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Abstract. Chest radiography is the most common examination for a radiolo-
gist. This demands correct and immediate diagnosis of a patient’s thorax to
avoid life threatening diseases. Not only certified radiologists are hard to find,
stress, fatigue and experience contribute to the quality of an examination. It is
ideal that a chest X-ray can be interpreted by an automated deep learning
algorithm. In this paper, we proposed a stage-wise model that is founded on a
ResNet-50 based deep convolutional neural networks architecture to detect the
presence and absence of twelve thorax diseases. This novel model has incor-
porated various recent techniques such as transfer learning, fine tuning, fit one
cycle function and discriminative learning rates. The experiments were per-
formed on 10% of the largest collection of chest X-rays to date, the MIMIC-
CXR dataset. The model was trained for eight epochs using a subset of the
available multi-view chest X-rays. The absolute labelling performance has
achieved an encouraging average AUC of 0.779.
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1 Introduction

Currently, analyzing chest x-rays depends on the availability of professional radiolo-
gist. In some regions, access to such radiologists is limited [1]. Additionally, clinicians
in emergency department and intensive care unit needs fast and accurate interpretations
of medical images [2]. Globally, chest X-ray is the most common radiological
examinations that required correct and fast analysis [1]. An automated and precise
system that can flag potentially life-threatening diseases could allow care providers to
handle emergency cases efficiently.

However, interpreting X-rays to detect thoracic diseases is still a challenging job.
This is due to the highly diverse appearance of lesion areas on chest X-rays. Unlike the
traditional computer-aided detection (CAD) systems that interpret medical images
automatically to offer an objective diagnosis that assist radiologists [3], deep learning is
able to learn useful features which are beyond the limit of radiology detection [4]. For
example, deep learning has been applied on Mammography to discriminate breast
cancer with microcalcification [5], on ultrasound to differentiate breast lesions and on
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CT lung scans to classify pulmonary [6]. Researchers [5, 6] showed a significant
performance boost by their deep learning based models over the conventional CAD
systems.

In this study, we present a supervised deep learning model using convolutional
neural network to detect twelve thoracic diseases by reading a given chest X-ray.
Residual network (ResNet-50) [7] is the backbone network for our model because it
has clearly shown its outstanding performance on computer vision.

2 Related Work

Recently, several deep learning models that classify thorax diseases have been pro-
posed as a result of the public release of a collection of large datasets namely Indiana
Chest X-Ray [8], ChestX-ray14 [9], CheXpert [1], PadChest [10] and MIMIC-CXR
[9]. For example, CheXNet [11], text-image embedding network (TieNet) [12],
attention guided convolutional neural network (AG-CNN) [13], learning to diagnose
from scratch network [14] classify thorax diseases from frontal chest x-rays using
ChestX-ray14. However, [15] suggest that using lateral view enhances the performance
for certain prediction tasks such as pleural effusion. Further, [2] proposed DualNet
model to prove that simultaneous processing of both frontal and lateral chest X-ray
inputs results in better classification performance. Unlike ChestX-ray14 [9] that only
presents the frontal view of chest X-ray, MIMIC-CXR is a multi-view version of
radiographs dataset. DualNet employed a limited released version of the MIMIC-CXR
dataset to automate reading of frontal and lateral chest X-rays.

Convolutional neural network (CNN) which is a supervised deep learning model is
the most common used deep learning technique for thoracic disease classification. It
has also seen the widest variety in architectures, such as AlexNet [16], VGG-16 [17],
DenseNet [18] and ResNet [7]. CNN-based classification model [19], for instance,
adopt VGG-16 and ResNet-101 to classify X-rays based on nine chest diseases like
emphysema and bronchitis. ResNet won the ImageNet large scale visual recognition
challenge (ILSVRC) in 2015 with 3.6% top five error rate, which enables automated
image classification to beat human brains with 5% error for the first time. ResNet is a
feed forward network that contains several basic residual blocks, refer to Fig. 1, to
handle the vanishing gradients [20] and the degradation issue.

Consistent with recent proposed CNN models on automated chest x-rays classifi-
cation [2, 11, 19], we focus on training CNN models to detect 12 common thoracic
diseases namely enlarged cardiomediastinum, cardiomegaly, airspace opacity, lung
lesion, edema, consolidation, pneumonia, atelectasis, pneumothorax, pleural effusion,
pleural other and fracture (Fig. 2). Unique from past works, we propose a novel stage
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Fig. 1. A basic residual block
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wise training approach to observe the model’s performance and hence reduce training
time and increase accuracy. We adopt a combination of recent techniques on
multi-view chest X-rays including ResNet-50, transfer learning, fine tuning, fit one
cycle function [21] and discriminative learning rates [22].

