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Abstract. With the advent of connected vehicles, drivers will communi-
cate personal information describing their driving style to their vehicles
manufacturers, stakeholders or insurers. These information will serve to
evaluate remotely vehicle state via an e-diagnostics service, to provide
over-the-air update of vehicles controllers and to offer new third parties
services targeting profiled drivers. An inherent problem to all the previ-
ous services is privacy. Indeed, the providers of these services will need
access to sensitive data in order to propose in return an adequate service.

In this paper, we propose a privacy-preserving k-means clustering for
drivers subscribed to the pay how you drive service, where vehicles insur-
ance fees are adjusted according to driving behavior. Our proposal relies
on secure multi-party computation and additive homomorphic encryp-
tion schemes to ensure the confidentiality of drivers data during cluster-
ing and classification.

Keywords: Pay how you drive · Privacy · Mutli-party computation

1 Introduction

When drivers of connected vehicles subscribe to a pay how you drive service
(PHYD), their vehicles communicate information about their position, speed,
acceleration and braking frequencies to the insurer. The insurer uses this infor-
mation to classify drivers and to adjust their insurance fees with respect to their
driving behaviors.

The problem with PHYD is that the collected data can be used by a malicious
adversary to deduce information about drivers such as their home address or
workplace, their travelling habits, their speed infractions, etc. Consequently, it
is compulsory to provide a privacy-preserving drivers clustering and classification
algorithm.
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Contribution–In this work, we propose to rely on an unsupervised machine
learning algorithm for drivers’ clustering as insurers keep confidential their clus-
tering algorithms due to IP and business reasons. Among the unsupervised learn-
ing techniques, we choose, the simple k-means algorithm. We consider three
types of drivers (i.e. k = 3): aggressive, normal, and cautious; as proposed by
the driving simulator SCANeR Studio1.

We use secure multi-party computation techniques and an additive homo-
morphic encryption algorithm to make k-means ensure the privacy of drivers’
data. That is, drivers’ features are not exposed neither during k-means model
training nor during classification2. We make use of Yao garbled circuits proto-
col [1] for Squared Euclidien Distances computation and Paillier [2] cryptosystem
for means computation.

Paper Organization–In Sect. 2, we present the state of the art regarding the
private processing of vehicles’ data. In Sect. 3, we present the background con-
cepts used in these paper such as the k-means algorithm, the secure multiparty
computation and the homomorphic encryption. In Sect. 4, we specify our privacy-
preserving extension to k-means when applied to drivers clustering. In Sect. 5,
we discuss our proposed protocol security and performance. Finally, Sect. 6 con-
cludes the paper and provides future research directions.

2 State of the Art on Private Processing of Vehicles Data

In 2011, Troncoso et al. [3] proposed to install a secure hardware, i.e. a black
box, in vehicles to compute the insurance fees locally. The obtained fees are
transmitted later to insurances for billing. As such, vehicles’ private data are
kept secret from insurances. They also specified an auditing mechanism to check
that neither the insurance nor the owner of the vehicle cheated of fees. Indeed,
they store the data needed for calculating insurance costs on an auxiliary storage.
The data are encrypted using a split key between the vehicle owner and the
insurance. In case of a dispute, the vehicle owner and the insurance combine
their split key to decrypt the auxiliary storage and check how the insurance fee
has been computed.

In 2013, Kargl et al. [4] used differential privacy techniques to protect Float-
ing Car Data (FCD). Differential privacy provides mathematical privacy guar-
antees. However, it allows only to make a limited number of queries, such as
computing the sum, the minimum/maximum and the average. It is not well
fitted for private k-means calculus.

In 2015, Rizzo et al. [5] proposed a technique to train a decision tree to
classify drivers behavior (as aggressive or defensive), while preserving the privacy
of collected data and the confidentiality of the decision tree computed by the
insurance company. They used a secure version of the ID3 algorithm to build
the decision tree using the homomorphic properties of Paillier cryptosystem [2].
1 http://www.oktal.fr/en/automotive/range-of-simulators/range-of-simulators.
2 Note that our protocol is not only limited to drivers clustering and can be easily

generalized to cover all use-cases using k-means for clustering.

http://www.oktal.fr/en/automotive/range-of-simulators/range-of-simulators
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3 Background

In this section, we review the key concepts used in this paper.

