
A Practical Dynamic Enhanced BFT
Protocol

Feng Shen, Yu Long(B), Zhen Liu(B), Zhiqiang Liu(B), Hongyang Liu,
Dawu Gu(B), and Ning Liu(B)

School of Electronic Information and Electrical Engineering,
Shanghai Jiao Tong University, Shanghai, China

{shenfeng2017,longyu,liuzhen,ilu zq,LiuHongyang,dwgu,ningliu}@sjtu.edu.cn

Abstract. Emerging as a distributed system maintaining a public ledger
via consensus protocol, blockchain technology is showing its great poten-
tial in various scenarios such as supply chain, financial industry, internet
of things (IoT), etc. Among kinds of consensus protocols, Byzantine Fault
Tolerance (BFT) protocols are playing an important part in the design
of the blockchain system. Most BFT protocols, however, are static with
no support for a dynamic property (i.e. nodes can join/leave a work-
ing system) and lack mechanisms to punish faulty nodes, which highly
limit their wider adoption in the practical settings. This paper presents a
dynamic enhanced BFT (DEBFT) protocol that is designed to support
dynamic property and faulty nodes punishment. Based on HoneyBad-
ger BFT, DEBFT employs Dynamic Threshold Identity-based Encryp-
tion and Distributed Key Generation to enable changes of the consensus
group without reconfiguring the whole system, besides, evaluation met-
rics are also introduced to evaluate consensus nodes and clear faulty ones
out of the system.

Keywords: Blockchain · Consensus · Dynamic property · BFT
protocols

1 Introduction

The emergence of Bitcoin in 2008 [18] opened up the era of blockchain technology,
which is an ingenious innovation that realizes consensus among distributed nodes
by combining P2P network, distributed database, consensus protocol, cryptog-
raphy, game theory and so on. Serving as a distributed ledger maintained by
multiple participants, blockchain has shown its great potential in cryptocurren-
cies, financial industry, internet of things (IoT) and many other scenarios.

Blockchain can be classified into permissionless and permissioned ones
according to entry limitation for network nodes. In a permissionless blockchain
such as Bitcoin and Ethereum [21], anyone can join the system without a specific
identity, whereas in a permissioned setting, every node maintaining the public
ledger has an identity, and this identity is known to any other nodes in the system
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even though they may not trust each other. With the development of blockchain
technology, permissioned blockchain is gaining more and more attraction within
business and financial fields for its efficiency and controllability.

In the design of blockchain, the consensus mechanism is a core part to
reach an agreement on the global ledger. In traditional distributed systems like
database and file system, Byzantine Fault Tolerance (BFT) protocols have been
intensively studied. Normally, BFT protocols run among a fixed set of con-
sensus nodes, and can finally reach deterministic consensus and high efficiency
with the tolerance of less than 1/3 malicious nodes. Due to these merits, BFT
protocols especially PBFT [8] and its derivatives [4,19] are widely deployed to
construct consensus mechanisms in permissioned blockchain systems, e.g. Hyper-
ledger Fabric [1], Tendermint [13] et al.

1.1 Research on BFT Protocols

Classical BFT protocols need a leader to lead the consensus process, and it will
be replaced if it is found faulty. PBFT [8] proposed in 1999 is a typical BFT
protocol of such a case, and it is the first practical BFT protocol that works under
weak synchronous network assumption. Later works extend PBFT to simplify
the design and reduce the cost, e.g. Zyzzyva [12] proposed in 2007 allows clients
to adopt proposals from the leader optimistically and solve the inconsistency
if needed. However, the main problem for BFT protocols with a leader is its
vulnerability when suffering DoS attacks [16].

Some leaderless BFT protocols have been constructed in the face of DoS
attacks. HoneyBadger BFT [16] is the first practical asynchronous BFT protocol
without a leader. It combines threshold encryption with an efficient realization of
Asynchronous Common Subset (ACS), together with a random selection method
for proposals. With these in hand, the communication cost of HoneyBadger BFT
is greatly reduced. In 2018, Duan et al. [9] extended HoneyBadger BFT to BEAT
by replacing its cryptography components. And BEAT provides different versions
for various scenarios. Hashgraph [3] is another leaderless BFT protocol that takes
advantage of a kind of gossip about gossip design to realize virtue voting, as a
result, it saves much communication overhead.

