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Abstract. Imbalanced learning is a traditional problem in machine
learning and widely occurs in many applications. Most of the methods
apply simple geometric transformation for data augment to imbalanced
datasets. Due to those methods learn from local information, they might
generate noisy samples in the dataset with high dimension and special
complexity. To solve the problem, we propose an improved Generative
Adversarial Networks with modification function (GAN-MF) to approxi-
mate the true distribution of the minority class of the dataset. The model
could generate data from an overall perspective to overcome the limita-
tion of the simple geometric transformation. The performance of GAN-
MF is compared against multiple standard oversampling algorithms on
several imbalanced learning tasks. Experiments demonstrate that the
model has an improvement in data augment for imbalanced learning.
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1 Introduction

Learning from the imbalanced dataset is challenging and meaningful in many
common areas including fraud detection, healthcare and medical diagnosis and
many other applications. The reason why the performance of classifier drops
sharply when dataset is imbalanced is that most standard algorithms assume or
expect that the class distribution is balanced. So that, features of the minority
class might be missed or neglected.

Imbalanced learning refers to the dataset in which one or several classes are
outnumbered than the others. The gap in number of instances among the classes
is defined as the imbalanced ratio (IR) [7].
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Devoted to improving the performance of imbalanced learning, different
methods have been proposed, those could be summarized into several categories.
The first is from the data perspective, focusing on reinforcing the learning on
the minority by the means of sampling and feature selection [2]. Besides, syn-
thetic sampling for data augment is also widely used. The second is to encourage
the classifiers to minimize the cost errors by introduced cost-sensitive, ensemble
learning and kernel-based methods [3,9]. The third is to restructure the classifier
to suit the task according to the background of the applications. For instance,
the algorithm of transfer learning and genetic algorithm are integrated in imbal-
anced learning [1].

However, with the rise in data complexity, methods mentioned above might
be insufficient, especially in terms of data augment. Inspired by the fact that
Deep Generative Models (DGMs) can synthesize new samples based on the dis-
tribution captured from the overall class rather than local information [8]. We
try to synthesize sampling based on Generative Adversarial Networks (GAN)
for data augment to improve the imbalanced binary classification. Whereas, the
vanilla GAN model is restricted to continuous derivable variables for the gradient
policy and the instability in training for model collapse and vanishing gradient.

To settle the matters, we proposed a novel GAN model (GAN-MF) based
on a modification function f (x) to approximate the true data distribution of the
minority class. With the help of the modification function, the numeric discrete
detests in imbalanced learning are converted into datasets with approximate
Gaussian distribution that could be accepted by the GAN model and be trained
in a stable way. The performance of the model is compared against multiple
standard over-sampling algorithms and another generative model of Variational
Auto-Encoder (VAE) based on 6 classifies. Experiments show GAN-MF has
improved the results in imbalanced learning tasks.

The sections in the paper are organized as follows. In Sect. 2, an overview
of related previous works regarding to GAN models and imbalanced learning
are described. In Sect. 3, the model of the GAN-MF and application to the
imbalanced learning is stated. In Sect. 4, the experiments and the results are
addressed in detail. Finally, conclusions are provided in Sect. 5.

2 Related Works

Because of the simplicity and effectiveness of the algorithm, algorithms based
on data augment are most widely used [6]. They offer additional minority-class
instances derived by applying simple geometric transformations for the training.
As the most classic one, Synthetic Minority Over-sampling Technique (SMOTE)
provides a mechanism in creating artificial data based on the feature space sim-
ilarities among the existing minority in the d-dimension dataspace X. The new
instance xnew is created by (xi +λ(xj −xi)), where xi,j is the minority instance
in X, and xj is selected considering to the k-nearest neighbor for xi. Therefore,
xnew is created in the vector between xi,j , located in a random percent of way
from xi,j as λ ∈ [0, 1].
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However, SMOTE has a vague understanding of the boundary and might
generate noisy samples. To modify the algorithm, several rules including Edited
Nearest Neighbor, balanced and weight level have been introduced into the algo-
rithm which is summarized in [5]. Since they learn from local information, they
might be ineffective in dealing with data in high dimensions.

DMGs have been gradually introduced to data augment for the excellent
capability to represent multidimensional and complex data. Neural augment is
firstly proposed in imbalanced picture classification in [11]. After that, Balanc-
ing GAN (BAGAN) [10] goes further more by taking attention mechanism to
the training. The method based on Conditional generative adversarial networks
(CGAN) [4] has also been addressed in learning numeric imbalanced data where
additional space Y , as the label of the instance, is introduced to extra valuable
information from latent space.

