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Preface

Welcome to the proceedings of the 26th International Conference on Neural
Information Processing of the Asia-Pacific Neural Network Society (APNNS 2019),
held in Sydney during December 12–15, 2019.

The mission of the Asia-Pacific Neural Network Society is to promote active
interactions among researchers, scientists, and industry professionals who are working
in Neural Networks and related fields in the Asia-Pacific region. APNNS 2019 had
governing board members from 13 countries/regions – Australia, China, Hong Kong,
India, Japan, Malaysia, New Zealand, Singapore, South Korea, Qatar, Taiwan,
Thailand, and Turkey. The society’s flagship annual conference is the International
Conference of Neural Information Processing (ICONIP).

The conference had three main themes: “Theory and Algorithms,” “Computational
and Cognitive Neurosciences,” and “Human Centred Computing and Applications.”
The two CCIS volumes 1142–1143 are organized in topical sections which were also
the names of the 12-minute presentation sessions at the conference. The topics were
“Adversarial Networks and Learning,” “Convolutional Neural Networks,” “Deep
Neural Networks,” “Embeddings and Feature Fusion,” “Human Centred Computing,”
“Human Centred Computing and Medicine,” “Human Centred Computing for Emo-
tion,” “Hybrid Models,” “Artificial Intelligence and Cybersecurity,” “Image Processing
by Neural Techniques,” “Learning from Incomplete Data,” “Model Compression and
Optimisation,” “Neural Network Applications,” “Neural Network Models,” “Semantic
and Graph Based Approaches,” “Social Network Computing,” “Spiking Neuron and
Related Models,” “Text Computing using Neural Techniques,” “Time-series and
Related Models,” and “Unsupervised Neural Models.”

A Special thanks in particular to the reviewers who devoted their time to our
rigorous peer-review process. Their insightful reviews and timely feedback ensured the
high quality of the papers accepted for publication. Finally, thank you to all the authors
of papers, presenters, and participants at the conference. Your support and engagement
made it all worthwhile.

October 2019 Tom Gedeon
Kok Wai Wong

Minho Lee
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Abstract. Deep networks are vulnerable to adversarial attacks from malicious
adversaries. Currently, many adversarial learning algorithms are designed to
exploit such vulnerabilities in deep networks. These methods focus on attack-
ing and retraining deep networks with adversarial examples to do either feature
manipulation or label manipulation or both. In this paper, we propose a new
adversarial learning algorithm for finding adversarial manipulations to deep net-
works. We formulate adversaries who optimize game-theoretic payoff functions
on deep networks doing multi-label classifications. We model the interactions
between a classifier and an adversary from a game-theoretic perspective and for-
mulate their strategies into a Stackelberg game associated with a two-player prob-
lem. Then we design algorithms to solve for the Nash equilibrium, which is a
pair of strategies from which there is no incentive for either the classifier or the
adversary to deviate. In designing attack scenarios, the adversary’s objective is
to deliberately make small changes to test data such that attacked samples are
undetected. Our results illustrate that game-theoretic modelling is significantly
effective in securing deep learning models against performance vulnerabilities
attached by intelligent adversaries.

1 Introduction

Adversarial learning algorithms are designed to exploit vulnerabilities in a given
machine learning algorithm. These vulnerabilities are studied under various attack sce-
narios [1] and attack policies [15] formulated by an intelligent adversary. Goodfellow et
al. [7] observe that many imperceptible infinitesimal non-random changes to the deep
networks input (a.k.a., adversarial examples) add up to an arbitrarily large change in
their output. For example, adding targeted noise to the input of a deep network classi-
fier misleads it into classifying the image of a “panda” as that of a “gibbon” [7].

In this paper, we design a two-player Stackelberg game from interactions between
an adversary and target Convolutional Neural Network (CNN) classifier. In every game
iteration, the attack objective is to generate adversarial examples that mislead target
CNN’s classification result. Target CNN is manipulated to rematch adversary’s data
distribution changes on original data.

