
Strong Known Related-Key Attacks
and the Security of ECDSA

Tsz Hon Yuen(B) and Siu-Ming Yiu

The University of Hong Kong, Pok Fu Lam, Hong Kong
{thyuen,smyiu}@cs.hku.hk

Abstract. The classical related-key attack (RKA) model fails to cap-
ture some real world systems that introduce related secret keys by design.
In some blockchain applications, public keys are generated in a way
that the corresponding secret keys are additively related. The difference
between two secret keys are known to some third parties. In this paper,
we propose the Strong Known Related-Key Attack (Strong KRKA) model
to capture this scenario.

ECDSA has long been considered to be inferior to Schnorr signature
in terms of security, in sprite of its popularity in the standardization
and real world usage. In this paper we show that Schnorr signature
is not secure in the Strong KRKA model. In contrast, the security of
ECDSA in the Strong KRKA model can be reduced to the unforgeabil-
ity of ECDSA under chosen message attack. This theoretical result gives
a different view of the relative security level of ECDSA and Schnorr,
since ECDSA was developed in 1992.

Keywords: Related-key attack · ECDSA · Schnorr signature ·
Blockchain

1 Introduction

The related-key attack (RKA) model captures real world attacks like tampering
or fault injection attack. For the case of public key cryptosystem [1], it considers
the security of encryption or signature with respect to a single public key. The
encryption or verification algorithms is run by taking the original public key as
the input. The RKA model mainly considers the attacks happened during the
run time of the decryption or signing algorithms.

In this paper, we consider the case that related secret key is deliberately
introduced to public key cryptosystem during the design phase. In this case,
a pair of related secret keys correspond to a pair of related public keys. The
relationship between secret keys is known to the adversary. As a result, the
security of encryption or signature has to be considered with respect to multiple
public keys. Looking ahead, we will introduce a new security model to capture
this kind of public key cryptosystem. This security model is inspired by the non-
hardened key derivation in Bitcoin Improvement Protocol (BIP) 32 and Bitcoin’s
stealth address.
c© Springer Nature Switzerland AG 2019
J. K. Liu and X. Huang (Eds.): NSS 2019, LNCS 11928, pp. 130–145, 2019.
https://doi.org/10.1007/978-3-030-36938-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36938-5_8&domain=pdf
http://orcid.org/0000-0002-0629-6792
http://orcid.org/0000-0002-3975-8500
https://doi.org/10.1007/978-3-030-36938-5_8

Strong Known Related-Key Attacks and the Security of ECDSA 131

BIP 32 Non-hardened Key Derivation. BIP 32 describes hierarchical deter-
ministic wallet (HD wallet). A child key can be derived from a parent key. Sup-
pose the parent secret key is x0 and the parent public key is X0 = gx0 . There is
also a chain code for the parent key c0, which is a 32 bytes extended information
about the key. Then to derive a non-hardened child key with index i, it computes

S = HMAC − SHA512c0(X0||i),

where c0 is used as the key of the hash function. Denote sL as the first 32 bytes
of S and sR as the last 32 bytes of S. The child secret key x1 = x0 + sL, the
child public key X1 = X0 · gsL and the child chain code is c1 = sR.

The problem of using the standard Schnorr signature with BIP 32 non-
hardened child key is that a signature from X0 can be computed from a sig-
nature of X1 (or vice versa). Note that the computation of sL does not include
secret key. If the chain code c0 and the child index i is known, the adversary can
compute sL. If (R, z) is a valid Schnorr signature for X0 (such that gz = RXc

0),
then (R, z + csL) is also a valid signature for X1:

gz+csL = RXc
0gcsL = Rgc(x0+sL) = RXc

1 ,

where c = H(R,m) for some message m. On the other hand, there is no known
attack for ECDSA in this setting.

Bitcoin’s stealth address also has a similar structure of related secret key.
However, the related secret key is generated by two parties in a transaction.
Details of stealth address will be discussed in Sect. 6.2. We will show the potential
problem of using Schnorr signature with BIP 118 in Sect. 6.3.

1.1 Modelling Related-Key by Design

In our previous example, related-key in BIP 32 is used for digital signatures. For
the ease of presentation, we mainly focus on the related-key of digital signature in
this paper. In the classical RKA security model for signature [1], the adversary
wins the security game if he can output a valid signature with respect to a
challenge public key pk. The adversary can query the signing oracle on a message
m and a function φ of the secret key sk (e.g., ask for a signature signed by
φ(sk) = sk + Δ, where Δ is a constant chosen by the adversary).

Result 1: Strong Known RKA Model Captures Real Attack in
Blockchain. In this paper, we require the following changes to the RKA security
model:

1. Assume that the public key is computed from the secret key by a one-way
function T , i.e., pk = T (1λ, sk), λ is the security parameter. Then the signing
oracle on a message mi and a function φi returns a valid signature σi signed
by φ(ski); and a related public key pki = T (1λ, φ(ski)). The adversary wins
by outputting a valid signature with respect to any pki. This variant is called
the Strong RKA security in [1].

132 T. H. Yuen and S.-M. Yiu

Table 1. Difference between security models in this paper.

