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Preface

Mathematical analysis and numerical solutions of problems with unknown shapes is
a challenging and rich research field in the modern theory of calculus of variations,
partial differential equations, differential geometry as well as in numerical analysis.
In this book, the topological derivative method is introduced. This new concept
in shape optimization has applications in many different fields such as topology
optimization, inverse problems, imaging processing, multi-scale material design,
and mechanical modeling including damage and fracture evolution phenomena.

The present work is complementary to the book by A.A. Novotny and J.
Sokołowski, Topological Derivatives in Shape Optimization, Interaction of Mechan-
ics and Mathematics Series, Springer-Verlag, Berlin, Heidelberg, 2013. In fact,
the concept of topological derivative is presented through some selected examples
in a simpler and more pedagogical manner by using a direct approach based on
calculus of variations combined with compound asymptotic analysis. In addition,
the topological derivative is used in numerical method of shape optimization,
including applications in the context of compliance structural topology optimization
and topology design of compliant mechanisms. Finally, in order to fix the ideas,
some exercises are proposed at the end of each chapter. Therefore, this monograph
can be adopted as a textbook in graduate and introductory courses on the subject.
In particular, it is oriented to researchers and students in applied mathematics and
computational mechanics interested in the mathematical aspects of the topological
asymptotic analysis as well as in applications of the topological derivative method
in computational mechanics.

This book is a result of more than 10 years of scientific collaboration between
André Novotny and Jan Sokołowski, which has been supported by IECN in France
and by CNPq, CAPES, FAPERJ, and LNCC in Brazil.

Petrópolis, Brazil Antonio André Novotny
Vandoeuvre-Lès-Nancy, France Jan Sokołowski
Warsaw, Poland
João Pessoa, Brazil
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Chapter 1
Introduction

The topological derivative is defined as the first term of the asymptotic expansion of
a given shape functional with respect to a small parameter that measures the size of
singular domain perturbations, such as holes, inclusions, source-terms, and cracks
[75]. This relatively new concept has applications in many different fields such as
shape and topology optimization, inverse problems, imaging processing, multi-scale
material design, and mechanical modeling including damage and fracture evolution
phenomena. For an account on the theoretical development and applications of
the topological derivative method, see the series of review papers [79–81] and
references therein.

The topological derivative method has been specifically designed to deal with
topology optimization. It has been introduced by Sokołowski and Żochowski in
1999 through the fundamental paper [88] to fill a gap in the existing literature at that
time. Actually, the idea was to give a precise (mathematical) answer to the following
important question: What happens when a hole is nucleated? The answer to this
question is not trivial at all, since singularities may appear once a hole is nucleated.
Therefore, in order to deal with this problem, asymptotic analysis in singularly
perturbed geometrical domains is needed. In this book, the topological derivative
method is presented through some selected examples in a simple and pedagogical
manner by using a direct approach based on calculus of variations combined with
matched [54] and compound [67] asymptotic analysis of solution to boundary value
problems. In addition, the topological derivative is used in numerical method of
shape optimization including applications in the context of compliance structural
topology optimization and topology design of compliant mechanisms. Finally, some
exercises are proposed at the end of each chapter for the readers’ convenience.

This chapter is organized as follows. In Sect. 1.1 the topological derivative
concept is introduced and five simple examples are presented in order to fix the
ideas. In Sect. 1.2 the adjoint sensitivity method is presented through the Lagrangian
formalism and an example in the context of control theory with PDE constraint

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020
A. A. Novotny, J. Sokołowski, An Introduction to the Topological
Derivative Method, SpringerBriefs in Mathematics,
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2 1 Introduction

is fully developed. Finally, the content of the book is described in detail through
Sect. 1.3.

1.1 The Topological Derivative Concept

Let us consider an open and bounded domain Ω ⊂ Rd , with d ≥ 2, which is
subject to a non-smooth perturbation confined in a small region ωε(̂x) = x̂ + εω

of size ε, such that ωε ⊂ Ω , where x̂ is an arbitrary point of Ω and ω represents a
fixed domain in Rd . See sketch in Fig. 1.1. We introduce a characteristic function
x �→ χ(x), x ∈ Rd , associated with the unperturbed domain, namely χ := 1Ω ,
such that

|Ω| =
∫

Rd

χ, (1.1)

where |Ω| is the Lebesgue measure of Ω . Then, we define a characteristic function
associated with the topologically perturbed domain of the form x �→ χε(̂x; x),
x ∈ Rd . In the case of a perforation, for example, χε(̂x) := 1Ω − 1ωε(̂x) and the
perturbed domain is obtained as Ωε = Ω \ωε. Finally, we assume that a given shape
functional ψ(χε(̂x)), associated with the topologically perturbed domain, admits a
topological asymptotic expansion of the form

ψ(χε(̂x)) = ψ(χ) + f (ε)T (̂x) + R(ε), (1.2)

where ψ(χ) is the shape functional associated with the reference (unperturbed)
domain, f (ε) is a positive first order correction function, which decreases mono-
tonically such that f (ε) → 0 with ε → 0, and R(ε) is the remainder term, that
is, R(ε)/f (ε) → 0 with ε → 0. The function x̂ �→ T (̂x) is recognized as the
topological derivative of ψ at x̂. Therefore, the product f (ε)T (̂x) represents a first
order correction over ψ(χ) to approximate ψ(χε(̂x)). In addition, after rearranging
(1.2), we have

Fig. 1.1 The topological derivative concept
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ψ(χε(̂x)) − ψ(χ)

f (ε)
= T (̂x) + R(ε)

f (ε)
. (1.3)

The limit passage ε → 0 in the above expression leads to the general definition for
the topological derivative, namely

T (̂x) := lim
ε→0

ψ(χε(̂x)) − ψ(χ)

f (ε)
. (1.4)

Assuming that the functional ψ(χε(̂x)) admits the topological asymptotic expan-
sion (1.2), the applicability of this expansion depends on the procedure of evaluation
of the unknown function x̂ �→ T (̂x). In particular, we are looking for an appropriate
form for the topological derivative which can be used in numerical method of
shape/topology optimization, for instance. Therefore, we need some properties of
the shape functional and its asymptotic expansion in order to apply a simple method
for evaluation of the topological derivative, which are:

1. The shape functional ε �→ j (ε) := ψ(χε(̂x)) is continuous with respect to a
topological perturbation at 0+, i.e., limε→0+ f (ε) = 0.

2. The limit passage limε→0+ R(ε)/f (ε) = 0 holds true.

Note that since we are dealing with singular domain perturbations, in general the
limit in (1.4) cannot be trivially evaluated. It is the case of topological perturbations
consisting of nucleation of holes, for instance, where the shape functionals ψ(χ)

and ψ(χε(̂x)) are associated with topologically different domains (see Remark 1.2
below). Therefore, we need to develop ψ(χε(̂x)) asymptotically with respect to the
small parameter ε and collect the leading terms of the resulting expansion. How to
construct a topological asymptotic expansion of the form (1.4) is, in fact, the main
concern of this monograph.

Remark 1.1 The notion of topological derivative extends the conventional defi-
nition of derivative [34, 35], allowing to deal with functionals depending on a
geometrical domain subjected to singular topology changes. According to (1.4),
the analogy between the topological derivative and the corresponding expressions
for a conventional derivative is to be noted.

Remark 1.2 We say topological derivative because we are dealing with topological
changes in a geometrical domain given by, e.g., nucleation of holes. In fact, the
Euler-Poincaré characteristic of any oriented surface Ω is given by the quantity

C(Ω) = V − E + F, (1.5)

where V , E, and F are respectively the numbers of vertices, edges, and faces of
a given polyhedron produced by an arbitrary triangularization of Ω . In particular,
if two distinct surfaces Ω1 and Ω2 have the same Euler-Poincaré characteristic,
namely C(Ω1) = C(Ω2), then they are topologically equivalents. Let us now
suppose that we remove one single triangle from Ω2, then Ω1 and Ω2 have the
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Fig. 1.2 An example of the
Euler-Poincaré characteristic
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same numbers of vertices and edges, but Ω2 has one face less than Ω1, so that
C(Ω2) = C(Ω1) − 1. See sketch in Fig. 1.2. Therefore, according to the Euler-
Poincaré characteristic, after creating a hole in Ω2 by removing a triangle, its
topology actually changes.

In order to fix these ideas let us present five (very) simple examples. The
first one concerns the topological derivative of the volume of a given geometrical
domain. The second and third examples deal with singular and regular domain
perturbations, respectively. The fourth example shows that the topological derivative
obeys the basic rules of differential calculus. Finally, the last example deals with the
topological derivative of the energy shape functional associated with a second order
ordinary differential equation into one spatial dimension.

Example 1.1 Let us consider a very simple functional given by the area of the
domain Ω ⊂ R2, that is

ψ(χ) := |Ω| =
∫

Ω

1, (1.6)

with Ω subject to the class of topological perturbations produced by the nucleation
of circular holes, namely ωε = Bε(̂x) := {x ∈ Ω : ‖x − x̂‖ < ε}, for x̂ ∈ Ω . The
expansion with respect to ε can be trivially obtained as follows:

ψ(χε(̂x)) = |Ωε(̂x)| =
∫

Ω

1 −
∫

Bε

1 = ψ(χ) − πε2. (1.7)

Therefore, function f (ε) and the topological derivative T (̂x) are immediately
identified as

f (ε) = πε2 and T (̂x) = −1 ∀ x̂ ∈ Ω. (1.8)

In this particular case T (̂x) is independent of x̂, and the rightmost term of the
topological asymptotic expansion is equal to zero.

Example 1.2 We consider a shape functional of the form

ψ(χε(̂x)) :=
∫

Ωε(̂x)

g(x), (1.9)

where χε(̂x) = 1Ω − 1Bε(̂x) and Ωε(̂x) = Ω \ Bε(̂x), with Bε(̂x) used to denote a
ball of radius ε and center at x̂ ∈ Ω . The function g : R2 �→ R is assumed to be
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Lipschitz continuous in Bε(̂x), i.e., |g(x) − g(̂x)| ≤ C‖x − x̂‖ ∀x ∈ Bε(̂x), where
C ≥ 0 is the Lipschitz constant. In the context of problems governed by partial
differential equations, this property comes out from the interior elliptic regularity
of solutions. Note that this is the case regarding singular domain perturbation (see
Remark 1.2). Since |Bε| → 0 with ε → 0, we have

ψ(χ) :=
∫

Ω

g(x). (1.10)

We are looking for an asymptotic expansion of the form (1.2), namely

ψ(χε(̂x)) =
∫

Ωε

g(x) +
∫

Bε

g(x) −
∫

Bε

g(x)

=
∫

Ω

g(x) −
∫

Bε

g(x) +
∫

Bε

g(̂x) −
∫

Bε

g(̂x)

= ψ(χ) − πε2g(̂x) + E (ε). (1.11)

The remainder E (ε) is defined as

E (ε) = −
∫

Bε

(g(x) − g(̂x)), (1.12)

which can be bounded as follows:

|E (ε)| =
∣

∣

∣

∣

∫

Bε

(g(x) − g(̂x))

∣

∣

∣

∣

≤
∫

Bε

|g(x) − g(̂x)| ≤ C1

∫

Bε

‖x − x̂‖, (1.13)

since function g is assumed to be locally Lipschitz continuous. From a polar
coordinate system (r, θ) centered at the point x̂ ∈ Ω , there is

∫

Bε

‖x − x̂‖ =
∫ 2π

0

(∫ ε

0
(r) rdr

)

dθ = 2π

3
ε3, (1.14)

where we have used the fact that ‖x − x̂‖ = r . Finally, by combining the last two
results, the following estimate for the remainder E (ε) holds true:

|E (ε)| ≤ C2ε
3, (1.15)

with constant C2 independent of the small parameter ε. Therefore, the term −g(̂x)

is identified as the topological derivative of the shape functional ψ evaluated at the
point x̂ ∈ Ω , namely

T (̂x) = −g(̂x) ∀ x̂ ∈ Ω. (1.16)

In addition, function f (ε) = πε2. Finally, the remainder E (ε) is of order O(ε3).
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Example 1.3 Now, let us consider a shape functional defined as follows:

ψ(χε(̂x)) :=
∫

Ω

gε(x), (1.17)

where χε(̂x) = 1Ω − (1 − γ )1Bε(̂x). The function gε = χεg is defined as

gε(x) :=
{

g(x) if x ∈ Ω \ Bε(̂x),

γg(x) if x ∈ Bε(̂x),
(1.18)

where γ ∈ R is the contrast and Bε(̂x) is a ball of radius ε and center at x̂ ∈ Ω .
In addition, function g : R2 �→ R is assumed to be Lipschitz continuous in Bε (see
Example 1.2). Observe that this case corresponds to regular domain perturbation
where the shape functional depends on characteristic function of small sets. Since
|Bε| → 0 with ε → 0, there is

ψ(χ) :=
∫

Ω

g(x). (1.19)

We are looking for an asymptotic expansion of the form (1.2), that is

ψ(χε(̂x)) =
∫

Ω\Bε

g(x) +
∫

Bε

γg(x)

=
∫

Ω\Bε

g(x) +
∫

Bε

γg(x) ±
∫

Bε

g(x)

=
∫

Ω

g(x) − (1 − γ )

∫

Bε

g(x) ± (1 − γ )

∫

Bε

g(̂x)

= ψ(χ) − πε2(1 − γ )g(̂x) + o(ε2), (1.20)

where we have used the notation 0 = ±(·) = (·) − (·). From the above expansion,
we can identify the term −(1 − γ )g(̂x) as the topological derivative of the shape
functional ψ evaluated at the point x̂ ∈ Ω , namely

T (̂x) = −(1 − γ )g(̂x) ∀ x̂ ∈ Ω, (1.21)

with f (ε) = πε2. Note that the limit passage γ → 0 leads to T (̂x) = −g(̂x). It
means that the former example can be seen as the singular limit of this one.

Example 1.4 We consider two functions g1 and g2 assumed to be Lipschitz con-
tinuous in Bε. Let us return to the case regarding singularly perturbed geometrical
domains of the form Ωε(̂x) = Ω \ Bε(̂x). According to Example 1.2, we have

ψi(χ):=
∫

Ω

gi(x) ⇒ Ti (̂x) = −gi (̂x), for i = 1, 2. (1.22)
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Then, the topological derivative of the product between ψ1(χ) and ψ2(χ), namely

ψ(χ):=ψ1(χ)ψ2(χ), (1.23)

is given by

T (̂x) = T1(̂x)ψ2(χ) + T2(̂x)ψ1(χ)

= −g1(̂x)

∫

Ω

g2(x) − g2(̂x)

∫

Ω

g1(x). (1.24)

Finally, the topological derivative of the quotient between ψ1(χ) and ψ2(χ), that is

ψ(χ):=ψ1(χ)

ψ2(χ)
, (1.25)

can be written as

T (̂x) = T1(̂x)ψ2(χ) − T2(̂x)ψ1(χ)

ψ2(χ)2

=
g2(̂x)

∫

Ω

g1(x) − g1(̂x)

∫

Ω

g2(x)

ψ2(χ)2
. (1.26)

Example 1.5 In this last example we consider that the problem is governed by a
second order ordinary differential equation. The associated energy shape functional
is defined as

ψ(χε(̂x)) :=
∫ 1

0
γε|u′

ε|2. (1.27)

Note that in this case Ω = (0, 1), χε(̂x) = 1Ω −(1−γ )1ωε(̂x), with ωε(̂x) = (0, ε),
and γε := χε. It means that γε(x) = γ for 0 < x ≤ ε and γε(x) = 1 for ε < x < 1,
where γ ∈ R+, i.e., 0 < γ < ∞, is the contrast on the material property. In
addition, uε is the solution of the following boundary value problem

(γε(x)u′
ε(x))′ = 0, 0 < x < 1, (1.28)

endowed with boundary conditions of the form

uε(0) = 0 and u′
ε(1) = 1, (1.29)

and transmission conditions arising naturally from the variational formulation of
problem (1.28), that is

uε(ε
+) = uε(ε

−) and u′
ε(ε

+) = γ u′
ε(ε

−). (1.30)
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The above boundary value problem admits an explicit solution of the form

{

uε(x) = x
γ
, 0 < x ≤ ε,

uε(x) = x + ε
1−γ
γ

, ε < x < 1.
(1.31)

Since |Bε| → 0 with ε → 0, there is

ψ(χ) :=
∫ 1

0
|u′|2, (1.32)

where u is the solution to the above boundary value problem for ε = 0, that is

u(x) = x. (1.33)

We are looking for an asymptotic expansion of the form (1.2), namely

ψ(χε(̂x)) =
∫ ε

0
γ |u′

ε|2 +
∫ 1

ε

|u′
ε|2 = 1 + ε

1 − γ

γ
= ψ(χ) + ε

1 − γ

γ
. (1.34)

Therefore, the associated topological derivative is given by

T (̂x) = 1 − γ

γ
∀ x̂ ∈ (0, 1), (1.35)

with f (ε) = ε. Note that in the limit case γ → ∞, T (̂x) = −1 ∀x̂ ∈ (0, 1). On
the other hand, for γ → 0 the topological derivative is not defined. This is in fact
an intrinsic property of one-dimensional problems, which in general do not admit
singular domain perturbations [18].

1.2 Evaluation of the Topological Derivative

Before concluding this chapter, let us present a last example concerning the simplest
case of topological perturbation with PDEs constraints. It is given by a perturbation
on the right-hand side of a boundary value problem, which can be seen as a simple
variant of the case associated with singularly perturbed geometrical domains. We
start by introducing the adjoint sensitivity method. Then we state an auxiliary result
which will be used here, in this section, and later in the book. Finally, we present a
simple example in the context of optimal control problem.
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1.2.1 Adjoint Sensitivity Method

Let us introduce the adjoint sensitivity method through the augmented Lagrangian
formalism. We consider the following minimization problem:

Minimize
Ω∈X

J (u), (1.36)

where X represents the set of admissible geometrical domains and J : U �→ R

is the shape functional to be minimized with respect to the design variable domain
Ω ⊂ Rd , d = 2, 3. In addition, function u is the solution of the abstract variational
problem of the form

u ∈ U : a(u, η) = �(η) ∀η ∈ V , (1.37)

where U ∈ U is the set of admissible functions and V ∈ V is the space
of admissible variations, with U and V used to denote linear Hilbert subspaces,
respectively. Finally, a : U × V �→ R is a bilinear form and � : V �→ R is a
linear functional. From these elements, we can introduce the associated augmented
Lagrangian, which consists in imposing the constraint of the minimization problem
(1.36), given by the state equation (1.37), through Lagrangian multiplier, namely

L (u, v) = J (u) + a(u, v) − �(v) ∀(u, v) ∈ U × V . (1.38)

Let us evaluate the Fréchet derivative of the Lagrangian function L (u, v) with
respect to v ∈ V in the direction η ∈ V , thus

〈DvL (u, v), η〉 = a(u, η) − �(η). (1.39)

After applying the first order optimality condition in the above result we obtain

u ∈ U : a(u, η) = �(η) ∀η ∈ V , (1.40)

which is actually the state equation (1.37). On the other hand, the Fréchet derivative
of the Lagrangian function L (u, v) with respect to u ∈ U in the direction ϕ ∈ V
can be written as

〈DuL (u, v), ϕ〉 = 〈DuJ (u), ϕ〉 + a(ϕ, v). (1.41)

Let us apply again the first order optimality condition, leading to the associated
adjoint equation, namely

v ∈ V : a(ϕ, v) = −〈DuJ (u), ϕ〉 ∀ϕ ∈ V . (1.42)
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Note that, from (1.42), the adjoint state v always lives in the space V and appears
on the second argument of the bilinear form. Finally, from the above discussion,
the adjoint variable v can also be interpreted as the Lagrangian multiplier used to
impose the state equation (1.37) as a constraint in the optimization problem (1.36).

1.2.2 Auxiliary Result

Now, let us state an auxiliary result which will be used in the next section in
particular and in the whole book in general.

Lemma 1.1 Let Ω be an open and bounded domain in R2 and let Bε be a ball of
radius ε, such that Bε ⊂ Ω . Then, for a function ϕ ∈ H 1(Ω), the following estimate
holds true

‖ϕ‖L2(Bε)
≤ Cεδ‖ϕ‖H 1(Ω), (1.43)

with 0 < δ < 1 and the constant C independent of the small parameter ε.

Proof From the Hölder inequality, we have

‖ϕ‖L2(Bε)
≤
[

(∫

Bε

(|ϕ|2)p
) 1

p
(∫

Bε

1q

) 1
q

]
1
2

= π1/2qε1/q

(∫

Bε

|ϕ|2p

) 1
2p

= π1/2qε1/q‖ϕ‖L2p(Bε)

≤ Cε1/q‖ϕ‖L2p(Ω), (1.44)

for all p, q ∈ (1,+∞) satisfying 1/p + 1/q = 1. By choosing q > 1 and
p accordingly, the Sobolev embedding theorem [33, Ch. IV, §8, Sec. 1.2, p. 139]
implies H 1(Ω) ⊂ L2p(Ω) with a continuous embedding. Therefore, we have

‖ϕ‖L2(Bε)
≤ Cε1/q‖ϕ‖H 1(Ω), (1.45)

which leads to the result by setting δ = 1/q. ��
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1.2.3 A Simple Example

Let us consider the tracking type shape functional, which is useful in many practical
applications including optimal control problem and imaging processing, namely

ψ(χ) := J (u) = 1

2

∫

Ω

|u − zd |2, (1.46)

where Ω ⊂ R2 and zd is the target function, assumed to be smooth. The scalar field
u is the solution of the following variation problem:

u ∈ H 1
0 (Ω) :

∫

Ω

∇u · ∇η =
∫

Ω

bη ∀η ∈ H 1
0 (Ω), (1.47)

where the source-term b is assumed to be locally Lipschitz continuous (see Exam-
ple 1.2). According to Sect. 1.2.1, the associated augmented Lagrangian functional
is given by

L (u, v) = 1

2

∫

Ω

|u − zd |2 +
∫

Ω

∇u · ∇v −
∫

Ω

bv, (1.48)

and the adjoint equation reads

v ∈ H 1
0 (Ω) :

∫

Ω

∇η · ∇v = −〈DuJ (u), η〉

= −
∫

Ω

(u − zd)η ∀η ∈ H 1
0 (Ω). (1.49)

Note that by symmetry of the above bilinear form, in this particular case the left-
hand sides of (1.47) and (1.49) are precisely the same but for the appropriate test
functions only. The only difference is their right-hand sides. This property simplifies
enormously the numerics.

Now, we introduce a topological perturbation on the source term of the form
bε = χεb, with χε(̂x) = 1Ω − (1 − γ )1Bε(̂x). Therefore, the perturbed source term
bε can be written as

bε(x) :=
{

b(x) if x ∈ Ω \ Bε(̂x),

γ b(x) if x ∈ Bε(̂x),
(1.50)

with γ ∈ R used to denote the contrast in the source term. From these elements, the
shape functional associated with the perturbed problem is defined as

ψ(χε) := Jε(uε) = 1

2

∫

Ω

|uε − zd |2. (1.51)
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The scalar function uε is the solution of the following variation problem

uε ∈ H 1
0 (Ω) :

∫

Ω

∇uε · ∇η =
∫

Ω

bεη ∀η ∈ H 1
0 (Ω). (1.52)

From the definition of the source term given by (1.50), we have bε = b in Ω \Bε

and bε = γ b in Bε. Therefore, the state equation (1.52) can be rewritten as

uε ∈ H 1
0 (Ω) :

∫

Ω

∇uε · ∇η =
∫

Ω\Bε

bη + γ

∫

Bε

bη ±
∫

Bε

bη

=
∫

Ω

bη − (1 − γ )

∫

Bε

bη ∀η ∈ H 1
0 (Ω). (1.53)

Now, let us subtract (1.47) from (1.53) to obtain

∫

Ω

∇(uε − u) · ∇η = −(1 − γ )

∫

Bε

bη ∀η ∈ H 1
0 (Ω). (1.54)

Thus, the existence of the topological derivative of the problem we are dealing with
is ensured by the following result:

Lemma 1.2 Let u and uε be the solutions of (1.47) and (1.52), respectively. Then
the following estimate holds true

‖uε − u‖H 1(Ω) ≤ Cε1+δ, (1.55)

with constant C independent of the small parameter ε and 0 < δ < 1.

