®

Check for
updates

OVERSCAN: OAuth 2.0 Scanner
for Missing Parameters

Karin Sumongkayothin®™), Pakpoom Rachtrachoo, Arnuphap Yupuech,
and Kasidit Siriporn

Faculty of Information and Communication Technology,
Mahidol University, Salaya, Thailand
karin.sum@mahidol.ac.th,
{pakpoom.rac,arnuphap.yup,kasidit.sir}@student.mahidol.ac.th

Abstract. The websites are developed rapidly and wildly used by peo-
ple around the world. The main reason is the increase of the immense
number of internet users, which results in the security control of accessing
sensitive information is necessary. The authorization server as the one
security aspect which controls the access permission to the system. Many
authentication protocols were proposed to meet these functional require-
ments. The open-standard authorization (OAuth) protocol is one of the
well-known solutions widely used. However, many developers still misuse
this protocol, which can cause security breaches. This paper proposes a
tool named OVERSCAN, which is an OAuth2.0 scanner for misused or
missing parameters. The experiments of using OVERSCAN have been
conducted over 45 samples supporting OAuth2.0 protocol. The results
show that 84.4% of samples lack significant parameters which can cause
security problems.

Keywords: OAuth - Vulnerability scanner - Network protocol security

1 Introduction

The growth of internet user has been dramatically increasing since it was intro-
duced in the last few decades. To achieve the information security preservation,
the access grant over the particular information is necessary. The authorization
is the process to determine the user access levels. Many mechanisms can serve
the authorization flow, and one of them is Open Authorization (OAuth). OAuth
is an authorization framework which is wildly used to grant access permission
through a trusted third-party service. Even though the framework is officially
provided under RFC [7], the incorrect OAuth implementation still exists until the
present. The inaccurate implementation such as missing some particular OAuth
parameters or HTTP headers may prompt security concerns such as stealing
sensitive information, gaining the illegal access, and identity theft [4,13]. The
OAuth2.0 framework defines the role of components as:

— Resource Owner: the user who delegate access to his protected information.

© Springer Nature Switzerland AG 2019
J. K. Liu and X. Huang (Eds.): NSS 2019, LNCS 11928, pp. 221-233, 2019.
https://doi.org/10.1007/978-3-030-36938-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36938-5_13&domain=pdf
https://doi.org/10.1007/978-3-030-36938-5_13

222 K. Sumongkayothin et al.

— Client (aka. Relying Party): the service API or application which asks for
permission to access the resource owner’s protected information.

— User agent: the intermediary that is used by the resource owner to interact
with the client.

— Authorization server (aka. Identity Provider): the server which grants the
scoped access to the client to access the protected information on behalf of
resource Owner.

— Protected resource server: the server that holds the protected information
which can be accessed by using provided grant from the authentication server.

The framework supports many grant types which each type has a different
flow to able access the protected resource. However, the most commonly used
are implicit and authorization code grant type. The difference between the two
mentioned grant types are as illustrated in Figs. 1 and 2.

Protected Resource
Server

[Resource Owner| l User Agent] | Client ‘ ’ Authorization ‘

Server
f«@— (1) User credential —EI
(@——— (2) Login Page ——P>|
(4) Resource owner
—>|
credential
(———— (5)Trust ion Request
(7) Trust Authorization ————————p»|

3) Rescurce_ owner —pu|

(6) Trust Authorization

(8) Access Token ——|

<¢——— (9) Access viaAccess Token 4>D

Fig. 1. Implicit grant flow

Protected Resource
Server

Resource Owner| [User Agent] | Client] Authorization
i i i Server

(«@— (1) User credential AD

(@—————— (2) Login Page ——— P>

(3) Resource owner —pp|

owner >
credential
l@——— (5)Trust i Reguest
(7) Trust Authorization —— |
(«@——— (8) Authorization Code
| (9) Authorization Code —p—

(6) Trust Authorization |

(10) Authorization Code |

e (11) Access Token —

<@——— (12) Access via Access Token 4>D

Fig. 2. Authorization code grant flow

The clear difference between implicit and authorization code grant is how the
client acquis the access token. In implicit grant type, the client directly receives

OVERSCAN: OAuth 2.0 Scanner for Missing Parameters 223

access token after the resource owner confirming the trust authorization (step (7)
and (8) of Fig.1). In authorization code grant type, the authorization code(aka.
code) is sent back to the user agent before passing on to the client (step (8)
of Fig.2). The client then exchanges the code with the access token that was
created by the authorization server (step (9) of Fig.2). Although the implicit
grant is clearly better in the term of performance, authentication code grant is
recommended when requiring higher security.

