
Chapter 5
Topology Design Optimization

In this chapter a topology optimization algorithm based on the topological derivative
concept combined with a level-set domain representation method is presented [11],
together with its applications in the context of compliance structural topology
optimization and topology design of compliant mechanisms. It is worth mentioning
that the topological derivative is defined through a limit passage when the small
parameter governing the size of the topological perturbation goes to zero. Therefore,
it can be used as a steepest-descent direction in an optimization process, according
to any method based on the gradient of the cost functional. We restrict ourselves to
the case in which the domain is topologically perturbed by the nucleation of a small
inclusion where a weak material phase is used to mimic voids, allowing to work in a
fixed computational domain. This simple strategy bypasses the use of a complicated
algorithm specifically designed to deal with nucleation of holes in a computational
domain.

Let us introduce a hold-all domain D ⊂ R2, which is split into two subdomains,
Ω ⊂ D and its complement D \ Ω . We assume that there is a distributed parameter
ρ : D �→ {1, ρ0} defined as

ρ(x) :=
{

1 if x ∈ Ω,

ρ0 if x ∈ D \ Ω,
(5.1)

with 0 < ρ0 � 1. The topology optimization problem we are dealing with consists
in minimizing a shape functional Ω �→ J (Ω) with respect to Ω ⊂ D , that is:

Minimize
Ω⊂D

J (Ω) , (5.2)

which can be solved by using the topological derivative concept. Actually, a circular
hole Bε(̂x) is introduced inside D . Then, the region occupied by Bε(̂x) is filled by
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an inclusion with material properties different from the background. The material
properties are characterized by a piecewise constant function γε of the form

γε(x) :=
{

1 if x ∈ D \ Bε ,

γ (x) if x ∈ Bε ,
(5.3)

where the contrast γ is defined as

γ (x) =
{

ρ0 if x ∈ Ω,

ρ−1
0 if x ∈ D \ Ω,

(5.4)

which induces a level-set domain representation method.
In order to fix these ideas, a model problem in elasticity is considered in Sect. 5.1.

The resulting topology design algorithm based on the topological derivative concept
combined with a level-set domain representation method is presented in Sect. 5.2.
Some numerical results in the context of compliance structural topology opti-
mization and topology design of compliant mechanisms are presented in Sect. 5.3.
Finally, the chapter ends in Sect. 5.4 with a discussion concerning perspectives of
future developments, together with a list of open problems.

5.1 Model Problem in Elasticity

In this section, the topological derivative of a tracking-type shape functional
associated with the linear elasticity problem into two spatial dimensions, in the
presence of an small circular inclusion, is derived.

The tracking-type shape functional associated with the unperturbed domain is
defined as

ψ(χ) := J (u) =
∫

ΓN

g · u , (5.5)

where g is a given vector function in H−1/2(ΓN) and the displacement vector field
u : D �→ R2 is the solution of the following variational problem:

u ∈ U :
∫
D

σ(u) · (∇η)s =
∫

ΓN

q · η ∀η ∈ V , (5.6)

with σ(u) = ρC(∇u)s . In the above equation, ρ is given by (5.1), q ∈ H−1/2(ΓN)

is a given boundary traction, and (∇ϕ)s is the symmetric part of the gradient of a
vector field ϕ, namely

(∇ϕ)s := 1

2

(
∇ϕ + (∇ϕ)	

)
. (5.7)
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By considering isotropic medium, the constitutive tensor C can be represented as

C = 2μ I + λ I ⊗ I , (5.8)

where I and I are identity tensors of second and fourth orders, respectively, and μ

and λ are the Lamé coefficients, both considered constants everywhere. In particular,
in the case of plane stress assumptions, we have

μ = E

2(1 + ν)
and λ = νE

1 − ν2 , (5.9)

whereas in the case of plane strain state, there are

μ = E

2(1 + ν)
and λ = νE

(1 + ν)(1 − 2ν)
, (5.10)

where E is the Young modulus and ν the Poisson ratio. The spaces U and V are
defined as

U = V = {
ϕ ∈ H 1(D) : ϕ|ΓD

= 0
}

. (5.11)

In addition, ∂D = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅, where ΓD and ΓN are Dirichlet
and Neumann boundaries, respectively. See sketch in Fig. 5.1.

The strong system associated with the variational problem (5.6) can be stated as:
Find u, such that

⎧⎪⎪⎨
⎪⎪⎩

div σ(u) = 0 in D ,

σ (u) = ρC(∇u)s

u = 0 on ΓD ,

σ(u)n = q on ΓN .

(5.12)

Remark 5.1 By setting ρ(x) = 1 ∀x ∈ D in (5.1), the boundary value problem
(5.12) degenerates itself to the well-known Navier system, namely

Fig. 5.1 The elasticity
problem defined in the
unperturbed domain

0
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μΔu + (λ + μ)∇(div u) = 0 in D , (5.13)

where μ and λ are the Lamé coefficients given by (5.9) for the plane stress case and
by (5.10) for the plane strain assumption.

In order to simplify further analysis, an auxiliary vector function v : D �→ R2

is introduced, which is the solution of the following adjoint variation problem (see
Sect. 1.2.1 for details)

v ∈ V :
∫
D

σ(v) · (∇η)s = −
∫

ΓN

g · η ∀η ∈ V , (5.14)

with σ(v) = ρC(∇v)s .

Remark 5.2 (Lagrangian Formalism) As discussed in Sect. 1.2.1, the adjoint state
v solution of (5.14) comes out from the Lagrangian formalism. In particular, the
basic idea consists in defining a Lagrangian functional given by the sum of the
shape functional (5.5) and the state equation in its weak form (5.6), namely

L (u, v) :=
∫

ΓN

g · u +
∫
D

σ(u) · (∇v)s −
∫

ΓN

q · v . (5.15)

By applying the first order optimality condition in (5.15) with respect to v ∈ V , we
recover the state equation (5.6), that is

u ∈ U :
∫
D

σ(u) · (∇η)s −
∫

ΓN

q · η = 0 ∀η ∈ V . (5.16)

On the other hand, after applying the first order optimality condition in (5.15) with
respect to u ∈ U , we obtain

v ∈ V :
∫
D

σ(η) · (∇v)s +
∫

ΓN

g · η = 0 ∀η ∈ V , (5.17)

which is actually the adjoint equation (5.14), since the bilinear form on the left-
hand side of (5.17) is symmetric. It is also important to note that the adjoint state v

always belongs to the space V . Therefore, in our particular case, we have just used
the symmetry of the bilinear form to define the adjoint problem according to (5.14)
and the fact that U = V .