Proof By taking η = uε − u as test function in (1.54), we obtain the following
equality:

∫

Ω

‖∇(uε − u)‖2 = −(1 − γ )

∫

Bε

b(uε − u). (1.56)

From the Cauchy-Schwarz inequality, we have

∫

Ω

‖∇(uε − u)‖2 ≤ C1‖b‖L2(Bε)
‖uε − u‖L2(Bε)

≤ C2ε
1+δ‖uε − u‖H 1(Ω),

where we have used Lemma 1.1 and the continuity of function b at the point x̂ ∈ Ω .
Finally, from the coercivity of the bilinear form on the left-hand side of the above
inequality, namely

c‖uε − u‖2
H 1(Ω)

≤
∫

Ω

‖∇(uε − u)‖2, (1.57)
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we conclude that

c‖uε − u‖H 1(Ω) ≤ C2ε
1+δ, (1.58)

which leads to the result with C = C2/c and 0 < δ < 1. ��
The variation of the shape functional can be obtained by subtracting (1.46) from

(1.51), that is

Jε(uε) − J (u) =
∫

Ω

(u − zd)(uε − u) + E1(ε), (1.59)

with the remainder E1(ε) bounded as

E1(ε) = 1

2

∫

Ω

|uε − u|2,

|E1(ε)| ≤ C‖uε − u‖2
L2(Ω)

≤ C‖uε − u‖2
H 1(Ω)

= o(ε2), (1.60)

where we have used Lemma 1.2. Now, let us set η = uε − u as test function in the
adjoint Eq. (1.49) and η = v as test function in (1.54) to obtain

∫

Ω

∇v · ∇(uε − u) = −
∫

Ω

(u − zd)(uε − u), (1.61)

∫

Ω

∇v · ∇(uε − u) = −(1 − γ )

∫

Bε

bv. (1.62)

From the above results we conclude that
∫

Ω

(u − zd)(uε − u) = (1 − γ )

∫

Bε

bv. (1.63)

Therefore, the variation (1.59) can be rewritten as an integral concentrated in the
ball Bε, namely

Jε(uε) − J (u) = (1 − γ )

∫

Bε

bv + E1(ε)

= (1 − γ )πε2b(̂x)v(̂x) + E1(ε) + E2(ε). (1.64)

The remainder E2(ε) can be bounded as follows:

E2(ε) = (1 − γ )

∫

Bε

(bv − b(̂x)v(̂x)),
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|E2(ε)| ≤ C1

∫

Bε

‖x − x̂‖ ≤ C2ε
3 = o(ε2), (1.65)

where we have used the interior elliptic regularity of function u. See Example 1.2.
Finally, the topological asymptotic expansion of the shape functional is given by

Jε(uε) = J (u) + πε2(1 − γ )b(̂x)v(̂x) + o(ε2). (1.66)

From the above expansion, we can identify function f (ε) = πε2 and the final
formula for the topological derivative, namely

T (̂x) = (1 − γ )b(̂x)v(̂x) ∀ x̂ ∈ Ω, (1.67)

where u and v are the solutions of the direct (1.47) and adjoint (1.49) problems,
respectively, both defined in the original (unperturbed) domain Ω .

Remark 1.3 This kind of topological perturbation, that is, on the right-hand side of
the governing boundary value problem, can be treated by using simple arguments
from the analysis. Actually, we have just used the fact that the boundary value
problems are well posed. Therefore, in this context, it is possible to consider certain
classes of nonlinear problems. However, this book is dedicated to the case of
topological perturbations on the main part of the differential operator, such as the
ones produced by the nucleation of holes. The mathematical analysis of this class
of topological perturbations is much more involved, which is deeply discussed in
Chap. 4 and also in [75], for instance.

1.3 Organization of the Book

In this chapter the topological derivative concept has been introduced, together with
some selected examples. Note that the small parameter governing the asymptotic
analysis represents the size of the topological domain perturbation, allowing for the
nucleation of small inclusions or voids in a numerical procedure of optimization
regarding shape/topology changes on the material properties distribution or in
the geometrical domain itself, respectively. Therefore, this new concept in shape
optimization has applications in many different fields such as topology optimization,
inverse problems, imaging processing, multi-scale material design, and mechanical
modeling including damage and fracture evolution phenomena. The central idea of
this work is to introduce the topological derivative method from both theoretical
and practical point of views, so that it is oriented to the readers interested in
the mathematical aspects of the topological asymptotic analysis as well as in the
applications of the topological derivative method in computational mechanics. In
particular, this book is presented as follows:
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• The topological asymptotic analysis of the energy shape functional associated
with the Poisson’s equation, with respect to singular domain perturbations,
is formally developed through Chap. 2. In particular, we consider singular
perturbations produced by the nucleation of small circular holes endowed with
homogeneous Neumann, Dirichlet, or Robin boundary conditions.

• Chapter 3 deals with the topological derivative of the so-called compliance shape
functional associated with a modified Helmholtz problem, with respect to the
nucleation of a small circular inclusion with different material property from the
background. By taking into account the boundary value problem we are dealing
with, three different cases are considered: (1) perturbation on its right-hand side,
(2) perturbation on the lower order term, and (3) perturbation on the higher order
term. The existence of the associated topological derivatives is ensured by using
simple arguments from the analysis. Then, we derive their explicit forms which
are useful for numerical methods in shape/topology optimization. Finally, a priori
estimates for the remainders left in the topological asymptotic expansions are
rigorously obtained, which are used to justify the obtained results.

• The domain decomposition technique combined with the Steklov–Poincaré
pseudo-differential boundary operator is presented in Chap. 4. The main idea is
introduced in the context of coupled elliptic boundary value problems. Then, the
same framework is used for deriving the topological asymptotic expansion of
a tracking-type shape functional with respect to singular domain perturbations
produced by the nucleation of small circular holes endowed with homogeneous
Neumann boundary condition. The resulting asymptotic method allows for
obtaining sharp a priori estimates for the remainders, so that it can be seen as
a rigorous mathematical justification for the derivations presented in the former
chapters.

• In Chap. 5 a topology optimization algorithm based on the topological derivative
concept combined with a level-set domain representation method is presented.
The model problem is governed by the elasticity system into two spatial
dimensions. The topological asymptotic expansion of a tracking-type shape
functional, associated with the nucleation of a small circular inclusion endowed
with different material property from the background, is rigorously derived.
Finally, the obtained theoretical result is used as a steepest-descent direction in
the optimization process, which is applied in the context of compliance structural
topology optimization and topology design of compliant mechanisms.

• Some useful basic results of tensor calculus are included in Appendix A for the
readers’ convenience. In particular, inner, vector, and tensor products are defined.
In addition, gradient, divergence, and curl formulae, together with some integral
theorems, are presented. Finally, some useful decompositions in curvilinear,
polar, and spherical coordinate systems are provided.
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1.4 Exercises

1. Repeat Example 1.2 by considering g : R3 �→ R.
2. Let us consider one more term in the topological asymptotic expansion of the

form

ψ(χε(̂x)) = ψ(χ) + f (ε)T (̂x) + f2(ε)T
2(̂x) + o(f2(ε)),

where f2(ε) is such that

lim
ε→0

f2(ε)

f (ε)
= 0.

Then, quantities T (̂x) and T 2(̂x) represent the first and second order topologi-
cal derivatives of ψ , respectively. Assume that function g(x) in Example 1.3 is of
class C2(Ω), with its second order gradient Lipschitz continuous in Bε, namely
∃ C ≥ 0 : ‖∇∇g(x) − ∇∇g(̂x)‖ ≤ C‖x − x̂‖ ∀x ∈ Bε, where Bε(̂x) is used to
denote a ball of radius ε and center at x̂ ∈ Ω ⊂ R2. Show that the topological
asymptotic expansion of the functional ψ(χε(̂x)) is given by

ψ(χε(̂x)) = ψ(χ) − (1 − γ )πε2g(̂x) − 1 − γ

8
πε4Δg(̂x) + o(ε4).

3. From the definition for the topological asymptotic expansion given by (1.2), show
the results presented in Example 1.4.

4. Repeat Example 1.5 by considering the following conditions:

−u′′(x) = 1 for 0 < x < 1 and u(0) = u′(1) = 0.

5. By taking into account the example presented in Sect. 1.2.3:

(a) Replace the shape functional (1.46) by the total potential energy associated
with the variational problem (1.47), namely

ψ(χ) := J (u) = 1

2

∫

Ω

‖∇u‖2 −
∫

Ω

bu.

Then compute its topological derivative by repeating the same derivations as
presented in Sect. 1.2.3.

(b) Take the total potential energy defined in a disk B1 of unit radius and center
at the origin. By setting b = 1 as source term, consider as topological
perturbation the particular case given by (1.50), namely bε(x) = 1 if
x ∈ B1 \ Bε and bε(x) = γ if x ∈ Bε, where Bε is a disk of radius
ε and center at the origin. From these elements, develop the topologically
perturbed counter part of the total potential energy given by ψ(χε) in power
of ε around the origin. Finally, compare the obtained result with the one
previously derived.



Chapter 2
Singular Domain Perturbation

In this chapter, the topological derivative of the total potential energy associated with
the Poisson’s problem is formally evaluated by considering homogeneous Neumann
and Dirichlet conditions on the boundary of the hole ∂Bε. The mathematical
justification for the derived results can be found in Chap. 4 and also in the book by
Novotny and Sokolowski [75], for instance. In this case, the geometrical domain
is topologically perturbed by the nucleation of a small circular hole, as shown
in Fig. 2.1. Since Ω ⊂ R2 is the original (unperturbed) domain, then Ωε(̂x) =
Ω \ Bε(̂x) is the topologically perturbed domain, where Bε(̂x), with Bε ⊂ Ω , is
used to denote a ball of radius ε, 0 < ε < dist(̂x, ∂Ω), and center at x̂ ∈ Ω .

2.1 Problem Formulation

The shape functional associated with the unperturbed domain Ω is defined as

ψ(χ) := JΩ(u) = 1

2

∫

Ω

‖∇u‖2 −
∫

Ω

bu, (2.1)

where the scalar function u : Ω �→ R is the solution of the following variational
problem

u ∈ H 1
0 (Ω) :

∫

Ω

∇u · ∇η =
∫

Ω

bη ∀η ∈ H 1
0 (Ω). (2.2)

In the above equation, b is a source term considered constant everywhere. The
strong form associated with the variational problem (2.2) is given by the following
boundary value problem governed by the Poisson’s equation: Find u, such that

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020
A. A. Novotny, J. Sokołowski, An Introduction to the Topological
Derivative Method, SpringerBriefs in Mathematics,
https://doi.org/10.1007/978-3-030-36915-6_2
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Fig. 2.1 Topologically
perturbed domain by the
nucleation of a small circular
hole

{−Δu = b in Ω,

u = 0 on ∂Ω.
(2.3)

Let us consider the same problem but now defined in the topologically perturbed
domain Ωε, so that the associated total potential energy is given by

ψ(χε) := JΩε(uε) = 1

2

∫

Ωε

‖∇uε‖2 −
∫

Ωε

buε, (2.4)

where the scalar function uε : Ωε �→ R is the solution of the following variational
problem

uε ∈ Vε :
∫

Ωε

∇uε · ∇η =
∫

Ωε

bη ∀η ∈ Vε. (2.5)

The space Vε is defined according to the boundary condition on ∂Bε, namely

Vε:={ϕ ∈ H 1(Ωε) : ϕ|∂Ω
= 0, βϕ|∂Bε

= 0}, (2.6)

with β ∈ {0, 1}. This notation has to be understood as follows:

• For β = 1, we have homogeneous Dirichlet condition on the boundary of the
ball ∂Bε, since in this case uε = 0 and η = 0 on ∂Bε.

• For β = 0, uε and η are free on the boundary of the hole ∂Bε, leading to
homogeneous Neumann boundary condition on ∂Bε.

Finally, the strong form associated with the variational problem (2.5) can be
stated as: Find uε, such that

⎧

⎨

⎩

−Δuε = b in Ωε,

uε = 0 on ∂Ω,

βuε + (1 − β)∂nuε = 0 on ∂Bε.

(2.7)
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2.2 Variation of the Energy Shape Functional

Through a simple calculation, it is possible to show that the variation of the total
potential energy leads to integrals concentrated in the ball Bε as well as on its
boundary ∂Bε. In fact, by taking η = u in (2.2) and η = uε in (2.5), we obtain
respectively the following equalities:

1

2

∫

Ω

‖∇u‖2 = 1

2

∫

Ω

bu and
1

2

∫

Ωε

‖∇uε‖2 = 1

2

∫

Ωε

buε, (2.8)

which allow for rewriting JΩ(u) and JΩε(uε) as

JΩ(u) = −1

2

∫

Ωε

bu − 1

2

∫

Bε

bu and JΩε(uε) = −1

2

∫

Ωε

buε, (2.9)

where Ωε = Ω \ Bε. Therefore, the variation of the total potential reads

JΩε(uε) − JΩ(u) = 1

2

∫

Bε

bu − 1

2

∫

Ωε

b(uε − u). (2.10)

On the other hand, after rewriting (2.2) as follows:

∫

Ωε

∇u · ∇η +
∫

Bε

∇u · ∇η =
∫

Ωε

bη +
∫

Bε

bη, (2.11)

the divergence theorem yields (see Appendix A, identity (A.42))

∫

Ωε

∇u · ∇η −
∫

Bε

(Δu + b)η −
∫

∂Bε

∂nuη =
∫

Ωε

bη, (2.12)

where n is the unit normal vector field on ∂Bε pointing toward to the center of the
hole, as shown in Fig. 2.1. Since u is the solution of (2.3), namely Δu + b = 0, we
have

∫

Ωε

∇u · ∇η −
∫

∂Bε

∂nuη =
∫

Ωε

bη, (2.13)

which allows us to set η = uε as test function in the above equation, leading to the
following equality:

∫

Ωε

∇u · ∇uε =
∫

Ωε

buε +
∫

∂Bε

uε∂nu. (2.14)
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By applying again the divergence theorem, we obtain

∫

Ωε

∇uε · ∇u = −
∫

Ωε

Δuεu +
∫

∂Ω

u∂nuε +
∫

∂Bε

u∂nuε

=
∫

Ωε

bu +
∫

∂Bε

u∂nuε, (2.15)

where we have used the fact that uε is the solution of (2.7), that is, −Δuε = b, and
that u = 0 on ∂Ω . After comparing these last two results, we observe that

∫

Ωε

b(uε − u) =
∫

∂Bε

(u∂nuε − uε∂nu). (2.16)

Thus, the variation of the total potential energy can be, in fact, written in the form
of integrals concentrated in Bε and on its boundary ∂Bε, namely

JΩε(uε) − JΩ(u) = −1

2

∫

∂Bε

(u∂nuε − uε∂nu) + 1

2

∫

Bε

bu. (2.17)

From the interior elliptic regularity of the solution u, the last term of (2.17) can
be trivially expanded in power of ε as follows (see Chap. 1, Example 1.2)

∫

Bε

bu = πε2bu(̂x) + o(ε2), (2.18)

which leads to

JΩε(uε)−JΩ(u) = −1

2

∫

∂Bε

(u∂nuε −uε∂nu)+ 1

2
πε2bu(̂x)+ o(ε2). (2.19)

2.3 Topological Derivative Evaluation

The variation of the total potential energy is given by integrals concentrated in
Bε and on its boundary ∂Bε. Thus, in order to obtain the associated topological
asymptotic expansion in the form (1.2), we have to know the asymptotic behavior
of the solution uε with respect to ε in the neighborhood of the hole Bε. In particular,
once this behavior is known explicitly, it is possible to identify the function f (ε) and
then evaluate the limit passage ε → 0 in (1.4) in order to obtain the final formula
for the topological derivative T of the shape functional ψ . However, in general it
is not an easy task. Actually, we have to perform an asymptotic analysis of uε with
respect to the small parameter ε governing the singular domain perturbation.
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In this section, we present a formal asymptotic expansion of the solution uε

regarding both homogenous Neumann and Dirichlet boundary conditions on ∂Bε. A
rigorous mathematical justification for the results to be derived can be found in the
book by Kozlov et al. [58], for instance. The reader interested in the general theory
of asymptotic analysis of solutions in singularly perturbed geometrical domains may
refer to the book by Mazja et al. [68].

Now, we consider the two cases under analysis separately, namely Neumann
and Dirichlet boundary conditions on the hole. We will see that the asymptotic
behavior of the solution and, consequently, of the shape functional depends
strongly on these boundary conditions, leading to completely different asymptotic
expansions.

2.3.1 Neumann Boundary Condition on the Hole

By setting β = 0 in (2.7), there is homogeneous Neumann boundary condition on
∂Bε, that is, ∂nuε|∂Bε

= 0. In this case, the variation of the total potential energy
given by (2.19) results in

JΩε(uε) − JΩ(u) = 1

2

∫

∂Bε

uε∂nu + 1

2
πε2bu(̂x) + o(ε2). (2.20)

Now, let us propose an ansatz for the expansion of uε in the following form
[58, 68]:

uε(x) = u(x) + εw(ε−1x) + ũε(x)

= u(̂x) + ∇u(̂x) · (x − x̂) + 1

2
∇∇u(y)(x − x̂) · (x − x̂)

+εw(ε−1x) + ũε(x), (2.21)

where y is an intermediate point between x and x̂. Since on the boundary of the hole
∂Bε there is ∂nuε|∂Bε

= 0, the normal derivative of the above expansion, evaluated
on ∂Bε, leads to

∇u(̂x) · n − ε∇∇u(y)n · n + ε∂nw(ε−1x) + ∂nũε(x) = 0. (2.22)

Let us choose w such that

ε∂nw(ε−1x) = −∇u(̂x) · n on ∂Bε. (2.23)
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In the fast variable ξ = ε−1x, which implies ∇ξw(ξ) = ε∇w(ε−1x), the following
exterior problem is formally defined for ε → 0: Find w, such that

⎧

⎨

⎩

Δξw = 0 in R2 \ B1,

w → 0 at ∞,

∇ξw · n = −∇u(̂x) · n on ∂B1.

(2.24)

The above boundary value problem admits an explicit solution, namely

w(ε−1x) = ε

‖x − x̂‖2
∇u(̂x) · (x − x̂). (2.25)

The general solution for the Laplace equation into two spatial dimensions written
in terms of Fourier series can be found in Appendix A, Eq. (A.74). Now, we have
to construct ũε is such a way that it compensates for the discrepancies left by the
higher order terms in ε as well as by the boundary layer w on the exterior boundary
∂Ω . That is, the remainder ũε has to be the solution of the following boundary value
problem: Find ũε, such that

⎧

⎨

⎩

Δũε = 0 in Ωε,

ũε = −εw on ∂Ω,

∂nũε = ε∇∇u(y)n · n on ∂Bε.

(2.26)

Under suitable regularity conditions, the estimate ũε ≈ O(ε2) holds true in an
appropriate norm [58, 68]. Therefore, the expansion for uε can be written as

uε(x) = u(x) + ε2

‖x − x̂‖2 ∇u(̂x) · (x − x̂) + O(ε2). (2.27)

Let us introduce the above ansatz into the first term of (2.20) to obtain

∫

∂Bε

uε∂nu =
∫

∂Bε

u∂nu + ε

∫

∂Bε

w(ε−1x)∂nu + o(ε2). (2.28)

After applying the divergence theorem (see Appendix A, identity (A.42)), and from
the interior elliptic regularity of the solution u, we have

∫

∂Bε

u∂nu = −
∫

Bε

‖∇u‖2 −
∫

Bε

uΔu = −
∫

Bε

‖∇u‖2 +
∫

Bε

bu

= −πε2‖∇u(̂x)‖2 + πε2bu(̂x) + o(ε2), (2.29)

where the normal n points toward the center of the hole. On the other hand, the
normal derivative of u evaluated on ∂Bε can be expanded in Taylor series as
follows:
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∂nu(x)|∂Bε
= ∇u(̂x) · n − ε∇∇u(y)n · n

= ∇u(̂x) · n + O(ε), (2.30)

where y is an intermediate point between x and x̂. Moreover, function w(ε−1x)

written in its explicit form through (2.25) can also be evaluated on the boundary of
the hole ∂Bε, which results in

w(ε−1x)|∂Bε
= −∇u(̂x) · n, (2.31)

since ‖x − x̂‖ = ε and x − x̂ = −εn on ∂Bε. Thus,

ε

∫

∂Bε

w(ε−1x)∂nu = −ε

∫

∂Bε

(∇u(̂x) · n)(∇u(̂x) · n) + o(ε2)

= −ε(∇u(̂x) ⊗ ∇u(̂x)) ·
∫

∂Bε

n ⊗ n + o(ε2)

= −πε2(∇u(̂x) ⊗ ∇u(̂x)) · I + o(ε2)

= −πε2(∇u(̂x) · ∇u(̂x)) + o(ε2)

= −πε2‖∇u(̂x)‖2 + o(ε2). (2.32)

From the above results, the first term in (2.20) can be expanded in power of ε as
follows:

∫

∂Bε

uε∂nu = −2πε2‖∇u(̂x)‖2 + πε2bu(̂x) + o(ε2). (2.33)

This last result together with expansion (2.20) allows for writing the variation of the
total potential energy in the following form:

JΩε(uε) − JΩ(u) = −πε2
(

‖∇u(̂x)‖2 − bu(̂x)
)

+ o(ε2). (2.34)

Now, in order to identify the leading term in the above expansion, we take

f (ε) = πε2, (2.35)

leading to the final formula for the topological derivative [76, 88]

T (̂x) = −‖∇u(̂x)‖2 + bu(̂x) ∀ x̂ ∈ Ω. (2.36)

From this procedure, the topological asymptotic expansion of the energy shape
function can be written as

ψ(χε(̂x)) = ψ(χ) − πε2(‖∇u(̂x)‖2 − bu(̂x)) + o(ε2). (2.37)
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The complete mathematical justification for the above expansion can be found in
Chap. 4, as well as in the book by Novotny and Sokolowski [75, Ch. 10], for
instance. In order to fix the ideas, we present a simple example with explicit solution
borrowed from [75, Ch. 4, Sec. 4.1.5, p. 106].

Example 2.1 We consider the Laplace problem defined in a ring Bρ \Bε, where Bρ

is a ball of radius ρ > ε. By taking b = 0 and ∂nuε = cos θ on ∂Bρ , the boundary
value problem defined in the topologically perturbed geometrical domain Ωε can be
stated as: Find uε, such that

⎧

⎨

⎩

Δuε = 0 in Bρ \ Bε,

∂nuε = cos θ on ∂Bρ,

∂nuε = 0 on ∂Bε.

(2.38)

The associated explicit solution written in a polar coordinate system (r, θ) with
center at the ring is given, up to an arbitrary additive constant, by

uε(r, θ) = ρ2

r

(

r2 + ε2

ρ2 − ε2

)

cos θ. (2.39)

Thus, the energy shape function can be evaluated explicitly, namely

ψ(χε) = −πρ2

2

(

ρ2 + ε2

ρ2 − ε2

)

, (2.40)

which can be expanded in power of ε as follows:

ψ(χε) = −1

2
πρ2 − πε2 + O(ε4). (2.41)

On the other hand, according to (2.37) and by considering u(r, θ) = r cos θ , the
topological asymptotic expansion of the energy shape function can be written as

ψ(χε) = ψ(χ) − πε2‖∇u‖2 + o(ε2)

= −1

2
πρ2 − πε2 + o(ε2), (2.42)

since ‖∇u‖2 = 1, which corroborates with the above expansion in power of ε. In
particular, by setting ρ = 1, we can define the following quantity:

δψ(ε) := ψ(χε) − ψ(χ)

f (ε)
= −1 − ε2

1 − ε2
. (2.43)
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Fig. 2.2 Variation of the
energy shape functional
evaluated explicitly in the
ring for the Neumann case

This result is represented in the graph δψ(ε) × 1/ε of Fig. 2.2, where we observe
that the horizontal asymptote (dashed line) corresponds to the topological derivative
evaluated at the center of the disk, whose value is −1.

