
Towards Secure Open Banking
Architecture: An Evaluation

with OWASP

Deina Kellezi1, Christian Boegelund1, and Weizhi Meng1,2(B)

1 Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Lyngby, Denmark

weme@dtu.dk
2 Department of Computer Science, Guangzhou University, Guangzhou, China

Abstract. The European Union passed the PSD2 regulation in 2015,
which gives ownership of bank accounts to the private person owning
it. As a result, the term Open Banking, allowing third party providers
and developers access to bank APIs, has emerged, welcoming a myriad
of innovative solutions for the financial sector. However, multiple cyber
security issues arise from exposing bank data to third party providers
through an API. In this work, we propose an architectural model that
ensures clear separation of concern and easy integration with Nordea’s
Open Banking APIs (sandbox version), and a technological stack, con-
sisting of the micro-framework Flask, the cloud application platform
Heroku and persistent data storage layer (using Postgres). We analyze
the web application’s security threats, and determine whether or not the
technological frame provides adequate security protection, by leverag-
ing the OWASP Top 10 list of the Ten Most Critical Web Application
Security Risks. Our results can support future developers and industries
working on web applications for Open Banking towards security improve-
ment by choosing the right frameworks and considering the most impor-
tant vulnerabilities, as well as contributing to the documentation and
development of Nordea’s APIs.

Keywords: Web security · Open Banking API · OWASP · Threat
and risk · PSD2 regulation · Secure architecture

1 Introduction

The financial sector is transforming radically. Technological innovations arise due
to new regulations, demanding banks to develop APIs that enables the following
two features: (1) Access to bank account information; and (2) Triggering of
transactions between different accounts.

Nordea, one of the largest banks in the Nordics, released the first version of
their Open Banking API in January 2019. As one of few banks, they also released
a sandbox version that allows possible third party providers to use the API in
c© Springer Nature Switzerland AG 2019
J. K. Liu and X. Huang (Eds.): NSS 2019, LNCS 11928, pp. 185–198, 2019.
https://doi.org/10.1007/978-3-030-36938-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36938-5_11&domain=pdf
https://doi.org/10.1007/978-3-030-36938-5_11


186 D. Kellezi et al.

a test environment. Online banking applications are one of the most lucrative
targets for attacks. Many have been mitigated through Nordea’s own protocols,
such as the production APIs requiring a multiple step authentication through
nemID when signing up. However, breaking into an application, by gaining access
to a user’s password, can give intruders direct access to triggering transactions.
The application security itself, on a range of different areas such as data storage,
injections and communication, should therefore be considered very important to
mitigate during development, as this can easily result in breaches.

Up to 3300 developers are currently registered as developers on Nordea Open
Banking, and only one product has been realized so far. The adoption of Open
Banking exposes data to more actors than ever before, especially new compa-
nies and startups, and therefore also an enlargement of the security risks that
the financial industry is facing, with existing risks being increased and new risks
being introduced [7]. Moreover, the threat becomes higher when leveraging appli-
cations on a web platform, with possibly insecure protocols that might not be
possible on a desktop or phone application.

Due to the complicated process of obtaining a financial license to use actual
production data, in this work, we delimit the problem by using only the sandbox
version to develop the solution of triggering transactions based on habits, and to
model the possible threats. In particular, we first identify the background of the
technology stack needed to support development of a deployed web application,
with a persistent data storage layer and a high level of security. We also define
the system architecture as well as how it will communicate with the API. We
then use the OWASP Top 10 list of the Ten Most Critical Web Application
Security Risks methodology to study the possible threats and its risk levels. Our
contributions in this paper can be summarized as follows.

– We propose a system architecture of the web application in practice, in col-
laborating with Nordea Open Banking.

– We identify relevant potential attacks on our system, and analyze the risk
by considering the OWASP Top 10 list. We also provide insights on how to
mitigate them accordingly.

