
Chapter 1
Introduction

The topological derivative is defined as the first term of the asymptotic expansion of
a given shape functional with respect to a small parameter that measures the size of
singular domain perturbations, such as holes, inclusions, source-terms, and cracks
[75]. This relatively new concept has applications in many different fields such as
shape and topology optimization, inverse problems, imaging processing, multi-scale
material design, and mechanical modeling including damage and fracture evolution
phenomena. For an account on the theoretical development and applications of
the topological derivative method, see the series of review papers [79–81] and
references therein.

The topological derivative method has been specifically designed to deal with
topology optimization. It has been introduced by Sokołowski and Żochowski in
1999 through the fundamental paper [88] to fill a gap in the existing literature at that
time. Actually, the idea was to give a precise (mathematical) answer to the following
important question: What happens when a hole is nucleated? The answer to this
question is not trivial at all, since singularities may appear once a hole is nucleated.
Therefore, in order to deal with this problem, asymptotic analysis in singularly
perturbed geometrical domains is needed. In this book, the topological derivative
method is presented through some selected examples in a simple and pedagogical
manner by using a direct approach based on calculus of variations combined with
matched [54] and compound [67] asymptotic analysis of solution to boundary value
problems. In addition, the topological derivative is used in numerical method of
shape optimization including applications in the context of compliance structural
topology optimization and topology design of compliant mechanisms. Finally, some
exercises are proposed at the end of each chapter for the readers’ convenience.

This chapter is organized as follows. In Sect. 1.1 the topological derivative
concept is introduced and five simple examples are presented in order to fix the
ideas. In Sect. 1.2 the adjoint sensitivity method is presented through the Lagrangian
formalism and an example in the context of control theory with PDE constraint
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2 1 Introduction

is fully developed. Finally, the content of the book is described in detail through
Sect. 1.3.

1.1 The Topological Derivative Concept

Let us consider an open and bounded domain Ω ⊂ Rd , with d ≥ 2, which is
subject to a non-smooth perturbation confined in a small region ωε(̂x) = x̂ + εω

of size ε, such that ωε ⊂ Ω , where x̂ is an arbitrary point of Ω and ω represents a
fixed domain in Rd . See sketch in Fig. 1.1. We introduce a characteristic function
x �→ χ(x), x ∈ Rd , associated with the unperturbed domain, namely χ := 1Ω ,
such that

|Ω| =
∫

Rd

χ, (1.1)

where |Ω| is the Lebesgue measure of Ω . Then, we define a characteristic function
associated with the topologically perturbed domain of the form x �→ χε(̂x; x),
x ∈ Rd . In the case of a perforation, for example, χε(̂x) := 1Ω − 1ωε(̂x) and the
perturbed domain is obtained as Ωε = Ω \ωε. Finally, we assume that a given shape
functional ψ(χε(̂x)), associated with the topologically perturbed domain, admits a
topological asymptotic expansion of the form

ψ(χε(̂x)) = ψ(χ) + f (ε)T (̂x) + R(ε), (1.2)

where ψ(χ) is the shape functional associated with the reference (unperturbed)
domain, f (ε) is a positive first order correction function, which decreases mono-
tonically such that f (ε) → 0 with ε → 0, and R(ε) is the remainder term, that
is, R(ε)/f (ε) → 0 with ε → 0. The function x̂ �→ T (̂x) is recognized as the
topological derivative of ψ at x̂. Therefore, the product f (ε)T (̂x) represents a first
order correction over ψ(χ) to approximate ψ(χε(̂x)). In addition, after rearranging
(1.2), we have

Fig. 1.1 The topological derivative concept
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ψ(χε(̂x)) − ψ(χ)

f (ε)
= T (̂x) + R(ε)

f (ε)
. (1.3)

The limit passage ε → 0 in the above expression leads to the general definition for
the topological derivative, namely

T (̂x) := lim
ε→0

ψ(χε(̂x)) − ψ(χ)

f (ε)
. (1.4)

Assuming that the functional ψ(χε(̂x)) admits the topological asymptotic expan-
sion (1.2), the applicability of this expansion depends on the procedure of evaluation
of the unknown function x̂ �→ T (̂x). In particular, we are looking for an appropriate
form for the topological derivative which can be used in numerical method of
shape/topology optimization, for instance. Therefore, we need some properties of
the shape functional and its asymptotic expansion in order to apply a simple method
for evaluation of the topological derivative, which are:

1. The shape functional ε �→ j (ε) := ψ(χε(̂x)) is continuous with respect to a
topological perturbation at 0+, i.e., limε→0+ f (ε) = 0.