2.3.2 Dirichlet Boundary Condition on the Hole

By taking β = 1 in (2.7), we have homogeneous Dirichlet boundary condition on
∂Bε, that is uε|∂Bε

= 0 ⇒ ∂τuε|∂Bε
= 0, where τ is the unit tangent vector field on

∂Bε. In this case, the variation of the total potential energy given by (2.19) reduces
itself to

JΩε(uε) − JΩ(u) = −1

2

∫

∂Bε

u∂nuε + 1

2
πε2bu(̂x) + o(ε2). (2.44)

Let us consider the following ansatz for an expansion of uε [58, 68]

uε(x) = u(x) + vε(x) + εwε(ε
−1x) + ũε(x)

= u(̂x) + ∇u(̂x) · (x − x̂) + 1

2
∇∇u(y)(x − x̂) · (x − x̂)

+vε(x) + εwε(ε
−1x) + ũε(x), (2.45)

where y is used to denote an intermediate point between x and x̂. Moreover, function
vε is defined as

vε(x) = α(ε)u(̂x)G(x), (2.46)
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where G is the solution of the following boundary value problem: Find G, such that

{−ΔG = δ(x − x̂) in Ω,

G = 0 on ∂Ω,
(2.47)

with δ(x − x̂) used to denote the Dirac mass concentrated at the point x̂ ∈ Ω . From
the fundamental solution for the Laplacian, function G admits a representation in
the neighborhood of the point x̂ ∈ Ω in the form

G(x) = −
(

1

2π
log ‖x − x̂‖ + g(x)

)

, with ‖x − x̂‖ > 0, (2.48)

where g is harmonic in Ω and has to compensate for the discrepancy left by the
above representation on ∂Ω . That is, function g is the solution of the following
auxiliary boundary value problem: Find g, such that

{

Δg = 0 in Ω,

g = − 1
2π

log ‖x − x̂‖ on ∂Ω.
(2.49)

Therefore, in the neighborhood of the hole, function vε can be written as

vε(x) = −α(ε)u(̂x)

(

1

2π
log ‖x − x̂‖ + g(x)

)

. (2.50)

On the boundary of the hole ∂Bε we have uε|∂Bε
= 0, so that the expansion for uε,

evaluated on ∂Bε, yields

u(̂x) − ε∇u(̂x) · n + ε2∇∇u(y)n · n

−α(ε)u(̂x)

(

1

2π
log ε + g(̂x) − ε∇g(̂x) · n + ε2∇∇g(z)n · n

)

+εwε

(

ε−1x
)

+ ũε(x) = 0, (2.51)

where z is an intermediate point between x and x̂. Now, we can construct ũε in such
a way that it compensates for the discrepancies left by the higher order terms in ε,
namely

ũε(x) = ε2(α(ε)u(̂x)∇∇g(z)n − ∇∇u(y)n) · n on ∂Bε. (2.52)

In the fast variable ξ = ε−1x, function wε is the solution of the following exterior
problem: Find wε, such that

⎧

⎨

⎩

Δξwε = 0 in R2 \ B1,

wε → 0 at ∞,

wε = (∇u(̂x) − α(ε)u(̂x)∇g(̂x)) · n on ∂B1,

(2.53)
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which has an explicit solution of the form

wε(ε
−1x) = − ε

‖x − x̂‖2 (∇u(̂x) − α(ε)u(̂x)∇g(̂x)) · (x − x̂). (2.54)

Thus, the previous expansion given by (2.51) reduces itself to

u(̂x) − α(ε)u(̂x)

(

1

2π
log ε + g(̂x)

)

= 0 on ∂Bε, (2.55)

which can be solved in terms of α(ε), leading to

α(ε) = 2π

log ε + 2πg(̂x)
. (2.56)

Finally, the remainder ũε is constructed in order to compensate for the discrepancies
previously introduced in the expansion of uε. Thus, ũε has to be the solution of the
following boundary value problem: Find ũε, such that

⎧

⎨

⎩

Δũε = 0 in Ωε,

ũε = −εwε on ∂Ω,

ũε = ε2(α(ε)u(̂x)∇∇g(z)n − ∇∇u(y)n) · n on ∂Bε,

(2.57)

where y and z are intermediate points between x and x̂. Under appropriate regularity
conditions, the estimate ũε ≈ O(ε2) holds true in a suitable norm, since wε ≈ O(ε)

on the exterior boundary ∂Ω . Therefore, the expansion for uε can be written as

uε(x) = u(x) − α(ε)u(̂x)

(

1

2π
log ‖x − x̂‖ + g(x)

)

− ε2

‖x − x̂‖2 (∇u(̂x) − α(ε)u(̂x)∇g(̂x)) · (x − x̂) + O(ε2), (2.58)

with α(ε) given by (2.56).
Let us introduce the above ansatz into the first term of (2.44) to obtain

∫

∂Bε

u∂nuε =
∫

∂Bε

u∂nu +
∫

∂Bε

u∂nvε + ε

∫

∂Bε

u∂nwε(ε
−1x) + o(ε2), (2.59)

where, as before, the first term of the above equation admits the following expansion
in power of ε

∫

∂Bε

u∂nu = −πε2‖∇u(̂x)‖2 + πε2bu(̂x) + o(ε2). (2.60)
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Furthermore, function u, evaluated on ∂Bε, can be expanded in Taylor series as
follows

u(x)|∂Bε
= u(̂x) − ε∇u(̂x) · n + ε2∇∇u(y)n · n

= u(̂x) − ε∇u(̂x) · n + O(ε2), (2.61)

where y is an intermediate point between x and x̂. On the other hand, the normal
derivative of function vε given by (2.50), evaluated on ∂Bε, can be written as

∂vε(x)|∂Bε
= α(ε)u(̂x)

(

1

2πε
− ∇g(̂x) · n + ε∇∇g(z)n · n

)

= α(ε)u(̂x)

(

1

2πε
− ∇g(̂x) · n

)

+ o(ε), (2.62)

with z used to denote an intermediate point between x and x̂. Finally, the normal
derivative of function wε(ε

−1x) given by (2.54), evaluated on ∂Bε, can be written
as

∂wε(ε
−1x)|∂Bε

= 1

ε
(∇u(̂x) − α(ε)u(̂x)∇g(̂x)) · n. (2.63)

By taking into account these derived results, we observe that

∫

∂Bε

u∂nvε = α(ε)u(̂x)

∫

∂Bε

(u(̂x) − ε∇u(̂x) · n)

(

1

2πε
− ∇g(̂x) · n

)

+ o(ε2).

(2.64)
After evaluating each one of these integrals by hand, we have

1

2πε

∫

∂Bε

u(̂x) = u(̂x), (2.65)

1

2π

∫

∂Bε

∇u(̂x) · n = 0, (2.66)

u(̂x)

∫

∂Bε

∇g(̂x) · n = 0, (2.67)

ε

∫

∂Bε

(∇u(̂x) · n)(∇g(̂x) · n) = O(ε2), (2.68)

which results in
∫

∂Bε

u∂nvε = α(ε)|u(̂x)|2 + o(ε2), (2.69)
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since α(ε) × O(ε2) = o(ε2). In the same way,

ε

∫

∂Bε

u∂nwε(ε
−1x) =

∫

∂Bε

(u(̂x) − ε∇u(̂x) · n) (∇u(̂x) − α(ε)u(̂x)∇g(̂x)) · n

+o(ε2), (2.70)

where, by evaluating again each one of these integrals by hand, we have

u(̂x)

∫

∂Bε

∇u(̂x) · n = 0, (2.71)

ε

∫

∂Bε

(∇u(̂x) · n) (∇u(̂x) · n) = πε2‖∇u(̂x)‖2, (2.72)

α(ε)|u(̂x)|2
∫

∂Bε

∇g(̂x) · n = 0, (2.73)

εα(ε)u(̂x)

∫

∂Bε

(∇u(̂x) · n)(∇u(̂x) · n) = o(ε2), (2.74)

where we have used the fact that ε2α(ε) = o(ε2). Therefore,

ε

∫

∂Bε

u∂nwε(ε
−1x) = −πε2‖∇u(̂x)‖2 + o(ε2). (2.75)

After collecting the main results derived here, we conclude that the first term in
(2.44) can be expanded in power of ε as follows:

∫

∂Bε

u∂nuε = α(ε)|u(̂x)|2 − 2πε2‖∇u(̂x)‖2 + πε2bu(̂x) + o(ε2). (2.76)

Thus, the above result combined with expansion (2.44) allows for writing the
variation of the total potential energy in the following form:

JΩε(uε) − JΩ(u) = − π

log ε + 2πg(̂x)
|u(̂x)|2 + πε2‖∇u(̂x)‖2 + o(ε2)

= − π

log ε + 2πg(̂x)
|u(̂x)|2 + O(ε2). (2.77)

Now, in order to identify the leading term in the above expansion, we chose

f (ε) = − π

log ε + 2πg(̂x)
, (2.78)
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which leads to the final formula for the topological derivative, namely [31, 76]

T (̂x) = |u(̂x)|2 ∀ x̂ ∈ Ω. (2.79)

Finally, the topological asymptotic expansion of the energy shape function can be
written as

ψ(χε(̂x)) = ψ(χ) − π

log ε + 2πg(̂x)
|u(̂x)|2 + O(ε2). (2.80)

The complete mathematical justification for the above expansion can be found in
the book by Novotny and Sokolowski [75, Ch. 10], for instance.

Remark 2.1 It is important to observe that the approximation given by

f (ε) ≈ −π/ log ε (2.81)

can frequently be found in the literature, leading to the following simplified
expansion (see, for instance, [50])

ψ(χε(̂x)) = ψ(χ) − π

log ε
|u(̂x)|2 + o

( −1

log ε

)

, (2.82)

which introduces a discrepancy on the resulting topological asymptotic expansion.

In addition, we can go further in the expansion. In fact, let us consider one more
term is the topological asymptotic expansion of the form

ψ(χε(̂x)) = ψ(χ) + f (ε)T (̂x) + f2(ε)T
2(̂x) + o(f2(ε)), (2.83)

where f2(ε) is a second order correction function which decays monotonically such
that f2(ε) → 0 with ε → 0. Furthermore,

lim
ε→0

f2(ε)

f (ε)
= 0. (2.84)

Thus, T and T 2 are identified as the first and second order topological derivatives
of the shape functional ψ , respectively. After dividing (2.83) by f2(ε), the limit
passage ε → 0 allows for defining the second order topological as follows:

T 2(̂x) := lim
ε→0

ψ(χε(̂x)) − ψ(χ) − f (ε)T (̂x)

f2(ε)
. (2.85)

From these elements, it is possible to evaluate the second order topological
derivative of the energy shape functional from the obtained expansion. In fact, by
combining (2.77), first line, with (2.78) and (2.79), we have
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ψ(χε(̂x)) − ψ(χ) − f (ε)T (̂x) = πε2‖∇u(̂x)‖2 + o(ε2). (2.86)

In order to identify the leading term of the above expansion, we choose

f2(ε) = πε2, (2.87)

which leads to the final formula for the second order topological derivative [83],
namely

T 2(̂x) = ‖∇u(̂x)‖2 ∀ x̂ ∈ Ω. (2.88)

Finally, the topological asymptotic expansion of the energy shape functional takes
the form

ψ(χε(̂x)) = ψ(χ) − π

log ε + 2πg(̂x)
|u(̂x)|2 + πε2‖∇u(̂x)‖2 + o(ε2). (2.89)

In order to fix the ideas, let us present a simple example with explicit solution
borrowed from [75, Ch. 4, Sec. 4.1.5, p. 107].

Example 2.2 Let us consider again the Laplace problem defined in a ring Bρ \ Bε,
where Bρ is a ball of radius ρ > ε. By taking b = 0 and uε = a + cos θ on ∂Bρ ,
the boundary value problem associated with the topologically perturbed domain Ωε

reads: Find uε, such that

⎧

⎨

⎩

Δuε = 0 in Bρ \ Bε,

uε = a + cos θ on ∂Bρ,

uε = 0 on ∂Bε,

(2.90)

whose explicit solution, written in a polar coordinate system (r, θ) with center at the
ring, is given by

uε(r, θ) = a
log(r/ε)

log(ρ/ε)
+ ρ

r

(

r2 − ε2

ρ2 − ε2

)

cos θ. (2.91)

Thus, the shape functional can be evaluated explicitly as follows:

ψ(χε) = π

log(ρ/ε)
a2 + π

2

ρ2 + ε2

ρ2 − ε2 . (2.92)

After expanding it in power of ε, we obtain

ψ(χε) = π

2
+ π

log(ρ/ε)
a2 + πε2 1

ρ2
+ O(ε4). (2.93)
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On the other hand, since u(r, θ) = a + (r/ρ) cos θ , the topological asymptotic
expansion (2.80) reads

ψ(χε) = ψ(χ) − π

log ε + 2πg
|u|2 + πε2‖∇u‖2 + o(ε2)

= π

2
+ π

log(ρ/ε)
a2 + πε2 1

ρ2 + o(ε2), (2.94)

which corroborates with the above expansion in power of ε, provided that ‖∇u‖2 =
1/ρ2, where g is the solution of (2.49), that is

{

Δg = 0 in Bρ

g = − 1
2π

log ρ on ∂Bρ
⇒ g(̂x) = − 1

2π
log ρ. (2.95)

By choosing ρ = a = 1, we can introduce the following quantities:

δψ1(ε) := ψ(χε) − ψ(χ)

f (ε)
= 1 − ε2

1 − ε2 log ε, (2.96)

δψ2(ε) := ψ(χε) − ψ(χ) − f (ε)T (̂x)

f2(ε)
= 1 + ε2

1 − ε2 . (2.97)

These two results are represented in the graphs δψ1(ε) × 1/ε (blue line) and
δψ2(ε)×1/ε (red line) of Fig. 2.3. We observe that the horizontal asymptote (dashed
line) associated with δψ1(ε) and δψ2(ε) corresponds to the first and second order
topological derivatives, respectively, evaluated at the center of the disk, whose value
is +1 for both cases.

Fig. 2.3 Variation of the
energy shape functional
evaluated explicitly in the
ring for the Dirichlet case
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2.4 Summary of the Results

In this chapter we have evaluated the topological derivatives for the energy shape
functional associated with the Poisson’s equation into two-spatial dimensions, by
taking into account homogeneous Neumann or Dirichlet conditions on the boundary
of the hole.

For the sake of completeness, let us also consider Robin condition on the
boundary of the hole. In this case, we have to add one more term to the total potential
energy (2.4), namely

ψ(χε) := JΩε(uε) = 1

2

∫

Ωε

‖∇uε‖2 + 1

2

∫

∂Bε

|uε|2 −
∫

Ωε

buε, (2.98)

where uε is the solution to the following boundary value problem endowed with
Robin condition on the boundary of the hole: Find uε, such that

⎧

⎨

⎩

−Δuε = b in Ωε,

uε = 0 on ∂Ω,

∂nuε + uε = 0 on ∂Bε.

(2.99)

The solution to the above boundary value problem admits the following expansion

uε(x) = u(x) + ũε(x), (2.100)

where ũε is the remainder. Therefore, the variation of the energy shape functional
given by (2.19), taking into account the new term regarding Robin boundary
condition on the hole, can be written as

JΩε(uε) − JΩ(u) = 1

2

∫

∂Bε

(uε∂nu − u∂nuε) + o(ε)

= 1

2

∫

∂Bε

(∂nu + u)uε + o(ε) = 1

2

∫

∂Bε

uεu + o(ε), (2.101)

since ∂nuε = −uε on ∂Bε. After replacing (2.100) in the above expansion, we can
evaluate the resulting integral on the boundary of hole ∂Bε explicitly, namely

JΩε(uε) − JΩ(u) = πε |u(̂x)|2 + o(ε). (2.102)

Now, in order to identify the leading term of the above expansion, we choose

f (ε) = πε, (2.103)

which leads to the final formula for the topological derivative, namely [76]

T (̂x) = |u(̂x)|2 ∀ x̂ ∈ Ω. (2.104)
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Table 2.1 Topological derivatives of the total potential energy associated with the Poisson’s
problem into two spatial dimensions, taking into account homogeneous Neumann, Dirichlet, or
Robin boundary conditions on the hole

Boundary condition f (ε) T (̂x)

Neumann πε2 −‖∇u(̂x)‖2 + bu(̂x)

Dirichlet − π

log ε + 2πg(̂x)
|u(̂x)|2

Robin πε |u(̂x)|2

Finally, the topological asymptotic expansion of the energy shape functional takes
the form

ψ(χε(̂x)) = ψ(χ) + πε |u(̂x)|2 + o(ε). (2.105)

Let us now summarize the results for topological derivatives obtained in this
chapter, which are reported in Table 2.1. Recalling that u is the solution to (2.3) and
g is the solution to (2.49), both defined in the unperturbed domain Ω .

2.5 Exercises

1. From (2.4), derive (2.5) and (2.7).
2. By using separation of variables, find the explicit solutions to the boundary value

problems (2.24) and (2.53).
3. Consider the problem defined in a ring of internal radius equal to ε and external

radius equal to one: Find uε, such that

⎧

⎨

⎩

Δuε = 0 in B1 \ Bε,

uε = a + cos θ on ∂B1,

uε + ∂nuε = 0 on ∂Bε.

By taking into account a shape functional of the form

ψ(χε) = 1

2

∫

B1\Bε

‖∇uε‖2 + 1

2

∫

∂Bε

|uε|2,

develop ψ(χε) in power of ε around the origin to obtain

ψ(χε) = π

2
+ πε a2 + o(ε),

and compare it with the topological asymptotic expansion (2.105).



Chapter 3
Regular Domain Perturbation

In this chapter we deal with the topological derivative of the so-called compliance
shape functional associated with a modified Helmholtz problem, with respect to the
nucleation of a small inclusion represented by Bε. Similar analysis can be found
in the paper by Amstutz [9], for instance. In particular, the topologically perturbed
domain is obtained after nucleating a circular hole Bε(̂x) within Ω ⊂ R2, where
Bε(̂x) ⊂ Ω denotes a ball of radius ε and center at x̂ ∈ Ω . Then, the hole
produced by Bε(̂x) is filled by an inclusion with different material property from
the background, as shown in Fig. 3.1. The material properties are characterized by a
piecewise constant function γε, assuming the value 1 in Ω \ Bε and γ in Bε, where
γ is the contrast.

3.1 Problem Formulation

The compliance shape functional associated with the unperturbed domain is defined
as

ψ(χ) := J (u) =
∫

Ω

bu , (3.1)

where b is a given source term assumed to be smooth enough and the scalar function
u : Ω �→ R is the solution of the following variational problem:

u ∈ H 1
0 (Ω) :

∫

Ω

∇u · ∇η +
∫

Ω

uη =
∫

Ω

bη ∀η ∈ H 1
0 (Ω) . (3.2)

The strong equation associated with the variational problem (3.2) is given by: Find
u, such that

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020
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Fig. 3.1 Topologically perturbed domain by the nucleation of a small circular inclusion

{ −Δu + u = b in Ω ,

u = 0 on ∂Ω .
(3.3)

Now, let us consider the following piecewise constant functions:

αε(x) :=
{

1 if x ∈ Ω \ Bε

α if x ∈ Bε,
, (3.4)

βε(x) :=
{

1 if x ∈ Ω \ Bε

β if x ∈ Bε,
, (3.5)

γε(x) :=
{

1 if x ∈ Ω \ Bε

γ if x ∈ Bε,
, (3.6)

where α, β ∈ R+ and γ ∈ R are the contrasts into the material properties.
From these elements we can introduce the topologically perturbed counterpart of
the problem. In particular, the compliance shape functional associated with the
perturbed domain is given by

ψ(χε) := Jε(uε) =
∫

Ω

γε buε , (3.7)

where the scalar function uε : Ω �→ R is the solution of the following variational
problem:

uε ∈ H 1
0 (Ω) :

∫

Ω

αε∇uε ·∇η+
∫

Ω

βε uεη =
∫

Ω

γε bη ∀η ∈ H 1
0 (Ω) . (3.8)

The strong equation associated with the variational problem (3.8) can be written as:
Find uε, such that
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⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−div (αε∇uε) + βεuε = γεb in Ω ,

uε = 0 on ∂Ω ,

uε|Ω\Bε
− uε|Bε

∂nuε|Ω\Bε
− α∂nuε|Bε

=
=

0
0

}

on ∂Bε .

(3.9)

The transmission condition on the boundary of the inclusion ∂Bε are obtained
naturally from the variational formulation (3.8).

3.2 Existence of the Topological Derivative

The existence of the associated topological derivative is ensured by the following
lemma:

Lemma 3.1 Let u and uε be the solutions of the original (3.2) and perturbed (3.8)
problems, respectively. Then, the following estimate holds true:

‖uε − u‖H 1(Ω) ≤ Cε , (3.10)

where C is a constant independent of the small parameter ε.

Proof From the definition of the contrasts given by (3.4)–(3.6), we have

∫

Ω

∇u · ∇η =
∫

Ω\Bε

∇u · ∇η +
∫

Bε

∇u · ∇η ±
∫

Bε

α∇u · ∇η

=
∫

Ω

αε∇u · ∇η + (1 − α)

∫

Bε

∇u · ∇η , (3.11)

∫

Ω

uη =
∫

Ω\Bε

uη +
∫

Bε

uη ±
∫

Bε

β uη =
∫

Ω

βε uη + (1 − β)

∫

Bε

uη , (3.12)

∫

Ω

bη =
∫

Ω\Bε

bη +
∫

Bε

bη ±
∫

Bε

γ bη =
∫

Ω

γε bη + (1 − γ )

∫

Bε

bη . (3.13)

Therefore, Eq. (3.2) can be rewritten as

∫

Ω

αε∇u · ∇η +
∫

Ω

βε uη

=
∫

Ω

γε bη − (1 − α)

∫

Bε

∇u · ∇η − (1 − β)

∫

Bε

uη + (1 − γ )

∫

Bε

bη .

(3.14)
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After subtraction the above result from (3.8), we obtain

∫

Ω

αε∇(uε − u) · ∇η +
∫

Ω

βε (uε − u)η

= (1 − α)

∫

Bε

∇u · ∇η + (1 − β)

∫

Bε

uη − (1 − γ )

∫

Bε

bη . (3.15)

Now, by taking η = uε − u as test function we obtain the following equality:

∫

Ω

αε‖∇(uε − u)‖2 +
∫

Ω

βε |uε − u|2

= (1−α)

∫

Bε

∇u · ∇(uε −u)+ (1−β)

∫

Bε

u(uε −u)− (1−γ )

∫

Bε

b(uε −u) .

(3.16)

From the Cauchy-Schwarz inequality there is

∫

Ω

αε‖∇(uε − u)‖2 +
∫

Ω

βε |uε − u|2 ≤ C1‖∇u‖L2(Bε)
‖∇(uε − u)‖L2(Bε)

+ C2‖u‖L2(Bε)
‖uε − u‖L2(Bε)

+ C3‖b‖L2(Bε)
‖uε − u‖L2(Bε)

. (3.17)

By taking into account the interior elliptic regularity of function u, it follows that

∫

Ω

αε‖∇(uε − u)‖2 +
∫

Ω

βε |uε − u|2

≤ C4ε‖∇(uε − u)‖L2(Bε)
+ C5ε‖uε − u‖L2(Bε)

≤ C4ε‖∇(uε − u)‖L2(Ω) + C5ε‖uε − u‖L2(Ω)

≤ C6ε‖uε − u‖H 1(Ω). (3.18)

Finally, from the coercivity of the bilinear form on the left-hand side of the above
inequality, namely

c‖uε − u‖2
H 1(Ω)

≤
∫

Ω

αε‖∇(uε − u)‖2 +
∫

Ω

βε |uε − u|2 , (3.19)

we obtain

‖uε − u‖2
H 1(Ω)

≤ Cε‖uε − u‖H 1(Ω) , (3.20)

which leads to the result with constant C = C6/c. ��
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3.3 Variation of the Compliance Shape Functional

Since the energy-norm is equivalent to the H 1-norm, Lemma 3.1 ensures the
existence of the topological derivative of the compliance shape functional in
particular and any energy-based shape functional in general. Now, we have to
evaluate the variation of the compliance shape functional, namely

Jε(uε) − J (u) =
∫

Ω

γε buε −
∫

Ω

bu . (3.21)

From a simple manipulation we can write the above variation in terms of integrals
concentrated in the ball Bε. In fact, we start by using the definition for the contrast
given by (3.6) to obtain

Jε(uε) − J (u) =
∫

Ω\Bε

buε +
∫

Bε

γ buε ±
∫

Bε

buε −
∫

Ω

bu

=
∫

Ω

b(uε − u) − (1 − γ )

∫

Bε

buε . (3.22)

Following the same steps as before, we have

∫

Ω

αε ∇uε · ∇η =
∫

Ω

∇uε · ∇η − (1 − α)

∫

Bε

∇uε · ∇η , (3.23)

∫

Ω

βε uεη =
∫

Ω

uεη − (1 − β)

∫

Bε

uεη , (3.24)

∫

Ω

γε bη =
∫

Ω

bη − (1 − γ )

∫

Bε

bη , (3.25)

where we have used again the contrasts (3.4)–(3.6). Therefore, Eq. (3.8) can be
rewritten as
∫

Ω

∇uε·∇η +
∫

Ω

uεη =
∫

Ω

bη

+ (1 − α)

∫

Bε

∇uε · ∇η + (1 − β)

∫

Bε

uεη − (1 − γ )

∫

Bε

bη . (3.26)

Now, let us set η = u as test function in the above equation, then

∫

Ω

∇uε·∇u +
∫

Ω

uεu =
∫

Ω

bu

+ (1 − α)

∫

Bε

∇uε · ∇u + (1 − β)

∫

Bε

uεu − (1 − γ )

∫

Bε

bu .