The remainder of this article is structured as follows: Sect. 2 clarifies the
important background information of the Flask framework and Nordea’s Open
Banking API. In Sect. 3, we present the proposed web application architecture
of secure Open Banking. Section 4 evaluates our proposed architecture by lever-
aging the OWASP Top 10 list. Section 5 introduces the related work, and Sect. 6
summarizes our work with future directions.

2 Background

The micro-framework for web development, Flask (for Python), will be used to
develop the application. Flask mitigates many security threats by default, sup-
plemented by a number of renowned third-party extensions and packages from
authenticated by the Flask community, and is customize-able to a great extend.



Towards Secure Open Banking Architecture 187

It is also provides out of the box abstraction layers for communicating with the
popular object relational database Postgres and the cloud application platform
Heroku for deployment.

2.1 The Flask Framework

A Flask application is initialized by creating an application instance through the
Flask class with the application package as argument. The web server then passes
all received requests from clients, in this case web browsers, to this application
instance. The logic is handled using the Web Server Gateway Interface (WSGI)
as protocol, constantly awaiting requests. The framework is compliment with
the WSGI server standard [8].

The application instance also needs to know which part of the logic needs to
run for each URL requested. This is done through a mapping of URLs to the
Python functions handling the logic associated with a URL. This association
between URL, and the function handling it, is called a route, defined by the
@package.route decorator. The return value of the function is the response
that the client receives in the form of a template or a redirect.

2.2 Cloud Application Platform

Heroku is one of the first and largest Platform as a Service (PaaS) provider with
their Cloud Application Platform. The developer can deploy an application to
Heroku using Git to first clone the source code from the developer branch and
then push the application to the Heroku Git server. The command automatically
triggers the installation, configuration and deployment of the application. The
platform uses units of computing, dynos, to measure usage of the service and
perform different tasks on the server. It also provides a large number of plugins
and addons for databases, email support, and many other services. Heroku sup-
ports Postgres [6] databases as an add-on, created and configured through the
command line client.

2.3 Database Management

Flask puts no restriction on what database packages can be used and supports
a number of different database abstraction layer packages. The web application
will run on the Postgres database engine supported by the ORM, SQLAlchemy.
This is based on the following evaluation on a number of different criteria:

– Easy usage: Using a database abstraction layer (object-relational mappers
ORMs) such as SQLAlchemy provides transparent conversion of high-level
object-oriented operations into low-level database instructions, compared to
writing raw SQL statements [16].

– Performance: ORM conversions can result in a small performance penalty,
yet the productivity gain far outweighs the performance degradation. The
few outlying queries that degrade the performance can be subsidized by raw
SQL statements.



188 D. Kellezi et al.

– Portability: The application platform of choice, Heroku, supports a number
of different database engine choices, the most popular and extensible being
Postgres and MySQL [2].

– Integration: Flask includes several package designed to handle ORMs, such
as Flask-SQLAlchemy [17], which includes engine-specific commands to han-
dle connection.

2.4 The Nordea Open Banking APIs

The Nordea APIs provide access to a number of different endpoints in order
to facilitate the connection to the accounts of the user. Some API endpoints
must be used in order to authenticate the user before changing the data, while
other endpoints involve a number of side effects, e.g. changing the balance on the
accounts [3]. In the following, we will go through a list of the relevant endpoints,
the most crucial being:

– Access Authorization. To leverage the functionality of the API, the Client
ID and Client Secret must be obtained. The values can be retrieved by
creating a project on the Nordea Open Banking website. The Client ID and
Client Secret are parameters which are configured to the Client, and they
are never exposed to the actual application user. Once the account has been
approved, we must obtain an access token in order to gain access to the API.

– Account Information Services. The API of Account Information includes
the possibility to check the contents of the different sample accounts in the
sandbox version. We can create new accounts, delete accounts and add funds
to said accounts. This can be done by sending a request to the Accounts
endpoint [3].

– Payment Initialization Services. The Payment Initialization API provides
functionality to create payments directly in the API, moving funds from one
account to another [3].

