
Derandomized PACE with Mutual
Authentication

Adam Bobowski(B) and Miros�law Kuty�lowski

Department of Computer Science, Wroc�law University of Science and Technology,
Wroc�law, Poland

adam.bobowski@pwr.edu.pl, miroslaw.kutylowski@pwr.wroc.pl

Abstract. We present a derandomized version of the ICAO protocol
PACE – a PAKE protocol (password authenticated key exchange) used
for identity documents including biometric passports and future Euro-
pean personal ID documents. The modification aims to remove necessity
of implementing random number generator and thereby reduce the cost
of the chip and its certification, while maintaining the level of security.
As a side effect we achieve better verifiability properties as well as chip
and terminal authentication.
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1 Introduction

Electronic identification is one of fundamental tasks when developing ubiquitous
systems. For the sake of personal identity documents a number of cryptographic
protocols has been developed by the ICAO organization [2]. They have been
deployed on biometric passports around the world and on some national ID cards.
A recent decision European Union authorities is to follow the ICAO specification
on all national ID cards issued by the member states.

One of the core schemes in the ICAO specification is PACE developed for
German identity documents by the German IT security authority BSI [1]. PACE
enables to establish a session (and its session keys) provided that both the chip
and the reader are using the same password. The goal of PACE is to prevent
activation of the chip without the consent of it holder. – in case of wireless
communication it might be particularly easy (skimming ID documents). PACE
is resistant to offline and online attacks aiming to derive the password used – the
only attack vector is to guess the password at random and check if the protocol
execution terminates successfully.

Current widespread adoption of PACE for the classical identity documents
suggests to adapt and reuse it in other areas, such as the IoT.
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Moreover, due to its specific and proven features regarding (un)traceability,
PACE is particularly attractive when high standards of personal data protection
apply.

The PACE protocol (and the proposed extension) are presented on Fig. 1.

Implementation Issues. Selection of random elements, like in most crypto-
graphic schemes, plays a crucial role in security of standard PACE protocol.
Convenient assumption of having access to source of truly random elements
solves many issues. On the other hand, in real world this theoretical assumption
is almost practically unobtainable.

The problems might be diverse. First, a physical source of randomness might
be affected by aging problems and start to provide biased and predictable output
– in this case the whole security argumentation collapses. Second, if we apply
solutions based on PRNG, then it is hard to guarantee that nobody knows
the seed. Finally, verifying that a device is following the protocol and there is
neither trapdoor utilizing randomness nor implementation errors is difficult. This
increases substantially the costs of certification process and well as reduces the
trust level.

Our Goals. Let us summarize our design approach:

derandomization: While there are cryptographic methods for constructing ver-
ifiable randomness, any solution to be deployed in practice must be extremely
simple and effective. We follow a different strategy – we eliminate random ele-
ments and replace them by unpredictable elements.
backwards compatibility: The devices running our protocol should interact
smoothly with the devices running the regular PACE (or PACE CAM).
indistinguishability: It should be infeasible for an observer to distinguish
which version of the protocol is run. Therefore, many security and privacy prop-
erties of the regular PACE should be inherited.
deniability: Moreover, even a party executing the protocol should be unable to
convince a third party that a presented protocol transcript has not been forged.
authentication: The protocol should enable strong authentication of commu-
nicating parties.
reuse: We wish to reuse the old designs and therefore the number of changes
in the original protocol should be small. This reduces the effort in adjusting the
old software to the new protocols.
password as a context: We concern the password not only as a guard against
an illegitimate device activation. It should provide a context – only the devices
with the same context should establish a session.

2 Deterministic PACE with Mutual Authentication

The protocol consists of 4 phases depicted on Fig. 1.
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device A ecived)pihcDIe( B (reader)

:syekehtsdloh:syekehtsdloh

skA (secret), pkA = gskA (public) skB (secret), pkB = gskB (public)

password π password π (input)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

adjust the password π to the context adjust the password π to the context

determine the seed ωA determine the seed ωB

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PACE initial phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Kπ := H(π||0) Kπ := H(π||0)
choose s at random

s := Hq(ωA||4)
z := Enc(Kπ, s)