(Chosen) Related Key Attack Known Related Key Attack

Single public key RKA [1] KRKA

Multiple public keys Strong RKA [1] Strong KRKA

2. The related-key function φ is only known by the adversary but not chosen
by the adversary. It is similar to the difference between the chosen message
attack and the known message attack in digital signature. We call this variant
as Known RKA (KRKA) security.

By combining the Strong RKA with Known RKA model, the Strong KRKA
captures the security of signatures signed by secret keys derived by BIP 32. It is
because (1) the adversary can ask for valid signatures signed by different parent
and child keys and will try to forge any one of the corresponding public keys
(Strong RKA), and (2) the adversary only knows that the parent and child keys
are differed by sL which is the output of a hash function, but the adversary
cannot set sL to arbitrary value (KRKA).

Since there are two modifications to the classical RKA security model, we
have 4 possible security models, as shown in Table 1. Interestingly, it is mention
in [1] that there is no known application-relevant attack by the Strong RKA
model. In this paper, we give a concrete example that a combination of Strong
RKA model and KRKA model is useful to capture the security of BIP 32 non-
hardened key derivation (and stealth address). BIP 32 is widely used as HD
wallet for Bitcoin as well as other cryptocurrencies, such as Ethereum.

1.2 ECDSA and Schnorr Signature in Strong KRKA Model

Our new Strong KRKA model gives us a rather suprising result on the security
of ECDSA and Schnorr signature. In short, we show that Schnorr signature is
not secure in the Strong KRKA model. On the other hand, we can reduce the
Strong KRKA security of ECDSA to the existential unforgeability against chosen
message attack (EUF-CMA) of ECDSA.

There are many discussion about whether Schnorr signature or ECDSA is a
better digital signature scheme in practice. The EUF-CMA of Schnorr signature
is well-understood for years [10]. On the other hand, ECDSA is known to be
malleable: if (s, t) is a ECDSA signature on a message m, then (−s, t), is also
a valid signature on m. Therefore ECDSA is not strongly unforgeable against
chosen message attack (SUF-CMA). The ECDSA malleability is one of the causes
of transaction malleability in the Bitcoin system, and a number of related attacks
are found [4]. Comparatively, Schnorr signature is SUF-CMA secure [8].

Many people considers that Schnorr signature is more secure than (or at least
as secure as) ECDSA. The only issue hindering the use of Schnorr signature is the
patent problem. Since the expiry of the patent in 2008, there are calls to change
ECDSA to Schnorr signature in various systems. For example, some developers

Strong Known Related-Key Attacks and the Security of ECDSA 133

and researchers suggest to use Schnorr signature to replace ECDSA in Bitcoin.
The Schnorr signature also allows batch verification and can be easily converted
to multi-signatures or threshold signatures. The ETSI specification [5] mentioned
a number of advantages of using (EC-)Schnorr over ECDSA, including simpler
signing algorithm, easier implementation of hash function, and Schnorr’s security
in the random oracle model. The Schnorr signature has no identified technical
drawback compared to ECDSA in [5].

Result 2: Schnorr Signature is Not as Secure as ECDSA in the Strong
Known RKA Model. It is commonly believed that Schnorr signature is more
secure than ECDSA. For example, Schnorr signature is strongly unforgeable [8]
but ECDSA is not. For Schnorr signature, the EUF-CMA is reduced to the
discrete logarithm (DL) problem in the random oracle model [10]. The EUF-
CMA security of ECDSA is reduced to the DL problem in the generic group
model [2,3,12], or in the bijective random oracle model [6].

It is known that both Schnorr signature and ECDSA are not EUF-CMA
secure in the RKA model (known as the EUF-CM-RKA security) [9]. In this
paper, we will show that the Strong Known RKA model is just enough to dif-
ferentiate between Schnorr signature and ECDSA. We will demonstrate that
Schnorr signature is not EUF-CM-sKRKA secure. Other the other hand, ECDSA
does not have the same weakness. In fact, we are able to show that (EC)DSA is
EUF-CM-sKRKA secure in the random oracle model if (EC)DSA is EUF-CMA
secure. To the best of the authors’ knowledge, it is the first proof that (EC)DSA
is potentially more secure than Schnorr signature in a model which is weaker
than some well-established security model.

2 Backgrounds

Schnorr signature, DSA and ECDSA are the most well-known discrete logarithm
(DL)-based digital signature schemes. DSA and ECDSA are commonly used in
various standards even though no rigorous security proofs were given when these
standards are set. On the other hand, the security of the Schnorr signature is
well-known under the random oracle model [10]. However, the Schnorr signature
remained patented until 2008 and hence its usage is relatively limited in the
industry [5].

Schnorr Signature [11]. In a group G of prime order q with generator g, a
signing key x coincides with exponent, a verification key X = gx, a signature on
a message m is (c, s), where:

c = H(gr,m), s = r + cx mod q,

r is a random element randomly chosen from the exponent space and H is a
collision resistant hash function that maps into the exponent space. Verification
works by firstly recovering gr = gs/Xc and then checking if c = H(gr,m).

(EC)DSA. DSA was firstly specified by NIST. ECDSA was proposed in 1992 in
response to the NIST request. Both DSA and ECDSA use an extra conversion

134 T. H. Yuen and S.-M. Yiu

Table 2. Comparing ECDSA and Schnorr signature. ROM stands for random oracle
model and BRO stands for bijective random oracle model.

