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Abstract. The importance of energy systems and their role in economics and
politics is not hidden for anyone. This issue is not only important for the
advanced industrialized countries, which are major energy consumers but is also
essential for oil-rich countries. In addition to the nature of these fuels, which
contains polluting substances, the issue of their ending up has aggravated the
growing concern. Biofuels can be used in different fields for energy production
like electricity production, power production, or for transportation. Various
scenarios have been written about the estimated biofuels from different sources
in the future energy system. The availability of biofuels for the electricity
market, heating, and liquid fuels is critical. Accordingly, the need for handling,
modeling, decision making, and forecasting for biofuels can be of utmost
importance. Recently, machine learning (ML) and deep learning (DL) tech-
niques have been accessible in modeling, optimizing, and handling biodiesel
production, consumption, and environmental impacts. The main aim of this
study is to review and evaluate ML and DL techniques and their applications in
handling biofuels production, consumption, and environmental impacts, both for
modeling and optimization purposes. Hybrid and ensemble ML methods, as
well as DL methods, have found to provide higher performance and accuracy.
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Nomenclatures

ANN Artificial neural network
ELM Extreme learning machine
ML Machine learning
SVM Support vector machine
WNN Wavelet neural networks
DL Deep learning
ARIMA Autoregressive integrated moving average
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FFNN Feed-forward neural networks
MLP Multi layered perceptron
DT Decision tree
RSM Response surface methodology
BPNN Back propagation neural network
CM Centroid mean
ANFIS Adaptive neuro fuzzy inference system
ANP Analytic network process
RF Random forest
NRTL Non-random two-liquid
RNN Recurrent neural network
PLS Partial least squares
DA Discriminant analysis
PCA Principal component analysis
LDA Linear discriminant analysis
SVR Support vector regression
LS Least-squares
SB Sparse Bayesian
MCDM Multi criteria decision making
GP Genetic programming
MLR Multi linear regression
SWARA Step-wise Weight Assessment Ratio Analysis
MOORA Multi Objective Optimization by Ratio Analysis

1 Introduction

The global energy systems are highly dependent on fossil fuels [1, 2]. The importance
of energy systems and their role in economics and politics is not hidden for anyone [3,
4]. This issue is not only important for the advanced industrialized countries, which are
major energy consumers but is also essential for oil-rich countries [5]. Because
countries have to understand the fact that fossil fuel resources are limited resources. In
addition to the nature of these fuels, which contains polluting substances, the issue of
their ending up has aggravated the growing concern. Therefore owing to depleting non-
renewable energy resources, pollution, and environmental damage, the world is turning
towards renewable energy resources [6]. Fossil fuels remain as one of the major energy
resources worldwide [7]. Heavy dependence on fossil fuels has caused an energy crisis.
Using fossil fuel for economic activities leads to GHG emissions from almost all
regions of the world [8]. Renewable resources like biofuels make an attractive con-
tribution towards meeting the growing demand for energy supply [9–11]. Owing to
environmental concerns and the rise and fluctuations in the fossil fuel resources,
worldwide interests have moved towards biodiesel, a clean and renewable alternative
for fossil fuels [12, 13]. Biofuels can be used in different fields for energy production
like electricity production, power production, or transportation [14]. The economy of
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biofuels and related refineries will be shaped by policies that have shaped the economy
of hydrocarbon and its refineries over the last century [15–18]. Due to the environ-
mental benefits of biofuels, their contribution to the automotive fuel market is
increasing sharply. Various scenarios have been written about the estimated biofuels
from different sources in the future energy system. The availability of biofuels for the
electricity market, heating, and liquid fuels is very important. Therefore the need for
handling, modeling, decision making, and forecasting for biofuels can be one of the
main challenges for scientists [19–22]. Figure 1 shows the research trend in literature
considering biofuels. Note that, since 2015 the research in this realm has stopped been
progressing.

Recently, machine learning and deep learning techniques have been accessible in
modeling, optimizing and handling the biodiesel production, consumption, and its
environmental impacts by considering the effect of parameters on biofuel production
yield because the production of the desired product needs an effective use of experi-
mental model [23]. These methods provide an independent modeling approach to the
nature of the process or its mathematical models and are able to model the process with
high accuracy [9, 11, 24, 25].