3 Our Proposed Web Application Architecture

3.1 The Architecture

In order to define the architecture, we present a model based on the Model-
View-Controller architecture (MVC) specifically adjusted for web development
as proposed by Dragos-Paul Pop and Adam Altar [11]. They found that develop-
ers often combine HTML code with server side programming languages during
web development to create dynamic web pages and applications, and this leads to
highly entangled and unmaintainable code. With an MVC pattern, it is possible
to prevent cluttering by separating the three overall parts of a web applica-
tion. The model also proposes how to handle the API integration through an
abstraction layer and include it in the MVC.



Towards Secure Open Banking Architecture 189

– Model: A persistent data storage layer through a data centre or database.
– Controller: The HTTP requests triggered by user actions and general rout-

ing of different sub-pages.
– View: The HTML code and mark-up languages in the templates rendered to

the user as a result of a request.

These three main components will be built through a modular approach,
using blueprints as recommended by Flask.

Figure 1 presents the proposed diagram for the adjusted MVC, further
adjusted to include supplementary components for interacting with the API.
This model allows us to further propose how this fits into the Flask Framework
and an effective abstraction layer integration with the API.

The Model. Presented as blue in the figure and shows the modelling of the
data objects and relationships. This is the direct representation of the schema in
the database. Whenever the SQLAlchemy methods, either querying, updating or
deleting data, are called on the defined data objects in the model, the database
is updated accordingly. This also provides simpler commands for establishing
connections to Postgres through the URL of the database as handled by the
controller.

Fig. 1. MVC architecture for web application. (Color figure online)

The Controller. Presented as green in the figure and shows the controller
separated into three blueprints:

– auth controller: Rendering the pages responsible for signing up and
authenticating users logging in.

– main controller: Rendering the pages of the specific user session, contain-
ing URLs for creating habits, checking off habits that are completed, overview
over habits, overview over accounts and settings. This is restricted to authen-
ticated users only.

– admin controller: Rendering the pages of the administration page included
for demonstration purposes that allows to test the different API functionality.
This is restricted to users with admin rights only.



190 D. Kellezi et al.

The blueprints provide a clearer separation of the different states in the appli-
cation. This separation could done through application dispatching, ie. creating
multiple application objects, however, this would require separate configurations
for each of the objects and management at the server level (WSGI). Blueprints
instead support the possibility of separation at the Flask application level, ensur-
ing the same application and object configurations across all controllers, and
most importantly the same API access. This means that a Blueprint object
works similarly to a Flask application object, but is not an actual application
as it is a blueprint of how to construct or extend the application at runtime [1].
When binding a function with the decorator @auth.route, the blueprint will
record the intention of registering the associated function from the auth package
blueprint on the application object. It will also prefix the name of the blueprint
(given to the Blueprint constructor) auth to the function.

The View. Presented as orange in the figure and shows the inheritance hierar-
chy of the templates that primarily consist of HTML and CSS, built upon a num-
ber of frameworks. The inheritance is supported by the Jinja2 Template Engine,
offered by Flask, enabling all templates to inherit from a base design, as well as
register onto their specific controller through the aforementioned blueprints. This
also allows dynamic rendering of values provided as argument to the templates
when rendered [1].

3.2 Object Relational Database

Ensuring that the application data is stored in an organized and secure way
requires a database model. Databases can be modelled in different ways, and we
need a model that can effectively represent the following information: Users, the
individual user’s habits, and the individual user’s accounts. This constitutes an
object relational database [18].

API Abstraction Layer. We present two supplementary API and Parser
classes to the MVC model. These classes work as abstraction layers for easing
communicating with the APIs and filtering out unnecessary data for the appli-
cation. The purpose is to avoid interacting directly with the API and therefore
avoiding unnecessary complexities and errors by encapsulating complex requests
in methods and handling responses accordingly.