3 Proposed Model

3.1 Structure Overview

The task of detecting thorax diseases in chest x-rays is divided into 12 sub-tasks, where
each task considers the presence and absence of a specific disease. Among the proposed
variations of ResNet layers (i.e. 34, 50, 101, 152 and 1202), we adopt the popular
ResNet-50 network which consists of 49 convolution layers and ends with 1 fully
connected layer. Equation 1 defines the last output of residual unit xl, where F xl�1ð Þ is
the generated output after performing the convolution operations, batch normalization
and activation function on xl�1. Importantly, we use cyclical learning rates to enhance
performance by decreasing the number of epochs required to accomplish the accuracy
threshold. For each binary label problem, ResNet is used as the baseline CNN archi-
tecture in three main training stages (Fig. 3).

xl ¼ Fðxl�1Þþ xl�1 ð1Þ

3.2 Training Stages

In the first stage, the pre-trained ResNet-50 with the default fastai [23] hyperparameter
values is trained for three epochs. That is setting all layers to frozen, excluding the final
dense layer and examining each X-ray three times. In other words, the first stage
embraces transfer learning approach to train faster with a model that is already trained
to recognize 1000 categories of things in ImageNet. At the end of stage-1, model’s
weights were saved.

Enlarged cardiomediastinum Cardiomegaly Airspace opacity Lung lesion

Edema Consolidation Pneumonia Atelectasis

Pneumothorax Pleural effusion Pleural other Fracture

Fig. 2. Examples of Twelve Thoracic Diseases from MIMIC-CXR Dataset. Each disease is
associated with frontal and lateral views of chest X-rays.
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In the second stage, the whole model is trained again for one epoch by unfreezing
the layers and calling the fit-one-cycle method. The objective of this stage is to observe
the model’s performance to reduce training time and increase accuracy. If the AUC is
decreased at the end of this training stage, stage-1 weights are re-loaded.

In the third stage, the whole model is trained again for four epochs using the
optimal learning rate finder. The learning rate is set by default to about 1e−3 at stage-1
and changed manually to a range of lower learning rates (1e−6 to 1e−4) at stage 3.
Figure 4 illustrates the plotted learning rate after the first and second stages of the
model, where the red dots on the graphs indicate the steepest gradient point. Using
different learning rates for each layer at this stage is in line with the discriminate fine-
tuning technique to tune each layer with various learning rates. In this case, the model’s
parameters h and the learning rate g are split into h1; . . .; hL

� �
at time step t and

g1; . . .; gL
� �

respectively, where L is the number of layers. This updated version of the
regular stochastic gradient descent (SGD) with discriminative fine-tuning is defined in
Eq. 2, where rhl J is the gradient of the model’s objective function.

hlt ¼ hlt�1 � gl � rhl jðhÞ ð2Þ
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Fig. 3. Overall illustration of our model.
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4 Experiment

4.1 Dataset

MIMIC-CXR is the largest dataset of chest x-rays to date that consist of 371,920
images and relevant 227,943 studies derived from Beth Israel Deaconess Center [24].
Images are annotated with 14 labels, which overlap with those of the popular
ChestX-ray14 dataset and match the co-released CheXpert dataset. Labels are extracted
from the associated free-text radiology reports using the CheXpert labeler tool. The
training labels for each observation are 0 for negative, 1 for positive, −1 for uncertain
and blank for unknown. We organized a subset of 10% of the MIMIC-CXR v1.0.0 into
training and validation sets that contains 33,195 and 3,688 images respectively.

Enlarged cardiomediastinum Cardiomegaly Airspace opacity

Lung lesion Edema Consolidation

Pneumonia Atelectasis Pneumothorax

Pleural effusion Pleural other Fracture

Fig. 4. Fluctuated Learning Rate (LR). Per pathology, the plot at the right represents the LR
after stage-1 training and the plot at the left shows the LR after stage-2 training. Note the x-axis
represents what happens as the LR is increased and the y-axis indicates what the loss is. (Color
figure online)

Table 1. The MIMIC-CXR Dataset with 12 Labeled Pathologies. We account the number of
positive and negative observations in %10 of the dataset.