3.1 k-means Clustering Algorithm

k-means algorithm [6] produces automatically k clusters ({c1, . . . , ck}) from a
collection of data sets ({d1, . . . , dn}) in a simple way. k-means relies on distance
and mean computation for data clustering as presented in Algorithm1. First, we
select k random cluster centers ({μ1, μ2, . . . , μk}). Then, we iterate the algorithm
until converging to the best choice of clusters’ centers or reaching a preselected
number of iterations.

input : n data vectors and the number of clusters k
output: k clusters

1 Select k cluster centers {µ1, µ2, ..., µk};
2 repeat
3 Assign each data vector dj,j∈[[1,n]] to the closest cluster ci,i∈[[1,k]] whom center is

µi,i∈[[1,k]] (i.e., the distance between µi and dj is minimum);

4 Replace each cluster center µi by the mean of elements dj belonging to the cluster ci;

5 until cluster centers do not vary significantly or the number of iterations is reached ;

Algorithm 1. k-means clustering

3.2 Yao Garbled Circuit

Yao’s garbled circuit [1] allows two parties to evaluate a boolean circuit C with-
out revealing their respective inputs. The circuit generator creates a garbled
circuit GC by obfuscating the inputs to C wires. Indeed, for each wire wi of
the circuit, the generator chooses randomly two secret values w0

i and w1
i . w0

i

and w1
i are the garbled values corresponding to 0 and 1, respectively. Finally,

she creates a garbled table GTi for each gate Gi. Each line of GTi contains
two garbled inputs wj

i,1 and wj
i,2 (where j ∈ {0, 1}) and their corresponding

output E(H(wj
i,1, w

j
i,2), w

j
i,o) where E is an encryption algorithm and H a key

generation function. After decryption, GTi allows to get the garbled value of the
output wj

i,o.
The circuit generator transmits GC, i.e. all the garbled tables, to the cir-

cuit evaluator. In addition, the generator provides the evaluator with her gar-
bled inputs wj

i,g for all input gates Gi ∈ GC. Finally, the evaluator recov-
ers her own garbled inputs wj

i,e to the same input gates GTi ∈ GC using
oblivious transfers [7,8]. At this point, the evaluator can compute all the gar-
bled gates of GC. She starts with the decryption of the input gates with the
keys E(H(wj

i,g, w
j
i,e), w

j
i,o), and continues until reaching the final output of the

boolean circuit C.
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3.3 Additive Homomorphic Public Key Encryption

A public key encryption (PKE) consists of 3 algorithms: KG which given a
security parameter λ generates a public key pk and a secret key sk. One produces
an encryption of a message m using pk and a randomness. We denote Epk(m)
the obtained ciphertext. To decrypt a ciphertext c, one uses the secret key sk
and outputs either a message or ⊥. We denote Dsk(c) this output.

We say that a PKE scheme is correct if for (pk, sk) ← KG and c ← Epk(m),
we have that Dsk(c) = m holds with high probability. The PKE encryp-
tion function is assumed to be additively homomorphic i.e. Epk(m1 ⊕ m2) =
Epk(m1) � Epk(m2), where ⊕ and � are the group laws over the message space
and the ciphertext space, respectively. Example of such cryptosystems is Paillier
scheme [2].

4 Privacy-Preserving k-means Clustering of Drivers

In this section, we detail our proposed protocol for running k-means while keep-
ing drivers’ features private. We denote by N the total number of vehicles (or
drivers), Vi is the driver identifier for i ∈ [[1, N ]] and Xi = (xi1, . . . , xim) is the
vector of features of Vi. k is a fixed integer and denotes the number of clusters
(k = 3). S is the model provider. In our application, S refers to the insurer
server. C(Vi) is the label of the cluster containing Xi.