The user’s bank and account information can be retrieved directly through
the Account Information Services API as a JSON response. The calls to retrieve
this response is separated into several methods in the Parser class. The response
is first separated into a list object as a field in the Parser, and then indexed to
extract the needed information. It also consists of different conversion methods
to convert different account representations, as well as methods to hash and
check account numbers. The API class contains the methods handling the Pay-
ment Initialization Service API, hence triggering transactions between the bank
accounts, called whenever habits have been checked off. Through the fields of



Towards Secure Open Banking Architecture 191

the API class we were also able to keep the access token saved across web pages
without having to re-instantiate it. Both classes are created as instances for the
controller.

Platform Architecture. In order for the application to be deployed in pro-
duction mode, we propose a platform hosted on the cloud application platform,
Heroku [2], with the database connected through Heroku’s Postgres add-on.

Fig. 2. Platform architecture.

Figure 2 shows the architecture of the platform the application is deployed
onto. The Flask application itself is as described run through a WSGI server
during development. The application will therefore need to be configured to
run through HTTP/HTTPS Server instead to run outside of local host. We
propose Gunicorn, a WSGI HTTP server, as recommended by Heroku [5]. The
application will send the ORM statements to the database through the database
driver psycopg2, the most popular for the Python language.

4 Evaluation of Attacks Against Application Integrating
with Open Banking API

Methodology. The methodology for applying the OWASP Top 10 list, to the
described application and its architecture, entails systematically going through
the list from most critical to least critical threat. The OWASP methodology
provides a threat modelling method for categorizing the threats in six different
areas, that might result in the weighing of threats to change:

Four of these areas are pre-determined in the model and have been the basis of
the top 10 ranking in the first place. The categorizations for each element in the
list can be viewed from the OWASP documentation [13,14]. However, observing
the two areas, Threat Agents and Business Impact, these areas impact how
critical a given threat is. If the Threat Agent and/or Business Impact has a low
threat level, then the threat can quickly become irrelevant. OWASP provides
a comprehensive model for calculating the risk factor of Threat Agents and
Business Impacts [15].



192 D. Kellezi et al.

However, the limitations imposed by using the sandbox version means that
we have a non-existing user base, lacking business context and problems that
arise as a result of using the sandbox that prevent testing some of the factors.
It can therefore be difficult to reach feasible estimates of both Threat Agents
and Business Impact. The Threat Agents will therefore simply be assumed high
across all areas, since the financial industry is generally a critical target due to
the possibility of financial rewards. The Business Impact estimation needs to
include factors like financial damage, reputation damage, non-compliance and
privacy violation, data that requires an actual business context. We therefore
conduct simple estimates of Business Impact, based on factors that are critical
for the end user and their bank accounts:

1. Low: Security is compromised in areas not containing sensitive data, areas
that do not trigger unintentional transactions, or attempt attacks that does
not affect the application in any way.

2. Medium: Security is compromised such that the attacker gains access to
sensitive data in the form of bank data or habits stored in the database.

3. High: Security is compromised such that the attacker gains access to func-
tionality using the Payment Initialization Service and can trigger uninten-
tional transactions, leading to either small, substantial or large financial con-
sequences.

Each threat area in the top 10 list will be addressed, with an emphasis on
the areas that are estimated as highly for the Business Impact.

4.1 Applying OWASP to the Application Ensuring Secure
Integration with the API

Injection and XSS, Threat Agents: 3, Business Impact: 1. We propose
a critical approach to user input to prevent injection. A number of tests should
be made:

– Input should be filtered
– Output should be escaped by filtering input

All input fields from the user should be filtered from code-like plain text or
injecting raw SQL statements into the database. Submitting unfiltered input
into the database can result in a large exposure to SQL injections. This can be
detrimental to the privacy of the data; potentially allowing an attacker access to
view the bank information of the user. No further measures need to be proactively
taken to prevent injections. ORM SQLAlchemy automatically filters the input of
the user, and the Flask framework automatically escapes output when inserting
values into templates, mitigating threats such as JavaScript injection or similar.