Although many efforts have been made, little research has been conducted in
using GANs in learning the numerical variables dataset, and there is hardly no
evidence suggests whether it is effective for GANs to generate discrete skewed
data in dealing with imbalance learning. Meanwhile, it is unknown whether
GANs have a shortage of capacity and training time when compared with stan-
dard over-sampling methods.

3 GAN-MF Model for Imbalanced Learning

3.1 The GAN-MF Model

The aim of generative model is to learn the data probability distribution pdata(x)
over the real space Rd. Although GANs have shown excellent ability to capture
the distribution in many applications, the vanilla GAN model has been proved
to be unsuitable to deal with discrete data for the model has hardly no gradient
in generation process [12]. In addition, the model has a problem in training for
model collapse and gradient vanish.

Thus, we introduced a modification function to figure out the limitation
of the GAN model. The modification function f(x) serves the role to convert
problems of discrete data into an approximate continuous variable one that can
be served by the GAN model. In other words, the d-dimensional real space is Rd

is mapped to a special vector space Rd′
where numerical differences in features

are relatively smooth and representative features of the dataset are preserved.
As the result, the two-player minimax game between the discriminator D

and the generator G is improved. As G acts the role of producing fake data with
striking resemblance from the latent variable z, D tells the data from sampled
from the true data distribution pdata(f(x)) apart from those forged by G, where
z is defined on the latent space Z.

The value function of the GAN-MF model is described in (1), where E()
represents the calculated expectation. From the view of D, it will maximize the
outs if given data from real data and minimize the output if given data from
G. Thus, D is optimized followed as log(1 − D(G(z)). At the same time, G tries
the best to maximize the output of G when the fake is presented to D. G is
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optimized by log D(f(x)). Finally, the generator’s distribution pg(x) approaches
to pdata(f(x)). The distribution of discrete dataset is related to G(z, θ), where
θ is tuning parameters of the G.

min
G

max
D

V = Ex∼pdata(f(x))(log D(f(x))) + Ez∼pz(Z)[log(1 − D(G(z)))] (1)

3.2 Modification Function

With the help of modification function, the model has the ability to approximate
the data distribution of the minority and generate augmented datasets that
can present characteristics in a much smaller size than the simple geometric
transformation.

Jensen-Shannon divergence and Wasserstein distance are widely used as the
way to measure the difference in data distribution and optimizer for the network.
We defined a vector x = (x1, x2, x3, ...xn) as a discrete multivariate random vari-
able where values of xi are from fractions and integers. When we try to evaluate
the Wasserstein distance between two probability distributions Pa and Pb, where
P(a,b) is over the set of values for x, we find that it is a Linear Program (LP)
problem. Therefore, the runtime reflects exponential growth with the increase in
dimensions of data and variety of variables.

W (Pa, Pb) = minγ∈∏
(Pa,Pb)

∑

i

∑

j

γ(xi, xj)d(xi, xj) (2)

where d(xi, xj) is the distance between xi, xj and
∏

(Pa, Pb) is defined as the set
of joint probability distribution γ(xi, xj) whose marginals are Pa and Pb.

The same problem also occurs in the JSD which is used in most GAN mod-
els. As a consequence, it is clear that learning directly from difference in discrete
mathematical distribution is not easy. Since the fact that it is difficult to mea-
sure the difference in discrete data distribution, the modification f(x) become
significant to GAN-MF. The modification we proposed is shown in (3), where μi

is the mean of the feature xi is and σi is the standard deviation of xi.

max(0,
xi − μi

σi
) (3)

Suppose that the networks is defined as U = Wx + b, Z = F (U), where F ()
is the activation function and W , b is the vector of weights and bias. When the
modification is worked to the algorithm, the networks is transformed into (4):

U(f(x)) = W [max(0,
xi − μi

σi
)] + b (4)

Therefore, if xi > μi, U(f(x)) = W (xi−μi

σi
) + b. All the features has been

transformed to an approximate Gaussian distribution N(0, 1) which could be
accepted by the GAN model and positive to the convergence of the networks. If
xi < μi, xi would be 0 in x. The vector would become sparse and the features
would be more independent.
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Fig. 1. GAN-MF for imbalanced learning. M refers to the minority of the dataset, G
′

is the augmented dataset generated by G∗ for training. (Color figure online)

4 Experiments and Results

The framework of the GAN-MF Model in imbalanced learning we proposed is
shown in Fig. 1.

