
Ethereum Analysis via Node Clustering

Hanyi Sun, Na Ruan(B), and Hanqing Liu

Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai, China

naruan@cs.sjtu.edu.cn

Abstract. As an open source public blockchain with the capabilities
of running smart contract, Ethereum provides decentralized Ethernet
virtual machines to handle peer-to-peer contracts through its dedicated
cryptocurrency Ether. And as the second largest blockchain, the amount
of transaction data in Ethereum grows fast. Analysis of these data can
help researchers better understand Ethereum and find attackers among
the users. However, the analysis of Ethereum data at the present stage
is mostly based on the statistical characteristics of Ethereum nodes and
lacks analysis of the transaction behavior between them. In this paper,
we apply machine learning in Ethereum analysis for the first time and
cluster users and smart contract into groups by using transaction infor-
mation in existing blocks. The clustering results are analyzed by using
the identity information of the available Ethereum users and smart con-
tracts. Based on the clustering results, we propose a new way of user
identity discrimination and malicious user detection.

Keywords: Blockchain · Ethereum · Network embedding

1 Introduction

As the second largest blockchain platform, Ethereum [1] has had a market
value of nearly 20 billion since its inception in 2015. Different from traditional
blockchain like Bitcoin [2], Ethereum is an emerging blockchain platform in
which users can create smart contracts. This feature makes the data structure of
Ethereum more complicated compared with other blockchains. A smart contract
is a contract implemented in code that can be executed automatically after its
creation [3]. In Ethereum, transactions between users are mainly done through
direct Ether trading and invocation to smart contracts.

In previous Ethereum studies, researchers focused on the statistical charac-
teristics of Ethereum nodes and lacks analysis of the trading behavior between
them [4]. Therefore, based on the work of predecessors, this study focuses on
the cluster of Ethereum nodes and analysis of the clustering result. Specifically,
the Ether trading between users and users in Ethereum, the creation of smart
contracts and the invocation of smart contracts were studied. The clustering
algorithm of machine learning was applied for the first time in Ethereum data

c© Springer Nature Switzerland AG 2019
J. K. Liu and X. Huang (Eds.): NSS 2019, LNCS 11928, pp. 114–129, 2019.
https://doi.org/10.1007/978-3-030-36938-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36938-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-36938-5_7


Ethereum Analysis via Node Clustering 115

analysis. Based on the clustering results of experiment, we propose a new way
of user identity discrimination and malicious user detection.

There are two types of accounts in Ethereum, external owned accounts
(EOAs) and smart contract accounts. The EOAs represent the Ethereum users
in the form of a hash value, and the smart contract accounts represent smart
contracts in Ethereum. In this paper, we mainly foucs on three types of transac-
tion relationships between EOAs and smart contract accounts, including Ether
transactions between external owned accounts, smart contract creation between
external owned accounts and smart contract account, and smart contract invo-
cation between external owned accounts and smart contract accounts. The two
different accounts types and three different transaction relationship types form
the heterogeneous network of Ethereum.

For the feasibility of the experiment, we only used part of Ethereum trans-
action data due to huge amount of them. Among these data, we filter the three
transaction types and two account types which form a Ethereum heterogeneous
network. We learn about the eigenvector representation of the account nodes in
Ethereum based on the heterogeneous network. And clustering algorithms are
used to cluster the nodes eigenvector representation into groups. In the analysis
of the clustering results, we got some interesting observations and findings. For
example, the clustering results shows that the nodes in Ethereum have obvious
clustering trend and there are some clusters led by nodes with known identities.
By collecting the identity information about nodes in Ethereum, we can pre-
dict the identity of the clusters to which these nodes belong including exchange
market and attackers. Moreover, we propose a new way of user identity discrim-
ination and malicious user detection based on the clustering results. Although
there are some methods for malicious user detection, they are only applicable
to those nodes with large degree. In this paper, our new method use the nodes
with known identities to predict the identity of other nodes in the clustering
results. On generality, our method could be more adapted to the specificity of
Ethereum.

