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Abstract. Recent proposals in data anonymization have mostly been
focused around MapReduce, though the advantages of Spark have been
well documented. To address this concern, we propose a new novel data
anonymization technique for Apache Spark. SparkDA, our proposal,
takes the full advantages of innovative Spark features, such as better
partition control, in-memory process, and cache management for itera-
tive operations, while providing high data utility with privacy. These are
achieved by proposing data anonymization algorithms through Spark’s
Resilient Distributed Dataset (RDD). Our data anonymization algo-
rithms are implemented at two main data processing RDD transforma-
tions, FlatMapRDD and ReduceByKeyRDD, respectively. Our exper-
imental results show that our proposed approach provides required
data privacy and utility levels while providing scalability with high-
performance that are essential to many large datasets.

Keywords: High-performance · Data anonymization · Spark · Big
data mining · Privacy and utility

1 Introduction

With the popularity of Big Data, distributed parallel processing platforms have
emerged with the features required for processing large amount of data for exam-
ple high capacity storage, processing units, and execution memory, etc. Many
traditional data anonymization techniques have been adapted to work along with
such distributed parallel processing platforms, such as MapReduce, to take the
advantages of many scalability features offered by them [7–9]. However, exist-
ing MapReduce-based data anonymization approaches would often suffer per-
formance issues due to inherent MapReduce architectural design, which requires
data (and their by-products such as intermediate data) to travel to disks fre-
quently [17], the lack of mechanisms which can share data across multiple nodes
or run iterative tasks more efficiently [10].

Spark [16] has been emerged as the next generation big data processing plat-
form offering new advanced features that were limited in MapReduce [12]. With
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the popularity of Spark in recent years, the proposals for data anonymization
techniques to run on Spark platform also has emerged [2,3,13]. However, these
proposals are often two sketchy to understand neither the details of the data
anonymization strategies nor provide benchmark figures for privacy, scalabil-
ity and performance. We present a novel data anonymization approach named
SparkDA that implements data anonymization algorithms while taking the full
advantages of Spark’s advanced features. Our SparkDA provides the following
capabilities.

• The main data anonymization algorithms are offered through Resilient Dis-
tributed Dataset (RDD) transformation, by designing FlatMapRDD and
ReduceByKeyRDD transformations, respectively.

• By utilizing RDDS, our data anonymization algorithms are run in memory
(instead of disk as done in MapReduce). This reduces the overheads of having
to travel to expensive disk I/O – especially for intermediary results which are
often used by subsequent executions.

• Iterative operations, such as generalization and suppression algorithm, in
SparkDA are cached then re-used which results in high-performance.

• Our experimental results illustrate the feasibility of our proposal by showing
that data utility is still high when compared with its counterpart in standalone
operation (i.e., data utility is not destroyed as the results of taking advantage
of high-performance).

• Results show the scalability of SparkDA while maintaining high-performance.

The rest of this paper is organized as follows: Sect. 2 provides the background
that is related to this paper. Section 3 explains the details of our proposed
method SparkDA and two data anonymization RDD transformation algorithms.
Section 4 discusses our experimental setup, results and key findings in details.
Section 5 provides the conclusion along with future work.

2 Background

This section provides the background materials to better understand our pro-
posal. The section starts with the main architectural ideas behind MapReduce
and Spark, their similarities and differences. An illustration of the main idea
behind a data anonymization technique based on Datafly [14] is presented.

2.1 MapReduce vs Spark

The Hadoop MapReduce [9] has been a popular big data processing platform
for the last decade. The MapReduce programming paradigm is based on Map
and Reduce. MapReduce starts with multiple mappers on various nodes based
on data locality to process the mappers in parallel at each node. The input
data, typically large, is split into mappers of multiple nodes. The data in a
mapper, which is a collection of records either structured or unstructured, is
assigned with key-value combinations. The mapper writes key-value pairs in the



648 S. U. Bazai and J. Jang-Jaccard

local disk at each data node. The reduce function is designed to collect mappers’
results. The reducer reads these key-value pairs from local disk and exchanges the
relevant keys to the respective reducers. Figure 1 illustrates the execution cycle
of a MapReduce job to highlight data movement from an input to an output.
However, some performance degradation in the current MapReduce paradigm
can occur in the following places.