We then design adversarial learning algorithms that arrive at a Nash equilibrium for
the game. Here, Nash equilibrium is a balanced state of play where there is no incentive

c© Springer Nature Switzerland AG 2019
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for either the adversary or the classifier to deviate. This state is determined by each
player’s payoff functions.

We do not assume the adversary knows the targeted network architecture as this
assumption cannot be met in practical attack scenarios. Our adversary’s payoff function
is composed of an adversarial cost and a classification error. The adversarial cost is
computed from the magnitude of additive pixel manipulation to labelled training data.
The classification error is computed from a CNN model’s performance.

Following are the major contributions of this paper:

– We formulate game-theoretic adversaries and develop new algorithms for adversarial
learning that attack deep learning models for image classification.

– We propose to formulate the game strategy space for the adversary using autoen-
coder networks in a stochastic optimization problem. We propose a new simulated
annealing algorithm in the game’s randomized strategy space to optimize the adver-
sary’s payoff function.

– Using Nash equilibrium from our (variable-sum two-player sequential) Stackelberg
game model, we build a secure CNN classifier immune to multi-label adversarial
data manipulations. Upon game convergence the CNN classifier can find weights
that are robust to targetted adversarial attacks.

– We demonstrate the effectiveness of the proposed adversarial manipulations in case
of both convolutional neural networks and generative adversarial networks. We also
successfully benchmark our adversarial manipulations against existing adversarial
examples to mislead classifiers in deep learning, deep generative learning and game
theoretical adversarial learning.

2 Related Work

In deep learning, adversarial examples have been generated using two types of attacks
called whitebox attacks and blackbox attacks [4]. In a whitebox attack, adversary has
full knowledge of targetted network architecture, including the input data, the output
predictions, the medial parameters and the number of layers. By contrast, adversary
has no knowledge of targetted network architecture in a blackbox attack. Our research
belongs to the blackbox attack scenarios, which is more realistic in practice.

Lowd et al. [11] introduced adversarial classification to construct adversarial attacks
learning vulnerabilities of classifiers. Adversary’s goal is to learn adversarial cost func-
tions manipulating decision boundaries between class labels without assuming a data
distribution for training data. Bruckner et al. [3] generated test data in response to a
predictive model where interaction between data generator and classifier is modelled as
a Stackelberg prediction game. An optimization problem involving adversaries is then
derived to determine game’s solution. Bruckner et al. [2] defined adversarial learning
Stackelberg games to combine adversarial cost functions with adversarial payoff func-
tions solving for adversarial attacks. Liu and Chawla [10] further analyzed the effect of
adversarial payoff functions on Nash equilibrium of a prediction game.

Similar to our payoff functions and blackbox attack scenarios, Chivukula and
Liu [6] proposed adversarial payoff functions for attacking deep learning classi-
fiers. They proposed game theoretical adversarial learning algorithm that uses genetic
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algorithms for attacking supervised deep learning. Two-player Stackelberg game in
Chivukula and Liu [6] is extended into Multiplayer Stackelberg game in Chivukula
and Liu [5].

3 Game Formulation

In this section, we discuss problem formulation for two-player sequential Stackelberg
game which is the foundation of our proposed adversarial learning algorithm.

3.1 Stackelberg Game Formulation

The key ingredients in a Stackelberg game [13] are (a) modelling players as the decision
makers, (b) modelling actions (or series of actions) taken by players, and (c) modelling
payoffs motivating players. To model adversarial attack on CNNs, we assume an intel-
ligent adversary as a leader player (L) interacting in a Stackelberg game with a follower
player (F) – the CNN classifier. We then design data manipulations over a strategy
space as the adversary’s attack actions. Such data manipulations are performed on tar-
getted classes. In response to each attack, the CNN is allowed to re-optimize weights
on manipulated training data.