The main contributions of this paper are as follows:

– In our research, this paper applies clustering algorithm in the analysis of
Ethereum for the first time. We collect and filter the transactions from
Ethereum blocks and cluster the accounts nodes included in them.

– We use node embedding algorithm to calculate the eigenvector representation
for the external owned account nodes and smart contract account nodes in
the Ethereum. Based on the eigenvector, we cluster those nodes into groups
and visualize the clustering results.

– We obtain some new observations by the analysis of clustering result which
makes us have a better understanding of Ethereum.

– We propose a new way of malicious user detection based on the clustering
result and the nodes whose identities is already known.

The rest of paper is organized as follows. In Sect. 2 we introduce the back-
ground of our paper, including Ethereum and the machine learning algorithm



116 H. Sun et al.

we used. In Sect. 3, we introduce our system model. In Sect. 4, we analyze the
clustering results and propose a new way of user identity discrimination and
malicious user detection. We conclude the paper in Sect. 5.

2 Background

Ethereum is the second largest blockchain and has a market value of nearly 20
billion since its inception. And it has its own cryptocurrency Ether which can be
traded or used to pay for smart contract operations. Different from traditional
blockchain with currency trading as the main function, users in Ethereum can
develop more complex functions by developing smart contracts. These smart
contracts run according to the established code, and can be called by users
in Ethereum after deployment [5]. Meanwhile, user have to pay some fees to
perform the operation when calling smart contracts. There some research of user
relationships in Bitcoin [6–9], but they are not suitable for the case of Ethereum
due to the difference in structure.

2.1 Accounts and Transactions

The accounts in Ethereum has two types, external owned accounts (EOAs) and
smart contract accounts.

External owned accounts represent accounts that belongs to external owner
of Ethereum, and each external owned account has its own Ether balance. The
owner of the external owned account can transfer information from his or her
external owned account by creating and signing a transaction. If the owner’s
external balance is sufficient to cover the cost of the transaction, the transac-
tion is valid. Then the originator account will deduct the corresponding Ether
amount, and the recipient account will receive the amount. In addition to direct
Ether trading between external owned accounts, Ether can also be traded by
calling a smart contract and the transaction deduction is determined by the
code written in advance within the smart contract.

The smart contract account represents the smart contract deployed in
Ethereum which controlled by the code written in advance. Each smart con-
tract account stores the hash value of the smart contract code. In the case of a
invocation, the smart contract account receives a transaction message and acti-
vate the smart contract code stored in it, which allows it to read and write to the
internal storage or send other messages such as creating another smart contract.

The various activities of Ethereum’s external owned and smart contract
accounts are realized through transactions which are packaged into blocks and
then broadcast to the entire Ethereum network. A transaction is a message that
is sent from one account to another. Transactions can contain binary data called
payload and Ether coins. If the target account contains code, the code will exe-
cute, and payload is the input data. If the target account is a zero account, the
transaction will create a new smart contract. And each transaction in Ethereum
contains the sender’s signature, the recipient and the number of Ethers sent.



Ethereum Analysis via Node Clustering 117

At the same time, based on different transaction types, Ethereum’s transaction
information also contains several other types, such as gas, gasprice and other
optional data items used as smart contract execution fees.

Due to the features of blockchain, different activities in Ethereum will form
transactions such as Ether trading transactions, smart contract creation and
smart contract invocation. At the same time, these transactions are packaged
into blocks and spread throughout the Ethereum network.

Fig. 1. Three transaction types in Ethereum

As shown in Fig. 1, we mainly focus three different trading relationships
between external owned accounts and smart contract accounts:

– Direct Ether trading transactions between EOAs.
– One EOA creates a smart contract account. The external owned account

firstly writes the code of the smart contract, and uploads the smart contract
to the Ethereum by paying a certain amount of Ether.

– One EOA calls a smart contract account. Once a smart contract account
is uploaded to the Ethereum, the users in the Ethereum can call the smart
contract and realize the trading activity through the code logic in it.