In this paper, we propose the tool named OVERSCAN, which is the scanner
for the OAuth2.0 vulnerabilities focusing on the web application. It was imple-
mented with the JAVA language as the Burpsuit! extension which covers the
vulnerabilities listed in the RFC6819 [10].

1.1 Related Work

The OAuth2.0 framework [7] was introduced as the guideline for implement-
ing the flow to delegate access to the unauthorized client. It was classified as
a double-redirection protocol [5] since it redirects the request back and forth
between client and authorization server through the user-agent application. The
first redirection is when the client sends the redirects URI to make the user
agent forwards its request to the authorization server. The second redirection
takes place after confirming the trust authorization message. The response mes-
sage is redirected to the client or authorization server depending on the grant
type is being used. Since the flow consists of redirections, the security flaws may
exist if it is not well-implemented. OAuth 2.0 Threat Model and Security Con-
siderations [10] was published to provide the additional security considerations
in OAuth 2.0. It shows the possible security flaws in OAuth flow under incorrect
parameter configurations.

Pai et al. [12] proposed the formal method based on knowledge flow analysis
[14] to verify the security of OAuth2.0 protocol. As a result, it emphasizes the
existence of a security flaw in OAuth client credentials flow. Chari et al. [3]
presented another security analysis method by using Universal Composability
Security Framework [2]. The universal composability paradigm can guarantee the
strong security properties of the protocol, although it was used as a component
of an arbitrary system. Their analysis was focused on OAuth2.0 authorization
code flow. It shows the necessity of using the SSL like functionality to protect the
communication channel between the client and the authorization server. They
also show that the session identifier does not need to be decided in advance,
which can mitigate the possibility of the attacks such as the session hijacking
or session swapping. Feng and Sathiamoorthy [15] introduced the method to
analyze the vulnerability of the OAuth 2.0 framework using an attacker model.
The attacker model consists of four modules representing the type of attacks
which are monitoring attack, replay attack, phishing attack, and impersonation
attack. Their experiment was conducted focusing on the data transmission of
the user-agent & authorization server, and user-agent & client. The results show

! https://portswigger.net /burp.

https://portswigger.net/burp

224 K. Sumongkayothin et al.

that the OAuth2.0 framework is susceptible to such simple attacks as cross-
site request forgery attack, replaying attack, and network traffic interception.
The root cause is that the framework did not explicitly define which component
affects the security of the protocol. For example, there were no recommendations
of using TLS to protect the callback endpoints, enforcing process to ensure the
security of the client, nor limiting of multiple uses of authorization code.

In analytical terms of practical usage, Argyriou et al. [1] studied the possible
mechanism causing the flaws in the OAuth 2.0 framework. Because the frame-
work does not clearly define the formal standard of communication primitive
between the user-agent and the client; the authentication method, therefore,
depends on the decision of the developer. The analysis was done by investi-
gating the communication between the resource owner and the authorization
server based on the OAuth 2.0 framework. It shows that the misconfiguration in
implicit grant flow and authorization code flow may lead to many security flaws
such as cross-site request forgery, session wrapping, and mixing redirect end-
point. The [6,8] reiterated that the security issues of the OAuth 2.0 flow were
caused by the implementation, not from the framework. They also stated that
missing or incorrect using some significant parameters such as a state-parameter
or X-FRAME-OPTIONS in HTTP header, will cause the security risk.

Zhou et al. [16] implemented the tool named SSOScan for verifying the com-
munication characteristics of the application using Facebook Single Sign-On
APIs. It automatically identifies the risks that occur during the authentication
process. SSOScan can detect four vulnerabilities which are access token misuse,
signed requests misuse, app_secret parameter leakage, and user OAuth creden-
tial leakage. The vulnerability analysis proceeds in two ways consisting of the
simulation attack for checking the access token and signed request misused, and
passive monitoring to identify the credential leakage. As a result, 20.3% of web-
sites using Facebook SSO are vulnerable, where users are unable to login due to
2.3% implementation error. Another OAuth2.0 testing tool, OAuthGuard, was
proposed by Li et al. [9]. This tool focuses on analyzing the vulnerabilities of web
application utilizing Google Sign-in. By scanning 137 sample sites using OAu-
thGuard, it shows that 40.9% of samples have at least one serious vulnerability,
where 9.5% have an insecure implementation.

