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Abstract. Machine learning is now playing important roles in daily
lives, however, the privacy leakages are increasingly getting serious in
the meantime. Current solutions to the privacy issues in machine learn-
ing, like differential privacy or homomorphic encryption either could
only be applied to some specific scenarios or bring huge modification
to the model construction, not to mention massive efficiency loss. In this
paper, we consider addressing the privacy issue in machine learning from
another perspective, without modification to models or severe efficiency
loss. We proposed a straightforward privacy preserving machine learning
scheme, training machine learning models directly over encrypted data.
Ideally, this scheme could provide privacy protection to both training
data and test data. We gave it a try by applying order preserving encryp-
tion (OPE) to the scheme. We discussed the possibility of using OPE to
reveal the order information confidentially for model training. Several
OPE algorithms were chosen to utilize the proposed method. Finally,
comprehensive experiments were deployed on both synthetic and real
datasets. The experiments on real datasets show that the learning per-
formance of several well-known classifiers on before and after encryption
changes slightly. The experiments on synthetic datasets show the classi-
fier performance could be ranked according to fidelity and reliability.

Keywords: Machine learninig · Privacy preserving · Order preserving
encryption

1 Introduction

Machine learning has become a major component of numerous applications.
Companies and organizations use machine learning algorithms as essential com-
ponents of their service, and sometimes the model training itself is another kind
of service. Generally, the generalization ability of the trained model depends
on the quantity and quality of the training data. Therefore, to provide better
service, a mass of original data are collected for model training, which brings
serious privacy leakage in practice.
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The privacy issue in machine learning has been considered by academic com-
munity and government for a long time. With the European Union announcing
the General Data Protection Regulation (GDPR), people started paying more
attention to privacy protection.

The first try is anonymity, which includes deleting some real information,
perturbing the original data or other ways, whereas these anonymity methods
were turned out to be not safe enough in the Netflix prize challenge [4], in which
the users’ private information were extracted by differential attacks even all
sensitive information were removed. To protect against such attacks, differential
privacy has been carefully studied for providing the strongest privacy protection,
as well as a framework to quantify the privacy loss [12]. It limits the probabil-
ity of extracting individual information from an aggregated database, focusing
on preserving privacy from public data. However, typical differential privacy
machine learning frameworks do not protect the data itself, which means they
either do not share the data [1] or only add noise in the specific procedure [24].
Such specialty makes the differential privacy framework could not fit in the ser-
vice provider scenario arbitrarily. Moreover, if the dataset itself is private, the
differential framework could be unapplicable as well.

Another perspective is preserving the privacy through data confidentially,
which is mostly implemented by using some cryptographic primitives like Homo-
morphic Encryption (HE) and Secure Multiparty Computation (SMC). Com-
pared with differential privacy solutions, the cryptography-based solutions are
more intuitive. In fact, it is remarkably challenging to locate what kind of infor-
mation is ‘private’ and selectively preserve such information from being revealed
from a large dataset. Therefore, the cryptographic frameworks could provide
more reliable security guarantee, which may have great prospect. However, cur-
rent cryptography-based schemes are often caught in trouble for 2 main reasons:
1. they bring huge modification to target models; 2. the frequent parameter shar-
ing brings extra interaction load to model training. Such reasons are stumbling
blocks to the cryptography-based privacy preserving machine learning using in
service providing.

For supervised learning, the algorithm tries to discover the relationship
between a feature vector and a label to construct a classifier. Generally, the
data would be preprocessed before being fitted into the model. Common pre-
process methods include min-max normalization, z-score normalization. Such
preprocess methods inevitably change the values of the feature vectors, which
indicates the precise data are not necessary for the learning procedure of a clas-
sifier and only some information contained in the dataset is critical for learning.
If we can selectively expose such information instead of private data itself, it
would be a great solution for privacy preserving machine learning applications.
Therefore, consider a straightforward idea: is it possible to train models over
encrypted data and still obtain similar result? We believe it is possible for the
developing of property preserving encryption.



