to be k -anonymous iff |clj | ≥ k for

all j = 1,..., v. That is, each cluster formed from the initial partition should
contain at least k vertices.
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3.2 m-Privacy

Given n data providers, a set of records T, and an anonymization mechanism A,
an adversary I is a coalition of m (m < n) providers that jointly contribute a set
of records TI . The anonymized dataset T ∗ = A(T) is said to satisfy m-privacy
with respect to a privacy constraint C iff any anonymized superset of records
A(T′) from non-colluding providers satisfies C, i.e.,

∀I ⊂ P, | I |= m,∀T ′ : T\TI ⊆ T ′ ⊆ T,C(A(T ′)) = true (1)

It requires that each equivalence group must satisfy C after excluding any
records provided by an m-adversary.

3.3 Information Loss Measures

In [7,29], two types of information loss measures - the generalization information
loss and the structural information loss are discussed.

Generalization Information Loss. The generalization information loss mea-
sure quantifies descriptive data loss resulting from quasi-identifier attribute gen-
eralization [5,7,29].

Definition (Generalization Information Loss (GIL)): Let cl be a cluster,
gen(cl) be its generalization information and QI = {N1, N2, .., Ns, C1, C2, .., Ct}
be the set of quasi-identifier attributes. The generalization information loss
resulting from quasi-identifier attributes generalization of the cl tuples to gen(cl)
is given by:

GIL(cl) = |cl| ·
⎛
⎝

s∑
j=1

size(gen(cl)[Nj])

size (minX∈N (X[Nj ]),maxX∈N (X[Nj ]))
+

t∑
j=1

height(∧(gen(cl)[Cj]))

height(HCj
)

⎞
⎠

(2)

Where, size([i1, i2]) is the size of the interval [i1, i2], |cl| denotes the cardi-
nality of cluster cl, ∧(w), w ∈ HCj

denotes the subhierarchy of HCj
rooted at

w and the height of the tree hierarchy HCj
is denoted by height(HCj

).

Definition (Total Generalization Information Loss): Total generalization
information loss, denoted by GIL(G,S), can be obtained after masking the graph
G based on the clusters S = {cl1, cl2, .., clv}. It is the sum of the generalization
information loss measure for each of the clusters in S and is given by:

GIL(G,S) =
v∑

j=1

GIL(clj) (3)

Definition (Normalized Generalization Information Loss): The normal-
ized generalization information loss, denoted by NGIL(G,S), is given by:
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NGIL(G,S) =
GIL(G,S)
n · (s + t)

(4)

Where, s denotes total number of numeric quasi-identifier attributes, t
denotes total number of categorical quasi-identifier attributes and n denotes
total number of tuples.

Structural Information Loss. The structural information loss measure quan-
tifies the probability of error when trying to reconstruct the structure of the
original social network from its anonymized version [7,29]. We use two compo-
nents of the structural information loss for the social network privacy model - the
intra-cluster structural information loss and the inter-cluster structural informa-
tion loss.

Definition (Intra-cluster Structural Information Loss): The intra-cluster
structural information loss (intraSIL) is quantified as the probability of wrongly
identifying a pair of nodes in cl as an unconnected pair or as an edge and is
calculated using:

intraSIL(cl) = 2 · |Ecl| ·
(

1 − |Ecl|
(|cl|

2

)

)

(5)

Where, |cl| denotes the cardinality of cluster cl and |Ecl| denotes total number
of edges in the cluster cl.

Definition (Inter-cluster Structural Information Loss): The inter-cluster
structural information loss (interSIL) is quantified as the probability of wrongly
labeling a pair of nodes (X, Y), where X ∈ cl1 and Y ∈ cl2, as an unconnected
pair or as an edge between two clusters and is calculated using:

interSIL(cl1, cl2) = 2 · |Ecl1,cl2 | ·
(

1 − |Ecl1,cl2 |
|cl1| · |cl2|

)

(6)

Where, |cl1| and |cl2| denote the cardinality of clusters cl1 and cl2 respectively
and |Ecl1,cl2 | denotes total number of edges between clusters cl1 and cl2.

Definition (Total Structural Information Loss): The total structural infor-
mation loss, denoted by SIL(G,S), can be obtained when masking the graph G
based on the clusters S = {cl1, cl2, .., clv}. It is the sum of all inter-cluster and
intra-cluster structural information loss values and is given by:

SIL(G,S) =
v∑

j=1

(intraSIL(clj)) +
v∑

i=1

v∑

j=i+1

(interSIL(cli, clj)) (7)

Definition (Normalized Structural Information Loss): The normalized
structural information loss, denoted by NSIL(G,S), is calculated using:
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NSIL(G,S) =
SIL(G,S)

(n · (n − 1)/4)
(8)

We cannot compute the structural information loss during the cluster cre-
ation process, until the entire cluster partitioning is known. Therefore, the dist
measure is introduced in [7,29]. This measure quantifies the extent to which the
neighborhoods of two social network nodes are similar to each other. In addition,
this measure is also used to calculate the structural distance between a node and
a cluster.

Definition (distance between two nodes): The distance between two nodes
(Xi and Xj) of the collaborative social network, denoted by dist(Xi, Xj), is
described by their associated n-dimensional boolean vectors Bi and Bj and is
given by:

dist(Xi,Xj) =

∣
∣
∣
{

l|l = 1...n ∧ l �= i, j; bil �= bjl

}∣
∣
∣

n − 2
(9)

An n-dimensional boolean vector Bi =
(
bi1, b

i
2, ..., b

i
n

)
is used to represent

the neighbourhood of each node Xi. Here, bij denotes the jth component of
this vector, which is 1 if there is an edge (Xi, Xj) ∈ E, and is 0 otherwise,
∀j = 1, ..., n and j �= i. The value of bii is considered to be undefined and hence,
not equal to 0 or 1.

Definition (distance between a node and a cluster): The distance between
a node X of the collaborative social network and a cluster cl, denoted by dist(X,
cl), is defined as the average distance between the node X and each and every
node from cl and is calculated using:

dist(X, cl) =
∑

Xj∈cl dist(X,Xj)
|cl| (10)

Where, |cl| denotes the cardinality of cluster cl.

4 Proposed Approach

In Algorithm 1, we show the process of collaborative social network data
anonymization that provides m-privacy against the insider attack. Given a social
network graph G = (N,E,A), this algorithm generates a set S of clusters that
ensures both k -anonymity and m-privacy. The algorithm consists of two main
phases - cluster formation phase and cluster dispersing phase.



A Novel k -Anonymization Approach for Prevention of Insider Attack 265

Algorithm 1. The proposed algorithm.
INPUT: G = (N, E, A) - a collaborative social network, k - the parameter for k -

anonymity, m - the parameter for m-privacy, α - the parameter for GIL, β - the
parameter for SIL, α + β = 1

OUTPUT: a set S of clusters that ensures k -anonymity with m-privacy
1: S ← φ;
2: i ← 1;
3: repeat
4: Xseed ← a node with maximum degree from N ;
5: cli ← Xseed;
6: N ← N - Xseed; // N keeps track of nodes that are not distributed to clusters
7: repeat
8: X∗ ← argminX∈N (α · NGIL(G1, S1) + β · dist(X, cli)); // X∗ is the node

from N (unselected nodes) that produces the minimal information loss growth
when added to the cluster cli. G1 is the subgraph induced by cl ∪ {X} in G.
S1 is a partition with one cluster cl ∪ {X}.

9: cli ← cli ∪ {X∗};
10: N ← N - X∗;
11: until (((cli has k elements) and (m-privacy is satisfied)) or (N == φ));
12: if ((|cli| < k) or ((|cli| == k) and (m-privacy is not satisfied))) then
13: DisperseCluster(S, cli);
14: else if ((|cli| > k) and (m-privacy is not satisfied)) then
15: DisperseCluster1(S, cli);
16: else
17: S ← S U {cli};
18: i ← i + 1;
19: end if
20: until (N == φ);

In cluster formation phase, a node with the maximum degree that is not
allocated to any cluster is selected as a seed for the new cluster (lines from 4 to
6). The next node that needs to be allocated to this cluster is selected from the
remaining nodes in such a way that the inclusion of this node into the cluster
results in minimum increase in the information loss of that cluster (line 8).
The information loss growth of the cluster is quantified as a weighted measure
that combines both NGIL and distance measure. The user-defined parameters
α and β are used for the nodes’ attribute data and the nodes’ neighborhoods
information respectively (line 8). The clusters are created one at a time and the
current cluster grows with one node at each step (lines 9 and 10). This process
is repeated until both the desired k -anonymity and m-privacy constraints are
satisfied (line 11). The same process (lines from 8 to 11) is repeated unless each
and every node from N is allocated to the clusters. During this cluster formation
process, there are two possible cases with respect to the last constructed cluster.
First, the last constructed cluster may contain less than k nodes or it may contain
exactly k nodes but not satisfy the m-privacy condition (line 12). Second, the
last constructed cluster may contain greater than k nodes but not satisfy m-
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privacy condition (line 14). For these cases, it is required to disperse the last
constructed cluster one node at a time into the previously constructed clusters.

Algorithm 2. The DisperseCluster algorithm for dispersing the cluster.
INPUT: S - a set of clusters, cl - a cluster that is to be dispersed
1: for every X ∈ cl do
2: clu ← FindBestCluster(X, S);
3: clu ← clu ∪ {X};
4: end for

Algorithm 3. The DisperseCluster1 algorithm for dispersing the cluster.
INPUT: S - a set of clusters, cl - a cluster that is to be dispersed
1: for every X ∈ cl do
2: clu ← FindBestCluster(X, S);
3: clu ← clu ∪ {X};
4: cl ← cl − {X};
5: if ((|cl| ≥ k) and (m-privacy is satisfied)) then
6: return cl;
7: end if
8: end for

Algorithm 4. The FindBestCluster algorithm for finding the best cluster.

INPUT: X - a node from the cluster that is to be dispersed, S - a set of clusters
OUTPUT: The cluster clj
1: bestCluster ← NULL;
2: infoLoss ← ∞;
3: for every clj ∈ S do
4: if (((α · NGIL(G1, S1) + β · dist(X, clj)) < infoLoss) and (m-privacy is

satisfied)) then
5: infoLoss ← α · NGIL(G1, S1) + β · dist(X, clj);
6: bestCluster ← clj ;
7: end if
8: end for
9: return bestCluster;

In cluster dispersing phase, the last constructed cluster is dispersed using
either DisperseCluster algorithm (line 13) for the first case or DisperseCluster1
algorithm (line 15) for the second case. During the cluster dispersing, each node
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of the last constructed cluster is moved into the cluster from already generated
clusters. This cluster is determined using FindBestCluster algorithm (line 2,
Algorithms 2 and 3) such that this node shifting results in minimum information
loss increase and also satisfies m-privacy condition. For the second case, it is
possible that after removal of one node from the cluster, the conditions for k -
anonymity and m-privacy may be satisfied. Hence, for the second case, every
time after removal of one node from the cluster, the conditions for k -anonymity
and m-privacy are checked during the disperse process (line 5, Algorithm 3). If
both conditions are satisfied, then the process of dispersing cluster is terminated
at that step by returning the cluster with remaining nodes (line 6, Algorithm 3).

5 Security Analysis

The threat model, privacy analysis and complexity analysis of our proposed
approach is as follows:

5.1 Threat Model

The data publisher is fully trusted in our proposed approach. At a trusted data
publisher site, the collaborative social network of total N nodes is constructed
from the social network data of n collaborative parties out of which m (m < n)
number of parties may be colluding. External data recipients may use only the
published data and the background knowledge to breach the privacy of the data
records. The colluding data providers may use their own data records also to
breach the privacy of the data records contributed by other data providers in
addition to the published data and the background knowledge.

5.2 Privacy Analysis

Theorem 1. The anonymous dataset Tk obtained from the collaborative dataset
T through generalization satisfies m-privacy with respect to k-anonymity con-
straint if and only if for all tuples, t

′ ∈ Tk, Prob
[
t

′ → (t ∈ T )
]

≤ 1
k where, m

represents the number of colluding data providers and x → y represents that x is
generalized from y.

Proof. ⇒ Assume that the anonymous dataset Tk satisfies m-privacy with
respect to k -anonymity. For the generalized values t

′
, if t

′ ∈ Tk, then from the
definition of m-privacy with respect to k -anonymity there must a set S having
identical values t

′
i ∈ Tk, such that the total number of tuples in S is at least k

after excluding the tuples if any that belongs to colluding data providers and
t

′
= t

′
i. Each tuple t

′
i in S is generalized from the tuple t of collaborated dataset T

that is, (t
′
i ∈ S) → (t ∈ T ). As we cannot distinguish among the values of t

′
i and

also the size of S is greater or equal to k, |S| ≥ k, the probability that we have a
particular tuple t

′
i is given by 1

|S| ≤ 1
k . As a consequence, the probability of t

′
that

is generalized from a specific ti is given by, Prob
[
t

′ → ti

]
= Prob

[
t

′
= t

′
i

]
≤ 1

k .
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⇐ Assume that Prob
[
t

′ → (t ∈ T )
]

≤ 1
k and t

′
be the tuple in Tk with the

highest probability obtained through generalization from t. The generalization
is done according to a generalization hierarchy and therefore tuple t must be
generalized to a uniquely determined single node in each hierarchy. This hier-
archy defines the only allowed values for t

′
. Thus, from initial assumption, for

∀t
′
i ∈ Tk, P rob

[
t

′
i → t

]
= Prob

[
t

′ → (t ∈ T )
]

≤ 1
k . As the tuple t is uniquely

generalized to one of the t
′
i, the sum of all probabilities must be equal to 1. Thus,

there must be at least k tuples in Tk, i.e. k · t′
i ∈ Tk that are identical to t

′
after

excluding the tuples if any that belongs to colluding data providers. Hence, we
can say that m-privacy with respect to k -anonymity holds for t

′
.

5.3 Complexity Analysis

The proposed approach is a greedy algorithm as this approach selects a solution
from the search space, that is, the set of all partitions of N nodes consisting of
subsets of k or more nodes, based on local optimum value of the two criterion
measures - the total generalization information loss (the α parameter) and the
total structural information loss (the β parameter). Our approach finds a good
feasible solution to the anonymization problem that may not be the optimal
solution. In fact, an efficient method for finding the optimal solution of the k -
anonymization problem for microdata is not known and has been proven to be
NP-hard problem [22]. The privacy preserving collaborative social network data
publishing problem with respect to k -anonymity constraint is identical to this
problem except only one difference that is we have to minimize two information
loss measures of the data. Thus, the time complexity of the clustering based social
network data anonymization operation is O(n2) as it is a greedy algorithm.

In addition, for the k -anonymity constraint, the m-privacy checking operation
sequentially generates all possible

(
n
m

)
combination of m-adversaries out of total

n collaborative data providers and then checks privacy of the corresponding
remaining records. The complexity in this case is determined by

(
n
m

)
. In the

worst case scenario, when m = n
2 , the number of possible checks are equal to

the central binomial coefficient
(

n
n/2

)
. As a result, the average time-complexity

for m-privacy checking is O( 2n/n).