The primary purpose of this study is to present a review in a specific field to find the
strengths and weaknesses of the field and to provide a complete background. The main
aim of this study is to evaluate the ML and DL techniques developed for handling
biofuels production, consumption, and environmental impacts, both for modeling and
optimization purposes. The study initially explains and defines different biofuels. Then
provides a general survey about the characteristics and the basis of the developed
studies. In the next stage, explains the state of art of the DL and ML techniques
employed in the field. Finally, concludes the results and achievements and proposes the
strengths and weakness of different DL and ML techniques.

Fig. 1. The research trend in literature considering biofuels research (source: web of science)
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2 ML and DL Methods in Biofuels Research

The application of ML and DL methods in various scientific and engineering domains
have been previously investigated [26–40]. Generally, the ML methods are reported to
be further advancing to through ensemble and hybrid techniques [40–77]. On the other
hand, the DL methods are still considered as a new phenomenon and are slowly
progressing.

In this section, the most popular ML and DL methods in biofuels research are
identified and reviewed. During the past decade, the application of these intelligent
algorithms has been dramatically increases in biofuels research. Figure 2 represents the
increasing demand and popularity of using DL and ML in handling biofuels. It is
apparent that since 2010, the use of DL and ML has been increasing until the year
2017. Since then, it starts to decline. The reason can be found in the overall decrease in
the number of literature in biofuels research. We made three classifications of the
methods, i.e., neural networks-based methods, single ML methods, and a separate
group for deep learning, ensembles, and hybrid models.

2.1 Neural Networks-Based ML Models for Biofuels Research

This section includes the application of artificial neural networks (ANNs), Multilayer
perceptron (MLP), Extreme learning machines (ELM), feedforward neural networks
(FFNNs) and Backpropagation ANNs in biofuels research (Table 1).

Fig. 2. Demand and popularity of using DL and ML in biofuels research (source: web of
science)
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Reynel-Ávila et al. [59] developed an innovative hybrid non-random two-liquid-
ANN method in order to increase the estimation performance of the liquid-liquid
equilibria, which is used to simulate the biofuel process. Non-random two-liquid
method is considered as a thermodynamic method to be used in a multi-component
system. Therefore, hybridization of this method with the ANN method can improve the
system accuracy for the regression and fitting proposes. Evaluation of the proposed
method has been performed using RMSD factor for measuring the agreement between
target and estimated values. This method as a flexible method, could successfully cope
with the estimation task as well as increasing the accuracy of estimation.

Concu et al. [9] developed a study in order to employ different machine learning
techniques for the estimation of protein function through a conversion process as a type
of enzyme for considering in bioethanol production. The developed machine learning
techniques included the single method containing different architectures of MLP
methodology. Results have been evaluated using accuracy, sensitivity, and specificity.
Methods have a different number of neurons in the hidden layer. The accuracy of the
proposed MLP method was acceptable, as well as its higher sustainability. Camberos
et al. [60] developed a recurrent neural network method in order to estimate un-
measurable variables during hydrogen and methane production through the anaerobic
digestion process. The reason was the ability of the recurrent ANNs method in pre-
dicting the behavior of unknown and sophisticated systems. The method was a single
method which benefited the external disturbances as well as the parameter uncertain-
ties. The results have been evaluated using mean square error. Based on results, the
proposed RNN method could successfully provide a high performance in confrontation

Table 1. Top studies developed by ANN-based methods in biofuel

References Contribution Method Application
domains

[59] To optimize the prediction of liquid-liquid
equilibria which is employed in the simulation of
the biofuel process by the use of a novel non-
random two-liquid-ANN method

NRTL-
ANN

– NRTL
– Biofuels

[9] To develop different types of MLP networks for
the estimation of enzyme function

MLP – Enzyme
function

– Machine
learning

[60] To develop the ANN method for the prediction of
un-measurable variables during hydrogen and
methane production through the anaerobic
digestion process

RNN – Biofuels
– RNN

[61] To develop a comprehensive survey about the use
of ANN in the optimization and estimation of
variables in the biofuels production process

ANN – ANN
– Biofuel
production

[25] To employ ANN methods for the prediction of the
cetane number of biofuel samples in the presence
of furanic additives

ANN – Machine
learning

– Biofuels
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with the complex system. Also, the method provided a high sustainability by a high
stability in the presence of the external distributions.