Pathology Positive (%) Negative (%)

Enlarged cardiom. 1019 (2.8) 35367 (97.19)
Cardiomegaly 6932 (18.79) 29951 (81.2)
Airspace opacity 7582 (20.42) 29542 (79.57)
Lung lesion 1060 (2.82) 36472 (97.17)
Edema 3964 (11.06) 31859 (88.93)
Consolidation 1410 (3.8) 35634 (96.19)
Pneumonia 2738 (7.83) 32202 (92.16)
Atelectasis 6356 (17.54) 29876 (82.45)
Pneumothorax 1523 (4.05) 36059 (95.94)
Pleural effusion 7869 (21.34) 28994 (78.65)
Pleural other 425 (1.13) 37132 (98.86)
Fracture 805 (2.13) 36829 (97.86)
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The validation set was selected at random. During training, the uncertain and
unknown labels were ignored. Table 1 shows the positive and negative cases for each
observation.

4.2 Pre-processing

Prior to models training, we employ several augmentation strategies (refer to Table 2)
as data augmentation is a critical step of deep CNNs in medical imaging [25]. We crop
each x-ray in both the training and validation sets to 224 by 224 pixels to reduces
training time while maintaining robust model’s performance. For example, training the
model to diagnose cardiomegaly using 299 by 299 pixels would increase training time
without improving the AUC per epoch (refer to Table 3). We perform a horizontal flip
only for each image in the training set, since vertical flips often do not reflect chest
x-rays (i.e. an upside-down chest x-ray may not improve training). The maximum
lighting of the image is set to 0.3 with applying probability of 0.5. Note that no vertical
flips, rotations, zooms or wraps were done on the images. In addition, uncertain and
unknown labels were dropped.

4.3 Training

The training algorithms were evaluated in twelve pathologies: enlarged cardiomedi-
astinum, cardiomegaly, airspace opacity, lung lesion, edema, consolidation, pneumo-
nia, atelectasis, pneumothorax, pleural effusion, pleural other and fracture. We used
PyTorch software [26], fastai library, n1-highmem-8 (8 vCPUs, 52 GB memory)
machine and 4 x NVIDIA Tesla P4 GPUs. This is in accordance with [27] work that
demonstrate how time-per-epoch for the ResNet-50 architecture scale much better

Table 2. Data Augmentation for Chest X-rays. We applied a list of transforms parameters to the
trained images.

Parameter Value

Size 224
Flip (horizontally) True
Lighting 0.3
Affine 0.5

Table 3. AUC per Epoch for Training ResNet-50 CNN. This model detects cardiomegaly using
299� 299 or 224� 224 pixels of chest X-rays.

Image size
(pixels)

Epoch Avg. AUC per
Epoch1 2 3 4 5 6 7 8

299 0.565 0.733 0.758 0.791 0.798 0.804 0.804 0.807 0.757
224 0.725 0.733 0.747 0.785 0.793 0.799 0.802 0.802 0.773
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when training it on multiple GPUs. Table 4 records the time per epoch for training
ResNet-50 based model to detect cardiomegaly using different number of GPUs, where
parallel training on 4 GPUs reduce training time by around 20 min.

4.4 Results

Table 5 shows the Area Under Curve (AUC) results of each pathology computed on
the validation set for each of the eight training epochs. It can be seen that detection
performance for each pathology fluctuate over epochs. For individual training epochs,
the eighth unfrozen epoch accomplish a higher average AUC (0.777), compared to the
first (0.670), second (0.704), third (0.718), forth (0.711), fifth (0.753), sixth (0.765) and
seventh (0.776). Compared with stage-1 (epoch 1–3) and stage 2 (epoch 4), stage 3
(epoch 5–8) results in larger AUC values for all pathologies. This difference is likely
due to the discriminative learning rates at the third stage of training.

Table 4. Time per Epoch for Training ResNet-50 CNN. This model detects cardiomegaly using
single NVIDIA Tesla P4 GPU or 4 x NVIDIA Tesla P4 GPUs in a parallel training. Note the
batch size is set to 64 images and the image size is set to 224 pixels.

No. of
GPUs

Epoch Avg. time
per Epoch
(min)

1 2 3 4 5 6 7 8

1 32:42 32:26 32:36 34:34 33:40 33:52 33:58 34:00 33:28
4 13:32 12:54 13:01 13:05 13:07 13:08 13:07 13:06 13:07

Table 5. The Compression of AUC Scores in each Epoch. We trained each pathology for 8
epochs.