Besides the single consensus scheme, BFT protocols are also introduced
together with other consensus protocols to achieve better performance. Typi-
cal blockchain schemes including Byzcoin [11], RapidChain [22], Elastico [15]
et al. combine proof-of-work (PoW) with BFT to achieve both security and effi-
ciency. Apart from them, Cosmos [14] combines delegated proof-of-stack (DPoS)
with BFT under the same consideration.

All BFT protocols listed above, however, can only support static setting in
which network nodes are fixed, and they can not support dynamically changes
of the consensus group without reconfiguring the whole system. Indeed, the
change of consensus group for a permissioned blockchain system is of necessity
in business and financial fields, and without support for dynamic property, the
reconfiguration process may be burdensome and costly. On the other hand, how
to detect inactive or even malicious nodes is also of great importance, but it is
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not referred in most BFT protocols. Based on these observations, we carry out
this work to build an enhanced BFT protocol atop HoneyBadger BFT, and a
comparison among related BFT protocols is shown in Table 1.

Table 1. Comparation among typical BFT protocols

BFT
protocols

Optimal
Comm. Compl

Worst Comm.
Compl

Dynamic
property

DoS
resilience

PBFT O(N2) ∞ No No

HoneyBadger
BFT

O(N) O(N) No Yes

BEAT O(N) O(N) No Yes

This work O(N) O(N) Yes Yes

Comm. Compl means Communication Complexity

1.2 Our Contribution

– We propose a new dynamic enhanced BFT (DEBFT) protocol under lead-
erless setting with O(N) communication complexity, which allows consensus
nodes to dynamically join and leave the network.

– We design Join and Quit protocol, providing detailed protocol procedures as
well as data structures of relevant messages types. By Join and Quit protocol,
DEBFT allows a consensus node to join or leave the consensus group without
reconfiguring the whole system.

– We describe the metrics to assess the behavior of a consensus node, and
design Clear protocol to clear malicious or inactive consensus nodes out of
the system to maintain its long-term benign work.

– We analyze key properties of the DEBFT, including dynamic property, fair-
ness, agreement, and total order.

1.3 Paper Organization

The rest of this paper is organized as follows. We start by introducing the system
module (Sect. 2). After that, the overview of HoneyBadger BFT is described
(Sect. 3), as well as the building blocks of this work (Sect. 4). Next, we give
the detailed protocol design (Sect. 5) and its security analysis (Sect. 6), then we
conclude the paper (Sect. 7).

2 System Module

Participants Definition. There are three kinds of participants in this system:
client, dealer, and consensus node (noted as node in the following context for
simplification). Here we depict their roles in our protocol.
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– Clients generate transaction requests and broadcast them to all nodes. Clients
will also gather feedback from nodes. Enough signatures from different nodes
on one transaction denote it has been output as a consensus result.

– Dealer represents a trusted party providing validity check for nodes. Hence
it is responsible for the initialization of the system and leads the dynamic
joining process of nodes.

– Nodes are validated by the dealer before joining the system. They will receive
transactions from clients, then execute the protocol together to get the con-
sensus result that decides which transactions should be output.

Timing Assumption. The system works under a partially synchronous net-
work assumption [10]. For all nodes computation proceeds in synchronized
rounds and messages are received by their recipients within some specified time
bound. We assume that the nodes are equipped with synchronized clocks to
guarantee this round synchronization. In our system, there exists an adversary.
In every round of communication, the adversary can wait for the messages of
the uncorrupted nodes to arrive, then decide on his computation and communi-
cation strategy for that round. The adversary can still ensure that his messages
delivered to the honest nodes on time. Therefore we should always assume the
worst case that the adversary speaks last in every communication round.