Unlike the existing tools, OVERSCAN is designed to compatible with any
web application supporting OAuth 2.0. It serves as the free extension of Burp
Suite Community Edition? to identify the possible threats caused by insecure
implementation.

1.2 Contribution and Paper Organization

The most vulnerabilities in OAuth services caused by a faulty client design as has
been stated in [6]. Since the client is an application, it is somewhat unmanageable
and hard to identify the configuration. Fortunately, the information sent back

2 https://portswigger.net /.

https://portswigger.net/

OVERSCAN: OAuth 2.0 Scanner for Missing Parameters 225

and forth between the client and authorization server must be through the user-
agent. It allows to intercept and investigate the information at this point.

In this paper, we propose the OAuth 2.0 vulnerability scanner named OVER-
SCAN. It works as a proxy which will intercept the incoming and outgoing
packets of the internet browser. It focuses on identifying the missing signifi-
cant parameter and HTTP header, which lead to the security issue. The main
contributions of this paper are:

— Propose new scanning tool, OVERSCAN which works nicely to any clients
and authorization servers.

— Describe the conceptual design and implementation of OVERSCAN.

— Conduct the experiments over 25 websites on vary authorization servers (45
scannings in total) to identify the possible missing parameters that cause of
weak security.

The rest of the paper is organized as follows. In Sect.2, we provide an
overview of OVERSCAN design and construction. Then the misused parameter
and related vulnerabilities, that can be identified by OVERSCAN are described
in Sect.3. We deliver the analysis and results of the experiment conducted on
the sample web applications in Sect.4. We give a discussion of OVERSCAN
limitation in Sect. 5. We conclude the paper in Sect. 6.

2 Design and Construction Overview of OVERSCAN

OVERSCAN is designed in the purpose of analyzing data transmitted through
the web browser during the access-token request process. Therefore, capturing
the information that is sent in and out across the browser is necessary for the
operation. This section we describe the details of OVERSCAN design and imple-
mentation.

From the objective to analyze the OAuth traffic to discover the vulnerability,
we implement OVERSCAN as the free extension of a Burp Suite Community
Edition. Burp Suite Community Edition (in short Burp) is the free graphical
interception proxy which can capture all requests and responses between the
browser and target applications. It allows the user to extend the Burp’s func-
tionality by adding the additional code called the extension. The traffic pass
through the browser will be intercepted by Burp then checked by OVERSCAN
for the possible security issue. OVERSCAN operation consists of four phases as
illustrated in Fig. 3.

2.1 Traffic Classification

OVERSCAN will retrieve all traffic captured by Burp and then proceed the clas-
sification as of Fig.2. It first checks whether the traffic is request or response
and then classifies whether it is under OAuth protocol or not. Only OAuth
related message will be highlighted and sent to scan for vulnerabilities. OVER-
SCAN supports investigating the vulnerability that may occur during implicit or

226 K. Sumongkayothin et al.

OVERSCAN
) - Vulnerability Display Analysis Generate
[Trafﬂc Classification I Analysis [Result Vulnerability Report

Fig. 3. OVERSCAN operation

authorization grant request. To distinct these two requests from the other mes-
sages, the parameter response_type must be observed. It will contain the value
“token” when it is implicit grant request while “code” for the authorization code
grant request (Fig. 4).

Intercepted Check | Check
traffic from Burp, Request/Response Message

Send to Vulnerability Highlight Yes
Analysis Process Message

No

Abort

Fig. 4. OVERSCAN traffic classification

2.2 Vulnerability Analysis

What is used to verify for vulnerabilities consists of two parts: OAuth missing
parameter and missing secure parameter in HT'TP headers. The target message
is checked based on the countermeasure methods mentioned in RFC6819. Then
the scanning results will be passed to display by Burp as Fig. 5. The details of
missing parameters and supported vulnerabilities can be found in Sect. 3.