Pathology Epoch
1 2 3 4 5 6 7 8

Enlarged cardiom. 0.670 0.694 0.700 0.544 0.702 0.705 0.708 0.710
Cardiomegaly 0.725 0.733 0.747 0.785 0.793 0.799 0.802 0.802
Airspace opacity 0.621 0.687 0.694 0.712 0.730 0.730 0.733 0.737
Lung lesion 0.520 0.638 0.612 0.638 0.651 0.688 0.730 0.729
Edema 0.816 0.848 0.857 0.887 0.892 0.894 0.896 0.897
Consolidation 0.748 0.758 0.769 0.778 0.788 0.797 0.797 0.799
Pneumonia 0.556 0.531 0.545 0.497 0.550 0.585 0.580 0.587
Atelectasis 0.706 0.706 0.743 0.827 0.830 0.835 0.837 0.838
Pneumothorax 0.710 0.786 0.817 0.839 0.853 0.862 0.868 0.860
Pleural effusion 0.837 0.869 0.881 0.891 0.903 0.906 0.905 0.899
Pleural other 0.585 0.637 0.676 0.533 0.707 0.736 0.739 0.727
Fracture 0.546 0.563 0.576 0.606 0.636 0.648 0.711 0.741
Average 0.670 0.704 0.718 0.711 0.753 0.765 0.776 0.777
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Table 6 compares the per pathology AUC results between our proposed model and
DualNet architecture using MIMIC-CXR dataset. We employed 10% of the dataset
using all available frontal and lateral views of the chest X-rays. DualNet, on the other
hand, considered a combination of posteroanterior (PA) and lateral as well as a com-
posite of anteroposterior (AP) and lateral. In 5 out of 7 overlap pathologies, our model
performs better than both DualNet models. Overall, it can be seen that average AUC is
higher for our multi-view classifiers (0.779), compared to both PA-lateral (0.722) and
AP-lateral (0.677).

4.5 Analysis

In DualNet model, chest X-rays labels were extracted from the associated radiology
reports using an open source tool developed by the National Institute of Health (NIH),
the NegBio labeler1 [28]. This tool was used to annotate the popular ChestX-ray14
dataset. In contrast, our model follows the public released labels by [24] that utilized a
different open source tool created by Stanford machine learning group, the CheXpert
labeler2. Although the labeling algorithm of CheXpert is built upon the work of
NegBio, it achieves a higher F1 score. Hence, our model is trained on a better anno-
tated chest X-rays than DualNet. Interestingly, we reach improved results over those
achieved by DualNet using small image sizes 224 by 224 pixels instead of 512 by 512
pixels.

Table 6. The Compression of AUC Scores. DualNet model used an older limited released
version of the MIMIC-CXR dataset. Our model used 10% of the publicly released version of the
dataset. Note that we ignored uncertain and unknown labels.

Pathology DualNet [2] Our model
PA + Lateral AP + Lateral Multi-view

Enlarged cardiom. – – 0.710
Cardiomegaly 0.840 0.755 0.802
Airspace opacity – – 0.737
Lung lesion – – 0.730
Edema 0.734 0.749 0.897
Consolidation 0.632 0.623 0.799
Pneumonia 0.625 0.593 0.587
Atelectasis 0.766 0.671 0.838
Pneumothorax 0.706 0.621 0.868
Pleural effusion 0.757 0.733 0.906
Pleural other – – 0.739
Fracture – – 0.741
Average 0.722 0.677 0.779

1 https://github.com/ncbi-nlp/NegBio.
2 https://github.com/stanfordmlgroup/chexpert-labeler.
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Nevertheless MIMIC-CXR is the largest open source X-ray images to date, the
class labels in the training set are noisy because they were mined by natural language
processing tool, rather than by experienced radiologist. Figure 5 visualizes the most
incorrect predicted X-rays by our model with heatmaps, using the activations of the
wrongly predicted class. In addition, the positive-negative subsets ratio was highly
imbalanced in the enlarged cardiomediastinum, lung lesion, consolidation, pneu-
mothorax, pleural other and fracture sets (Table 1). Yet, our model’s AUC for each of
these pathologies is above 0.7 (Table 6).

5 Conclusion

In this paper, ResNet-50 CNN based stage wise models have been proposed to detect
twelve thorax diseases on 10% of the largest chest X-rays dataset to date, the MIMIC-
CXR dataset. The absolute labelling performance with an average weighted AUC of
0.779 is encouraging, since we used only a subset of the available chest X-rays. In
future work, we plan to improve our CNN model performance through utilizing
common image-based classification techniques, in particular data augmentation.
Importantly, we will incorporate useful information from the free-text radiology reports
such as patient’s history and clinical records to accurately recognize the presence and
absence of thorax diseases.
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