Security Module. Assuming that there exists an adversary willing to prevent
the system from making consensus or to subvert the system, here gives the
definition of its ability.

The adversary can completely control up to t corrupted nodes, and t satisfies
3t+1 ≤ n where n is the total number of consensus nodes. The controlled nodes
are called faulty nodes standing on the opposite of honest nodes which totally
obey the protocol. Faulty nodes can choose arbitrary malicious actions, including
not responding, sending conflicting messages to different nodes, corrupting other
nodes and so on.

3 Reviewing HoneyBadger BFT

HoneyBadger BFT is the first practical asynchronous BFT protocol. Clients in
the network will send their transaction requests to all nodes, and nodes execute
the BFT protocol in consecutive rounds. At the beginning of a round every
node will raise its proposal and at the end of this round a common subset of
proposals will be output as the consensus result. Figure 1 shows the basic working
procedures. Next we will depict main components applied in HoneyBadger BFT.

3.1 Protocol Components

HoneyBadger BFT mainly consists of two components: threshold encryption
and Asynchronous Common Subset (ACS). In every round, each node chooses a
set of transactions as its proposal and encrypts it through threshold encryption
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scheme, then submits the ciphertext as input to ACS module and a common
subset of these ciphertexts will be output. At last the subset will be decrypted
still by threshold encryption scheme to get final consensus results.

HoneyBadger BFT uses the threshold encryption scheme TPKE from Baek
and Zheng [2]. In the design of TKPE, to decrypt the ciphertext, at least t + 1
nodes need to get their decryption shares separately and combine them together.
This design ensures that the adversary controlling less than t faulty nodes can not
get the plaintext without the help of honest nodes. As TPKE is secure under the
adaptive chosen ciphertext attack, its application in HoneyBadger BFT helps to
realize censorship resilience property which prevents the adversary from delaying
honest client requests on purpose. ACS is the main module to reach consensus
among nodes. As Fig. 1 shows, it consists of Reliable Broadcast (RBC) module
and Binary Agreement (BA) module. In HoneyBadger BFT, RBC module from
Cachin and Tessaro [7] is used to transmit the proposal of each node to all
other nodes. BA module from Mostéfaoui [17] is used to decide on a bit vector
indicating which proposals should be output as the consensus result.

Fig. 1. HoneyBadger BFT

3.2 Protocol Security Properties

On a high level HoneyBadger BFT satisfies below properties [16]:

– (Agreement) If any correct node includes transaction tx into its consensus
result, then every correct node includes tx into its consensus result.

– (Total Order) If one correct node has output the sequence of transactions
〈tx0, tx1, . . . txj〉 and another has output 〈tx′

0, tx
′
1, . . . tx

′
j〉, then txi = tx′

i for
i ≤ min(j, j′).

– (Censorship Resilience) If a transaction tx is input to n − t correct nodes,
then it is eventually output by every correct node. Intuitively this means the
adversary cannot prevent a transaction from being output as a consensus
result.

3.3 Limitations of HoneyBadger BFT

As the first practical asynchronous BFT protocol which guarantees both liveness
and safety, HoneyBadger BFT has abundant application scenarios like banks
and financial institutions. It is especially suitable for permissioned blockchain
applications, where a fixed number of nodes are authorized to enter the system.
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However, HoneyBadger BFT is a traditional static BFT protocol which
means that it could not support a consensus node to join or leave the con-
sensus group without reconfiguring the whole system. On the other hand, there
may exist malicious or inactive nodes in the system, and the current protocol
lacks the function to detect these faulty nodes to exclude them from the system,
this may hamper the long-term benign working of the system.

Considering above limitations, this paper focuses on the dynamic property
and clear function of BFT protocol. Through the application of cryptography
components introduced in Sect. 4, together with rational protocol procedure, we
construct the new protocol DEBFT which is based on HoneyBader BFT.

4 Building Blocks

This section describes several cryptography components applied in our work. We
will separately show their functions and details.