6 Experimental Evaluation

We perform experiments on a real dataset to estimate the performance of our
proposed approach with respect to information loss measures. In addition, the
data utility of the anonymized data is also measured and compared in terms of
classification accuracy using the ID3 classification algorithm.

6.1 Experimental Setup

The proposed approach is implemented in Python. All experiments are per-
formed on an unloaded PC running Windows 7 OS with an Intel Core i5 CPU
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2.67 GHz with 4 GB main memory. We perform experiments on the social net-
work with 300 nodes randomly selected from the Adult dataset available at
the UC Irvine Machine Learning Repository [3]. The edge set of the social net-
work is generated randomly with an average vertex degree of 12.5. We uniformly
distribute 300 nodes among six data providers in order to consider this social
network as a collaborative social network. The set of 300 nodes is referred to as
an N in the proposed approach. Each node is described by the attributes node
ID, age, workclass, native-country, sex, race, marital-status and providerID.

We consider a set of six attributes: age, workclass, native-country, sex, race
and marital-status as a quasi-identifier attribute in all experiments. The num-
ber of distinct values for the six quasi-identifier attributes are as follows: age -
56, workclass - 6, native-country - 19, sex - 2, race - 5 and marital-status - 7.
The quasi-identifier attributes workclass, native-country, sex, race and marital-
status are categorical attributes and age is only the numerical attribute. We
use hierarchy-free generalization for the numerical quasi-identifier attribute [18].
The heights of the generalization hierarchies of five categorical quasi-identifier
attributes for their corresponding value are as follows: workclass - 2, native-
country - 3, sex - 1, race - 1 and marital-status - 1. The configurations used in
the experiments are shown in Table 5.

Table 5. Experimental configurations.

No. Experiment Parameter settings

1 Varied α-value and β-value k-value = 5,

n (no. of data providers) = 6,

m (no. of colluding insiders) ∈ {0,1,2},
|QIDs| = 6,

(α, β) ∈ {(1, 0) , (0.5, 0.5) , (0, 1)}
2 Varied k -value k-value ∈ {2, 3, 4, 5, 6, 7, 9, 10},

n (no. of data providers) = 6,

m (no. of colluding insiders) ∈ {0,2},
|QIDs| = 6,

(α, β) ∈ {(0.5, 0.5)}
3 Varied m (no. of colluding insiders) k-value = 5,

n (no. of data providers) = 6,

m (no. of colluding insiders) ∈ {0,1,2,3,4},
|QIDs| = 6,

(α, β) ∈ {(0.5, 0.5)}

6.2 Experimental Results

For both existing and proposed approaches, Fig. 5 shows the effect of varied α and
β, varied k -value and varied m-value on NGIL and NSIL. Furthermore, Figs. 6,
7 and 8 summarizes the utility of the anonymized data in terms of classification
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accuracy for the different split ratio of training data and testing data for varied
α-value and β-value, varied k -value, varied m-value configurations respectively.

Fig. 5. Experimental results with respect to NGIL and NSIL for three experimental
configurations.

6.3 Experimental Analysis

Our key findings are as follows based on the analysis of the obtained results:
For all three configurations (Fig. 5), the anonymization performed by the

proposed approach results in minimum increase in both NGIL and NSIL as
compared to the existing approach [7]. This is due to the increase in the size
of the equivalence group while satisfying m-privacy constraint along with k -
anonymity constraint.

The value of NGIL increases gradually with gradual decrease in the α param-
eter value (Fig. 5(a)) and the value of NSIL decreases gradually with gradual
increase in the β parameter value (Fig. 5(d)) for both the existing approach and
the proposed approach. The reason is that α parameter and β parameter is
used to control generalization information loss and structural information loss
respectively.

The pair (α, β) = (1, 0) guides the algorithm towards minimizing the gener-
alization information loss without giving any importance to the structural infor-
mation loss during cluster formation process. For real-time applications, such
as study of the correlation between the age of the terrorist and related threat



A Novel k -Anonymization Approach for Prevention of Insider Attack 271

Fig. 6. Classification accuracy vs. varied α and β values.
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Fig. 7. Classification accuracy vs. varied k -value.

from multi-site terrorism data, preserving generalization information is more
important than preserving structural information. Hence, for such application
scenarios, the user can set the value of α to 1 and β to 0.

The pair (α, β) = (0, 1) guides the algorithm towards minimizing the struc-
tural information loss while giving no consideration to the generalization infor-
mation loss. For real-time application scenarios, such as to prepare the classifica-
tion model for the estimation of the approximate salary to be given to the newly
joined employee without link re-identification from collaborative social network
of company employees, preserving structural information is more important than
preserving generalization information. Hence, for such application scenarios, the
user can set the value of α to 0 and β to 1.
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Fig. 8. Classification accuracy vs. varied m-value.

The pair (α, β) = (0.5, 0.5) indicates the request to the algorithm to give
equal importance to both information loss components during the cluster for-
mation process. For real-time application scenarios, such as to study the corre-
lation of a person’s age with the specific disease from self-help OSN in which the
person’s medical records and relationships between persons are both sensitive,
preserving both attribute information and structural information is important.
Hence, for such application scenarios, the user can set the value of α to 0.5 and
β to 0.5.

In general, if the structural information is more important than the attribute
information, it is mandatory to set the value of β parameter greater than the
value of α parameter and if the attribute information is more important than the
structural information, it is mandatory to set the value of α parameter greater
than the value of β parameter.

The variation in the classification accuracy w.r.t. different split ratio of train-
ing and testing data is due to the variation in the anonymized results we receive
by the existing approach and the proposed approach for all three configurations
(Figs. 6, 7 and 8). That is, the same node anonymized in one configuration may
be differently anonymized in another configuration. As a result, for all configu-
rations, the training data used for building the decision tree of ID3 classification
and the testing data used for accuracy checking are different. Hence, we get the
variation in the accuracy values. However, this difference is in an acceptable
range.

7 Conclusions

In this paper, we propose an approach that incorporates m-privacy with the
clustering based approach for a new type of attack - insider attack - prevention
with respect to collaborative social network data publishing scenario. From the
experimental results, we conclude that using our approach we can achieve the
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privacy of collaborative social network data against the insider attack with the
help of the m-privacy notion. However, we observe that, the protection against
the insider attack is achieved by our approach with an increase in information
loss values. In fact, there is always a natural trade-off between data utility and
data privacy. Hence, the increase in the information loss can be accepted because
our proposed approach gives protection against the insider attack while existing
approaches do not.

This work can be extended to protection against the homogeneity attack
together with insider attack by taking into consideration the sensitive attributes
in addition to quasi-identifier attributes and relations for a collaborative social
network data publishing scenario. Another extension can be devising an approach
that considers actual value of the information loss measure during each cluster
formation step while providing protection against insider attack.
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Abstract. Visual Cryptography is an image encryption technique which
reconstructs the image using human visual system. Presently used size invariant
visual cryptography schemes (VCS) does not preserves both security and con-
trast conditions. In this paper we proposed a new method for size invariant block
wise encoding VCS based on perfect reconstruction of white pixels which
provides perfect security and retains the contrast. Here we have discussed an
outline of size invariant VCS based on random basis column pixel expansion,
block wise encoding and random basis VCS with perfect reconstruction of white
pixels (PRWP) which have been demonstrated based on various research
studies. We have also discussed the demerits of the existing models and made an
experimental analysis between previous models and the proposed model. From
the analysis we proved that the proposed method enhances the security and
maintain the contrast.

Keywords: Visual Cryptography Scheme � Size invariant � Contrast � Security �
Pixel expansion

1 Introduction

Image secret sharing scheme known as Visual Cryptography (VC) was introduced by
Naor and Shamir. Visual Cryptography is one of the most powerful cryptographic
techniques for image security. In (k, n) Visual Cryptography Scheme, the secret image
is separated into n shares from which any k or greater than k shares decrypts the original
secret image. The main goal of the VCS is that decryption can be done without any
computation. Due to the speedy decoding or recovering properties and perfect cipher,
VC plays an inevitable role in multimedia and information security. But the three
confronting concerns in VC are: the decrypted image’s contrast, pixel expansion and its
security [1–3]. The disquiets stated above appeared in the VCS require additional
consideration.

To surmount the pixel expansion problems many Size Invariant (without pixel
expansion) VCS were proposed. In this scheme, the size of the original secret image,
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the shares and the decrypted image are equal. The security and decrypted image’s
contrast are the two barriers remain in the size invariant VCS. The crucial objective of
the proposed system is to produce a size invariant VCS which improves the security
and retains contrast of the overlapped image. We used block wise encryption of pixels
which contains manifold pixels rather than a single pixel. Also we introduced block
wise encoding size invariant VCS with perfect reconstruction of white pixels instead of
black pixels [4, 5, 15, 17]. The upcoming sections of the paper are as follows. Sector 2
describes different size invariant VCSs. In Sect. 3 we have demonstrated the relevance
of VCS with perfect reconstruction of white pixels. Section 4 draws the proposed
model, the experimental results and analysis of various schemes. The final section
draws the conclusion.

2 Size Invariant Visual Cryptography

In conventional VCS each pixel is expanded into m pixels, where m is the pixel
expansion. The size of the decrypted image is m times larger than the original image.
The quality of the recovered image is degraded due to the pixel expansion. But in size
invariant VCS the size of the secret image, share images and the decoded image are
similar. In this scheme the pixel expansion m = 1. Mainly size invariant VCS can be
categorized into two: random basis column pixel expansion and block wise encoding
[4, 6, 14, 16].

2.1 Size Invariant VCS with Random Basis Column Pixel Expansion

In this method, shares with consistent share size are generated using random basis
column pixel expansion technique. The size of the secret image, the shares and the
reconstructed image are identical in this scheme. The 2-out-of-2 image size invariant
VCS with 4-subpixel layout can be demonstrated with the random basis column pixel
expansion technique. To implement this method, the following basis matrices Bw and
Bb are used, where

Bw ¼ 1 0 1 0
1 0 1 0

� �
;Bb ¼ 1 0 1 0

0 1 0 1

� �

For encrypting white pixels and black pixels one of the columns is randomly
chosen from Bw and Bb. The column vector V = [vi]

V ¼ v1
v2

� �

The ith element represents the color of the pixel in the ith share image, the v1 and v2
are the pixels in the first and second share images respectively. In 2-out-of-2 image size
invariant VCS, to share a black pixel, one of the columns in Bb is chosen at random.
Suppose the chosen column vector from Bb is:
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V ¼ 1
0

� �

The element 1 represents the black pixel in the first share image, and element 0
represents the white pixel in the second share image. Similarly, to share a white pixel,
one of the columns in Bw is chosen at random. The different column matrices from the
basis matrices Bw and Bb of a 2-out-of-2 image size invariant VCS with four subpixels
are:

Bw ¼ f 1
1

� �
;

0
0

� �
;

1
1

� �
;

0
0

� �
g

Bb ¼ f 1
0

� �
;

0
1

� �
;

1
0

� �
;

0
1

� �
g

These column matrices can be used to construct the image size invariant VCS [3,
6]. An example of (2, 2) size invariant random basis column pixel expansion is shown
in Fig. 1.

The column vectors chosen from the basis matrices in this scheme violated the
security clause of conventional VCS. The security clause of the conventional VCS is
illustrated as follows:

For any set

r1; r2; . . .; rtf g � 1; 2; . . .; nf g ð1Þ

with t < k, the t x m matrices obtained by restricting Bw and Bb to rows r1; r2; . . .; rt
are not distinguishable [7, 8, 13].

The column vectors from Bw and Bb in this scheme are:

Vw ¼ 1
1

� �
and Vb ¼ 1

0

� �

(a) Secret Image(SI) (b) Share 1(S1)          (c) Share 2 (S2) (d) Share1+Share2 

Fig. 1. (a) Secret Image (SI) (b) Share 1 (S1) (c) Share 2 (S2) (d) Share1+Share2
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From these vector elements we noticed that the rows are distinguishable. Referring
to Table 2(a) we found that the number of black and white pixels in share 1 and share 2
are not equal. Hence this scheme do not preserves the security condition. This is the
main drawback of this scheme. To overcome this defect we can use size invariant VCS
with block wise encoding.

2.2 Size Invariant VCS with Block Wise Encoding

In this scheme, the encryption is performed on a block contains multiple pixels instead
of pixel basis encryption. Each block holds equal number of pixels and adopts a
threshold. If the number of black pixels in the block is greater than the accepted
threshold, the pixel block is encrypted using the black pixel layout which is randomly
chosen from the collection of matrices Cb, otherwise using the white pixel layout
randomly chosen from the collection of matrices Cw. Usually the adopted threshold is
the total number of pixels in the block divided by two [4, 9–11]. The basis matrices for
the 2 � 2 block are:

Bw ¼ 1 0 1 0
1 0 1 0

� �
; Bb =

1 0 1 0
0 1 0 1

� �

Cw ¼ fall matrices acquired by permuting the columns of Bwg

Cb ¼ fall matrices acquired by permuting the columns of Bbg

Referring to Table 2(a) we found that the number of black and white pixels in share
1 and share 2 are equal. Hence this scheme preserves the perfect security. This is the
advantage of this scheme compared to the scheme in Sect. 2.1.

3 VCS with Perfect Reconstruction of White Pixels

The perfect reconstruction of black pixels is performed in the conventional VCS. While
considering the binary images, usually the number of white pixels is higher than the black
pixels. Few studies have been concentrated on the size invariant VCS with perfect
reconstruction of white pixels based on random basis column pixel expansion. In tradi-
tional VCS, black pixels are represented by 1 and white pixels by 0. Then the basis matrix
for the black pixel in conventional VCS becomes the basis matrix for the white pixel in
VCS with PRWP and vice versa [5, 12]. The basis matrices for VCS with PRWP are:

BWw ¼ 1 0 1 0
0 1 0 1

� �
; BWb ¼ 1 0 1 0

1 0 1 0

� �

Referring to Table 2(b) we found that the number of black and white pixels in share
1 and share 2 are not equal. But this scheme enhances the visual quality of the
reconstructed image and not maintains the perfect security. Hence we need to construct
a VCS which enhances the security and retains the contrast.
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4 The Proposed Model: Size Invariant VCS with Block Wise
Encoding and PRWP

The proposed model enhances the security and retains the contrast of the recovered
image. In this scheme we combined the perfect security feature of the size invariant
VCS with block wise encoding and enhanced visual quality feature of the VCS with
PRWP. The original image is encrypted into two non expanded shares. Here we
considered a block of pixels for encryption rather than a single pixel in an image. All
blocks should contain the same number of pixels. Here we took a block with the order
of 1 � 2 or 1 � 4 or 2 � 2 (2 or 4 pixels).

The pixel layout of the block with four pixels may be: Block with 3 white pixels
and 1 black pixel, block with 3 black pixels and 1 white pixel, block with 2 white and 2
black pixels, block with 4 black pixels and block with 4 white pixels. The possible
pixel layouts are illustrated in Fig. 2.