EUF-CMA MU-EUF-CMA SUF-CMA EUF-CM-RKA EUF-CM-sKRKA

Schnorr

signature

√
(ROM [10])

√
(ROM [8])

√
(ROM [8]) × [9] × (this paper)

ECDSA
√

(BRO [6]/

generic group

model [2,3,12])

√
(generic group

model [7])

× × [9]
√

(reduce to

EUF-CMA in

ROM, this paper)

function f to map group elements into the exponent space Zq. An (EC)DSA
signature on a message m is (s, t), where:

t = f(gr), s = (H(m) + xt)/r mod q.

Verification works by firstly recovering gr = (gH(m)Xt)1/s and then checking
if t = f(gr). For DSA defined in a prime-order subgroup of the multiplicative
group of some prime field GF (p), the conversion function f is define as A �→ (A
mod p) mod q. For ECDSA, it is defined on elliptic curves over some finite field
F = GF (pn) and its group elements are points (x, y) ∈ F × F. The conversion
function f for ECDSA is the mapping A �→ A.x mod q, where A.x denotes the
encoding of the x-coordinate of A as an integer.

ECDSA vs Schnorr signature is shown in Table 2. For Schnorr signature, the
existential unforgeability against chosen message attack (EUF-CMA) is reduced
to the DL problem in the random oracle model [10]. The formal security of
ECDSA is less studied than that of Schnorr signature. The EUF-CMA security
of ECDSA is reduced to the DL problem in the generic group model [2,3,12], or
in the bijective random oracle model [6].

The security of Schnorr signature in the multi-user setting is shown in [8].
The multi-user EUF-CMA security (MU-EUF-CMA) of ECDSA is shown in [7]
using the generic group model.

3 Preliminaries

3.1 Notations

For a finite set A, we use the symbol a ←s A as the random sampling according
to the uniform distribution. We also use ←s for assignments from randomized
algorithms and ← for deterministic algorithms. For any function F : A → B, we
write Dom(F) as the domain of F and Rng(F) as the range of F .

Let G be a cyclic group of prime order q, with generator g. Suppose x ←s Z
∗
q .

The discrete logarithm (DL) assumption is that given (g, gx), no probabilistic
polynomial time algorithm can output x.

Strong Known Related-Key Attacks and the Security of ECDSA 135

3.2 Signature Schemes

A signature scheme consists of three algorithms:

– KeyGen: On input a security parameter 1λ, it outputs a signing key sk and a
verification key pk.

– Sign: On input a signing key sk and a message m, it outputs a signature σ or
the failure indicator ⊥.

– Verify: On input a verification key pk, a message m and a signature σ, it
outputs 1 for acceptance or 0 for rejection.

A signature scheme is correct if for all (sk, pk) ←s KeyGen(1λ) and all m in
the message space, Verify(pk,m,Sign(sk,m)) = 1.

Unforgeability. The existential unforgeability under chosen message (EUF-
CMA) game is defined in Algorithm 1. The game is executed with an adversary
A by running Init first and its output are the inputs to A. Next, the Sign
oracle queries of A are answered by the corresponding procedures. Finally, A
calls Fin and terminates. Whenever the stop command is invoked, its argument
is considered as the output of the game. We define the advantage of an adversary
in the Game as the probability that the game outputs 1.

Algorithm 1. Game EUF-CMA.

1 Procedure Init(1λ):

2 (sk, pk) ←s KeyGen(1λ);
3 L ← ∅;
4 return pk;

5 Procedure Sign(mi):
6 σi ←s Sign(sk, mi);
7 L ← L ∪ {mi)};
8 return σi;

9 Procedure Fin(m∗, σ∗):
10 if m∗ ∈ L then
11 stop with 0;

12 if Verify(pk, m∗, σ∗) = 0 then
13 stop with 0;

14 stop with 1;

Definition 1. A signature scheme is (t, qs, ε)-secure under the EUF-CMA if
there is no adversary running in time t, with qs queries to the signing oracle,
has advantage larger than ε.

4 RKA Security Model

The related-key attack (RKA) model is intended to capture real world attacks
like tampering or fault injection attack. For example, an adversary manipulates
a hardware-stored secret key by electromagnetic radiation and obtains the sig-
nature signed by the manipulated secret key.

136 T. H. Yuen and S.-M. Yiu

4.1 RKA and Strong RKA Models

RKA is formalized as a security game that also allows an adversary to obtain
signatures for modified keys. Denote the secret key space as S. Thus, an adver-
sary is allowed to query related-key deriving (RKD) functions φi : S → S as well
as messages to the signing oracle. We say that Φ is a class of RKD functions. For
example, denote Φ+ = {φi(x) = x + bi : bi ∈ S}, Φ∗ = {φi(x) = x ∗ ai : ai ∈ S}
and Φaff = {φi(x) = aix + bi : ai, bi ∈ S}.

Φ-EUF-CM-RKA. [1] We recall existential unforgeability under chosen mes-
sage and (chosen) RKA defined by RKD function class Φ. This security model
of Φ-EUF-CM-RKA is formalized by Algorithm2.