• Problem (1): When splitting the input data, the size and the number of splits
decide the number of mappers at each node – often with no knowledge of the
capability of mappers. One such allocation is done, there is no movement of
mappers across nodes. This creates several performance issues. For example,
it can create a long execution queue if a node contains too many mappers
as MapReduce only use the memory of each node for processing the mapper
at the local node. Any subsequent mappers have to wait until the memory is
freed even though other nodes could be idle. Subsequently, it also creates delay
in the reducer as it needs to wait until this busy node with many mappers
finishes all processing even though the mappers in other nodes have already
finished much earlier. This problem is illustrated as “Problem 1” in Fig. 1.

• Problem (2): Mappers create intermediate values which are written in the
local disks at each node in MapReduce. This creates a several trips to the
expensive disk I/O as the number of intermediate results increases. This prob-
lem is illustrated as “Problem 2” in Fig. 1.

• Problem (3): The reducer produces the final results. All intermediate results
across multiple nodes require to be transferred to the reducer which could
often locate in another node in the network. The transmissions of intermediate
results across multiple nodes and the reducer can also create performance
degrade. This problem is illustrated as “Problem 3” in Fig. 1.

These problems results in a tremendous performance bottleneck with itera-
tive operations. In the current MapReduce architecture, a severe execution queue
is created with iterative operations which require a series of sequential MapRe-
duce jobs, where each iteration to be waited and executed one by one until all
iterations are done.
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To address the performance concern of MapReduce, Spark has emerged
as a high-performance distributed processing platform for big data. Spark
uses Resilient Distributed Datasets (RDDs), which are immutable collection of
records partitioned in a parallel manner. Input data is read from the disk as a
split block as it was done in MapReduce environment, however, the blocks are
further split into several partitions. An input RDD is created which contains
all the partitions. The input RDD understands the memory capability at each
worker’s node, and by taking this account, assigns the optimal number of par-
titions to each node. This can effectively reduce the issue we discussed in the
earlier problem (1). Once partitions are done, more RDDs are created to trans-
form the original data. The intermediate values at each RDD transformation are
written in the memory rather than the disk. This architecture can effectively
remove the performance degradation mentioned in the problem (2).
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In MapReduce, each node is executed as a separate unit where the intermedi-
ate values are not shared but being hold at its respective node. The intermediate
results across different nodes occur at the reducer as a result of transferring data.
This is not necessary in the Spark model as each RDD has the global knowledge
of the previous stages and their intermediate results. We illustrate the execution
flow of Spark in Fig. 2 which reads the input data in the memory, pre-process it,
and then transform it through RDDs.

2.2 Data Anonymization

Data anonymization involves transforming an original data into an anonymized
data in such a way where individually identifiable attributes or tuples in the
original data are changed to a set of indistinguishable attributes or tuples. The
transformation typically utilizes two techniques; generalization and suppression,
respectively.

• Generalization refers to a process where the value of an attribute is replaced
with a less specific value. In general, generalization is based on a Domain
Generalization Hierarchy (DGH) associated to that attribute. A DGH spec-
ify a Generalization Level (GL) for each attribute. DGH is usually provided
by a domain expert based on the attribute characteristics.
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• Suppression replaces the attribute with the one that do not release any infor-
mation about the attribute at all.

Figure 3 illustrates the general generalization approach that applies general-
ization levels (GLs) defined in a DGH. GL5 in “Date of Birth” represents an
example of suppression with “*”. Among many variations of data anonymization
exists, our approach follows the basic idea from Datafly [14].
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The data anonymization in this approach starts by counting the frequency
over the Quasi Identifiers Attributes (QID). Then, it generalizes the attribute
having the most distinct values until k-anonymity [15] is satisfied. The QID
refers to a set of attributes that can be used to uniquely identify an individual
(e.g. data of birth, age, and address).

Table 1 illustrates how the original data, depicted in Table 1(a), can be
anonymized. To start the transformation, the algorithm first computes the fre-
quency of each tuple and the distinct values of each attributes. These frequency
counts is written as illustrated in Table 1(b). In the next step, the algorithm
uses a DGH (such as one seen in Fig. 3) to perform a generalization step to
satisfy k-anonymity rules from the attribute having the most number of distinct
values. For example, “Date of Birth” is first generalized as it has the most num-
ber of distinct attributes values followed by “Zip Code”. One or multiple levels
of generalizations are applied from the generalization hierarchy until it satisfies
k-anonymity – see Table 1(c).