In the proposed method the image can be represented with two n x m binary basis
matrices,

BWb ¼ 1 0 1 0
1 0 1 0

� �
; BWw ¼ 1 0 1 0

0 1 0 1

� �

The Cb and Cw are the collection of basis matrices by permuting the columns of
BWb and BWw respectively where block size = 4.

Cw ¼ fall matrices acquired by permuting the columns of
1 0 1 0
1 0 1 0

� �
g

Cb ¼ fall matrices acquired by permuting the columns of
1 0 1 0
0 1 0 1

� �
g

Here 0 denotes black and 1 denotes white. We have calculated the total number of
black pixels and white pixels in a block. If the number of white pixels is higher or equal
to the number of black pixels in a block, the block is considered as white block, if not
black block. The pixels in this block are encrypted with the pixel configuration in a
white block which is randomly chosen from the Cw, otherwise chosen from the Cb [4,
5]. The pixel layout for the proposed size invariant block wise encoding scheme with
PRWP is shown in Table 1.

Fig. 2. Four pixel layouts in a block
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4.1 Experimental Results

Consider an image with m � n size (here m and n are 200) and it can be divided into
blocks with 4 pixels. The construction of size invariant VCS with block wise encoding
and PRWP can be demonstrated with a (2, 2) VCS. Using the pixel layouts in Table 1
the image can be encrypted into two shares. Overlapping of these two shares can reveal
the secret image. The experimental results are illustrated in Fig. 3. It shows that the size
of the original secret image, share 1, share 2 and decrypted image are similar.

Table 1. The pixel layouts for proposed (2, 2) VCS with block wise encoding and PRWP

The major advantages of this scheme are:

• The scheme is size invariant.
• Encryption can be done on a block of pixels rather than a single pixel.
• The scheme provides perfect security.
• It uses the PRWP scheme which retains the contrast of the reconstructed image.
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4.2 Analysis of Experiment Results

We analyzed the security and contrast of various schemes like size invariant VCS based
on random basis column pixel expansion which can be performed with conventional
VCS or with PRWP and block wise encoding size invariant VCS with conventional
VCS or with PRWP on different images. The analysis is depicted on Table 2(a) and (b).
On analysis we found that size invariant VCS based on random basis column pixel
expansion with conventional VCS or with PRWP contains different number of black
and white pixels in the encrypted shares. This disobeys the security condition. We
stated that this scheme does not preserve perfect security. But in the block wise
encoding size invariant VCS with conventional VCS preserves the security but the
contrast of the reconstructed image is degraded compared to the size invariant VCS
with PRWP. Our scheme is optimum for both security and contrast.

(a) Secret Image       (b) Share 1             (c) Share 2          (d) Share1+Share2 

Fig. 3. (a) Secret Image (b) Share 1 (c) Share 2 (d) Share1+Share2

Table 2. Analysis of various VCSs

(a) Conventional VCS (Perfect Reconstruction of Black Pixels)

Sche
me

Secret Image Share 1 Share 2 Share 1+Share 2
PSNR White Black White Black White Black White Black

Ran-
dom 
Basis 

Image 
1

35438 4562 19984 20016 20096 19904 17679 22321 50.7139

Image
2

20226 19774 20035 19965 20075 19925 10058 29942 49.4386

Block 
wise 

Image 
1 

35438 4562 20000 20000 20000 20000 18152 21848 50.7969

Image
2 

20226 19774 20000 20000 20000 20000 10986 29314 49.5563

(b) VCS with PRWP 

Scheme 
Secret Image Share 1 Share 2 Share1+Share 2 

PSNR White Black White Black White Black White Black

Ran-
dom 
Basis 

Image 
1 

35438 4562 19889 20111 20071 19929 37699 2301 60.6443

Image
2 

20226 19774 19853 20147 19947 20053 30013 9987 54.2789

Pro-
posed 
Scheme 

Image 
1 

35438 4562 20000 20000 20000 20000 38152 1848 59.8365

Image
2 

20226 19774 20000 20000 20000 20000 30686 9314 53.8415
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According to Eq. (1), in the random basis VCS the t � m matrix is a 1 � 1 matrix,
where t < k. While taking 1 � 1 matrices from Bb and Bw viz:

Bb ¼ 1½ � and Bw ¼ 0½ �
the rows are distinguishable.

But in the proposed scheme the t � m matrix is a 1 � 4 matrix, where t < k. While
taking 1 � 4 matrices from BWb and BWw viz:

BWw ¼ 1 0 1 0½ � and BWb ¼ 1 0 1 0½ �
the rows are indistinguishable.

For calculating the relative difference a and contrast b using the Eqs. (2) and (3).

a ¼ xH BWwð Þ � xH BWb
� �� �

=m ð2Þ
b ¼ a� m ð3Þ

Where (xH(BW
w) and xH(BW

b) are the hamming weight (number of Ones) of the
basis matrices BWw and BWb respectively.

Table 3. Decrypted images of various schemes

Scheme Image 1 Image 2

Random Basis

Block wise 

Random Basis 
With PRWP

Proposed Scheme
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While calculating a and b in the proposed scheme:

a ¼ 4� 2ð Þ=1 ¼ 2; wherem ¼ 1 and
b ¼ 2� 1 ¼ 2:

The scheme enhances security and retains the contrast compared to other existing
schemes while considering security clause in Eq. (1), the relative difference a and
contrast b in Eqs. (1) and (2).

The output of the different decrypted images based on various VCSs from the
experiments is shown in Table 3. From the Table we confirmed that VCS with PRWP
have more contrast in the decrypted images with respect to the conventional VCS. The
graphical representation of the existing schemes and our scheme with respect to the
number of black and white pixels is shown in Fig. 4. This shows that the number of
black and white pixels in the Share 1 and Share 2 are different in VCS with random
basis column pixel expansion approach. But in the proposed scheme, the number of
pixels is same and it proved the perfect security.

Figure 5 shows the graphical representation of the PSNR (Peak Signal to Noise
Ratio) value between the secret image and decrypted image. From this figure we found
that the contrast of the Random Basis (RB) column pixel expansion and Block Wise
(BW) encoding schemes based on conventional VCS is extremely low compared to the
VCS with PRWP. Also we stated that our scheme with PRWP retains the contrast
compared to the size invariant random basis VCS with PRWP.

Fig. 4. Representation of the number of pixels
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5 Conclusion

This paper presents a new method for size invariant VCS which enhances the security
and preserves the visual quality of the decrypted image. Here we combined the perfect
security facet of the block wise encoding VCS and improved contrast facet of the VCS
with perfect reconstruction of white pixels. Different existing methods and proposed
method are illustrated with experimental results and analyzed by tables and graphs.
Future research in this realm can develop a size invariant block wise encoding VCS
which enhances the contrast and preserves the perfect security.
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Abstract. The growth in the internet has paved the way for an increase
in digital communication. Cryptography and data hiding provide secu-
rity of the data being communicated. In cryptography, the fact that the
information is hidden is not concealed, whereas, in data hiding, it is hard
to tell if a cover media contains embedded information. Data hiding can
be used for covert communication, or to embed extra information about
the image. Often the original cover image cannot be restored once the
embedded data has been extracted. However, for certain applications like
those belonging to medical and military, the data hiding process cannot
distort the cover image. Medical images contain important diagnostic
information, and military images serve some legal purpose. Any change
in these images can lead to negative consequences. Therefore, a data hid-
ing mechanism is needed for applications in which both the image as well
as the data being hidden are important to hide data in such a way which
will enable the extraction of embedded data and also restore the original
image. Reversible data hiding (RDH) techniques have been proposed to
embed data in such sensitive images. In this paper, we discuss a his-
togram shifting based two pass RDH scheme. Experimental results illus-
trate that the proposed technique, other than being reversible provides
fairly high quality marked image along with high embedding capacity.

Keywords: Reversible data hiding · Histogram modification · Image
blocks

1 Introduction

Covert/secret communication has been around for as long as communication.
Its first application can be traced back to Greeks when a famous Greek tyrant,
Histiaeus, used the head of his most trusted servant to write the message by
first shaving his head, then writing the message and waiting for the hair to come
back before sending him to his son-in-law. Invisible inks have always been used
as a common tool for hidden communication. The onset of computer age gave
rise to new applications of secret communication, and as a result, many new
information hiding techniques were developed [1].
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Data hiding helps in secure communication just like cryptography, but in
data hiding an innocent looking cover image is used to carry the information
and the fact that the cover image contains secret data is concealed, whereas
cryptography changes the structure of the message and the presence of secret
data is known.

Often doctors need to share the status of their patients’ health with other
experts; for this, they need to send the images along with the reports. The
report may contain information that is personal to a patient; therefore, there
should be a way to communicate both the report and the images in a secure
manner [2,3]. This can be done by embedding the report in the image by a
process known as data hiding. Traditional data hiding methods often distort
the cover image. However, in certain applications, like medical and military, the
cover image contains important information, and even minor distortion can lead
to negative consequences. Therefore, to embed information in sensitive images,
reversible data hiding (RDH) was proposed. In RDH, along with embedded
information, the exact cover image is also restored. Embedding the information
in images eliminates the need to store it separately, thereby reduces memory
requirement. Embedding the information in the media also makes it safe for
transmission. Another application of RDH can be to embed metadata into a cover
image such that the original cover image is easily restored once the metadata
has been extracted.

Barton was the first to propose a reversible data hiding algorithm in a 1997
US patent [4]. In his technique, authentication information is embedded in a
cover medium, and only authorized users were able to obtain the embedded
information and verify the authenticity of the received medium.

RDH techniques consist of two stages, embedding and extraction stages, as
shown in Fig. 1. In the first stage, secret information is hidden in a cover media
at the sender side. The media containing embedded information is known as
stego file. Then in the second stage, the embedded data is extracted, and the
original cover media is restored.

Fig. 1. Overview of RDH system.
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Watermarking is another application of data hiding in which a watermark
(image or information) is embedded in the cover media. Watermarks can be
used for fraud detection, copyright protection, and image authentication [5,6].
In the case of physical documents and artworks, like paintings, authenticity
can be verified by sophisticated techniques. A digital document, on the other
hand, is a collection of bits and a perceptible watermark in the corner of the
image can be easily altered. Even the details stored in the header of an image
can be modified or removed. Therefore to provide authenticity to digital docu-
ments/images, the watermark cannot be just appended. Watermarking proves to
be a better alternative in this situation since in watermarking the information is
not appended but embedded directly into the image. The embedded information
will be imperceptible to the human eye and will only be available through an
extraction algorithm along with a secret key.

Current RDH techniques can be categorized into transform domain and spa-
tial domain methods. In methods belonging to the spatial domain, data is embed-
ded by altering the pixel values [7–9].

Most popular RDH techniques in the spatial domain are difference expansion
(DE) based schemes and histogram shifting based schemes. Both methods have
their advantages and disadvantages, methods belonging to the former kind can
provide a higher capacity while the ones in latter are known to produce a better
quality embedded image.

The DE-based technique was introduced by Tian [7] and he proposed to
embed the data by expanding the difference between adjacent pixels. Ni et al.
[10] were the first to propose the histogram shifting based scheme, in which, they
have first shifted the histogram bins between the peak point and the zero point
and then used the peak point to embed the data. Their technique was able to
give a good quality marked image, but the embedding capacity was low, and
the values of peak and zero points have to be transmitted to the receiver for
successful retrieval of the embedded data and to restore the image. Lee et al.
[11] further extended the technique by proposing to use the difference histogram
as it was sharper. Tai et al. [12] further tried to solve the problem of sharing
multiple peak points with the receiver by using a binary tree structure in which
the number of elements at a particular level of the tree determines the number
of peak points used. In this case, the sender only has to transmit the level of the
tree used during data embedding. Pan et al. [13] proposed a histogram shifting
based technique which eliminates the overhead of transmitting peak points to
the receiver. They do this by using peak point as a reference and embedding
data in neighboring bins. Since the peak is not used for embedding, it can be
easily located at the receiver side, and data can be efficiently retrieved.

Multilevel histogram modification was introduced to utilize block redun-
dancy. Zhao et al. [14] calculated the difference of adjacent pixels by scanning
the image in an inverse “S” order. Fu et al. [15] used prediction error histogram
to increase the concentration of differences near zero. He et al. [16] were able
to improve the PSNR of the marked image by reducing the number of to be
shifted pixels. In this paper, we propose a novel two-pass multilevel histogram
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modification based RDH technique. In this scheme, we embed the data by using
minimum and maximum gray values of a block as reference points in the first
and second pass, respectively. In the first pass, we take the minimum gray value
of the block as a reference point, so the histogram is shifted to the left, and in
the second pass when we embed using the pixel with the maximum gray level
in the block, the histogram is shifted to the right. All the histogram bins which
were only shifted to make space for embedding in the first pass and were not
used for embedding are shifted back to their original values in the second pass.
Therefore, only the pixels which are used for embedding data are altered, and
the rest of the pixels remain the same. This helps to maintain the quality of the
marked image.

The rest of the paper is outlined as follows. In Sect. 2 we have briefly described
W. He et al.’s scheme. Section 3 deals with the proposed scheme in detail.
Section 4 describes experimental results and discussions followed by Sect. 5 which
concludes the paper along with directions to future work.

2 Multilevel Histogram Modification

In this section we have described multilevel histogram modification with the help
of W. He et al.’s technique [16].

2.1 W. He et al.’s Scheme

They have proposed the concept of pixel value grouping, using which the pixel
values of all blocks are first put in a group, according to their distribution and
then reference pixels are obtained. Based on the status of the pixel value group-
ing, the blocks are classified into four categories and have used multilevel his-
togram modification of the difference histogram of blocks to embed data. The
difference of reference pixels and the rest of the pixels in a group are calculated
using Eq. (1) and a difference histogram is generated.

dk = pk − pref (1)

After generating the differences, a difference histogram is constructed, and
its bins are emptied before data embedding using the following equation

dwk =

{
dk + (EL + 1), if dk > EL

dk + (EL + 1), if dk < −EL
(2)

After this, the data is embedded in the histogram bins by repeating Eqs. (2,
3) for L = EL, EL − 1, ... , 0

dwk =

{
dk + (L + w), if dk = L

dk − (L + w), if dk = −L
(3)

Figure 2 illustrates the difference histogram modification for EL= 2
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3 Proposed Work

In this section, we describe a novel two-pass multilevel histogram modification
based RDH technique. RDH is carried out in two steps; the embedding step and
extraction step. The embedding step comprises scanning an image block twice.
In the first pass, secret bits are embedded by considering the minimum gray
value of a block as a reference, and in the second pass, bits are embedded by
taking the maximum gray value of the block as a reference. Since lesser pixels are
associated with the min and max gray values, using them instead of using peak
as reference wastes fewer pixels since the pixels associated with the reference
gray value are not used for embedding. Since the min and max of a block do not
change after embedding, they can be easily obtained at the decoding end.

3.1 Embedding Process

w is taken to as the data which is to be embedded and for our experiments we
have taken it to be a pseudorandom sequence of bits. The data is embedded by
processing and then modifying the histograms of all the blocks of an image.