Algorithm 2. Game Φ-EUF-CM-RKA.

1 Procedure Init(1λ):
2 Same as EUF-CMA;

3 Procedure Sign(mi, φi):
4 if φi /∈ {Φ∪ identity map} then
5 return ⊥;

6 σi ←s Sign(φi(sk), mi);
7 if φi is identity map then
8 L ← L ∪ {mi};

9 return σi;

10 Procedure Fin(m∗, σ∗):
11 Same as EUF-CMA;

Φ-EUF-CM-sRKA. [1] Bellare et al. extends the RKA security for separable
signature. Separable signature means that for any (sk, pk) ← KeyGen(1λ), there
exists a deterministic algorithm T such that pk′ ← T (1λ, sk) and the distribu-
tion of pk is indistinguishable to pk′. This security model of Φ-EUF-CM-sRKA
(Strong RKA) is formalized by Algorithm3. The difference with the standard
RKA model is highlighted.

Definition 2. A signature scheme is (t, qs, ε)-secure under the Φ-EUF-CM-
RKA (resp. Φ-EUF-CM-sRKA) if there is no adversary running in time t, with
qs queries to the signing oracle, has advantage larger than ε in Game Φ-EUF-
CM-RKA (resp. Φ-EUF-CM-sRKA).

4.2 (Strong) Known-RKA Security

We give the new security model of existential unforgeability under chosen mes-
sage and known RKA defined by RKD function class Φ. Recall the difference
between the known message attack (KMA) and CMA for signature is that the
adversary only knows the message-signature pairs in KMA, while the adversary
is able to specify the message for the signing oracle in CMA. In the new known

Strong Known Related-Key Attacks and the Security of ECDSA 137

Algorithm 3. Game Φ-EUF-CM-sRKA.

1 Procedure Init(1λ):
2 Same as EUF-CMA;

3 Procedure Sign(mi, φi):
4 if φi /∈ {Φ∪ identity map} then
5 return ⊥;

6 σi ←s Sign(φi(sk), mi);

7 pki ← T (1λ, φi(sk)) ;

8 L ← L ∪ {(pki, mi)} ;

9 return (pki, σi) ;

10 Procedure Fin(i∗, m∗, σ∗) :

11 if (pki∗ , m∗) ∈ L then

12 stop with 0;

13 if Verify(pki∗ , m∗, σ∗) = 0 then

14 stop with 0;

15 stop with 1;

RKA model, the adversary only knows the RKD functions that he can query for
the signing oracle (yet the adversary can still choose the message). It is weaker
than the classical RKA model, in which the adversary can set the RKD functions
to any function in Φ.

This security model of Φ-EUF-CM-KRKA is formalized by Algorithm4. The
difference with the standard RKA model is highlighted.

Algorithm 4. Game Φ-EUF-CM-KRKA.

1 Procedure Init(1λ):

2 (sk, pk) ←s KeyGen(1λ);
3 L ← ∅;

4 φ0 ← identity map ;

5 S ← {φ0} ;

6 for j ← 1 to qs do

7 φj ←s Φ ;

8 S ← S ∪ {φj} ;

9 return pk, S ;

10 Procedure Sign(mi, j):

11 if j /∈ [0, qs] then

12 return ⊥;

13 σi ←s Sign(φj(sk), mi);
14 if j = 0 then
15 L ← L ∪ {mi};

16 return σi;

17 Procedure Fin(m∗, σ∗):
18 Same as EUF-CMA;

Finally, we give the combined security model of Strong Known RKA model
formalized by Algorithm5. The difference with the standard RKA model is
highlighted.

Definition 3. A signature scheme is (t, qs, ε)-secure under the Φ-EUF-CM-
KRKA (resp. Φ-EUF-CM-sKRKA) if there is no adversary running in time
t, with qs queries to the signing oracle, has advantage larger than ε in Game
Φ-EUF-CM-KRKA (resp. Φ-EUF-CM-sKRKA).

138 T. H. Yuen and S.-M. Yiu

Algorithm 5. Game Φ-EUF-CM-sKRKA.

1 Procedure Init(1λ):

2 (sk, pk) ←s KeyGen(1λ);
3 L ← ∅;

4 φ0 ← identity map ;

5 S ← {φ0} ;

6 for j ← 1 to qs do

7 φj ←s Φ ;

8 S ← S ∪ {φj} ;

9 return pk, S ;

10 Procedure Sign(mi, j):

11 if j /∈ [0, qs] then

12 return ⊥;

13 σi ←s Sign(φj(sk), mi);

14 pki ← T (1λ, φj(sk)) ;

15 L ← L ∪ {(pki, mi)} ;

16 return (pki, σi) ;

17 Procedure Fin(i∗, m∗, σ∗) :

18 if (pki∗ , m∗) ∈ L then

19 stop with 0;

20 if Verify(pki∗ , m∗, σ∗) = 0 then

21 stop with 0;

22 stop with 1;

4.3 Relationship Between Models

We summarize the relationship between different security models in Table 3 with
EUF-CMA. We also include the strong unforgeability (SUF-CMF) and multi-
user security (MU-EUF-CMA) for completeness.