4.1 Assumptions

Clustering. During clustering, each driver inputs his driving data to the k-
means algorithm. These driving data are private and must not be shared or
analyzed in plaintext. The k-means algorithm returns to a driver the index of
the cluster to which he belongs. Meanwhile, the insurer receives the centers of
all created clusters. The centers of clusters are insurer’s private data, and must
not be shared with drivers.

Classification. During classification, we assume that each driver inputs his
data to the k-means algorithm. In return, the insurer and the driver only obtain
the index of the cluster to which the driver belongs.

Communication Model. We assume no communications between vehicles.
We only consider direct communications between a vehicle and the insurer. We
do not have real-time constraints as driver insurance fees are paid once per
month. So, the upcoming computation can be done in background by an insur-
ance application installed in one of the trusted electronic control units of the
vehicle.
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input : n data entities and the number of clusters k
output: k clusters

1 S randomly selects k cluster centers {µ1, µ2, ..., µk};
2 repeat
3 for i = 1..N do
4 Vi and S engage in a secure two-party cluster attribution protocol;
5 Vi gets C(Vi), S gets no information;
6 S, V1, . . . , Vn engage in a secure multi-party mean computation protocol to update

cluster centers;

7 end

8 until cluster centers do not vary significantly or the number of iterations is reached ;

Algorithm 2. Privacy-preserving k-means clustering

Attacker Model. In this work, we consider a honest-but-curious model. Each
of the N players (e.g. vehicles) possesses private features. The model provider S
(e.g. the insurer) has no access to these features. One player V1 is chosen as the
dealer player in the honest but curious model; V1 is the only one who knows the
private key sk1. Each player sends his encrypted features under public key pk1

to S. We assume that S and V1 act as honest players. Also, we assume that no
collusion between players is possible.

4.2 Proposed Protocol for Privacy-Preserving k-means

We enhance k-means clustering with secure multi-party computation (as pre-
sented in Algorithm 2). First, we propose a secure two-party protocol for the
closest cluster computation (i.e. for drivers attribution to clusters). Then, we
define a protocol for secure multi-party mean computation. The computed mean
serves to privately update the centers of clusters.

Secure Computation of the Closest Cluster. We use a secure two-party
protocol between a vehicle (Vi) and the insurer (S) to compute the closest cluster
to Vi. To meet our requirement of keeping the centers of clusters private, we use
an unfair version of Yao’s protocol, where only the driver (Vi) obtains the result
of the computation, the insurer gets no information.

For our protocol, we propose the circuit of Fig. 1a. If the insurer is the evalu-
ator of the circuit, she sends the output labels to the vehicle. If the insurer is the
generator of the circuit, she sends the table mapping each label to its value. In
our circuit, we compute the Squared Euclidean Distance (SED) and then returns
the index of the lowest distance, i.e. the closest cluster. SED is computed with
respect to the 3 current cluster centers.

First, we use the circuit of Fig. 1b to compute the Squared Euclidean Dis-
tance (SED) between two n-dimensional vectors X = (x1, . . . , xm) and Y =

(y1, . . . , ym). It computes ‖X −Y ‖22 =
m∑

i=1

(xi −yi)2 =
m∑

i=1

x2
i −2

m∑

i=1

xi.yi +
m∑

i=1

y2
i .

The second circuit computes the minimal distance to a cluster center. We
use the min circuit described in [9] to compare 2 distances d1 and d2. The min
circuit returns the smallest distance between d1 and d2 with its respective index
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(a) Global circuit (b) SED circuit

Fig. 1. Circuit for closest cluster index calculus

(i.e. 1 or 2). The min circuit is composed of a comparison (>) gate and two
multiplexer gates (MUX). The comparison gate takes two inputs x, y and outputs
1 if x > y and 0 otherwise. The MUX gate takes 3 inputs x, y and a bit b. If b = 1,
MUX outputs x, otherwise it outputs y. Finally, we remove one MUX gate from the
min circuit to get the min idx circuit (Fig. 2b). The latter outputs the index of
the minimum distance and not the value of the minimum.