(3.27)
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By setting η = uε as test functions in (3.2), there is

∫

Ω

∇u · ∇uε +
∫

Ω

uuε =
∫

Ω

buε . (3.28)

After comparing both the equalities, we observe that

∫

Ω

b(uε−u) = (1−α)

∫

Bε

∇uε · ∇u + (1−β)

∫

Bε

uεu − (1−γ )

∫

Bε

bu. (3.29)

Therefore, as expected, the variation of the compliance shape function (3.22)
leads to integrals concentrated in the ball Bε, namely

Jε(uε) − J (u) = (1 − α)

∫

Bε

∇uε · ∇u

+ (1 − β)

∫

Bε

uεu − (1 − γ )

∫

Bε

b(uε + u). (3.30)

3.4 Topological Derivative Evaluation

The variation of the compliance shape functional is exclusively given in terms of
integrals concentrated in the inclusion represented by Bε. Therefore, in order to
obtain a topological asymptotic expansion of the form (1.2), we have to know the
asymptotic behavior of the solution uε with respect to the small parameter ε in
the neighborhood of the ball Bε. In particular, once such an asymptotic behavior is
known explicitly, it is possible to identify function f (ε), which allows for evaluating
the limit ε → 0 in (1.4), leading to the final formula of the topological derivative T
associated with the shape functional ψ . For the sake of presentation, we divide the
analysis into three different cases according to the choice of the contrasts α, β, and
γ in (3.4), (3.5), and (3.6), respectively. First, the contrasts α and β are freezing,
that is, we set them as α = β = 1, allowing for performing the analysis by taking
into account only the contrast γ �= 1. Then, we set α = γ = 1 and do the analysis
for β �= 1. Finally, we take β = γ = 1 and focus the attention to the case α �= 1,
which is much more involved, since α is associated with a topological perturbation
in the principal part of the operator.

3.4.1 Perturbation on the Right-Hand Side

By setting α = β = 1 in the variation of the compliance shape function (3.30), we
have
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Jε(uε) − J (u) = −(1 − γ )

∫

Bε

b(uε + u) . (3.31)

Now, let us sum and subtract the term

− (1 − γ )

∫

Bε

bu , (3.32)

which allows for rewriting (3.31) in the following way:

Jε(uε) − J (u) = −2(1 − γ )

∫

Bε

bu + E1(ε) . (3.33)

The remainder E1(ε) is defined as

E1(ε) = (γ − 1)

∫

Bε

b(uε − u). (3.34)

Thanks to the Cauchy-Schwarz inequality and Lemma 1.1, the remainder E1(ε) can
be bounded as follows:

|E1(ε)| ≤ C1‖b‖L2(Bε)
‖uε − u‖L2(Bε)

≤ C2ε‖uε − u‖L2(Bε)

≤ C3ε
1+δ‖uε − u‖H 1(Ω)

≤ C4ε
2+δ = o(ε2), (3.35)

since 0 < δ < 1, where we have also used Lemma 3.1. Let us come back to
expansion (3.33), which can be rewritten as

Jε(uε) − J (u) = −2πε2(1 − γ )b(̂x)u(̂x) +
2
∑

i=1

Ei (ε) . (3.36)

The remainder E2(ε) is defined as

E2(ε) = 2(γ − 1)

∫

Bε

(bu − b(̂x)u(̂x)) , (3.37)

which is trivially bounded as follows:

|E2(ε)| ≤ Cε3 = O(ε3) , (3.38)
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where we have used the Cauchy-Schwarz inequality and the interior elliptic
regularity of function u. Finally, from the expansion (3.36) we can identify fγ (ε) :=
f (ε) = πε2 and the topological derivative as

Tγ (̂x) = −2(1 − γ )b(̂x)u(̂x) ∀ x̂ ∈ Ω , (3.39)

provided that the remainders E1(ε) and E2(ε) are of order o(ε2), as shown through
the estimates (3.35) and (3.38), respectively.

3.4.2 Perturbation on the Lower Order Term

Now, let us set α = γ = 1 in the variation of the compliance shape function (3.30),
so that

Jε(uε) − J (u) = (1 − β)

∫

Bε

uεu . (3.40)

After summing and subtracting the term

(1 − β)

∫

Bε

|u|2 , (3.41)

the above expression, i.e., (3.40), can be rearranged as follows:

Jε(uε) − J (u) = (1 − β)

∫

Bε

|u|2 + E3(ε) . (3.42)

The remainder E3(ε) is defined as

E3(ε) = (1 − β)

∫

Bε

(uε − u)u . (3.43)

From the Cauchy-Schwarz inequality and Lemma 1.1, the remainder E3(ε) can be
bounded as follows:

|E3(ε)| ≤ C1‖u‖L2(Bε)
‖uε − u‖L2(Bε)

≤ C2ε‖uε − u‖L2(Bε)

≤ C3ε
1+δ‖uε − u‖H 1(Ω)

≤ C4ε
2+δ = o(ε2), (3.44)
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with 0 < δ < 1, where we have also used Lemma 3.1 together with the interior
elliptic regularity of function u. Therefore, expansion (3.42) can be rewritten as

Jε(uε) − J (u) = πε2(1 − β)|u(̂x)|2 +
4
∑

i=3

Ei (ε) . (3.45)

The remainder E4(ε) is defined as

E4(ε) = (1 − β)

∫

Bε

(|u|2 − |u(̂x)|2) , (3.46)

which can be trivially bounded as follows:

|E4(ε)| ≤ Cε3 = O(ε3) , (3.47)

where we have used again the Cauchy-Schwarz inequality and the interior elliptic
regularity of function u. According to the estimates (3.44) and (3.47), the remainders
E3(ε) and E4(ε) are of order o(ε2). Therefore, from the expansion (3.45) we
promptly identify the topological derivative as

Tβ (̂x) = (1 − β)|u(̂x)|2 ∀ x̂ ∈ Ω , (3.48)

where we have chosen fβ(ε) := f (ε) = πε2.

3.4.3 Perturbation on the Higher Order Term

Finally, we set β = γ = 1. In this case, the variation of the compliance shape
function (3.30) is given by

Jε(uε) − J (u) = (1 − α)

∫

Bε

∇uε · ∇u . (3.49)

By using the same strategy as before, we sum and subtract the term

(1 − α)

∫

Bε

‖∇u‖2 , (3.50)

allowing to rewrite (3.49) as follows:

Jε(uε) − J (u) = (1 − α)

∫

Bε

‖∇u‖2 + I (ε) . (3.51)
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The term I (ε) is defined as

I (ε) = (1 − α)

∫

Bε

∇(uε − u) · ∇u , (3.52)

which can be bounded as follows:

|I (ε)| ≤ C1‖∇u‖L2(Bε)
‖∇(uε − u)‖L2(Bε)

≤ C2ε‖uε − u‖H 1(Ω) ≤ C3ε
2 = O(ε2) , (3.53)

where we have used Lemma 3.1, together with the interior elliptic regularity of
function u. Since the above estimate cannot be improved, then there is a nontrivial
term of order O(ε2) hidden in (3.52). On the other hand, according to Lemma 3.1, a
leading term of order O(ε2) is expected. Therefore, in order to extract this term, we
need to develop uε asymptotically with respect to the small parameter ε. The basic
idea consists in postulating an ansatz for uε in the form [58]

uε(x) = u(x) + wε(x) + ũε(x). (3.54)

According to (3.5) and (3.6), βε(x) = γε(x) = 1 for all x ∈ Ω , since we
have fixed β = γ = 1. Therefore, the state equation associated with the perturbed
problem (3.9) can be written as

− div (αε∇uε) + uε = b. (3.55)

After replacing the ansatz (3.54) in the new state equation (3.55), we obtain

b = −div (αε∇uε) + uε

= −div (αε∇u) + u − div (αε∇wε) + wε − div (αε∇ũε) + ũε . (3.56)

With help of the contrast (3.4), the term div (αε∇u) has to be interpreted as follows:

div (αε∇u) = Δu|Ω\Bε
+ αΔu|Bε

± Δu|Bε

= Δu − (1 − α)Δu|Bε
, (3.57)

since div (∇u) = Δu. Now, we can replace this last result in (3.56) to obtain

b = −Δu + u + (1 − α)Δu|Bε
− div (αε∇wε) + wε − div (αε∇ũε) + ũε . (3.58)

Therefore, from the state equation associated with the unperturbed problem (3.3) it
follows that

− div (αε∇wε) + wε − div (αε∇ũε) + ũε + (1 − α)Δu|Bε
= 0. (3.59)
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Since we have some freedom to choose wε and ũε, the following problems are
defined:

− div (αε∇wε) = 0 and − div (αε∇ũε) + ũε = −(1 − α)Δu|Bε
− wε . (3.60)

We have to complement the above problems with their associated boundary
and transmission conditions. Thus, let us come back to the ansatz (3.54). After
evaluating its gradient, we have

∇uε(x) = ∇u(x) + ∇wε(x) + ∇ũε(x) , (3.61)

which can be rewritten as

∇uε(x) = ∇u(̂x) + (∇u(x) − ∇u(̂x)) + ∇wε(x) + ∇ũε(x) . (3.62)

According to (3.9), the jump condition on the interface ∂Bε is given by

∂nuε|Ω\Bε
− α∂nuε|Bε

= 0 . (3.63)

Therefore, by combining the last two equations we have

(1 − α)∇u(̂x) · n + (1 − α)(∇u(x) − ∇u(̂x)) · n

+ ∂nwε(x)|Ω\Bε
− α∂nwε(x)|Bε

+ ∂nũε(x)|Ω\Bε
− α∂nũε(x)|Bε

= 0 .

(3.64)

Thus, we can choose wε such that

∂nwε(x)|Ω\Bε
− α∂nwε(x)|Bε

= −(1 − α)∇u(̂x) · n on ∂Bε . (3.65)

From the above result together with (3.60)-left, the following exterior problem is
considered, and formally obtained as ε → 0: Find wε, such that

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

div (αε∇wε) = 0 in R2 ,

wε → 0 at ∞ ,

wε|
R2\Bε

− wε|Bε

∂nwε|
R2\Bε

− α∂nwε|Bε

=
=

0
v̂

}

on ∂Bε ,

(3.66)

with v̂ = −(1 − α)∇u(̂x) · n. The above boundary value problem admits an explicit
solution, namely

wε(x)|
R2\Bε

= 1 − α

1 + α

ε2

‖x − x̂‖2
∇u(̂x) · (x − x̂) , (3.67)

wε(x)|Bε
= 1 − α

1 + α
∇u(̂x) · (x − x̂) . (3.68)
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Now we can construct ũε in such a way that it compensates for the discrepancies
introduced by the higher order terms in ε as well as by the boundary layer wε on the
exterior boundary ∂Ω . Therefore, from (3.60)-right, the remainder ũε must be the
solution to the following boundary value problem: Find ũε, such that

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−div (αε∇ũε) + ũε = fε in Ω ,

ũε = gε on ∂Ω ,

ũε|Ω\Bε
− ũε|Bε

∂nũε|Ω\Bε
− α∂nũε|Bε

=
=

0
hε

}

on ∂Bε ,

(3.69)

where fε = −(1 − α)Δu|Bε
− wε, gε = −wε|∂Ω

and hε = ṽ · n, with the vector
function ṽ(x) = −(1 − α)(∇u(x) − ∇u(̂x)). Before proceeding, let us state the
following result:

Lemma 3.2 Let ũε be the solution to (3.69) or equivalently the solution to the
following variational problem:

ũε ∈ Uε :
∫

Ω

αε∇ũε · ∇η +
∫

Ω

ũεη =
∫

Ω

fεη +
∫

∂Bε

hεη ∀η ∈ H 1
0 (Ω) ,

(3.70)
where the set Uε is defined as

Uε:={ϕ ∈ H 1(Ω) : ϕ|∂Ω
= gε} . (3.71)

Then, the following estimate for the remainder ũε holds true:

‖ũε‖H 1(Ω) ≤ Cε2
√| log ε| , (3.72)

with constant C independent of the small parameter ε.

Proof From the definition of the source term fε = −(1 − α)Δu|Bε
− wε, there is

∫

Ω

fεη = −(1 − α)

∫

Bε

Δu η −
∫

Ω

wεη . (3.73)

In addition, since function hε = ṽ · n, with n used to denote the unit normal vector
field on ∂Bε pointing toward to the center of the inclusion, it follows that

∫

∂Bε

hεη =
∫

∂Bε

ṽ · n η = −
∫

Bε

div (̃vη) = −
∫

Bε

div (̃v)η −
∫

Bε

ṽ · ∇η

= (1 − α)

∫

Bε

Δu η + (1 − α)

∫

Bε

(∇u − ∇u(̂x)) · ∇η , (3.74)

where we have taken into account that ṽ = −(1 −α)(∇u−∇u(̂x)). From these last
two results, the variational form (3.70) can be rewritten as follows:



3.4 Topological Derivative Evaluation 47

ũε ∈ Uε :
∫

Ω

αε∇ũε · ∇η +
∫

Ω

ũεη = −
∫

Bε

ṽ · ∇η −
∫

Ω

wεη ∀η ∈ H 1
0 (Ω) .

(3.75)
Now, let us take η = ũε − ϕε as test function in (3.75), where ϕε ∈ Uε is the lifting
of the Dirichlet boundary data gε on ∂Ω . Therefore

∫

Ω

αε‖∇ũε‖2 +
∫

Ω

|̃uε|2 =
∫

∂Ω

gε∂nũε −
∫

Bε

ṽ · ∇ũε −
∫

Ω

wεũε . (3.76)

From the Cauchy-Schwarz inequality and the trace theorem, there is

∣

∣

∣

∣

∫

∂Ω

gε∂nũε

∣

∣

∣

∣

≤ ‖gε‖H 1/2(∂Ω)‖∂nũε‖H−1/2(∂Ω)

≤ ‖gε‖H 1/2(∂Ω)‖∇ũε‖L2(Ω) . (3.77)

Since gε = −wε|∂Ω
, then, according to the explicit solution (3.67), gε has order

O(ε2) on ∂Ω . Therefore

∣

∣

∣

∣

∫

∂Ω

gε∂nũε

∣

∣

∣

∣

≤ C1ε
2‖ũε‖H 1(Ω). (3.78)

By taking into account the definition ṽ(x) = −(1 − α)(∇u(x) − ∇u(̂x)), there is

∣

∣

∣

∣

∫

Bε

ṽ · ∇ũε

∣

∣

∣

∣

≤ ‖̃v‖L2(Bε)
‖∇ũε‖L2(Bε)

≤ C2‖∇u(x) − ∇u(̂x)‖L2(Bε)
‖∇ũε‖L2(Bε)

≤ C3‖x − x̂‖L2(Bε)
‖∇ũε‖L2(Bε)

≤ C4ε
2‖ũε‖H 1(Ω) , (3.79)

where we have used the Cauchy-Schwarz inequality and the interior elliptic
regularity of function u. Let us consider again the Cauchy-Schwarz inequality to
obtain

∣

∣

∣

∣

∫

Ω

wεũε

∣

∣

∣

∣

≤ C5‖wε‖L2(Ω)‖ũε‖L2(Ω)

≤ C6ε
2
√| log ε|‖ũε‖H 1(Ω), (3.80)

where we have used the explicit solution for wε given by (3.67) and (3.68). From
these results it follows that

∫

Ω

αε‖∇ũε‖2 +
∫

Ω

|̃uε|2 ≤ C7ε
2
√| log ε|‖ũε‖H 1(Ω). (3.81)
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Finally, from the coercivity of the bilinear form on the left-hand side of the above
inequality, namely

c‖ũε‖2
H 1(Ω)

≤
∫

Ω

αε‖∇ũε‖2 +
∫

Ω

|̃uε|2 , (3.82)

we obtain the result, with constant C = C7/c. ��
Now, we can develop the integral I (ε) given by (3.52) in power of ε. In fact, by

replacing the ansatz (3.54) into (3.52) we have

I (ε) = (1 − α)

∫

Bε

∇(wε + ũε) · ∇u

= (1 − α)

∫

Bε

∇wε · ∇u + E5(ε) . (3.83)

The remainder E5(ε) is defined as

E5(ε) = (1 − α)

∫

Bε

∇ũε · ∇u . (3.84)

From the Cauchy-Schwarz inequality there is

|E5(ε)| ≤ C1‖∇u‖L2(Bε)
‖∇ũε‖L2(Bε)

≤ C2ε‖∇ũε‖L2(Ω) , (3.85)

where we have used the interior elliptic regularity of function u. By taking into
account Lemma 3.2, there is

|E5(ε)| ≤ C3ε‖ũε‖H 1(Ω) ≤ C4ε
3
√| log ε| = o(ε2) . (3.86)

Now, we can come back to the expansion (3.51), which can be written as

Jε(uε) − J (u) = (1 − α)

∫

Bε

‖∇u‖2 + (1 − α)

∫

Bε

∇wε · ∇u + E5(ε)

= (1 − α)

∫

Bε

‖∇u(̂x)‖2 + (1 − α)

∫

Bε

∇wε · ∇u(̂x) +
7
∑

i=5

Ei (ε)

= πε2(1 − α)‖∇u(̂x)‖2 + πε2 (1 − α)2

1 + α
‖∇u(̂x)‖2 +

7
∑

i=5

Ei (ε)

= 2πε2 1 − α

1 + α
‖∇u(̂x)‖2 +

7
∑

i=5

Ei (ε) , (3.87)
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where we have used the explicit solution (3.68), namely

∇wε(x)|Bε
= 1 − α

1 + α
∇u(̂x) . (3.88)

The remainders E6(ε) and E7(ε) are respectively defined as

E6(ε) = (1 − α)

∫

Bε

(

‖∇u‖2 − ‖∇u(̂x)‖2
)

, (3.89)

E7(ε) = (1 − α)

∫

Bε

∇wε · (∇u − ∇u(̂x)) , (3.90)

which can be trivially bounded as follows:

|E6(ε)| ≤ C1ε
3 = O

(

ε3
)

, (3.91)

|E7(ε)| ≤ C2ε
3 = O

(

ε3
)

, (3.92)

where we have used the interior elliptic regularity of function u and the explicit
solution (3.88). According to the estimates (3.86) and (3.91), the remainders E5(ε),
E6(ε), and E7(ε) are of order o(ε2). Therefore, from the expansion (3.87) we
promptly identify the topological derivative as

Tα(̂x) = 2
1 − α

1 + α
‖∇u(̂x)‖2 ∀ x̂ ∈ Ω , (3.93)

where we have chosen fα(ε) := f (ε) = πε2.

Remark 3.1 (Pólya-Szegö Polarization Tensor) In the case of arbitrary shaped
inclusions ωε(̂x) = x̂ + εω, the exterior problem (3.66), written in its variational
form, reads:

wε ∈ W :
∫

R2
αε∇wε · ∇η = (1 − α)∇u(̂x) ·

∫

ωε

∇η ∀η ∈ W , (3.94)

where the quotient space W is defined as W := {ϕ ∈ H 1(R2)/R}. Now, let
us introduce the notation w(ε−1x) := ε−1wε(x) and the change of variable
ξ = ε−1x. From the linearity of the above variational problem, w(ξ) can be written
in terms of the components of ∇u(̂x) as follows: w(ξ) = (∇u(̂x))i v(i)(ξ), where
(∇u(̂x))i = ∇u(̂x) · ei , with ei used to denote the canonical basis of R2. By taking
into account these elements into the above exterior problem, the following set of
canonical variational problems can be introduced:

v(i) ∈ W :
∫

R2
αω∇ξ v

(i) · ∇ξ η = (1 − α)ei ·
∫

ω

∇ξ η ∀η ∈ W , (3.95)
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where the contrast αω is defined as αω = 1 in R2 \ ω and αω = α in ω. On the
other hand, the variation of the compliance shape function given by (3.87) can be
rewritten as

Jε(uε) − J (u) = (1 − α)

∫

ωε

(∇u(̂x) + ∇wε) · ∇u(̂x) + o
(

ε2
)

= (1 − α)ε2
∫

ω

(∇u(̂x) + ∇ξw) · ∇u(̂x) + o
(

ε2
)

, (3.96)

since wε(x) = εw(ε−1x) and ∇ξw(ξ) = ε∇w(ε−1x). In addition, the gradient of
w(ξ) with respect to ξ can be written as

∇ξw = (∇u(̂x) · ej )∇ξ v
(j)

= (∇u(̂x) · ej )(∇ξ v
(j))i ei

= (∇ξ v
(j))i(ei ⊗ ej )∇u(̂x) . (3.97)

After replacing this decomposition into the above expansion we obtain

Jε(uε) − J (u) = −|ω|ε2Pα∇u(̂x) · ∇u(̂x) + o(ε2) . (3.98)

The Pólya-Szegö Polarization Tensor is defined as [5]

Pα := −(1 − α)

(

I + 1

|ω|
∫

ω

(∇ξ v
(j))i(ei ⊗ ej )

)

, (3.99)

where I is used to denote the second order identity tensor. The set ω ⊂ R2 is
a reference domain representing an inclusion of arbitrary shape and |ω| is the
Lebesgue measure of ω. Finally, functions v(j) are solutions to the set of canonical
variational problems (3.95) written in terms of the fast variable ξ ∈ R2, which
have to be solved for each canonical direction e1 = (1, 0)� and e2 = (0, 1)�.
Note that the set of canonical variational problems (3.95) and the integral (3.99) can
be evaluated numerically. Therefore, this approach induces a numerical procedure
for evaluating the polarization tensor associated with arbitrary shaped inclusions
embedded into an anisotropic and heterogeneous medium.

3.5 Summary of the Results

In this chapter the topological derivative of the compliance shape functional
associated with a modified Helmholtz problem, with respect to the nucleation of a
small inclusion endowed with different material properties from the background, has
been derived. We have considered three different scenarios, which are: perturbation
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on the right-hand side, perturbation on the lower order term, and perturbation on the
higher order term. After collecting the results derived in Sect. 3.4, we have

ψ(χε(̂x)) = ψ(χ)+fα(ε)Tα(̂x)+fβ(ε)Tβ (̂x)+fγ (ε)Tγ (̂x)+E (ε) , (3.100)

remembering that ψ(χ) = J (u) and ψ(χε) = Jε(uε) are defined by (3.1) and
(3.7), respectively. In addition, functions fα(ε) = fβ(ε) = fγ (ε) = πε2 and the
remainder E (ε) is defined as

E (ε) :=
7
∑

i=1

Ei (ε) = o(ε2) , (3.101)

since each Ei (ε) = o(ε2), for i = 1, · · · , 7. Finally, the topological derivatives
Tα(̂x), Tβ (̂x) and Tγ (̂x) are given by (3.39), (3.48), and (3.93), respectively. These
sensitivities can be interpreted as partial topological derivatives with respect to
each contrast α, β, and γ . Therefore, from the basic rules of differential calculus,
expansion (3.100) can be written as

ψ(χε(̂x)) = ψ(χ) + πε2T (̂x) + o(ε2), (3.102)

where T (̂x) is given by the sum

T (̂x) = Tα(̂x) + Tβ (̂x) + Tγ (̂x)

= 2
1 − α

1 + α
‖∇u(̂x)‖2 + (1 − β)|u(̂x)|2 − 2(1 − γ )b(̂x)u(̂x), (3.103)

which represents the total topological derivative of the shape functional ψ .