Remark 5.3 (Self Adjoint Problem) Note also that by setting g = q in (5.5), the
tracking-type shape functional becomes the structural compliance, which has been
taken into account in Chap. 3. In this particular case, the problem is self-adjoint in
the sense that after replacing g by q in the right-hand side of the adjoint equation
(5.14), we can compare with the state equation (5.6) and conclude that v = −u for
g = q, provided that U = V according to (5.11).
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Now, let us state the perturbed counterpart of the problem. In particular, the
tracking-type shape functional associated with the topologically perturbed domain
can be written as

ψ(χε) := Jε(uε) =
∫

ΓN

g · uε . (5.18)

The displacement vector field uε : D �→ R2 solves the following variational
problem:

uε ∈ U :
∫
D

σε(uε) · (∇η)s =
∫

ΓN

q · η ∀η ∈ V , (5.19)

with σε(uε) = γερC(∇uε)
s , where the contrast γε is given by (5.3). The strong

system associated with the variational problem (5.19) can be written as: Find uε,
such that

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

div σε(uε) = 0 in D ,

σε(uε) = γερC(∇uε)
s

uε = 0 on ΓD ,

σ(uε)n = q on ΓN ,

�uε�

�σε(uε)�n

=
=

0
0

}
on ∂Bε ,

(5.20)

where the operator �ϕ� is used to denote the jump of function ϕ on the boundary of
the inclusion ∂Bε, namely �ϕ� := ϕ|D\Bε

−ϕ|Bε
on ∂Bε. See details in Fig. 5.2. Note

that the transmission condition on the interface ∂Bε comes out from the variational
formulation (5.19).

0

Fig. 5.2 The elasticity problem defined in the perturbed domain
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5.1.1 Existence of the Topological Derivative

The following lemma ensures the existence of the associated topological derivative:

Lemma 5.1 Let u and uε be the solutions of the original (5.6) and perturbed (5.19)
problems, respectively. Then, the following estimate holds true:

‖uε − u‖H 1(D) ≤ Cε , (5.21)

where C is a constant independent of the control parameter ε.

Proof From the definition of the contrast γε given by (5.3), we have that Eq. (5.6)
can be rewritten as

∫
D\Bε

σ (u) · (∇η)s +
∫

Bε

σ (u) · (∇η)s ±
∫

Bε

γ σ (u) · (∇η)s =
∫

ΓN

q ·η , (5.22)

or even as

u ∈ U :
∫
D

σε(u) · (∇η)s + (1 − γ )

∫
Bε

σ (u) · (∇η)s =
∫

ΓN

q · η ∀η ∈ V .

(5.23)

By taking η = uε −u as test function in the above equation and also in (5.19), there
are

∫
D

σε(u) · ∇(uε − u)s =
∫

ΓN

q · (uε − u)

− (1 − γ )

∫
Bε

σ (u) · ∇(uε − u)s , (5.24)

∫
D

σε(uε) · ∇(uε − u)s =
∫

ΓN

q · (uε − u) . (5.25)

After subtracting the first equation from the second one, we obtain the following
equality:

∫
D

σε(uε − u) · ∇(uε − u)s = (1 − γ )

∫
Bε

σ (u) · ∇(uε − u)s . (5.26)

The Cauchy–Schwarz inequality implies

∫
D

σε(uε − u) · ∇(uε − u)s ≤ C1‖σ(u)‖L2(Bε)
‖∇(uε − u)s‖L2(Bε)

≤ C2ε‖uε − u‖H 1(D) , (5.27)



5.1 Model Problem in Elasticity 73

where we have used the interior elliptic regularity of u. Finally, from the coercivity
of the bilinear form on the left-hand side of the above inequality, namely

c‖uε − u‖2
H 1(D)

≤
∫
D

σε(uε − u) · ∇(uε − u)s , (5.28)

we obtain

‖uε − u‖2
H 1(D)

≤ Cε‖uε − u‖H 1(D) , (5.29)

which leads to the result with C = C2/c. ��

5.1.2 Variation of the Shape Functional

From a simple manipulation and with the help of the adjoint equation (5.14), it
is possible to write the variation of the shape functional in terms of an integral
concentrated in the ball Bε. In fact, after subtracting (5.5) from (5.18) we obtain

Jε(uε) − J (u) =
∫

ΓN

g · (uε − u) . (5.30)

From the definition for the contrast γε given by (5.3), the state equation associated
with the topologically perturbed domain (5.19) can be rewritten as

∫
D\Bε

σ (uε) · (∇η)s +
∫

Bε

γ σ (uε) · (∇η)s ±
∫

Bε

σ (uε) · (∇η)s =
∫

ΓN

q · η .

(5.31)

Therefore, it follows that

∫
D

σ(uε) · (∇η)s = (1 − γ )

∫
Bε

σ (uε) · (∇η)s +
∫

ΓN

q · η . (5.32)

Now, we can subtract the state equation associated with the unperturbed domain
(5.6) from the above result to obtain

∫
D

σ(uε − u) · (∇η)s = (1 − γ )

∫
Bε

σ (uε) · (∇η)s . (5.33)

By choosing η = v as test function in the above equation, where v is the adjoint
state solution of (5.14), we have

∫
D

σ(uε − u) · (∇v)s = (1 − γ )

∫
Bε

σ (uε) · (∇v)s . (5.34)
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On the other hand, by setting η = uε − u as test function in the adjoint equation
(5.14), there is

∫
D

σ(v) · (∇(uε − u))s = −
∫

ΓN

g · (uε − u) . (5.35)

Since the bilinear forms on the left-hand side of the above two last equations are
symmetric, then we obtain the following important equality:

∫
ΓN

g · (uε − u) = −(1 − γ )

∫
Bε

σ (uε) · (∇v)s . (5.36)

After comparing the above result with (5.30), we conclude that

Jε(uε) − J (u) = −(1 − γ )

∫
Bε

σ (uε) · (∇v)s . (5.37)

Therefore, thanks to the adjoint state v solution of (5.14), the variation of the shape
functional can, in fact, be written in terms of an integral concentrated in the ball Bε.
Before proceeding, let us sum and subtract the term

− (1 − γ )

∫
Bε

σ (u) · (∇v)s (5.38)

from (5.37) to obtain

Jε(uε) − J (u) = −(1 − γ )