2.3 Display Analysis Result

OVERSCAN highlights and adds the comment to the vulnerable OAuth traffic
displayed in Burp Proxy HTTP History. The highlight color is according to the
severity levels defined by the Common Vulnerability Scoring System (CVSS)?.
The severity can be categorized into three levels: High (Orange), Medium (Yel-
low), and None (Green). The example of the display result is as shown in the
Fig. 6.

3 https://www.first.org/cvss/v3.0/specification-document.

https://www.first.org/cvss/v3.0/specification-document

OVERSCAN: OAuth 2.0 Scanner for Missing Parameters

A | SSO Protocol | Host | Method | URL | Missing parameter(s) |[Time | Length 'Tm

2 OAuth GET N29idialog/oauty XSS Token 18:18:33 1724 OAuth, implictt Grant
3 OAuth GET levent/ NA 18:18:35 224 Oauth token

4 OAuth POST /m/signin NA [18:18:35 1425 Oauth token

S OAuth POST Ai/pageview CSRF-Token 18:18:35 468 Oauth token

6 OAuth POST /_/batch NA 18:18:49 1004 Oauth token

7 OAuth POST /_/batch NA 18:19:05 1004 Oauth token

Fig. 5. Vulnerability analysis results

[reeet | opew | Querscen I Spider] Scammer I fatrudor,

Intercept WebSockets history | Options

Fitter: Hiding CSS, image and general binary content l

| Host | Method | URL | Comment ¥|Params |Edted | Status | Length

87 GET /v2.9/dialog/oauth?client_id=5... XSS Token v 302 1724

95 POST I1ipageview CSRF-Token v 200 468
73 https://collector-medium lightste... ~ POST lapiivOireports v 200 31
75 https://collector-medium lightste... OPTIONS /apiivOireports 200 270
76 httns /icollector-medium liohtste POST IanivOirenorts v 200 a

Fig. 6. Display analysis results (Color figure online)

Missing
Host Severity
fromeas (s) " JLovel R

T
== ST

Implicit Grant Warning:

The implicit grant type has used for mobile application and web application, which does not
guarantee user data security. This type is a simple grant that can be used by public clients. By the
server will immediately return the access token without having to do authorization code, therefore,
the disclosure of Token to users and other applications on the user's device. In general, it is not
recommended to use Implicit Grant type, Oauth 2.0 will recommend using authorization code with
Proof Key for Code Exchange (PKCE) instead of using implicit flow.

Fig. 7. Vulnerability report

227

228 K. Sumongkayothin et al.

2.4 Generate Vulnerability Report

To arrange the information in an orderly manner and more understandable,
OVERSCAN summarizes the found vulnerabilities in the form of document
report. The report will give the details of the vulnerability and the suggestion
to migrate the issues. The report can be generated in either HTML or PDF for-
mat. Figure 7 shows the example of the report generated from the vulnerabilities
found by OVERSCAN.

3 Supported Vulnerabilities

Parametric usage methods are particularly relevant to OAuth protocol security.
Missing some parameters may result in allowing the adversary to obtain the
credential information. The list of parameters supported by OVERSCAN for
security checking is as according to Table 2.

Table 1. List of parameters for security checking

Missing Possible threat Severity
parameter level
X-CSRFToken |— CSRF attack against redirect URL 8.8 High
(Authentication code & Implicit grant) (CVSS 3.0)
State- — CSRF attack against redirect URI (Autho- | 7.8 High
Parameter rization code & Implicit grant) (CVSS 3.0)
— DoS using manufactured authorization
“codes”
Redirect_URI — Authorization code phishing 6.1 Medium
(HTTPS for — User session impersonation (CVSS 3.0)
redirect URI)
X-XSS- — Authorization codes can be stolen through |6.1 Medium
Protection vulnerable client (CVSS 3.0)
X-Content- — Authorization codes can be stolen through 6.1 Medium
Type-Options |vulnerable Client (CVSS 3.0)
X-Frame — Clickjacking attack against authorization |4.7 Medium
Options (CVSS 3.0)

3.1 X-CSRFToken

X-CSRFToken is an HTTP token to against Cross-Site Request Forgery (CSRF)
attack. It is also known as CSRF-Token. This token is a large random unique
number which is unpredictable for each authentication request. It is associated
with the HTTP header to ensure the validity of the source of information.