3.6 Exercises

1. From the weak formulation (3.2) derive the strong form (3.3).
2. From the weak formulation (3.8) derive the strong form (3.9) and discuss the

transmission condition on the interface ∂Bε.
3. By using separation of variable technique, find the explicit solution for the

exterior problem (3.66).
4. Show that the solution wε of the exterior problem (3.66) is bounded as follows:

‖wε‖L2(Ω) ≤ Cε2√| log ε|, which has been used to derive estimation (3.80).
Hint: Define a big ball BR(̂x) of radius R and center at x̂ ∈ Ω , such that Ω ⊂
BR(̂x). Then, it follows immediately that

‖wε‖L2(Ω) ≤ ‖wε‖L2(BR) =
(

‖wε‖2
L2(BR\Bε)

+ ‖wε‖2
L2(Bε)

)1/2
.
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In a polar coordinate system (r, θ) with center at x̂, the explicit solution wε from
(3.67) and (3.68) can be written, respectively, as

• for ε ≤ r < R

we(r, θ) = 1 − α

1 + α
ε2r−1(ϕ1 cos(θ) + ϕ2 sin(θ));

• for 0 < r < ε

wi(r, θ) = 1 − α

1 + α
r (ϕ1 cos(θ) + ϕ2 sin(θ)),

where (ϕ1, ϕ2)
� := ∇u(̂x) ∈ R2.

Then, compute by hand the integrals

‖wε‖2
L2(BR\Bε)

=
∫ 2π

0

(∫ R

ε

|we(r, θ)|2rdr

)

dθ,

‖wε‖2
L2(Bε)

=
∫ 2π

0

(∫ ε

0
|wi(r, θ)|2rdr

)

dθ.

5. From the strong formulation (3.69) derive the weak form (3.70). Then, derive the
equality (3.76) by taking η = ũε − ϕε as test function in (3.75), with ϕε ∈ Uε,
where Uε is defined by (3.71).

6. By taking ωε(̂x) = Bε(̂x) in Remark 3.1, show that the polarization tensor
defined through (3.99) degenerates itself to Pα = −2 1−α

1+α
I, which corroborates

with the final result given by (3.93), provided that |ω| = π for circular inclusions.



Chapter 4
Domain Truncation Method

In this chapter, the domain decomposition technique is combined with the Steklov–
Poincaré pseudo-differential boundary operator for asymptotic analysis purposes
with respect to the small parameter associated with the size of the topological
perturbation. As a fundamental result, the expansion of the energy coincides with
the expansion of the Steklov–Poincaré operator on the boundary of the truncated
domain, leading to the associated topological derivative. The proposed method
is general and can be applied in the topological asymptotic analysis of a wide
range of multi-physics and nonlinear problems. Actually, the method has been
developed in the context of unilateral contact problems [89], which are governed by
nonlinear variational inequalities. See the book by Novotny and Sokołowski [75],
for instance. In addition, through this approach, the estimation of the remainders
left by the topological asymptotic expansion are obtained in a subdomain free
of singularities, which allows to construct the mathematical arguments needed to
justify all derivations by using elementary tools from the analysis.

4.1 Coupled System

The geometrical domain D ⊂ R2, with boundary Γ = ∂D , is decomposed
into two subdomains ω ⊂ D and Ω = D \ ω endowed with different physical
properties, as shown in Fig. 4.1. The interaction between ω and Ω is governed
by a transmission condition acting on the interface ∂ω. Since the resulting model
is complicated, the domain decomposition technique is used in the topological
asymptotic analysis. The basic idea consists in introducing a fictitious ring CR(ε) :=
{ε < ‖x‖ < R} for asymptotic analysis purposes with respect to the small parameter
ε → 0. The associated expansion is written on the boundary ∂BR of the ball
BR = {‖x‖ < R}. As a fundamental result, the expansion of the energy in CR(ε)

coincides with the expansion of the Steklov–Poincaré pseudo-differential operator

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020
A. A. Novotny, J. Sokołowski, An Introduction to the Topological
Derivative Method, SpringerBriefs in Mathematics,
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Fig. 4.1 Geometrical domain
D decomposed into ω ⊂ D
and Ω = D \ ω

defined on the fictitious boundary ∂BR , allowing for identifying the associated
topological derivative. Therefore, the influence of the singularity arising from the
limit passage ε → 0 can be analyzed in the truncated domain free of singularities
through nonlocal boundary conditions on ∂BR . In addition, the compactness results
used to justify the proposed topological asymptotic expansion are derived by using
classical Fourier analysis in the singularly perturbed geometrical domain CR(ε).
This approach simplifies the topological sensitivity analysis of the associated shape
functional.

4.1.1 Non-perturbed Problem

The shape functional defined in the non-perturbed geometrical domain Ω is given
by

ψ(χ) := JΩ(u) = 1

2

∫

Ω

|u − zd |2 , (4.1)

where zd is the target function and u is the solution of the following variational
problem: Find u ∈ H 1

0 (D), such that

∫

ω

∇u · ∇η +
∫

Ω

∇u · ∇η +
∫

Ω

uη =
∫

Ω

bη ∀η ∈ H 1
0 (D) . (4.2)

In the above equation, b represents a source term assumed to be smooth enough.
The strong formulation associated with the variational problem (4.2) is given by the
following coupled boundary value problem: Find w, such that

{−Δw = 0 in ω ,

w = ϕ on ∂ω ,
(4.3)

where S (ϕ) on ∂ω is the Steklov–Poincaré operator associated with the non-
perturbed problem, which is defined as S : ϕ ∈ H 1/2(∂ω) �→ ∂nu ∈ H−1/2(∂ω).
In addition, the restriction of the solution to (4.2) over Ω is given by the following
boundary value problem: Find u, such that
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⎧

⎨

⎩

−Δu + u = b in Ω ,

u = 0 on Γ ,

∂nu = S (u) on ∂ω .

(4.4)

In order to simplify further analysis, let us introduce the adjoint state v, which is
the solution of the following variational problem (see Sect. 1.2.1 for details): Find
v ∈ H 1

0 (D), such that

∫

ω

∇v · ∇η +
∫

Ω

∇v · ∇η +
∫

Ω

vη = −
∫

Ω

(u − zd)η ∀η ∈ H 1
0 (D) . (4.5)

4.1.2 Perturbed Problem

We consider the same problem but now defined in the topologically perturbed
domain Dε(̂x) = D \ Bε(̂x), with x̂ ∈ ω ⊂ D . Therefore, ωε(̂x) = ω \ Bε(̂x)

represents the subdomain effectively perturbed. In this case, the shape functional is
defined in a fix domain, namely

ψ(χε) := JΩ(uε) = 1

2

∫

Ω

|uε − zd |2 , (4.6)

where the function uε is the solution of the following variational problem: Find
uε ∈ Vε, such that

∫

ωε

∇uε · ∇η +
∫

Ω

∇uε · ∇η +
∫

Ω

uεη =
∫

Ω

bη ∀η ∈ Vε . (4.7)

The space Vε is defined as

Vε:={ϕ ∈ H 1(Dε) : ϕ|∂D = 0} . (4.8)

The strong form associated with the variational problem (4.7) can be written in the
form of the following coupled boundary value problem: Find wε, such that

⎧

⎨

⎩

−Δwε = 0 in ωε ,

wε = ϕ on ∂ω ,

∂nwε = 0 on ∂Bε ,

(4.9)

where Sε(ϕ) on ∂ω is the Steklov–Poincaré operator associated with the perturbed
problem, which is defined as Sε : ϕ ∈ H 1/2(∂ω) �→ ∂nuε ∈ H−1/2(∂ω). Again,
the restriction of the solution to (4.7) over Ω is given by the following boundary
value problem: Find uε, such that
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⎧

⎨

⎩

−Δuε + uε = b in Ω ,

uε = 0 on Γ ,

∂nuε = Sε(uε) on ∂ω .

(4.10)

4.2 Domain Decomposition Technique

The Steklov–Poincaré operator is now applied for decomposing the singularly
perturbed geometrical domain ωε into two subdomains. One of them is given by the
truncated domain ω \ BR , where BR = BR(̂x). The other one is precisely the ring
CR(ε) := BR \ Bε which contains the singularity, with Bε = Bε(̂x). See Fig. 4.2.
Therefore, the Steklov–Poincaré operator defined on the fictitious boundary ∂BR

becomes dependent on the control parameter ε, namely

Aε : H 1/2(∂BR) �→ H−1/2(∂BR) . (4.11)

The region CR(ε), which includes the singular domain perturbation Bε, is selected
for asymptotic analysis with respect to the small parameter ε → 0 that governs the
singularity. The result obtained from the asymptotic analysis in CR(ε) is evaluated
on the fictitious boundary ∂BR where the Steklov–Poincaré pseudo-differential
operator is defined. Therefore, the asymptotic expansion is derived in the simplified
domain represented by the ring CR(ε) enjoying radial symmetry, which is separated
from the topological sensitivity analysis of the shape functional obtained in the
truncated domain DR = D \ BR endowed with nonlocal boundary conditions
governed by the Steklov–Poincaré operator on ∂BR , but free of the singularities
produced by Bε with ε → 0. Thus, the following variational problem is considered
in the truncated domain DR: Find uε ∈ VR , such that

∫

ω\BR

∇uε · ∇η +
∫

∂BR

Aε(uε)η +
∫

Ω

∇uε · ∇η +
∫

Ω

uεη =
∫

Ω

bη ∀η ∈ VR ,

(4.12)

Fig. 4.2 Topologically perturbed geometrical domain ωε decomposed into ω \ BR and CR(ε) :=
BR \ Bε
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whose nonlocal condition on the fictitious boundary ∂BR is governed by the
Steklov–Poincaré operator. The space VR is defined as

VR:={ϕ ∈ H 1(DR) : ϕ|∂D = 0} . (4.13)

On the other hand, the singularity regarding the small parameter ε → 0 is absorbed
by the following boundary value problem defined in the ring CR(ε) = BR \Bε: Find
wε, such that

⎧

⎨

⎩

−Δwε = 0 in CR(ε) ,

wε = ϕ on ∂BR ,

∂nwε = 0 on ∂Bε ,

(4.14)

where Aε(ϕ) on ∂BR is the Steklov–Poincaré operator associated with the topolog-
ically perturbed problem, namely Aε : ϕ ∈ H 1/2(∂BR) �→ ∂nuε ∈ H−1/2(∂BR).

Remark 4.1 The mapping ϕ �→ Aε(ϕ) is defined as the Steklov–Poincaré operator
associated with (4.14), so that the solution to the problem (4.12) is given by the
restriction of the solution to (4.7) over the truncated domain DR = D \ BR .

The energy regarding problem (4.14) enjoys the following property:

0 = −
∫

BR\Bε

Δwε wε =
∫

BR\Bε

‖∇wε‖2 −
∫

∂BR

∂nwε wε

=
∫

BR\Bε

‖∇wε‖2 −
∫

∂BR

Aε(ϕ) ϕ , (4.15)

that is, the energy in the ring CR(ε) is equal to the energy associated with the
Steklov–Poincaré operator on the fictitious boundary ∂BR , namely

∫

CR(ε)

‖∇wε‖2 =
∫

∂BR

Aε(ϕ) ϕ . (4.16)

In addition, since the operator Aε is symmetric, we have

∫

CR(ε)

‖∇wε‖2 = 〈Aε(ϕ), ϕ〉(H−1/2×H 1/2)(∂BR) := 〈Aε(ϕ), ϕ〉∂BR
. (4.17)

Thus, the asymptotic expansion of the Steklov–Poincaré operator coincides with the
asymptotic expansion of the energy in the ring CR(ε). In particular, the energy in
the ring CR(ε) admits an asymptotic expansion with respect to the small parameter
ε → 0 of the form:

∫

CR(ε)

‖∇wε‖2 =
∫

BR

‖∇w‖2 − 2πε2‖∇w(̂x)‖2 + o(ε2) . (4.18)

See Chap. 2, expansion (2.37) for b = 0 in the neighborhood of x̂ ∈ Ω .
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In general, the density energy functional H 1(BR) � ϕ �→ ‖∇ϕ(̂x)‖2 ∈ R

is not continuous at the point x̂. Therefore, the energy density is replaced by the
continuous bilinear form H 1(BR) � ϕ �→ 〈B(ϕ), ϕ〉∂BR

∈ R. For the Laplacian
into two spatial dimensions, the solution of the unperturbed problem w is harmonic
in the neighborhood of x̂. Thus, a continuous bilinear form with respect to the norm
H 1(BR) can be defined such that the following equality holds true:

〈B(w),w〉∂BR
= 2‖∇w(̂x)‖2 . (4.19)

The substitution of ‖∇ϕ(̂x)‖2 by 〈B(ϕ), ϕ〉∂BR
in the energy functional has been

introduced in [89, 90] for topological derivative evaluation purposes in the context
of the domain decomposition method.

Since function w is harmonic in the ball BR ⊂ R2 of radius R > 0 and center at
x̂ ∈ ω, then its gradient evaluated at x̂ admits the following representation:

∇w(̂x) = 1

πR3

∫

∂BR

(x − x̂)w(x) . (4.20)

Thus, for any R > ε small enough, the expansion of the energy defined in the ring
CR(ε) can be written as follows:

∫

CR(ε)

‖∇wε‖2 =
∫

BR

‖∇w‖2

− 2ε2

πR6

[

(∫

∂BR

w x1

)2

+
(∫

∂BR

w x2

)2
]

+ o(ε2) , (4.21)

where x − x̂ = (x1, x2). As described in [89, 90], it is interesting to note that the
above expansion can be rewritten as

∫

CR(ε)

‖∇wε‖2 =
∫

BR

‖∇w‖2 − πε2〈B(w),w〉∂BR
+ o(ε2) , (4.22)

with the nonlocal, positive- and self-adjoint operator B uniquely determined by the
following bilinear form defined on the boundary ∂BR:

〈B(w),w〉∂BR
= 2

π2R6

[

(∫

∂BR

w x1

)2

+
(∫

∂BR

w x2

)2
]

. (4.23)

From the above representation and after taking into account that the line integrals
on ∂BR are well defined by functions in L1(∂BR), the operator B can be extended
to L2(∂BR) as follows:

B ∈ L (L2(∂BR);L2(∂BR)) , (4.24)
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with the same symmetric bilinear form, namely

〈B(ϕ), φ〉∂BR
= 2

π2R6

[∫

∂BR

ϕ x1

∫

∂BR

φ x1 +
∫

∂BR

ϕ x2

∫

∂BR

φ x2

]

, (4.25)

which is continuous for all ϕ, φ ∈ L2(∂BR). It is important to note that the bilinear
form

L2(∂BR) × L2(∂BR) � (ϕ, φ) �→ 〈B(ϕ), φ〉∂BR
∈ R (4.26)

is continuous with respect to the weak convergence since it has a simple structure,
namely

〈B(ϕ), φ〉∂BR
= L1(ϕ)L1(φ) + L2(ϕ)L2(φ) ϕ, φ ∈ L1(∂BR) , (4.27)

with two linear forms ϕ �→ L1(ϕ) and φ �→ L2(φ) given by line integrals on ∂BR .
Finally, since the asymptotic expansion of the Steklov–Poincaré operator coincides
with the asymptotic expansion of the energy in the ring CR(ε), we have

〈Aε(ϕ), ϕ〉∂BR
= 〈A (ϕ), ϕ〉∂BR

− f (ε)〈B(ϕ), ϕ〉∂BR
+ o(f (ε)) , (4.28)

with f (ε) = πε2. Therefore, the asymptotic expansion of the energy shape
functional in CR(ε) for ε → 0 is given by the regular expansion of the Steklov–
Poincaré operator (see Sect. 4.2.1, Lemma 4.1):

Aε = A − f (ε)B + Rε , (4.29)

where the remainder term denoted as Rε in the above expansion is of order o(f (ε))

in the operator norm L (H 1/2(∂BR);H−1/2(∂BR)). From the symmetry of the
operators, the expansion of the energy shape functional can also be written as

〈Aε(ϕ), φ〉∂BR
= 〈A (ϕ), φ〉∂BR

−f (ε)〈B(ϕ), φ〉∂BR
+〈Rε(ϕ), φ〉∂BR

, (4.30)

where 〈Rε(ϕ), φ〉∂BR
= o(f (ε)). In view of the asymptotic expansion of the energy

shape functional, the representation (4.25) holds true or alternatively

〈B(ϕ), φ〉∂BR
= 2∇ϕ(̂x) · ∇φ(̂x) ∀ x̂ ∈ ω , (4.31)

provided that φ and ϕ are analytic. Note that, for the sake of notation, the functions
φ and ϕ are not distinguished from their respective traces evaluated on the fictitious
boundary ∂BR .
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4.2.1 Compactness of the Asymptotic Expansion

Thanks to the domain decomposition technique, the compactness of the obtained
asymptotic expansion is ensured in this section by using elementary arguments from
the Fourier analysis. Let ϕ be a function with trace (still denoted as ϕ) on ∂BR

belonging to H 1/2(∂BR), then

‖ϕ‖H 1/2(∂BR) ≤ CR . (4.32)

By taking into account that the radius R is fixed, for the sake of simplicity the
subindex R will be omitted in what follows, so that CR is replaced by C, with C

used to denote a generic constant independent of the small parameter ε. Finally, let
us introduce a polar coordinate system (r, θ) centered at x̂. Since ϕ ∈ H 1/2(∂BR),
it follows that there exists an expansion in Fourier series of ϕ in terms of θ of the
form:

ϕ(θ) = 1

2
a0 +

∞
∑

k=1

(ak sin kθ + bk cos kθ) , (4.33)

with the associated coefficients satisfying

∞
∑

k=1

√

1 + k2(a2
k + b2

k) ≤ C . (4.34)

From these elements, two important properties are derived, namely

∞
∑

k=1

(a2
k + b2

k) ≤ C and
∞
∑

k=1

k(a2
k + b2

k) ≤ C . (4.35)

Let us consider the solution w of the Laplace equation defined in the ball BR

endowed with Dirichlet boundary condition on ∂BR given by ϕ. Let us also consider
the solution wε of the same problem but defined in the ring CR(ε) = BR \ Bε

endowed with homogeneous Neumann boundary condition on ∂Bε. Then, the
associated energies depending on ϕ through the boundary conditions on ∂BR are
given respectively by

E (ϕ) =
∫

∂BR

A (ϕ)ϕ ≡
∫

BR

‖∇w‖2 , (4.36)

Eε(ϕ) =
∫

∂BR

Aε(ϕ)ϕ ≡
∫

CR(ε)

‖∇wε‖2 . (4.37)
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We need to show that Eε(ϕ) has an asymptotic expansion with respect to ε whose
remainder term is uniformly bounded. More precisely, the following result has to be
justified:

Lemma 4.1 The energy Eε(ϕ) admits and asymptotic expansion for ε > 0, ε small
enough, of the form

Eε(ϕ) = E (ϕ) − πε2〈B(ϕ), ϕ〉∂BR
+ 〈Rε(ϕ), ϕ〉∂BR

, (4.38)

with

|〈Rε(ϕ), ϕ〉∂BR
| ≤ Cε4 (4.39)

uniformly for any fixed compact set in H 1(D \ BR), i.e., C depends on this set only.

Proof By taking into account that all compact set can be covered by a finite number
of balls, it is sufficient to show the result for one single fixed ball BR . Therefore,
we can assume that (4.35) holds true. The proof consists in deriving the explicit
formulas for w and wε written in terms of Fourier series, similar to [88]. Thus, the
associated energies can be evaluated explicitly and the properties of the remainder
term Rε(ϕ) immediately deduced. By constructing w from an expansion in Fourier
series of the boundary condition on ∂BR , we have

w(r, θ) = 1

2
a0 +

∞
∑

k=1

( r

R

)k

(ak sin kθ + bk cos kθ) . (4.40)

Similarly for wε in CR(ε), the following expansion in Fourier series is valid:

wε(r, θ) = 1

2
a0 +

∞
∑

k=1

ψk(r)(ak sin kθ + bk cos kθ) , (4.41)

where

ψk(r) = Akr
k + Bkr

−k , (4.42)

with Ak and Bk determined by the boundary conditions on ∂BR and ∂Bε, that is

AkR
k + Bk

1

Rk
= 1 and Akε

k−1 − Bk

1

εk+1 = 0 . (4.43)

Therefore

Ak = Rk

R2k + ε2k
and Bk = Akε

2k , (4.44)
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and finally

ψk(r) = rk

Rk
+ ε2k

R2k + ε2k

(

Rk

rk
− rk

Rk

)

. (4.45)

After replacing this last result in the expansion for wε, we get

wε(r, θ) = w(r, θ) + w̃ε(r, θ) , (4.46)

with

w̃ε(r, θ) =
∞
∑

k=1

ε2k

R2k + ε2k

(

Rk

rk
− rk

Rk

)

(ak sin kθ + bk cos kθ) . (4.47)

Thus,

Eε(ϕ) =
∫

CR(ε)

‖∇w + ∇w̃ε‖2

=
∫

CR(ε)

‖∇w‖2 + 2
∫

CR(ε)

∇w · ∇w̃ε +
∫

CR(ε)

‖∇w̃ε‖2 ±
∫

Bε

‖∇w‖2

= E (ϕ) + I1 + I2 + I3 , (4.48)

where the integrals I1, I2 and I3 are defined as

I1:=
∫

CR(ε)

‖∇w̃ε‖2, I2:=2
∫

CR(ε)

∇w · ∇w̃ε and I3:= −
∫

Bε

‖∇w‖2. (4.49)

Now we have

∂rw̃ε(r, θ) = −
∞
∑

k=1

ε2k

R2k + ε2k
k

1

r

(

Rk

rk
+ rk

Rk

)

(ak sin kθ + bk cos kθ) , (4.50)

1

r
∂θ w̃ε(r, θ) =

∞
∑

k=1

ε2k

R2k + ε2k
k

1

r

(

Rk

rk
− rk

Rk

)

(ak cos kθ − bk sin kθ) . (4.51)

After integrating with respect to θ and in view of the orthogonality of the
trigonometric functions between 0 and 2π , we have

I1 = π

∞
∑

k=1

(

ε2k

R2k + ε2k

)2

k2(a2
k + b2

k)Ik(ε) , (4.52)
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where the integral Ik(ε) is defined as

Ik(ε) =
∫ R

ε

[

(

Rk

rk+1 + rk−1

Rk

)2

+
(

Rk

rk+1 − rk−1

Rk

)2]

rdr = 1

k

(

R2k

ε2k
− ε2k

R2k

)

, (4.53)

which leads to

I1 = π

∞
∑

k=1

(

ε2k

R2k + ε2k

)2

k(a2
k + b2

k)

(

R2k

ε2k
− ε2k

R2k

)

= πε2 a2
1 + b2

1

R2
+ O(ε4) . (4.54)

Before evaluating the second integral I2, we observe that

∂rw(r, θ) =
∞
∑

k=1

k
rk−1

Rk
(ak sin kθ + bk cos kθ) , (4.55)

1

r
∂θw(r, θ) =

∞
∑

k=1

k
rk−1

Rk
(ak cos kθ − bk sin kθ) . (4.56)

A simple manipulation yields

I2 = 2π

∞
∑

k=1

( ε

R

)2k

k(a2
k + b2

k)
R2k − ε2k

R2k + ε2k
= −2πε2 a2

1 + b2
1

R2
+ O(ε4) .