354 W. Tang et al.

The notion of property preserving encryption [23] allows anyone to check a
property on plaintexts by running a public test over the corresponding cipher-
texts, suggesting that selective and secure exposure of critical information is
possible. In fact, the homomorphic encryption systems could be regarded as a
property preserving encryption, which preserve the property of polynomial cal-
culation. The property considered in this paper is order information and the
method to reveal order information safely is OPE. It is a functional encryption
scheme developed for efficient encrypted data query. Therefore, the ciphertext of
OPE implicitly holds some distribution information of the original data, which is
likely to be learnable, and if it is, with its cryptographic level security property,
OPE could be a great choice in privacy preserving machine learning.

In this paper, we propose a simple and universal used model to consider the
privacy protection, machine learning over encrypted data, which achieves two
major purposes:

1. the data used in model training is private;
2. the fully trained model is private.

Along with OPE, these purposes could be achieved easily and efficiently. The
considered model is a high-level one so that it could be applied to many scenarios.
This model also presents an open issue in privacy preserving data mining: how
much information contained in dataset is enough to train a model? And how do
we securely dispose such information without any privacy loss?

The main contribution of this paper contains:

– we firstly consider to use the limited information leakage of the dataset to
perform privacy-preserving model training;

– we firstly combine OPE with machine learning, and analyze the information
leakage of OPE to show that it may fit in current machine learning models;

– we use special criteria to assess how an OPE algorithm is appropriate for
model training, and choose 3 typical implementations of OPE to evaluate.

The rest of this paper is organized as follows. Section 2 presents the recent
work about OPE and privacy preserving machine learning. Section 3 gives a
general view and security analysis of our model. Section 4 discusses the reveal-
ing of order information by order preserving information, and why the model
training could be performed over OPE ciphertexts. Section 5 comprehensively
demonstrates and analyzes the experimental results of our methods. In Sect. 6
we conclude this paper.

2 Related Work

We firstly review some work of Order-Preserving Encryption, then we review the
progress in privacy preserving machine learning.
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2.1 Order-Preserving Encryption

OPE provides efficient range query over ciphertext, which is usually used for
building secure database. Several methods have been proposed, such schemes
hold great practical value in practice. The first OPE [2] was proposed in 2004,
which is based on bucket partitioning and was proven insecure sooner. In 2016,
Boneh et al. proposed the notion of Order-Revealing Encryption [7], which intro-
duces an extra public evaluation algorithm to perform comparison instead of
revealing order information directly in numeric field. Current researches about
OPE fall into two categories, the stateful solutions and the stateless solutions.
The stateful solutions require the algorithm along with an extra state parameter,
which represents the current state of all ciphertext and changes the pre-existing
ciphertext while the state parameter changes [25] [16]. Such methods are not
appropriate for the proposed purpose since the updating of ciphertext invali-
dates the fully-trained models. A more reasonable choice is stateless solutions,
which does not require prior changes for existing ciphertext. To increase secu-
rity, some stateless solutions like [5,6,17] are based on s partition, and they were
designed to be non-deterministic encryptions, meaning that the same plaintext
might be encrypted into different ciphertext for frequency hiding. Chenette et
al. presented another kind of solution [9]. They treated plaintext as fixed-length
binary string, and every ciphertext bit was the modular value of a encrypted
result produced by a symmetric encryption (like AES) with prefix sub-plaintext
string of the corresponding plaintext bit. The procedure of comparing two cipher-
texts was actually finding the first different bit (most significant different bit).

2.2 Privacy Preserving Machine Learning

There were two groups of researchers ([3,18]) putted forward the notion of pri-
vacy preserving data mining (PPDM) in the same year of 2000, after that, a
mount of different methods were applied to meet the need in data mining or
machine learning. Differential privacy based methods were widely studied and
was usually applied to public data training, which could prevent personal data
from being extracted. Researchers from Google Brain introduced the differential
privacy into non-convex objectives deep neural networks with noisy stochastic
gradient descent (SGD), and proposed moments accountant to track precise pri-
vacy loss in model training [1]. They then proposed another strategy, using an
ensemble of teachers trained on disjoint subsets of sensitive data to label the
public data [24], so that the non-sensitive knowledge could be transferred to the
student model. Reza Shokri and Vitaly Shmatikov presented distributed SGD
and designed a system for collaborative deep learning among multiple partici-
pants [26]. The participants would firstly train their own model on private data,
and then selectively shared model parameters with differential privacy, which
brought attractive trade-off between utility and privacy. Meng et al. addressed
the problem of privacy-preserving social recommendation under personalized
privacy settings with differential privacy [20].
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Apart from differential privacy, other frameworks combining several crypto-
graphic primitives were proposed to deal with different private part of machine
learning. Homomorphic encryption and secure multi-party computation are the
most widely used primitives to build PPDM schemes.