OVERSCAN: OAuth 2.0 Scanner for Missing Parameters 229

3.2 State Parameter

State Parameter is the parameter preserving the state information of authen-
tication procedures which allows the user to restore the previous state of the
application. It is also useful for CSRF attack mitigation on the redirection end-
point. The value of this parameter is unique and non-guessable, which will be
generated during the initial request. To validate the response, the recipient must
confirm that the state-parameter of request and response message must be the
same value. Since OAuth was classified as double-redirection protocol, it is sus-
ceptible to the CSRF attack without state parameter.

Another benefit of using state parameter is Denial of Service (DoS) miti-
gation. The attack scenario is when the attacker floods the valid URIs with a
random authorization code to the client. Generally, the client will forward all
the received messages to the authorization server. Due to a large number of
HTTPS connections, it can cause the server out of service. However, when the
state parameter is implemented; the client will drop the message containing the
invalid state parameter. The attacker needs the right state parameter in order
to successfully attack, which results in decreased attack effectiveness.

3.3 Redirect_URI

Redirect_URI is a parameter to change the direction of the traffic to the next
endpoint of the flow. The URI of all endpoints should be integrated the SSL/TLS
protection (HTTPS) to prevent authorization code phishing and user session
impersonation.

3.4 X-XSS-Protection

They also stated that missing or X-XSS-Protection is a parameter in the HT'TP
response header that stops pages from loading when cross-site scripting (XSS)
attacks are detected. This vulnerability affects when the attacker discovers the
XSS flaw in the client. The attacker can inject the script (e.g. Javascript) then
lures the user to send the request containing the malicious redirect URI. Since the
redirect URI includes a malicious script, the attacker can steal the authorization
code or access token from the user. By the fact that using pre-configured redirect
URI instead of a dynamic one may solve this issue, it cannot guarantee that every
server will follow this configuration. By using X-XSS-Protection parameter, we
can make sure that the malicious script will not be loaded. There are four ways
to configure X-XSS-Protection parameter, which are:

— X-XSS-Protectoin: 0: disable XSS protection.

— X-XSS-Protectoin: 1: enable XSS protection and the browser sanitizes the
page if cross-site scipt was detected.

— X-XSS-Protectoin: 1; mode =block: enable XSS protection and the
browser prevents the page form rendering if cross-site scipt was detected.

— X-XSS-Protectoin: 1; report = (report-uri): enable XSS protection and
the browser sanitizes the page and sends the report to defined URI.

230 K. Sumongkayothin et al.

3.5 X-Content-Type-Options

Another solution to mitigate the impact of XSS attacks rather than X-
XSS-Protection is to use X-Content-Type-Options parameter. X-Content-Type-
Options is the element in HTTP header which can prevent the MIME sniffing
for sending XSS attack by the attacker. MIME Sniffing is the feature that the
web browser uses to examine the downloaded asset content to determine the file
format. However, MIME Sniffing can cause a security issue when the attacker
disguises an HTML file as a valid file type. It allows the attacker to success-
fully bypassing the protection to upload the malicious code to the server. It can
cause an XSS attack when the web browser renders the malicious HTML file. To
mitigate the attack, providing X-Content-Type-Options with nosniff option will
disable MINE Sniffing functionality. By disabling MINE Sniffing functionality,
the web browser will no longer analyze the received content.

3.6 X-Frame Options

As mentioned in [10], Clickjacking is one of the malicious methods to let the
attacker steals the user’s authentication credentials. The malicious site may con-
struct transparent iFrame with an invisible button wrapping around the signif-
icant locations (e.g Authorize button). Once the user clicks on that location,
he did click the hidden button then sends the user’s credentials to the attacker.
X-Frame Options is the security element in HT'TP header, which provides the
feature of Clickjacking prevention. X-Frame Options can contain three values,
which are:

— DENY: disable the loading of the page in a frame.

— SAMEORIGIN: allows the page to be loaded in a frame on the same origin
as the page itself.

— ALLOW-FROM (uri): allows the page to be loaded only in a frame on the
specific URI.