∫
Bε

σ (u) · (∇v)s + I (ε) . (5.39)

The integral I (ε) is defined as

I (ε) = −(1 − γ )

∫
Bε

σ (uε − u) · (∇v)s , (5.40)

which can be bounded as follows:

|I (ε)| ≤ C1‖∇v‖L2(Bε)
‖σ(uε − u)‖L2(Bε)

≤ C2ε‖uε − u‖H 1(Ω) ≤ C3ε
2 = O(ε2) , (5.41)

where we have used Lemma 5.1, together with the interior elliptic regularity of
function u. According to Lemma 5.1, a leading term of order O(ε2) is expected. On
the other hand, the above estimate cannot be improved, so that there is a nontrivial
term of order O(ε2) hidden in (5.40). In the next section we will show how to extract
such a leading term of order O(ε2) from (5.40).
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5.1.3 Asymptotic Analysis of the Solution

The variation of the tracking-type shape functional has been written exclusively in
terms of an integral concentrated in the ball Bε, as shown through (5.37). In order
to obtain the associated topological asymptotic expansion in the form of (1.2), we
need to know the asymptotic behavior of the solution uε with respect to ε in the
neighborhood of the ball Bε. In particular, once knowing explicitly such a behavior,
function f (ε) can be identified, which allows for evaluating the limit ε → 0 in (1.4),
leading to the final formula for the topological derivative T of the shape functional
ψ . Therefore, the basic idea consists in expanding uε asymptotically with respect
to the small parameter ε. In this section, we obtain the asymptotic expansion of the
solution uε associated with the transmission condition on the boundary ∂Bε of the
inclusion. We start by proposing an ansatz for uε in the form [58]

uε(x) = u(x) + wε(x) + ũε(x) . (5.42)

After applying the operator σε = γεσ , we have

σε(uε(x)) = σε(u(x)) + σε(wε(x)) + σε(̃uε(x))

= γεσ (u(̂x)) + γε(σ (u(x)) − σ(u(̂x)) + σε(wε(x)) + σε(̃uε(x). (5.43)

On the boundary of the inclusion ∂Bε there is

�σε(uε)�n = 0 ⇒ (σ (uε)|D\Bε
− γ σ(uε)|Bε

)n = 0 , (5.44)

so that the above expansion evaluated on ∂Bε yields

(1 − γ )σ (u(̂x))n + (1 − γ )(σ (u(x)) − σ(u(̂x))n

+ �σε(wε(x))�n + �σε(̃uε(x))�n = 0 , (5.45)

which allows for choosing the jump �σε(wε(x))�n on ∂Bε as

�σε(wε(x))�n = −(1 − γ )σ (u(̂x))n on ∂Bε . (5.46)

Now, the following exterior problem is formally defined with ε → 0: Find σε(wε),
such that

⎧⎨
⎩

div σε(wε) = 0 in R2 ,

σε(wε) → 0 at ∞ ,

�σε(wε)�n = v̂ on ∂Bε ,

(5.47)
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Fig. 5.3 Polar coordinate
system (r, θ) centered at the
point x̂

where v̂ = −(1−γ )σ (u(̂x))n. The above boundary value problem admits an explicit
solution (see, for instance, the book by Little [62]), which can be written in a polar
coordinate system (r, θ) with center at x̂ (see Fig. 5.3) as follows:

• For r ≥ ε (outside the inclusion)

σ rr
ε (wε(r, θ)) = −ϕ1

(
1−γ

1+γ a1

ε2

r2

)

−ϕ2

(
4 1−γ

1+γ a2

ε2

r2 + 3 1−γ
1+γ a2

ε4

r4

)
cos 2θ , (5.48)

σθθ
ε (wε(r, θ)) = ϕ1

(
1−γ

1+γ a1

ε2

r2

)
− ϕ2

(
3 1−γ

1+γ a2

ε4

r4

)
cos 2θ , (5.49)

σ rθ
ε (wε(r, θ)) = −ϕ2

(
2 1−γ

1+γ a2

ε2

r2 − 3 1−γ
1+γ a2

ε4

r4

)
sin 2θ . (5.50)

• For 0 < r < ε (inside the inclusion)

σ rr
ε (wε(r, θ)) = ϕ1

(
a1γ

1−γ
1+γ a1

)
+ ϕ2

(
a2γ

1−γ
1+γ a2

)
cos 2θ , (5.51)

σθθ
ε (wε(r, θ)) = ϕ1

(
a1γ

1−γ
1+γ a1

)
− ϕ2

(
a2γ

1−γ
1+γ a2

)
cos 2θ , (5.52)

σ rθ
ε (wε(r, θ)) = −ϕ2

(
a2γ

1−γ
1+γ a2

)
sin 2θ . (5.53)

Some terms in the above formulae require explanations. The coefficients ϕ1 and ϕ2
are given by

ϕ1 = 1

2
(σ1(u(̂x)) + σ2(u(̂x))) , ϕ2 = 1

2
(σ1(u(̂x)) − σ2(u(̂x))) , (5.54)

where σ1(u(̂x)) and σ2(u(̂x)) are the eigenvalues of tensor σ(u(̂x)), which can be
expressed as (see Appendix A, identity (A.52))

σ1,2(u(̂x)) = 1

2

(
tr σ(u(̂x)) ±

√
2σD(u(̂x)) · σD(u(̂x))

)
, (5.55)
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with σD(u(̂x)) standing for the deviatory part of the stress tensor σ(u(̂x)), namely

σD(u(̂x)) = σ(u(̂x)) − 1

2
tr σ(u(̂x))I . (5.56)

In addition, the constants a1 and a2 are given by

a1 = μ + λ

μ
e a2 = 3μ + λ

μ + λ
. (5.57)

Finally, σ rr
ε (uε), σθθ

ε (uε), and σ rθ
ε (uε) are the components of tensor σε(uε) in the

polar coordinate system, namely σ rr
ε (uε) = er · σε(uε)e

r , σθθ
ε (uε) = eθ · σε(uε)e

θ ,
and σ rθ

ε (uε) = σθr
ε (uε) = er ·σε(uε)e

θ , with er and eθ used to denote the canonical
basis associated with the polar coordinate system (r, θ), such that, ||er || = ||eθ || = 1
and er · eθ = 0. See Appendix A.