The leader L starts the game by making initial action (or move). The actions avail-
able to L and F are assumed to be over search spaces (or strategy spaces) A and W
respectively. The outcome of an action is determined by L’s and F’s payoff functions
JL ∈ R and JF ∈ R, respectively. Once CNN has been trained to learn optimal param-
eters w∗ for all w ∈ W on training data, the adversary’s best action is formulated as α∗

for all α ∈ A in a sequential game. The payoff function JL for adversary is formulated
as solving for α∗ in Eq. 1. The payoff function JF for classifier is formulated as solv-
ing for w∗ in Eq. 2. In this research, A is taken to be data space of pixels in an image
database and W is taken to be feature space of weights in a CNN classifier.

α∗ = argmaxα∈AJL(α,w∗) (1)

w∗ = argmaxw∈W JF (α∗, w) (2)

Equations 1 and 2 can be combined into Eq. 3 to form a sequential game with (α∗, w∗)
expressed over adversarial manipulations α.

(α∗, w∗) = argmaxα∈AJL(α, argmaxw∈W JF (α,w)) (3)

We assume the leader L’s payoff is proportional to the follower F’s payoff. The relation
between L’s and F’s payoff functions is determined by a constant profit Φ for the game,
variable profit costL(α) for the adversary and variable profit costF (w) for the classifier.
Further, the relative importance of adversary’s cost costL(α) compared to classifier’s
cost costF (w) in determining game solutions is controlled by a weighting parameter λ.

JL + JF = Φ + λ ∗ costL(α) + costF (w) (4)
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To formulate a Stackelberg game using Eq. 4, we express classifier’s JF in terms of
adversary’s JL so that Eq. 3 can be rewritten as a two-player game in Eq. 5. By treat-
ing CNN as a blackbox model, we assume costL(α) is independent of costF (w) in
adversary’s attack scenario. It is worth noting that the cost of re-optimizing a CNN,
costF (w), does not have a closed form expression for optimization. Then the overall
objective of the game is:

(α∗, w∗) = argmaxα∈AJL(α, argmaxw∈W (Φ + λ ∗ costL(α)
+ costF (w) − JL(α,w)))

(5)

In every game iteration, each player’s move depends on the opponent’s previous
move. For a CNN learning optimal w∗ for all w ∈ W on training data Xtrain, the
adversary generates adversarial manipulation α∗ by searching over candidate solutions
α ∈ A best suited for attacking w∗ according to game model in Eq. 5. The classifier
is then allowed to re-optimize w∗ on manipulated data Xtrain + α∗ to defend against
adversarial manipulation α∗. Game ends if the adversary’s payoff JL stops increasing
with the game iterations. At the end of the game, adversary converges onto optimal
adversarial manipulation α∗.

Equation 5 is a bilevel stochastic optimization problem. We design adversary’s pay-
off function JL that can be solved in Eq. 5 for optimal attack policy (α∗, w∗) where
costL(α) = ‖α‖F .

JL(α,w) = errorF (w) − λ ∗ costL(α) (6)

We define an attack scenario where adversary’s payoff function JL is given in Eq. 6.
In Eq. 6, errorF (w) is CNN’s classification error for targetted classes and costL(α) is
the adversary’s manipulation cost for finding optimal solutions in Eq. 5. Our intuition
for the attack scenario with targetted classes is that an adversary aims to increase CNN’s
error errorF (w) of misclassifying targetted classes while ensuring minimum change
costL(α) to clean data. We measure costL(α) in terms of Frobenius norm ‖α‖F of
manipulating tensor with same shape as encoded training data examples.

The costL(α) is enhanced by weighting term λ, which empirically evaluates rela-
tive importance of error errorF (w) and cost costL(α) in adversarial attack scenarios.
Setting low value to λ leads to low values for adversarial cost λ ∗ costL(α) in compar-
ison to (hopefully high) misclassification error errorF (w). For training data Xtrain, λ
allows us to control effect of ‖α‖F on adversarial data Xtrain + α.