Table 1(d) shows the effect of the full generalization/suppression with respect
to the frequency list update. For example, for k= 2 anonymity, “Date of Birth”
is generalized to level = 5, “Zip Code” to level = 3, followed by “Gender” and
“Race” up to level = 2. Table 1(d) represents k= 2 anonymization as final result.
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Table 1. Data anonymization steps

(a) Original Data

Date of
Birth Gender

Zip
Code Race Disease

3/20/1995 Female 2141 Asian Fever
12/14/1995 Female 2141 Asian Back Pain
1/23/1995 Male 2138 Asian Chest Pain
6/05/1964 Female 2139 Black Brocken Hand
2/13/1967 Male 2138 Black Asthma
8/21/1967 Male 2138 Black Heart Attack

(b) Frequency counts

Date of
Birth Gender

Zip
Code Race Frequency Tuple

3/20/1995 Female 2141 Asian 1 T1
12/14/1995 Female 2141 Asian 1 T2
1/23/1995 Male 2138 Asian 1 T3
6/05/1964 Female 2139 Black 1 T4
2/13/1967 Male 2138 Black 1 T5
8/21/1967 Male 2138 Black 1 T6

6 2 3 2

(c) Partially Anonymized Data

Date of
Birth Gender Zip Code Race Frequency Tuple

1995 Female 2141 Asian 2 T1, T2
1995 Male 2138 Asian 1 T3
1964 Female 2139 Black 1 T4
1967 Male 2138 Black 2 T5,T6
3 2 3 2

(d) Fully Anonymized Data

Date of
Birth Gender Zip Code Race Disease

1995 Female 2141 Asian Fever
1995 Male 2138 Asian Back Pain
1964 Female 2139 Black Asthma
1967 Male 2138 Black Heart Attack

3 SparkDA

We first outline the basic symbols and notations in Table 2 to clearly define
the elements of data across different scopes in a dataset. Figure 4 illustrates a

Table 2. Basic symbol and notations

Symbol Definition

PT A table (dataset) that contains records

RECORD A record contains a number of attributes, RECORD ∈ PT and RECORD =

{qid1, qid2, . . . , qidattr, sa}, where qidi, 1 ≤ i ≤ attr, is the qid attribute and sa

sensitive attribute

attr Indicates a quasi-identifiable attribute

qid A quasi-identifier attribute

QID A set of attributes that belongs to the same qid

sa Indicates a sensitive attribute

SA Contains a set of attributes that belongs to the same sa

qidtuple Contains all qid(s) within a record qidtuple = {qid1, qid2, . . . , qidattr}
QIDTuple Contains a set of qidtuple, QIDTuple = {qidtuple1 , . . . , qidtupleattr}
freq(qidtuple) A set that contains a frequency associated to a qidtuple for all qidtuple(s) within

a QIDTuple

freqSet A set that contains freq(qidtuple) associated to a qidtuple,

FreqSet = {(qidtuple1 , freq(qidtuple)1), . . . , (qidtupleattr , freq(qidtuple)attr)}
dintqid-cnt A number of occurrences for a distinct QID(s)in qid

dintqid-cntSet A set that contains dintqid-cnt a associated to a QID for all qid(s) within a

QIDTuple, dintqid-cntSet = {dintqid-cnt1, . . . , dintqid-cntattr}
DGH A Domain Generalization Hierarchy

GL Generalization Level of QID ∈ DGH

K K defines the level of k-anonymization

EC Finds the number of the same qid(s) within a QID for a given group based on K
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Fig. 4. Notations representation for any given table

diagram as how our notations can be mapped into a relational database table. In
the followed sections, we describe the details of two main RDD transformations
where the main idea of our anonymization techniques is applied – FlatMapRDD
and RedueByKeyRDD followed by the description of our proposed approach
SparkDA.

3.1 RDD-Based Data Anonymization

We have implemented new data anonymization supports in two Spark RDD
transformations, FlatMapRDD and ReduceByKeyRDD, respectively.

FlatMap Transformation (FlatMapRDD): The FlatMapRDD runs an
algorithm to get the frequency counts for distinct tuples that contains all quasi-
identifiable attributes as well as for the distinct variations within each quasi-
identifiable attribute. The details of the FlatMapRDD algorithm are shown in
Algorithm 1.