In Ethereum, the Ether transaction may be done by calling a smart contract.
In this case, we treat it as both smart contract invocation and Ether trading
transaction in this paper.

2.2 Method of Node Embedding

In Ethereum, there are two different accounts types and three different transac-
tion relationship types between them which form a heterogeneous network. SO
in this paper, we learn from Metapath2vec [10] as the eigenvector representation
learning method.

In the previous application, Metapath2vec mainly solved the problem of
learning the eigenvector representation of scholars and conferences in the aca-
demic network. The main idea of Metapath2vec is to use the meta-path to guide
the random walk [11] acquisition path in the academic network and learn these
paths. Suppose there are three different nodes in the academic network, schol-
ars, papers and venues. Meanwhile there are two different relationships papers
written by authors and these papers are published on venues. The idea of Meta-
path2vec is to guide the way of random walks through a meta-path, A-P-C-P-A.



118 H. Sun et al.

Fig. 2. Meta-Path in academic networks

As shown in Fig. 2, in the academic network we first select an author A and
then randomly walk to a paper P written by the author A and the venue V
which the paper published at. Then randomly walk to another paper P which
published at this conference and the author A of the paper. By analogy, a path
of author-paper-venue is formed. This Meta-Path guides random walks in the
academic network, forming many different paths that preserve the concept of
“word context”. After that, each path obtained by random walk is considered
as a sentence, the node is considered as a word and the adjacent nodes in the
path are regarded as contexts. Then these paths are learned by using the skip-
gram model [12]. In this way, the eigenvector representation of the nodes in
the academic network can be obtained. There are two different nodes and three
different relationships in the Ethereum network which is similar to academic
networks. In this paper, we learn the eigenvector representation of the nodes in
Ethereum with reference to the idea of Metapath2vec.

3 System Model

Fig. 3. Our system model with three phases

As shown in Fig. 3, our model can be divided into three phases: Data Collection,
Clustering and Analysis. Data Collection collects the block data we used. Clus-
tering part contains Node Embedding and Node Clustering. Node Emmbedding
learns the eigenvector representation of the nodes in Ethereum. Node Clustering
presents the clustering results and visualize [13] them. The Analysis part will
analyze the clustering results and give some new opinions.

3.1 Data Collection

The dataset of Ethereum blocks we used is from previous works of others [4]. We
choose the first 10 millions of transactions and detect the three main activities,
Ether trading, smart contract creation and smart contract invocation included



Ethereum Analysis via Node Clustering 119

in them. At the same time, in order to ensure the validity of the analysis, we
only pay attention to the transactions confirmed in the Ethereum block, and do
not consider the transactions that failed for various reasons.

Among the transactions in the block, the types of transactions we need are
only Ether trading, smart contract creation and smart contract invocation. In
order to extract the required transaction types from the block data, we observed
that the three behavior patterns in the transaction are related to the main
trading activities we are concerned with.

– The Create behavior corresponds to the creation of a smart contract.
– The Call behavior corresponds to the invocation of a smart contract.
– When the number of Ethers in the transaction is greater than 0, the two

accounts in transaction have made a Ether trading.

By detecting these three behaviors in the transaction, we filter out the three
types of transactions and classify them. At the same time, we exclude four types
of transactions that are unrelated to the three main activities. One is that the
transaction between external owned accounts but the number of Ether traded
is 0. The second is the transaction in which the number of gas in the smart
contract that supports the contract is 0, which means the smart contract cannot
run. The third type is the Ether trading transaction between accounts which
fail for various reasons. The fourth is a transaction that fails when an external
owned account creates a smart contract account.

By eliminating invalid transactions and classifying and counting the selected
transactions, the Table 1 is obtained.