To optimize adversarial manipulation α ∈ A, we use a simulated annealing
algorithm to solve the game model in Eq. 5 with payoff function given in Eq. 6. In
an autoencoder network, adversarial manipulations α are generated on encoded data
Enc(Xtrain), where Enc is the encoder function of an autoencoder network. Equa-
tion 6 is evaluated by decoding the perturbed data Dec(Enc(Xtrain) + α) that has
been subject to adversarial manipulation α, where Dec is the decoder function of a
autoencoder network.

3.2 Stackelberg Game Illustration

Figure 1 is a flowchart for our adversarial autoencoder based Stackelberg game model.
A multi-label classifier CNNoriginal (henceforth shortened as CNNo) with weights
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w∗ ∈ W . It is trained on labelled training data Xtrain and evaluated on labelled testing
data Xtest sourced from an image database. CNNo participates in a two-player game
with our game theoretical adversary. Adversary attacks CNNo on a targetted positive
label target = pos by generating optimal attack α∗ ∈ A at Nash equilibrium for
every negative label neg ∈ Neg that targetted positive label pos is manipulated into.
In this research pos and Neg are class labels where overall = pos ∪ Neg, and A =
Enc(Xtrain) is determined by an autoencoder function Enc trained on Xtrain.

Encoder
(Enc)

D
ec

od
er

(D
ec

)

XTrain
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Search 

encoded data
for best 
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Fig. 1. A flowchart illustrating the adversarial autoencoder based Stackelberg game-theoretic
modelling.

In each iteration of game, adversarial manipulation αbest is generated by the sim-
ulated annealing algorithm in Algorithm 2. For training data Xtrain, each αbest gen-
erates adversarial data Enc(Xtrain) + αbest in encoded space. It is then decoded as
Dec(Enc(Xtrain) + αbest) to be evaluated against CNNo.

Upon convergence game outputs optimal α∗ inferred for each pair of pos and neg.
All α∗’s are then combined to effect a multi-label adversarial attack on CNNo to output
manipulated classifier CNNmanipulated (henceforth shortened as CNNm). CNNm is
finally retrained into secure classifier CNNsecure (henceforth shortened as CNNs)
that is robust to multi-label adversarial attacks.

4 Our Proposed Algorithms

In this section, we present the algorithms for a two-player Stackelberg game defined by
Eq. 5.

Algorithm 1 is the training algorithm for Stackelberg game that solves for adver-
sarial manipulations α∗ in Eq. 5. As input, Algorithm 1 requires labelled training data
Xtrain, labelled testing data Xtest, target positive class pos for adversarial attack and
negative classes Neg to mislead a CNN classifying pos. A key difference between
adversarial examples in literature and those produced in every move of our game’s iter-
ation is that Algorithm 1 re-optimizes CNN ’s optimal weights w∗ such that adversar-
ial attacks α∗ increase adversary’s payoffs JL across game moves. Moreover, various
blackbox attack scenarios on CNN are controlled by λ weighting term on adversarial
cost in Eq. 6. Algorithm 2 presents the simulated annealing method, which is used to
determine best adversarial manipulation αbest in each game iteration.
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4.1 Adversarial Learning Algorithm

Algorithm 1 initializes the game on line 3 by training CNN to get CNNo(with optimal
training weights w∗), and line 4 trains Autoencoder on Xtrain to get functions Enc
and Dec. Adversary is assumed to target positive class pos to mislead classifier into
misclassifying pos data into any negative class neg ∈ Neg. Two-player Stackelberg
game loop from line 5 to line 20 creates adversarial data for attacking CNN . Between
line 9 and line 11, we create adversarial data by adding random manipulation α to
encoded positive data Enc(Xtrain[pos]).

On line 13, we use a simulated annealing algorithm described in Algorithm 2 to
create candidate manipulation αbest. Between line 12 and line 20, we propose a game
model’s iteration to repeatedly attack and re-optimize CNN models weights w on
manipulated training data Enc(Xtrain[pos]) + αbest. Labelled testing data Xtest is
not used to create adversarial manipulations.