The start of the FlatMapRDD algorithm, it requires QIDTuple as an input. In
the initial stage, the QIDTuple contains the original quasi-identifiable attributes.
The first part of the algorithm, from step 2–11, is used to get the frequency count
for distinct set of quasi-identifiable attributes. This is done by first measuring the
size of QIDTuple to identify the total number of qidtuple it contains (in step 3).
Then, the current qidtuple is compared with the subsequent qidtuple. If there is a
match between qidtuple(s), a frequency count is updated by adding the number
1. This is done for each qidtuple within the QIDTuple. By step 10, FreqSet for
all qidtuple(s) is updated with the frequency counts for each unique tuple.
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Algorithm 1. FlatMapRDD
Input: QIDTuple

Output: FreqSet, dintqid-cntSet
1 begin
2 freq(qidtuple) = 1
3 for i in Size(QIDTuple) do
4 if qidtuplei = qidtuplei+1 then
5 freq(qidtuple) + +
6 end
7 else
8 freq(qidtuple)
9 end

10 FreqSet+ = (qidtuple, freq(qidtuple))

11 end
12 dintqid-cnt = 0
13 for i in Size(QIDTuple) do
14 for j in Size(qidtuple) do
15 QIDj = qidtuple(i)(j)
16 end

17 end
18 for i in Size(QID) do
19 if qidi = qid(i+1) then
20 dintqid-cnt(i)
21 end
22 else
23 dintqid-cnt(i) + +
24 end
25 dintqid-cntSet += dintqid-cnt(i)
26 end
27 return (FreqSet, dintqid-cntSet)

28 end

ReduceByKey Transformation (ReduceByKeyRDD): The main purpose
of ReduceByKeyRDD is to run an iteration of (anonymization) transformation
from the given FreqSet and dintqid-cntSet. Here, the transformation refers to
the change such as taking place in Table 1(a) and (b), and from Table 1(b) and
(c), and so on until reaches Table 1(d). It utilizes an “anonymization statue
(anonymizations)” to identify whether a given QIDTuple is fully anonymized
or if it further needs to run more transformations. Algorithm 2 describes the
ReduceByKeyRDD.

The algorithm starts by receiving the (DGH,K) which was sent via a broad-
cast mechanism from Spark driver node, which runs the main SparkDA algo-
rithms. (DGH,K), as notation implies, contains both the Domain Generaliza-
tion Hierarchies (DGH) and the size of K-group (K). Once received, DGH is fur-
ther processed to extract the generalization level (GL) for each quasi-identifiable
attribute as seen in step 3 and 4.
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Algorithm 2. ReduceByKeyRDD
Input: FreqSet, dintqid-cntSet
Output: QIDTuple, anonymizations

1 begin
2 (DGH,K) ← broadcast(DGH,K)
3 GLqid ← (DGH,K)
4 K ← (DGH,K)
5 anonymizations = false
6 for i in Size(FreqSet) do
7 if dintqid-cnt < K then
8 for j = 0 in Size(dintqid-cntSet) do
9 if MAX(dintqid-cntj) < MAX(GLqid) then

10 UPDATE qid(i)(j) with value of GLqidj + 1

11 end
12 else
13 qid(i)(j)
14 end
15 qidtuple+ = qid(i)(j)
16 end
17 QIDTuple+ = qidtuple
18 anonymizations ← false

19 end
20 else
21 for j in Size(qidtuple) do
22 UPDATE qid(i)(j) with ”*”
23 qidtuple+ = qid(i)(j)
24 end
25 QIDTuple+ = qidtuple
26 anonymizations ← true

27 end

28 end
29 return (QIDTuple, anonymizations)

30 end

The first part of the algorithm, the steps 6–18, is to generalize attributes
up to a single generalization level for all quasi-identifiable attribute sets. This
is done if the frequency counts (freq(qidtuple)) has not exceed the size of K (k-
anonymization) and while the maximum generalization level (MAX(GLqid)) has
not met. The single generalization level is done in the order of the attributes
with the highest distinct attribute counts (MAX(dintqid-cntt)) to lower. The
anonymization status is set to false as there is more transformation to be done.

The second part of the algorithm, the steps 20–26, is to suppress all attributes
for a given tuple that have violated k-anonymity rules – that is, there exist
no indistinguishable tuples. At this stage, all transformation is done includ-
ing the suppression. The anonymization status is set to true as there is no
more transformation to be done. The anonymized results (either or both being
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generalized/suppressed) are sent back to FlatMapRDD along with the
anonymization status (as seen in step 29). FlatMapRDD will re-calculate the
frequency counts for tuples and attributes when anonymization status is false.