Step 1: Divide the image. Partition the image I, into m ×n sized blocks.
Step 2: Generate histogram.

Fig. 2. Difference histogram modification for EL= 2.
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Step 3: Find the minimum. Find the minimum gray value (the left-most bin of
the histogram) of the block and assign it to min. This value will be used
as a reference for data embedding.

Step 4: Empty histogram bins. Depending on the embedding level EL), histogram
bins are shifted to the left by EL to make space for embedding.

E(i, j) = I(i, j) + EL if I(i, j) − min > EL (4)

where I(i, j) describes grayscale value of the pixel in the original image
at position (i, j) and E(i, j) describes the value of the pixel at position (i,
j) of the embedded image.

Step 5: Data Embedding. Bins adjacent to min are used to embed data by using
Eq. (5). The number of bins used will be equal to EL.

E(i, j) = I(i, j) + (I(i, j) − min) − w if I(i, j) − min ≤ EL (5)

where E(i, j) is the pixel value obtained after embedding data using min
as reference.
Once data has been embedded in all the blocks, the obtained image is
again divided into m ×n sized blocks. In the next pass of embedding, we
take the maximum value (the right-most bin of the histogram) of a block
as a reference.

Step 6: Empty bins by shifting histogram to the right to create space for embed-
ding using the following equation,

En(i, j) = E(i, j) − EL if E(i, j) − max < −EL (6)

Step 7: Bins adjacent to max are used to embed data by using Eq. (7). The
number of bins used will be equal to EL.

En(i, j) = E(i, j) − (E(i, j) − max) − w if E(i, j) − max ≥ −EL (7)

where En(i, j) denotes the final embedded image.

3.2 Example

Let w = “1001010” be the data to be embedded. Figure 3 explains all the steps
that are carried out to embed data using min as reference (for EL= 2). The
pixels in the block are traversed in raster scan order. All the pixel values which
are modified at each step have been shaded. All the image blocks are scanned
again, and data is embedded using maximum (max = 167) gray value of the block
as a reference. Let w = “0101” be the data to be embedded. The final embedded
block, along with the histogram, is illustrated in Fig. 4.

3.3 Extraction Process

The data extraction and image recovery process is inverse of the data embedding
process and comprises of the steps as described below.
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(a) Block of image Lena and its corresponding histogram.

(b) Two bins (163 and 164) are emptied by shifting bins to the right by 2 (since EL=2).
The shaded blocks contain the values which had to be incremented to make space for
embedding.

(c) Embedding data in the emptied bins. Arrows point to the value into which a specific
value changes after being embedded by a data bit specified on the arrow.

(d) Block after embedding and its corresponding histogram.

Fig. 3. Embedding data using min as reference.
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Fig. 4. Final embedded block and its corresponding histogram.

Step 1: Divide the image. Partition the image I, into m ×n sized blocks.
Step 2: Generate histogram.
Step 3: Find the maximum. Since in the final marked image max was used as a

reference, the maximum gray values of the block are not altered and can
be easily obtained at the decoder side.

Step 4: Extract the secret bits. If abs(En(i, j) − max ≥ −2 ∗ EL)

w =

{
0, if abs(En(i, j) − max) = even

1, otherwise
(8)

Step 5: Restore the image as,

E(i, j) = En(i, j)+floor(
abs(En(i, j) − max)

2
) if En(i, j)−max ≥ −2∗EL (9)

E(i, j) = En(i, j) + EL if En(i, j) < −2 ∗ EL (10)

Once the data embedded using max as reference have been extracted, and
the image has been restored, the value of min can be obtained with the
help of which the data embedded by using min as reference are extracted,
and image restoration is done to get back original cover image.
Following equations are applied on all the blocks to obtain the original
image.

Step 6: Divide the image. Partition the image I, into mxn sized blocks.
Step 7: Generate histogram.
Step 8: Find the minimum. Obtain the minimum gray value of the block and use

it as a reference to extract the data and restore the image.
Step 9: Extract the secret bits.

If abs(E(i, j) − min ≤ 2 ∗ EL)

w =

{
0, if abs(E(i, j) − min) = even

1, otherwise
(11)
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Step10: Restore the image as,

I(i, j) = E(i, j)−floor(
abs(E(i, j) − min)

2
) if E(i, j)−min ≤ 2∗EL (12)

I(i, j) = E(i, j) − EL if E(i, j) > 2 ∗ EL (13)

3.4 Preventing Overflow and Underflow

Pixel values in grayscale images are in the range of 0 to 255. During histogram
modification, it is possible to get values out of this range. Therefore, the blocks
that contain pixel values which on modification will give values out of the
range have to be skipped. In the proposed method, all the blocks with pixel
values greater than 255-EL and less than EL have been skipped to prevent
over/underflow. We have used a location map to record all the blocks that have
not been used for data embedding.

The data embedding process is described below:

Step 1: Partition the image.
Step 2: Construct location map. Scan the blocks, and for any block Bi containing

a value greater than 255-EL or less than EL set LM(i) as 1, otherwise set
LM(i) as 0. The location map is losslessly compressed using run-length
encoding.

Step 3: Embed secret data. Embed the secret data bits and store the position of
the last data carrying block (denoted as Pend).

Step 4: Embed auxiliary information and location map. Select the first few pixels
of the image in a random order and record the least significant bits of
first 14 + 2�log2N� +Lclm image pixels (denoted as Slsb), where Lclm is
the length of the compressed location map. Auxiliary information and
the Lclm are embedded by replacing these LSBs. Auxiliary information
consists of

– block size m (4 bits) and n (4 bits)
– embedding level EL (6 bits),
– end position Pend (�log2N� bits)
– length of compressed location map Lclm (�log2N� bits)

The binary sequence Slsb is finally embedded in the rest of the blocks to
obtain the embedded image.

The random order in which the pixels are selected is generated using a key. Using
the key, the same random order can be generated at the decoding end. The pixel
value at the first position of the image is used as the key in our experiments.
At the decoding end, the first few LSBs of the marked image are first retrieved
to get the auxiliary information and the location map. The compressed location
map is then losslessly decompressed to generate the location map. After that,
we extract the recorded LSB (Slsb) and replace the LSB of the first few pixel
values with these LSB, then the secret data is extracted, and finally, the image
is restored.
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4 Experimental Results and Discussions

In this section, we describe the results of evaluating our technique based on
embedding capacity and quality of the image obtained after embedding.

The size of all the images used to test this scheme was 512 × 512 and were
downloaded from the USC-SIPI image database. All the images are shown in
Fig. 5.

4.1 Embedding Capacity and Quality of Embedded Image

Embedding capacity (EC ) provides a measure of the amount of data (pure pay-
load) that can be hidden in an image. Another factor used to measure the
performance is the quality of the embedded image. Quality can be measured
by calculating the PSNR of the embedded image and original image. Schemes
which obtain higher PSNR with the same embedding capacity are considered to
be better.

In our scheme, we have used a random binary sequence as the data to be
embedded. The sequence was obtained by the pre-defined function, randi() in
MATLAB. From Fig. 6, it is evident that block size effects embedding perfor-
mance. It is observed that PSNR is high for larger block sizes and when EL
is not high. However, the maximum EC for larger sized blocks is lower. After
carrying out the experiment for various block sizes, it was found that maximum
EC was obtained for a block size of 4 × 4.

We have also tested our algorithm on the BOSSbase dataset. We were able
to successfully embed and extract data as well as restore the original images for
9,841 images out of 10,000 images. The contrast of the rest of the 159 images was
very low, which increased the size of the location map. Due to the lesser number
of embeddable pixels in these low contrast images, the location map could not
be embedded.

4.2 Comparison with Other Schemes

Table 1 compares the results obtained by our scheme and W. He et al.’s. For 4×4
block size, we have calculated the maximum embedding capacity and PSNR for
each EL.

From Table 1 we can see that our scheme provides better PSNR for the same
EC. For example, in case of image Boat for EL= 1, EC for both the schemes is
same (0.06), but our scheme provides better PSNR (55.54) as compared to W.
He et al. ’s PSNR (50.13). Even for higher EL, for example in image Elaine when
EL= 5, the EC provided by both the schemes is same, but our scheme provides
a PSNR of 40.29 whereas W. He et al. ’s scheme provides a PSNR of 39.59.

For larger EL, a greater number of bins are used for embedding, and only
very few, and sometimes even none of the bins are to-be-shifted bins. In such
cases, all the pixel values are modified because all bins are used to carry data.
Our scheme maintains PSNR by eliminating the shift caused in the to-be-shifted
bins (which are only shifted to make space for embedding and are not used for
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)c(1)b(1)a(1

2(a) 2(b) 2(c)

3(a) 3(b) 3(c)

4(a) 4(b) 4(c)

5(a) 5(b) 5(c)

Fig. 5. (1a–5a) Original images, (1b–5b) Embedded images for EL= 9, (1c–5c) Dif-
ference of original and restored images.
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Fig. 6. Embedding performance with various block sizes on the image Lena.

embedding). Therefore, the PSNR is lower for higher EL. This is a limitation of
our scheme.

Comparison of our scheme with various other schemes [13,16,17] has been
illustrated in Fig. 7.
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Fig. 7. Performance comparison with other schemes.
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Table 1. Comparison with W. He et al.’s scheme.

Image Scheme EL=1 EL=3 EL=5 EL=7 EL=9

EC PSNR EC PSNR EC PSNR EC PSNR EC PSNR

Lena Proposed 0.12 54.42 0.44 43.7 0.7 38.58 0.89 35.44 1.04 33.27

W. He et al. 0.14 49.27 0.47 42.71 0.65 39.56 0.73 37.61 0.77 36.3

Baboon Proposed 0.04 56 0.13 45.87 0.24 40.8 0.34 37.35 0.44 34.76

W. He et al. 0.03 50.65 0.09 44.23 0.17 40.25 0.25 37.38 0.33 35.2

Boat Proposed 0.06 55.54 0.21 45.22 0.39 40 0.54 36.49 0.68 33.91

W. He et al. 0.06 50.13 0.22 43.47 0.38 39.45 0.51 36.79 0.61 34.93

Elaine Proposed 0.05 55.67 0.18 45.41 0.34 40.29 0.5 36.79 0.66 34.12

W. He et al. 0.06 50.21 0.19 43.64 0.34 39.59 0.48 36.74 0.61 34.69

Pepper Proposed 0.07 55.32 0.27 44.81 0.49 39.46 0.68 35.95 0.82 33.49

W. He et al. 0.07 49.97 0.28 43.14 0.49 39.2 0.63 36.83 0.72 35.34

5 Time Complexity Analysis

The time complexity of our algorithm is O(n) for finding the reference pixel
(max and min) and the algorithm proposed by W. He et al. has the highest time
complexity of O(n2) since they employ sorting of pixel values.

6 Conclusions and Future Work

In this paper, we have put forward a new multilevel histogram shifting based
method for RDH. The performance of the proposed scheme has been compared
with many other histogram shifting based RDH techniques. The results of the
comparison prove that our scheme performs better in most of the cases.

The need to communicate min and max points (which was a requirement
in Ni et al.’s work) has been eliminated by using reference points which can
be easily obtained at the decoding end. The proposed scheme provides high
embedding capacity along with the good quality of the embedded image. At the
decoding end, the exact data which was embedded at the sender’s side was fully
extracted, and the original cover image was restored for all the test images.

One limitation of our work is that the PSNR of the embedded image degrades
for higher EL. One future direction would be to overcome this demerit. The
proposed technique can also be further enhanced to be applied to other types of
media, such as audio and video.
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Abstract. Bianchi et al. proposed a method to detect the non-aligned
double JPEG (NAD-JPEG) compression using the presence of distor-
tions in the Integer Periodicity Map (IPM) of DC coefficients of any
JPEG image. However, we found that the IPM can be easily altered with-
out affecting the visual quality of an image. In this paper, we propose
a new anti-forensics scheme that alters the IPM to deceive the Bianchi
et al. scheme. In our proposed method, a statistical model of the DC
coefficients from singly compressed JPEG image is used to generate an
estimated image which is free from quantization artifacts that are present
in the IPM. The estimated image is subjected to NAD-JPEG compres-
sion. It was found that the DC values of NAD-JPEG image are no longer
be the multiples of the corresponding primary quantization step size q1.
As a result, the DCT coefficients do not cluster around the lattice related
to the q1 and the IPM of the double JPEG compressed image seems to
be the IPM of a singly compressed JPEG image. Experimental results
show the effectiveness of the proposed anti-forensics scheme as the accu-
racy of the said forensics method get reduced to less than 50% in case of
anti-forensically modified images.

Keywords: Double JPEG compression detection · Anti-forensics ·
Approximation of DC coefficients

1 Introduction

Creation and distribution of digital images became very easy after the introduc-
tion of social media in the last decade. Some of these images are found to be
forged and used to create social and financial disturbances. Automatic detection
of forged images was an issue that required immediate attention. Consequently,
many detection schemes [14,21,22] are currently available in the existing litera-
ture and some of them even got deployed in the live systems [7]. These schemes
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may work as expected when the forgers are seemingly unaware of the basic
image processing and forensics techniques. However, if the forgers are techni-
cally qualified and possess advanced knowledge of signal and image processing,
they may be able to conceal their footprints without being caught. Thus, there
is an urgent need to analyze each of the available forensics schemes from security
and robustness perspective. Here, we propose a counter forensics scheme to ana-
lyze the robustness of any forensics scheme which is dependent on the statistical
property of the DC coefficients for the detection of prior JPEG compression.

Most of the existing forensics techniques for detection of prior JPEG com-
pression work with AC components of DCT coefficients and some schemes even
work in the spatial domain. One such scheme was proposed in [6] by Fan et al.
in 2003. They have used the presence of blocking artifact to determine whether
an image underwent JPEG compression previously or not. They have also devel-
oped techniques to estimate the quantization table if an image found to be JPEG
compressed previously. A counter forensics method to evade the detection by Fan
et al. scheme was proposed in [18]. Stamm et al. identified the changes (a.k.a.
distortion) occurred in the distribution of DCT coefficients of a JPEG image
due to compression and a method to remove those distortions was proposed to
highlight the weakness of the Fan et al. forensics scheme.

A generic counter forensics scheme, which can neutralize several distortions,
has been proposed in [5]. It consists of four major steps having three distinct
processes. At first, the input image J is subjected to a total variation based
deblocking procedure in the spatial domain to remove the blocking artifacts that
were produced by JPEG compression. The deblocked image JB is further sub-
jected to a DCT histogram smoothing to remove the discontinuities in the DCT
histogram to generate JBS . Though the quantization artifacts got removed in
the last step, some additional noise has also been introduced in the generated
image. Thus to remove the noise, total variation based deblocking procedure is
used again on the JBS to get JBSB. Finally, decalibration operation is used on
JBSB to produce the attacked image J ′. An improvised version of Fan et al.
scheme has been proposed in [17].