(4.57)
After evaluating the last integral I3, we obtain

I3 = −π

∞
∑

k=1

( ε

R

)2k

k(a2
k + b2

k) = −πε2 a2
1 + b2

1

R2
+ O(ε4) . (4.58)

Finally, from the obtained formulas (4.54), (4.57), and (4.58), it is possible to
identify the term independent of ε as well as the term of order ε2, that is

Eε(ϕ) = E (ϕ) − 2πε2 a2
1 + b2

1

R2 + O(ε4) , (4.59)

where, in view of the inequalities (4.35), the remainder of order O(ε4) is uniformly
bounded by Cε4. ��
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4.2.2 Asymptotic Expansion of the Solution

Let us consider an ansatz for the solution uε to the topologically perturbed coupled
problem (4.7) of the form

uε(x) = u(x) + f (ε)g(x) + ũε(x) , (4.60)

where u is the solution to the original (unperturbed) coupled problem (4.2), g is the
first order asymptotic corrector, and ũε is the remainder. We need to expand the
application Aε(uε) in power of ε. For that, we just introduce the ansatz (4.60) into
the expansion of the Steklov–Poincaré operator (4.29) to obtain

Aε(uε) = A (u) + f (ε)(A (g) + B(u)) + Aε(̃uε)

+Rε(u) + f (ε)Rε(g) + f (ε)2B(g) on ∂BR . (4.61)

By considering these last two results in (4.12) and after collecting the terms in power
of ε, we can define one variational problem for each term in the ansatz (4.60). The
first problem for u is given by: Find u ∈ VR , such that

∫

ω\BR

∇u·∇η+
∫

∂BR

A (u)η+
∫

Ω

∇u·∇η+
∫

Ω

uη =
∫

Ω

bη ∀η ∈ VR . (4.62)

The second problem for g is stated as follows: Find g ∈ VR , such that

∫

ω\BR

∇g · ∇η+
∫

∂BR

A (g)η +
∫

Ω

∇g · ∇η +
∫

Ω

gη =−
∫

∂BR

B(u)η ∀η∈VR .

(4.63)

Finally, the third problem for the reminder ũε is written as: Find ũε ∈ VR , such that

∫

ω\BR

∇ũε · ∇η +
∫

∂BR

Aε(̃uε)η +
∫

Ω

∇ũε · ∇η +
∫

Ω

ũεη =
∫

∂BR

Fεη ∀η∈VR ,

(4.64)

where the source term Fε is given by

Fε = −(Rε(u) + f (ε)Rε(g) + f (ε)2B(g)) . (4.65)

The estimate ‖ũε‖H 1(D\BR) = o(f (ε)) for the remainder holds true, whose proof is
left as an exercise at the end of this chapter.
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4.2.3 Asymptotic Expansion of the Shape Functional

Now, we have to derive the asymptotic expansion of the shape functional and find
the corresponding topological derivative. After introducing the ansatz (4.60) in the
shape functional regarding the topologically perturbed problem (4.6), we have

JΩ(uε) = 1

2

∫

Ω

|u + f (ε)g + ũε − zd |2

= 1

2

∫

Ω

|u − zd |2 + f (ε)

∫

Ω

(u − zd)g + o(f (ε)) . (4.66)

Let us rewrite the adjoint problem (4.5) as follows: Find v ∈ VR , such that

∫

ω\BR

∇v ·∇η+
∫

∂BR

A (v)η+
∫

Ω

∇v ·∇η+
∫

Ω

vη = −
∫

Ω

(u−zd)η ∀η ∈ VR .

(4.67)
By taking g as test function in the above variational problem we have

∫

ω\BR

∇v ·∇g+
∫

∂BR

A (v)g+
∫

Ω

∇v ·∇g+
∫

Ω

vg = −
∫

Ω

(u−zd)g . (4.68)

On the other hand, by setting v as test function in the variational problem given by
(4.63), there is

∫

ω\BR

∇g ·∇v+
∫

∂BR

A (g)v+
∫

Ω

∇g ·∇v+
∫

Ω

gv = −
∫

∂BR

B(u)v . (4.69)

After combining both equalities, the following important result yields:

∫

Ω

(u − zd)g =
∫

∂BR

B(u)v = 〈B(u), v〉∂BR
= 2∇u(̂x) · ∇v(̂x) , (4.70)

where we have considered the symmetry of the bilinear forms together with the
representation (4.31), which is well defined, thanks to the interior elliptic regularity
of u and v. Finally, after introducing this last result in (4.66), the topological
asymptotic expansion of the shape functional leads to

ψ(χε(̂x)) = ψ(χ) + 2f (ε)∇u(̂x) · ∇v(̂x) + o(f (ε)) . (4.71)

Therefore, the associated topological derivative can be promptly identified, namely

T (̂x) = 2∇u(̂x) · ∇v(̂x) ∀ x̂ ∈ ω , (4.72)
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with function f (ε) = πε2. Let us stress that u and v are respectively solutions to
the direct (4.2) and adjoint (4.5) problems, both defined in the original (unperturbed)
domain D .

4.3 Exercises

1. Show that the remainder ũε, satisfying (4.64), enjoys the property

‖ũε‖H 1(D\BR) = o(f (ε)) .

Hint: Study the proof of Lemma 3.2, Chap. 3, and adapt it for the case analyzed
here.

2. Repeat the analysis presented in this chapter by considering the following elliptic
nonlinear coupled problem: Find u ∈ H 1

0 (D), such that

∫

ω

∇u · ∇η +
∫

Ω

∇u · ∇η +
∫

Ω

u3η =
∫

Ω

bη ∀η ∈ H 1
0 (D) .

Hint: Take a look on the book by Novotny and Sokołowski [75, Chapters 10
and 11].



Chapter 5
Topology Design Optimization

In this chapter a topology optimization algorithm based on the topological derivative
concept combined with a level-set domain representation method is presented [11],
together with its applications in the context of compliance structural topology
optimization and topology design of compliant mechanisms. It is worth mentioning
that the topological derivative is defined through a limit passage when the small
parameter governing the size of the topological perturbation goes to zero. Therefore,
it can be used as a steepest-descent direction in an optimization process, according
to any method based on the gradient of the cost functional. We restrict ourselves to
the case in which the domain is topologically perturbed by the nucleation of a small
inclusion where a weak material phase is used to mimic voids, allowing to work in a
fixed computational domain. This simple strategy bypasses the use of a complicated
algorithm specifically designed to deal with nucleation of holes in a computational
domain.

Let us introduce a hold-all domain D ⊂ R2, which is split into two subdomains,
Ω ⊂ D and its complement D \ Ω . We assume that there is a distributed parameter
ρ : D �→ {1, ρ0} defined as

ρ(x) :=
{

1 if x ∈ Ω,

ρ0 if x ∈ D \ Ω,
(5.1)

with 0 < ρ0 � 1. The topology optimization problem we are dealing with consists
in minimizing a shape functional Ω �→ J (Ω) with respect to Ω ⊂ D , that is:

Minimize
Ω⊂D

J (Ω) , (5.2)

which can be solved by using the topological derivative concept. Actually, a circular
hole Bε(̂x) is introduced inside D . Then, the region occupied by Bε(̂x) is filled by

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020
A. A. Novotny, J. Sokołowski, An Introduction to the Topological
Derivative Method, SpringerBriefs in Mathematics,
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an inclusion with material properties different from the background. The material
properties are characterized by a piecewise constant function γε of the form

γε(x) :=
{

1 if x ∈ D \ Bε ,

γ (x) if x ∈ Bε ,
(5.3)

where the contrast γ is defined as

γ (x) =
{

ρ0 if x ∈ Ω,

ρ−1
0 if x ∈ D \ Ω,

(5.4)

which induces a level-set domain representation method.
In order to fix these ideas, a model problem in elasticity is considered in Sect. 5.1.

The resulting topology design algorithm based on the topological derivative concept
combined with a level-set domain representation method is presented in Sect. 5.2.
Some numerical results in the context of compliance structural topology opti-
mization and topology design of compliant mechanisms are presented in Sect. 5.3.
Finally, the chapter ends in Sect. 5.4 with a discussion concerning perspectives of
future developments, together with a list of open problems.

5.1 Model Problem in Elasticity

In this section, the topological derivative of a tracking-type shape functional
associated with the linear elasticity problem into two spatial dimensions, in the
presence of an small circular inclusion, is derived.

The tracking-type shape functional associated with the unperturbed domain is
defined as

ψ(χ) := J (u) =
∫

ΓN

g · u , (5.5)

where g is a given vector function in H−1/2(ΓN) and the displacement vector field
u : D �→ R2 is the solution of the following variational problem:

u ∈ U :
∫

D
σ(u) · (∇η)s =

∫

ΓN

q · η ∀η ∈ V , (5.6)

with σ(u) = ρC(∇u)s . In the above equation, ρ is given by (5.1), q ∈ H−1/2(ΓN)

is a given boundary traction, and (∇ϕ)s is the symmetric part of the gradient of a
vector field ϕ, namely

(∇ϕ)s := 1

2

(

∇ϕ + (∇ϕ)�
)

. (5.7)
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By considering isotropic medium, the constitutive tensor C can be represented as

C = 2μ I + λ I ⊗ I , (5.8)

where I and I are identity tensors of second and fourth orders, respectively, and μ

and λ are the Lamé coefficients, both considered constants everywhere. In particular,
in the case of plane stress assumptions, we have

μ = E

2(1 + ν)
and λ = νE

1 − ν2 , (5.9)

whereas in the case of plane strain state, there are

μ = E

2(1 + ν)
and λ = νE

(1 + ν)(1 − 2ν)
, (5.10)

where E is the Young modulus and ν the Poisson ratio. The spaces U and V are
defined as

U = V = {ϕ ∈ H 1(D) : ϕ|ΓD
= 0
}

. (5.11)

In addition, ∂D = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅, where ΓD and ΓN are Dirichlet
and Neumann boundaries, respectively. See sketch in Fig. 5.1.

The strong system associated with the variational problem (5.6) can be stated as:
Find u, such that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

div σ(u) = 0 in D ,

σ (u) = ρC(∇u)s

u = 0 on ΓD ,

σ(u)n = q on ΓN .

(5.12)

Remark 5.1 By setting ρ(x) = 1 ∀x ∈ D in (5.1), the boundary value problem
(5.12) degenerates itself to the well-known Navier system, namely

Fig. 5.1 The elasticity
problem defined in the
unperturbed domain

0
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μΔu + (λ + μ)∇(div u) = 0 in D , (5.13)

where μ and λ are the Lamé coefficients given by (5.9) for the plane stress case and
by (5.10) for the plane strain assumption.

In order to simplify further analysis, an auxiliary vector function v : D �→ R2

is introduced, which is the solution of the following adjoint variation problem (see
Sect. 1.2.1 for details)

v ∈ V :
∫

D
σ(v) · (∇η)s = −

∫

ΓN

g · η ∀η ∈ V , (5.14)

with σ(v) = ρC(∇v)s .

Remark 5.2 (Lagrangian Formalism) As discussed in Sect. 1.2.1, the adjoint state
v solution of (5.14) comes out from the Lagrangian formalism. In particular, the
basic idea consists in defining a Lagrangian functional given by the sum of the
shape functional (5.5) and the state equation in its weak form (5.6), namely

L (u, v) :=
∫

ΓN

g · u +
∫

D
σ(u) · (∇v)s −

∫

ΓN

q · v . (5.15)

By applying the first order optimality condition in (5.15) with respect to v ∈ V , we
recover the state equation (5.6), that is

u ∈ U :
∫

D
σ(u) · (∇η)s −

∫

ΓN

q · η = 0 ∀η ∈ V . (5.16)

On the other hand, after applying the first order optimality condition in (5.15) with
respect to u ∈ U , we obtain

v ∈ V :
∫

D
σ(η) · (∇v)s +

∫

ΓN

g · η = 0 ∀η ∈ V , (5.17)

which is actually the adjoint equation (5.14), since the bilinear form on the left-
hand side of (5.17) is symmetric. It is also important to note that the adjoint state v

always belongs to the space V . Therefore, in our particular case, we have just used
the symmetry of the bilinear form to define the adjoint problem according to (5.14)
and the fact that U = V .

Remark 5.3 (Self Adjoint Problem) Note also that by setting g = q in (5.5), the
tracking-type shape functional becomes the structural compliance, which has been
taken into account in Chap. 3. In this particular case, the problem is self-adjoint in
the sense that after replacing g by q in the right-hand side of the adjoint equation
(5.14), we can compare with the state equation (5.6) and conclude that v = −u for
g = q, provided that U = V according to (5.11).
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Now, let us state the perturbed counterpart of the problem. In particular, the
tracking-type shape functional associated with the topologically perturbed domain
can be written as

ψ(χε) := Jε(uε) =
∫

ΓN

g · uε . (5.18)

The displacement vector field uε : D �→ R2 solves the following variational
problem:

uε ∈ U :
∫

D
σε(uε) · (∇η)s =

∫

ΓN

q · η ∀η ∈ V , (5.19)

with σε(uε) = γερC(∇uε)
s , where the contrast γε is given by (5.3). The strong

system associated with the variational problem (5.19) can be written as: Find uε,
such that

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

div σε(uε) = 0 in D ,

σε(uε) = γερC(∇uε)
s

uε = 0 on ΓD ,

σ(uε)n = q on ΓN ,

�uε�

�σε(uε)�n

=
=

0
0

}

on ∂Bε ,

(5.20)

where the operator �ϕ� is used to denote the jump of function ϕ on the boundary of
the inclusion ∂Bε, namely �ϕ� := ϕ|D\Bε

−ϕ|Bε
on ∂Bε. See details in Fig. 5.2. Note

that the transmission condition on the interface ∂Bε comes out from the variational
formulation (5.19).

0

Fig. 5.2 The elasticity problem defined in the perturbed domain
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5.1.1 Existence of the Topological Derivative

The following lemma ensures the existence of the associated topological derivative:

Lemma 5.1 Let u and uε be the solutions of the original (5.6) and perturbed (5.19)
problems, respectively. Then, the following estimate holds true:

‖uε − u‖H 1(D) ≤ Cε , (5.21)

where C is a constant independent of the control parameter ε.

Proof From the definition of the contrast γε given by (5.3), we have that Eq. (5.6)
can be rewritten as
∫

D\Bε

σ (u) · (∇η)s +
∫

Bε

σ (u) · (∇η)s ±
∫

Bε

γ σ (u) · (∇η)s =
∫

ΓN

q ·η , (5.22)

or even as

u ∈ U :
∫

D
σε(u) · (∇η)s + (1 − γ )

∫

Bε

σ (u) · (∇η)s =
∫

ΓN

q · η ∀η ∈ V .

(5.23)

By taking η = uε −u as test function in the above equation and also in (5.19), there
are

∫

D
σε(u) · ∇(uε − u)s =

∫

ΓN

q · (uε − u)

− (1 − γ )

∫

Bε

σ (u) · ∇(uε − u)s , (5.24)

∫

D
σε(uε) · ∇(uε − u)s =

∫

ΓN

q · (uε − u) . (5.25)

After subtracting the first equation from the second one, we obtain the following
equality:

∫

D
σε(uε − u) · ∇(uε − u)s = (1 − γ )

∫

Bε

σ (u) · ∇(uε − u)s . (5.26)

The Cauchy–Schwarz inequality implies

∫

D
σε(uε − u) · ∇(uε − u)s ≤ C1‖σ(u)‖L2(Bε)

‖∇(uε − u)s‖L2(Bε)

≤ C2ε‖uε − u‖H 1(D) , (5.27)
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where we have used the interior elliptic regularity of u. Finally, from the coercivity
of the bilinear form on the left-hand side of the above inequality, namely

c‖uε − u‖2
H 1(D)

≤
∫

D
σε(uε − u) · ∇(uε − u)s , (5.28)

we obtain

‖uε − u‖2
H 1(D)

≤ Cε‖uε − u‖H 1(D) , (5.29)

which leads to the result with C = C2/c. ��

5.1.2 Variation of the Shape Functional

From a simple manipulation and with the help of the adjoint equation (5.14), it
is possible to write the variation of the shape functional in terms of an integral
concentrated in the ball Bε. In fact, after subtracting (5.5) from (5.18) we obtain

Jε(uε) − J (u) =
∫

ΓN

g · (uε − u) . (5.30)

From the definition for the contrast γε given by (5.3), the state equation associated
with the topologically perturbed domain (5.19) can be rewritten as

∫

D\Bε

σ (uε) · (∇η)s +
∫

Bε

γ σ (uε) · (∇η)s ±
∫

Bε

σ (uε) · (∇η)s =
∫

ΓN

q · η .

(5.31)

Therefore, it follows that

∫

D
σ(uε) · (∇η)s = (1 − γ )

∫

Bε

σ (uε) · (∇η)s +
∫

ΓN

q · η . (5.32)

Now, we can subtract the state equation associated with the unperturbed domain
(5.6) from the above result to obtain

∫

D
σ(uε − u) · (∇η)s = (1 − γ )

∫

Bε

σ (uε) · (∇η)s . (5.33)

By choosing η = v as test function in the above equation, where v is the adjoint
state solution of (5.14), we have

∫

D
σ(uε − u) · (∇v)s = (1 − γ )

∫

Bε

σ (uε) · (∇v)s . (5.34)
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On the other hand, by setting η = uε − u as test function in the adjoint equation
(5.14), there is

∫

D
σ(v) · (∇(uε − u))s = −

∫

ΓN

g · (uε − u) . (5.35)

Since the bilinear forms on the left-hand side of the above two last equations are
symmetric, then we obtain the following important equality:

∫

ΓN

g · (uε − u) = −(1 − γ )

∫

Bε

σ (uε) · (∇v)s . (5.36)

After comparing the above result with (5.30), we conclude that

Jε(uε) − J (u) = −(1 − γ )

∫

Bε

σ (uε) · (∇v)s . (5.37)

Therefore, thanks to the adjoint state v solution of (5.14), the variation of the shape
functional can, in fact, be written in terms of an integral concentrated in the ball Bε.
Before proceeding, let us sum and subtract the term

− (1 − γ )

∫

Bε

σ (u) · (∇v)s (5.38)

from (5.37) to obtain

Jε(uε) − J (u) = −(1 − γ )

∫

Bε

σ (u) · (∇v)s + I (ε) . (5.39)

The integral I (ε) is defined as

I (ε) = −(1 − γ )

∫

Bε

σ (uε − u) · (∇v)s , (5.40)

which can be bounded as follows:

|I (ε)| ≤ C1‖∇v‖L2(Bε)
‖σ(uε − u)‖L2(Bε)

≤ C2ε‖uε − u‖H 1(Ω) ≤ C3ε
2 = O(ε2) , (5.41)

where we have used Lemma 5.1, together with the interior elliptic regularity of
function u. According to Lemma 5.1, a leading term of order O(ε2) is expected. On
the other hand, the above estimate cannot be improved, so that there is a nontrivial
term of order O(ε2) hidden in (5.40). In the next section we will show how to extract
such a leading term of order O(ε2) from (5.40).
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5.1.3 Asymptotic Analysis of the Solution

The variation of the tracking-type shape functional has been written exclusively in
terms of an integral concentrated in the ball Bε, as shown through (5.37). In order
to obtain the associated topological asymptotic expansion in the form of (1.2), we
need to know the asymptotic behavior of the solution uε with respect to ε in the
neighborhood of the ball Bε. In particular, once knowing explicitly such a behavior,
function f (ε) can be identified, which allows for evaluating the limit ε → 0 in (1.4),
leading to the final formula for the topological derivative T of the shape functional
ψ . Therefore, the basic idea consists in expanding uε asymptotically with respect
to the small parameter ε. In this section, we obtain the asymptotic expansion of the
solution uε associated with the transmission condition on the boundary ∂Bε of the
inclusion. We start by proposing an ansatz for uε in the form [58]

uε(x) = u(x) + wε(x) + ũε(x) . (5.42)

After applying the operator σε = γεσ , we have

σε(uε(x)) = σε(u(x)) + σε(wε(x)) + σε(̃uε(x))

= γεσ (u(̂x)) + γε(σ (u(x)) − σ(u(̂x)) + σε(wε(x)) + σε(̃uε(x). (5.43)

On the boundary of the inclusion ∂Bε there is

�σε(uε)�n = 0 ⇒ (σ (uε)|D\Bε
− γ σ(uε)|Bε

)n = 0 , (5.44)

so that the above expansion evaluated on ∂Bε yields

(1 − γ )σ (u(̂x))n + (1 − γ )(σ (u(x)) − σ(u(̂x))n

+ �σε(wε(x))�n + �σε(̃uε(x))�n = 0 , (5.45)

which allows for choosing the jump �σε(wε(x))�n on ∂Bε as

�σε(wε(x))�n = −(1 − γ )σ (u(̂x))n on ∂Bε . (5.46)

Now, the following exterior problem is formally defined with ε → 0: Find σε(wε),
such that

⎧

⎨

⎩

div σε(wε) = 0 in R2 ,

σε(wε) → 0 at ∞ ,

�σε(wε)�n = v̂ on ∂Bε ,

(5.47)
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Fig. 5.3 Polar coordinate
system (r, θ) centered at the
point x̂

where v̂ = −(1−γ )σ (u(̂x))n. The above boundary value problem admits an explicit
solution (see, for instance, the book by Little [62]), which can be written in a polar
coordinate system (r, θ) with center at x̂ (see Fig. 5.3) as follows:

• For r ≥ ε (outside the inclusion)

σ rr
ε (wε(r, θ)) = −ϕ1

(

1−γ
1+γ a1

ε2

r2

)

−ϕ2

(

4 1−γ
1+γ a2

ε2

r2 + 3 1−γ
1+γ a2

ε4

r4

)

cos 2θ , (5.48)

σθθ
ε (wε(r, θ)) = ϕ1

(

1−γ
1+γ a1

ε2

r2

)

− ϕ2

(

3 1−γ
1+γ a2

ε4

r4

)

cos 2θ , (5.49)

σ rθ
ε (wε(r, θ)) = −ϕ2

(

2 1−γ
1+γ a2

ε2

r2 − 3 1−γ
1+γ a2

ε4

r4

)

sin 2θ . (5.50)

• For 0 < r < ε (inside the inclusion)

σ rr
ε (wε(r, θ)) = ϕ1

(

a1γ
1−γ

1+γ a1

)

+ ϕ2

(

a2γ
1−γ

1+γ a2

)

cos 2θ , (5.51)

σθθ
ε (wε(r, θ)) = ϕ1

(

a1γ
1−γ

1+γ a1

)

− ϕ2

(

a2γ
1−γ

1+γ a2

)

cos 2θ , (5.52)

σ rθ
ε (wε(r, θ)) = −ϕ2

(

a2γ
1−γ

1+γ a2

)

sin 2θ . (5.53)

Some terms in the above formulae require explanations. The coefficients ϕ1 and ϕ2
are given by

ϕ1 = 1

2
(σ1(u(̂x)) + σ2(u(̂x))) , ϕ2 = 1

2
(σ1(u(̂x)) − σ2(u(̂x))) , (5.54)

where σ1(u(̂x)) and σ2(u(̂x)) are the eigenvalues of tensor σ(u(̂x)), which can be
expressed as (see Appendix A, identity (A.52))

σ1,2(u(̂x)) = 1

2

(

tr σ(u(̂x)) ±
√

2σD(u(̂x)) · σD(u(̂x))
)

, (5.55)
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with σD(u(̂x)) standing for the deviatory part of the stress tensor σ(u(̂x)), namely

σD(u(̂x)) = σ(u(̂x)) − 1

2
tr σ(u(̂x))I . (5.56)

In addition, the constants a1 and a2 are given by

a1 = μ + λ

μ
e a2 = 3μ + λ

μ + λ
. (5.57)

Finally, σ rr
ε (uε), σθθ

ε (uε), and σ rθ
ε (uε) are the components of tensor σε(uε) in the

polar coordinate system, namely σ rr
ε (uε) = er · σε(uε)e

r , σθθ
ε (uε) = eθ · σε(uε)e

θ ,
and σ rθ

ε (uε) = σθr
ε (uε) = er ·σε(uε)e

θ , with er and eθ used to denote the canonical
basis associated with the polar coordinate system (r, θ), such that, ||er || = ||eθ || = 1
and er · eθ = 0. See Appendix A.