Table 1. Number of transactions

Transaction type Number

Ether trading transaction 8913083

Smart contract creation 119347

Smart contract invocation 1924918

As can be seen from Table 1, the number of Ether trading transactions is
8,913,083. The proportion of Ether trading transactions in Ethereum exceeds
the sum of smart contract creation and smart contract invocation. It can be
known that ether trading occupy the vast majority of transactions in Ethereum.
At the same time, the smart contract creation is the least of the three types of
transactions and only has a number of 119,347. Therefore, in the analysis part,
we will pay more attention to the type of Ether trading transaction in Ethereum.

The number of accounts we get from the selected transactions are shown in
Table 2. Based on the transactions data, we obtained 406,774 external owned
account addresses and 119,347 smart contract account addresses, a total of
526,121 account addresses. There are more account addresses in Ethereum, but



120 H. Sun et al.

Table 2. Number of accounts

Account type Number

External owned account 406774

Smart contract account 119347

Total 526121

we only consider the account addresses obtained from the transactions. In other
word, for other external owned accounts in Ethereum that have never made any
Ether trading transactions, smart contract creation and smart contract invoca-
tion, we do not consider them in our analysis. It can be seen that the number
smart contract account is as same as the number of transactions of smart con-
tract creation. At the same time, we observed that there are a few external owned
accounts which included in many transactions have play a very important role in
the trading of Ethereum. Therefore, we will give more weight to these important
nodes in the node emmbedding part.

3.2 Node Embedding

Before node clustering, we need to learn the eigenvector representation of the
nodes in Ethereum. In the network we built, there are two types of nodes exter-
nal owned accounts and smart contract accounts. And there are three types of
relationships between the two types of nodes, Ether trading transactions between
external owned accounts, smart contract creation and smart contract invocation
between external owned accounts and smart contract accounts. In order to learn
the eigenvector representation of the nodes in the Ethereum network, we have
improved the idea based on Metapath2vec.

An important problem when learning the eigenvectors of nodes in network
is how to transform the structure of network into the form which skip-gram
model can handle. To solve this problem, Metapath2vec capture the semantic
and structural correlations between different types of nodes by using meta-path-
based random walks to generate paths.

In our experiments, we used the idea of improved Metapath2vec by using a
mixed meta-path to guide the generation of random paths. Since external owned
accounts is the main body of Ethereum, we consider the following scenarios
such as both two external owend accounts have Ether trading transactions with
another account, or both external owned accounts have called a same smart
contract or an external owned account have called a smart contract created by
another external account. In these cases, we believe that these accounts may
belong to the same category or have similarities. So we use the following mixed
meta-path to guide the process of random walks to generate paths and use these
paths to learn the eigenvector representation of the nodes.

As shown in Fig. 4, external owned accounts are expressed by node U, smart
contract accounts are expressed by SC and the transactions are represented by a



Ethereum Analysis via Node Clustering 121

Fig. 4. Meta-path in Ethereum

line between nodes. In order to generate a path, we first select an external owned
account node u1 and then randomly walk to an external owned account node
u2 or smart contract account node sc1 that has had a transaction relationship
with it. After that, it randomly walk to another external owned account node
u3 which has a transaction relationship with the node obtained before. Then
through this node, it continues to find a next external owned account node or
smart contract account node. And so on, then it can walk randomly to get a
fixed length path, which saves the context of the account nodes in the Ethereum
network.

Fig. 5. A sample path in Ethereum

Figure 5 shows part of a sample path generated by randomly walk, actual
accounts are represented by the node with the first six digits of their account
addresses. In this path, d24f09, 2a899d, BB79d0 and 5Fe69C represent four exter-
nal owned account nodes, and 07bf5F represents a smart contract account node.
The lines between them represent the different types of relationships including
contract creation, contract invocation and Ether trading. 2a899d calls smart
contract account 07bf5F which is created by d24f09, so we can think that these
two nodes d24f09 and 2a899d are closely related. At the same time, 2a899d and
5Fe69C may have a close relationship because they both have Ether trading with
BB79d0.

In order to save the relationship between nodes in Ethereum network as
much as possible by random walks, the specific settings of our experiment are
as follows:

– Set the path length of the random walk to 100 during the random walk.