According to the definition of the security models, it is obvious that the
RKA model is stronger than KRKA model (chosen relation vs. known relation).
Similarly, the Strong RKA model is stronger than Strong KRKA model.

On the other hand, the Strong RKA model is stronger than the RKA model
(forgery on multiple public keys vs. forgery on a single public key). Similarly,
the Strong KRKA model is stronger than KRKA model.

There is no straightforward relationship between the RKA model and the
Strong KRKA model. It is known that ECDSA is not RKA secure [9]. In the
next section, we will show that ECDSA is secure in the Strong KRKA model if
ECDSA is EUF-CMA secure. We leave the relationship between the RKA model
and the Strong KRKA model as an interesting open problem.

Table 3. Relationship between different security models. Model A ⇒ Model B means
that Model A is weaker than Model B. Model A → Model B means that there exists
a scheme secure in Model A but not secure in Model B. The grey box indicates the
major work of this paper.

EUF-CM-sRKA ⇐= EUF-CM-sKRKA MU-EUF-CMA
�

↙
EUF-CM-RKA EUF-CM-KRKA EUF-CMA SUF-CMA

Strong Known Related-Key Attacks and the Security of ECDSA 139

5 Security of Schnorr Signature and ECDSA

It is known that both Schnorr signature and DSA are not secure in the Φaff -
EUF-CM-RKA model [9]. It is straightforward to see that ECDSA is also not
secure in the Φaff -EUF-CM-RKA model. In this section, we show that (EC)DSA
is secure against our Strong Known RKA Model, but Schnorr signature is not.
Therefore, it gives an important separation between the security between these
two schemes.

5.1 Insecurity of Schnorr Signature in (Strong) KRKA Model

We show that the Schnorr signature scheme is not Known RKA secure with
respect to additive functions by providing a simple and efficient attack. This
additive relation between secret keys is realistic in the real world, such as BIP
32. In later section, we will also show that by using stealth address in Bitcoin,
multiple secret keys of the same user are related additively.

According to the security model, an adversary A is given δ1, . . . , δn such that
φi(sk) = sk+ δi for i ∈ [1, n]. Then A queries the RKA signing oracle with input
(m∗, φ1) for some random message m∗. The oracle returns the signature (z, c)
such that:

R = gzg−c(sk+δ1), c = H(R,m∗).

Then A returns (z − cδ1, c) as an forgery for the message m∗. Hence Schnorr
signature scheme is not Known RKA secure. By similar argument, we can see
that Schnorr signature is not Strong KRKA secure.

5.2 Security of (EC)DSA in Strong KRKA Model

We first show that the Φaff -EUF-CM-sKRKA security of (EC)DSA can be
reduced to the EUF-CMA security, under the ROM model. The KRKA security
of (EC)DSA follows from the Strong KRKA security.

Security of Φaff-EUF-CM-sKRKA. We prove that (EC)DSA is secure in the
Φaff -EUF-CM-sKRKA model. The class of additive RKD functions Φaff captures
the case that the secret keys are linearly related, e.g., φ(sk) = a · sk + b for
some a, b ∈ Zq. Therefore, the Φaff -EUF-CM-sKRKA model already captures
the attacks in the Φ+-EUF-CM-sKRKA model.

The proof differs from the proof of EUF-CMA in [6] in a few ways. Firstly,
the simulation of the signing oracle is modified to capture the signature with
respect to the class of RKD functions Φaff . Secondly, the extraction of secret key
in the proof of EUF-CMA in [6] uses the simulation transcript of a past signing
oracle query, and it requires the collision resistant property of the hash func-
tion H. However, the same argument no longer holds if the past signing oracle
query includes RKD functions. The collision resistant property is not enough.
We discover that the security can be shown alternatively if we use the random
oracle model for H. As a result, we also have to add the relevant simulation of
the random oracle model and make sure that it is consistent with the rest of the
proof.

140 T. H. Yuen and S.-M. Yiu

Algorithm 6. Game 0 is the Φaff -EUF-CM-sKRKA for (EC)DSA, in the
random oracle model.
1 Procedure Init:

2 pick H : {0, 1}∗ → Zq ;
3 x ←s Z∗

q ; X ← gx;

4 L ← ∅;
5 a0 ← 1, b0 ← 0;

6 S ← {(a0, b0)};
7 for j ← 1 to qs do
8 φj(x) := ajx + bj ←s Φaff ;
9 S ← S ∪ {(aj , bj)};

10 return X, S;

11 Procedure Sign(mi, j):

12 ri ←s Zq ; Ri ← gri ;
13 if Ri = 1 then
14 return ⊥;

15 ti ← f(Ri);

16 if ti = 0 then
17 return ⊥;

18 hi ← H(mi);

19 ski ← ajx + bj // j ∈ [0, qs]

20 pki ← gski ;
21 ui ← hi + skiti;
22 if ui = 0 then

23 return ⊥;

24 si ← ui/ri;

25 σi ← (si, ti);
26 L ← L ∪ {(pki, mi)};
27 return (pki, σi);

28 Procedure RO(m):

29 return H(m);

30 Procedure Fin(i∗, m∗, (s∗, t∗)):
31 if (pki∗ , m∗) ∈ L then

32 stop with 0;