Remark 5.4 (Eshelby’s Theorem) According to (5.51)–(5.53), we observe that the
stress tensor field associated with the solution of the exterior problem (5.47) is
uniform inside the inclusion Bε(̂x). It means that the stress acting in the inclusion
embedded in the whole two-dimensional space R2 can be written in the following
compact form:

σε(wε(x))|Bε(̂x)
= γTσ(u(̂x)) , (5.58)

where T is a fourth order uniform (constant) tensor given by

T = 1

2

1 − γ

1 + γ a2

(

2a2I + a1 − a2

1 + γ a1
I ⊗ I

)

. (5.59)

Therefore, the above result fits the famous Eshelby’s problem. This problem,
formulated by Eshelby in 1957 [38] and 1959 [39], represents one of the major
advances in the continuum mechanics theory of the twentieth century [56]. It plays
a central role in the theory of elasticity involving the determination of effective
elastic properties of materials with multiple inhomogeneities. For more details, see
the book by Mura [70], for instance. The Eshelby’s problem, also referred to as the
Eshelby’s theorem, is also related to the Polarization tensor in asymptotic analysis
of the strain energy with respect to singular domain perturbations [71]. In fact,
tensor T represents one term contribution to the Polarization tensor coming from
the solution to the exterior problem (5.47). In the next section we will apply the
Eshelby’s theorem to the derivation of the polarization tensor and to the topological
derivative evaluation as well. Concerning applications of the Eshelby’s theorem to
the problem of optimal patch in elasticity, see [61, 72].
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Now, we can construct the remainder ũε from (5.42) in such a way that it
compensates for the discrepancies produced by the higher order terms in ε as well as
by the boundary layer wε on the exterior boundary ∂D . It means that the remainder
ũε has to be the solution of the following boundary value problem: Find ũε, such
that

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

div σε(̃uε) = 0 in D ,

σε(̃uε) = γερC(∇ũε)
s

ũε = fε on ΓD ,

σ (̃uε)n = gε on ΓN ,

�̃uε�

�σε(̃uε)�n

=
=

0
hε

}

on ∂Bε ,

(5.60)

where fε = −wε|ΓD
, gε = −σ(wε)n|ΓN

, and hε = σ̃ n, with the second order
tensor field σ̃ (x) = −(1 − γ )[σ(u(x)) − σ(u(̂x))]. From the above boundary value
problem, it is possible to prove that the remainder ũε enjoys an estimate of the form
ũε ≈ O(ε2) in an appropriated norm. In fact, before continuing, let us state the
following important result:

Lemma 5.2 Let ũε be the solution of (5.60) or equivalently solution of the
following variational problem:

ũε ∈ Uε :
∫

D
σε(̃uε) · (∇η)s =

∫

ΓN

gε · η +
∫

∂Bε

hε · η ∀η ∈ Vε , (5.61)

with σε(̃uε) = γεC(∇ũε)
s , where the set Uε and the space Vε are defined

respectively as

Uε := {ϕ ∈ H 1(D) : ϕ|ΓD
= fε} ,

Vε := {ϕ ∈ H 1(D) : ϕ|ΓD
= 0} .

Then, we have that the following estimate for the remainder ũε holds true:

‖ũε‖H 1(D) ≤ Cε2 , (5.62)

with constant C independent of the small parameter ε.

Proof From the definition of function hε = σ̃ n, with n used to denote the unit
normal vector field on ∂Bε pointing toward to the center of the inclusion, we have

∫

∂Bε

hε · η =
∫

∂Bε

σ̃ n · η = −
∫

Bε

div (̃ση) = −
∫

Bε

div (̃σ ) · η −
∫

Bε

σ̃ · (∇η)s

= (1 − γ )

∫

Bε

div (σ (u)) · η + (1 − γ )

∫

Bε

[σ(u) − σ(u(̂x))] · (∇η)s,

(5.63)
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where we have taken into account that σ̃ (x) = −(1−γ )[σ(u(x))−σ(u(̂x))]. From
this last result, the variational form (5.64) can be rewritten as follows:

ũε ∈ Uε :
∫

D
σε(̃uε) · (∇η)s =

∫

ΓN

gε · η −
∫

Bε

σ̃ · (∇η)s ∀η ∈ Vε , (5.64)

since div (σ (u)) = 0. By taking η = ũε − ϕε as test function in (5.64), where
ϕε ∈ Uε is the lifting of the Dirichlet boundary data fε on ΓD , we have

∫

D
σε(̃uε) · (∇ũε)

s =
∫

ΓD

fε · σ (̃uε)n +
∫

ΓN

gε · ũε −
∫

Bε

σ̃ · (∇ũε)
s . (5.65)

From the Cauchy–Schwarz inequality and the trace theorem there are

∣

∣

∣

∣

∫

ΓD

fε · σ (̃uε)n

∣

∣

∣

∣

≤ ‖fε‖H 1/2(ΓD)‖σ (̃uε)n‖H−1/2(ΓD)

≤ C1ε
2‖∇ũε‖L2(D) ≤ C2ε

2‖ũε‖H 1(D) , (5.66)

and
∣

∣

∣

∣

∫

ΓN

gε · ũε

∣

∣

∣

∣

≤ ‖gε‖H−1/2(ΓN )‖ũε‖H 1/2(ΓN ) ≤ C3ε
2‖ũε‖H 1(D) , (5.67)

where we have used the fact that fε and gε have order O(ε2) on the exterior
boundary ∂D . By taking into account the definition σ̃ (x) = −(1 − γ )[σ(u(x)) −
σ(u(̂x))], there is

∣

∣

∣

∣

∫

Bε

σ̃ · (∇ũε)
s

∣

∣

∣

∣

≤ ‖σ̃‖L2(Bε)
‖∇ũε‖L2(Bε)

≤ C4‖σ(u) − σ(u(̂x))‖L2(Bε)
‖∇ũε‖L2(Bε)

≤ C5‖x − x̂‖L2(Bε)
‖∇ũε‖L2(Bε)

≤ C6ε
2‖ũε‖H 1(D) , (5.68)

where we have used again the Cauchy–Schwarz inequality together with the interior
elliptic regularity of function u. From these results, we obtain

∫

D
σε(̃uε) · (∇ũε)

s ≤ C7ε
2‖ũε‖H 1(D) . (5.69)

Finally, from the coercivity of the bilinear form on the left-hand side of the above
inequality, namely

c‖ũε‖2
H 1(D)

≤
∫

D
σε(̃uε) · (∇ũε)

s , (5.70)

we obtain the result with C = C7/c. ��
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5.1.4 Topological Derivative Evaluation

From the above elements, the integral (5.40) can be evaluated explicitly, which
allows for collecting the terms in power of ε. Thus, it is possible to identify the
function f (ε) in (1.2) and compute the limit passage ε → 0, leading to the final
formula for the associated topological derivative. In particular, the integral (5.40)
can be rewritten as

I (ε) = −1 − γ

γ

∫

Bε

σε(uε − u) · (∇v)s , (5.71)

where we have used the definition for the contrast given by (5.3). After replacing
the expansion (5.42) into the above equation we obtain

I (ε) = −1 − γ

γ

∫

Bε

σε(wε + ũε) · (∇v)s

= −1 − γ

γ

∫

Bε

σε(wε) · (∇v)s + E1(ε) . (5.72)

The remainder E1(ε) is defined as

E1(ε) = −1 − γ

γ

∫

Bε

σε(̃uε) · (∇v)s . (5.73)

The Cauchy–Schwarz inequality together with the interior elliptic regularity of
function u yield

|E1(ε)| ≤ C1‖∇v‖L2(Bε)
‖σε(̃uε)‖L2(Bε)

≤ C2ε‖∇ũε‖L2(Ω) . (5.74)

From Lemma 5.2, we have

|E1(ε)| ≤ C3ε‖ũε‖H 1(Ω) ≤ C4ε
3 = O(ε3) . (5.75)

Now, let us comeback to the expansion (5.39), which can be written as

Jε(uε) − J (u) = −(1−γ )

∫

Bε

σ (u) · (∇v)s − 1−γ

γ

∫

Bε

σε(wε) · (∇v)s+E1(ε)

= −(1 − γ )

∫

Bε

(I + T)σ (u(̂x)) · (∇v(̂x))s +
3
∑

i=1

Ei (ε)

= πε2
Pγ σ (u(̂x)) · (∇v(̂x))s +

3
∑

i=1

Ei (ε) , (5.76)
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with Pγ = −(1 −γ )(I+T), where we have used the explicit solution for σε(wε)|Bε

given by (5.58). The remainders E2(ε) and E3(ε) are respectively defined as

E2(ε) = −(1 − γ )

∫

Bε

(σ (u) · (∇v)s − σ(u(̂x)) · (∇v(̂x))s) , (5.77)

E3(ε) = −1 − γ

γ

∫

Bε

σε(wε) · ((∇v)s − (∇v(̂x))s) , (5.78)

which can be trivially bounded as follows:

|E2(ε)| ≤ C1ε
3 = O(ε3) , (5.79)

|E3(ε)| ≤ C2ε
3 = O(ε3) , (5.80)

where we have used the interior elliptic regularity of function u and the explicit
solution (5.58). According to the estimates (5.75) and (5.79), the remainders
E1(ε), E2(ε), and E3(ε) are of order o(ε2). Therefore, from the expansion (5.76)
we promptly identify function f (ε) = πε2 and thus the final formula for the
topological derivative as [9, 45]

T (̂x) = Pγ σ (u(̂x)) · (∇v(̂x))s ∀ x̂ ∈ Ω , (5.81)

where the polarization tensor Pγ is given by the following fourth order isotropic
tensor:

Pγ = − 1 − γ

1 + γ a2

(

(1 + a2)I + 1

2
(a1 − a2)

1 − γ

1 + γ a1
I ⊗ I

)

, (5.82)

with the parameters a1 and a2 given by (5.57).

Remark 5.5 Note that the polarization tensor defined through (5.82) is isotropic
because we are dealing with circular inclusions. For the polarization tensor regard-
ing arbitrary-shaped inclusions, the reader may refer to the book by Ammari and
Kang [5], for instance.

Remark 5.6 Formally, we can evaluate the limits γ → 0 and γ → ∞ in (5.82).
For γ → 0, the inclusion becomes a void and the transmission condition on the
interface of the inclusion degenerates itself to the homogeneous Neumann boundary
condition on the boundary of the resulting hole Bε(̂x). Thus, in this particular case
the polarization tensor is given by

P0 = −(1 + a2)I − a1 − a2

2
I ⊗ I

= −2μ + λ

μ + λ

(

2I − μ − λ

2μ
I ⊗ I

)

. (5.83)
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In addition, for γ → ∞, the elastic inclusion becomes a rigid one and the
polarization tensor is given by

P∞ = 1 + a2

a2
I − a1 − a2

2a1a2
I ⊗ I

= 2μ + λ

3μ + λ

(

2I + μ − λ

2(μ + λ)
I ⊗ I

)

. (5.84)

The rigorous mathematical justification for these limit cases can be found in [7], for
instance.

5.2 Topology Design Algorithm

In this section a topology optimization algorithm based on the topological derivative
combined with a level-set domain representation method is presented. It has been
proposed by Amstutz and Andrä [11] and consists basically in achieving a local
optimality condition for the minimization problem (5.2), given in terms of the
topological derivative and a level-set function. In particular, the domain Ω ⊂ D
and the complement D \ Ω are characterized by a level-set function Ψ :

Ω = {x ∈ D : Ψ (x) < 0} and D \ Ω = {x ∈ D : Ψ (x) > 0}, (5.85)

where Ψ vanishes on the interface between Ω and D \ Ω . A local sufficient
optimality condition for Problem (5.2), under a class of domain perturbations given
by ball-shaped inclusions denoted by Bε(x), can be stated as [10]

T (x) > 0 ∀x ∈ D, (5.86)

where T (x) is the topological derivative of the shape functional J (Ω) at x ∈ D
and Bε(x) is a ball of radius ε centered at x ∈ D , as shown in Fig. 5.4. Therefore,
let us define the quantity

g(x) :=
{−T (x) if Ψ (x) < 0,

+T (x) if Ψ (x) > 0,
(5.87)

which allows rewriting the condition (5.86) in the following equivalent form:

{

g(x) < 0 if Ψ (x) < 0,

g(x) > 0 if Ψ (x) > 0.
(5.88)

We observe that (5.88) is satisfied, where the quantity g coincides with the level-set
function Ψ up to a strictly positive factor, namely ∃ τ > 0 : g = τΨ , or equivalently
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Fig. 5.4 Nucleation of a
ball-shaped inclusion Bε(x)

-

θ := arccos

[ 〈g,Ψ 〉L2(D)

‖g‖L2(D)‖Ψ ‖L2(D)

]

= 0, (5.89)

which will be used as the optimality condition in the topology design algorithm,
where θ is the angle in L2(D) between the functions g and Ψ .

Let us now explain the algorithm. We start by choosing an initial level-set
function Ψ0. In a generic iteration n, we compute the function gn associated with the
level-set function Ψn. Thus, the new level-set function Ψn+1 is updated according to
the following linear combination between the functions gn and Ψn:

Ψ0 : ‖Ψ0‖L2(D) = 1,

Ψn+1 = 1

sin θn

[

sin((1 − k)θn)Ψn + sin(kθn)
gn

‖gn‖L2(D)

]

∀n ∈ N,
(5.90)

where θn is the angle between gn and Ψn, and k is a step size determined by a line-
search performed in order to decrease the value of the objective function J (Ωn),
with Ωn used to denote the domain associated with Ψn. The process ends when the
condition θn ≤ εθ is satisfied at some iteration, where εθ is a given small numerical
tolerance. Since we have chosen Ψ0 : ‖Ψ0‖L2(D) = 1, by construction Ψn+1 :
‖Ψn+1‖L2(D) = 1 ∀n ∈ N. If at some iteration n the line-search step size k is
found to be smaller, then a given numerical tolerance εk > 0 and the optimality
condition is not satisfied, namely θn > εθ , then a mesh refinement of the hold-
all domain D is carried out and the iterative process is continued. The resulting
topology design algorithm is summarized in pseudo-code format in Algorithm 1.
For further applications of this algorithm, see for instance [4, 14, 17, 49, 64, 85, 92].

In the context of topological-derivative-based topology optimization methods,
the algorithms available in the literature usually combine topological derivatives
with shape derivatives or level-set methods [1, 25, 36], leading to a two-stage
shape/topology optimization procedure. More precisely, new holes are nucleated
according to the topological derivative, while standard tools in shape optimization
are used to move the new boundaries. In contrast, Algorithm 1 is based on the
optimality condition (5.86) written in terms of the topological derivative and a level-
set function, leading to a very simple and quite efficient one-stage algorithm driven
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Algorithm 1: The topology design algorithm
input : D , Ψ0, εk , εθ ;
output: the optimal topology Ω�;

1 n ← 0;
2 Ωn ← Ψn;
3 compute the shape functional J (Ωn);
4 compute the associated topological derivative T (x);
5 compute gn and θn according to (5.87) and (5.89);
6 Ψold ← Ψn; Jold ← J (Ωn); Jnew ← 1 + Jold; k ← 1;
7 while Jnew > Jold do
8 compute Ψnew according to (5.90);
9 Ψn ← Ψnew;

10 execute lines 2 and 3;
11 Jnew ← J (Ωn);
12 k ← k/2;
13 end while
14 if k < εk then
15 try a mesh refinement;
16 Ψn+1 ← Ψn; n ← n + 1;
17 go to line 2;
18 else if θn > εθ then
19 Ψn+1 ← Ψn; n ← n + 1;
20 go to line 2;
21 else
22 return Ω� ← Ψn;
23 stop;
24 end if

by the topological derivative only. However, how to efficiently use the topological
derivative in the context of topology optimization deserves further investigation
[19]. See Sect. 5.4 for an account of some open problems.

5.3 Numerical Results

The topological derivative has been specifically designed to deal with shape and
topology optimization problems [1, 23, 25, 47, 57, 60, 73, 74, 76–78, 93]. In contrast
to traditional topology optimization methods, the topological derivative formulation
does not require a material model concept based on intermediary densities, so that
interpolation schemes are unnecessary. These features are crucial in a wide range of
applications, since the limitations arising from material model procedures are here
naturally avoided. In addition, topological derivative has the advantage of providing
an analytical form for the topological sensitivity which allows to obtain the optimal
design in a few iterations or even in just one shot. Therefore, the resulting topology
optimization algorithms are remarkably efficient and of simple computational
implementation, since it features only a minimal number of user-defined algorithmic



5.3 Numerical Results 85

parameters, as shown in Sect. 5.2, for instance. In this section, Algorithm 1 is applied
in the context of compliance structural topology optimization and topology design
of compliant mechanisms. In particular, the topology optimization problem we are
dealing with consists in finding a subdomain Ω ⊂ D that solves the following
minimization problem:

Minimize
Ω⊂D

FΩ(u) = J (u) + β|Ω| , (5.91)

where J (u) will be specified according to the application we are dealing with
and β > 0 is a fixed multiplier used to impose a volume constraint in Ω of the
form |Ω| ≤ M , with M > 0. In particular, by fixing different values of β we get
different volume fractions at the end of the iterative process. For more sophisticated
topological-derivative-based methods with volume constraint we refer the reader to
[27], for instance. Since the last term in (5.91) represents the volume constraint, its
associated topological derivative TV (x) is trivially given by

TV (x) =
{−1 if x ∈ Ω,

+1 if x ∈ D \ Ω.
(5.92)

On the other hand, the first term in (5.91) depends on the state u solution of
(5.6), so that the derivation of its topological derivative becomes much more
involved, as presented in this chapter. Therefore, in this section we will adapt the
obtained result (5.81) in such a way that it can be directly applied in the context
of compliance structural topology optimization as well as in topology design of
compliant mechanisms.

5.3.1 Structural Compliance Topology Optimization

Minimizing the structural flexibility under volume constraint is probably the most
studied problem in the context of topology optimization. See the pioneering papers
[20, 22] and also the book by Bendsøe [21], for instance. This classical problem is
revisited here.

We start by setting g = q in (5.14), which implies immediately that the adjoint
state v, solution of (5.14), can be obtained as v = −u. See discussion in Remark 5.3.
In this particular case, J (u) in (5.5) becomes the so-called compliance shape
functional, namely

J (u) =
∫

ΓN

q · u , (5.93)
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Fig. 5.5 Bridge design problem: initial guess and boundary conditions

where u is the solution of (5.6) and q is a given traction on ΓN . By taking into
account Remark 5.3 in result (5.81), the topological derivative of the compliance
shape functional, denoted as TC , is given by

TC(x) = −Pγ σ (u(x)) · (∇u(x))s , (5.94)

where Pγ is the polarization tensor defined through (5.82). Finally, the topological
derivative of the shape functional FΩ(u) in (5.91) is obtained from the sum

T (x) = TC(x) + βTV (x) ∀x ∈ D , (5.95)

where TV (x) and TC(x) are given by (5.92) and (5.94), respectively.
Let us now present a numerical example concerning the optimal design of a

bridge structure borrowed from [75, Ch. 5, Sec. 5.2.5, p. 159]. The initial domain
shown in Fig. 5.5 is represented by a rectangular panel of dimensions 180 × 60 m2,
which is clamped on the region a = 9 m and submitted to a uniformly distributed
traffic loading q = 250 × 103 N/m. This load is applied on the dark strip of height
h = 3 m, which is placed at a distance c = 30 m from the top of the design domain.
The dark strip will not be optimized. The Young modulus E and the Poisson ratio ν

are set as E = 210 × 109 N/m2 and ν = 1/3, respectively. The penalty parameter
which appears in (5.91) is fixed to be β = 10 × 106 and the contrast in (5.4)
is set as ρ0 = 10−4. The topological derivative of the shape functional FΩ(u)

obtained at the first iteration of the shape and topology optimization numerical
procedure is shown in Fig. 5.6, where white to black levels mean smaller (negative)
to higher (positive) values. This picture induces a level-set domain representation
for the optimal shape, as proposed in [11]. See Algorithm 1. The resulting topology
design obtained in the form of a well-known tied-arch bridge structure, which
is acceptable from practical point of view, is shown in Fig. 5.7. Usually it is a
local minimizer obtained numerically for the compliance minimization with volume
constraint. Indeed, there is a lack of sufficient optimality conditions for such shape
optimization problems [15]. The convergence curves for the angle θn and shape
functional J (Ωn) are shown in Fig. 5.8, where the picks come out from the mesh
refinement procedure.
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Fig. 5.6 Bridge design problem: topological derivative in the hold-all domain

Fig. 5.7 Bridge design problem: optimal domain [75]
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Fig. 5.8 Bridge design problem: convergence curves for the angle θn (dashed-dot red line) and
shape functional J (Ωn) (dashed blue line)
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K

(a) (b)

Fig. 5.9 Design of compliant mechanisms: problem setting. (a) Original model. (b) Surrogate
model

5.3.2 Topology Design of Compliant Mechanisms

Compliant mechanisms are mechanical devices composed by one single peace that
transforms simple inputs into complex movements by amplifying and changing
their direction [2, 26, 29, 59, 63, 65, 69, 87]. Hence they are easy to fabricate and
miniaturize and have no need for lubrication. Although these ideas are not new
[26], compliant mechanisms have received considerable attention in recent years.
This fact is due to manufacturing at a very small scale, the introduction of new
advanced materials, and the fast development of Micro-Electro-Mechanical Systems
[37]. Since such microtools are capable to perform precise movements, the spectrum
of their applications has become broader including microsurgery, nanotechnology
processing, cell manipulation, among others.

Therefore, let us adapt the problem stated in Sect. 5.1 to the context of topology
design of compliant mechanisms. We start by splitting ΓN into three mutually
disjoint parts Γin, Γout, and Γ0, such that ΓN = Γin ∪ Γout ∪ Γ0. The idea is to
maximize the output displacement uout on Γout in some direction for a given input
excitation qin on Γin. The exterior medium is represented by springs with stiffness
K , attached to the output port Γout, as shown in Fig. 5.9a. The springs are then
replaced by the expected boundary reaction qout on Γout. In this way, the output
displacement is going to be indirectly constrained by such given reaction. See sketch
in Fig. 5.9b. From this discussion, we define q = qin on Γin, q = qout on Γout, and
q = 0 on Γ0. Thus, the variational problem (5.6) can be rewritten as

u ∈ V :
∫

Ω

σ(u) · (∇η)s =
∫

Γin

qin · η +
∫

Γout

qout · η ∀η ∈ V , (5.96)

with σ(u) = ρC(∇u)s . In addition, we set g = qin on Γin, g = κqout on Γout, and
g = 0 on Γ0, so that the shape function (5.5) becomes

J (u) =
∫

Γin

qin · u + κ

∫

Γout

qout · u . (5.97)
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Finally, the associated adjoint system (5.14) can be stated as

v ∈ V :
∫

Ω

σ(v) · (∇η)s = −
∫

Γin

qin · η − κ

∫

Γout

qout · η ∈ V , (5.98)

with σ(v) = ρC(∇v)s , where κ > 0 is a weight parameter. For more details
concerning the adopted formulation, the reader may refer to [63], for instance. In
this particular case, the topological derivative of the shape functional FΩ(u) in
(5.91) is given by the sum

T (x) = TE(x) + βTV (x) ∀x ∈ Ω , (5.99)

where the topological derivative of the volume constraint TV (x) is given by (5.92)
whereas the topological derivative of the mechanism effectiveness TE(x) can be
obtained from (5.81), namely

TE(x) = Pγ σ (u(x)) · (∇v(x))s , (5.100)

where u and v are the solutions of (5.96) and (5.98), respectively, and Pγ is the
polarization tensor from (5.82).

In order to fix these ideas, let us present a numerical example where the
minimization problem (5.91) is solved with the help of Algorithm 1. It consists
in an inverter mechanism design. The hold-all domain representing the initial guess
is given by a square clamped on the left corners, while the loads qin = (2, 0) and
qout = (1, 0) are respectively applied on the middle of the left and right edges,
respectively. See Fig. 5.10a. The penalty parameter in (5.91) is set as β = 3 and the
weight parameter which appears in (5.97) is given by κ = 10. Finally, the Young
modulus, the Poisson ratio, and the contrast in (5.4) are respectively given by E = 1,
ν = 0.3, and ρ0 = 10−4. The amplified deformations of the final obtained solution
are presented in Fig. 5.10b, where we observe that the obtained mechanism performs
the desired movement. The convergence curves for the angle θn and shape functional
J (Ωn) are shown in Fig. 5.11.