It is well known that any image processing operation leaves behind a trail of
signatures on the image and counter forensics schemes are not an exception. Lai
et al. [9] was able to identify the traces left behind by Stamm et al. [18] counter
forensics scheme which lead to the development of more robust forensics schemes.
They have used the presence of a high number of zero-valued DCT coefficients in
any JPEG image for detection of prior JPEG compression. In a similar direction,
they have also used the calibrated feature to identify the traces left behind by
JPEG compression. A generic anti-forensics scheme to evade detection by any
forensics scheme that utilizes the presence of distortions in AC coefficients has
been presented in [4].

The presence of signatures related to double JPEG compression in an image
is the clearest indication that the image underwent some kind of manipulation.
Thus, the detection of double JPEG compression received lots of attention in
recent times [12,13,15,19]. Lukáš et al. [11] used the presence of double peak
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and missing values in the DCT coefficients to determine whether an image sub-
jected to double JPEG compression or not. In a similar direction, Huang et al. [8]
proposed a method to detect the double JPEG compression by comparing the
number of different DCT coefficients between two successive compressions of
the same image. An anti-forensics technique to evade the detection by the said
method has been proposed in [10]. Note that, the use of anti-forensics method
may also introduce unwanted signals in an image which may reveal the malicious-
ness of the anti-forensically modified image. Thus, a forger must balance three
conflicting requirements, i.e. balance the tradeoffs between concealability-rate-
distortion in any anti-forensics of JPEG compression to remain undetectable [2].

In this paper, we study a well-known algorithm for double JPEG compression
detection from security and robustness perspective. Most of the existing foren-
sics schemes assume that the forgers neither possess the knowledge of signal
and image processing nor aware of the existence of forensics (or anti-forensics)
schemes. Here we adopt the principles from cryptography and assume that the
forgers are aware of the algorithmic aspects of forensic detection methods. It
is well known that the integer periodicity of DCT coefficients exhibit different
characteristics when the underlying image is subjected to single or double JPEG
compression. This property was subtly used by Bianchi et al. in their detection
scheme. However, we could show that the integer periodicity is not unique and it
can be modified without much loss in visual quality of an image. In the following
section, we propose a method through which one can change the integer period-
icity of a JPEG image without any significant loss in image quality and evade
the detection by Bianchi et al. scheme. Our analysis raises the serious question
regarding the forensics paradigm based on statistical distortion.

The remainder of this paper is organized as follows. Section 2 briefly reviews
the existing NAD-JPEG detection scheme proposed by Bianchi et al. [1] for
forensics analysis. The proposed anti-forensics scheme along with the algorithm is
illustrated in Sect. 3. Section 4 presents the analysis of the experimental results to
evaluate the efficacy of our proposed algorithm. Finally, the concluding remarks
are drawn in Sect. 5.

2 NAD-JPEG Detection Scheme of [1]

Nowadays, JPEG is by far the most popular image compression format used to
store the captured image and any post-processing of these images may give rise
to the double JPEG compression. Majority of these double compression cases
are NAD-JPEG where blocking grid of the second compression is not aligned to
the corresponding grid of the first compression. It is well understood that the
existence of a NAD-JPEG points to a situation where the authenticity of the
image can be seriously questioned. One of the popular schemes to detect NAD-
JPEG compression was proposed in [1] where authors studied the statistical
properties of DCT coefficients from original, singly and doubly compressed JPEG
images. Let us denote the original uncompressed image in the spatial domain
as I0 and the corresponding singly compressed JPEG image as I1 in the spatial
domain. Thus I1 can be expressed as
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Fig. 1. Block diagram of a typical forging process.

I1 = D−1(Q−1
F1

(QF1(D(I0)))) + E1 (1)

Here, D(.),D−1(.) represent the process of block-based discrete cosine transform
and inverse discrete cosine transform respectively. Similarly, Q(.), Q−1(.) repre-
sent the quantization and de-quantization process respectively. E1 is the error
introduced by rounding and truncation of pixel values to nearest 8-bit integers.
Now we can express the doubly compressed JPEG image as

I2 = D−1(Q−1
F2

(QF2(D(Sy,x(I1))))) + E2

= D−1(Q−1
F2

(QF2(D(Sy,x(D−1(Q−1
F1

(QF1(D(I0)))) (2)

+ E1))))) + E2

Here Sy,x(.) denotes the process of grid shifting by y rows and x columns. If the
grid is aligned with the previous compression then we have the values of x, y as
multiples of 8, including zero. All other values of y, x lead to the creation of a
non-aligned double JPEG compressed image.

If we consider only the DC coefficients from each block of the image I2, then
the DC coefficients will cluster around two different lattices corresponding to
quantization step size q1, q2. Here, quantization step size q1 (q2) corresponds to
quality factor F1(F2) of first (second) JPEG compression. The basic idea behind
the Bianchi et al. [1] forensics algorithm is that of detecting the presence of these
clusters for all possible grid shifts using the concept of integer periodicity map
(IPM).

Let us now apply grid shift Si,j(.) on (I2) in the spatial domain and perform
a block-based DCT afterward. Now three possible scenarios arise : (a) the grid
is completely aligned with the grid of the second compression, i.e., i = j = 0 (b)
grid is completely aligned with the grid of the first compression, i.e., i = y, j = x
(c) all other cases. The periodicity of DCT coefficients will be different for three
different cases and let us now concentrate only on the DC coefficients for further
analysis. The clustering of DC coefficients around the lattice can be measured
by the periodicity of the computed histogram of DC coefficients. Bianchi et al.
employed the Fourier transform to measure the periodicity of the histogram at
frequencies which is reciprocal of quantization step size q and the values are
given by
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νij(q) �
∑

l

ηij(l)e−j 2πl
q , q ∈ N (3)

where ηij is the histogram of DC coefficients when the grid shift applied to I2

is (i, j).
When the image I2 is already a NAD-JPEG image having grid shifted by

(y,x), the absolute values of ν00(q2) and νyx(q1) should be considerably higher
than other values. Here q1 and q2 is the quantization step size of DC coefficients
in first and second JPEG compression respectively. In the absence of NAD-
JPEG, only one peak will be observed at ν00(q2). These observations lead to
the development of IPM to analyze the characteristics of νij(q) and the IPM for
quantization step size q is defined as

μij(q) � |νij(q)|∑
i′j′ |νi′j′(q)| , 0 ≤ i, i′ ≤ 7, 0 ≤ j, j′ ≤ 7 (4)

It is quite obvious that the magnitude of μ00(q2) and μyx(q1) will be substantially
higher than any other values of μij(q) in the presence of NAD-JPEG. Presence
of peak can be measured from the min-entropy of μij(q) as the presence of a
peak is associated with low min-entropy, for e.g., if min-entropy H∞(q) is less
than threshold T1, it indicates the presence of a peak. However, the value of q1
is not available and we need to check all possible values of q to find out the value
of q1. In fact, any value of q(�= q2) indicating the presence of a peak is assumed
as the value of q1.

The previous strategy for identification of NAD-JPEG is effective only when
the quantization step size q1 and q2 is different. However, when q = q1 = q2 it
may not be possible to identify the presence of first JPEG compression clearly
due to the presence of two peaks. Even visual inspection of IPM may fail in cer-
tain cases. Authors overcame this problem by exploiting the property of μij(q2).
It was observed that the μij(q2) is almost symmetric with respect to the point
μ44(q). This observation leads to the development of differential IPM or DIPM
which is defined as follows.

μ′
ij(q) � max(μij(q) − Π(μij(q)), 0)

K (5)

Here Π(μij(q) is the predicted value of μij using the symmetric property of IPM.
The K is constant such that the sum of DIPM is equal to 1. If the min-entropy
of DIPM is less than the threshold, i.e., H ′

∞(q) < T2, then we are confirmed
about the presence of a peak. The NAD-JPEG Detection Algorithm considers
three following scenarios in the detection process: (i) presence of NAD-JPEG
where q1 �= q2, (ii) presence of NAD-JPEG where q1 = q2, (iii) absence of NAD-
JPEG. Here, the term absence means that the image is either singly JPEG
compressed or doubly compressed with aligned grids. The pseudo code of the
detection algorithm is as follows.
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Algorithm 1. NAD-JPEG Detection Algorithm
Input: A JPEG image I2

1: for (i = 0; i ≤ 7; i + +) do
2: for (j = 0; j ≤ 7; j + +) do
3: Compute DCT as D(Si,j(I

2)).
4: Compute the histogram ηij of DC coefficients generated in the last step.
5: for (q = qmin; q ≤ qmax; q + +) do
6: Compute νij(q).
7: end for
8: end for
9: end for

10: for (q = qmin; q ≤ qmax; q + +) do
11: for (i = 0; i ≤ 7; i + +) do
12: for (j = 0; j ≤ 7; j + +) do
13: Compute μij(q).
14: if q = q2 then
15: Compute μ′

ij(q).
16: end if
17: end for
18: end for
19: Compute H∞(q).
20: if (q = q2) then
21: Compute H ′

∞(q).
22: end if
23: end for

24: Select
25: H∞ = minqH∞(q).
26: q1 = arg minqH∞(q).
27: (y, x) = arg maxi,jμij(q1), such that (y, x) �= (0, 0).

28: if H∞ < T1 then
29: return NAD-JPEG, q1, (y, x).
30: else if H ′

∞(q2) < T2 then
31: return NAD-JPEG,q2,(y, x) = arg max(i,j)μ

′
ij(q2).

32: else
33: return Non-NAD-JPEG.
34: end if

3 Proposed Anti-forensics Method

The success of the detection algorithm 1 depends on the preservation of the
exact statistical nature of DCT values of both I1 and I2. Stamm et al. [18]
demonstrated that it is not difficult to alter the distribution of AC coefficients
by adding noise in the DCT domain of a JPEG image to fool the forensics
detectors. However, they claimed that there is no good model to estimate the
DC coefficients. Consequently, it is difficult to alter the statistical nature of
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Fig. 2. Source images (Uncompressed and Singly compressed JPEG)

Fig. 3. Target images (Doubly compressed JPEG with F1=54%)

DC coefficients. Thus, random noise was added to alter the nature of the DC
coefficients in the first block of Fig. 4. Specifically, we randomly modify each value
of the DC coefficients from the singly compressed JPEG image I1 by a range
of ±2%. Consequently, the periodic nature of DC coefficients gets disturbed.
Hence, the usual statistical nature of DC coefficients of the doubly compressed
JPEG image I2 is also gets perturbed causing the values of H∞ and H ′

∞ to
change in a specific way and the Algorithm 1 is unable to detect NAD-JPEG in
many instances.

The reliability of any forensics algorithm depends on how well it can with-
stand this type of intentional modifications of an image by forgers to conceal
their footprints. From the forger’s point of view, the attack is considered suc-
cessful if the forensics algorithm is unable to properly classify most of the forged
images. The term attack is used to mean the application of anti-forensics tech-
niques on a forged image to fool the forensics detectors. Let us now present the
effect of random noise addition over IPM.

3.1 Effect of Random Noise Addition on IPM

The usual motivation of random noise addition is to generate a double com-
pressed image which will behave like a singly compressed JPEG image causing
any double JPEG compression detection algorithm to fail. Here, the presence of
a peak in any IPM is used for detection of double JPEG compression. Equation 6
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Fig. 4. Block diagram of anti-forensics algorithm

presents an IPM from a forged image. It can be observed that a peak is present at
a location (6,6) which clearly identify the image as a NAD-JPEG image. More-
over, the location of a peak has a direct relation with the amount of cropping.
Corresponding IPM generated by random noise addition using the framework is
presented in Eq. 7. After random noise addition, the peak is present at the same
location but the peak is more subtle due to the reduction in its magnitude. In
fact, any further increase in the strength of noise removes the peak. However, the
image quality degrades to an unacceptable level. Thus, the strategy to disturb
the periodicity of DC coefficients may be able to defeat the NAD-JPEG detec-
tion but we require an algorithm to change the DC coefficients without affecting
the visual quality of the resultant image.

IPMf =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.017 0.025 0.025 0.004 0.017 0.018 0.008 0.026
0.030 0.030 0.005 0.013 0.007 0.022 0.012 0.038
0.027 0.004 0.006 0.011 0.018 0.019 0.023 0.016
0.023 0.009 0.012 0.025 0.014 0.008 0.018 0.011
0.007 0.017 0.016 0.019 0.025 0.021 0.014 0.014
0.013 0.012 0.005 0.026 0.002 0.710 0.029 0.030
0.015 0.015 0.020 0.018 0.029 0.012 0.016 0.023
0.004 0.004 0.013 0.026 0.018 0.025 0.025 0.025

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

IPMr =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.019 0.036 0.019 0.012 0.007 0.016 0.010 0.012
0.008 0.019 0.017 0.006 0.010 0.018 0.009 0.012
0.009 0.020 0.012 0.006 0.016 0.008 0.027 0.025
0.014 0.006 0.018 0.015 0.013 0.011 0.007 0.021
0.009 0.007 0.011 0.004 0.013 0.021 0.020 0.019
0.010 0.014 0.003 0.009 0.018 0.115 0.008 0.019
0.015 0.015 0.012 0.019 0.018 0.009 0.016 0.013
0.011 0.026 0.027 0.018 0.017 0.009 0.011 0.013

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

3.2 DC Estimation Algorithm

The basic idea behind the detection algorithm proposed in [1] is the presence
of periodicity in the DC coefficients of the JPEG image. If one can destroy the
periodicity from a JPEG image without affecting the image quality or other
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statistical properties of the DC coefficients, it would be impossible for the said
detection scheme to differentiate between a singly compressed and doubly com-
pressed image. Random noise addition can remove the periodicity successfully
but image quality gets affected as pointed out earlier. To overcome this, we here
introduce a DC estimation algorithm which employs a sliding window technique
to model the DC coefficients. It was reported earlier that there is an inter-
relationship among the DC coefficients of neighboring blocks but the relation-
ships are not well understood [20]. Proposed approximation process preserves the
inter-relationships among the neighboring DC coefficients to maintain the statis-
tical and visual quality of the image. In this paper, we propose an approximation
method based on the “surface fitting” to model the DC coefficients. The model
establishes a relationship among neighboring DC coefficients and the model can
be used to estimate the DC coefficients of a particular location. Basically a win-
dow Ψ b consists of all the neighboring DC coefficients of block b including the
DC coefficient of b itself. Let us first describe the process using a specific window
Ψ b. Normally, the top left value of the window consists the DC coefficient whose
value we want to estimate, i.e. ψb, the DC coefficient of block b in this example.

To build the approximation model, we use a polynomial regression method
of two variables. Here, h,w are two independent variables indicating the location
of cells in a window and the value of the DC coefficient ψb

h,w is the dependent
variable. One such typical model can be described as

ψb
h,w =

n∑

r=0

n∑

c=0

βrc.h
r.wc | (r + c) ≤ n (8)

Here, βrc is a constant term. A more generalized version of the Eq. 8 is given
below. Here, the degree of the polynomial is maximum of m,n.