122 H. Sun et al.

– Calculate the degree the nodes in Ethereum. For each node with a degree
greater than 30, the number of paths that are randomly moved from this
node as starting point is set to 300. For other nodes, the path with those
node as starting point is set to 100.

– Set the eigenvector representation dimension of the nodes to 128.

In Sect. 3.1, we found that there are a small number of nodes with large acces-
sibility have a very important influence on Ethereum. So we set more random
paths which start from nodes with larger degrees. In the course of the exper-
iment, we get millions of paths by randomly walk which save the information
in Ethereum network. Then we input those paths into the skip-gram model for
training and get the eigenvector representation of each node in 128 dimensions.
We visualize and cluster the eigenvectors of these nodes and then analysis the
clustering result.

3.3 Node Clustering

For the analysis of the node eigenvectors obtained by node embedding, we first
reduce their dimensions and visualize them. T-distributed stochastic neighbor
embedding abbreviated as TSNE is a machine learning algorithm used for dimen-
sional reduction. And it is a nonlinear dimensionality reduction algorithm, which
is very suitable for high-dimensional data dimensionality reduction to 2D or 3D
for visualization.

First, we use the PCA dimensionality reduction algorithm [14] to initialize the
eigenvector representation of the nodes, and then use the TSNE algorithm [15] to
reduce dimension of the initialization result. After a period of training, the eigen-
vector representation of the nodes are reduced from 128 dimensions to 3 dimen-
sions. Then we visualize the eigenvector of nodes after the dimension reduction.

In Fig. 6, each blue point represents an external owned account node or a
smart contract account node in Ethereum. And the nodes in the figure are rep-
resented by three-dimensional vectors. It can be seen from the figure that after
the dimensional reduction by the TSNE dimensionality reduction algorithm, the
eigenvectors of the nodes show obvious clustering trends, and the boundaries
between the clusters are also obvious. Based on the eigenvectors after dimension
reduction, we cluster the nodes in Ethereum.

Since we have a large number of nodes and no fixed number of clusters, we
have adopted the Birch algorithm that works better on larger data sets in the
clustering of nodes. The Birch algorithm is an algorithm based on hierarchical
clustering. It adopts a tree structure to perform fast clustering and has a good
effect on large data sets. The clustering algorithm shows great results on our
dataset.

Some important parameters of the Birch are as follows:

– threshold: we set the value to 0.6
– branching factor: due to the large number of nodes, we set it to 100
– n clusters: with no prior knowledge, we set it to None
– compute labels: the default is True



Ethereum Analysis via Node Clustering 123

Fig. 6. Eigenvector visualization (Color figure online)

Fig. 7. Clustering result (Color figure online)

As shown in Fig. 7, we visualize the 3-dimension eigenvector of nodes in
Ethereum. In Fig. 7, each colored point represents an external owned account
node or a smart contract account node in Ethereum. And we distinguish the
nodes in different clusters with different colors. There are many different clusters
in the clustering result. In the Analysis Section, we will analyze the clustering
results of the nodes and give our opinions.

4 Analysis

4.1 Nodes with Known Identity

Access to users’ real identities in Ethereum is extremely difficult because users
in Ethereum only need hash strings of addresses to make transactions. However,



124 H. Sun et al.

in the Ethereum tag function, users can choose to disclose their identities. In
Ethereum, a small number of financial trading accounts has disclosed their iden-
tities in their tags. At the same time, some accounts were identified as attackers
by Ethereum users or some previous papers due to malicious behavior. In addi-
tion, some real-life social groups will also open their Ethereum addresses on social
media networks for use in fundraising and other purposes. Through these chan-
nels, we can get a small amount of identity information about external owned
accounts and smart contract accounts in Ethereum.

Since the Ethereum account address is too long, we only list the shortest of
their first six digits in the table to represent their address. Some of the accounts
with known identities are shown in Table 3.