Remark 5.4 (Eshelby’s Theorem) According to (5.51)–(5.53), we observe that the
stress tensor field associated with the solution of the exterior problem (5.47) is
uniform inside the inclusion Bε(̂x). It means that the stress acting in the inclusion
embedded in the whole two-dimensional space R2 can be written in the following
compact form:

σε(wε(x))|Bε(̂x)
= γTσ(u(̂x)) , (5.58)

where T is a fourth order uniform (constant) tensor given by

T = 1

2

1 − γ

1 + γ a2

(
2a2I + a1 − a2

1 + γ a1
I ⊗ I

)
. (5.59)

Therefore, the above result fits the famous Eshelby’s problem. This problem,
formulated by Eshelby in 1957 [38] and 1959 [39], represents one of the major
advances in the continuum mechanics theory of the twentieth century [56]. It plays
a central role in the theory of elasticity involving the determination of effective
elastic properties of materials with multiple inhomogeneities. For more details, see
the book by Mura [70], for instance. The Eshelby’s problem, also referred to as the
Eshelby’s theorem, is also related to the Polarization tensor in asymptotic analysis
of the strain energy with respect to singular domain perturbations [71]. In fact,
tensor T represents one term contribution to the Polarization tensor coming from
the solution to the exterior problem (5.47). In the next section we will apply the
Eshelby’s theorem to the derivation of the polarization tensor and to the topological
derivative evaluation as well. Concerning applications of the Eshelby’s theorem to
the problem of optimal patch in elasticity, see [61, 72].



78 5 Topology Design Optimization

Now, we can construct the remainder ũε from (5.42) in such a way that it
compensates for the discrepancies produced by the higher order terms in ε as well as
by the boundary layer wε on the exterior boundary ∂D . It means that the remainder
ũε has to be the solution of the following boundary value problem: Find ũε, such
that

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

div σε(̃uε) = 0 in D ,

σε(̃uε) = γερC(∇ũε)
s

ũε = fε on ΓD ,

σ (̃uε)n = gε on ΓN ,

�̃uε�

�σε(̃uε)�n

=
=

0
hε

}
on ∂Bε ,

(5.60)

where fε = −wε|ΓD
, gε = −σ(wε)n|ΓN

, and hε = σ̃ n, with the second order
tensor field σ̃ (x) = −(1 − γ )[σ(u(x)) − σ(u(̂x))]. From the above boundary value
problem, it is possible to prove that the remainder ũε enjoys an estimate of the form
ũε ≈ O(ε2) in an appropriated norm. In fact, before continuing, let us state the
following important result:

Lemma 5.2 Let ũε be the solution of (5.60) or equivalently solution of the
following variational problem:

ũε ∈ Uε :
∫
D

σε(̃uε) · (∇η)s =
∫

ΓN

gε · η +
∫

∂Bε

hε · η ∀η ∈ Vε , (5.61)

with σε(̃uε) = γεC(∇ũε)
s , where the set Uε and the space Vε are defined

respectively as

Uε := {ϕ ∈ H 1(D) : ϕ|ΓD
= fε} ,

Vε := {ϕ ∈ H 1(D) : ϕ|ΓD
= 0} .

Then, we have that the following estimate for the remainder ũε holds true:

‖ũε‖H 1(D) ≤ Cε2 , (5.62)

with constant C independent of the small parameter ε.

Proof From the definition of function hε = σ̃ n, with n used to denote the unit
normal vector field on ∂Bε pointing toward to the center of the inclusion, we have

∫
∂Bε

hε · η =
∫

∂Bε

σ̃ n · η = −
∫

Bε

div (̃ση) = −
∫

Bε

div (̃σ ) · η −
∫

Bε

σ̃ · (∇η)s

= (1 − γ )

∫
Bε

div (σ (u)) · η + (1 − γ )

∫
Bε

[σ(u) − σ(u(̂x))] · (∇η)s,

(5.63)
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where we have taken into account that σ̃ (x) = −(1−γ )[σ(u(x))−σ(u(̂x))]. From
this last result, the variational form (5.64) can be rewritten as follows:

ũε ∈ Uε :
∫
D

σε(̃uε) · (∇η)s =
∫

ΓN

gε · η −
∫

Bε

σ̃ · (∇η)s ∀η ∈ Vε , (5.64)

since div (σ (u)) = 0. By taking η = ũε − ϕε as test function in (5.64), where
ϕε ∈ Uε is the lifting of the Dirichlet boundary data fε on ΓD , we have

∫
D

σε(̃uε) · (∇ũε)
s =

∫
ΓD

fε · σ (̃uε)n +
∫

ΓN

gε · ũε −
∫

Bε

σ̃ · (∇ũε)
s . (5.65)

From the Cauchy–Schwarz inequality and the trace theorem there are

∣∣∣∣
∫

ΓD

fε · σ (̃uε)n

∣∣∣∣ ≤ ‖fε‖H 1/2(ΓD)‖σ (̃uε)n‖H−1/2(ΓD)

≤ C1ε
2‖∇ũε‖L2(D) ≤ C2ε

2‖ũε‖H 1(D) , (5.66)

and
∣∣∣∣
∫

ΓN

gε · ũε

∣∣∣∣ ≤ ‖gε‖H−1/2(ΓN )‖ũε‖H 1/2(ΓN ) ≤ C3ε
2‖ũε‖H 1(D) , (5.67)

where we have used the fact that fε and gε have order O(ε2) on the exterior
boundary ∂D . By taking into account the definition σ̃ (x) = −(1 − γ )[σ(u(x)) −
σ(u(̂x))], there is

∣∣∣∣
∫

Bε

σ̃ · (∇ũε)
s

∣∣∣∣ ≤ ‖σ̃‖L2(Bε)
‖∇ũε‖L2(Bε)

≤ C4‖σ(u) − σ(u(̂x))‖L2(Bε)
‖∇ũε‖L2(Bε)

≤ C5‖x − x̂‖L2(Bε)
‖∇ũε‖L2(Bε)

≤ C6ε
2‖ũε‖H 1(D) , (5.68)

where we have used again the Cauchy–Schwarz inequality together with the interior
elliptic regularity of function u. From these results, we obtain

∫
D

σε(̃uε) · (∇ũε)
s ≤ C7ε

2‖ũε‖H 1(D) . (5.69)

Finally, from the coercivity of the bilinear form on the left-hand side of the above
inequality, namely

c‖ũε‖2
H 1(D)