3.2 Overall SparkDA Scheme

This part describes the overall process of our SparkDA that are associated not
only with the data anonymization but also other parts that assist the data
anonymization process.

To run the SparkDA, it first needs an input dataset (i.e., the original data)
along with other user defined information such as the size of K and the defi-
nition for DGH. The user defined information is used as global variables that
can be shard across all Spark worker nodes that process RDDs (such as Reduce-
ByKeyRDD). The global variables can be sent via the use of broadcast mecha-
nism in Spark.

Algorithm 3 illustrates the overall pseudo-code. The algorithm starts by read-
ing the file from HDFS as an input dataset which are subsequently stored by the
InputRDD. The InputRDD processes the input data in a way that is easier for
other RDDs to progress. For example, it splits the input data into two separate
sets, one set containing all quasi-identifiable attributes (QIDTuple-RDD) while
the other set containing all sensitive attributes (SA-RDD) – seen in step 5.

Algorithm 3. SparkDA
Input: Dataset, K, DGH
Output: Anonymized(RDD)

1 begin
2 InputRDD ← textF ile(Dataset)
3 broadcast(DGH,K) ← broadcast(DGH)
4 broadcast(DGH,K) ← broadcast(K)
5 anonymizations = false
6 SA-RDD,QIDTuple-RDD ← InputRDD.filter(qidtuple, sa)
7 SA-RDDc ← SA-RDD.cache
8 QIDTuplec ← QIDTuple-RDD.cache
9 while anonymizations = false do

10 Result-RDD(QIDTuple, anonymizations) ←
QIDTuple.FlatMapRDD(QIDTuple)
.ReduceByKeyRDD(dintqid-cntSet, FreqSet)

11 QIDTuple-RDD.cache ← filter.Result-RDD(QIDTuple,
anonymizations)

12 QIDTuplec ← QIDTuple-RDD.cache
13 anonymizations ← filter.Result-RDD(QIDTuple, anonymizations)

14 end
15 AnonymizedTuple ← filter.Result-RDD(QIDTuple, anonymizations)
16 Anonymized(RDD) ← AnonymizedTuple.join(SA-RDDc)
17 return Anonymized(RDD)

18 end
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Both SA-RDD and QIDTuple-RDD are cached in memory for further pro-
cessing. The cached QIDTuplec is used by FlatMapRDD and ReduceByKeyRDD
for data anonymization as described in the above section. The anonymiza-
tion status at this stage is set to false to execute FlatMapRDD and Reduce-
ByKeyRDD to signal the start of the anonymization process. If anonymization
is finished, which fully QIDTuple is returned from ReduceByKeyRDD, then the
anonymization status is set to true. At this stage, QIDTuple only contains the
distinct qidtuple but are not joined with the sensitive value. The joining between
QIDTuple and SA-RDD only happens in step 19.

4 Experimental Results

In this section, we first explain our experimental setups that include the details
of the dataset and the system environment (hardware/software) configurations.
This is followed by the description of data utility metrics we used and the
results we obtained to understand the information loss as the results of our
data anonymization. In addition, we also provide the results of scalability and
performance.

4.1 Datasets

We used two datasets in our study: US Census dataset (often described as Adult
dataset) [4] and Irish Census dataset [1]. We downloaded the original Adult
dataset, then synthesized it to create a set of larger datasets for the experiments.
Similarly, we downloaded already synthesized Irish dataset and further created
more data from it. The synthesized datasets are generated by using Java open-
source tool “Benerator” [5]. We followed the guideline from [6] to increase the
number of records. Table 3 illustrates the quasi-identifiable attributes (QID) we
used in our experiments, and generalization level (GL) of each QID obtained
from the domain generalization hierarchy (DGH) for both the datasets. The
“Salary” in Adult dataset and the “Field of Study” in Irish dataset are set as
sensitive attributes.