Broken Authentication - Threat Agents: 3, Business Impact: 3. We
propose a number of actions to mitigate broken authentication, as it is one of
the most critical threats against the application and the API:



Towards Secure Open Banking Architecture 193

– A set of criteria for the user credentials at sign up
– Preventing that passwords are saved in plain text
– Using multi-factor authentication during either sign-up and/or login
– A user should only be allowed to enter URLs that they are authenticated to

enter

The user is required to provide a user name and password at sign-up. Most
application nowadays provide the possibility of signing up through email. This
is so the company is able to authenticate and send information through a mail
integration. The user name should therefore be a valid email, so we are able
to perform multi-factor authentication by sending a confirmation email to the
address. The Flask-Mail extension provides a simple interface to set up SMTP
with your Flask application and to send messages directly from the controller.
We also require the to be at least 10 characters long, include both lowercase and
uppercase letters, numbers as well as a special sign. Most password breaches
happen as a result of weak password criteria, and setting up a number of require-
ments for the password is therefore an easy and very effective ways of preventing
broken authentication.

The authentication can also be broken by gaining access to the database
and extracting the plain text version of the password. Therefore only the hashed
version of the password is stored in the database. The bcrypt hashing algorithm,
combined with salting, is one of the most effective ways to permit brute force
attacks. A salt with a length of 12 characters will result in millions of different
combinations, making it almost impossible for an attacker to decode. It does have
a larger penalty on the time complexity compared to other hashing algorithms.
However, we are willing to make this trade-off.

The Flask-Login extension provides user session management for Flask and
allows us to restrict views through a simple decorator to only authenticated
users. The Flask framework therefore provides an easy way of restricting specific
URLs.

Sensitive Data Exposure - Threat Agents: 3, Business Impact: 3. We
propose only storing the most important data in the database for the applica-
tion to run. The remaining data will be exposed during run time from the API
response, retrieved by the API abstraction layer. The information stored in the
database includes a hashed version of the account number, and the name of the
account. The rest of the information of that specific account can be retrieved at
run time by checking the hashed account number against all the user’s accounts
in the API. The idea is to keep as much information as possible from an attacker
that gains access to the database without compromising functionality.

XML External Entities - Threat Agents: 3, Business Impact: 1. The
application accepts no uploads or XML and therefore, an attack of this nature
has no Business Impact. It is therefore not relevant to address.



194 D. Kellezi et al.

Broken Access Control - Threat Agents: 3, Business Impact: 3. We
propose ensuring that the functionality of the application is only exposed to the
specific user logged in. The user is able to check off a number of habits and
actions, resulting in automatically transfer funds. It is therefore necessary to
ensure that it is not possible to gain access to this POST request from other
sources. For instance, including the current user ID in the POST request to the
URL, would enable an attacker access from the outside, since the request could
easily be faked. Thus, the only to ensure that the it is in fact the logged in user
performing the check off, is to check the user owning the habit up against the
user that is currently in the session. If an attacker is not allowed to check off a
habit, but attempts to do it anyway, they are redirected to an error page. We
also log the attempt in our logging system. This allows us to have an overview
of potential security issues and discover possible threat agents.

In order to further strengthen the application, we have implemented pro-
tection against Cross-Site Request Forgery (CSRF) with the Flask package
CSRFProtect. This is done by adding a hidden field to all forms. This results in
the user having to fill out the form on the website in order to have their request
accepted, thus creating a defence against a myriad of automatic scripts. As an
additional security measure, CSRF also requires a secret key to sign the token.

Security Misconfiguration - Threat Agents: 3, Business Impact: 2.
Misconfiguration can have a number of different sources that can bring distrust
to the application, some of which include:

– Revealed stack traces or overly informative error messages
– Improperly configured permissions
– Incorrect values for security settings across servers, frameworks, libraries or

databases

We propose using large parts of the security packages and settings offered
by the different parts of the technical stack. Flask provides a number of ways
to handle custom error messages to the user to prevent showing stack traces
or overly informative error messages to users. We propose a combination of the
following. Message Flashing, that can be included in the templates, making it
possible to record a custom message at the end of a request and access it in the
next request and only next request. The Python logging package also provides the
possibility of printing custom messages and stack traces to the console, limiting
the information from showing specific request methods and URLs. However,
in 2014, Flask eliminated error and stack traces from application running in
production mode1, so it is no longer necessary to create custom error messages.