The first fully homomorphic encryption scheme [13] was proposed in 2009.
Since then numerous researches have been done in improving the efficiency of HE
schemes so that it would be applied in practical. Secure multi-party computation
was firstly introduced in 1982 [27], which also suffered limitation in efficiency.
Ideally, secure multi-party computation enables jointly computing a function
from the private inputs of each party, who would not have to reveal such inputs
to others, so that the privacy is preserved. Many progresses have been made in
decades, and now SMC and HE have been used to construct various machine
learning models. The basic idea of such solutions is replacing the arithmetic oper-
ation in models with homomorphic/SMC ones, so that the computation could be
executed over encrypted data. In [8], the authors extracted some basic operations
in the model computing as building blocks, applying several homomorphic cryp-
tosystems to implement and constructed classifiers over encrypted data, which
could be applied to build multiple models. Another group of researchers also
presented a privacy preserving ridge regression system combining HE and gar-
bled circuits [22]. CryptoNets [14] was another significant work, which used HE
to apply neural networks to encrypted data, which brought high throughput.
After that MiniONN [19] was proposed in 2017, which presented a framework
to transfer a well-trained model into an obvious version by using several SMC
protocols. Payman Mohassel and Yupeng Zhang proposed a two-server model
with SMC protocols for linear regression, logistic regression and neural network
training, which achieved great efficiency [21].

3 Scheme Description

Fig. 1. Dataflow of proposed scheme
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3.1 Scheme Overview

Our scheme is quite straightforward – applying any model training procedure
directly to the OPE-encrypted data set. Figure 1 shows a general data flow of
our scheme. The key component of the scheme is the preprocess procedure in
step 1 and 4 from Fig. 1, which contains:

– the metadata of the raw dataset should be erased;
– the labels for classification should be replaced by meaningless identifiers;
– the name of features should be substituted by meaningless strings.
– encrypt every feature with OPE independently (vertical encryption).

Encryption are applied feature by feature independently, which is referenced
from the common normalization methods such as min-max normalization and
z-score normalization, since the OPE could be treated as another kind of ‘nor-
malization’.

As a result, 2 parts of data are protected in this architecture: one is the
data from step 1 in Fig. 1, which are some historical data or pre-existing data
with tagged labels (for supervised learning); the other is the data in step 4,
which could be new data generated recently, and needs to be imported to the
trained model for predictions. Therefore the scheme could achieve both privacy
preserving training and classification.

3.2 Security Analysis

We define the adversary model first. It is clear, without regard to the trans-
mission failure in network, the only possible leakage in the scheme is the service
provider. Therefore, in this paper, we consider the service provider as Honest but
Curious, which means the service provider would execute the protocol correctly,
meanwhile, tries to extract private information from the uploaded data. In the
worst case, the service provider may be attacked and comprised, as a result, the
service provider would become only Curious, with the attacker having complete
access to the data and trained model.

Considering the adversary model defined before, the possible leakage points
are the transmission procedure and service provider, therefore, the solution is
cryptographic level protection. In this case, the minimum level of the processed
data is resisting cipher-only attack (COA security) since we protect privacy by
preserving data confidentiality. It is true that COA security is a rather weak
security model, whereas in this particular situation, the servers in the proposed
model are unable to obtain any other information other than ciphertext, the
privacy could be preserved by the data confidentiality that COA security pro-
vides. According to the formal definition of COA security, the attacker could
not retrieve any information of the plaintext from the ciphertext, which could
be considered an ideal situation of privacy protection. If the encryption algo-
rithm is COA security, as long as the security parameters remain confidential,
neither service provider nor the attacker could retrieve meaningful plaintext from
the uploaded data. The encryption procedure also brings native access control
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to the trained model because the raw data has to be encrypted as the training
data did, otherwise the fitting and prediction would make no sense.