(1) k-fold cross validation is applied with k = 5, the dataset is factitiously divided
into 5 parts. Each part has approximately equal instances for both classes.

(2) All the hyperparameters of classifiers are performed with maximum accuracy
under original dataset and used in subsequent experiments.

(3) The minority examples M colored in blue in Fig. 1 are isolated for training
the GAN model G∗ with tuning parameters.

(4) G∗ as a generative model could generate artificial dataset G
′

by receiving
random noise as input. Hence, the dataset used for training the classifies is
composed of G

′
(colored green in Fig. 1) and sampled from real ones in M .

In this work, we rebalanced the dataset to the equal IR to the traditional
methods. It made sure that classifies could learn unbrokenly. We doubled or
tripled the number of minority classes in training for the methods based on deep
generative models since they learn from an overall view.

Datasets. Several datasets from the Machine Learning Repository UCI and a
credit card detection dataset were chosen for experiments. Aiming to objectively
test the performance of the GAN-MF model, by the means of the under-sampling
and random-sampling, the datasets from UCI were generated into additional
dataset according to IR of 4, 10 on purpose. This procedure was applied only
when the instances of the minority in the sub-dataset is no less than 5. Table 1
shows the datasets in detail. Values separated by comma in the table cells are
related to the same dataset over original status and different IR in 4 and 10.

Architecture of the GAN-MF Model. In this work, both G and D used
a module of multilayer perceptron with one single hidden layer. No convolu-
tion layers was need. Binary cross-entropy was served as the loss function. Relu
was selected as the activation function in the output layer for G when Sigmoid
was used in D. As Adam optimizer was used as the optimizer in G, Stochastic
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Table 1. Description of the datasets in detail.

Dataset Features Majority instances Minority instances IR

Segment 16 1980,1000,1000 330,250,100 6,4,10

German 24 700,400,400 300,100,40 2.333,4,10

Pima 8 500,400,400 268,100,40 1.8656,4,10

Liver 10 416,400,400 165,100,40 2.491,4,10

Haberman 3 255,200,200 81,50,20 2.778,4,10

Ionosphere 34 255,200,200 126,50,20 1.786,4,10

Breastcancer 16 458,400,400 241,100,40 6,4,10

Credit card 29 284315 492 577.876

Gradient Descent(SGD) was chosen in D. Dropouts was used in G with a prob-
ability of 0.5. The input random noise followed a normal distribution. The other
hyperparameters of the networks are described in Table 2. The optimal range
for the numbers of epochs shoule be 5000–15000, much smaller than the one in
the picture. The batch size should be set carefully to ensure that the final num-
ber of minority class instances is sufficient for the training. No dimensionality
reduction methods were used. All samples with missing values were deleted.

Table 2. Parameters for GAN-MF model in detail. Including dimension dz, number
of hidden units for G and D, learning rate and batch size. The values in the same
cell refers to the parameters under the IR of 4 and 10. NG and ND is defined as the
number of units for hidden layer of G, D.

Dataset dz NG ND Learning rate Batch size

Segment 80,120 100,50 30,130 0.0005,0.0005 20,10

German 150,100 90,80 50,50 0.0005,0.0005 16,8

Pima 20,8 50,45 80,80 0.0005,0.0005 8,8

Liver 50,25 35,50 20,30 0.0001,0.0005 5,5

Haberman 10,10 20,20 10,15 0.0005,0.0005 10,8

Ionoshere 200,120 30,25 90,90 0.0005,0.0005 8,8

Breastcancer 70,70 90,90 30,30 0.0005,0.0005 10,10

Creditcard 200 36 100 0.0001,0.0001 10

Assessment Metric. F-measure, the geometric mean of specificity and sen-
sitivity (G-mean) and Area Under the ROC Curve (AUC) were chosen as the
assessment criteria. k-Nearest Neighbors (KNN), Logistic Regression (LR), Deci-
sion Trees (DT), AdaBoosting classifier, Nave Bayes (NB) and an ensemble learn-
ing method based on the simple voting (Vote) method were chosen as classifies.
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Furthermore, a ranking score and the Friedman test were given for more holistic
evaluation of the results. The ranking score was applied to each data augment
method for the experiments of 14 datasets under different assessment metrics and
classifiers. In the rank, the best performing method ranks 1 and the worst one
ranks 6. Besides, we defined the under-fitting as the situation that F-measure
was under 50% and G-mean was under 40%. The under-fitting methods were
set 6 in the rank. The Friedman test is a non-parametric statistical test, and
widely used to detect the difference between treatments across multiple research
attempts. The null hypothesis in the work is whether GAN-MF model is as
effective as traditional over-sampling methods for data augment in imbalanced
learning.