By end of game in line 20, we have created adversarial manipulations α∗, for each
combination of positive label pos and negative label neg, that are in turn used to cre-
ate manipulated training data Xtrain−manip and manipulated testing data Xtest−manip

between line 21 and line 24. For a given pos class label, on line 25 and line 26 we eval-
uate CNNo on original testing data Xtest and manipulated testing data Xtest−manip

Algorithm 1. Adversarial Autoencoder based Stackelberg Game
Input:
1: Labelled training data Xtrain, Labelled testing data Xtest (for final evaluations only), Positive class label pos, Neg-

ative class labels Neg, Cost weighting term λ, Maximum step size maxstep, Upper bound for simulated annealing
iteration count maxiter

Output:
2: Original performance erroro, Attack performance errorm, Defence performance errors

3: Train CNN on Xtrain to output model CNNo, CNNm = CNNo

4: Train Autoencoder on Xtrain to get Encoder function Enc and Decoder function Dec
5: for neg ∈ Neg do
6: mask = mean(Enc(Xtrain[neg])) − mean(Enc(Xtrain[pos]))

7: exitgame = False, payoffprev = payoffbest = 0, α∗[neg] = 0

8: while ¬ exitgame do
9: Randomly generate α, a tensor with values in [0,maxstep] and mask size and shape
10: α = α � mask
11: Evaluate CNN on Dec(Enc(Xtrain[pos]) + α) ∪ Xtrain[neg] to find error errorprev

12: payoffprev = errorprev − λ∗ ‖α‖F

13: Calculate αbest and payoffbest from simulated annealing sa in Algorithm 2
14: If payoffbest − payoffprev > 0 then
15: exitgame = False
16: α∗[neg] = αbest

17: Retrain CNN on Dec(Enc(Xtrain[pos])) + αbest) ∪ Xtrain[neg])

18: else
19: exitgame = True
20: payoffprev = payoffbest

21: Xtrain−manip = Xtrain, Xtest−manip = Xtest

22: for neg ∈ Neg do
23: Xtrain−manip = Xtrain−manip ∪ Dec(Enc(Xtrain[pos]) + α∗[neg]) ∪ Xtrain[neg]

24: Xtest−manip = Xtest−manip ∪ Dec(Enc(Xtest[pos]) + α∗[neg]) ∪ Xtest[neg]

25: Evaluate CNNo on Xtest to find error erroro

26: Evaluate CNNm on Xtest−manip to find error errorm

27: Train CNNm on Xtrain−manip to output model CNNs

28: Evaluate CNNs on Xtest−manip to find error errors

29: return (erroro, errorm, errors)
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Algorithm 2. Simulated Annealing with Random Restart
1: function SA(maxstep, mask, errorprev, payoffprev, α, maxiter, Xtrain, Enc, Dec)
2: exitsearch = False, iter = 0, payoffbest = errorbest = 0, jumpbound = 10
3: Initialize zeros tensor αbest with same shape as α
4: while ¬ exitsearch ∧ iter<maxiter do
5: iter = iter + 1
6: Randomly generate manipulation increment δ, a tensor with with values in [0,maxstep]
7: δ = δ � mask
8: α = α + δ
9: Evaluate CNN on Dec(Enc(Xtrain[pos]) + α) ∪ Xtrain[neg] to find error errorcurr

10: payoffcurr = errorcurr − λ∗ ‖α‖F

11: If payoffcurr > payoffbest then
12: payoffbest = payoffcurr

13: αbest = α
14: errorbest = errorcurr

15: If payoffcurr − payoffprev > 0 then
16: exitsearch = False
17: else
18: If errorcurr − errorprev ≤ 0 then
19: Randomly select jump in [0,jumpbound]
20:
21: If |errorcurr − errorprev| > jump then
22: exitsearch = False
23: else
24: exitsearch = True
25: payoffprev = payoffcurr

26: return (payoffbest, αbest)

(a) Attack: varying λ (b) Defence: varying λ (c) Attack: varying ρ (d) Defence: varying ρ

Fig. 2. Testing performance (error) with variations in attack operators consisting of adversarial
cost weight λ and autoencoder code size ρ.

to output errors errororiginal, errormanipulated (shortened as erroro, errorm) respec-
tively. A successful adversary misleads classifier into misclassifying pos as neg ∈ Neg
when errorm is greater than erroro.