Dynamic Threshold Identity-Based Encryption (DTIBE). The thresh-
old encryption scheme TPKE [2] in HoneyBadger BFT can only set the threshold
parameter and define the consensus group during the configuration phase. We
utilize the dynamic threshold identity-based (DTIBE) scheme from Susilo et al.
[20] for its dynamic property, where after the initialization of the system, a
sender can dynamically select the set of recipients as well as dynamically set the
threshold t upon the creation of ciphertext. This character meets the need of
joining and quitting of members in a working consensus system. Figure 2 shows
the details.

DTIBE Scheme
A DTIBE scheme is comprised of the following five steps.
– DTIBE.Setup(1λ,N) → (MPK,SK)
• Takes the security parameter 1λ and the maximum network node number N as input, the
setup algorithm outputs (MPK, SK), where MK is the master public key and SK is the
master secret key.
– DTIBE.Gen(ID,MPK,SK) → dID

• Takes as input an identity ID and the master key pair (MPK, SK), the key generation
algorithm outputs a private key of ID, which is denoted by dID.
– DTIBE.Enc(ID1, ID2, . . . , IDn, t,M,MPK) → CT
• Takes as input a set of identities ID1, ID2, . . . , IDn, a threshold number t, a message M
and the master public key MPK, where n ≤ N and �(n − 1)/3� ≤ t ≤ n, the encryption
algorithm outputs a ciphertext, which is denoted by CT .
– DTIBE.ShareDec(CT,dID,MPK) → SID or ⊥
• Takes as input a ciphertext CT for (ID1, ID2, . . . , IDn, t), a private key dID of identity
ID and the master public key MPK, the decryption algorithm outputs a decryption share
denoted by SID or ⊥.
– DTIBE.Combine(CT,SID1

′ , SID2
′ , . . . , SIDn

′ ,MPK) → M or ⊥
• Takes as input a ciphertext CT for (ID1, ID2, . . . , IDn, t), at least t decryption shares
SID1′ , SID2′ , . . . , SIDn

′ and the master public key MPK, the combination algorithm outputs
the message M or ⊥.

Fig. 2. The algorithm procedure of DTIBE
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Distributed Key Generation (DKG). HoneyBadger BFT uses BA to decide
on a bit vector representing the proposals to be output. Its BA scheme uses
the Boldyreva’s pairing-based threshold signature scheme [5] as a randomizer
to build the common coin which can not support changes of consensus group
flexibly. In this work we use the Distributed Key Generation (DKG) scheme from
Gennaro et al. [10] to generate randomness and the updated BA is represented
as ˜BA in our work. To distinguish from the primitive ACS in HoneyBadger BFT,
we define the combination of RBC and ˜BA as Round Common Subset (RCS)
in our scheme. Figure 3 shows the details to generate randomness by the DKG
scheme.

the Common Coin Based on DKG
DKG allows a set of n parties to jointly generate a pair of public and private keys according
to the distribution defined by the underlying cryptosystem.
For discrete log based schemes, DKG amounts to generating a secret sharing of a random,
uniformly distributed value x and making public the value y = gx. Hence we use this as a
randomizer to build the common coin in B̃A protocol.
Assuming there are n nodes labeled from P1 to Pn, each node has identities of all other
nodes and each node can not be fabricated. The public parameter is node number n and
faulty node number t which works as a threshold and satisfies �(n − 1)/3� ≤ t ≤ n .
– Generating x :
• Each player Pi performs a Pedersen − V SS of a random value zi as a dealer.
• Each player verifies the values, then builds the set of non-disqualified players QUAL.
• The distributed secret value x is not explicitly computed by any party, but it equals
x =

∑
i∈QUAL zimod q.

– Extracting y = gx mod p
• Each player i ∈ QUAL exposes yi = gzi mod p via Feldman VSS.
• After verification, each player computes y =

∏
i∈QUAL yi.

– Generating randomness
• Get V alue = h(y) via a hash function h().