5.4 Final Remarks

In this chapter a topology optimization algorithm based on the topological derivative
and the level-set domain representation method has been presented. In particular,
Algorithm 1 has been proposed in [11] to achieve a local optimality condition
for the minimization problem under consideration, which is given in terms of the
topological derivative and an appropriated level-set function. This means that the
topological derivative is in fact used within the numerical procedure as a steepest-
descent direction similar to methods based on the gradient of the cost functional.
The topological derivative represents the exact first order variation of the shape
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(a) initial guess (b) optimal domain

Fig. 5.10 Inverter design problem: initial guess and boundary conditions (a) and deformed
configuration of the optimal domain (b)
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Fig. 5.11 Inverter design problem: convergence curves for the angle θn (dashed-dot red line) and
shape functional J (Ωn) (dashed blue line)

functional with respect to the nucleation of small singular domain perturbations,
so that the resulting topology design algorithm converges in few iterations by
using a minimal number of user defined algorithmic parameters, as shown in the
numerics presented in Sect. 5.3. Furthermore, the topological derivative follows
in fact the basic rules of Differential Calculus, which allows for applying it in
the context of multi-objective topology optimization algorithms by using e.g., the
known formulas already available in the literature. Finally, in contrast to traditional
topology optimization methods, the topological derivative formulation does not
require any material model concept based on intermediary densities, so that no
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interpolation schemes are used within the numerical procedures. This feature is
crucial in the topology design problem, since the difficulties arising from material
model procedures are here naturally avoided. Therefore, the topological derivative
method can be seen, when applicable, as a simple alternative method for numerical
solution of a wide class of topology optimization problems. For future development
of the topological-derivative-based method, we highlight the following:

According to Sect. 5.3, there are numerical evidences showing that Algorithm 1
converges in most cases. However, from the theoretical point of view, only partial
results can be found in the literature. See for instance [10], where the convergence
of Algorithm 1 has been analyzed in the particular case of an optimal control
problem with respect to characteristic functions of small sets. Therefore, the most
important theoretical problem to be solved concerns the convergence of Algorithm 1
in general.

The topological derivative concept has also been shown to be effective in
solving a certain class of inverse problems [13, 30, 40, 44, 52, 55, 82, 86, 91].
In particular, stability and resolution analysis for a topological-derivative-based
imaging functional have been presented in the context of the Helmholtz equation [6].
However, such analysis is missing for other classes of inverse problems, including
gravimetry and EIT, for instance. In this direction, a new branch of research arises,
which consists in solving a wide range of reconstruction problems with the help
of second order topological derivatives [28, 41–43, 53, 66, 84]. In this context,
many interesting questions arise, including on how to efficiently use higher order
expansions, for instance.

Synthesis and optimal design of materials in a multiscale framework have been
considered in [46] and further developed in [16], where the topological derivative
of the homogenized elasticity tensor has been obtained. Extension to the dynamic
case is a difficult and interesting research topic, where inertial forces acting at the
microscale may produce unexpected macroscopic constitutive behavior. Finally, a
new emerging research field consists in the design of new materials by considering
the strain gradient homogenized constitutive tensor. From the theoretical point of
view, a deep question arises in the context of topological derivatives associated with
asymptotic models in general, including multiscale and dimension reduction, for
instance. In particular, both objects come out from a limit passage procedure, one
representing the size of the topological perturbation and the other one controlling
the scale. It is not clear whether these limits commute or not. Actually, different
results are expected after interchanging the order of these limits.

Topology design of structures taking into account more realistic scenario such
as anisotropic elasticity [24, 48], transient wave equations [32], and evolution
variational inequalities is a difficult and challenging problem, which requires further
development from both theoretical and numerical points of views.

Topological-derivative-based topology design in multiphysics taking into
account multiobjective shape functionals is an important and difficult subject of
research, which also deserves investigation. Design of antenna and wave guides in
nanophotonics is an example of modern application. It can be handled with the use
of the domain decomposition technique presented in Chap. 4, for instance.
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The Griffith-Francfort-Marigo damage model adopted in [3] and later in [95]
and [97] does not distinguish between traction and compression stress states in the
damage evolution process. Hence, it is unsuitable for describing the crack closure
phenomenon. Therefore, the development of the topological derivative theory for
functionals which consider distinct criteria in traction and in compression deserves
investigation. However, it is well known that such modeling leads to a class of
nonlinear elasticity systems, so that these extensions are expected to be difficult.
See also closely related works dealing with crack nucleation sensitivity analysis
[8, 94] and crack propagation control [96].

Extension to nonlinear problems in general can be considered as the main
challenge in the theoretical development of the topological derivative method. The
difficulty arises when the nonlinearity comes out from the main part of the operator,
which at the same time suffers a topological perturbation. It is the case of nucleation
of holes in plasticity and finite deformations in solid mechanics or small obstacles
in compressive fluid flow, for instance. See the recent publication [12] dealing with
topological derivatives for a class of quasilinear elliptic equations.

5.5 Exercises

1. By taking ρ = 1 in (5.12), derive the Navier system (5.13).
2. From the weak formulation (5.19), derive the strong form (5.20) and discuss the

transmission condition on the interface ∂Bε.
3. By using separation of variable technique, find the stress distribution around the

inclusion Bε, which is the solution of the exterior boundary value problem (5.47).
Hint: Consult the book by Little [62] and look for the Airy functions in polar
coordinate system.

4. Take into account Remark 5.4 and derive the closed formula for the isotropic and
uniform fourth order tensor T given by (5.59) in the form T = α1I+ α2I ⊗ I, by
finding the coefficients α1 and α2 explicitly.

5. Repeat the derivations presented in Remark 3.1 to find a general representation
for the polarization tensor in elasticity.

Hint: After introducing the notation w(ε−1x) := ε−1wε(x) and the change
of variable ξ = ε−1x, write w(ξ) as a linear combination of the components of
σ(u(̂x)) as follows w(ξ) = σ(u(̂x))ij v(ij)(ξ). Then replace it into the exterior
problem (5.47) to obtain a set of canonical variational problems of the form:

v(ij) ∈ W :
∫

R2
γωσξ (v

(ij)) · (∇ξ η)s = (1 − γ )(ei ⊗ ej ) ·
∫

ω

(∇ξ η)s ∀η∈W ,

(5.101)

where σξ (v
(ij)) = C(∇ξ v

(ij))s . The quotient space W is defined as W := {ϕ ∈
H 1(R2)/R} and the contrast γω is given by γω = 1 in R2 \ ω and γω = γ in ω.
Finally, comeback to (5.76) and write the polarization tensor as follows:
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Pγ = −(1 − γ )

(

I + 1

|ω|
∫

ω

σξ (v
(kl))ij (ei ⊗ ej ⊗ ek ⊗ el)

)

. (5.102)

6. Code Algorithm 1 and reproduce the numerical examples presented in Sect. 5.3.
7. Study and discuss the list of open problems presented at the end of Sect. 5.4.



Appendix A
Tensor Calculus

In this appendix some basic results of tensor calculus are recalled, which are useful
for the development presented in this monograph. We follow the book by Gurtin
[51]. Let us introduce the following notation for d ≥ 2:

• a, b, c, d, e ∈ Rd ;
• A,B,C, S,W ∈ Rd × Rd ;
• ϕ scalar field;
• u, v vector fields;
• T ,U second order tensor fields.

A.1 Inner, Vector, and Tensor Products

The scalar or inner product of two vectors a and b is defined as

a · b = b�a , (A.1)

with ‖a‖ = (a · a)1/2 used to denote the Euclidean norm of the vector a. The tensor
A is a linear map that assigns to each vector a a vector b = Aa. The transpose A�
of a tensor A is the unique tensor with the property

a · Ab = A�a · b , (A.2)

for all vectors a and b. An important tensor is the identity I defined by Ia = a for
every vector a. The product of two tensors A and B is a tensor C = AB. In general
AB �= BA. When AB = BA, we say that A and B commute. The scalar or inner
product of two tensors A and B is defined as
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A · B = tr(B�A) = tr(A�B) ⇒ tr(AB) = tr(BA) , (A.3)

where the trace of a tensor A is defined as

tr(A) = I · A . (A.4)

It then follows that

A · (BC) = (B�A) · C = (AC�) · B . (A.5)

The vector product of two vectors a and b is defined as

a × b = −b × a . (A.6)

Furthermore

a × a = 0 , (A.7)

and

a · (b × c) = c · (a × b) = b · (c × a) = vol(P) , (A.8)

where P is the parallelepiped defined by the vectors a, b, and c. Finally, the
determinant of a second order tensor is defined as

detA = Aa · (Ab × Ac)

a · (b × c)
. (A.9)

The tensor product of two vectors a and b is a second order tensor A = a ⊗ b

that assigns to each vector c the vector (b · c)a, namely

(a ⊗ b)c = (b · c)a . (A.10)

Then it follows that

(a ⊗ b)� = (b ⊗ a) , (A.11)

(a ⊗ b)(c ⊗ d) = (b · c)(a ⊗ d) , (A.12)

(a ⊗ b) · (c ⊗ d) = (a · c)(b · d) , (A.13)

tr(a ⊗ b) = a · b , (A.14)

a · Ab = A · (a ⊗ b) , (A.15)

A(a ⊗ b) = (Aa) ⊗ b . (A.16)
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A.2 Gradient, Divergence, and Curl

Let us consider the smooth enough fields ϕ, u, v, T , and U , where ϕ is scalar, u, v

are vectors, and T ,U are tensors. Here, we do not state smoothness hypotheses,
since standard differentiability assumptions sufficient to make an argument rigorous
are generally obvious to mathematicians and of little interest to engineers and
physicists. Then the following tensor calculus identities hold true:

∇(ϕu) = ϕ∇u + u ⊗ ∇ϕ , (A.17)

div(ϕu) = ϕdiv(u) + ∇ϕ · u , (A.18)

curl(ϕu) = ϕcurl(u) + ∇ϕ × u , (A.19)

curl curl(u) = ∇div(u) − Δu , (A.20)

∇(u · v) = (∇u)�v + (∇v)�u , (A.21)

div(u × v) = u · curl(v) − v · curl(u) , (A.22)

div(u ⊗ v) = udiv(v) + (∇u)v , (A.23)

div(T �u) = div(T ) · u + T · ∇u , (A.24)

div(ϕT ) = ϕdivT + T ∇ϕ , (A.25)

div(∇u�) = ∇div(u) , (A.26)

div(T U) = (∇T )U + T div(U) , (A.27)

∇(T · U) = (∇T )�U + (∇U)�T . (A.28)

Note that the curl of a vector field u, denoted by curl(u), is the unique vector
field with the following property:

(∇u − ∇u�)a = curl(u) × a (A.29)

for every constant vector a. Therefore, div curl(u) = 0 and

curl(u) = 0 ⇔ u = ∇ϕ . (A.30)

In addition, if

div(u) = 0 and curl(u) = 0 , (A.31)

then u is harmonic, namely Δu = 0. Finally, the divergence of a tensor field T ,
denoted as div(T ), is the unique vector field with the following property:

div(T ) · a = div(T �a) (A.32)

for every constant vector a.
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A possible representation for the Dirac mass is given by a Gaussian distribution.
Into two spatial dimensions it can be written as

δ(x − ξ) = lim
ε→0

1

2πε2 exp

(

−‖x − ξ‖2

2ε2

)

. (A.33)

From (A.21), the gradient of δ(x − ξ) with respect to ξ can be obtained as follows:

∇ξ δ(x − ξ) = lim
ε→0

x − ξ

2πε4 exp

(

−‖x − ξ‖2

2ε2

)

. (A.34)

These results are important in the of monopole and dipole theory, respectively.

A.3 Integral Theorems

Let Ω be an open and bounded domain in Rd , d ≥ 2, whose boundary is denoted
by ∂Ω . Let n denote the outward unit normal vector field on the boundary ∂Ω of
Ω . Here, we state the integral theorems without proofs and without smoothness
assumptions regarding the underlying functions and the domain of integration as
well. Then, given scalar ϕ, vector v, and tensor T fields, the following integral
identities hold true:

∫

Ω

∇ϕ =
∫

∂Ω

ϕ n , (A.35)

∫

Ω

∇v =
∫

∂Ω

v ⊗ n , (A.36)

∫

Ω

div(v) =
∫

∂Ω

v · n , (A.37)

∫

Ω

div(T ) =
∫

∂Ω

T n . (A.38)

Divergence theorems are deep mathematical results central to the derivations
presented in this monograph. In particular, let us state the divergence theorems in
their useful forms, namely

∫

Ω

(T · ∇v + div(T ) · v) =
∫

Ω

div(T �v) =
∫

∂Ω

T n · v . (A.39)

If T = S, with S a symmetric tensor field (S = S�), then

∫

Ω

(S · ∇vs + div(S) · v) =
∫

Ω

div(Sv) =
∫

∂Ω

Sn · v . (A.40)
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In addition, we have

∫

Ω

(ϕdiv(v) + ∇ϕ · v) =
∫

Ω

div(ϕv) =
∫

∂Ω

ϕ v · n . (A.41)

If v = ∇φ, with φ a scalar field, then

∫

Ω

(ϕΔφ + ∇ϕ · ∇φ) =
∫

Ω

div(ϕ∇φ) =
∫

∂Ω

ϕ∂nφ . (A.42)

Finally, an important result which appears in the context of electromagnetism is
given by the following integral theorem:

∫

Ω

(curl(u) · v − u · curl(v)) =
∫

∂Ω

n × u · v . (A.43)

A.4 Some Useful Decompositions

Every tensor A can be decomposed uniquely as the sum of a symmetric tensor S

and a skew tensor W , namely

A = S + W , (A.44)

where

S = 1

2

(

A + A�) and W = 1

2

(

A − A�) . (A.45)

We call S the symmetric part of A and W the skew part of A. Therefore, there is a
one-to-one correspondence between vectors and skew tensors

Wa = w × a, with w1 = W32 , w2 = W13 , w3 = W21 , (A.46)

where W = −W� is a skew or anti-symmetric second order tensor. In addition,

[(a ⊗ b) − (b ⊗ a)] c = − [(a · c)b − (b · c)a] = −(a × b) × c . (A.47)

Finally, we have:

• If S is symmetric,

S · A = S · A� = S ·
[

1

2
(A + A�)

]

. (A.48)
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• If W is skew,

W · A = −W · A� = W ·
[

1

2
(A − A�)

]

. (A.49)

• If S is symmetric and W is skew,

S · W = 0 . (A.50)

• If A · B = 0, for every B, then A = 0.
• If A · S = 0, for every S, then A is skew.
• If A · W = 0, for every W , then A is symmetric.

Into two spatial dimensions R2, a symmetric second order tensor S, namely S =
S�, admits the following spectral decomposition

S = s1(e1 ⊗ e1) + s2(e2 ⊗ e2) , (A.51)

where e1 and e2 are the eigenvectors of S, whereas s1 and s2 are the associated
eigenvalues given by

s1,2 = 1

2

(

tr S ±
√

2SD · SD
)

, (A.52)

with SD standing for the deviatory part of the tensor S, that is

SD = S − 1

2
(tr S)I . (A.53)

Let us consider a two-dimensional open and bounded domain Ω ⊂ R2, whose
boundary is denoted by ∂Ω . Let us also introduce two orthonormal vectors n and
τ , such that n · n = 1, τ · τ = 1 and n · τ = 0, defined on the boundary ∂Ω , as
shown in Fig. A.1. Then, we have that a vector a defined on ∂Ω can be decomposed
as follows:

Fig. A.1 Curvilinear
coordinate system on ∂Ω
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a = (n ⊗ n)a + (τ ⊗ τ)a = (a · n)n + (a · τ)τ = ann + aτ τ , (A.54)

where an := a · n and aτ := a · τ are the normal and tangential components of the
vector a, respectively. In other words, aτ is the projection of a into the tangential
plane to Ω and an is the projection of a orthogonal to the referred tangent plane. In
addition, the identity tensor I can be written in the basis (n, τ ), namely

I = n ⊗ n + τ ⊗ τ . (A.55)

Thus, the projections operators into the tangential and normal directions can
respectively be defined as

(I − n ⊗ n)a = a − (a · n)n = aτ τ , (A.56)

(I − τ ⊗ τ)a = a − (a · τ)τ = ann . (A.57)

Let A be a second order tensor. Then, A can be decomposed in the basis (n, τ ) in
the following form:

A = Ann(n ⊗ n) + Anτ (n ⊗ τ) + Aτn(τ ⊗ n) + Aττ (τ ⊗ τ) , (A.58)

whose components Ann, Anτ , Aτn, and Aττ are defined as

An = [Ann(n ⊗ n) + Anτ (n ⊗ τ) + Aτn(τ ⊗ n) + Aττ (τ ⊗ τ)
]

n

= Ann(n · n)n + Anτ (τ · n)n + Aτn(n · n)τ + Aττ (τ · n)τ

= Annn + Aτnτ ⇒ Ann = n · An and Aτn = τ · An , (A.59)

Aτ = [Ann(n ⊗ n) + Anτ (n ⊗ τ) + Aτn(τ ⊗ n) + Aττ (τ ⊗ τ)
]

τ

= Ann(n · τ)n + Anτ (τ · τ)n + Aτn(n · τ)τ + Aττ (τ · τ)τ

= Anτn + Aττ τ ⇒ Anτ = n · Aτ and Aττ = τ · Aτ . (A.60)

In the same way, we have that the gradient of a scalar field ∇ϕ defined on ∂Ω can
be decomposed as

∇ϕ = (∇ϕ · n)n + (∇ϕ · τ)τ

= (∂nϕ)n + (∂τ ϕ)τ ⇒ ∂nϕ = ∇ϕ · n and ∂τϕ = ∇ϕ · τ , (A.61)

where ∂nϕ and ∂τϕ are the normal and tangential derivatives of the scalar field ϕ. In
addition, the gradient of a vector field ∇u defined on ∂Ω can be decomposed as

∇u = ∂nu
n(n ⊗ n) + ∂τu

n(n ⊗ τ) + ∂nu
τ (τ ⊗ n) + ∂τu

τ (τ ⊗ τ) , (A.62)
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whose components ∂nu
n, ∂τu

n, ∂nu
τ , and ∂τu

τ are defined as

(∇u)n = [∂nu
n(n ⊗ n) + ∂τu

n(n ⊗ τ) + ∂nu
τ (τ ⊗ n) + ∂τu

τ (τ ⊗ τ)
]

n

= (∂nu
n)n + (∂nu

τ )τ ⇒ ∂nu
n = n · (∇u)n and ∂nu

τ = τ · (∇u)n,

(A.63)

(∇u)τ = [∂nu
n(n ⊗ n) + ∂τu

n(n ⊗ τ) + ∂nu
τ (τ ⊗ n) + ∂τu

τ (τ ⊗ τ)
]

τ

= (∂τ u
n)n + (∂τ u

τ )τ ⇒ ∂τu
n = n · (∇u)τ and ∂τu

τ = τ · (∇u)τ.

(A.64)

A.5 Polar and Spherical Coordinate Systems

Let us consider a polar coordinate system of the form (r, θ) with center at the origin
O , as shown in Fig. A.2. The oriented basis defining this system is denoted by er

and eθ , with er · eθ = 0 and ‖er‖ = ‖eθ‖ = 1. Thus, we have the representations
below.

• Gradient of a scalar field ϕ:

∇ϕ = ∂ϕ

∂r
er + 1

r

∂ϕ

∂θ
eθ . (A.65)

• Laplacian of a scalar field ϕ:

Δϕ = ∂2ϕ

∂r2 + 1

r

∂ϕ

∂r
+ 1

r2

∂2ϕ

∂θ2 . (A.66)

• Gradient of a vector field v:

∇v = ∂vr

∂r
er ⊗ er + 1

r

(

∂vr

∂θ
− vθ

)

er ⊗ eθ

+∂vθ

∂r
eθ ⊗ er + 1

r

(

∂vθ

∂θ
+ vr

)

eθ ⊗ eθ . (A.67)

• Divergence of a vector field v:

div(v) = ∂vr

∂r
+ 1

r

(

∂vθ

∂θ
+ vr

)

. (A.68)
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Fig. A.2 Polar coordinate
system (r, θ)

• Divergence of a second order tensor field T :

div(T ) =
(

∂T rr

∂r
+ 1

r

∂T θr

∂θ
+ T rr − T θθ

r

)

er

+
(

∂T rθ

∂r
+ 1

r

∂T θθ

∂θ
+ T rθ + T θr

r

)

eθ . (A.69)

• Transformation of a vector v from Cartesian to polar:

(

vr

vθ

)

=
(

cos θ sin θ

− sin θ cos θ

)(

v1

v2

)

, (A.70)

where vi = v · ei are the components of vector v in the Cartesian coordinate
system.

• Transformation of a second order tensor T from Cartesian to polar:

(

T rr T rθ

T θr T θθ

)

=
(

cos θ sin θ

− sin θ cos θ

)� (
T 11 T 12

T 21 T 22

)(

cos θ sin θ

− sin θ cos θ

)

, (A.71)

where T ij = ei · T ej are the components of tensor T in the Cartesian coordinate
system.

Let us consider a ball Bρ(O) ⊂ R2 of radius ρ and center at the origin O ,
whose boundary is denoted by ∂Bρ . Then, the integral of a scalar field ϕ over Bρ is
evaluated as

∫

Bρ

ϕ =
∫ 2π

0

(∫ ρ

0
ϕ(r, θ)rdr

)

dθ . (A.72)

The integral of ϕ over the boundary ∂Bρ is written as

∫

∂Bρ

ϕ = ρ

∫ 2π

0
ϕ(ρ, θ) dθ . (A.73)
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Fig. A.3 Spherical
coordinate system (r, θ, φ)

Finally, a general solution for the Laplace equation into two spatial dimensions
can be written in Fourier series as follows:

ϕ(r, θ) = A + B log r +
∞
∑

k=1

[

(Akr
k + Bkr

−k) sin kθ + (Ckr
k + Dkr

−k) cos kθ
]

.

(A.74)

Let us now consider a spherical coordinate system centered at the origin O given
by (r, θ, φ), as shown in Fig. A.3. We define an oriented basis for the system of the
form er , eθ and eφ , with er ·eθ = er ·eφ = eθ ·eφ = 0 and ‖er‖ = ‖eθ‖ = ‖eφ‖ = 1.
By taking into account this system, we have the representations below.

• Gradient of a scalar field ϕ:

∇ϕ = ∂ϕ

∂r
er + 1

r

∂ϕ

∂θ
eθ + 1

r sin θ

∂ϕ

∂φ
eφ . (A.75)

• Laplacian of a scalar field ϕ:

Δϕ = 1

r2

∂

∂r

(

r2 ∂ϕ

∂r

)

+ 1

r2 sin θ

∂

∂θ

(

sin θ
∂ϕ

∂θ

)

+ 1

r2 sin2 θ

∂2ϕ

∂φ2 . (A.76)

• Transformation of a vector v from Cartesian to spherical:

⎛

⎝

vr

vθ

vφ

⎞

⎠ =
⎛

⎝

sin θ cos φ sin θ sin φ cos θ

cos θ cos φ cos θ sin φ − sin θ

− sin φ cos φ 0

⎞

⎠

⎛

⎝

v1

v2

v3

⎞

⎠ , (A.77)

where vi = v · ei are the components of vector v in the Cartesian coordinate
system.
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Let us consider a ball Bρ(O) ⊂ R3 of radius ρ and center at the origin O , with
boundary denoted by ∂Bρ . Then, the integral of a scalar field ϕ over Bρ is evaluated
as

∫

Bρ

ϕ =
∫ 2π

0

(∫ π

0

(∫ ρ

0
ϕ(r, θ, φ)r2dr

)

sin θdθ

)

dφ . (A.78)

The integral of ϕ over the boundary ∂Bρ is given by

∫

∂Bρ

ϕ = ρ2
∫ 2π

0

(∫ π

0
ϕ(ρ, θ, φ) sin θdθ

)

dφ . (A.79)
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