33 if s∗ = 0 or t∗ = 0 then
34 stop with 0;

35 h∗ ← H(m∗);
36 U∗ ← gh∗

(Xai∗ gbi∗)t
∗
// i∗ ∈ [0, qs]

37 if U∗ = 1 then
38 stop with 0;

39 R∗ ← (U∗)1/s∗
;

40 if t∗ �= f(R∗) then
41 stop with 0;

42 stop with 1;

Theorem 1. Let A be an adversary that (τ, qs, ε)-breaks the Φaff-EUF-CM-
sKRKA security of (EC)DSA, with qH random oracle queries. Then, there
exists an adversary ACMA that (τCMA, qs, εCMA)-breaks the EUF-CMA security
of (EC)DSA, where:

ε ≤ (qs + 1)(εCMA +
qsqH

q
), τCMA = τ + O(qs)τe,

where τe is the time of exponentiation in G.

Proof. The security is shown by a game-hopping proof. We define AdvAi
(1λ)

as the advantage of the adversary A in Game i, with security parameter λ. We
omit the security parameter for simplicity.

– Game 0 in Algorithm 6 gives the complete EUF-CM-sKRKA for (EC)DSA.
The random oracle is provided by RO. Therefore, ε = AdvA0 .

– Game 1 in Algorithm 7 is modified from Game 0 that the hash function H
is now replaced by sampling. By the random oracle model, we have AdvA0 =
AdvA1 .

Strong Known Related-Key Attacks and the Security of ECDSA 141

Algorithm 7. Game 1 is the same as Game 0 except the Procedure Init
and RO (highlighted in gray box).

1 Procedure Init:

2 HO ← ∅ ;

3 x ←s Z
∗
q ; X ← gx;

4 L ← ∅;
5 a0 ← 1, b0 ← 0;
6 S ← {(a0, b0)};
7 for j ← 1 to qs do

8 φj(x) := ajx + bj ←s Φaff ;
9 S ← S ∪ {(aj , bj)};

10 return X, S;

11 Procedure RO(m):

12

if (m, h) ∈ HO then
return h;

h ←s Zq\Rng(HO);

HO ← HO ∪ {(m, h)};

13 return h;

– Finally, Algorithm8 shows how to build an adversary ACMA to break the
EUF-CMA security of (EC)DSA, by running as the challenger of Game 1
and making use of the output from A1. ACMA uses the output of InitCMA

from its challenger (of the EUF-CMA security) to simulate the challenger
of Game 1 in line 9. This change is indistinguishable to A1. The Sign pro-
cedure in Algorithm 8 is simulated by using the signing oracle output from
the challenger of the EUF-CMA security. Finally, the validation of the out-
put from A1 is same as except line 38, 39 and 51. We want to show that
AdvA1 ≤ (qs + 1)(AdvACMA + qsqH/q).
We can see that the signing oracle output is correct by running the verification
of (si, ti) against the related key pkj :

gri = g
H(mi)

si (Xajgbj)
ti
si = g

aj∗H(mi)

s′aj (Xajgbj)
aj∗ ti

s′aj

= g
(aj∗ bj)ti+aj∗H(mi)

s′aj (Xaj∗)
ti
s′ = g

(aj∗ bj−ajbj∗)ti+aj∗H(mi)

s′aj (Xaj∗ gbj∗)
ti
s′

= g
H(m′

i)
s′ (Xaj∗ gbj∗)

t′
s′ = g

H(m′
i)

s′ X ′ t′
s′ = gr′

.

Then we have f(gri) = f(gr′
) = t′ = ti. Hence (si, ti) is a valid signature

with respect to pki.
When A1 outputs a valid forgery (i∗,m∗, (s∗, t∗)), line 51 of Algorithm 8 is
reached if i∗ = j∗. It happens with probability 1

qs+1 . By the checking of line
40, m∗ was not queried to SignCMA in line 15. If m∗ was also not queried to
SignCMA in line 20, then ACMA wins by line 51.
We now show that m∗ was not queried to SignCMA in line 20. Observe that
in line 19, m′

i is randomly chosen from the message space and it is not given
to the A1. A1 can only calculate H(m′

i) as in line 21. By the random oracle
model, A1 cannot find some m′

i and use it as m∗ with probability more than
qsqH

q . Therefore, we have AdvA1 ≤ (qs + 1)(εCMA + qsqH/q).

142 T. H. Yuen and S.-M. Yiu

Algorithm 8. The construction of adversary ACMA against EUF-CMA,
using the adversary A1 for Game 1. (Interaction with the challenger of
EUF-CMA is highlighted in the gray box).