Table 3. Accounts with known identities

Account addr Account identity Account type Organization

70faa2 Exchange market External owned account ShapeShift

209c47 Exchange market Smart contract Poloniex

fa5227 Exchange market Smart contract Kraken

aa1a6e Security contract Smart contract ReplaySafe

1c39ba Exchange market Smart contract ShapesShift

e94b04 Exchange market Smart contract Bittrex

9e6316 Exchange market External owned account ShapeShift

96fc45 Exchange market External owned account Changelly

9bcb07 Exchange market Smart contract ShapeShift

b42b20 Exchange market Smart contract Poloniex

42da8a Exchange market External owned account YUNBI

7c2021 Attacker Smart contract /

3898d7 Attacker External owned account /

8b3b3b Attacker External owned account /

29dfaa Attacker External owned account /

bb9bc2 Fundraising organization Smart contract DAO

a74476 Exchange market Smart contract Golem

In Table 3, the first column represents the abbreviation of account addresses
and the second column represents the known identity of the account address
including exchange market, attacker and so on. The third column in the table
represents the account type, including external owned account and smart con-
tract account. The fourth column indicates the real organization to which the
account address belongs.

As can be seen from the table, the nodes with known identities are mostly
exchange markets which play important roles for Ethereum transactions, or
attacker account addresses that are harmful to Ethereum. The accessibility of



Ethereum Analysis via Node Clustering 125

these nodes is generally high, and their identity information will be an important
reference for the analysis in clustering results.

4.2 Clustering Result Analysis

In Sect. 3, we clustered the nodes vectors. Since the number of nodes in our
experiment is more than 500,000, the number of clusters in the clustering result
is also large. For effective analysis, we selected the top ten clusters for analysis.

Table 4. Some known accounts

Cluster ID Number of nodes

4 14710

12 14060

29 13798

24 13597

15 13431

19 13173

9 12794

10 12215

3 11521

17 9047

In Table 4, There are some of these clusters containing nodes with known
identities:

– Among the known identity nodes, there are four account addresses 70faa2,
1c39ba, 9e6316, and 9bcb07 who belong to the cluster 4. In Table 3, all four
account addresses belong to the exchange market organization ShapeShift.
And it can be speculated that the nodes in the cluster are mostly related to
the exchange market ShapeShift.

– Similarly, it can be speculated that cluster 12 is dominated by another
exchange market, Poloniex. Account addresses b42b20 and 209c47 are both
in this cluster, and they belong to exchange market Poloniex according to
Table 3.

– At the same time, we observed that two of the four known attackers, 3898d7
and 29dfaa belong to cluster 17. It can be speculated that the nodes in this
cluster may be related to malicious attack nodes.

Among the clusters of clustering results, we find that several well-known
exchange markets are the core of several large clusters. At the same time, we
also found a cluster that is suspected to be related to malicious users. Among
the four attacker-related account addresses of known identities, two account
addresses of attackers exist in this cluster. Based on this cluster, we propose a
new way for malicious user detection.



126 H. Sun et al.

4.3 Malicious User Detection

There are already some works in malicious user analysis [16] in blockchain. How-
ever, the complexity of Ethereum structure makes these methods inadequate. We
propose a more extensive and convenient malicious user detection strategy for
Ethereum based on our experimental results.

In Table 3, we list four nodes associated with the attackers, and two of them
3878d7 and 29dfaa are in a same cluster. In the previous Ethereum activities,
due to the large number of spam smart contracts creation (these smart contracts
are usually similar in code and rarely have been called since their creation),
the two nodes were identified as malicious users who manufacture junk smart
contracts to consume the storage space of Ethereum. Base on the nodes with
known identities, we propose a strategie for the detection of malicious users in
Ethereum.

Our malicious user detection method is based on the vector space distance
of the nodes. Based on the clustering results, the main steps are as follows:

– Given the known malicious users a1 and a2 and their cluster T.
– Mark the two nodes as malicious nodes, and then calculate the distance of

all the nodes in the cluster T from a1 and a2 respectively.
– Select the n points closest to a1 to form N1 and the n points closest to a2

to form N2. The intersection of the two sets is taken, and the nodes in the
intersection are marked as potentially malicious users.