Fig. 3. The common coin based on DKG

Boneh-Boyen Short Signature Scheme. In Sect. 2, we assume the identity
of a node can not be fabricated. For this purpose, a node needs to transmit kinds
of messages to other nodes with its signature. In this work this is ensured by
using the Boneh-Boyen short signature scheme [6], and its main procedures are
shown in Fig. 4.
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Boneh-Boyen Signature Scheme
– Key Generation :
• KeyGen(k) → (SIGpki

, SIGski). k stands for the security parameter. SIGski is used for
a node to generate signature and SIGpki

is used by other nodes to check the validity of its
signature.
– Signature Generation :
• SigGen(m, SIGski) → δ. m is the message to be signed and δ stands for the output
signature.
– Signature V erification :
• SigV erify(δ, SIGpki

) → 1 or 0. Other nodes verify whether δ and SIGpki
matches. If it

is a valid signature output 1 otherwise output 0.

Fig. 4. Boneh-Boyen signature scheme

5 Protocol Design

This chapter provides the detailed description of our dynamic enhanced BFT
protocol DEBFT, including the initialization phase, regular consensus procedure
and Join/Quit/Clear protocols for specific functions.

5.1 System Initialization

As mention in Sect. 3, there exist clients, a dealer, and consensus nodes in the
system. In our system, Dtrust represents the trusted dealer. N is the possible
maximal number of nodes. n is the current number of nodes. Let Pi represents
the ith node in the system, where i ∈ {1, 2, · · · , n}. t is the maximal number of
faulty nodes, which satisfies t = �(n − 1)/3�.

Before the system begins to work, each node Pi with identity IDi will gen-
erate its signature key pair (SIGpki

, SIGski
) by the Boneh-Boyen signature

scheme. SIGpki
is the public key of node Pi, and SIGski

is its secret key to gen-
erate signature. Dtrust verifies whether each node Pi should join the consensus
group, then executes the DTIBE.Setup algorithm and broadcasts master public
key MPK to all valid nodes in network. Dtrust will generate and send the secret
key dIDi

for node Pi via the DTIBE.Gen algorithm. The public information of
node Pi can be represented by a pair (IDi, SIGpki

) which is signed and bound
by the Dtrust.

5.2 Regular Consensus Procedure

This part depicts the whole process for transactions to be confirmed. The con-
sensus protocol proceeds in consecutive rounds. Assuming the current round is
numbered as r, each node generates its proposal then the consensus protocol
executes among all nodes. Finally the consensus result of round r is a common
subset of the proposals. Figure 5 gives an intuitive representation of the whole
procedure, detail steps are as follows.
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– step 1: Batch Selection

• Clients send requests to all nodes, and each node Pi stores enough requests
in a local FIFO queue bufi. There is a properly set parameter B representing
the batch size. Pi randomly selects B/n elements from the first B elements
of bufi.

– step 2: Threshold Encryption

• Pi chooses the decryption set and uses the DTIBE.Enc algorithm to encrypt
the elements selected in step 1, and gets ciphertext vi as output.

– step 3: Agreement on Ciphertexts

• RCS[r] is responsible for generating the common subset of proposals for round
r. In this phase n nodes run RCS[r] together, and each node Pi passes vi as
input to it. RCS[r] consists of n reliable broadcast instances {RBCi}n to
disseminate the n proposals and n binary agreement instances { ˜BAi}n to
collect votes for the n proposals. Here node Pi is the sender of RBCi and
˜BAi decides whether its proposal will be accepted. Detailed process is listed
as follows.

– vi is the input of RBCi, and RBCi will disseminate it to all other nodes.
– For node Pi, upon delivery of vj from RBCj , if input has not yet been pro-

vided to ˜BAj , then provide input 1 to ˜BAj . as referred previously DKG
scheme is used to generate randomness during the process of ˜BAj .

– Upon delivery of value 1 from at least n − t instances of ˜BA, provide input 0
to each instance of ˜BA that has not yet been provided input.