ψb
h,w =

m∑

r=0

n∑

c=0

βrc.h
r.wc | (r + c) ≤ max(m,n) (9)

This is also termed as response surface and any point on this surface basically
represent a DC coefficient which is an approximate value. These values do not
maintain the periodicity of DC coefficients w.r.t. the quantization step size. For
any window, the Eq. 9 can be represented as the Eq. 10 when m = 3 and n = 4.
In all our experiments the Eq. 10 is used for the approximation as these values
are producing a good approximation of DC coefficients. However, one can use
other values of m and n if they produce better approximation.

ψb
h,w = β00 + β10 ∗ h + β01 ∗ w + β20 ∗ h2

+ β11 ∗ h ∗ w + β02 ∗ w2 + β30 ∗ h3

+ β21 ∗ h2 ∗ w + β12 ∗ h ∗ w2 + β03 ∗ w3 (10)

+ β31 ∗ h3 ∗ w + β22 ∗ h2 ∗ w2 + β13 ∗ h ∗ w3

+ β04 ∗ w4.
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Computing the coefficient values using the Ψ b (refer Eq. 11), and by substi-
tuting the coefficients in Eq. 10, we obtain the Eq. 12. We have used the equation
12 to compute the approximated value of ψb

1,1, and the resultant Ψ̄ b is presented
in Eq. 13. One can observe that all the values of Ψ b are multiples of 11 but the
approximated value ψ′b

1,1 = 367, is no longer a multiple of 11. Thus the periodicity
of the DC coefficients are broken as expected.

Ψ b =

⎡

⎢⎢⎢⎢⎣

363 66 143 220 − 495
396 462 99 297 − 473
715 638 385 330 − 165
990 814 506 110 − 550
935 836 440 110 198

⎤

⎥⎥⎥⎥⎦
(11)

ψ′b
h,w = 1828 − 2276 ∗ h − 585 ∗ w + 729.9 ∗ h2

+ 1679 ∗ h ∗ w − 587.7 ∗ w2 − 77.37 ∗ h3

− 299 ∗ h2 ∗ w − 375.2 ∗ h ∗ w2 + 290.7 ∗ w3 (12)

+ 26.03 ∗ h3 ∗ w + 13.53 ∗ h2 ∗ w2 + 34.74 ∗ h ∗ w3

− 34.83 ∗ w4.

Ψ̄ b =

⎡

⎢⎢⎢⎢⎣

367 66 143 220 − 495
396 462 99 297 − 473
715 638 385 330 − 165
990 814 506 110 − 550
935 836 440 110 198

⎤

⎥⎥⎥⎥⎦
(13)

The algorithm used to build the model is as follows.

Algorithm 2. DC Estimation Algorithm
Input: A matrix Ψ (a.k.a window) of de-quantized DC coefficients having size γ × γ.
Output: Approximated DC coefficient ψ′b

k,k, where k = 1.

1: Build a model using equation 9 from Ψ .
2: Estimate ψ′b

k,k using the model. Here, k = 1.

In normal circumstances the estimated DC coefficients ψ′b
k,k should not differ

from its original value ψb
k,k by a great extent. However, due to the nature of

DC coefficients, the constructed model may not be perfect in very few cases.
To maintain the visual quality in those cases, we restrict the difference between
original value and estimated value within a range of ±5% of the original values.
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IPMa =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.010 0.011 0.004 0.020 0.004 0.012 0.017 0.018
0.017 0.026 0.016 0.026 0.008 0.020 0.006 0.015
0.005 0.016 0.007 0.008 0.009 0.031 0.023 0.007
0.017 0.011 0.016 0.032 0.001 0.010 0.033 0.024
0.025 0.010 0.028 0.020 0.027 0.006 0.007 0.010
0.011 0.010 0.021 0.002 0.042 0.006 0.018 0.008
0.026 0.013 0.009 0.030 0.021 0.024 0.024 0.020
0.004 0.011 0.006 0.019 0.011 0.025 0.012 0.010

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

Any color JPEG image consists of three different coefficient matrix for three dif-
ferent color components, namely Y,Cb, Cr. Each of these components is having
its own quantization table. Consequently, we have to approximate DC coefficients
of three different coefficient matrix. The entire process is presented in the Algo-
rithm3 and the effectiveness of the proposed algorithm is visible from the IPM
presented in Eq. 14. The said IPM is generated from the same image that has
been used to generate the IPMs in Eqs. 6 and 7. It is quite clear that the nature
of the IPM is uniform and the position (6,6) of the IPM no longer represents the
peak. Note that, the proposed anti-forensics technique removes the clustering of
DC coefficients around the primary quantization step size which ensures an uni-
form IPM as visible in Eq. 14. Consequently, the detector proposed by Bianchi
et al. fails to detect the counter forensically modified NAD-JPEG image as a
forged image.

Algorithm 3. NAD-JPEG Anti-Forensics Algorithm
Input: Singly compressed JPEG image I1

Output: Anti-forensically modified doubly compressed JPEG image I ′2

1: for each channel λ ∈ {Y, Cb, Cr} do
2: Read the dequantizaed DC coefficients of I1

λ to matrix D having size u × v.
3: for i = 1 to (u − γ + 1) do
4: for j = 1 to (v − γ + 1) do
5: Create a window Ψ from the neighborhood of Di,j .
6: Compute approximated D′

i,j by algorithm 2 using Ψ .
7: end for
8: end for
9: Compute rest of the D′

i,j as D′
i,j = Di,j(1 + p),

where p is random value between −0.05 to 0.05.

10: Replace the DC coefficients of I1
λ by D′

i,j to get I ′1
λ .

11: end for
12: Crop the image I ′1 randomly to get a non-aligned image.
13: Re-compress the cropped image with quality factor F2 to yield I ′2.

4 Experimental Results

Validation of our proposed anti-forensics method is carried out using 500 ran-
domly selected color images from UCID-v2 [16] image dataset.
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Table 1. Detection accuracy (%) of [1] for forged images

F1 F2

54 63 72 81 91 96

54 98.0 99.0 99.5 99.5 97.5 96.0

63 97.5 99.0 99.5 97.5 96.0

72 97.0 99.5 97.5 96.0

81 89.0 97.5 96.0

91 86.5 96.0

Table 2. Accuracy (%) of detector [1] for images (512 × 384) attacked by proposed
model

F1 F2

54 63 72 81 91 96

54 0 1 3 7 40 46

63 0 0 2 20 32

72 0 0 24 25

81 4 12 11

91 2 6

Table 3. Average PSNR (in dB) of attacked images w.r.t. forged images (512 × 384)

F1 F2

54 63 72 81 91 96

54 37.12 37.48 37.91 38.54 39.54 40.36

63 37.41 37.82 38.42 39.42 40.26

72 37.82 38.42 39.41 40.28

81 38.41 39.38 40.26

91 39.31 40.17

UCID dataset comprises 1338 uncompressed color images having size 512 ×
384 and contain a wide variety of subjects. To simulate the NAD-JPEG compres-
sion, i.e. the forging process, each uncompressed image of the dataset has been
initially JPEG compressed by a quality factor F1 ∈ {54, 63, 72, 81, 91}. These
quality factors have been considered by Bianchi et al. [1] also. Thus, we have
2500 singly compressed JPEG image in our dataset. These images are further
subjected to decompression, cropping and re-compression using a JPEG quality
factor F2 ∈ {54, 63, 72, 81, 91, 96}. A block diagram of the said process is pre-
sented in the Fig. 1. After the second JPEG compression, 15, 000 NAD-JPEG
images are available in our dataset. These images have been subjected to the
detection process of Bianchi et al. and the result is presented in the Table 1.
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Note that, the results are reported for F2 ≥ F1 as the detection algorithm 1 is
meant for only those cases where F2 ≥ F1. It is apparent from the results that
the accuracy of the detection process is quite high if no anti-forensics algorithm
is used to deceive the detector.

Fig. 5. Accuracy (%) of q1 estimation.

Fig. 6. Accuracy (%) of grid shift estimation.

Proposed anti-forensics technique expects a singly compressed JPEG image
as an input and produces a non-aligned doubly compressed JPEG image that
posses the statistical properties of a singly compressed JPEG image. Here, by
statistical properties we mean the statistical properties of DC coefficients only.
The proposed technique first removes the statistical artifacts from the singly
compressed JPEG image by erasing the periodicity of DC coefficients present in
that JPEG image. Afterward, it follows the path described by Bianchi et al. [1] to
produce a NAD-JPEG image I ′2. The entire process is presented in the Fig. 4. It
is obvious that I ′2 would not bear any signature of the first compression. Conse-
quently, I ′2 would behave like a singly compressed JPEG image if we analyze the
periodicity of DC coefficients retrieved from the anti-forensically modified image
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I ′2. Thus, we expect detection algorithm 1 would be unable to decide about the
nature of I ′2. For verification, we produce 15, 000 attacked images with differ-
ent quality factors F2 ∈ {54, 63, 72, 81, 91, 96} from the 2500 singly compressed
JPEG images already present in our dataset. All these attacked images are sub-
jected to detection algorithm 1 and the accuracy of the detector against the
attacked images are presented in the Table 2. It is obvious that anti-forensics is
able to deceive the detection process when F2−F1 < 30. The detection accuracy
improves with the increase in the difference between F1 and F2. However, the
detection process never achieves an accuracy better than a random two-class
classification process.

Further analysis of those attacked images which have been detected as NAD-
JPEG images is carried out to determine the accuracy of estimated quantization
step size and grid shift. The results are reported in Figs. 5 and 6.

Table 4. Average PSNR (in dB) of attacked images w.r.t. forged images (256 × 256)

F1 F2

54 63 72 81 91 96

54 36.45 36.78 37.22 37.85 38.87 39.70

63 36.73 37.13 37.75 38.78 39.61

72 37.15 37.75 38.77 39.62

81 37.73 38.75 39.61

91 38.67 39.53

Table 5. Accuracy (%) of detector [1] for images (256 × 256) attacked by proposed
model the table

F1 F2

54 63 72 81 91 96

54 4 0 1 3 4 11

63 1 0 2 1 8

72 2 0 4 5

81 1 2 1

91 7 2

Another important aspect is the quality of the images produced by the pro-
posed anti-forensics technique. If the quality of the attacked images is high, then
only the proposed anti-forensics scheme will have any significance. We present the
average PSNR of the attacked images with respect to the corresponding forged
images in the Table 3. Note that, the overall PSNR observed among 45, 000
attacked images is more than 36dB which demonstrates the effectiveness of our
algorithm to produce high quality attacked images. A set of such images are
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presented in Figs. 2 and 3. Validation of the proposed anti-forensics method on
images having size 256 × 256 also carried out using 500 images initially selected
from the UCID-V2 dataset. The central portion of these images is cropped to
produce 500 images having size 256 × 256. The same process as described above
is followed to produce 15, 000 forged and attacked images. Results regarding the
detection process against these images are available in the Tables 4 and 5. A
similar process has been followed on 500 randomly selected images from RAISE
dataset [3] to create a set of forged and attacked images of size 1024 × 1024 and
the corresponding results are reported in the Tables 6 and 7.

Table 6. Average PSNR (in dB) of attacked images w.r.t. forged images (1024 × 1024)

F1 F2

54 63 72 81 91 96

54 39.00 39.38 39.82 40.33 40.94 41.44

63 39.30 39.59 40.14 40.74 41.25

72 39.76 40.24 40.82 41.32

81 40.32 40.85 41.32

91 40.87 41.32

Table 7. Accuracy (%) of detector [1] for images (1024 × 1024) attacked by proposed
model

F1 F2

54 63 72 81 91 96

54 0 8 17 25 29 25

63 0 8 8 25 29

72 0 4 8 4

81 0 8 13

91 0 8

5 Conclusion

Double JPEG compression is one of the most prominent telltale sign of mali-
ciousness of an image. Consequently, detection of double JPEG compression
received a lot of attention from the researchers and several double JPEG com-
pression detection schemes have been published in recent times. In this paper,
we have concentrated on one such scheme [1] which has been proposed to detect
non-aligned double JPEG compression using statistical properties of DC coef-
ficients of an image. We have demonstrated that the statistical properties of
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the DC coefficients can be altered without affecting the image quality and the
resultant image can evade the said NAD-JPEC detection process. The proposed
anti-forensics method can be extended to defeat any double JPEG compression
detection scheme that relies on the statistical properties of DC coefficients. Thus,
the presented anti-forensics method cast serious doubt regarding the efficacy of
double JPEG compression detection schemes when the suspect image is altered
using any anti-forensics method.
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Abstract. Assessing change in an attack surface of dynamic computer
networks is a formidable challenge. Researchers have previously looked
into the problem of measuring network risk and used an attack graph
(AG) for network hardening. However, such AG-based approaches do not
consider the likely variations in the attack surface. Further, even though
it is possible to generate attack graphs for a realistic network efficiently,
resulting graphs poses a severe challenge to human comprehension. To
overcome such problems, in this paper, we present a differential attack
graph-based change detection technique. We proposed a change distribu-
tion matrix-based technique to discern differences in the network attack
surface. Our method not only detects the degree of change in the network
attack surface but also finds the root causes in a time-efficient manner.
We use a synthetic network to illustrate the approach and perform a set
of simulations to evaluate the performance. Experimental results show
that our technique is capable of assessing changes in the attack surface,
and thus can be used in practice for network hardening.

Keywords: Network security · Multistage attacks · Attack surface ·
Attack graph · Security metric · Change distribution

1 Introduction

In order management and control of network security, early detection of critical
events is fundamental to the capability building like an early warning system.
Today’s computer networks are dynamic and undergoing continuous evolution
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in terms of complexity and size. Accordingly, the network attack surface is also
under constant change. The attack surface [21,22] of a computer network is the
subset of system or network configurations and vulnerabilities (disclosed vulner-
abilities in particular) that an adversary can exploit to compromise the mission-
critical resources [38]. Assessing the degree of change in the network attack
surface and pinpointing the responsible root causes is of the utmost importance
for proactive network hardening.

In this paper, we focus on the temporal aspects of the exploitable vulnerabili-
ties and vulnerable service connectivities. The inherent difficulty in assessing the
change in the network attack surface [21,22] over the predetermined sampling
interval of Δt and pinpointing the hidden root causes has motivated our work.
To the best of our knowledge, so far, there is no work on assessing the temporal
variation in the network attack surface. In this respect, our work is significant
as it deals with the variation in the attack surface while monitoring network
security performance.

Significant contributions of this paper are as follows. First, we establish the
notion of the network attack surface to capture the group of network resources
likely to be used by an adversary during network intrusion. For a given net-
work, a pair of exploit-dependency attack graphs (i.e., 〈G1, G2〉, generated apart
in time by sampling interval Δt) successfully captures the network attack sur-
face and temporal changes in it. Second, we employed an error-correcting graph
matching based technique [36] to measure the degree of change in the attack
surface. Third, we proposed a change distribution matrix-based technique to
determine the newly introduced exploits and their enabling conditions. Finally,
we performed several experiments to validate the proposed method. Experimen-
tal results show that the proposed technique can successfully access the degree of
variation in the network attack surface. Further, it identifies meaningful changes
and pinpoints hidden root causes.