– Find out all the marked potentially malicious users to form set A. Then do
the same for every two node in A.

– The method will iterate t times to mark possible malicious users in the cluster.

In the actual analysis, we mark the two known nodes 3988d7 and 29dfaa in
cluster 17 as malicious user nodes. At the same time, set n to 200 and iterate the
entire detection strategy twice. By analysis of the nodes included in the obtained
potentially malicious users set A, we find a node 40525a has similar malicious
user behavior.

Part of the transactions of the external owned account 40525a is shown in
Fig. 8. We look up all the transactions made by the node account 40525a in
Ethereum and find that the node currently creates 2,504 smart contracts. We
detected the smart contract created by the account and found that the smart
contract code created by it is same. It proves that the node is not a developer
of smart contracts but a malicious user node like the previous two external
owned account nodes who consumes Ethereum’s storage space by creating a large
number of identical and unattended smart contract. Since the frequency and
number of smart contracts created by this node is not as obvious as the previous
two smart contracts, the node has not been identified as an attacker by the
Ethereum Community Forum or other papers about Ethereum. But according
to our analysis, this node has a great possibility of being a malicious user.

In this way, we can quickly find potential attackers without having to check
the accounts in the entire Ethereum.



Ethereum Analysis via Node Clustering 127

Fig. 8. Suspected malicious behavior

5 Related Work

In recent years, there are some studies in Ethereum Analysis. Researchers have
adopted different methods such as graph analysis and complex networks model-
ing framework.

Chen et al. conducted the first systematic study on Ethereum [4]. They
applied graph analysis to characterize the three main activities on Ethereum,
Ether transaction, smart contract creation and smart contracts invocation. They
devised a new way to collect the transaction data and construct three graph from
the data to make analysis. In their next work, they designed a systematic data
exploration framework with high-fidelity for Ethereum [17].

Ferretti et al. employed the modeling techniques of the complex network in
Ethereum analysis [18]. They represented the flow of transactions happened in
the blockchain as a network, where nodes are the Ethereum accounts. It has
been observed that the wider the network, the greater the likelihood of a hub in
the network, which means that some nodes in the blockchain are more mobile.
It also can be seen how the use of blockchains changes over time.

6 Conclusion

In this paper, we analyze the behavior of users in Ethereum by using the method
of node embedding and node clustering. We filter out the transactions and



128 H. Sun et al.

addresses of accounts related to the three transaction types from Ethereum
blocks. Then we construct the Ethereum network to learn the eigenvectors of
the account nodes based on the filtered data. And we cluster the eigenvectors of
the account nodes in Ethereum. The clustering result is analyzed and draw some
new opinions. At the same time, it also proves the clusterability of account nodes
in Ethereum. We propose a malicious user detection method based on clustering
results and the nodes with known identities. In the future work, we will continue
the research and detect potential malicious users through our method and verify
them.

Acknowledgments. This work is supported by: Chinese National Research Fund
(NSFC) No. 61702330.

References

1. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project yellow paper 151, 1–32 (2014)

2. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
3. Buterin, V.: A next-generation smart contract and decentralized application plat-

form. white paper (2014)
4. Chen, T., Zhu, Y., Li, Z., et al.: Understanding Ethereum via graph analysis.

In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pp.
1484–1492. IEEE (2018)

5. Bartoletti, M., Pompianu, L.: An empirical analysis of smart contracts: platforms,
applications, and design patterns. In: Brenner, M., et al. (eds.) FC 2017. LNCS,
vol. 10323, pp. 494–509. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70278-0 31

6. Meiklejohn, S., Pomarole, M., Jordan, G., et al.: A fistful of bitcoins: characterizing
payments among men with no names. In: Proceedings of the 2013 Conference on
Internet Measurement Conference, pp. 127–140. ACM (2013)