(a) min (b) min idx

Fig. 2. min and min idx circuits

Secure Computation of Clusters’ New Centers. The second k-means
computation updates the centers of clusters. The new centers are simply the
mean of driving data that belong to drivers from the same cluster. Our protocol
requires a semantic secure and homomorphic additive cryptosystem. Semantic
security ensures that encrypting twice the same driving data returns two differ-
ent ciphertexts. Meanwhile, the homomorphic addition sums encrypted data of
drivers belonging to the same cluster. Example of such cryptosystems is Paillier
scheme [2].

Our protocol contains 3 phases: an initialization, a secure sum computa-
tion and a secure mean computation. First, the insurer S nominates a vehicle
as V1 to initiate the protocol as depicted in Algorithm3. We assume w.l.o.g
that V1 belongs to the first cluster (i.e. C(V1) = 1). V1 picks 6 random values
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1 S nominates a vehicle as V1;

2 V1 picks 6 random values rf
1
1, rf

1
2, rf

1
3, rn

1
1, rn

1
2, rn

1
3;

3 V1 computes:

4 cf
1
1 = Epk1 (x1 + rf

1
1) cn

1
1 = Epk1 (1 + rn

1
1);

5 cf
1
2 = Epk1 (rf

1
2) cn

1
2 = Epk1 (rn

1
2);

6 cf
1
3 = Epk1 (rf

1
3) cn

1
3 = Epk1 (rn

1
3);

7 V1 sends to S: cf
1
1, cf

1
2, cf

1
3, cn

1
1, cn

1
2, cn

1
3;

8 S initializes:

9 Sf 1 ← cf
1
1 Sn1 ← cn

1
1;

10 Sf 2 ← cf
1
2 Sn2 ← cn

1
2;

11 Sf 3 ← cf
1
3 Sn3 ← cn

1
3;

Algorithm 3. Secure multi-party mean computation protocol: initialization phase

1 for i = 2..N do

2 Let j be Vi’s cluster label, j = C(Vi). Vi computes cf
j
i = Epk1 (xi) and cn

j
i = Epk1 (1);

3 For k ∈ {1, 2, 3} \ {j}, Vi computes cf
i
k
= Epk1 (0) and cn

i
k = Epk1 (0);

4 Vi sends to S: cf
i
1, cf

i
2, cf

i
3, cn

i
1, cn

i
2, cn

i
3;

5 S computes:

6 Sf 1 ← Sf 1 ∗ cf
i
1 Sn1 ← Sn1 ∗ cn

i
1;

7 Sf 2 ← Sf 2 ∗ cf
i
2 Sn2 ← Sn2 ∗ cn

i
2;

8 Sf 3 ← Sf 3 ∗ cf
i
3 Sn3 ← Sn3 ∗ cn

i
3;

9 end

Algorithm 4. Secure multi-party mean computation protocol: sum calculus

(rf 11, rf
1
2, rf

1
3, rn

1
1, rn

1
2, rn

1
3) and encrypts them with his own public key pk1 to

obtain 6 ciphertexts (cf 11, cf
1
2, cf

1
3, cn

1
1, cn

1
2, cn

1
3). cf contains encrypted features

of vehicles. For example, V1 belongs to the cluster 1, so V1 encrypts her features
x1 as cf

1
1 = Epk1(x1 + rf

1
1), while cf 2 and cf 3 encrypt rf

1
2 and rf

1
3, respectively.