Note that even the order preserving encryption is a practical and efficient
method in some database, but it is also a risky one in privacy preserving. On
one hand, it has been proven that database protected by order preserving encryp-
tion is highly possible to be attacked with some auxiliary information [11,15], so
it is important that the released data does not carry any information that may
lead to privacy leakage (as described in step 1 and 4). On the other hand, Some
particular kinds of data are suggested to avoid using order preserving encryp-
tions. For example, a typical image is a matrix of several pixel points, each point
consists of values of three color channel (RGB). The value of each color channel
ranges from 0 to 255. For a dataset of images, it is very likely that every possible
values of a color channel would appear multiple times. If we deal such data with
naive order preserving mapping, the processed data would be very much likely
to be themselves, which turns out to be in vain. So, for a dense and bespread
feature dataset, it is suggested to avoid using order preserving mapping (at least
deterministic order preserving) for privacy preserving purpose.

4 Learning with OPE Ciphertexts

In this section, we give a brief introduction about OPE and discuss the different
way to reveal order information.

4.1 Order Preserving Encryption

As the name implies, the order information indicates the comparison relationship
in a certain range. The formal definition is given below, for any mapping function
F : D → R, in which D denotes domain and R denotes range, we say F is an
order preserving mapping if:

∀xi, xj ∈ D, if xi < xj , then F (xi) < F (xj)

For example, a list with 5 values (2, 5, 23, 0, 13), a function that maps these
values into (2, 3, 5, 1, 4) is an order preserving mapping. Note that equality
relationship is not mentioned in the definition because, for confidentiality con-
cern, a much more secure choice of order preserving function is order preserving
encryption, which applies different ways of handling equal elements in different
cryptographic algorithms. The equality-handling methods roughly divide into
two types: deterministic and non-deterministic. The deterministic algorithms
encrypt one plaintext to a certain ciphertext, no matter how many times the
same plaintext appears. In such methods, the revealed information contains not
only order, but also frequency. The non-deterministic algorithms, on the contrast,
encrypt one plaintext to several different ciphertext if the plaintext appears mul-
tiple times, which makes such algorithms one-to-many mapping functions. Note
that since the comparison relationship between two unequal values still holds, all
possible ciphertext of one plaintext e.g. xi ∈ (xi − 1, xi + 1) lie within a limited
range e.g. (F (xi − 1), F (xi + 1)).
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4.2 Model Training over OPE Ciphertexts

We discuss the principle of model training over OPE ciphertexts from two per-
spectives.

Information Preserved by OPE. In information theory, information entropy
is a concept describing the average rate at which information is produced by a
stochastic source of data. For a dataset D with |Y | different classes, the infor-
mation entropy of is computed as:

Ent(D) = −
|Y |∑

k=1

pk log2 pk

in which pk represents the frequency of the kth sample. In our vertical encryp-
tion, it is clear that Ent(D) remains invariant after encrypted by deterministic
OPE. When it comes to non-deterministic OPE, randomness would be involved.
Ideally, the distribution of non-deterministic OPE ciphertexts is closed to uni-
form, which leads to that every ciphertexts would only appear once, making the
dataset barely contains information entropy. This is a similar situation to deal-
ing with continuously distributed values. In such cases, the common solution is
to discretize the continuous feature values using bi-partition technique, which
would get an approximate result of the plaintext result, making the entropy of
ciphertexts closer to the original one.

Model Training over Data. From a high level perspective, all of the machine
learning models can be divided into two categories based on whether they assume
the data obeys a specific distribution or not – parametric models and non-
parametric models.

Parametric models, such as linear regression, logistic regress, would assume
all the data come from a specific distribution first, then search the whole para-
metric space of the distribution to find the best match for the given training set.
For the OPE ciphertext data, the marginal distribution of ciphertext could be
regarded as asymmetric strech or compress of the original marginal distribution,
which means the best position in parametric space would be altered. However,
the universal distribution would remain mostly invariant, which means the same
model may still be functional over ciphertexts.