2 Prior Works

Today’s computer network plays an important role as it binds all the information
assets together and provides a means of operational transactions where different
entities can participate, exchange information, and carry out operations over
the information by making use of specific ports, protocols, and services provided
by the network. It may create the possibilities of exposure to mission-critical
information. Proactive identification of all the potential threats to the mission-
critical network resources using an attack graph (a well-known graphical net-
work security model) is a widely recognized research area. Kaynar [16] provides
a systematic study of the various tools and techniques available for the attack
graph generation. Even though several tools, e.g., MulVAL [32], NetSPA [14],
Cauldron [15], etc. efficiently generates attack graph for practical networks, gen-
erated graphs are complex and incomprehensible to human. The manual analysis
of such graphs is impractical and makes it difficult for the process of network
hardening. Several graph analysis techniques have been proposed in the litera-
ture to extract the security-relevant information. The primary goal of the attack
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graph analysis is to predict future attacks [10], determine the optimal set of
exploits, and initial conditions [18,34] for efficient network immunization, and
access the risk posed by an adversary to the critical enterprise resources [1,9].
Further, the number of metrics [13,27] proposed to measure security strength of
network configuration.

While the above stated AG-based approaches provide network hardening
solutions, they are not useful in the context of the dynamic attack surface. Pre-
viously proposed AG-based metrics [12,13,28,30,33,37,38], etc. are too coarse
to be useful for security management. In other words, the network administra-
tor wants to know which network or security-related events are accountable for
the increase in the attack surface. To conclude, existing AG-based approaches
unable to alert about compelling events, do not provide any knowledge about
where in the attack surface changes has been occurred, and what are the root
causes.

Outside attack graph literature, several graph distance metrics have been pro-
posed to compare graphs for similarity. Essentially, the graphs in a pair 〈G1, G2〉
considered to be matching if there is a graph isomorphism among them [2].
Showbridge et al. [36] used edit distance based on the error-correcting graph
matching to monitor the performance of telecommunication networks. To pin-
point the essential variations and unknown abnormal activities in the network,
Liao and Striegel [20] used a graph differential anomaly visualization. Advanced
metrics such as Tabu [19], RASCAL [35], and DeltaCon [17] have been used
largely to examine the chemical graphs for their similarity or dissimilarity. Ning
et al. [25] used an error-correcting graph/subgraph isomorphism to learn about
the adversarial attack strategies. In our previous works [3,4], we have used graph
edit distance [24] and maximum common subgraph [5] to study the effect of
changes in the network topology and security factors on to the attack surface.
Upon observing the significant variation in the attack surface, the administrator
needs to closely inspect the current attack graph (in a pair 〈G1, G2〉) to find
out the root causes accountable for the change. However, the generated attack
graph for a reasonable size network poses a severe challenge for human compre-
hension. To conclude, neither of the previously proposed AG-based approaches
provides the knowledge about “how much change occurred in the network attack
surface?”, “wherein the attack surface change has occurred?” and “what are the
root causes for such change?”.

By observing the shortcoming of the state of the art metrics described in
the literature, we conclude that there should be metrics which not only capture
the temporal variations in the network attack surface but guide administrator
in identifying or pinpointing the root causes. To bridge the gap, we propose
to apply the notion error-correcting graph matching [36] to assess the degree
of variations in the network attack surface by measuring the distance between
consecutive attack graphs generated over an arbitrary sampling interval Δt. For
a given network, the generated exploit-dependency attack graph captures the
underlying attack surface in terms of exploitable technical vulnerabilities and
vulnerable service connectivities [38].
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3 Design Motivation: An Example Scenario

To develop insight about the problem we propose to solve, we consider a Test
Network shown in Fig. 1. Here, Host1, Host2 and Host3 constitute the inter-
nal network. Host Ha is the anonymous malicious user, and her objective is to
become superuser of the Host3. Here, our main concern is “whether an adversary
can acquire administrative privileges on Host3?” Firewalls are set up to acknowl-
edge all outbound connections, but blocks inbound connection requests to Host0
only. Hosts internal to the network are allowed to assess available services via
designated ports described by the access control policies shown in Table 1. We
believe each host in the test network has one or more well-known vulnerabilities
indexed by CVE number [7], as tabulated in Table 2.

Fig. 1. A test network

Table 1. Connectivity-limiting firewall rules for the Test Network at time t

Host Attacker Host0 Host1 Host2 Host3

Attacker localhost All None None None

Host0 All localhost All All Squid, LICQ

Host1 All IIS localhost All Squid, LICQ

Host2 All IIS All localhost Squid, LICQ

Host3 All IIS All All localhost
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Table 2. Services and vulnerability description of the Test Network at time t

Host Services Ports Vulnerabilities CVE

Host0 IIS Web Service 80 IIS Buffer Overflow CVE-2010-2370

Host1 ssh 22 ssh buffer overflow CVE-2002-1359

rsh 514 rsh login CVE-1999-0180

Host2 rsh 514 rsh login CVE-1999-0180

Host3 LICQ 5190 LICQ-remote-to-user CVE-2001-0439

Squid proxy 80 squid-port-scan CVE-2001-1030

MySQL DB 3306 local-setuid-bof CVE-2006-3368

Table 3. Firewall rules for the Test Network at time (t + Δt). Highlighted entries
represent change in Firewall policies over Δt.

Host Attacker Host0 Host1 Host2 Host3

Attacker localhost All None None None

Host0 All localhost All Netbios-ssn Squid, LICQ

Host1 All IIS localhost None Squid, LICQ

Host2 All IIS ftp, rsh localhost None

Host3 All IIS All All localhost

Table 4. Services and vulnerability description of the Test Network at time (t + Δt).
Highlighted entries represent newly introduced services and vulnerabilities.

Host Services Ports Vulnerabilities CVE IDs

Host0 IIS Web Service 80 IIS Buffer Overflow CVE-2010-2730

ftp 21 ftp buffer overflow CVE-2009-3023

Host1 ftp 21 ftp rhost overwrite CVE-2008-1396

rsh 514 rsh login CVE-1999-0180

Host2 Netbios-ssn 139 Netbios-ssn nullsession CVE-2003-0661

rsh 514 rsh login CVE-1999-0180

Host3 LICQ 5190 LICQ-remote-to-user CVE-2001-0439

Squid proxy 80 squid-port-scan CVE-2001-1030

MySQL DB 3306 local-setuid-bof CVE-2006-3368

As our example network is dynamic, we expect certain changes in the form
of change in the service connectivity, the introduction of the vulnerable services,
disclosure of new vulnerabilities, etc. Such changes in the network configuration
highlighted in Tables 3 and 4. As there is a change in the network topology
factors and security factors as well, there is a notable change in the network
attack surface. Goal-oriented exploit-dependency attack graph for this network
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configuration at time t + Δt is shown in the Fig. 2(b). Here Δt is an arbitrary
sampling interval. The decision of the Δt selection needs to be done precisely,
and it depends on the expertise of the security analyst [4].

A goal-oriented exploit-dependency attack graph [29,39] of the test network
at time t is shown in Fig. 2(a). Here, the attack graph has two kinds of ver-
tices, namely, exploits and conditions, and it shows all the attack paths avail-
able to an adversary. The generated exploit-dependency attack graphs are goal-
oriented, finite, and contain neither multiple edges nor loop. We have slightly cus-
tomized MulVAL [32] so that it constructs attack graphs with uniquely labeled
nodes. Automatic generation of the exploit-dependency attack graphs [29,31,32]
is beyond the scope of this article.

Quick identification of variations in the attack surface and hidden root causes
is crucial to the prevention of future attacks. The critical observation is that the
test network at different instants of time (here, t and t+Δt) has the same value
of the previously proposed attack graph-based metrics. However, the underlying
attack surface is different. The remainder of this paper deal with an issue of
measurement of variations in the attack surface. Further, we are interested in
pinpointing the root causes.

Understanding the temporal differences between successive attack graphs
generated apart in time by sampling interval of Δt is usually the first important
step towards finding a change in the attack surface of dynamic networks. The
change detection in the attack surface, which is the main focus of this paper is
defined as follows:

Definition 1 (Attack Surface Change Detection).
Given: a sequence of goal-oriented exploit-dependency attack graphs generated
apart in time by sampling interval Δt.
Find:

1. the degree of variation in the network attack surface over Δt, as well as
2. the root causes accountable for the variation in the attack surface.

4 Network Attack Surface: A Formal Model

In this section, first, we establish the notion of the network attack surface
(NAS). Next, we show how the exploit-dependency attack graph [39] ideally
captures the NAS and dynamics in it.

4.1 Notion of the Network Attack Surface

Wang et al. [38] were the first who applied the notion of attack surface to the
entire computer network. The author’s primary focus was on interfaces like
remotely exploitable services. According to Cybenco et al. [8], NAS consists
of exploitable technical vulnerabilities and vulnerable network configurations.
We borrowed the idea of the network attack surface from Cybenko et al. [8].
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Fig. 2. Differential attack graphs visualization at the node level. Here, each initial
condition is shown by a box, exploit by an oval, and postcondition by a plain text.
Pink colored nodes: appeared only in G2; Cyan colored nodes: appeared in both the
attack graphs G1 and G2; Green colored nodes: appeared only in G1. (Color figure
online)

Let N = {h0, h1, h2, . . . , hn} be a finite set of hosts in a network that can be
a potential target for an adversary. Here host h0 is the attacking host from where
an adversary can launch multistage attacks. Mainly, the security configuration
of a given network N comprise of two facts as follows:

1. A finite set of services S and related vulnerabilities.
2. Service connectivity relation among the hosts.

Let S =
⋃n

i=1 Si be a finite set of services accessible over the network N .
Here Si ∈ S represents the set of services running over the host hi. Let C =⋃n

i=1 Ci be a finite set of service connectivity relation, where Ci ∈ C is the set
of service connectivity relations from host hi ∈ N .
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Let Conf(N ) represents the security configuration of the network N . Each
machine in N hosts critical services, vulnerable to one or more exploits. Let V =⋃m

i=1 Vi be a set of vulnerabilities in the network N , where m indicates the total
number of disclosed technical vulnerabilities in the N . Each Vi ∈ V is related
with the single service on a single host. Let V Ni = {vni,1, vni,2, . . . , vni,p} be
a set of exploitable vulnerabilities in the host hi ∈ N . The total number of
exploitable vulnerabilities in N is represented by the set V N =

⋃n
i=1 V Ni and

V N ⊆ V . For the set of vulnerabilities which can be exploited remotely, we need
to look at service connectivity between the pair of hosts 〈hi, hj〉.

Let C′ =
⋃n

i=1 C ′
i be the set of vulnerable service connectivity relations in N

and C′ ⊆ C. Let V N ′ ⊆ V N be the set of vulnerabilities likely to be incremen-
tally exploited to reach and compromise the target. Moreover, let C′

v ⊆ C′ be the
set of service connectivities that can be used during the multistage attack. Con-
tribution mentioned above of V N ′ and C′

v indicates their possibility of being
used by an adversary during the incremental network compromise. In conclu-
sion, the network attack surface (NAS) is a subset of network configuration
(vulnerable service connectivities) and well-known technical vulnerabilities that
an adversary can exploit to reach and compromise the target. With the notion
of the NAS discussed above, we define NAS as follows:

Definition 2 (Network Attack Surface). Given a set of vulnerable service
connectivities C′

v ⊆ C′, and a set of exploitable technical vulnerabilities V N ′ ⊆
V N that can be used by an adversary to incrementally compromise the network
N , the network attack surface (NAS) is the set, where NAS = {C′

v ∪ V N ′}.

4.2 Model to Capture the Network Attack Surface (NAS)

Mainly, an exploit-dependency attack graph [39] portray exploits and their
respective enabling conditions, e.g. the presence of exploitable vulnerabilities,
vulnerable service connectivities, etc. The graph constitutes two types of edges,
namely, require edge and imply edge. Essentially, require edge is a directed edge
from the security condition (i.e., either initial condition or postcondition) to
an exploit and it captures the conjunctive nature of conditions to activate the
exploit [11]. However, an imply edge is a directed edge from the exploit to a post-
condition. As the require edge captures the detail about the network resource
involvement (e.g., vulnerable services, service connectivities, etc.), the notion of
an attack surface for a given network is perfectly captured by the attack graph.

We portray the network attack surface, i.e., NAS(Conf(N )) by means of an
exploit-dependency attack graph G(E∪I, Rr∪Ri) [39]. Here, E is a set of exploits,
I a set of conditions (both initial conditions and postconditions). Accordingly,
we can determine the variation in the network attack surface by computing
distance between a pair of exploit-dependency attack graphs generated over the
sampling interval of Δt across multiple timelines. In doing so, we can identify
the important network topology and security factor, which are accountable for
the variation in the NAS.
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4.3 Dealing with Variations in the Network Attack Surface (NAS)

Today’s computer networks are undergoing a continuous change in terms of their
size and complexity. Such a shift in a network configuration is as a result of the
enumeration of several actions taken by the network administrator as a part
of network maintenance and security hardening. Furthermore, there will be a
change in the network attack surface due to events which are not under the
administrative control. A partial list of such network dynamics that lead to a
significant variation in the network attack surface compiled as follows:

– Change in the network configuration due to routine network maintenance
activities such as:

• Installation/removal of network devices such as workstations, servers,
routers, firewalls, IDPS, etc.

• Installation and uninstallation of softwares and services.
• Reconfiguration of access control policies.

– Users increased flexibility in installing and configuring software, and services.
– Misconfiguration of software/hardware devices.
– Failure of security devices such as firewall, IDPS, etc.
– Application of security countermeasures, e.g., patching of vulnerabilities.
– Discovery of new vulnerabilities.

Let M be the list of all plausible events that results in a notable variation
in the network attack surface. Post application of the action set M , the initial
network configuration Conf(N ) changes. Let Conf(N ) ⊕ M be the resulting
configuration and NAS(Conf(N ⊕M)) be the resulting network attack surface.
Such variations in NAS over Δt can be captured by an exploit-dependency
attack graph generated at time t + Δt.

5 Assessing Change in the Network Attack Surface

We are particularly interested in three problems. First, “how much change has
occurred in the attack surface over Δt as a result of network dynamics?”. Second,
“what are the newly introduced changes in the attack surface?”. Third, “what
are the root causes?”. The first can be answered by applying the concept of error-
correcting graph matching (ecgm) [5,23] for a pair of successive attack graphs
〈Gi, Gj〉 generated over a sampling interval Δt. Whereas the latter two will can
be answered with the help of the change distribution matrix.

5.1 Error-Correcting Graph Matching (ecgm)

Before discussing the concept of error-correcting graph matching (ecgm), an
attack graph representation of the network attack surface NAS must be defined.
Only the issues associated with dynamic changes in the network attack surface
are considered here.
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Definition 3. A labelled exploit-dependency attack graph G is a three-tuple
G = (V,E, ρ), where

• V is a finite set of vertices, i.e., V = E ∪ I.
• E ⊆ V × V is a set of Edges, i.e., E = Rr ∪ Ri

• ρ : V → LV is a function assigning labels to the vertices

In this definition, E is a set of exploits, I a set of conditions (both initial
conditions and postconditions), Rr ⊂ (I × E) is a require relation, Ri ⊂ (E × I)
is an imply relation, LV is the set of symbolic labels uniquely identifying each
node in the attack graph G, and ρ is a function assigning unique labels to the
vertices.