G,z−−→ abort if G incorrect
s := Dec(Kπ, z)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DH2Point Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

choose xA at random choose xB at random

xA := Hq(ωA||5) xB := Hq(ωB ||6)
XA := gxA

XB←−− XB := gxB

XA−−→
h := XxA

B h := XxB
A

abort if h = 1 abort if h = 1
ĝ := h · gs ĝ := h · gs

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DH2Point End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

choose yA at random choose yB at random

yA := Hq(ωA||7) yB := Hq(ωB ||8)
YA := ĝyA

YB←−− YB := ĝyB

YA−−→
K := YB

yA K := YA
yB

KEnc := H(K||1) KEnc := H(K||1)
KMAC := H(K||2) KMAC := H(K||2)
K′

MAC := H(K||3) K′
MAC := H(K||3)

K′
Enc := H(K||4) K′

Enc := H(K||4)
TA := MAC(K′

MAC, (YB , G, ĝ)) TB := MAC(K′
MAC, (YA, G, ĝ))

TB←−−
abort if TB incorrect

TA−−→ abort if TA incorrect

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Authentication procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

authenticating the parties based on the the public keys pkA, pkB and the protocol transcript

Fig. 1. A deterministic version of the PACE protocol with mutual authentication.
Changes to the original PACE are marked in gray boxes (with the original version
striked out.)
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Initialization Phase. In this phase the participants adjust the shared password
and derive the seeds. For this purpose they use the context Δ (see Sect. 2.1) and
the secret keys of the participants. We propose two versions of the initialization
procedure: an non-anonymous version where the public keys pkA and pkB are
mutually known, and an anonymous version where each participant uses only
own keys. The details of the proposal are given on Figs. 2 and 3.

We intend to simplify as much as possible the first case. The price for this is
that the scheme is not resilient against an adversary that holds the private key
of, say, device B.

device A device B

holds the keys: skA :syekehtsdloh)terces( skB (secret)
pkA = gskA (public), π′ (password) pkB = gskB (public), π′ (password)

A and B exchange their public keys pkA, pkB

θ := pkskAB , acquire context Δ θ := pkskBA , acquire context Δ
π := H(θ||Δ||1||π′) π := H(θ||Δ||1||π′)
ωA := HG(θ||Δ||2) ωB := HG(θ||Δ||2)

Fig. 2. Non-anonymous initialization - the devices must exchange the public keys

device A device B

holds the keys: skA :syekehtsdloh)terces( skB (secret)
pkA = gskA (public), π′ (password) pkB = gskB (public), π′ (password)

acquire context Δ acquire context Δ
π := H(Δ||1||π′) π := H(Δ||1||π′)
ζ := HG(Δ||2), ωA := ζskA ζ := HG(Δ||2), ωB := ζskB

Fig. 3. Anonymous initialization: the devices do not show their public keys

Authentication Phase. This phase is executed immediately after PACE (see
Fig. 4). It consists of a common part that does not depend on the initializa-
tion and the initialization dependent parts. In the case of the non-anonymous
case no extra action is required (as the equality ωA = ωB is checked implicitly).
Figure 5 contains details corresponding to the anonymous initialization. Note
that the common part may contain also verification of the public keys pkB and
pkA, e.g. based on certificates.

In case of anonymous initialization it must be checked that ωA = ζskA and
ωB = ζskB . In fact, the authentication proof is based on the KEA1 assumption:
as the discrete logarithm of ζ is unknown, nobody but the holder of skA can
compute ζskA (resp., only the holder of skB can compute ζskB ). So we deal with
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device A device B

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . retrieval and verification of seeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
procedure dependent on initialization

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . verification of the execution transcript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
abort if XB �= gHq(ωB ||6) abort if XA �= gHq(ωA||5)

abort if YB �= ĝHq(ωB ||8) abort if YA �= ĝHq(ωA||7)

abort if s �= Hq(ωA||4)
verify pkB verify pkA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . authentication of seeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
procedure dependant on initialization

Fig. 4. Common part of authentication.

the problem of equality of discrete logarithms for the tuples (g, pkA, ζ, ωA) and
(g, pkB , ζ, ωB). A solution based on Schnorr signatures may be the simplest, but
it requires random numbers and leaves an undeniable proof of interaction.

In Fig. 5 we instantiate the authentication process with a textbook procedure.
Note that it starts with a choice of random elements. Hence it may appear

that we need a source of strong randomness - just violating our assumptions.
However, here we only need that these numbers are to some degree unpredictable
for the other side of the protocol. Unlike in the case of Schnorr signatures, it does
not endanger the secret keys – it only makes the proof of equality of discrete
logarithms weaker.

2.1 Comments on Design Approach

Complexity. In practice, for devices like smart cards or sensors a small storage
capacity is one of the key limitations. For this reason reusing the same code or
adding just a few lines of code might be crucial for implementability of a scheme.
For similar reasons, the communication volume and the number of messages
exchanged should be minimized.