1 Procedure Init(1λ):
2 HO ← ∅, L ← ∅;
3 j∗ ←s [0, qs];
4 a0 ← 1, b0 ← 0;
5 S ← {(a0, b0)};
6 for j ← 1 to qs do

7 φj(x) := ajx + bj ←s Φaff ;
8 S ← S ∪ {(aj , bj)};

9 X ′ ← InitCMA(1λ) ;

10 X ← (X ′g−bj∗)1/aj∗ ;
11 return X, S;

12 Procedure Sign(mi, j):
13 if j = j∗ then
14 pki ← X ′;

15 σi ← SignCMA(mi) ;

16 else
17 isNewH ← false;
18 while isNewH = false do
19 m′

i ←s M;

20 (s′, t′) ← SignCMA(m′
i) ;

21 hi ←
(aj∗ bj−ajbj∗)ti+aj∗ H(mi)

aj
;

22 if (·, hi) /∈ HO then
23 HO ← HO ∪ {(m′

i, hi)};
24 isNewH ← true;

25 ti ← t′;

26 si ← s′aj

aj∗ ;

27 pki ← Xajgbj ;
28 σi ← (si, ti);

29 L ← L ∪ {(pki, mi)};
30 return (pki, σi);

31 Procedure RO(m):
32 if (m, h) ∈ HO then
33 return h;

34 h ←s Zq\Rng(HO);

35 HO ← HO ∪ {(m, h)};
36 return h;

37 Procedure Fin(i∗, m∗, (s∗, t∗)):
38 if i∗ 	= j∗ then
39 stop with 0;

// pki∗ = pkj∗ = X ′

40 if (pki∗ , m∗) ∈ L then
41 stop with 0;

42 if s∗ = 0 or t∗ = 0 then
43 stop with 0;

44 h∗ ← H(m∗);

45 U∗ ← gh∗
X ′t∗

;
46 if U∗ = 1 then
47 stop with 0;

48 R∗ ← (U∗)1/s∗
;

49 if t∗ 	= f(R∗) then
50 stop with 0;

51 run FinCMA(m∗, (s∗, t∗));

To conclude, we have ε ≤ (qs + 1)(εCMA + qsqH/q). Finally, the running time is
dominated by O(qs) exponentiation in the signing oracle queries. 	

The security of (EC)DSA under the EUF-CMA attack can be reduced to
the DL problem in the bijective random oracle model [6] or in the generic group
model [2,3,12].

Strong Known Related-Key Attacks and the Security of ECDSA 143

6 Strong KRKA Attack in the Bitcoin System

The Strong KRKA security model not only captures the tampering attack, it
can also be used to capture the security of some variants in Bitcoin system, such
as BIP 32 non-hardened key derivation and stealth address. Combining with the
result of the previous section, ECDSA is secure with the use of these Bitcoin
variants, while the standard Schnorr signature is not secure.

6.1 BIP 32 Non-hardened Key Derivation

BIP 32 describes how a hierarchical deterministic wallet (HD wallet) generate
keys from a single seed. We have described how non-hardened secret keys are
derived in Sect. 1 according to BIP 32. Every parent secret key is linearly related
to its child secret key by design. Therefore, all non-hardened secret keys derived
in BIP 32 are linearly related. Note that the adversary can only know the differ-
ence between secret keys, but he cannot set it to arbitrary value by the security
of the HMAC-SHA512 function.

BIP 32 standardizes the key generation process in HD wallet and it does
not consider what message to be signed with these keys. Strong KRKA attack
is dangerous in the setting that the message to be signed is not related to the
signer public key/address.

6.2 Stealth Address

The idea of stealth address was firstly proposed in a Bitcoin forum1. It allows
the recipient to remain anonymous, even after sharing his stealth address. The
most common version of stealth address was proposed by CryptoNote in 20132.
Stealth address was implemented for Bitcoin and is widely used as a cornerstone
to many anonymous cryptocurrencies, such as Monero.

The stealth address is described as follows. Suppose that the recipient Bob
has a long term secret key (a, b) ∈ Z

2
p and public key (A = ga, B = gb) ∈ G

2.
The sender Alice picks a random number r ←s Zq and puts R = gr in the
transaction. The one-time recipient address is (the hash of) Y = A · gH′(Br),
where H ′ : G → Zq is a collision resistant hash function. Bob can use b (which
is known as the viewing key) to check if he is the intended recipient of the
transaction with (R, Y) by checking if Y = A · gH′(Rb). Bob’s one-time secret
key corresponding to Y is a + H(Rb).

Related-Key Attack for Stealth Address. If Alice sends some Bitcoin to
Bob in two different transactions, then Bob’s one-time secret keys are y1 =
a + H(Rb

1) and y2 = a + H(Rb
2) respectively. Therefore, y1 and y2 are linearly

related: δ = y1 − y2 = H(Rb
1) − H(Rb

2). If the Bitcoin system uses the Schnorr
signature, there is potential attack when Bob uses y2 to output (z, c) for a

1 https://bitcointalk.org/index.php?topic=5965.0.
2 CryptoNote v 2.0 Whitepaper. https://cryptonote.org/whitepaper.pdf.

https://bitcointalk.org/index.php?topic=5965.0
https://cryptonote.org/whitepaper.pdf

144 T. H. Yuen and S.-M. Yiu

message m. In this case, Alice with the knowledge of δ = H(Br1)−H(Br2), can
output a signature (z′ = z + cδ, c) for the same message m. We can see that it
is a valid signature for Y1:

gz′
= gz+cδ = (RY c

2) · gcδ = Rgy2c+cδ = RY c
1 , c = H(R,m).

This attack can be launched simply by the knowledge of the difference δ of the
two secret keys. This attack is captured in the Strong KRKA model, by signing
oracle queries with the addition function.