2. The limit passage limε→0+ R(ε)/f (ε) = 0 holds true.

Note that since we are dealing with singular domain perturbations, in general the
limit in (1.4) cannot be trivially evaluated. It is the case of topological perturbations
consisting of nucleation of holes, for instance, where the shape functionals ψ(χ)

and ψ(χε(̂x)) are associated with topologically different domains (see Remark 1.2
below). Therefore, we need to develop ψ(χε(̂x)) asymptotically with respect to the
small parameter ε and collect the leading terms of the resulting expansion. How to
construct a topological asymptotic expansion of the form (1.4) is, in fact, the main
concern of this monograph.

Remark 1.1 The notion of topological derivative extends the conventional defi-
nition of derivative [34, 35], allowing to deal with functionals depending on a
geometrical domain subjected to singular topology changes. According to (1.4),
the analogy between the topological derivative and the corresponding expressions
for a conventional derivative is to be noted.

Remark 1.2 We say topological derivative because we are dealing with topological
changes in a geometrical domain given by, e.g., nucleation of holes. In fact, the
Euler-Poincaré characteristic of any oriented surface Ω is given by the quantity

C(Ω) = V − E + F, (1.5)

where V , E, and F are respectively the numbers of vertices, edges, and faces of
a given polyhedron produced by an arbitrary triangularization of Ω . In particular,
if two distinct surfaces Ω1 and Ω2 have the same Euler-Poincaré characteristic,
namely C(Ω1) = C(Ω2), then they are topologically equivalents. Let us now
suppose that we remove one single triangle from Ω2, then Ω1 and Ω2 have the
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Fig. 1.2 An example of the
Euler-Poincaré characteristic

11 2

same numbers of vertices and edges, but Ω2 has one face less than Ω1, so that
C(Ω2) = C(Ω1) − 1. See sketch in Fig. 1.2. Therefore, according to the Euler-
Poincaré characteristic, after creating a hole in Ω2 by removing a triangle, its
topology actually changes.

In order to fix these ideas let us present five (very) simple examples. The
first one concerns the topological derivative of the volume of a given geometrical
domain. The second and third examples deal with singular and regular domain
perturbations, respectively. The fourth example shows that the topological derivative
obeys the basic rules of differential calculus. Finally, the last example deals with the
topological derivative of the energy shape functional associated with a second order
ordinary differential equation into one spatial dimension.

Example 1.1 Let us consider a very simple functional given by the area of the
domain Ω ⊂ R2, that is

ψ(χ) := |Ω| =
∫

Ω

1, (1.6)

with Ω subject to the class of topological perturbations produced by the nucleation
of circular holes, namely ωε = Bε(̂x) := {x ∈ Ω : ‖x − x̂‖ < ε}, for x̂ ∈ Ω . The
expansion with respect to ε can be trivially obtained as follows:

ψ(χε(̂x)) = |Ωε(̂x)| =
∫

Ω

1 −
∫

Bε

1 = ψ(χ) − πε2. (1.7)

Therefore, function f (ε) and the topological derivative T (̂x) are immediately
identified as

f (ε) = πε2 and T (̂x) = −1 ∀ x̂ ∈ Ω. (1.8)

In this particular case T (̂x) is independent of x̂, and the rightmost term of the
topological asymptotic expansion is equal to zero.