Sewsynker-Sukai [61] did a comprehensive survey about the application of ANN,
as one of the most popular and applied machine learning methods, in the field of
biofuels for optimization and estimation purposes. This study also presents a brief
explanation of the comparison of the performance of ANN with another method and
discussing the architectures of the developed ANN methods. Comparisons were per-
formed using the coefficient of determination as to the performance factor. Based on
results, developing ANN methods in this field provides a high production performance
as well as reducing the time and the cost consuming. Reduction of the time and cost in
the biofuels production and consuming processes also increases the sustainability and
reliability of the system. Therefore, ANN can be a useful tool for handling biofuels and
for managing the production and consuming processes for policymakers in the future
researches. Kessler et al. [25] presented a study to estimate the cetane number of
biofuel samples in the presence of furanic additives. Results have been evaluated using
RMSE values. ANN as a predictive method could be successfully applied for the
prediction of cetane number with a low error.

Different applications of ANN tools in different fields of biofuels have been already
discussed. However, there is a need for metrics and different criteria for the evaluation
of the performance of each method. Table 2 present a brief comparison of the accuracy,
reliability, and sustainability of methods developed for handling biofuels using dif-
ferent types of ANN methods. These factors have been prepared and presented based
on different aspects which have been concluded by the reviewed studies.

2.2 Further Single ML Methods for Biofuels Research

This section includes support vector machines (SVM), decision trees (DTs) regression
tree (RTs), Bayesian, k-means, and k-nearest neighbors (Table 3).

Table 2. The comparison results of ANN-based methods for biofuels handling

Method Application Accuracy Reliability Sustainability References

Hybrid NRTL-ANN Estimation ++ ++ ++ [59]
MLP Estimation ++ + + [9]
RNN Estimation +++ +++ +++ [60]
ANN Estimation ++ + + [61]
ANN Optimization ++ ++ + [61]
ANN Estimation ++ + + [25]
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Mancini et al. [62] developed three methods including partial least squares dis-
criminant analysis, SVM, and principal component analysis linear discriminant analysis
for the classification of biofuels. Based on results, all the methods could successfully
cop with the classification task but SVM has the best classification performance. Feng
et al. [63] developed non-destructive prediction methods for the estimation of the
quality of the biofuel pellet using partial least-squares regression and a least-squares
support vector machine as non-destructive diagnosis methods to be compound with
successive projections algorithm. The performance of the methods have been compared
using the determination coefficient and root mean square error values. Based on results,
the best method was identified to be SPA-LSSVM method as a hybrid diagnosis
method. This method employs the advantages of both LSSVM and SPA methods,
consequently.

Faizollahzadeh et al. [64] developed a Sugeno based fuzzy method for the pre-
diction of biodiesel fuel cetane number in the presence of Carbon number, Double
bond, Saponification number, and Iodine value. The performance of the developed
model has been calculated using the determination coefficient, and root mean square
error. The developed model has high accuracy in both training and testing steps, but
one of the most critical factors for this method was its lower processing time and its
user-friendly application. These factors increase the method of sustainability factor to
be employed in future researches. Wong et al. [65] developed a novel hybrid sparse
Bayesian-based extreme learning machine technique for the estimation of the engine
performance fuelled by biofuel as well as the calibration of the ECU. The proposed

Table 3. Top studies developed by SVM based methods in biofuel

References Contribution Method Application domains

[62] To develop PLS‐DA, SVM and PCA-
LDA methods for the classification of
biofuels

PLS‐DA,
SVM, and
PCA-LDA

– Classification
– SVM

[63] To develop prediction models for the
estimation of biofuels pellet quality using
LSSVM and PLSR methods as non-
destructive methods

LSSVM and
PLSR

– LSSVM
– PLSR

[64] To develop a fuzzy method for the
prediction of a cetane number of
biodiesel fuel samples

Fuzzy – Fuzzy
– Cetane number

[65] To develop a hybrid modeling method
for the estimation of the engine
performance fuelled by biofuel

SBELM – Hybrid SBELM
– Engine performance

[66] To employ hybrid machine learning
techniques for the estimation of biofuel
production yield and optimization
production process

ELM-RSM
and SVM-
RSM

– Biofuel production
– Hybrid machine
learning
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method has been also compared with the performance of ELM, Bayesian ELM and
back propagation neural network in terms of mean absolute percentage error and
standard deviation. The proposed hybrid method has an acceptable accuracy in both
training and testing steps compared with that for the ELM, BPNN, and BELM
methods. The proposed method also has a higher performance in the estimation of
engine emissions.