– Once all instances of ˜BA have completed, get output from RCS[r]: an agree-
ment on a common subset {vj}j∈S , where S ⊂ [1 . . . n] containing all indexes

of each ˜BA that delivered 1.

– step 4: Threshold Decryption

• Each node Pi uses DTIBE.ShareDec to calculate its decryption shares for
vj , j ∈ S.

• Each node Pi multicasts the shares to all other nodes.
• For each element in {vj}j∈S , node Pi waits until receiving at least t + 1 valid

shares, then uses DTIBE.Combine to get the plaintext {yj}j∈S .
• Let {block}r = sorted(∪yj), j ∈ S, such that {block}r is sorted in a canonical

order (e.g., lexicographically).
• Pi updates bufi and gets ready for round r + 1.
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Fig. 5. Regular consensus procedure

5.3 Join Protocol

Join protocol is designed to allow a new node to join the network without stop-
ping and reconfiguring the whole system.

Assuming there already exist n nodes in the system, a new node numbered
as n + 1 is willing to join the system, which satisfies n + 1 ≤ N . The protocol
process is shown in Fig. 6 and we show the details as follows.

– step 1: Join Request Phase

Fig. 6. Join protocol

• Node Pn+1 invokes KeyGen of Boneh-Boyen signature scheme to generate
its key pairs (SIGpkn+1

, SIGskn+1).
• Node Pn+1 sends JoinReq to Dtrust.

JoinReq = ((Join, SUBn+1, SIGpkn+1 , IDn+1), SigGen(h(m), SIGskn+1)) (1)

Join is a message type. SUBn+1 is the materials submitted by Pn+1 to be
verified by Dtrust. SIGpkn+1

is the public key of node Pn+1. IDn+1 is the ID of
Pn+1. h(m) is the hash of the concatenation of the information above, and this
applies to all h(m) in the following description. SigGen(h(m), SIGskn+1) is the
signature of Pn+1 on h(m).
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– step 2: Dealer V erify Phase

• After receiving JoinReq from node Pn+1, Dtrust firstly checks SUBn+1 to
verify whether node Pn+1 should join the system, then checks the correctness
of SigGen(h(m), SIGskn+1).

• If node Pn+1 passes above verification, Dtrust uses DTIBE.Gen to generate
dIDn+1 as the private key of node Pn+1 in DTIBE scheme. Next Dtrust sends
JoinAcc with dIDn+1 to node Pn+1.

JoinAcc = ((Accept, JoinReq), SigGen(h(m), SIGskDtrust
)) (2)

Accept is a message type. SigGen(h(m), SIGskDtrust
) is the signature of

Dtrust on h(m).

– step 3: Node Accept Phase

• After receiving JoinAcc, Node Pn+1 broadcasts JoinAcc to all nodes.
• For each node Pi, i ∈ (1, . . . , n), after receiving JoinAcc from node Pn+1, if

the signature of Dtrust is valid then replies NodeJoinAcc to node Pn+1.

NodeJoinAcc = ((JoinConf, IDn+1, IDi, r), SigGen(h(m), SIGski
)) (3)

JoinConf is a message type. IDi is the ID of node Pi. r is the current round
number. SigGen(h(m), SIGski) is signature of Pi on h(m).

• After receiving 2t+1 NodeJoinAcc messages, node Pn+1 packages and broad-
casts them to all nodes and Dtrust. Pn+1 will join the network from round
r + 2. This design is to ensure that a node will only join the system from the
beginning of a round, and ensures there exists at least the time of a round
for messages to be delivered.

• After receiving 2t + 1 valid NodeJoinAcc, node Pi will include node Pn+1

into the system from round r + 2.

5.4 Quit Protocol

Quit protocol is designed to allow a node to quit from the network without
stopping and reconfiguring the whole system. When a node Pk, k ∈ (1, . . . n)
wants to leave the network, The protocol process is shown in Fig. 7 and below
gives the details.
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Fig. 7. Quit protocol

– step 1: Quit Request Phase

• Node Pk broadcasts QuitReq to all nodes in the system.