Meanwhile, cn indicates whether a vehicle belongs to a cluster or not. For V1,
cn1 encrypts rn

1
1 + 1 while cn2 and cn3 encrypt rn

1
2 and rn

1
3, respectively. The

encryption results (cf 11, cf
1
2, cf

1
3, cn

1
1, cn

1
2, cn

1
3) are transmitted to S which uses

them to initialize the sum values (Sf 1, Sf 2, Sf 3, Sn1, Sn2, Sn3).
Second, the insurer S requests from each vehicle Vi,i �=1 to provide

its encrypted feature. To do so, each vehicle generates 6 ciphertexts
(cf i1, cf

i
2, cf

i
3, cn

i
1, cn

i
2, cn

i
3) as explained in Algorithm4. Vi encrypts in cf

i
j her

features when her cluster label C(Vi) equals j, or 0 otherwise. In the same way,
Vi encrypts in cn

i
j 1 when her cluster label C(Vi) equals j, or 0 otherwise.

Finally, S picks 6 random values (rfS1 , rf
S
2 , rf

S
3 , rn

S
1 , rn

S
2 , rn

S
3 ), encrypts them

with pk1 and adds them to (Sf 1, Sf 2, Sf 3, Sn1, Sn2, Sn3), respectively. Then,
S transmits the obtained results to V1 as presented in Algorithm 5. V1 deci-
phers (Sf 1, Sf 2, Sf 3, Sn1, Sn2, Sn3) and substracts (rfS1 , rf

S
2 , rf

S
3 , rn

S
1 , rn

S
2 , rn

S
3 )

to obtain (f1, f2, f3, n1, n2, n3) which are retransmitted to S. S computes fi =
fi − rf

S
i , ni = ni − rn

S
i and the new clusters’ means as: μi = fi/ni.

Note that for simplicity concerns, we described the previous algorithm while
considering that each vehicle Vi is transmitting one feature xi. If vehicles are
transmitting t features, each cf

i
j,j∈{1,2,3} will be a vector of encrypted features

or 0, namely cf
i
j = (Epk1(x

i
1), ..., Epk1(x

i
t)) or (Epk1(0), ..., Epk1(0)). In this case,



692 O. E. Omri et al.

1 S picks 6 random values rf
S
1 , rf

S
2 , rf

S
3 , rn

S
1 , rn

S
2 , rn

S
3 ;

2 S computes for i ∈ {1, 2, 3}:
3 Sf i

← Sf i
∗ Epk1 (rf

S
i
) Sni ← Sni ∗ Epk1 (rn

S
i );

4 S sends to V1: Sf 1, Sf 2, Sf 3, Sn1, Sn2, Sn3;

5 V1 computes for i ∈ {1, 2, 3}:
6 fi = Dsk1 (Sf i

) − rf
1
i

ni = Dsk1 (Sni) − rn
1
i ;

7 V1 sends to S: f1, f2, f3, n1, n2, n3;
8 S computes for i ∈ {1, 2, 3}:
9 fi ← fi − rf

S
i

ni ← ni − rf
S
i
;

10 S finally computes the new cluster means for i ∈ {1, 2, 3}: µi = fi/ni;

Algorithm 5. Secure multi-party mean computation protocol: mean calculus

V1 would compute in the initialization phase the following cf values: cf
1
1 =

(Epk1(x
1
1 + rf

1
1), ..., Epk1(x

i
t + rf

1
1)), cf

1
2 = (Epk1(rf

1
2), ..., Epk1(rf

1
2)) and cf

1
3 =

(Epk1(rf
1
3), ..., Epk1(rf

1
3)).

4.3 k-means Classification of New Drivers

Once the clusters are properly defined, it becomes easy to privately classify a
new driver. The driver and the insurer will engage in the secure two-party cluster
attribution protocol defined previously. However, the result of this computation
is revealed to both parties. The driver cluster will determine the category of the
driver and therefore his insurance fee.

5 Protocol Evaluation

In this section, we discuss the correctness and complexity of our proposed
scheme.