4.2 Simulated Annealing Algorithm

The simulated annealing algorithm sa in Algorithm 2 generates various candidate
manipulations α on encoded positive data Enc(Xtrain[pos]). It targets to output the
best changed α called αbest. From function arguments, sa initializes candidate manip-
ulation α given by current iteration of game. Finally, sa returns adversary’s payoff
payoffbest and classifier’s error errorbest corresponding to αbest.
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5 Experiments

In this section we discuss experimental validation and parameter settings for proposed
adversarial learning algorithm. In a two-player Stackelberg game, various parameter
settings correspond to various adversarial manipulations α∗ that misleadCNNo. More-
over we validate performance of various multi-label classifications produced by CNN
models CNNm trained on the MNIST database and tested on our data manipulations.
We also compare defence performance of CNN models CNNs retrained on data pro-
duced by our adversarial manipulations.

5.1 Classifier and Autoencoder Description

Pytorch1 is used to create a CNN model that has deep representations of images using
two convolution, one dropout and two fully connected layers. CNN has a rectified lin-
ear unit activation function. CNN has a log-softmax layer as loss function to make
classification predictions. CNN is trained for 25 epochs on grayscale MNIST images to
provide the baseline classification performance in our experiments. CNN’s true positive
rate for targeted class label is assumed to be adversary’s target for Stackelberg game.
We don’t further fine tune the CNN learning processes since we assume a blackbox
attack scenario where the adversarial cost function computation is independent of the
classification cost function computation. Independently, we also use Pytorch to train a
autoencoder model stacking two fully connected layers on MNIST images’ encoder.
Latent space of autoencoder is determined by parameter ρ – the code size of final layer
in encoder.

5.2 Validation with Fixed Target and Original Data

Given a targeted class label target = pos, adversary optimizes misclassification error
(a.k.a., attack performance) expressed in terms of true positive rate tprtarget(w) while
classifier optimizes classification error (a.k.a., defence performance) expressed in terms
of f1-score fscoreoverall(w) for all class labels overall = pos ∪ Neg. Figure 2(a) and
(c) compare CNN attack performance after adversarial manipulation with an exam-
ple pos = 7. Figure 2(b) and (d) compare CNN defence performance after adversar-
ial training. The x-axis in Fig. 2 gives parameter settings for adversarial attacks. The
y-axis gives percentage error after adversarial attack. For attack parameters ρ = 3,

Table 1. Statistical t-tests before and after game by varying parameters for target class “7”.

Attack parameter p-values from t-statistics in Stackelberg games

CNNo vs CNNm CNNo vs CNNs CNNm vs CNNs

Cost weight (λ) 2.3× 10−4 3.3× 10−2 2.5× 10−4

Code size (ρ) 5.0× 10−14 6.9× 10−6 4.0× 10−14

1 https://pytorch.org/docs/stable/index.html.

https://pytorch.org/docs/stable/index.html
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maxstep = 1/10 and maxiter = 100 in Algorithm 2, the weighting term λ in Eq. 6
is varied between 0.1 and 20. For same attack parameters, fixing λ = 1, Autoencoder’s
code size ρ is varied between 3 and 15.

Before the adversarial manipulation, the original performance of CNNo, erroro,
was found to be 0.86%. Table 1 compares p-values from pairwise t-tests comparing
attack performances. Low p-values (< 0.05) allow us to reject null hypothesis that the
attack performances are same before and after adversarial manipulations. Thus adver-
sarial manipulations in our model are statistically significant across various parameter
randomizations in comparing attack performances of original classifier CNNo, manip-
ulated classifier CNNm and secure classifier CNNs.