≤
∫
D

σε(̃uε) · (∇ũε)
s , (5.70)

we obtain the result with C = C7/c. ��
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5.1.4 Topological Derivative Evaluation

From the above elements, the integral (5.40) can be evaluated explicitly, which
allows for collecting the terms in power of ε. Thus, it is possible to identify the
function f (ε) in (1.2) and compute the limit passage ε → 0, leading to the final
formula for the associated topological derivative. In particular, the integral (5.40)
can be rewritten as

I (ε) = −1 − γ

γ

∫
Bε

σε(uε − u) · (∇v)s , (5.71)

where we have used the definition for the contrast given by (5.3). After replacing
the expansion (5.42) into the above equation we obtain

I (ε) = −1 − γ

γ

∫
Bε

σε(wε + ũε) · (∇v)s

= −1 − γ

γ

∫
Bε

σε(wε) · (∇v)s + E1(ε) . (5.72)

The remainder E1(ε) is defined as

E1(ε) = −1 − γ

γ

∫
Bε

σε(̃uε) · (∇v)s . (5.73)

The Cauchy–Schwarz inequality together with the interior elliptic regularity of
function u yield

|E1(ε)| ≤ C1‖∇v‖L2(Bε)
‖σε(̃uε)‖L2(Bε)

≤ C2ε‖∇ũε‖L2(Ω) . (5.74)

From Lemma 5.2, we have

|E1(ε)| ≤ C3ε‖ũε‖H 1(Ω) ≤ C4ε
3 = O(ε3) . (5.75)

Now, let us comeback to the expansion (5.39), which can be written as

Jε(uε) − J (u) = −(1−γ )

∫
Bε

σ (u) · (∇v)s − 1−γ

γ

∫
Bε

σε(wε) · (∇v)s+E1(ε)

= −(1 − γ )

∫
Bε

(I + T)σ (u(̂x)) · (∇v(̂x))s +
3∑

i=1

Ei (ε)

= πε2
Pγ σ (u(̂x)) · (∇v(̂x))s +

3∑
i=1

Ei (ε) , (5.76)



5.1 Model Problem in Elasticity 81

with Pγ = −(1 −γ )(I+T), where we have used the explicit solution for σε(wε)|Bε

given by (5.58). The remainders E2(ε) and E3(ε) are respectively defined as

E2(ε) = −(1 − γ )

∫
Bε

(σ (u) · (∇v)s − σ(u(̂x)) · (∇v(̂x))s) , (5.77)

E3(ε) = −1 − γ

γ

∫
Bε

σε(wε) · ((∇v)s − (∇v(̂x))s) , (5.78)

which can be trivially bounded as follows:

|E2(ε)| ≤ C1ε
3 = O(ε3) , (5.79)

|E3(ε)| ≤ C2ε
3 = O(ε3) , (5.80)

where we have used the interior elliptic regularity of function u and the explicit
solution (5.58). According to the estimates (5.75) and (5.79), the remainders
E1(ε), E2(ε), and E3(ε) are of order o(ε2). Therefore, from the expansion (5.76)
we promptly identify function f (ε) = πε2 and thus the final formula for the
topological derivative as [9, 45]

T (̂x) = Pγ σ (u(̂x)) · (∇v(̂x))s ∀ x̂ ∈ Ω , (5.81)

where the polarization tensor Pγ is given by the following fourth order isotropic
tensor:

Pγ = − 1 − γ

1 + γ a2

(
(1 + a2)I + 1

2
(a1 − a2)

1 − γ

1 + γ a1
I ⊗ I

)
, (5.82)

with the parameters a1 and a2 given by (5.57).

Remark 5.5 Note that the polarization tensor defined through (5.82) is isotropic
because we are dealing with circular inclusions. For the polarization tensor regard-
ing arbitrary-shaped inclusions, the reader may refer to the book by Ammari and
Kang [5], for instance.

Remark 5.6 Formally, we can evaluate the limits γ → 0 and γ → ∞ in (5.82).
For γ → 0, the inclusion becomes a void and the transmission condition on the
interface of the inclusion degenerates itself to the homogeneous Neumann boundary
condition on the boundary of the resulting hole Bε(̂x). Thus, in this particular case
the polarization tensor is given by

P0 = −(1 + a2)I − a1 − a2

2
I ⊗ I

= −2μ + λ

μ + λ

(
2I − μ − λ

2μ
I ⊗ I

)
. (5.83)
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In addition, for γ → ∞, the elastic inclusion becomes a rigid one and the
polarization tensor is given by

P∞ = 1 + a2

a2
I − a1 − a2

2a1a2
I ⊗ I

= 2μ + λ

3μ + λ

(
2I + μ − λ

2(μ + λ)
I ⊗ I

)
. (5.84)

The rigorous mathematical justification for these limit cases can be found in [7], for
instance.

5.2 Topology Design Algorithm

In this section a topology optimization algorithm based on the topological derivative
combined with a level-set domain representation method is presented. It has been
proposed by Amstutz and Andrä [11] and consists basically in achieving a local
optimality condition for the minimization problem (5.2), given in terms of the
topological derivative and a level-set function. In particular, the domain Ω ⊂ D
and the complement D \ Ω are characterized by a level-set function Ψ :

Ω = {x ∈ D : Ψ (x) < 0} and D \ Ω = {x ∈ D : Ψ (x) > 0}, (5.85)

where Ψ vanishes on the interface between Ω and D \ Ω . A local sufficient
optimality condition for Problem (5.2), under a class of domain perturbations given
by ball-shaped inclusions denoted by Bε(x), can be stated as [10]

T (x) > 0 ∀x ∈ D, (5.86)

where T (x) is the topological derivative of the shape functional J (Ω) at x ∈ D
and Bε(x) is a ball of radius ε centered at x ∈ D , as shown in Fig. 5.4. Therefore,
let us define the quantity

g(x) :=
{−T (x) if Ψ (x) < 0,

+T (x) if Ψ (x) > 0,
(5.87)

which allows rewriting the condition (5.86) in the following equivalent form:

{
g(x) < 0 if Ψ (x) < 0,

g(x) > 0 if Ψ (x) > 0.
(5.88)

We observe that (5.88) is satisfied, where the quantity g coincides with the level-set
function Ψ up to a strictly positive factor, namely ∃ τ > 0 : g = τΨ , or equivalently
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Fig. 5.4 Nucleation of a
ball-shaped inclusion Bε(x)

-

θ := arccos

[ 〈g,Ψ 〉L2(D)

‖g‖L2(D)‖Ψ ‖L2(D)

]
= 0, (5.89)

which will be used as the optimality condition in the topology design algorithm,
where θ is the angle in L2(D) between the functions g and Ψ .