For mitigating improperly configured permissions, the cloud service provider
of choice does not allow open default sharing permissions to the Internet or other
users. This ensures that sensitive data stored within cloud storage is not accessed
wrongfully. Heroku PaaS is a large service provider and regular audits are per-
formed to ensure that permission breaches does not occur. Lastly, the included
1 https://github.com/pallets/flask/issues/1082.

https://github.com/pallets/flask/issues/1082


Towards Secure Open Banking Architecture 195

Flask packages provide a number of security settings. One example is the Flask
LoginManager package, from which it is possible to choose from different levels
(none, basic or strong) of security against user session tampering. The latter
ensures that Flask-Login keeps track of the client IP address as well as browser
agent during browsing. If a change is detected, the user will automatically be
logged out.

Components with Known Vulnerabilities - Threat Agents: 3, Busi-
ness Impact: 3. The components we use have no major known vulnerabilities.
The Flask framework is one of the most popular Python micro-frameworks and
therefore has a number of requirements to ensure adequate security. Moreover,
the wide community of developers and contributors ensure that measures are
taken to maintain this security level by frequently updating the most popular
and renowned packages. The Postgres database [6] is also addressed at several
levels:

– Database file protection. All files stored within the database are protected
from reading by any account other than the Postgres superuser account.

– Connections from a client to the database server are, by default, allowed only
via a local Unix socket, not via TCP/IP sockets.

– Client connections can be restricted by IP address.
– Client connections may be authenticated vi other external packages.
– Each user in Postgres is assigned a username and password.
– Users may be assigned to groups, and table access may be restricted, for

instance through admin privileges.

Furthermore, as mentioned previously, there are currently problems with the
deployment of the application to Heroku PaaS. Heroku is not known to have any
known vulnerabilities itself. However, the server routinely crashes in production
mode with no useful error messages when enforcing HTTPS on Heroku. We
suspect that this is caused by problems with the TLS Layer, with error messages
that stem from Nordea’s Open Banking API. Hence we suspect that the errors
stem from how the API handles the TLS Layer in the sandbox version. This
imposes a high risk for the packages sent between the application and the API
to be intersected. However, no sufficient documentation explains how to mitigate
this issue in Nordea’s documentation.

Insufficient Logging and Monitoring - Threat Agents: 3, Business
Impact: 2. As mentioned previously, whenever a user attempts to check off
the habit, or perform any other actions in the application, of another user, it is
added to the log. The log is handled through a logging package offered by the
Python library. We propose also including logging for IP addresses and alarm
whenever a user is logged in from a different country.



196 D. Kellezi et al.

Discussion. Applying the OWASP Top 10 Threats and Risk Modelling Frame-
work to the application shows that it can mitigate a large part of the most
critical threats to the application. The threats posed by Broken Authentication,
the most critical in terms of Business Impact, is now largely protected from
breaches that could result in the user losing account funds. The same applies for
Sensitive Data Exposure and Broken Access Control that were also categorized
as very critical threats. However, the OWASP framework also exploited that the
components with known vulnerabilities posed a high threat to the application.
Specifically Nordea’s APIs. The problems with the TLS Layer in Nordea’s Open
Banking API force us to use HTTP in production mode to avoid the routinely
crashes occurring with HTTPS. This means that the packages sent from the
API to the application are encrypted. Packages that can contain access tokens,
client IDs or secret keys that might give access to Nordea’s infrastructure. This
vulnerability is impossible to handle without more documentation of the API,
since it does not stem from the application itself.