Example 1.2 We consider a shape functional of the form

ψ(χε(̂x)) :=
∫

Ωε(̂x)

g(x), (1.9)

where χε(̂x) = 1Ω − 1Bε(̂x) and Ωε(̂x) = Ω \ Bε(̂x), with Bε(̂x) used to denote a
ball of radius ε and center at x̂ ∈ Ω . The function g : R2 �→ R is assumed to be
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Lipschitz continuous in Bε(̂x), i.e., |g(x) − g(̂x)| ≤ C‖x − x̂‖ ∀x ∈ Bε(̂x), where
C ≥ 0 is the Lipschitz constant. In the context of problems governed by partial
differential equations, this property comes out from the interior elliptic regularity
of solutions. Note that this is the case regarding singular domain perturbation (see
Remark 1.2). Since |Bε| → 0 with ε → 0, we have

ψ(χ) :=
∫

Ω

g(x). (1.10)

We are looking for an asymptotic expansion of the form (1.2), namely

ψ(χε(̂x)) =
∫

Ωε

g(x) +
∫

Bε

g(x) −
∫

Bε

g(x)

=
∫

Ω

g(x) −
∫

Bε

g(x) +
∫

Bε

g(̂x) −
∫

Bε

g(̂x)

= ψ(χ) − πε2g(̂x) + E (ε). (1.11)

The remainder E (ε) is defined as

E (ε) = −
∫

Bε

(g(x) − g(̂x)), (1.12)

which can be bounded as follows:

|E (ε)| =
∣

∣

∣

∣

∫

Bε

(g(x) − g(̂x))

∣

∣

∣

∣

≤
∫

Bε

|g(x) − g(̂x)| ≤ C1

∫

Bε

‖x − x̂‖, (1.13)

since function g is assumed to be locally Lipschitz continuous. From a polar
coordinate system (r, θ) centered at the point x̂ ∈ Ω , there is

∫

Bε

‖x − x̂‖ =
∫ 2π

0

(∫ ε

0
(r) rdr

)

dθ = 2π

3
ε3, (1.14)

where we have used the fact that ‖x − x̂‖ = r . Finally, by combining the last two
results, the following estimate for the remainder E (ε) holds true:

|E (ε)| ≤ C2ε
3, (1.15)

with constant C2 independent of the small parameter ε. Therefore, the term −g(̂x)

is identified as the topological derivative of the shape functional ψ evaluated at the
point x̂ ∈ Ω , namely

T (̂x) = −g(̂x) ∀ x̂ ∈ Ω. (1.16)

In addition, function f (ε) = πε2. Finally, the remainder E (ε) is of order O(ε3).
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Example 1.3 Now, let us consider a shape functional defined as follows:

ψ(χε(̂x)) :=
∫

Ω

gε(x), (1.17)

where χε(̂x) = 1Ω − (1 − γ )1Bε(̂x). The function gε = χεg is defined as

gε(x) :=
{

g(x) if x ∈ Ω \ Bε(̂x),

γg(x) if x ∈ Bε(̂x),
(1.18)

where γ ∈ R is the contrast and Bε(̂x) is a ball of radius ε and center at x̂ ∈ Ω .
In addition, function g : R2 �→ R is assumed to be Lipschitz continuous in Bε (see
Example 1.2). Observe that this case corresponds to regular domain perturbation
where the shape functional depends on characteristic function of small sets. Since
|Bε| → 0 with ε → 0, there is

ψ(χ) :=
∫

Ω

g(x). (1.19)

We are looking for an asymptotic expansion of the form (1.2), that is

ψ(χε(̂x)) =
∫

Ω\Bε

g(x) +
∫

Bε

γg(x)

=
∫

Ω\Bε

g(x) +
∫

Bε

γg(x) ±
∫

Bε

g(x)

=
∫

Ω

g(x) − (1 − γ )

∫

Bε

g(x) ± (1 − γ )

∫

Bε

g(̂x)

= ψ(χ) − πε2(1 − γ )g(̂x) + o(ε2), (1.20)

where we have used the notation 0 = ±(·) = (·) − (·). From the above expansion,
we can identify the term −(1 − γ )g(̂x) as the topological derivative of the shape
functional ψ evaluated at the point x̂ ∈ Ω , namely

T (̂x) = −(1 − γ )g(̂x) ∀ x̂ ∈ Ω, (1.21)

with f (ε) = πε2. Note that the limit passage γ → 0 leads to T (̂x) = −g(̂x). It
means that the former example can be seen as the singular limit of this one.