QuitReq = ((Quit, IDk, SIGpkk
), SigGen(h(m), SIGskk

)) (4)

Quit is a message type. IDk is the identity of Pk and SIGpkk
is its public

key. SigGen(h(m), SIGskk
) is signature of node Pk on h(m).

– step 2: Node V erify Phase

• For each node Pi, i ∈ (1, . . . , n) in the system, after receiving QuitReq from
node Pk, if the signature is valid replies NodeQuitAcc to node Pk.

NodeQuitAcc = ((QuitConf, IDk, IDi, r), SigGen(h(m), SIGski)) (5)

QuitConf is a message type. IDi is the identity of node Pi. r is the current
round number. SigGen(h(m), SIGski

) is the signature of Pi on h(m).

– step 3: Notify Phase

• After receiving 2t + 1 NodeQuitAcc messages, node Pk packages and broad-
casts them to all nodes and Dtrust. Pk will quit from the network from round
r + 2.

• After receiving the 2t + 1 valid NodeQuitAcc message, node Pi will exclude
node Pk from the network from round r + 2.

5.5 Clear Protocol

Clear protocol is design to exclude malicious or inactive nodes from consensus
group. Before depicting details of Clear protocol, we describe how to evaluate
actions of nodes to find faulty ones.

Firstly consider malicious behavior, if node Pi detects malicious behavior
of node Pj , it will invoke Clear protocol at once. Generally, malicious behavior
includes below items:
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– The proposal of node Pj is finally output in the common subset, while it
contains invalid transactions.

– Node Pj is found sending conflicting messages to different nodes.

Another kind of faulty behavior is being inactive, which needs to be measured
properly. Assuming w is number of rounds properly chosen, if during the most
recent w rounds, node Pj output less than p proposals totally, then other honest
nodes can invoke Clear protocol for it. Assume there already exist n nodes in the
system and a node Ps, s ∈ (1, . . . n) is detected as malicious or inactive. To keep
the liveness and robust of the system, Ps needs to be cleared from the network.
The protocol process is shown in Fig. 8 and the details is given as follows.

Fig. 8. Clear protocol

– step 1: Node Detect Phase

• Each node Pi evaluates actions of all nodes during consensus processes, and
will note some nodes as inactive or malicious.

– step 2: Node Request Phase

• If node Pi considers node Ps as malicious or inactive, it will send message
ClearReq to Dtrust.

ClearReq = ((Clear, IDs, IDi), SigGen(h(m), SIGski
)) (6)

Clear is a message type. IDs is the identity of the node to be cleared. IDi is
the identity of Pi. SigGen(h(m), SIGski

) is signature of Pi on h(m).

– step 3: Dealer Clear Phase

• If Dtrust has received ClearReq about IDs from more than t different nodes,
it will broadcast ClearAcc to the whole network and add Ps into its blacklist.

ClearAcc = ((Clr, IDs), SigGen(h(m), SIGskDtrust
)) (7)

Clr is a message type. SigGen(h(m), SIGskDtrust
) is signature of Dtrust on h(m).
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– step 4: Node Clear Phase

• After receiving ClearAcc about IDs from Dtrust, node Pi will immediately
clear Ps from its view of the network, and add it into its local blacklist.

6 Security and Performance

In this section, we will analyze several properties of the new scheme, including
dynamic property, censorship resilience, agreement, and total order. We also
show the performance and further consideration of DEBFT protocol.

6.1 Dynamic Property

Theorem 1. In an already working system, requests from nodes to join or leave
the consensus group will finally take effect if and only if they are valid.

Proof. When a new node wants to join the system, the dealer will verify its
request and sign if it is valid. Since the dealer is assumed to be reliable, nodes
can trust the messages sent by the dealer with valid signatures. Next current
consensus nodes will send NodeJoinAcc messages representing their acceptance.
Later when every honest node receives NodeJoinAcc from 2t + 1 nodes it can
ensure at least t + 1 honest nodes has accepted this new node. This stands for
the acceptance of the consensus group and every honest node will finally include
the new node into the consensus group.