Table 3. Datasets

(a) Adult dataset

QID Distinct Value GL

Age 74 4
Work Class 8 2
Education 16 4

Marital Status 7 3
Occupation 14 2
Gender 2 1

(b) Irish dataset

QID Distinct Value GL

Age 70 4
Economic Status 9 2

Education 10 4
Marital Status 7 3

Industrial Group 22 2
Gender 2 1
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4.2 System Environment Configurations

We ran two types of experiments, first one with distributed processing platform
using Spark and the other with standalone desktop. The standalone desktop
environment was used to understand the comparability of data utility results
– this should stay the same though our data anonymization technique takes
advantage of scalability and high-performance features of Spark. For Spark, as a
distributed processing platform, we configured Yarn and Hadoop Distributed File
System (HDFS) using Apache Ambari. HDFS distributes data in a NameNode
(worked as a master node), a secondary NameNode and six DataNodes (worked
as worker nodes). We configured 3 GB memory for Yarn NodeManager while
1 GB memory was allocated to ResourceManager, Driver, and Executor mem-
ories each. We used Spark version 2.1 along with Yarn as a cluster manager.
Table 4(a) illustrate the Spark and Hadoop Parameters. Table 4(b) depicts the
details of the spark cluster and standalone computer and their respective CPU,
Memory, Disk, and Network speed (Gbit/s). Note that we used a Windows 10
as a standalone desktop. We ran our experiments 10 times and the average was
used to ensure the reliability and consistency of the results.

Table 4. Hardware and cluster configuration

(a) Spark and Hadoop Parameters

Spark Hadoop
ResourceManager Memory 1 GB NameNode 1

Driver Memory 1GB DataNode 6
Executor Memory 1 GB Block Replication 3

Driver Cores 1 Block Size 128MB
Executor Cores 1 HDFS Disk 18 TB

(b) Hardware Configuration

Configuration
Cluster Node Standalone

DesktopMaster Worker
CPU (Cores) 32 8 12
Memory (GB) 64 32 32
Disk (TB) 24 8 4

Network (Gbit/s) 10 10 10

4.3 Privacy and Utility Trade-Offs

We used the following four privacy and utility metrics to validate and under-
stand the rate of information loss between the original data and the anonymized
datasets produced as the results of running our SparkDA algorithms.

Average Equivalence Class Size Metric (CAVG): CAVG is used to measure
data utility based on attributes of the average size of the equivalence class. The
increase in the number of equivalence sizes result in the higher data utility as
it is more difficult to identify an attribute among many identical attributes. In
k-anonymized dataset, the size of the equivalence classes is greater than or equal
to K. As a result, the quality of the data is lower if the size of all or part of the
equivalence classes greatly exceeds the value K. The score of CAVG sensitive to
the K group size [11]. CAVG for AnonymizedRDD is calculated as following.

CAVG =
| AnonymizedRDD |

| EC | /K (1)
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| AnonymizedRDD | represents the total number of records of Anonymized
RDD, whereas | EC | represents the total number of equivalence classes.

Precision Metric (PM ): PM [14] is used to choose the least distorted records
(i.e., both from attributes and tuple perspective) from the set containing all
anonymized records. PM is sensitive to the GL. Following equation defines
PMscore for AnonymizedRDD.

PMscore = 1 −
∑qidtuple

qid=1

∑QIDTuple

qidtuple=1
GL

|DGHqidtuple
|

qidtuple.QIDTuple
(2)

Where GL defines a generalization level (defined in DGH) including sup-
pression. Attributes with higher generalization level typically maintains a rate
of precision better when compared to attributes with lower generalization levels.

Table 5. Experimental configurations for data utility

# Utility
metrics

Anonymization parameters Dataset size Platform

1 CAV G, PM K-value ∈ {2, 5, 10, 25, 50, 75, 100},
| QID | = 5a

Adult = 30K Spark,
standalone

K-value ∈ {2, 5, 10, 25, 50, 75, 100},
| QID | = 5a

Irish = 30K Spark,
standalone

aIndicates the total number of attributes, we use 5 attributes in the experiment

To understand the privacy and utility trade-offs, we varied the K group sizes
in our experiment. This implies that the increased in the K group size would
obviously make data utility reduced - which would results in the increase in data
privacy. What it means is that as there are more data made indistinguishable,
it is harder to identify an individual. Note that K2 depicts that two tuples
to become indistinguishable while K5 to have five tuples to be same so on.
The experimental setup for privacy vs. utility is shown in Table 5. We ran two
experiments; one on Spark platform and the other on the standalone desktop
against two different datasets.

The results of data utility metrics for SparkDA and standalone are illustrated,
first with the Adult dataset Fig. 5(a)–(b) then for Irish dataset Fig. 5(c)–(d).