Example 1.4 We consider two functions g1 and g2 assumed to be Lipschitz con-
tinuous in Bε. Let us return to the case regarding singularly perturbed geometrical
domains of the form Ωε(̂x) = Ω \ Bε(̂x). According to Example 1.2, we have

ψi(χ):=
∫

Ω

gi(x) ⇒ Ti (̂x) = −gi (̂x), for i = 1, 2. (1.22)
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Then, the topological derivative of the product between ψ1(χ) and ψ2(χ), namely

ψ(χ):=ψ1(χ)ψ2(χ), (1.23)

is given by

T (̂x) = T1(̂x)ψ2(χ) + T2(̂x)ψ1(χ)

= −g1(̂x)

∫

Ω

g2(x) − g2(̂x)

∫

Ω

g1(x). (1.24)

Finally, the topological derivative of the quotient between ψ1(χ) and ψ2(χ), that is

ψ(χ):=ψ1(χ)

ψ2(χ)
, (1.25)

can be written as

T (̂x) = T1(̂x)ψ2(χ) − T2(̂x)ψ1(χ)

ψ2(χ)2

=
g2(̂x)

∫

Ω

g1(x) − g1(̂x)

∫

Ω

g2(x)

ψ2(χ)2
. (1.26)

Example 1.5 In this last example we consider that the problem is governed by a
second order ordinary differential equation. The associated energy shape functional
is defined as

ψ(χε(̂x)) :=
∫ 1

0
γε|u′

ε|2. (1.27)

Note that in this case Ω = (0, 1), χε(̂x) = 1Ω −(1−γ )1ωε(̂x), with ωε(̂x) = (0, ε),
and γε := χε. It means that γε(x) = γ for 0 < x ≤ ε and γε(x) = 1 for ε < x < 1,
where γ ∈ R+, i.e., 0 < γ < ∞, is the contrast on the material property. In
addition, uε is the solution of the following boundary value problem

(γε(x)u′
ε(x))′ = 0, 0 < x < 1, (1.28)

endowed with boundary conditions of the form

uε(0) = 0 and u′
ε(1) = 1, (1.29)

and transmission conditions arising naturally from the variational formulation of
problem (1.28), that is

uε(ε
+) = uε(ε

−) and u′
ε(ε

+) = γ u′
ε(ε

−). (1.30)
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The above boundary value problem admits an explicit solution of the form

{

uε(x) = x
γ
, 0 < x ≤ ε,

uε(x) = x + ε
1−γ
γ

, ε < x < 1.
(1.31)

Since |Bε| → 0 with ε → 0, there is

ψ(χ) :=
∫ 1

0
|u′|2, (1.32)

where u is the solution to the above boundary value problem for ε = 0, that is

u(x) = x. (1.33)

We are looking for an asymptotic expansion of the form (1.2), namely

ψ(χε(̂x)) =
∫ ε

0
γ |u′

ε|2 +
∫ 1

ε

|u′
ε|2 = 1 + ε

1 − γ

γ
= ψ(χ) + ε

1 − γ

γ
. (1.34)

Therefore, the associated topological derivative is given by

T (̂x) = 1 − γ

γ
∀ x̂ ∈ (0, 1), (1.35)

with f (ε) = ε. Note that in the limit case γ → ∞, T (̂x) = −1 ∀x̂ ∈ (0, 1). On
the other hand, for γ → 0 the topological derivative is not defined. This is in fact
an intrinsic property of one-dimensional problems, which in general do not admit
singular domain perturbations [18].