5 Related Work

The previous work carried out on web applications integrating with Open
Banking APIs is limited, and practically non-existing using the technical stack
described in this paper. This is due to two reasons such as:

– The novelty of most of the interfaces, including Nordea’s APIs
– The requirements of developers need to be approved by national financial

authorities for using the APIs in production

These factors has delimited the pool of possible researchers to only a few autho-
rized third-parties or those using the sandbox version. No official paper has dived
into integrating with Nordea’s Open Banking API as a third party provider, nor
proposed a model for a architectural model or stack that secures bank account
information and transaction functionality in a web application. Nevertheless,
a lot of work has generally been done in the field of web application security
overall, including several models to identify, analyze and mitigate possible secu-
rity breaches under a cyber attack. One example is a study on in the field
of web application security vulnerabilities detection, that conducts a security
analysis and threat modelling based on the OWASP Top 10 list and Threat
Modelling [12].

The sandbox version of the Nordea Open Banking API was officially released
during the beginning of the project in January 2019. During the attempt to gen-
erate the access token for establishing connection before beginning the devel-
opment of the application, the error codes were limited to generic server errors.
The limited sample codes and lacking documentation on possible error codes
made it difficult to correct. In order to find a solution, we conducted a simu-
lation with the API simulation tool named Postman [4]. The connection was
successful, the code in Postman worked and did not return any error codes. This
led to the conclusion that something was wrong with our implementation of the



Towards Secure Open Banking Architecture 197

API calls. To understand the difference between the HTTP-packages, the differ-
ence between them were negligible. We contacted the senior software architect of
Nordea Open Banking. The support team tried to assist us in making the API
work and assess the possible errors made through logging of their own servers.
Ultimately, they did not succeed in resolving the issue. The origin of the error
was later found: The redirect URI, a crucial part of the OAuth2 2.0-process was
set to an incorrect value. We decided to contribute to the community of devel-
opers using the Nordea Open Banking API by creating a pull request3. At the
moment, the samle code only works with version 2 of the API, while the API
has been updated to version 3 since then. to contribute to the wider community
of developers using the Nordea Open Banking API.

6 Conclusion and Future Work

In this work, we systematically proposed and described a technical stack and
architectural model to ensure a web application that could integrate easily with
Nordea’s Open Banking API in a secure manner. This was used as input to the
OWASP Top 10 Threats and threat modelling methodology to identify the most
prevalent threats to the application data and, indirectly, the functionality of
the APIs. The OWASP recommendations were used to prevent these attacks by
taking adequate security methods to the most critical areas. The results showed
that many of these security measures were either handled automatically by the
components offered by the technical stack, or were easily preventable through
included packages of the Flask Framework. However, it also shows that the appli-
cation faces a high risk due to the compromising handling of the TLS Layer in
the API, causing the production server to routinely crash when using HTTPS.
These risks may propagate upwards in the architecture, resulting in high risks
for the user’s account data and funds. Since the server records show that the
errors stem from the API itself, it is most likely not due to the choices of any
of the cloud application platform, packages, libraries, database or frameworks.
The results also show that creating an API Abstraction Layer eases communi-
cation with the API during development, and that it can be implemented as a
modification to the MVC for web applications.

For future work, we intend to contact the support team of the API to gain
more information on the handling of the TLS Layer, information that is currently
lacking in the sandbox documentation. This may lead to one more contribution
to the documentation, other than the pull-request made to the Open Banking
Team code samples [9,10]. We could also consider applying other popular threat
models to the application in attempt to find other vulnerabilities not detected
by the use of OWASP.

Acknowledgments. Weizhi Meng was partially supported by H2020-SU-ICT-03-
2018: CyberSec4Europe with No. 830929, and National Natural Science Foundation
of China (No. 61802077).