Faizollahzadeh et al. [66] developed an innovative hybrid ELM-RSM and
EVM RSM methods for the prediction of biofuel production yield and optimization of
the production process for accessing a higher production yield. The developed methods
have been compared with SVM, ANN and ANFIS methods in term of performance
factors for the prediction phase. Based on results, hybrid ELM-RSM methods could
provide higher performance by increasing the production yield compared with that of
the other methods. This study also indicates the importance and strength of the hybrid
method over single methods. In fact, this method benefits the highest prediction
capability of ELM method in parallel with the optimization capability of the RSM.
Therefore this study highlights the highest performance of hybrid techniques in com-
parison with single ones. Table 4 presents the comparison results of SVM based
methods for biofuels handling.

2.3 Deep Learning, Machine Learning, Ensembles, and Hybrid Models
for Biofuels Research

In this section, the more sophisticated ML methods in addition to DL are presented.
Here may include neuro-fuzzy models, various DL models, and ensemble MLs
(Table 5).

Table 4. The comparison results of SVM based methods for biofuels handling

Method Application Accuracy Reliability Sustainability References

SVM Classification ++ ++ ++ [62]
PCA-LDA Classification ++ + + [62]
PLS-DA Classification + + + [62]
SPA-LSSVM Classification +++ +++ ++ [63]
Fuzzy Estimation +++ +++ ++ [64]
SBELM Estimation +++ +++ +++ [65]
ELM Estimation + + + [65]
BELM Estimation ++ + + [65]
ELM-RSM Optimization +++ +++ +++ [66]
SVM-RSM Optimization +++ ++ ++ [66]
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Erdogan et al. [67] developed a novel multi-criteria decision-making system for
choosing the best biodiesel fuel for a compression ignition engine in terms of engine
performance and combustion characteristics. Based on results, the hybrid Step-wise
Weight Assessment Ratio Analysis- Multi-Objective Optimization by Ratio Analysis
method and hybrid Analytic network process- Multi-Objective Optimization by Ratio
Analysis provided the best performance for choosing the best fuel sample.

Deo et al. [68] developed different hybrid and single machine learning techniques
for the prediction of sub‐tropical photo-synthetically active radiation. The developed
methods included ANFIS integrated with centroid mean, random forest, genetic pro-
gramming, M5Tree, and multiple linear regression. Methods have been compared in
terms of mean absolute error and root mean square error. Results indicated that the
hybrid ANFIS-CM followed by GP methods could provide the lowest error as well as
the highest sustainability.

Mosavi et al. [22] developed a comprehensive survey about the application of
machine learning methods, including single and hybrid methods in the energy systems.
The study has been developed in order to present a comprehensive state of the art of
machine learning and to discuss their advantage and disadvantages, in detail. Methods
have been compared in terms of root mean square error, determination coefficient,
correlation coefficient, and mean absolute percentage error. Based on results, hybrid
machine learning have the best performance for prediction and optimization, which can
help policymakers for developing accurate energy management systems (Table 6).

Table 5. Top studies developed by machine and deep learning-based methods in biofuel

References Contribution Method Research domain

[67] To develop a novel Multi-
criteria decision making for
improving the energy
management system and
increasing the energy
efficiency

MCDM – Decision making
– Energy management

[68] To develop different methods
including hybrid and single
methods for the prediction of
short term energy parameters

ANFIS‐CM,
Genetic
programming,
M5Tree, RF and
MLR

– Hybrid machine
learning

– Energy systems

[22] To develop a comprehensive
survey about the application
of machine learning and deep
learning methods in energy
systems

Machine learning
and deep learning
methods

– Hybrid machine
learning

– Single machine
learning

– Energy systems
– Deep learning
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3 Conclusion

This paper studies the applications and progress of ML and DL methods biofuels
research. This study presents an in-depth survey and analysis of the ‘hybrid model’ and
ensemble models that integrate two or more techniques. Survey shows that the single
ML methods except for ANNs, have not been popular. However, the ensemble and
hybrid models have emerged and continue to advance for higher accuracy and better
performance. DL techniques also will bring a tremendous amount of intelligence for
better prediction models. In general, modeling, forecasting, and decision making about
the future of biofuels help for developing sustainable energy resources, which are low-
cost resources with low environmental impacts. ML and DL techniques have been
successfully employed in all fields of sciences and have improved the process. The
various combinations of the hybrid and ensemble methods are found to be the most
effective in handling biofuels.

Acknowledgments. This publication has been supported by the Project: “Support of research
and development activities of the J. Selye University in the field of Digital Slovakia and creative
industry” of the Research & Innovation Operational Programme (ITMS code: NFP313010T504)
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