5.3 Validation with Varying Target and Generated Data

Table 2 gives classifier’s defence performance as classification error expressed in terms
of f1-score fscoreoverall(w). In last column of Table 2, we change pos across various
target labels by fixing attack parameters λ = 0.25, ρ = 8, maxstep = 1/50.

From Table 2, we observe that CNNm after adversarial attack has higher defence
error errorm compared to original error erroro of CNNo before attack. Owing to
our multi-step adversarial training, CNNs achieves lower defence error errors than
CNNm defence error errorm. After game’s convergence, classifier can be retrained on
adversarial data to find secure model CNNs that consistently has lower defence error
errors than corresponding CNNm defence error errorm across varying target labels
of both original data and generated data.

The low p-values (< 0.05) in Table 2 allow us to reject null hypothesis that the
defence performances are the same before and after adversarial trainings. The low
p-values also show that our game-theoretic attack settings are statistically significant
across CNN models trained on datasets output by deep learning models, deep genera-
tive models and game theoretical adversarial learning models in literature.

Table 2. Comparisons on the defence to adversarial Nash equilibrium attacks

Classification error: Autoencoders attack in Stackelberg Game

CNNo CNNm

CNN

[9]
DCGAN

[14]
IWGAN

[8]
DeepFool

[12]
FGSM

[7]
CNNGA
[5]

CNNSA
[5]

CNNs

(Our

method)

Target
class

1.16 27.71 28.63 27.38 24.71 27.41 3.91 2.12 0.77 0

0.52 39.24 33.74 40.11 31.21 37.16 6.38 2.98 0.42 1

1.59 22.89 22.53 21.68 26.61 21.11 5.62 5.31 1.01 2

1.43 17.56 26.61 20.06 26.99 15.01 5.08 3.73 0.53 3

0.91 46.47 43.54 35.46 36.44 33.02 3.81 16.0 0.92 4

1.45 38.81 40.51 43.03 32.33 33.24 51.35 32.78 0.91 5

1.04 28.12 31.55 35.02 27.79 21.81 9.03 7.09 0.86 6

1.98 32.24 39.18 36.78 33.75 29.39 22.49 9.73 1.05 7

1.34 24.82 33.77 26.18 28.52 15.54 4.08 4.17 1.16 8

2.00 26.16 43.31 26.78 25.64 21.18 30.71 10.92 1.51 9

t-statistics 3.5 × 10−9 1.8 × 10−11 3.9 × 10−10 6.7 × 10−15 7.6 × 10−9 1.6 × 10−2 8.9 × 10−3 Base
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6 Conclusion and Future Work

We have formulated a Stackelberg game that models a stochastic optimization prob-
lem finding adversarial manipulations in convolutional neural networks. In each game
iteration, adversary’s strategy spaces and attack scenarios are determined by our pay-
off functions with evolutionary attack parameters. Optimal attack policy is found by a
simulated annealing algorithm, which searches for attack parameters in encoded data.
In Nash equilibrium, the game converges to adversarial manipulations affecting testing
performance across targeted labels in multi-label classification models. Therefore, our
proposed adversarial learning algorithm creates classifiers robust to targeted attacks. In
future, we plan to experiment with deep generative networks and multiplayer games
suitable for interclass discrimination in payoff functions.
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Abstract. Traditional single branch CNN could not extract all the
details of the input, which may lose some vital information, resulting
in a decrease in recognition accuracy. In this paper, we propose a novel
dual branch adversarial neural network named D-BANN. Inspired by
adversarial learning, we drive parallel networks to extract complemen-
tary features and adopt a novel loss function to extend the application
domain of the model. Moreover, we divide the network training procedure
into multi-steps to alternatively optimize the loss functions. In order to
evaluate the proposed method, we carry out comprehensive experiments
on three attribute datasets. The results on facial attributes demonstrate
that the proposed method can outperform other single task networks in
face attribute recognition. Also, D-BANN achieves competitive results
in two pedestrian datasets compared to the state-of-the-art multi-task
methods. We visualize the D-BANN using Grad-CAM to verify the effec-
tiveness of feature annotation.