In general, ecgm measures the difference between the two input graphs by
determining the least cost sequence of edit operations required to transform
one graph into the other. To successfully use ecgm, we only consider the edit
operation in terms of the deletion of require edges. It is because, require edge
is the only attack graph construct, which thoroughly describes the contribution
of network resources to the changing network attack surface. The algorithm 1
detects such newly introduced require edges in the attack graph G2 generated
at time t + Δt.

Algorithm 1. findEdges: Find the newly introduced require edges in an
Exploit-dependency Attack Graph G2

Input:
〈G1, G2〉 → a pair of goal-oriented exploit-dependency attack graphs generated
over the sampling interval Δt
Output:
NewInit ⊂ V2\V1 → set of newly introduced initial conditions
NewRequireEdge ⊂ E2\E1 → set of newly introduced require edges

1: 〈V1, E1〉 ← G1

2: 〈V2, E2〉 ← G2

3: G3〈V3, E3〉 ← G2\G1

4: if (G2\G1 = φ) then
5: Print: “No change in the network attack surface over Δt ”
6: else
7: for all u ∈ V3 do
8: if (indegree(u) == 0) then
9: NewInit ← u

10: end if
11: end for
12: for all u ∈ NewInit do
13: if (u == i) for one or more (i, j) ∈ E3 then
14: NewRequireEdge ← (i, j)
15: end if
16: end for
17: end if
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Definition 4 (Edit Operation). Given the exploit-dependency attack graph
G2 = (V2, E2, ρ) generated at time (t + Δt), define an edit operation δ on G2 as
follows:
(e → $): deleting the newly introduced require edge e from G2. This represents
removing dependency between the initial condition and exploit.

From a hardening perspective, analysts are interested only in newly intro-
duced vulnerabilities and configuration changes that lead to an increase in attack
surface. Therefore, unlike [36], we applied the ecgm procedure to the attack graph
pair 〈mcs(G1, G2), G2〉. Here mcs(G1, G2) represents the portion of the attack
graph G1 (or attack surface) which is invariant over time Δt. The persistence
of mcs(G1, G2) over Δt is due to the constraints like- unavailability of vulnera-
bility patches, limited hardening budget, etc. Therefore, the analyst’s goal is to
identify all the newly introduced vulnerabilities, enabling conditions, and then
patch/fix them, so that graph G2 reduces to mcs(G1, G2).

Definition 5. Given an attack graph G2 = (V2, E2, ρ) at time t + Δt and a
sequence of edit operation Δ = (δ1, δ2, . . . , δk), k ≥ 1, the edited attack graph
Δ(G) becomes Δ(G) = δk(. . . δ2(δ1(G2)) . . .) = mcs(G1, G2) = (Vδ, Eδ, ρ) where:

– Vδ ⊆ V2

– Eδ ⊆ E2

Note that the removal of each require edge δi is assigned a cost C(δi), then
the total cost associated with the sequence of edit operations Δ is

C(Δ) =
k∑

i=1

C(δi) (1)

In practice, an exploit is prevented from execution by disabling any one of the
initial enabling conditions. But, here we consider the removal of all the require
edges of all the newly introduced exploits in G2. It is because our goal is to
assess the degree of change in the attack surface and pinpoint the root causes as
well.

If the cost associated with the removal of each of the newly introduced require
edge is 1, then the edit sequence cost becomes the difference between the total
number of require edges in attack graph G2 and all the require edges that are in
common to both G1 and G2.

Definition 6 (Degree of variation in the network attack surface).
Let the attack graph for the enterprise network operating at time t is G1 =
(V1, E1, ρ), and let G2 = (V2, E2, ρ) be the attack graph for the same network at
time t′, where t′ = (t + Δt). The distance d(mcs(G1, G2), G2) is given by:

d(mcs(G1, G2), G2) = |require edges(G2)| − |require edges(mcs(G1, G2))| (2)

where the cost function for edit operation δ is

C(δ) =
{

1 ; δ = (e → $)
0 ; otherwise
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The edit distance d, as a measure of the change in network attack surface,
increases with increasing degree of change experienced by the network over time
Δt. The edit distance d is bounded below by d = 0 when there is no change
in the attack surface, and above by d = |require edges(G2)|, when the network
attack surface is entirely different.

5.2 Pinpointing the Root Causes

Since each network event (as discussed in Sect. 4.3) can cause changes in the
attack surface, our next objective is to pinpoint such events. For the attack
graph pair 〈G1, G2〉 shown in Fig. 2, the edit distance d has indicated significantly
different attack surface.

To portray newly introduced changes in G2, we present a change distribu-
tion matrix C, as shown in Fig. 3. It shows newly introduced changes in the
attack surface, which is not clear even with the powerful attack graph visual-
ization. The rows and columns of C represent initial conditions and exploits in
the attack graph G2, respectively. The existence of require edge deleted from G2

is represented in the matrix C = [cij ] by the corresponding row-column entry
cij = 1. Here, i and j are the respective condition and exploit of the deleted
require edge. C with non-zero entry cij = (−1) represents the set of require edges
that are stable over time Δt. Whereas, an entry cij = 0 record edges that are
not present in G2. Essentially, C is a sparse matrix because of the unidirectional
edges in the exploit-dependency attack graph.

Initial Exploits →
Conditions

↓
2 5 8 12 15 17 23 26 29 32 35 37 40

4
7
9
10
13
18
24
27
30
33
34
38
39
41

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 −1 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 3. Change distribution matrix C

Definition 7 (Change Distribution Matrix). The change distribution
matrix C = [cij ] is |Vp| × |Vq| matrix that describes the change in the net-
work attack surface in terms of newly introduced exploits and associated initial
conditions, where

– Vp, Vq ⊂ V2 and

cij =

⎧
⎨

⎩

1 ; e(i, j) ∈ Rr′ , Rr′ ⊂ Rr ⊂ E2

−1 ; e(i, j) ∈ Rr′′ , Rr′′ ⊂ Rr ⊂ E2

0 ; otherwise
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In this definition, the matrix C = [cij ]p×q is a set of p initial conditions and
q exploits arranged in a rectangular array of p rows and q columns. Rr′ is the
set of newly introduced require edges between initial conditions and exploits in
an attack graph G2. Rr′ does not constitute require edges which starts from the
postcondition. Whereas, Rr′′ represents the set of require edges that are stable
over Δt.

stiolpxElaitinI →
Conditions

↓
2 5 8 12 15 17 23 26 29 32 35 37 40 Sum

4
7
9
10
13
14
18
24
27
30
33
34
38
39
41

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0
0
0
0
1
0
0
1
2
1
1
1
1
2
1

Sum 0 0 0 0 0 0 2 1 2 2 1 2 2

Fig. 4. Reduced change distribution matrix CR

The heat map corresponding to the matrix C is shown by Fig. 5(a). It provides
a quick overview of the security configuration of the managed network. Since the
security analyst is interested only in newly introduced changes, we reduced the
original matrix C to the matrix CR, as shown in Fig. 4. Such a reduced matrix
CR and respective heat map in Fig. 5(b) shows the concise representation of the
newly introduced changes in the network attack surface.

The rows and columns of the matrix CR can be placed in any order, without
affecting the “require relationship” between initial conditions and exploits. But
the ordering that capture similarly connected attack graph elements is desirable.
In particular, we seek an order that tends to cluster non-zero matrix elements.
It allows us to treat such clusters of similarly connected elements as a single
unit as we analyze matrix CR. We, therefore, performed clustering operations to
reorder CR so that the block of similarly connected require edges emerge.

The clustering of rows and columns reveals security-relevant information,
making essential features apparent for network hardening. Clustering re-arranges
the rows and columns of the matrix CR to form homogeneous groups. In this way,
patterns of similar “require relationship” in G2 are clear, and groups considered
as a single unit. For the clustered matrix, we retain the ordering induced by
clustering, so that patterns in the attack graph structure are still apparent. The
employed clustering technique is fully automatic, is free of the parameter, and
having quadratic time complexity in the size of change distribution matrix CR.
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5.3 Observations

Careful analysis of the clustered change distribution matrix reveals the newly
introduced changes in the network attack surface. Security analysts make net-
work hardening decisions based on the top initial conditions that contribute
most to the attack surface. To extract security-relevant information, we have
performed clustering operations over CR as follows:

1. Column-wise Clustering
Figure 6(b) shows the matrix CR after column clustering. The essence of such
clustering is that it provides knowledge of the initial conditions that enable
two or more exploits. Initial conditions, e.g., 27, and 39, are responsible for
the successful execution of two exploits each. If anyone of the above two vul-
nerabilities, i.e., CV E −1999−0180 and CV E −2008−1396 is patched, then
the majority of the attack paths can be removed and hence the attack oppor-
tunities available to an adversary. Knowledge of such initial conditions that
covers a large number of exploits can be used for efficient network hardening
in a resource-constrained environment.

2. Row-wise Clustering
Figure 6(c) shows the matrix CR after row clustering. The goal is to distin-
guish between stable and newly introduced exploits. From Fig. 6(c), it is clear

Fig. 5. Each red block with non-zero entry 1 corresponds to the newly introduced
require edge. Whereas, each gray block with the non-zero entry (−1) corresponds to
the require edges that are stable over time Δt. (Color figure online)
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that exploit 26, and 35 are stable over time. In an attack graph G1, exploits
26, and 35 are dormant. In other words, associated vulnerabilities were not
exploitable at time t due to the unavailability of one or more initial conditions.
Due to the change in the network topology and security factors over Δt, these
exploits are activated and become the part of the attack graph G2. Stable
exploits can be easily identified as there is only one require edge for them.
Whereas, as shown in Fig. 6(c), exploits 23, 29, 32, 37, and 40 are newly intro-
duced exploits. We successfully identified the conserved vulnerability clusters
in a dynamic network over time. Proactive detection of such newly introduced
exploits alerts, security assessor about the possible intrusion.

3. Total Clustering (Row-wise Clustering followed by Column-wise
Clustering or vice versa)
Finally, we have performed a total clustering of over CR, as shown in Fig. 6(d).
The intuition behind such clustering is that it provides knowledge about the
portion of the attack surface that suffered maximum change. It shows top k
nodes, both initial conditions, and exploits that have maximum impact on the
attack surface. As the vulnerability remediation is resource and time consum-
ing, it is crucial to identify the newest and largest problems and remediate
those first.

We have shown how our proposed change detection technique can suc-
cinctly summarize significant changes in the network attack surface resulting
from changes in the network (or host) configuration. In other words, our change
detection technique helps security analysts in doing what-if analysis of planned
changes and the impact of real-time changes in the network configuration. More-
over, the network topology or security factors that have maximum impact on
the network attack surface can be detected and prioritized for efficient network
hardening.

Our implementation of the change distribution matrix uses Python sparse
matrices for internal computations and visualization, as well. Essentially, the
computational complexity of operations over the sparse matrices is proportional
to the number of nonzero elements in the matrix (in our case number of newly
introduced require edges). Our change distribution technique is fully automatic,
uses quadratic memory in the order of vertices to store the CR matrix. As an
alternative to the change distribution matrix, one can use the adjacency list. The
adjacency list keeps all the newly introduced required edges and uses no space
to record the edges that are not present in G2. Therefore, there is a trade-off
(in both space and time) between change distribution matrix and adjacency list,
depending on the graph sparseness and the required clustering operations [26].
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Fig. 6. Clustering operations over change distribution matrix CR
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6 Experiments

To demonstrate the use of ecgm for measuring the variation in the NAS, we have
generated sample directed graphs and subjected it to arbitrary variations to show
an increase in graph edit distance (d) with increasing degree of change in the
network topology and security factors. We have randomly generated arbitrary
directed graph G containing 100 nodes where the average edge density is not
more than 3. In practice, the maximum edges incident on each type of node in
exploit-dependency attack graphs is limited by a constant k [4]. Graphs with
average edge density 3 were generated to mimic the properties of attack graphs.

We model the dynamic behavior of digraph G by randomly inserting and
deleting vertices to form the modified graph G′, subject to an input probability
that vertices should be changed. The effect of change in the graph topology on
the edit distance d shown in Fig. 7. Here the input probability of change is the
independent variable being manipulated during the experiment, and the graph
edit distance is the dependent variable being recorded. From Fig. 7, it is visible
that there is an increase in the edit distance with an increase in the change in the
graph topology from G to G′. Therefore, we state that the proposed ecgm-based
edit distance (d) is sensitive to the structural differences between a pair of input
attack graphs and hence, to the variation in the network attack surface. Each
experiment was conducted several times, with 99% confidence intervals plotted
using error bars.

Fig. 7. Graph edit distance vs. Probability of graph topology change.
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Fig. 8. Computation time for edit distance under different edge densities.

Because of the unavailability of benchmark data sets in the attack graph
domain, we made use of synthetic data sets to find out the computational com-
plexity of the proposed ecgm-based technique. The test is conducted to con-
firm whether the results obtained for a small hypothetical network can be gen-
eralized to large enterprise networks. We have generated two synthetic data
sets that constitute normally-distributed random edges with an average edge
density of 0.02%. In particular, we made use of the Fan Chung algorithm [6]
to create such data sets. For each synthetic data set with average edge den-
sity 0.02%, we have a graph series (S). Each graph in a sequence consists of
50, 100, 1000, 3000, 5000, 7000, and 10000 nodes. Another series S ′ is generated as
a counterpart subjected to random variations (with input probability of change:
0.05%) to show an increase in the edit distance d, for evaluation of ecgm com-
putation times. The above experiment is replicated average edge density, such
as 0.025% and 0.03%.

To assess the computational complexity of ecgm-based edit distance, we use
both the series S and S ′. We have chosen the first graph, G1 from S, comprising
50 unique nodes. Another graph G′

1 from S ′ with the same number of nodes (as
in G1) but few with different label representation chosen. These two graphs G1

and G′
1 are evaluated for edit distance. The preceding procedure replicated for

all other graphs in a series S. As depicted in Fig. 8, the effect of higher edge
densities on the computation time of edit distance is apparent. It exhibits higher
computational times required for graphs with higher edge densities.
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7 Conclusions

We have presented a differential attack graph-based change detection technique
to assess changes in the attack surface of dynamic computer networks. An error-
correcting graph matching (ecgm) based similarity measure is employed to iden-
tify the degree of change in the attack surface. Further, we introduced a change
distribution matrix-based technique in the context of exploit-dependency attack
graphs, so that the portion (or region) of the attack graph that suffered change
inferred quickly. The newly introduced changes then grouped to facilitate effi-
cient network hardening. Such a change distribution technique can help make
the attack graph more understandable and useful. We explored the viability
and efficacy of the proposed method and showed that our approach is capable
of assessing change in the attack surface at the level of initial conditions, and
hence can be used in practice for network hardening.
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