Let us now explain the algorithm. We start by choosing an initial level-set
function Ψ0. In a generic iteration n, we compute the function gn associated with the
level-set function Ψn. Thus, the new level-set function Ψn+1 is updated according to
the following linear combination between the functions gn and Ψn:

Ψ0 : ‖Ψ0‖L2(D) = 1,

Ψn+1 = 1

sin θn

[
sin((1 − k)θn)Ψn + sin(kθn)

gn

‖gn‖L2(D)

]
∀n ∈ N,

(5.90)

where θn is the angle between gn and Ψn, and k is a step size determined by a line-
search performed in order to decrease the value of the objective function J (Ωn),
with Ωn used to denote the domain associated with Ψn. The process ends when the
condition θn ≤ εθ is satisfied at some iteration, where εθ is a given small numerical
tolerance. Since we have chosen Ψ0 : ‖Ψ0‖L2(D) = 1, by construction Ψn+1 :
‖Ψn+1‖L2(D) = 1 ∀n ∈ N. If at some iteration n the line-search step size k is
found to be smaller, then a given numerical tolerance εk > 0 and the optimality
condition is not satisfied, namely θn > εθ , then a mesh refinement of the hold-
all domain D is carried out and the iterative process is continued. The resulting
topology design algorithm is summarized in pseudo-code format in Algorithm 1.
For further applications of this algorithm, see for instance [4, 14, 17, 49, 64, 85, 92].

In the context of topological-derivative-based topology optimization methods,
the algorithms available in the literature usually combine topological derivatives
with shape derivatives or level-set methods [1, 25, 36], leading to a two-stage
shape/topology optimization procedure. More precisely, new holes are nucleated
according to the topological derivative, while standard tools in shape optimization
are used to move the new boundaries. In contrast, Algorithm 1 is based on the
optimality condition (5.86) written in terms of the topological derivative and a level-
set function, leading to a very simple and quite efficient one-stage algorithm driven
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Algorithm 1: The topology design algorithm
input : D , Ψ0, εk , εθ ;
output: the optimal topology Ω�;

1 n ← 0;
2 Ωn ← Ψn;
3 compute the shape functional J (Ωn);
4 compute the associated topological derivative T (x);
5 compute gn and θn according to (5.87) and (5.89);
6 Ψold ← Ψn; Jold ← J (Ωn); Jnew ← 1 + Jold; k ← 1;
7 while Jnew > Jold do
8 compute Ψnew according to (5.90);
9 Ψn ← Ψnew;

10 execute lines 2 and 3;
11 Jnew ← J (Ωn);
12 k ← k/2;
13 end while
14 if k < εk then
15 try a mesh refinement;
16 Ψn+1 ← Ψn; n ← n + 1;
17 go to line 2;
18 else if θn > εθ then
19 Ψn+1 ← Ψn; n ← n + 1;
20 go to line 2;
21 else
22 return Ω� ← Ψn;
23 stop;
24 end if

by the topological derivative only. However, how to efficiently use the topological
derivative in the context of topology optimization deserves further investigation
[19]. See Sect. 5.4 for an account of some open problems.

5.3 Numerical Results

The topological derivative has been specifically designed to deal with shape and
topology optimization problems [1, 23, 25, 47, 57, 60, 73, 74, 76–78, 93]. In contrast
to traditional topology optimization methods, the topological derivative formulation
does not require a material model concept based on intermediary densities, so that
interpolation schemes are unnecessary. These features are crucial in a wide range of
applications, since the limitations arising from material model procedures are here
naturally avoided. In addition, topological derivative has the advantage of providing
an analytical form for the topological sensitivity which allows to obtain the optimal
design in a few iterations or even in just one shot. Therefore, the resulting topology
optimization algorithms are remarkably efficient and of simple computational
implementation, since it features only a minimal number of user-defined algorithmic
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parameters, as shown in Sect. 5.2, for instance. In this section, Algorithm 1 is applied
in the context of compliance structural topology optimization and topology design
of compliant mechanisms. In particular, the topology optimization problem we are
dealing with consists in finding a subdomain Ω ⊂ D that solves the following
minimization problem:

Minimize
Ω⊂D

FΩ(u) = J (u) + β|Ω| , (5.91)

where J (u) will be specified according to the application we are dealing with
and β > 0 is a fixed multiplier used to impose a volume constraint in Ω of the
form |Ω| ≤ M , with M > 0. In particular, by fixing different values of β we get
different volume fractions at the end of the iterative process. For more sophisticated
topological-derivative-based methods with volume constraint we refer the reader to
[27], for instance. Since the last term in (5.91) represents the volume constraint, its
associated topological derivative TV (x) is trivially given by

TV (x) =
{−1 if x ∈ Ω,

+1 if x ∈ D \ Ω.
(5.92)

On the other hand, the first term in (5.91) depends on the state u solution of
(5.6), so that the derivation of its topological derivative becomes much more
involved, as presented in this chapter. Therefore, in this section we will adapt the
obtained result (5.81) in such a way that it can be directly applied in the context
of compliance structural topology optimization as well as in topology design of
compliant mechanisms.

5.3.1 Structural Compliance Topology Optimization

Minimizing the structural flexibility under volume constraint is probably the most
studied problem in the context of topology optimization. See the pioneering papers
[20, 22] and also the book by Bendsøe [21], for instance. This classical problem is
revisited here.