2 OAuth is one of the leading protocols within authentication.
3 The PR can be seen here: https://github.com/NordeaOB/examples/pull/7.

https://github.com/NordeaOB/examples/pull/7


198 D. Kellezi et al.

References

1. Grinberg, M.: Flask Web Development: Developing Web Applications with Python.
OReilly, California (2014)

2. Heroku Dev Center (2018). https://devcenter.heroku.com/categories/reference
3. Nordea Open Banking Team (2019). https://developer.nordeaopenbanking.com/

app/documentation?api=Accounts%20API
4. Post Learning Center. https://learning.getpostman.com/docs/postman/api

documentation/intro to api documentation/s
5. Heroku Dev Center (2019). https://devcenter.heroku.com/articles/heroku-

postgresql. Documentation
6. The PostgreSQL Global Development Group (1996–2019). https://www.

postgresql.org/docs/12/index.html
7. Kiljan, S., Simoens, K., Cock, D.D., van Eekelen, M.C.J.D., Vranken, H.P.E.: A

survey of authentication and communications security in online banking. ACM
Comput. Surv. 49(4), 61:1–61:35 (2017)

8. Pallets Team: Flask’s Documentation. http://flask.pocoo.org/docs/1.0/
9. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: definitions, impli-

cations, and separations for preimage resistance, second-preimage resistance, and
collision resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp.
371–388. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25937-
4 24

10. Niels, P., David, M.: A future adaptable password scheme. The OpenBSD Project
(1999)

11. Dragos-Paul, P., Adam, A.: Designing an MVC model for rapid web application
development. Procedia Eng. 69, 1172–1179 (2014)

12. Sajjad, R., Mamoona, H., Bushra, H., Ansar A., Muhammad, A., Kamil, I.: Web
application security vulnerabilities detection approaches: a systematic mapping
study. IEEE (2015)

13. The OWASP Foundation: OWASP top 10 - the ten most critical web application
security risks. Release notes (2013)

14. The OWASP Foundation: Top 10 List (2017). https://www.owasp.org/index.php/
Category:OWASP Top Ten 2017 Project. Documentation

15. The OWASP Foundation: Risk Rating Methodology (2017). https://www.owasp.
org/index.php/OWASP Risk Rating Methodology. Documentation

16. The SQLAlchemy authors and contributors (2019). https://docs.sqlalchemy.org/
en/13/. Documentation

17. Pallets Team (2010). https://flask-sqlalchemy.palletsprojects.com/en/2.x/. Flask-
SQLAlchemy Documentation

18. IBM Informix (2011). https://www.ibm.com/support/knowledgecenter/hu/
SSGU8G 11.50.0/com.ibm.gsg.doc/ids gsg 416.htm

https://devcenter.heroku.com/categories/reference
https://developer.nordeaopenbanking.com/app/documentation?api=Accounts%20API
https://developer.nordeaopenbanking.com/app/documentation?api=Accounts%20API
https://learning.getpostman.com/docs/postman/api_documentation/intro_to_api_documentation/s
https://learning.getpostman.com/docs/postman/api_documentation/intro_to_api_documentation/s
https://devcenter.heroku.com/articles/heroku-postgresql
https://devcenter.heroku.com/articles/heroku-postgresql
https://www.postgresql.org/docs/12/index.html
https://www.postgresql.org/docs/12/index.html
http://flask.pocoo.org/docs/1.0/
https://doi.org/10.1007/978-3-540-25937-4_24
https://doi.org/10.1007/978-3-540-25937-4_24
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_2017_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_2017_Project
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://docs.sqlalchemy.org/en/13/
https://docs.sqlalchemy.org/en/13/
https://flask-sqlalchemy.palletsprojects.com/en/2.x/
https://www.ibm.com/support/knowledgecenter/hu/SSGU8G_11.50.0/com.ibm.gsg.doc/ids_gsg_416.htm
https://www.ibm.com/support/knowledgecenter/hu/SSGU8G_11.50.0/com.ibm.gsg.doc/ids_gsg_416.htm

	Towards Secure Open Banking Architecture: An Evaluation with OWASP
	1 Introduction
	2 Background
	2.1 The Flask Framework
	2.2 Cloud Application Platform
	2.3 Database Management
	2.4 The Nordea Open Banking APIs

	3 Our Proposed Web Application Architecture
	3.1 The Architecture
	3.2 Object Relational Database

	4 Evaluation of Attacks Against Application Integrating with Open Banking API
	4.1 Applying OWASP to the Application Ensuring Secure Integration with the API

	5 Related Work
	6 Conclusion and Future Work
	References