5.1 Correctness

Correctness of the secure two-party cluster attribution protocol is trivial since
the circuits are constructed to compute the correct value. We therefore focus on
correctness of the secure multi-party mean computation protocol. When all the
vehicles have sent their encrypted features, S computes:

Sf 1 =
∏

i=1..N

cf
i
1 Sn1 =

∏

i=1..N

cn
i
1

Sf 2 =
∏

i=1..N

cf
i
2 Sn2 =

∏

i=1..N

cn
i
2

Sf 3 =
∏

i=1..N

cf
i
3 Sn3 =

∏

i=1..N

cn
i
3
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Which is equivalent to3:

Sf 1 = cf
1
1 ∗

∏

C(Vi)=1

cf
i
1 ∗

∏

C(Vi)�=1

cf
i
1

Sn1 = cn
1
1 ∗

∏

C(Vi)=1

cn
i
1 ∗

∏

C(Vi)�=1

cn
i
1

We keep considering w.l.o.g that V1 is in the first cluster. So, cf
1
1 = Epk1(x1 +

rf
1
1) and cn

1
1 = Epk1(1 + rn

1
1). Moreover, for i s.t. C(Vi) = 1, we have cf

i
1 =

Epk1(xi) and cn
i
1 = Epk1(1), while for i s.t. C(Vi) �= 1 we have cf

i
1 = Epk1(0)

and cn
i
1 = Epk1(0). Therefore, we obtain:

Sf 1 = Epk1 (x1 + rf
1
1) ∗

∏

C(Vi)=1

Epk1 (xi) ∗
∏

C(Vi)�=1

Epk1 (0)

Sn1 = Epk1 (1 + rn
1
1) ∗

∏

C(Vi)=1

Epk1 (1) ∗
∏

C(Vi)�=1

Epk1 (0)

Thanks to the homomorphic property, we rewrite:

Sf 1 = Epk1 (rf
1
1 +

∑

C(Vi)=1

xi)

Sn1 = Epk1 (rn
1
1 +

∑

C(Vi)=1

1) = Epk1 (rn
1
1 + card{Vi

/
C(Vi) = 1})

In the last exchange between V1 and S, S hides the real values from V1 by homo-
morphically adding rf

S
i and rn

S
i , for i ∈ {1, 2, 3}. V1 decrypts Sf i and Sni and

removes his random values rf
1
i and rn

1
i , for i ∈ {1, 2, 3}. Finally, S obtains the

sums fj =
∑

C(Vi)=j xi and the cardinal of each cluster nj = card{Vi

/
C(Vi) = 1}

for j ∈ {1, 2, 3}. S is then able to compute the cluster means μj = fj/nj .

5.2 Privacy

We check that our protocol fulfills the following requirements in the semi-honest
model: (1) the inputs xi and the closest cluster label C(Vi) should be kept private
for each vehicle Vi, (2) the clusters’ means μi should be kept private for S.

The secure two-party cluster attribution protocol is proven in the litera-
ture [10] to compute privately the cluster attribution in the presence of semi-
honest adversaries.

We therefore focus more on the secure multi-party mean computation protocol.
In the first part of the protocol, S receives cf

i
j , cn

i
j from each Vi for i ∈ [[1, N ]] and

j ∈ {1, 2, 3}. These values do not reveal information about the vehicles inputs
since the Paillier cryptosystem provides indistinguishablity under chosen plain-
text (IND-CPA). S cannot distinguish cf

i
j = Epk1(0) from cf

i
j = Epk1(xi) and

cn
i
j = Epk1(0) from cn

i
j = Epk1(1). Therefore, S cannot obtain any information

3 we rewrite only Sf 1 and Sn1 for the sake of clarity.
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about a vehicle’s features nor its intermediary cluster label. The second part of
the protocol is the final exchange between S and V1. S adds homomorphically to
the encrypted sums Sf j and Snj the random values rf

S
j and rn

S
j , for j ∈ {1, 2, 3}

to hide the sums from V1.
Upon reception of the (Sf j , Snj), V1 decrypts them with his private key and

substracts his initial random values rf
1
j and rn

1
j , for j ∈ {1, 2, 3}. The values

obtained do not reveal any information since they are still masked by the random
values of S. S is finally able to obtain the sums by substracting his random values
rf

S
j and rn

S
j from fj and nj , for j ∈ {1, 2, 3}. In this second part of the protocol,

each computed value does not reveal any sensitive information to the concerned
party in the semi-honest model. However, when we consider that V1 and S are
malicious, they can collude and recover all the information regarding the other
vehicles.