Non-parametric models, such as decision tree, naive bayes, k-nearest neighbor
and so on, would try to find a best match in the training data, since they do
not assume the distribution of data, they may sometimes obtain generalization
ability to the data that never appear in training set. The non-parametric models
works with only one requirement: the data could be ranked, which perfectly fits
the property of OPE. Theoretically, the model training could work on ciphertexts
as well as on plaintexts.
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5 Evaluation

In this section, we firstly describe some configuration of our experiments, includ-
ing the OPE we choose to evaluate, the datasets and machine learning models
we tested, and the special criteria we use to evaluate the performance of different
models over specific OPE algorithm. Then we give comprehensive demonstration
and analysis to results of our experimental results.

5.1 Experiments Configuration

OPE Algorithms. We give brief introductions to the OPE algorithms evalu-
ated in our experiment, for more details about each algorithm, please refer to
the cited paper.

OPEA [17] is a non-deterministic OPE based on cipher space division. OPEA
would firstly discretize the integer s into sequential-partitions randomly, in which
the interval between two adjacent partitions are non-empty. Then for a specific
integer plaintext value b, it would be encrypted to a random integer in partition
[Lb, Ub], where the Lb and Ub denote the lower bound and upper bound of the
bth partition. Therefore, OPEA is an one-to-many mapping encryption (Fig. 2).

Fig. 2. The one-to-many mapping in OPEA

Hypergeometric OPE [5] is also a cipher space division-based OPE. Different
with OPEA, it uses a pseudo random function to divide the ciphertext space
according to hypergeometric distribution, and mapping the same plaintext to
one ciphertext. The authors notice that an order preserving function f from [M ]
to [N ] corresponds to a unique M-out-of-N random sequence without repetition
(the right-hand of 1), which indicates that the generation of an OPF could be
considered as an experiment of x success (random draws for which the object
drawn has a specified feature) in y draws, without replacement, from a finite
population of size M contains exactly N objects with such feature (Hypergeo-
metric distribution). The equality of both probabilities means the generation of
an OPE could be accomplished by recursively calling a pseudo Hypergeometric
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sample algorithm with secret key. And this is exactly how the Hypergeomet-
ric OPE scheme was constructed. For more details about Hypergeometric OPE,
please refer to [5].

Pr[f(x) � y < f(x + 1) : f ← OPF[M ],[N ]] =

(
y
x

)(
N − y
M − x

)

(
N
M

) (1)

mOPE [25] is a sort tree-based OPE which leaks no more information than
order. In the original scheme, the encryption procedure is designed with 2 parts:
one is building a binary sort tree upon the plaintexts, and tagging each left
branch with “0”, right branch with “1”, then generates encode for every node
by concating all bits on the path from the root to the current location in the
tree, padding it with postfix “1...0” to fixed length. The other part is generating
semantically secure ciphertext using common symmetric encryption scheme. As
shown in Fig. 3, by transforming the fixed length binary codes into decimal form,
the numbers preserve the order information of all plaintext, such that the user
could request range query using ordered encode and gets the semantically secure
ciphertexts. In our scenario, the symmetric encryption could be omitted, and we
also do not consider the situation that the mOPE tree needs to be balanced. We
simply use all existed plaintexts to build the mOPE tree and then partitioning
the training and testing sets.

Fig. 3. Overview of mOPE

We also involve AES algorithm as a comparison, and to avoid decimal over-
flow, we reduce the length of AES ciphertexts by module 216. As for the param-
eter settings for OPE, OPEA use random number generator ranges from 0 to
999, ciphertext space of Hypergeometric OPE is limited in (0, 231 − 1), mOPE
does not require parameter setting.

Datasets and Models. We deploy 2 groups of experiments to evaluate the
performance of the mentioned OPEs fitting in the proposed model, using several
datasets for different purposes. The first one is the Wisconsin Diagnostic Breast
Cancer dataset (WDBC) from UCI Machine Learning Repository [10], which
is used to test the compatibility of different machine learning models over the
encrypted data. The other group with randomly generated datasets are used
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to assess the impact of some extreme cases, in which the expecting learning
accuracy is not significantly better than random guess. We limit the upper bound
of the learning accuracy by change the number of the classes, which ranges from
2 to 7 (corresponding to D2–D7). Both the features and labels are generated
randomly. The details about these datasets are listed in Table 1. All the datasets
are splitted by 75% & 25% as training set and testing set respectively. The data
could be retrieved on https://github.com/Tomfortemp/tested-data.