We first discuss the data utility results of Adult dataset. CAVG measure
data utility based on the equivalence class. The data utility decreases with the
increase in the size of K group as there are more distinct attributes for matching.
As there are more data matching between two equivalent classes, it implies the
data privacy is high but data utility is low. However, the average penalty remains
the same because at some point, approximately around K = 10, data is no longer
either generalized or suppressed in an equivalence class hence no changes in the
penalty value. Thus, the average penalty of an equivalent class decreases as the
number of K group size increases which is seen in Fig. 5(a).
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(b) Precision Metric - Adult Dataset
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(d) Precision Metric - Irish Dataset

Fig. 5. Data utility vs Adult dataset and Irish dataset on Spark and standalone

Precision Metric (PM), in Fig. 5(b), demonstrates the level of distortion at
the record level (i.e., the combination of tuples and attributes). It is expected
that PM score will be higher as the number of K group size increases as there are
more records that have lost its original values. The PM score is highly sensitive
to GL for each qid. This is shown in Fig. 5(d) where the PM score increases
as the number of K group size increases for both Spark and standalone. This
is because the level of GL applied in each qid is increased to its highest as the
size of K group increases. We observe that at K = 25 and onward, the qid are
appeared to have been generalized to its highest level as the PM score stays the
same.

The data privacy and utility results for Irish dataset shows slightly differ-
ent data utility scores. We observe that in overall, Irish dataset contains the
records that are more distinct from each other. The data utility increases with
the increase in the size of K group where there are more distinct quasi-identifiable
attributes; this is shown in CAVG score in Fig. 5(c). The PM scores in Fig. 5(d),
are same for Spark and standalone environment ensuring that the data privacy
and utility were not affected between two implementations.
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4.4 Scalability and Performance

We perform experiments to understand scalability and performance of our pro-
posal. We used the increasing size of records and measure the execution for differ-
ent K group size. The execution time includes both FlatMapRDD and Reduce-
ByKeyRDD transformation. The details of the experiments are illustrated in
Table 6.

Table 6. Experimental configurations for scalability and performance

# Experiment Anonymization parameters Dataset size

1 Records size K-value ∈ {10, 20, 25, 50,
75, 100}, | QID | = 5a

Adult= (5M,10M, 20M,
30M, 40M, 50M)

Irish= (5M,10M, 20M, 30M,
40M, 50M)

aIt indicates the number of attributes that were used in the experiments

The experiments are aimed at understanding the impact of the number of
records on various K-group size in Fig. 6(a) and (b).
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Fig. 6. Efficiency of SparkDA for varied record size

We first only increased the size of K-group on a fixed number of records to
understand the relationship between the execution time and the size of K-group.
Results show that the execution time appears not to be affected by increasing K
group size. The number of iterations from the original data to fully anonymized
dataset is decided based on the frequency of distinct tuples. The number of K
group size would increase the number of tuples. With the fixed number of QIDs,
the number of tuples that are increased doesn’t necessarily are distinct. This
means the frequency count stays the same. With the frequency count remaining
the same, the same number of operations are done irrespective to the increasing
number of K-size thus the execution time stays the same.
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This appears that some operations (e.g., involved in QID generalization) are
cached in memory then re-used and this does not affect too much on execution
time. However, this changes as soon as the number of records is increased. The
execution time linearly increases as the number of records increase Fig. 6(a) and
(b) in both datasets.

5 Conclusion and Future Work

We proposed a novel data anonymization approach name SparkDA for Spark
platform. Our data anonymization algorithms are implemented in FlatMapRDD
and ReduceByKeyRDD to take the full advantages of many innovations in Spark
which includes; better partition control, in-memory processing, and cache man-
agement. Our experimental results show high data utility scores compared to a
standalone version meaning that the level of privacy is preserved while taking
advantage of Spark features. Our experimental results also illustrate the linear
grows of the execution time in line with the increasing number of QID(s) and
the number of records. The linear grows, without any visible peaks and anoma-
lies, validates that our proposed approach is feasible by supporting scalability
with performance.

In future, we plan to extend our study in the number of areas. First, we
plan to validate the cache performance on different storage levels and its effec-
tiveness. Secondly, we plan to better understand Spark’s support for shuffle and
sort operations and their impacts. We also plan to add a number of privacy
metrics. Furthermore, we also plan to extend our current study to work with
multidimensional attributes.
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