Modularity. Depending on the application case, there might be different require-
ments for the strength of authentication. Sometimes the pure password authenti-
cation is enough and any kind of strong authentication of a protocol participant
would violate the data minimality principle. So we follow the approach where
authentication comes as a plug-and-play component that can be injected into
the original code. Our scheme can be modified easily and enable to authenticate
either both communicating parties or only one of them or none of them. Note
that in the ICAO specification contains the PACE CAM protocol with strong
authentication of the ID document. However, it needs a secure PRNG - otherwise
the secret key may leak.

Context. The parameter Δ from the protocol description may have different ori-
gins and play different roles. For example, in case of VANET, sometimes only
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device A device B

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . retrieval and verification of seeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Enc(K′

Enc,(pkB ,ωB))←−−−−−−−−−−−−
Enc(K′

Enc,(pkA,ωA))−−−−−−−−−−−−→
retrieve pkB , ωB retrieve pkA, ωA

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . verification of the execution transcript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
common procedure

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . authentication of seeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
run k times the following procedure

choose bA ∈ {0, 1}, jA ∈ Zq choose bB ∈ {0, 1}, jB ∈ Zq

if bA = 0 then ρA := ζjA if bB = 0 then ρB := ζjB

else ρA := gjA else ρB := gjB

Enc(K′
Enc,ρB)←−−−−−−−−

Enc(K′
Enc,ρA)−−−−−−−−→

retrieve ρB retrieve ρA

ψA := (ρB)skA ψB := (ρA)skB
Enc(K′

Enc,ψB)←−−−−−−−−
Enc(K′

Enc,ψA)−−−−−−−−→
retrieve ψB retrieve ψA

abort if ψB �= ωjA
B for bA = 0 abort if ψA �= ωjB

A for bB = 0
abort if ψB �= pkjA

B for bA = 1 abort if ψA �= pkjB
A for bB = 1

Fig. 5. Details of authentication in case of anonymous initialization.

the vehicles in a close proximity should establish communication. In order to
enforce this, Δ may contain an (approximate) GPS location or a string broad-
casted locally by a Road Side Unit. Another option is an optical channel. Δ may
be encoded in a QR code exposed to the communicating devices (like in case of
the WeChat and Alipay systems). Finally, Δ might follow from the past events
– e.g. contain a nonce from the previous interaction.

3 Security Discussion

A detailed security proof even for the standard PACE turns out to be quite long
and tedious, if we take into account active adversaries and privacy issues (see
[4] for a draft!). Therefore in this paper we provide only some comments on the
crucial issues.

Privacy Features of PACE. Privacy protection was apparently one of the
main goals for the designers of PACE. However, it is hard to express exactly
what privacy protection means and to present the relevant models. Fortunately,
one can allude the problem by determining situations where there are no concerns
about privacy protection.
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Similarly to the Abdalla model and the left-or-right games we can attempt to
show that given access to a protocol execution an adversary cannot distinguish
whether it has been executed with the keys attributed to a given participant
or situation (when the password is derived from e.g. location), or with ad hoc
keys selected at random. In this situation any kind of conclusion regarding the
device’s identity is impossible.

For PACE one can show that even if an adversary knows a password, then he
cannot distinguish between a protocol execution with this password and a proto-
col execution with a random password - the only exception is when the adversary
executes the protocol himself [4]. This property follows from the KEA1 assump-
tion: deriving the shared key in the Diffie-Hellmann protocol by the adversary
indicates that they knows at least one of the exponents used. However, this
might be an Achilles heel of PACE for weak devices: if a source of randomness
is corrupted on one side, then the argument fails.

Full Key Compromise. Now let us consider our schemes. First note that if an
adversary knows the key skA or skB and Δ, then he can easily check whether a
given communication transcript corresponds to these keys and derive the session
keys. Simply, the adversary mimics the deterministic computation of A or B. If
Δ is unknown but has low entropy, then the same attack applies – it suffices to
recompute XA (resp., XB) and compare with the value transmitted.

The attack described above cannot be prevented as long as the computation
is deterministic. Unfortunately, for the regular PACE the situation need not to
be better as the protocol might be based on a PRNG with a secret seed. The
seed might be compromised or replaced after subverting the device. Detecting or
preventing this attack requires nontrivial countermeasures (such as watchdogs).