Table 1. Information of the datasets

Group Data name Records Features Classes

WDBC D1 569 30 2

Randomly synthetic D2–7 2000 100 2–7

We also consider some generally-used machine learning models including:
linear regression, logistic regression, k-nearest neighbor, support vector machine,
naive bayes, decision tree, random forest and gradient boost decision tree. All
the models are implemented by using the scikit-learn library with all parameters
set as default.

Special Criteria. Most previous work consider the training accuracy as cru-
cial and only evaluation indicator. The experiments were usually tested over
some widely applied dataset, achieving highly learning accuracy for most mod-
els. However, for some datasets resulting in lower learning accuracy, accuracy
might be a misguidance. Some models may obtain the frequency distribution
as a minimum margin of learning accuracy, even with cross-validation, the new
coming data may still cause the plaintexts-trained model and the ciphertexts-
trained model to produce quite another answers since they are different in inner
logic, making it less meaningless in accuracy value as well as less convincing in
learnability. Therefore, we propose Match Rate (MR) to evaluate the fidelity of
the ciphertext-trained model, which is defined as the proportion of records on
which the plaintext-trained model and the ciphertext-trained model produce the
same prediction in a testing set.

5.2 Demonstration and Analysis

The OPE algorithms we choose to evaluate preserve some iconic properties of
typical OPE ciphertexts. Firstly, all of three algorithms reveal the arithmetic
order information directly on integer field, which is friendly to the current
machine learning models. The learning algorithms could execute on the cipher-
texts without any changes, which is quite different from other cryptography-
based solutions. Secondly, the distribution properties of three OPE ciphertexts
vary from each other. Hypergeometric OPE maps the plaintexts into a larger

https://github.com/Tomfortemp/tested-data
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ciphertext space, acting like a random order preserving function, with the fre-
quency information still remains. OPEA ciphertexts look like a uniform distribu-
tion on ciphertext space, with almost no duplicated records. mOPE ciphertexts
are more ‘tighter’ compared with others, with the frequency information pre-
serves as well.

Group 1. In the first group of experiments we take a quick glance over the pro-
posed model, which is shown in Fig. 4 and Table 2. Compared with plaintexts-
trained model, the ciphertext-trained models perfectly preserve the learning
accuracy no matter which OPE is applied. It is also showed in the result that
the fidelity level of model remains pretty high in all models.

Fig. 4. Experiment on group 1

Table 2. Results of WDBC dataset

Models Raw accuracy Hypergeometric mOPE OPEA AES

Acc MR Acc MR Acc MR Acc MR

Linear regression 0.94 0.94 0.98 0.96 0.94 0.94 0.98 0.60 0.63

Logistic regression 0.923 0.959 0.940 0.947 0.929 0.929 0.935 0.586 0.615

Naive bayes 0.929 0.941 0.988 0.947 0.947 0.941 0.988 0.592 0.615

KNN 0.929 0.917 0.881 0.970 0.923 0.923 0.876 0.527 0.526

SVM 0.893 0.911 0.863 0.953 0.917 0.911 0.862 0.361 0.266

Decision tree 0.929 0.929 0.976 0.929 0.988 0.929 0.976 0.550 0.562

GBDT 0.947 0.947 1.0 0.947 1.0 0.953 0.94 0.604 0.597

Non-Tree-Based Models. For the non-tree-based models tested in this paper
(including logistic regression, knn, naive bayes, and svm), even though differ-
ent models achieve different accuracy, the ciphertext-trained models still have
similar performance with the plaintexts-trained models. The great performance
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in high MR and low accuracy difference shows that, these models are able to pro-
duce highly similar learning results relying on only the information that OPE
algorithms provide. The causes of such performance might due to that these
models concern the changing properties of data rather than precise data. It may
also be connected with the impact from randomness introduced by OPEA to the
generalization ability of models. The match rate of KNN and SVM are slightly
lower than others, which may indicates that OPE encryption may influence the
decision making of both models. We will take a closer look in the experiments
of Group 2.