Results. The meaning ranking results are summarized in Fig. 2, where each
plot is related to three assessment metrics and a classifier. Each mean rank is the
result of 14 datasets based on the same classify. From a macro perspective, the
model of GAN-MF has shown the improvement in most classifiers and datasets.

With fewer training data for data augment, we observe that the GAN-
MF outperforms all other data augment methods when the voting algorithm

Fig. 2. Result for mean ranking of various data augment methods.



28 Z. Zhou et al.

Table 3. Result of Friedman test. If p < α, reject the hypothesis.

α = 0.05 KNN DT LR NB Adaboost Vote

X2
γ 6.81 3.857 5.857 4.333 9.95 4.904

p 0.235 0.570 0.320 0.502 0.077 0.427

is selected as the classifier. It is also clear that the GAN-MF has an advantage
to the metric of G-mean and AUC in more than four-fifths of cases.

The result of the Friedman test is shown in Table 3. All the p-values are
more than the given standard value and the hypothesis are all not rejected
where α = 0.05. It means that the performance of the classifies show no bias
in different methods and GAN-MF model is superior to traditional methods in
data augment for imbalanced learning.

In the terms of the vibration in the mean rank for the GAN-MF, it should
be noted that F-measure might be sick since the classifies would be favor to the
majority and mark a high score for original imbalanced data. Both GAN and
VAE have done a bad performance especially in the dataset with fewer features
and instances which result in the drop in meaning rank.

As it can be seen from Table 4, G-mean and AUC have improved appreciably
and F-measure holds the line when augmented data synthesized by GAN-MF is
used in training. Each result is the average of the cross validation. The instance of

Table 4. Results of credit card fraud detection.

Metric Methods None Smote Adasyn SmoteEnn VAE GAN-MF

F-measure KNN 0.99962 0.99839 0.99839 0.99822 0.99962 0.99964

DT 0.80092 0.85970 0.85956 0.85972 0.81792 0.83056

LR 0.99957 0.98131 0.93163 0.98128 0.81752 0.86709

NB 0.98873 0.98766 0.97642 0.98759 0.98723 0.98765

Adaboosting 0.85081 0.83962 0.83865 0.83865 0.98773 0.99887

Vote 0.99778 0.99353 0.98388 0.99331 0.99947 0.99965

G-mean KNN 0.84812 0.89138 0.89013 0.89686 0.84812 0.90812

DT 0.67981 0.57068 0.58051 0.60438 0.71749 0.71979

LR 0.77057 0.92087 0.90380 0.93396 0.71803 0.83957

NB 0.89860 0.91339 0.91993 0.91332 0.91576 0.92349

Adaboosting 0.66077 0.77537 0.76366 0.76366 0.79003 0.84511

Vote 0.87027 0.91506 0.91865 0.91598 0.87436 0.91948

AUC KNN 0.86145 0.89785 0.89682 0.90276 0.86145 0.91389

DT 0.76956 0.70109 0.70920 0.71636 0.76339 0.77974

LR 0.80050 0.92197 0.90644 0.93503 0.78298 0.85602

NB 0.90253 0.91570 0.92111 0.91563 0.91782 0.92469

Adaboosting 0.73837 0.81944 0.80377 0.80377 0.81732 0.85964

Vote 0.87997 0.91850 0.92157 0.91930 0.88362 0.90901
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the augmented data generated by GAN-MF for training is about 1100, about one
hundredth of the ones based on simple geometric transformation. Since GAN-
MF learn the screwed dataset from an overall way, the classify can capture the
representative feature in a more effective way. In the terms of G-mean and AUC,
the GAN-MF model has outperformed in two-thirds of classifies. The classify of
Adaboosting and KNN have been obviously improved by the GAN-MF.

5 Conclusion

In this work, we proposed a GAN-MF model for data augment to improve the
imbalanced learning. Since the model learns the dataset from an overall view,
it can generate data for augmentation based on the learned distribution. Mod-
ification function is employed to converts the numeric discrete detests into the
one that could be train in a stable way. The model has been evaluated on sev-
eral datasets, with much fewer augmented data, the model has done a good
performance for most classifies, especially in dataset with high dimension.

More work should be taken to overcome the limitation of the model in stabi-
lization, capacity and training time. The whole model still suffers from collapse
problem. Our future work will try more different networks as well as take more
other deep generative models into practice.
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