We start by setting g = q in (5.14), which implies immediately that the adjoint
state v, solution of (5.14), can be obtained as v = −u. See discussion in Remark 5.3.
In this particular case, J (u) in (5.5) becomes the so-called compliance shape
functional, namely

J (u) =
∫

ΓN

q · u , (5.93)
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Fig. 5.5 Bridge design problem: initial guess and boundary conditions

where u is the solution of (5.6) and q is a given traction on ΓN . By taking into
account Remark 5.3 in result (5.81), the topological derivative of the compliance
shape functional, denoted as TC , is given by

TC(x) = −Pγ σ (u(x)) · (∇u(x))s , (5.94)

where Pγ is the polarization tensor defined through (5.82). Finally, the topological
derivative of the shape functional FΩ(u) in (5.91) is obtained from the sum

T (x) = TC(x) + βTV (x) ∀x ∈ D , (5.95)

where TV (x) and TC(x) are given by (5.92) and (5.94), respectively.
Let us now present a numerical example concerning the optimal design of a

bridge structure borrowed from [75, Ch. 5, Sec. 5.2.5, p. 159]. The initial domain
shown in Fig. 5.5 is represented by a rectangular panel of dimensions 180 × 60 m2,
which is clamped on the region a = 9 m and submitted to a uniformly distributed
traffic loading q = 250 × 103 N/m. This load is applied on the dark strip of height
h = 3 m, which is placed at a distance c = 30 m from the top of the design domain.
The dark strip will not be optimized. The Young modulus E and the Poisson ratio ν

are set as E = 210 × 109 N/m2 and ν = 1/3, respectively. The penalty parameter
which appears in (5.91) is fixed to be β = 10 × 106 and the contrast in (5.4)
is set as ρ0 = 10−4. The topological derivative of the shape functional FΩ(u)

obtained at the first iteration of the shape and topology optimization numerical
procedure is shown in Fig. 5.6, where white to black levels mean smaller (negative)
to higher (positive) values. This picture induces a level-set domain representation
for the optimal shape, as proposed in [11]. See Algorithm 1. The resulting topology
design obtained in the form of a well-known tied-arch bridge structure, which
is acceptable from practical point of view, is shown in Fig. 5.7. Usually it is a
local minimizer obtained numerically for the compliance minimization with volume
constraint. Indeed, there is a lack of sufficient optimality conditions for such shape
optimization problems [15]. The convergence curves for the angle θn and shape
functional J (Ωn) are shown in Fig. 5.8, where the picks come out from the mesh
refinement procedure.
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Fig. 5.6 Bridge design problem: topological derivative in the hold-all domain

Fig. 5.7 Bridge design problem: optimal domain [75]
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Fig. 5.8 Bridge design problem: convergence curves for the angle θn (dashed-dot red line) and
shape functional J (Ωn) (dashed blue line)
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K

(a) (b)

Fig. 5.9 Design of compliant mechanisms: problem setting. (a) Original model. (b) Surrogate
model

5.3.2 Topology Design of Compliant Mechanisms

Compliant mechanisms are mechanical devices composed by one single peace that
transforms simple inputs into complex movements by amplifying and changing
their direction [2, 26, 29, 59, 63, 65, 69, 87]. Hence they are easy to fabricate and
miniaturize and have no need for lubrication. Although these ideas are not new
[26], compliant mechanisms have received considerable attention in recent years.
This fact is due to manufacturing at a very small scale, the introduction of new
advanced materials, and the fast development of Micro-Electro-Mechanical Systems
[37]. Since such microtools are capable to perform precise movements, the spectrum
of their applications has become broader including microsurgery, nanotechnology
processing, cell manipulation, among others.

Therefore, let us adapt the problem stated in Sect. 5.1 to the context of topology
design of compliant mechanisms. We start by splitting ΓN into three mutually
disjoint parts Γin, Γout, and Γ0, such that ΓN = Γin ∪ Γout ∪ Γ0. The idea is to
maximize the output displacement uout on Γout in some direction for a given input
excitation qin on Γin. The exterior medium is represented by springs with stiffness
K , attached to the output port Γout, as shown in Fig. 5.9a. The springs are then
replaced by the expected boundary reaction qout on Γout. In this way, the output
displacement is going to be indirectly constrained by such given reaction. See sketch
in Fig. 5.9b. From this discussion, we define q = qin on Γin, q = qout on Γout, and
q = 0 on Γ0. Thus, the variational problem (5.6) can be rewritten as

u ∈ V :
∫

Ω

σ(u) · (∇η)s =
∫

Γin

qin · η +
∫

Γout

qout · η ∀η ∈ V , (5.96)

with σ(u) = ρC(∇u)s . In addition, we set g = qin on Γin, g = κqout on Γout, and
g = 0 on Γ0, so that the shape function (5.5) becomes

J (u) =
∫

Γin

qin · u + κ

∫
Γout

qout · u . (5.97)



5.4 Final Remarks 89

Finally, the associated adjoint system (5.14) can be stated as

v ∈ V :
∫

Ω

σ(v) · (∇η)s = −
∫

Γin

qin · η − κ

∫
Γout

qout · η ∈ V , (5.98)

with σ(v) = ρC(∇v)s , where κ > 0 is a weight parameter. For more details
concerning the adopted formulation, the reader may refer to [63], for instance. In
this particular case, the topological derivative of the shape functional FΩ(u) in
(5.91) is given by the sum

T (x) = TE(x) + βTV (x) ∀x ∈ Ω , (5.99)

where the topological derivative of the volume constraint TV (x) is given by (5.92)
whereas the topological derivative of the mechanism effectiveness TE(x) can be
obtained from (5.81), namely

TE(x) = Pγ σ (u(x)) · (∇v(x))s , (5.100)

where u and v are the solutions of (5.96) and (5.98), respectively, and Pγ is the
polarization tensor from (5.82).

In order to fix these ideas, let us present a numerical example where the
minimization problem (5.91) is solved with the help of Algorithm 1. It consists
in an inverter mechanism design. The hold-all domain representing the initial guess
is given by a square clamped on the left corners, while the loads qin = (2, 0) and
qout = (1, 0) are respectively applied on the middle of the left and right edges,
respectively. See Fig. 5.10a. The penalty parameter in (5.91) is set as β = 3 and the
weight parameter which appears in (5.97) is given by κ = 10. Finally, the Young
modulus, the Poisson ratio, and the contrast in (5.4) are respectively given by E = 1,
ν = 0.3, and ρ0 = 10−4. The amplified deformations of the final obtained solution
are presented in Fig. 5.10b, where we observe that the obtained mechanism performs
the desired movement. The convergence curves for the angle θn and shape functional
J (Ωn) are shown in Fig. 5.11.