4 Experimental Analysis

The experiment was conducted over 45 samples of web application supporting
an OAuth 2.0 protocol. The sample group consists of the local and international
websites that use the service from the different OAuth authorization servers:
Facebook, Google, and other servers. In this experiment, we focus on examining
two aspects: the grant type used and the missing parameters that may cause a
security weakness. We found that 42% out of the samples still use Implicit grant
type to delegate the user access right. The numbers are high even though using
the implicit grant type was reported as causing the security susceptible [11]. In
the aspect of using the security-related parameters, the experimental yield the
result as Fig.8. The most parameter that was missing from the sample group
is X-XSS-Protection, accounting for 48.9% of the total samples. The second

OVERSCAN: OAuth 2.0 Scanner for Missing Parameters 231

highest of missing parameters obtained from the experiment is X-Content-Type-
Options, representing 42.2%. Next is X-Frame Options, which accounts for 37.8%
of the total. The remaining three are X-CSRFTOKEN, State Parameter and
Redirect_URI which represent 15.6%, 11.1% and 2.2%, respectively. Interestingly,
the top three missing parameters are the secure parameter used in the HTTP
header, which X-Frame Options is one of them. It was specified by [7] that
is necessary for the security of the OAuth application. Nonetheless, there are
over 37% of websites from the experiment that does not use this parameter.
Furthermore, one of the experimental results shows that the redirection endpoint
does not support SSL/TLS, which may lead to serious security flaws such as the
session hijacking.

By the fact that some samples are free of the missing parameter, while some
have more than one. Figure9 demonstrates the number of samples containing
a different number of missing parameters. More than 50% of samples contain
one to two missing parameters necessary for security purposes, and only 13.3%
possess all the parameters that we have considered.

m Facebook Authorization Serer m Google Authorization Server m Others

X-CSRFToken

Redirect_URI [

X-Content-Type-Options 11

IS
w
-

State-Parameter

X-Frame Options

0
w

X-XSS-Protection 14 6 2 ‘

Fig. 8. Missing parameter

5 Features and Limitations

OVERSCAN was designed to compatible with a variety of authorization servers
that support OAuth 2.0 protocol. It provides the abilities to determine the
vulnerability, which possibly occurs during OAuth authentication flow via the
parameters missing from the transmitted message. Table 2 shows the compari-
son of the supporting features with the other two OAuth vulnerability scanners:
SSOSCAN and OAuthGuard.

Although OVERSCAN supports most of the vulnerabilities detected by the
other two scanners, it cannot analyze the message directly sent between the client
and authorization server. Since it uses Burp as the host for the operations, it can
only intercept the message sent through the web browser. Therefore, it impossible
for OVERSCAN to verify the security flaws happening after the beginning of

232 K. Sumongkayothin et al.

Number of missing parameters
05 @4 83 @2 01 OO0

13.33%

Fig. 9. Number of samples which have 0 to 5 missing parameters

Table 2. Comparison of supported features

Supported feature OAuthGuard | SSOScan | OVERSCAN
Support a wide range of identity providers v
Stand alone application v v

Identify OAuth grant type v
Protection v

Instant warning message v v

Generate technical report v v
CSRF vulnerability detection v v
Impersonation attack detection v v
ClickJacking attack detection v
Unsafe redirect URI detection v v v
Client secret leakage detection v
Authorization code leakage detection v v v

the Access Token exchange process. Aside from that, OVERSCAN is unable to
support protection and instant warning inline with the above reasons. Instead
of giving the instant warning message when anomalies were found, OVERSCAN
will summarize them in the readable technical report.

6 Conclusion

OVERSCAN is the anomaly detector which aims for identifying the missing
significant security parameters used during the OAuth 2.0 grant request process.
It can determine missing parameters which result in threats such as CSRF attack,
confidential data leakage, and session stealing. As the experimental results of
using OVERSCAN over 45 samples, only 15.56% are free of missing parameter.

OVERSCAN: OAuth 2.0 Scanner for Missing Parameters 233

The parameter which most frequently missing is XSS protection while insecure
Redirect URI is the least.

References

1.

o

10.

11.

12.

13.

14.

15.

16.