1.2 Evaluation of the Topological Derivative

Before concluding this chapter, let us present a last example concerning the simplest
case of topological perturbation with PDEs constraints. It is given by a perturbation
on the right-hand side of a boundary value problem, which can be seen as a simple
variant of the case associated with singularly perturbed geometrical domains. We
start by introducing the adjoint sensitivity method. Then we state an auxiliary result
which will be used here, in this section, and later in the book. Finally, we present a
simple example in the context of optimal control problem.
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1.2.1 Adjoint Sensitivity Method

Let us introduce the adjoint sensitivity method through the augmented Lagrangian
formalism. We consider the following minimization problem:

Minimize
Ω∈X

J (u), (1.36)

where X represents the set of admissible geometrical domains and J : U �→ R

is the shape functional to be minimized with respect to the design variable domain
Ω ⊂ Rd , d = 2, 3. In addition, function u is the solution of the abstract variational
problem of the form

u ∈ U : a(u, η) = �(η) ∀η ∈ V , (1.37)

where U ∈ U is the set of admissible functions and V ∈ V is the space
of admissible variations, with U and V used to denote linear Hilbert subspaces,
respectively. Finally, a : U × V �→ R is a bilinear form and � : V �→ R is a
linear functional. From these elements, we can introduce the associated augmented
Lagrangian, which consists in imposing the constraint of the minimization problem
(1.36), given by the state equation (1.37), through Lagrangian multiplier, namely

L (u, v) = J (u) + a(u, v) − �(v) ∀(u, v) ∈ U × V . (1.38)

Let us evaluate the Fréchet derivative of the Lagrangian function L (u, v) with
respect to v ∈ V in the direction η ∈ V , thus

〈DvL (u, v), η〉 = a(u, η) − �(η). (1.39)

After applying the first order optimality condition in the above result we obtain

u ∈ U : a(u, η) = �(η) ∀η ∈ V , (1.40)

which is actually the state equation (1.37). On the other hand, the Fréchet derivative
of the Lagrangian function L (u, v) with respect to u ∈ U in the direction ϕ ∈ V
can be written as

〈DuL (u, v), ϕ〉 = 〈DuJ (u), ϕ〉 + a(ϕ, v). (1.41)

Let us apply again the first order optimality condition, leading to the associated
adjoint equation, namely

v ∈ V : a(ϕ, v) = −〈DuJ (u), ϕ〉 ∀ϕ ∈ V . (1.42)
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Note that, from (1.42), the adjoint state v always lives in the space V and appears
on the second argument of the bilinear form. Finally, from the above discussion,
the adjoint variable v can also be interpreted as the Lagrangian multiplier used to
impose the state equation (1.37) as a constraint in the optimization problem (1.36).

1.2.2 Auxiliary Result

Now, let us state an auxiliary result which will be used in the next section in
particular and in the whole book in general.

Lemma 1.1 Let Ω be an open and bounded domain in R2 and let Bε be a ball of
radius ε, such that Bε ⊂ Ω . Then, for a function ϕ ∈ H 1(Ω), the following estimate
holds true

‖ϕ‖L2(Bε)
≤ Cεδ‖ϕ‖H 1(Ω), (1.43)

with 0 < δ < 1 and the constant C independent of the small parameter ε.

Proof From the Hölder inequality, we have

‖ϕ‖L2(Bε)
≤

[

(∫

Bε

(|ϕ|2)p
) 1

p
(∫

Bε

1q

) 1
q

]
1
2

= π1/2qε1/q

(∫

Bε

|ϕ|2p

) 1
2p

= π1/2qε1/q‖ϕ‖L2p(Bε)

≤ Cε1/q‖ϕ‖L2p(Ω), (1.44)

for all p, q ∈ (1,+∞) satisfying 1/p + 1/q = 1. By choosing q > 1 and
p accordingly, the Sobolev embedding theorem [33, Ch. IV, §8, Sec. 1.2, p. 139]
implies H 1(Ω) ⊂ L2p(Ω) with a continuous embedding. Therefore, we have

‖ϕ‖L2(Bε)
≤ Cε1/q‖ϕ‖H 1(Ω), (1.45)

which leads to the result by setting δ = 1/q. ��
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1.2.3 A Simple Example

Let us consider the tracking type shape functional, which is useful in many practical
applications including optimal control problem and imaging processing, namely