5.3 Complexity

Our protocol relies on Yao garbled circuit for the closest cluster computation.
Indeed, once the distances to clusters’ centers are computed with SED circuit,
we compare them and return the index of the closest cluster using the min and
min idx circuits. In the sequel, we assume that the number of features per vehicle
is n and that each feature is l-bit long.

We use the information from Table 1 [11,12] to estimate the number of gates
of the closest cluster index calculus circuit (of Fig. 1a). The size of a circuit refers
to the number of AND gates. Meanwhile, the multiplicative depth of a circuit refers
to the maximum number of AND gates on any path of the circuit. Let us denote by
S() the function that returns a circuit size and by D() the function that returns a
circuit depth. The size and depth of the circuit for the closest cluster computation
are 3S(SED) + S(min) + S(min idx) and 3D(SED) + D(min) + D(min idx),
respectively.

Table 1. Number of gates of elementary circuits

Operand Method Depth Size

+ [11] ripple-carry l − 1 l − 1

Sklansky �log(l)� + 1 l�log(l)�
× [11] standard 2l − 1 l2 − l

Wallace 2�log(l)� + 3 2l2 + l�log(l)�
MUX [13] Kolesnikov and Schneider 1 l

> [12] Kolesnikov et al. [9] l l

Garay et al. [14] �log(l)� + 1 3l − �log(l)� − 2

Using inputs from Table 1, we obtain the results presented in Table 2 when
we lower the size of our circuit for closest cluster index calculus to the maximum.
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That is, if we consider a garbling method compatible with free-XOR [13], we will
have to manage at most 4 ciphertexts per AND gate, for a total of 3nl2 + 5l − 3n
AND gates. In addition, we will engage in 3(n + 1)l oblivious transfers between
the circuit generator and verifier. It is clear that it is important to reduce at
maximum the number n of features to improve the circuit computation time
and to reduce bandwidth consumption during oblivious transfers.

Table 2. Number of gates of the closest cluster index calculus circuit

Circuit Size

SED n(l2 − 1)

min 3l

min idx 2l

Closest cluster index circuit 3nl2 + 5l − 3n

The secure computation of new cluster centers relies on a homomorphic addi-
tive cryptosystem (as presented in Algorithms 3, 4 and 5). Each vehicle Vi,i∈[[1,N ]]

encrypts 3n + 3 plaintexts, i.e. a plaintext per feature and per cluster, using the
public key of V1. Then, it transmits them to the insurer S. S sums the received
ciphertexts to obtain 3 vectors of encrypted features Sf i,i∈{1,2,3} and 3 sums of
the total number of vehicles in a cluster Sni,i∈{1,2,3}. Finally, V1 decrypts these
sums for S. That is, V1 decrypts 3n+3 ciphertexts. Note that the good choice of
the homomorphic additive cryptosystem is of a great importance to reduce the
bandwidth consumption during ciphertexts exchange. Indeed, as the number of
exchanged ciphertexts (3n + 3) depends on the number of vehicles features (n),
vehicles may have to transmit large bulks of data due to the size of ciphertext.

Note that for the PHYD use-case, we do not have real-time constraints as
insurance fees are paid once a month and drivers may delay their payments by
one month. That is, drivers clustering and then classification will be updated
monthly. In practice, it is up to the insurer to fix the number of vehicles and to
delimit the geographical area used for drivers clustering.

6 Conclusion

We presented in this work a privacy preserving k-means clustering and then
classification for driving profiles. The proposed protocol avoids disclosing drivers
personal data to semi-honest insurers. It relies on Yao’s garbled circuit for the
computation of distances to clusters’ centers. In addition, it uses a homomorphic
additive and semantic secure encryption scheme for the computation of clusters
new centers. Our future work will consist in implementing a proof of concept of
the proposed solution and providing a complete security proof for the protocol.
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