When a node currently in the consensus group wants to leave the system,
it will broadcast QuitReq to all other nodes with its signature which cannot
be fabricated. Other nodes will send NodeQuitAcc and finally receive at least
2t+1 NodeQuitAcc from other nodes. This quorum contains at least t+1 honest
nodes representing the acceptance of the consensus group and finally all honest
nodes will exclude this node from the consensus group.

Since the dealer provides validation for new nodes, the sybil attack cannot
take effect. And an honest node will only quit from the network by sending
QuitReq by itself because its signature cannot be fabricated. In a word, only
valid requests will finally take effect.

Theorem 2. The system could clear malicious and inactive nodes timely and
correctly.

Proof. Through communication among nodes during the consensus process,
malicious actions of faulty nodes could be detected by honest nodes, and inactive
nodes could be detected through statistical results collected in recent rounds. All
honest nodes will sponsor Clear protocol to exclude the malicious or inactive
nodes from the system, and the dealer will receive enough signatures for a faulty
node and process to clear it. On the other hand, the adversary could not attack
an honest node to exclude it from the system, since the threshold is t + 1 and
there are at most t malicious nodes.
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6.2 Normal Consensus Properties

Theorem 3. The system satisfies censorship resilience property.

Proof. Due to DTIBE scheme applied in the protocol, at any time a node spec-
ifies the decryption set and a threshold t according to its view of all nodes.
DTIBE scheme ensures the input to RCS protocol is secure under the adaptive
chosen ciphertext attack, which can avoid the adversary from early getting the
content of proposals and deliberately delaying a specific request. DKG scheme is
adopted to generate randomness in ˜BA and it can effectively avoid any bias on
randomness. These properties together guarantee that the final consensus result
will not be manipulated by the adversary. Now let T be the size of requests
previously input to any correct node before request m, since in every round, the
number of committed requests has the same order with batch size B, then m
will be committed within O(T/B +λ) epochs except with negligible probability,
where λ is a security parameter.

Theorem 4. The system satisfies agreement property.

Proof. For the property of DKG all honest nodes in the system will generate the
same unbiased randomness, which is resistant to the attack of t+1 faulty nodes.
Hence RCS protocol guarantees that in each round r a common subset will be
output. If any honest nodes output request m, then m must be the plaintext of
one component in the common subset of RCS[r]. According to the robustness of
DTIBE scheme, every honest node will give their shares to decrypt the ciphertext
to get request m, and m will finally be the output of all honest nodes.

Theorem 5. The system satisfies the total order property.

Proof. Firstly, since the system works in consecutive rounds, the consensus
results of different rounds have an order. When considering the output requests
in the same round, there exists an public ordering method(e.g., lexicographi-
cally), as a result all honest nodes will output requests in the same order.

The main consensus procedure of this new protocol inherits from HoneyBad-
ger BFT, as a result DEBFT inherits the merits of its communication complexity
which is O(N), detail proof is shown in [16].

6.3 Further Consideration

As defined in Sect. 2, DEBFT protocol works under a partial synchronous net-
work. Compared to the asynchronous network assumption, this limitation is due
to the work environment of DKG scheme applied in ˜BA [10]. It has been proved
that the DKG scheme can safely work under a partially synchronous communi-
cation module. To extend DEBFT to asynchronous environment, we should find
a way to generate randomness resistant to t malicious nodes under asynchronous
assumption in a dynamic changing group. When still using DKG scheme, this
can be solved by specifying the QUAL set before the beginning of a round, and
one solution is to generate QUAL set from previous consensus result. This aspect
could be further researched.
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7 Conclusion

In this paper, we have proposed a practical dynamic enhanced BFT protocol.
While reserving the merits of HoneyBadger BFT, through the combination of two
appropriate cryptography components and rational protocol design, we realized
dynamic joining and quitting functions for nodes and function to clear faulty
nodes for the system. Analysis of several properties is given. It is believed that
this new protocol has a wide range of application scenarios.
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