Argyriou, M., Dragoni, N., Spognardi, A.: Security flows in OAuth 2.0 framework:
a case study. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2017.
LNCS, vol. 10489, pp. 396-406. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66284-8_33

Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols, vol. 2000, pp. 136-145, November 2001. https://doi.org/10.1109/SFCS.
2001.959888

Chari, S., Jutla, C.S., Roy, A.: Universally composable security analysis of OAuth
v2.0. IACR Cryptology ePrint Archive, vol. 2011, p. 526, January 2011

Chen, E.Y., Pei, Y., Chen, S., Tian, Y., Kotcher, R., Tague, P.: OAuth demysti-
fied for mobile application developers. In: Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2014, pp. 892-903.
ACM, New York (2014). https://doi.org/10.1145/2660267.2660323http: //doi.acm.
org/10.1145/2660267.2660323

Corella, F., Lewison, K.P.: Security analysis of double redirection protocols (2011)
Ferry, E., O’'Raw, J., Curran, K.: Security evaluation of the OAuth 2.0 framework.
Inf. Comput. Secur. 23, 73-101 (2015). https://doi.org/10.1108/ICS-12-2013-0089
Hardt, D.: The OAuth 2.0 authorization framework. RFC 6749, RFC Editor, Octo-
ber 2012. http://www.rfc-editor.org/rfc/rfc6749.txt

Li, W., Mitchell, C.J.: Security issues in OAuth 2.0 SSO implementations. In:
Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS,
vol. 8783, pp. 529-541. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13257-0_34

Li, W., Mitchell, C.J., Chen, T.: OAuthguard: protecting user security and privacy
with OAuth 2.0 and OpenlD connect. arXiv abs/1901.08960 (2019)

Lodderstedt, T., McGloin, M., Hunt, P.: OAuth 2.0 threat model and security
considerations. RFC 6819, RFC Editor, January 2013

Lodderstedt, T., Bradley, J., Labunets, A., Fett, D.: OAuth 2.0 security best
current practice. Internet-Draft draft-ietf-oauth-security-topics-09, IETF Sec-
retariat, November 2018. http://www.ietf.org/internet-drafts/draft-ietf-oauth-
security-topics-09.txt

Pai, S., Sharma, Y., Kumar, S., Pai, R.M., Singh, S.: Formal verification of OAuth
2.0 using alloy framework. In: 2011 International Conference on Communication
Systems and Network Technologies, pp. 655-659, June 2011. https://doi.org/10.
1109/CSNT.2011.141

Richer, J., Sanso, A.: OAuth 2 in Action. Manning Publications, New York (2017)
Torlak, E., van Dijk, M., Gassend, B., Jackson, D., Devadas, S.: Knowledge flow
analysis for security protocols. CoRR abs/cs/0605109 (2006). http://arxiv.org/
abs/cs/0605109

Yang, F., Manoharan, S.: A security analysis of the OAuth protocol. In: IEEE
Pacific Rim Conference on Communications, Computers and Signal Processing
(PACRIM), pp. 271-276, August 2013. https://doi.org/10.1109/PACRIM.2013.
6625487

Zhou, Y., Evans, D.: SSOScan: automated testing of web applications for single
sign-on vulnerabilities, August 2014

https://doi.org/10.1007/978-3-319-66284-8_33
https://doi.org/10.1007/978-3-319-66284-8_33
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1145/2660267.2660323
http://doi.acm.org/10.1145/2660267.2660323
http://doi.acm.org/10.1145/2660267.2660323
https://doi.org/10.1108/ICS-12-2013-0089
http://www.rfc-editor.org/rfc/rfc6749.txt
https://doi.org/10.1007/978-3-319-13257-0_34
https://doi.org/10.1007/978-3-319-13257-0_34
http://www.ietf.org/internet-drafts/draft-ietf-oauth-security-topics-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-oauth-security-topics-09.txt
https://doi.org/10.1109/CSNT.2011.141
https://doi.org/10.1109/CSNT.2011.141
http://arxiv.org/abs/cs/0605109
http://arxiv.org/abs/cs/0605109
https://doi.org/10.1109/PACRIM.2013.6625487
https://doi.org/10.1109/PACRIM.2013.6625487

	OVERSCAN: OAuth 2.0 Scanner for Missing Parameters
	1 Introduction
	1.1 Related Work
	1.2 Contribution and Paper Organization

	2 Design and Construction Overview of OVERSCAN
	2.1 Traffic Classification
	2.2 Vulnerability Analysis
	2.3 Display Analysis Result
	2.4 Generate Vulnerability Report

	3 Supported Vulnerabilities
	3.1 X-CSRFToken
	3.2 State Parameter
	3.3 Redirect_URI
	3.4 X-XSS-Protection
	3.5 X-Content-Type-Options
	3.6 X-Frame Options

	4 Experimental Analysis
	5 Features and Limitations
	6 Conclusion
	References