ψ(χ) := J (u) = 1

2

∫

Ω

|u − zd |2, (1.46)

where Ω ⊂ R2 and zd is the target function, assumed to be smooth. The scalar field
u is the solution of the following variation problem:

u ∈ H 1
0 (Ω) :

∫

Ω

∇u · ∇η =
∫

Ω

bη ∀η ∈ H 1
0 (Ω), (1.47)

where the source-term b is assumed to be locally Lipschitz continuous (see Exam-
ple 1.2). According to Sect. 1.2.1, the associated augmented Lagrangian functional
is given by

L (u, v) = 1

2

∫

Ω

|u − zd |2 +
∫

Ω

∇u · ∇v −
∫

Ω

bv, (1.48)

and the adjoint equation reads

v ∈ H 1
0 (Ω) :

∫

Ω

∇η · ∇v = −〈DuJ (u), η〉

= −
∫

Ω

(u − zd)η ∀η ∈ H 1
0 (Ω). (1.49)

Note that by symmetry of the above bilinear form, in this particular case the left-
hand sides of (1.47) and (1.49) are precisely the same but for the appropriate test
functions only. The only difference is their right-hand sides. This property simplifies
enormously the numerics.

Now, we introduce a topological perturbation on the source term of the form
bε = χεb, with χε(̂x) = 1Ω − (1 − γ )1Bε(̂x). Therefore, the perturbed source term
bε can be written as

bε(x) :=
{

b(x) if x ∈ Ω \ Bε(̂x),

γ b(x) if x ∈ Bε(̂x),
(1.50)

with γ ∈ R used to denote the contrast in the source term. From these elements, the
shape functional associated with the perturbed problem is defined as

ψ(χε) := Jε(uε) = 1

2

∫

Ω

|uε − zd |2. (1.51)
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The scalar function uε is the solution of the following variation problem

uε ∈ H 1
0 (Ω) :

∫

Ω

∇uε · ∇η =
∫

Ω

bεη ∀η ∈ H 1
0 (Ω). (1.52)

From the definition of the source term given by (1.50), we have bε = b in Ω \Bε

and bε = γ b in Bε. Therefore, the state equation (1.52) can be rewritten as

uε ∈ H 1
0 (Ω) :

∫

Ω

∇uε · ∇η =
∫

Ω\Bε

bη + γ

∫

Bε

bη ±
∫

Bε

bη

=
∫

Ω

bη − (1 − γ )

∫

Bε

bη ∀η ∈ H 1
0 (Ω). (1.53)

Now, let us subtract (1.47) from (1.53) to obtain

∫

Ω

∇(uε − u) · ∇η = −(1 − γ )

∫

Bε

bη ∀η ∈ H 1
0 (Ω). (1.54)

Thus, the existence of the topological derivative of the problem we are dealing with
is ensured by the following result:

Lemma 1.2 Let u and uε be the solutions of (1.47) and (1.52), respectively. Then
the following estimate holds true

‖uε − u‖H 1(Ω) ≤ Cε1+δ, (1.55)

with constant C independent of the small parameter ε and 0 < δ < 1.

Proof By taking η = uε − u as test function in (1.54), we obtain the following
equality:

∫

Ω

‖∇(uε − u)‖2 = −(1 − γ )

∫

Bε

b(uε − u). (1.56)

From the Cauchy-Schwarz inequality, we have

∫

Ω

‖∇(uε − u)‖2 ≤ C1‖b‖L2(Bε)
‖uε − u‖L2(Bε)

≤ C2ε
1+δ‖uε − u‖H 1(Ω),

where we have used Lemma 1.1 and the continuity of function b at the point x̂ ∈ Ω .
Finally, from the coercivity of the bilinear form on the left-hand side of the above
inequality, namely

c‖uε − u‖2
H 1(Ω)

≤
∫

Ω

‖∇(uε − u)‖2, (1.57)
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we conclude that

c‖uε − u‖H 1(Ω) ≤ C2ε
1+δ, (1.58)

which leads to the result with C = C2/c and 0 < δ < 1. ��
The variation of the shape functional can be obtained by subtracting (1.46) from