Tree-Based Models and Boosting. As is well-known, tree-based models are easily
get overfitting, which is also considered as unstable models – with little changes
on data comes great changes over the trained models. The tree-based models
we evaluated, even for the basic decision tree model shows great effect on both
accuracy and fidelity.

As a control group, learning accuracy and fidelity over AES-encrypted data
show significant decreasing compared with others. Apart from a pseudo-random
projection, AES could also be considered as a cryptographic primitive which
leaks only the relation of equality vertically. Therefore, this experiment also indi-
cates that order information is more suitable in machine learning than equality.

Group 2. Figure 5 shows the performance of the mentioned models over our
synthetic data, showing the how models’ fidelity change with the accuracy declin-
ing. With uniform random dataset, both the plaintext-trained and ciphertext-
trained models fail to achieve significantly high accuracy than random choosing.

Fig. 5. MR curves on experiments of the second group
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We repeated the training for several times and concluded that the average accu-
racy of every model were approximately close to 1/2, 1/3...1/7. There are mainly
2 possible reasons: for almost uncorrelated datasets, the models could at least
learn the frequency distribution to keep the accuracy above prescribed mini-
mum; even in extremely low accuracy situations, the OPE could still keep the
reliability of the plaintexts-trained models.

According to the trend of MR curves, the reliability and fidelity over OPE-
processed data depend on different models and different OPE algorithms. As
analyzed before, the tree-based models show extremely volatile, because decision
tree model is easy to get overfitting, which explains its poor effect over OPEA
ciphertexts. The reason why the accuracy difference stay low in both models
due to the prescribed minimum learning accuracy, so, for multi-class problems,
the decision tree are not good choice to perform privacy preserving machine
learning over OPEA encrypted data. With weaker classifiers assembled, boosting
can improve such performance to a certain extent. The former stated non-tree-
based models remain stable, MR tend to flatten out with the increasing of classes.
Logistic regression and linear regression perform well over every OPE algorithms,
which show great compatibility to the machine learning over OPE encrypted
data. KNN and SVM are both models that make decisions based on distance.
Take euclidean distance as example, the process of OPE changes a record position
in the whole feature space, however, since the order information is preserved, the
relative position between each record is roughly preserved, which makes such
models could obtain similar result over OPE ciphertexts. For tree-based models,
the fluctuations in MR should due to the structural change of trees and over-
fitting by the OPE encryption. Therefore, the aggregation and boosting could
make some improvement since they increase the stability and generalization
ability of models. On one hand the experiments show that boosting brings better
performance to simple tree models, it also indicates that the boosting models
are more suitable to fit encrypted data on the other hand.

The performance of various models is usually affected by the datasets. So,
for datasets that most machine learning models could achieve high accuracy, it
would obtain highly reliable training result no matter what model was chosen
to train over encrypted data. For other datasets, if the various models perform
closely in accuracy, one should also take the reliability into consideration when
deciding which model to choose. Even if the tree-based models show slightly
advance in accuracy, they also tend to produce unreliable results.

5.3 Efficiency

The proposed method is quite different from the most popular homomorphic-
based or secure multi-party computation based solutions. Instead of changing the
construction of machine learning models to adapt the properties of homomor-
phic ciphertext, we choose to reveal the important information that contained
in the data itself confidentially, so that the models could learn similarly to the
plaintexts-trained models. The proposed method treat all of the applied models
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as black boxes, therefore it does not involve interactive load like homomorphic-
based or SMC-based solutions. Theoretically, the extra load of the proposed
model comes from 2 aspects: one is the time consumed by the encryption pro-
cedure of the training datasets, the other is the extra model training time over
encrypted datasets compared with that over the raw datasets.