5.4 Final Remarks

In this chapter a topology optimization algorithm based on the topological derivative
and the level-set domain representation method has been presented. In particular,
Algorithm 1 has been proposed in [11] to achieve a local optimality condition
for the minimization problem under consideration, which is given in terms of the
topological derivative and an appropriated level-set function. This means that the
topological derivative is in fact used within the numerical procedure as a steepest-
descent direction similar to methods based on the gradient of the cost functional.
The topological derivative represents the exact first order variation of the shape
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(a) initial guess (b) optimal domain

Fig. 5.10 Inverter design problem: initial guess and boundary conditions (a) and deformed
configuration of the optimal domain (b)
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Fig. 5.11 Inverter design problem: convergence curves for the angle θn (dashed-dot red line) and
shape functional J (Ωn) (dashed blue line)

functional with respect to the nucleation of small singular domain perturbations,
so that the resulting topology design algorithm converges in few iterations by
using a minimal number of user defined algorithmic parameters, as shown in the
numerics presented in Sect. 5.3. Furthermore, the topological derivative follows
in fact the basic rules of Differential Calculus, which allows for applying it in
the context of multi-objective topology optimization algorithms by using e.g., the
known formulas already available in the literature. Finally, in contrast to traditional
topology optimization methods, the topological derivative formulation does not
require any material model concept based on intermediary densities, so that no
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interpolation schemes are used within the numerical procedures. This feature is
crucial in the topology design problem, since the difficulties arising from material
model procedures are here naturally avoided. Therefore, the topological derivative
method can be seen, when applicable, as a simple alternative method for numerical
solution of a wide class of topology optimization problems. For future development
of the topological-derivative-based method, we highlight the following:

According to Sect. 5.3, there are numerical evidences showing that Algorithm 1
converges in most cases. However, from the theoretical point of view, only partial
results can be found in the literature. See for instance [10], where the convergence
of Algorithm 1 has been analyzed in the particular case of an optimal control
problem with respect to characteristic functions of small sets. Therefore, the most
important theoretical problem to be solved concerns the convergence of Algorithm 1
in general.

The topological derivative concept has also been shown to be effective in
solving a certain class of inverse problems [13, 30, 40, 44, 52, 55, 82, 86, 91].
In particular, stability and resolution analysis for a topological-derivative-based
imaging functional have been presented in the context of the Helmholtz equation [6].
However, such analysis is missing for other classes of inverse problems, including
gravimetry and EIT, for instance. In this direction, a new branch of research arises,
which consists in solving a wide range of reconstruction problems with the help
of second order topological derivatives [28, 41–43, 53, 66, 84]. In this context,
many interesting questions arise, including on how to efficiently use higher order
expansions, for instance.

Synthesis and optimal design of materials in a multiscale framework have been
considered in [46] and further developed in [16], where the topological derivative
of the homogenized elasticity tensor has been obtained. Extension to the dynamic
case is a difficult and interesting research topic, where inertial forces acting at the
microscale may produce unexpected macroscopic constitutive behavior. Finally, a
new emerging research field consists in the design of new materials by considering
the strain gradient homogenized constitutive tensor. From the theoretical point of
view, a deep question arises in the context of topological derivatives associated with
asymptotic models in general, including multiscale and dimension reduction, for
instance. In particular, both objects come out from a limit passage procedure, one
representing the size of the topological perturbation and the other one controlling
the scale. It is not clear whether these limits commute or not. Actually, different
results are expected after interchanging the order of these limits.

Topology design of structures taking into account more realistic scenario such
as anisotropic elasticity [24, 48], transient wave equations [32], and evolution
variational inequalities is a difficult and challenging problem, which requires further
development from both theoretical and numerical points of views.

Topological-derivative-based topology design in multiphysics taking into
account multiobjective shape functionals is an important and difficult subject of
research, which also deserves investigation. Design of antenna and wave guides in
nanophotonics is an example of modern application. It can be handled with the use
of the domain decomposition technique presented in Chap. 4, for instance.
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The Griffith-Francfort-Marigo damage model adopted in [3] and later in [95]
and [97] does not distinguish between traction and compression stress states in the
damage evolution process. Hence, it is unsuitable for describing the crack closure
phenomenon. Therefore, the development of the topological derivative theory for
functionals which consider distinct criteria in traction and in compression deserves
investigation. However, it is well known that such modeling leads to a class of
nonlinear elasticity systems, so that these extensions are expected to be difficult.
See also closely related works dealing with crack nucleation sensitivity analysis
[8, 94] and crack propagation control [96].

Extension to nonlinear problems in general can be considered as the main
challenge in the theoretical development of the topological derivative method. The
difficulty arises when the nonlinearity comes out from the main part of the operator,
which at the same time suffers a topological perturbation. It is the case of nucleation
of holes in plasticity and finite deformations in solid mechanics or small obstacles
in compressive fluid flow, for instance. See the recent publication [12] dealing with
topological derivatives for a class of quasilinear elliptic equations.

5.5 Exercises

1. By taking ρ = 1 in (5.12), derive the Navier system (5.13).
2. From the weak formulation (5.19), derive the strong form (5.20) and discuss the

transmission condition on the interface ∂Bε.
3. By using separation of variable technique, find the stress distribution around the

inclusion Bε, which is the solution of the exterior boundary value problem (5.47).
Hint: Consult the book by Little [62] and look for the Airy functions in polar
coordinate system.

4. Take into account Remark 5.4 and derive the closed formula for the isotropic and
uniform fourth order tensor T given by (5.59) in the form T = α1I+ α2I ⊗ I, by
finding the coefficients α1 and α2 explicitly.

5. Repeat the derivations presented in Remark 3.1 to find a general representation
for the polarization tensor in elasticity.

Hint: After introducing the notation w(ε−1x) := ε−1wε(x) and the change
of variable ξ = ε−1x, write w(ξ) as a linear combination of the components of
σ(u(̂x)) as follows w(ξ) = σ(u(̂x))ij v(ij)(ξ). Then replace it into the exterior
problem (5.47) to obtain a set of canonical variational problems of the form:

v(ij) ∈ W :
∫
R2

γωσξ (v
(ij)) · (∇ξ η)s = (1 − γ )(ei ⊗ ej ) ·

∫
ω

(∇ξ η)s ∀η∈W ,

(5.101)

where σξ (v
(ij)) = C(∇ξ v

(ij))s . The quotient space W is defined as W := {ϕ ∈
H 1(R2)/R} and the contrast γω is given by γω = 1 in R2 \ ω and γω = γ in ω.
Finally, comeback to (5.76) and write the polarization tensor as follows:
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Pγ = −(1 − γ )

(
I + 1

|ω|
∫

ω

σξ (v
(kl))ij (ei ⊗ ej ⊗ ek ⊗ el)

)
. (5.102)

6. Code Algorithm 1 and reproduce the numerical examples presented in Sect. 5.3.
7. Study and discuss the list of open problems presented at the end of Sect. 5.4.
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