Note that for the case of stealth address, the adversary can only know the
difference δ, but he cannot set δ to arbitrary value since δ = H(Br1) − H(Br2).
He cannot find such r1 and r2 satisfying this relation, assuming the pseudo-
randomness of the output of H. Therefore, the attack is precisely captured by
the Strong KRKA model, but not the classical RKA model.

We have shown that ECDSA is secure in the Strong KRKA model for affine
functions. Therefore, ECDSA is not affected by the use of stealth address. There
is potential threat of using stealth address with standard Schnorr signature.

6.3 BIP 118 SIGHASH NOINPUT

We note that in the normal use case of Bitcoin transaction with BIP 32
key/stealth address, the signer’s address (=hash of his public key) is included in
the message. The Strong KRKA attack on the standard Schnorr signature does
not apply to this use case. However, we cannot guarantee what message will be
signed in the future update of the Bitcoin protocol.

BIP 118 is useful for building Lightning Network channels to increase the
scalability of Bitcoin system and to enable micropayment over Bitcoin. In par-
ticular, a new signing flag SIGHASH NOINPUT is proposed, such that the sig-
nature does not commit to any of the inputs. All fields related to the input
address/sequence/outpoint are replaced with string of 0s. Therefore, using stan-
dard Schnorr signature with BIP 32 non-hardened key/stealth address and BIP
118 SIGHASH NOINPUT are insecure.

7 Conclusion

In this paper, we showed that, for the first time, ECDSA is potentially more
secure than the standard Schnorr signature in the Strong Known RKA model.
The Strong Known RKA model captures the attack on BIP 32 and stealth
address in Bitcoin and other cryptocurrencies. Therefore if Schnorr signature
or other DL-type signatures (including multi-signatures, aggregate signatures,
threshold signatures, etc.) are proposed in the blockchain system, it is highly
recommended to evaluate their Strong Known RKA security.

Acknowledgment. This project is partially supported by the grant of the University
of Hong Kong (Project No. 201901159007), and the CRF grant (CityU: C1008-16G) of
the Government of HKSAR, Hong Kong.

Strong Known Related-Key Attacks and the Security of ECDSA 145

References

1. Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks
and tampering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 486–503. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25385-0 26

2. Brown, D.R.L.: Generic groups, collision resistance, and ECDSA. Des. Codes Cryp-
tography 35(1), 119–152 (2005)

3. Brown, D.R.L.: On the provable security of ECDSA. In: Blake, I.F., Seroussi, G.,
Smart, N.P. (eds.) Advances in Elliptic Curve Cryptography. London Mathematical
Society Lecture Note Series, pp. 21–40. Cambridge University Press, Cambridge
(2005)

4. Decker, C., Wattenhofer, R.: Bitcoin transaction malleability and MtGox. In:
Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 313–326.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1 18

5. ETSI: Electronic signatures and infrastructures (ESI); cryptographic suites. ETSI
Technical Specification 119 312 (v1.2.1) (2017)

6. Fersch, M., Kiltz, E., Poettering, B.: On the provable security of (EC)DSA sig-
natures. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) CCS 2016, pp. 1651–1662. ACM (2016)

7. Galbraith, S.D., Malone-Lee, J., Smart, N.P.: Public key signatures in the multi-
user setting. Inf. Process. Lett. 83(5), 263–266 (2002)

8. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identifi-
cation schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815,
pp. 33–61. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 2

9. Morita, H., Schuldt, J.C.N., Matsuda, T., Hanaoka, G., Iwata, T.: On the security
of the Schnorr signature scheme and DSA against related-key attacks. In: Kwon,
S., Yun, A. (eds.) ICISC 2015. LNCS, vol. 9558, pp. 20–35. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-30840-1 2

10. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-68339-9 33

11. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

12. Stern, J., Pointcheval, D., Malone-Lee, J., Smart, N.P.: Flaws in applying proof
methodologies to signature schemes. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 93–110. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9 7

https://doi.org/10.1007/978-3-642-25385-0_26
https://doi.org/10.1007/978-3-642-25385-0_26
https://doi.org/10.1007/978-3-319-11212-1_18
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-319-30840-1_2
https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/3-540-45708-9_7
https://doi.org/10.1007/3-540-45708-9_7

	Strong Known Related-Key Attacks and the Security of ECDSA
	1 Introduction
	1.1 Modelling Related-Key by Design
	1.2 ECDSA and Schnorr Signature in Strong KRKA Model

	2 Backgrounds
	3 Preliminaries
	3.1 Notations
	3.2 Signature Schemes

	4 RKA Security Model
	4.1 RKA and Strong RKA Models
	4.2 (Strong) Known-RKA Security
	4.3 Relationship Between Models

	5 Security of Schnorr Signature and ECDSA
	5.1 Insecurity of Schnorr Signature in (Strong) KRKA Model
	5.2 Security of (EC)DSA in Strong KRKA Model

	6 Strong KRKA Attack in the Bitcoin System
	6.1 BIP 32 Non-hardened Key Derivation
	6.2 Stealth Address
	6.3 BIP 118 SIGHASH_NOINPUT

	7 Conclusion
	References