7. Zhao, C., Guan, Y.: A graph-based investigation of bitcoin transactions. In: Peter-
son, G., Shenoi, S. (eds.) DigitalForensics 2015. IAICT, vol. 462, pp. 79–95.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24123-4 5

8. Maesa, D.D.F., Marino, A., Ricci, L.: An analysis of the bitcoin users graph:
inferring unusual behaviours. In: Cherifi, H., Gaito, S., Quattrociocchi, W., Sala,
A. (eds.) Complex Networks & Their Applications V. COMPLEX NETWORKS
2016. Studies in Computational Intelligence, vol. 693, pp. 749–760. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-50901-3 59

9. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Alt-
shuler, Y., Elovici, Y., Cremers, A., Aharony, N., Pentland, A. (eds.) Security and
Privacy in Social Networks, pp. 197–223. Springer, New York (2013). https://doi.
org/10.1007/978-1-4614-4139-7 10

10. Dong, Y., Chawla, N.V., Swami, A.: Metapath2vec: scalable representation learn-
ing for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 135–144. ACM
(2017)

11. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)

https://doi.org/10.1007/978-3-319-70278-0_31
https://doi.org/10.1007/978-3-319-70278-0_31
https://doi.org/10.1007/978-3-319-24123-4_5
https://doi.org/10.1007/978-3-319-50901-3_59
https://doi.org/10.1007/978-1-4614-4139-7_10
https://doi.org/10.1007/978-1-4614-4139-7_10


Ethereum Analysis via Node Clustering 129

12. Mikolov, T., Sutskever, I., Chen, K., et al.: Distributed representations of words and
phrases and their compositionality. In: Advances in Neural Information Processing
Systems, pp. 3111–3119 (2013)

13. Smilkov, D., Thorat, N., Nicholson, C., et al.: Embedding projector: interactive
visualization and interpretation of embeddings. arXiv preprint arXiv:1611.05469
(2016)

14. Jolliffe, I.: Principal Component Analysis. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-1-4757-1904-8

15. Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9,
2579–2605 (2008)

16. Liu, H., Ruan, N., Du, R., et al.: On the strategy and behavior of bitcoin mining
with N-attackers. In: Proceedings of the 2018 on Asia Conference on Computer
and Communications Security, pp. 357–368. ACM (2018)

17. Chen, T., Li, Z., Zhang, Y., et al.: DataEther: data exploration framework for
Ethereum. In: Proceedings of the 39th IEEE International Conference on Dis-
tributed Computing Systems (2019)

18. Ferretti, S., D’Angelo, G.: On the Ethereum blockchain structure: a complex net-
works theory perspective. Pract. Exp. Concurrency Comput., e5493 (2019)

19. Bok. https://www.bokconsulting.com.au/blog/ethereum-network-attackers-ip-
address-is-traceable/. Accessed 25 Oct 2016

20. Latetot. https://www.reddit.com/r/ethereum/comments/55rd3j/attacker is
gearing up again for new spam deluge/. Accessed Nov 2016

http://arxiv.org/abs/1611.05469
https://doi.org/10.1007/978-1-4757-1904-8
https://doi.org/10.1007/978-1-4757-1904-8
https://www.bokconsulting.com.au/blog/ethereum-network-attackers-ip-address-is-traceable/
https://www.bokconsulting.com.au/blog/ethereum-network-attackers-ip-address-is-traceable/
https://www.reddit.com/r/ethereum/comments/55rd3j/attacker_is_gearing_up_again_for_new_spam_deluge/
https://www.reddit.com/r/ethereum/comments/55rd3j/attacker_is_gearing_up_again_for_new_spam_deluge/

	Ethereum Analysis via Node Clustering
	1 Introduction
	2 Background
	2.1 Accounts and Transactions
	2.2 Method of Node Embedding

	3 System Model
	3.1 Data Collection
	3.2 Node Embedding
	3.3 Node Clustering

	4 Analysis
	4.1 Nodes with Known Identity
	4.2 Clustering Result Analysis
	4.3 Malicious User Detection

	5 Related Work
	6 Conclusion
	References