(1.51), that is

Jε(uε) − J (u) =
∫

Ω

(u − zd)(uε − u) + E1(ε), (1.59)

with the remainder E1(ε) bounded as

E1(ε) = 1

2

∫

Ω

|uε − u|2,

|E1(ε)| ≤ C‖uε − u‖2
L2(Ω)

≤ C‖uε − u‖2
H 1(Ω)

= o(ε2), (1.60)

where we have used Lemma 1.2. Now, let us set η = uε − u as test function in the
adjoint Eq. (1.49) and η = v as test function in (1.54) to obtain

∫

Ω

∇v · ∇(uε − u) = −
∫

Ω

(u − zd)(uε − u), (1.61)

∫

Ω

∇v · ∇(uε − u) = −(1 − γ )

∫

Bε

bv. (1.62)

From the above results we conclude that
∫

Ω

(u − zd)(uε − u) = (1 − γ )

∫

Bε

bv. (1.63)

Therefore, the variation (1.59) can be rewritten as an integral concentrated in the
ball Bε, namely

Jε(uε) − J (u) = (1 − γ )

∫

Bε

bv + E1(ε)

= (1 − γ )πε2b(̂x)v(̂x) + E1(ε) + E2(ε). (1.64)

The remainder E2(ε) can be bounded as follows:

E2(ε) = (1 − γ )

∫

Bε

(bv − b(̂x)v(̂x)),
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|E2(ε)| ≤ C1

∫

Bε

‖x − x̂‖ ≤ C2ε
3 = o(ε2), (1.65)

where we have used the interior elliptic regularity of function u. See Example 1.2.
Finally, the topological asymptotic expansion of the shape functional is given by

Jε(uε) = J (u) + πε2(1 − γ )b(̂x)v(̂x) + o(ε2). (1.66)

From the above expansion, we can identify function f (ε) = πε2 and the final
formula for the topological derivative, namely

T (̂x) = (1 − γ )b(̂x)v(̂x) ∀ x̂ ∈ Ω, (1.67)

where u and v are the solutions of the direct (1.47) and adjoint (1.49) problems,
respectively, both defined in the original (unperturbed) domain Ω .

Remark 1.3 This kind of topological perturbation, that is, on the right-hand side of
the governing boundary value problem, can be treated by using simple arguments
from the analysis. Actually, we have just used the fact that the boundary value
problems are well posed. Therefore, in this context, it is possible to consider certain
classes of nonlinear problems. However, this book is dedicated to the case of
topological perturbations on the main part of the differential operator, such as the
ones produced by the nucleation of holes. The mathematical analysis of this class
of topological perturbations is much more involved, which is deeply discussed in
Chap. 4 and also in [75], for instance.

1.3 Organization of the Book

In this chapter the topological derivative concept has been introduced, together with
some selected examples. Note that the small parameter governing the asymptotic
analysis represents the size of the topological domain perturbation, allowing for the
nucleation of small inclusions or voids in a numerical procedure of optimization
regarding shape/topology changes on the material properties distribution or in
the geometrical domain itself, respectively. Therefore, this new concept in shape
optimization has applications in many different fields such as topology optimization,
inverse problems, imaging processing, multi-scale material design, and mechanical
modeling including damage and fracture evolution phenomena. The central idea of
this work is to introduce the topological derivative method from both theoretical
and practical point of views, so that it is oriented to the readers interested in
the mathematical aspects of the topological asymptotic analysis as well as in the
applications of the topological derivative method in computational mechanics. In
particular, this book is presented as follows:
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• The topological asymptotic analysis of the energy shape functional associated
with the Poisson’s equation, with respect to singular domain perturbations,
is formally developed through Chap. 2. In particular, we consider singular
perturbations produced by the nucleation of small circular holes endowed with
homogeneous Neumann, Dirichlet, or Robin boundary conditions.