Reduction Arguments. Security of our schemes is based on the fact that an
adversary cannot distinguish between executions of our protocols and the cases
where the key steps are randomized again to meet the original specification. So
we can argue that certain properties are the same as for the original PACE.

From now on we assume that the adversary knows neither skA nor skB.
However, we admit that the adversary may guess Δ.

Non-anonymous Initialization Case. The first observation is that due to diffi-
culty of the DDH Problem, the adversary should not see any difference in the
protocol execution when we replace θ by a random element. Then to proceed we
need the Correlated Input Hash Assumption (CIHA) [4]:

One cannot distinguish between the tuples H(C1(r)), . . . , H(Cn(r)) and the
random tuples of the same length and from the same domain provided that
the circuits C1, . . . , Cn are in some sense independent and min-entropy of their
output is sufficiently large.

It is impossible to use directly CIHA for π and ωA, since different hash
functions H and HG are used. However, one can define HG as a composition:
HG(x) = F (H(x)). Thus, we can assume that the adversary would not see any
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difference if we replace π and ωA by random values. Then in the same way we
may replace the derivation for s, xA, xB, yA, yB by the random choice.

As the initialization and authentication phases are executed without any
interaction, this finalizes the argument in this case.

Anonymous Initialization Case. In this case the adversary can derive π and ζ,
as he knows Δ. However, due to the DDH Assumption, the adversary cannot
distinguish the original computation from the computation where ωA and ωB

are chosen independently at random. The next step is to replace the derivation
for s, xA, xB, yA, yB by the random choice and argue that due to CIHA the
adversary cannot see any difference.

After the changes, the main part of the protocol is exactly the original PACE
(apart from computing additional key K ′

Enc). However, there is still the authen-
tication part presented on Fig. 5. Now we can replace the computation of ψA

and ψB by random values and skip the tests from the last two lines in Fig. 5.
(Effectively, we can simply replace the last four ciphertexts with random values.)
Again, the adversary cannot detect the manipulation, even when given an oracle
for decryption of the last 4 messages. The only remaining part dependent on the
participants’ keys are the ciphertexts exchanged in the first part of the authen-
tication phase. These key are unrelated now to the rest of the computation, so
we are now in the situation of the original PACE, where the session key is used
for encrypting some data. One can provide an argument based on the security of
PACE that the plaintexts can be replaced by random elements. (Note that the
key K ′

Enc has been introduced only for the sake of a formal proof at this point.)

Active Adversary. In general, an active adversary acting as man-in-the-middle
is the most interesting and complicated case for any protocol. The difficulty
comes from the fact that the number of possible attack scenarios is enormous.
However, in our case we can follow [4] showing protocol’s fragility: it means that
if an adversary manipulates any message, then the protocol execution will change
the behavior of the protocol parties always in the same way. We postpone the
details to the full version of the paper.

Deniability. A dishonest protocol participant, say A, might create a proof
of interaction with B, and offer it to third parties. In case of PACE this is
doable due to the extensive use of randomness enabling malicious cryptography.
Derandomization applied to our protocols helps here a lot: in case of the non-
anonymous initialization the responses of B can be created by A himself. In
case of anonymous initialization the issue is slightly more complicated: A cannot
create ωB , but on the other hand if the proof is created by A before presenting
the data for sale, then A can present any value as ωB together with a fake proof
from the authentication phase.

Authentication. In the non-anonymous case party A can compute the values
xB and yB to be used by B. On the other hand, xA and xB are computed as
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hash values, so A may assume that B knows the arguments used to compute
these hash values (this feature is captured by the Extractable Hash Function
property – cf. [3]). Hence B must know ωB and then in turn must know θ.
However, by the KEA1 Assumption, if B can compute θ given the keys pkA and
pkB , then B knows either skA or skB . If A is sure about secrecy of its key skA,
then the other party is either B (holding skB) or a party that has got either skB
or θ from B. The same argument applies for authentication of B against A.

The price to be paid for protocol simplicity is twofold. First, A can be cheated
if skA is compromised. Second, B can delegate its ability to talk with A by
presenting θ to a third party. If this is unacceptable for an application scenario,
then anonymous initialization should be used.

In the case of anonymous initialization the situation is less complicated. A
accepts B, if B presents ωB which, due to the interactive proof in the last phase,
equals to ζskB with a high probability. As the discrete logarithm of ζ is unknown
(recall that ζ has been computed as a hash value), by KEA1 we can conclude
that B must have known skB . The same argument concerns authenticating A
against B.
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