Table 3. Time consumption of encryption

Procedure AES Hypergeometric OPEA mOPE

KeyGeneration – – O(n) O(nlogn)

Encryption O(1) O(logM) O(1) O(logn)

Encryption Load. Compared to common symmetric encryption algorithms
like AES, it is fairly to say that most order-preserving encryption schemes are
not so efficient. Because in most cases, the OPE considers the whole state of a
dataset in encryption procedure, which is more complicate than common sym-
metric encryption. In our model, the datasets is encrypted with OPE vertically,
which means for each feature, OPE is applied to all of values of n instances. For
Hypergeometric OPE, once the ciphertext space is determined, the encryption
algorithm would recursively call a pseudo-Hypergeometric sample function to
run a binary search over the ciphertext space, so the average time complexity
is O(logM) (M is the size of ciphertext space). For OPEA, the KeyGenera-
tion procedure consumes a linear time complexity with the size of ciphertext
space M . The encryption after the KeyGeneration is quite efficient since such
procedure is an indexed sequential search, which is a constant level of time
complexity. For mOPE, the encryption procedure relies on the balancing binary
search tree built upon all n values in a feature, which consumes a O(nlogn) time
complexity. After the tree has been built, the encryption of each plaintext is a
binary search over the built tree which consumes O(logn). The time-consuming
results are listed in Table 3, with both theoretical analysis and empirical results.
We also give the AES time-consuming data as a comparison. Note that even
the time consuming of the encryption scheme is significant, we still consider it
worthwhile since it brings enhancements to the security level of the outsourced
data. Furthermore, the large batch of encryption over the dataset is actually an
one-time-consumption. When the model was fully trained, the data in actual
use are much less. Table 3 shows the encryption average time load for encrypting
1000 plaintext. Hypergeometric OPE and AES use a random string as secret
key, so the key generation procedure for these 2 schemes are omitted. OPEA
needs to pre-divide the whole ciphertext space by generating a series of random
numbers as secret key. mOPE needs to rank all the plaintext into a binary bal-
anced sort tree as secret key. So key generation procedure for these 2 schemes
are considered.
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Training Load. The other load is caused by the ciphertext expansion invoked
by OPE encryption. In fact, in our experiments, only OPEA and Hypergeometric
OPE would bring ciphertext expansion for sure. As for mOPE, there is no clear
relationship between the size of original data and the length of the final encode.

Table 4. Expansion of ciphertext

OPE D1 D7–12

Raw data 124 KB 585 KB

Hypergeometric OPE 219 KB 1.6 MB

mOPE 115 KB 719 KB

OPEA 190 KB 1.3 MB

AES 139 KB 1.2 MB

Table 4 shows the expansion of the datasets in our experiments. Note that
for data length consideration, we compress the ciphertexts of AES encryption
by modulo each one with 216 to avoid float overflow. Mostly, how much the
ciphertext expands mainly depends on the possible range of plaintext value in
linear dependency, which is obviously superior that the exponential expansion
of homomorphic encryption. Besides, in training phase, usually the data would
be preprocessed before fitting into the models. In other word, the extra load in
training is negligible. Without the extra interactive load, the proposed method
achieves much better efficiency.

6 Conclusion

This work applies a well-known functional encryption to machine learning appli-
cations. In our simple scheme, the data privacy could be protected by OPE
under only COA security notion in cryptography. As a result, once the data
is released after encrypted by OPE, the training procedure is completely non-
interactive and supports private prediction based on the natural ‘access control’
of an encryption algorithm, which means. Furthermore, in evaluation, we pro-
posed an extra criteria to evaluate whether a certain data processing scheme fits
the privacy preserving machine learning framework or not, which has potential
to be applied to more encryption schemes. Compared with the evaluation meth-
ods applied before, our proposal is more rigorous and pays more attention to
the fidelity of the ciphertext-trained model, which is a critical factor of produc-
ing reliable predictions. Three order preserving encryption schemes were applied
to the model, plentiful of experiments suggest that, with only the information
OPE reveals, most machine learning models are able to obtain knowledge as
much as those from raw data. We also evaluated the efficiency of our scheme.
Experiments show that the time consumption of our scheme mainly increases in
the initial encryption, while bringing negligible overhead in model training and
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using, which distinguishes our schemes from most cryptography-based schemes.
We believe this scheme could be a new direction of privacy protection in machine
learning. This work is also a potential solution to the open issues proposed in
this paper.
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