• Chapter 3 deals with the topological derivative of the so-called compliance shape
functional associated with a modified Helmholtz problem, with respect to the
nucleation of a small circular inclusion with different material property from the
background. By taking into account the boundary value problem we are dealing
with, three different cases are considered: (1) perturbation on its right-hand side,
(2) perturbation on the lower order term, and (3) perturbation on the higher order
term. The existence of the associated topological derivatives is ensured by using
simple arguments from the analysis. Then, we derive their explicit forms which
are useful for numerical methods in shape/topology optimization. Finally, a priori
estimates for the remainders left in the topological asymptotic expansions are
rigorously obtained, which are used to justify the obtained results.

• The domain decomposition technique combined with the Steklov–Poincaré
pseudo-differential boundary operator is presented in Chap. 4. The main idea is
introduced in the context of coupled elliptic boundary value problems. Then, the
same framework is used for deriving the topological asymptotic expansion of
a tracking-type shape functional with respect to singular domain perturbations
produced by the nucleation of small circular holes endowed with homogeneous
Neumann boundary condition. The resulting asymptotic method allows for
obtaining sharp a priori estimates for the remainders, so that it can be seen as
a rigorous mathematical justification for the derivations presented in the former
chapters.

• In Chap. 5 a topology optimization algorithm based on the topological derivative
concept combined with a level-set domain representation method is presented.
The model problem is governed by the elasticity system into two spatial
dimensions. The topological asymptotic expansion of a tracking-type shape
functional, associated with the nucleation of a small circular inclusion endowed
with different material property from the background, is rigorously derived.
Finally, the obtained theoretical result is used as a steepest-descent direction in
the optimization process, which is applied in the context of compliance structural
topology optimization and topology design of compliant mechanisms.

• Some useful basic results of tensor calculus are included in Appendix A for the
readers’ convenience. In particular, inner, vector, and tensor products are defined.
In addition, gradient, divergence, and curl formulae, together with some integral
theorems, are presented. Finally, some useful decompositions in curvilinear,
polar, and spherical coordinate systems are provided.
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1.4 Exercises

1. Repeat Example 1.2 by considering g : R3 �→ R.
2. Let us consider one more term in the topological asymptotic expansion of the

form

ψ(χε(̂x)) = ψ(χ) + f (ε)T (̂x) + f2(ε)T
2(̂x) + o(f2(ε)),

where f2(ε) is such that

lim
ε→0

f2(ε)

f (ε)
= 0.

Then, quantities T (̂x) and T 2(̂x) represent the first and second order topologi-
cal derivatives of ψ , respectively. Assume that function g(x) in Example 1.3 is of
class C2(Ω), with its second order gradient Lipschitz continuous in Bε, namely
∃ C ≥ 0 : ‖∇∇g(x) − ∇∇g(̂x)‖ ≤ C‖x − x̂‖ ∀x ∈ Bε, where Bε(̂x) is used to
denote a ball of radius ε and center at x̂ ∈ Ω ⊂ R2. Show that the topological
asymptotic expansion of the functional ψ(χε(̂x)) is given by

ψ(χε(̂x)) = ψ(χ) − (1 − γ )πε2g(̂x) − 1 − γ

8
πε4Δg(̂x) + o(ε4).

3. From the definition for the topological asymptotic expansion given by (1.2), show
the results presented in Example 1.4.

4. Repeat Example 1.5 by considering the following conditions:

−u′′(x) = 1 for 0 < x < 1 and u(0) = u′(1) = 0.

5. By taking into account the example presented in Sect. 1.2.3:

(a) Replace the shape functional (1.46) by the total potential energy associated
with the variational problem (1.47), namely

ψ(χ) := J (u) = 1

2

∫

Ω

‖∇u‖2 −
∫

Ω

bu.

Then compute its topological derivative by repeating the same derivations as
presented in Sect. 1.2.3.

(b) Take the total potential energy defined in a disk B1 of unit radius and center
at the origin. By setting b = 1 as source term, consider as topological
perturbation the particular case given by (1.50), namely bε(x) = 1 if
x ∈ B1 \ Bε and bε(x) = γ if x ∈ Bε, where Bε is a disk of radius
ε and center at the origin. From these elements, develop the topologically
perturbed counter part of the total potential energy given by ψ(χε) in power
of ε around the origin. Finally, compare the obtained result with the one
previously derived.
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