Keywords: Adversarial training · Parallel network · Joint training ·
Attribute recognition

1 Introduction

Convolutional neural networks (CNN) have made significant breakthroughs in
computer vision. Enhancing the representation ability is an essential problem in
the design of network structure for handling complex missions such as attribute
analysis.

Generally, the loss of CNN flows from the upper layer to the bottom layer in
backpropagation, which may lose the critical information of objects in the middle
layer. Therefore, it is difficult for a single network to extract all the details of
the input. One direct solution is to use multiple sub-networks for task learning
to handle the problem. The two-branch structure is effective in reaching a good
balance in terms of computational cost and accuracy [4,5,8,10]. Bilinear CNN
[5] set up local paired feature interactions in a translation-invariant manner.
HD-CNN [10] embedded CNN into the hierarchical structure of the two-level
classification. DDN [8] divided the data into disjoint classes and automatically
built network structure. Dual Net [4] is the first network to focus on multi-CNN
c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, CCIS 1142, pp. 13–20, 2019.
https://doi.org/10.1007/978-3-030-36808-1_2
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cooperation. Although these methods are instrumental in some tasks, they still
have the problem of feature redundancy.

Recently, the adversarial learning based Generative Adversarial Network
(GAN) [2] shows auspicious results in image generation. Yang and Peng [11,12]
proposed the D-PCN model combing adversarial learning and Dual Net. It is
expected that the feature representation of two branches of networks can be
enriched by adversarial learning. D-PCN has excellent performance in several
image classification datasets such as CIFAR-100 and ImageNet 32× 32. How-
ever, due to the mode collapse, the training process is usually unstable, especially
when dealing with fine-grained classification tasks, such as attribute recognition.

Inspired by the new adversarial loss of WGAN [1], we propose a novel model
named Dual Branch Adversarial Neural Network (D-BANN). As shown in Fig. 1,
the structure of D-BANN contains shared low-level convolutional layers, indepen-
dent dual mid-level backbone networks, and fully connected layers for feature-
level fusion. We also introduce the adversarial learning to enhance the feature
representation of the two branches. Different from the D-PCN, we introduce
the shared low-level layers to keep the model training more effective. In the pro-
posed D-BANN, the adversarial loss of the discriminator denotes the competition
between dual-branch. To handle the challenge of the instability of adversarial
learning, we introduce the Wasserstein distance as the adversarial loss, which
has been proved efficient in preventing gradient vanishes [1]. In realization, the
losses of different branches are tuned alternatively to reach a stable network.

Through adversarial learning of the parallel networks, the proposed model
can focus on different regions of the input image, and extract enhanced fusion
features with less redundancy. The improved loss function can also serve to accel-
erate the training of the model. Experiments demonstrate that the proposed
D-BANN can effectively enhance feature representation for visual attribute
classification.

2 Method

The network structure of D-BANN is shown in Fig. 1. The shared low-level layers
are the general convolutional layers that are used to form complex low-level fea-
ture maps of visual inputs, which can effectively decrease the number of param-
eters in the network and speed up the training. The subnet1 (S1) and subnet2
(S2) can be replaced by suitable backbone networks that might be decided by
the tasks. Each subnet contains an independent classifier to supervise the train-
ing process. The features are respectively extracted from the two branches and
fused in a cascade way as the inputs of the fully connected network. The discrim-
inator (D) between the two subnets is the core of the D-BANN. Its parameters
are tuned with the adversarial loss between the extracted features of the two
subnets, guiding the two branches to extract complementary features. For sim-
plicity, we adopt the three-layer fully connected network as classifiers for both
subnets, the discriminator, and the fusion decision block.
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Fig. 1. Illustration of the proposed D-BANN. This architecture includes shared low-
level layers, two independent subnets (S1 and S2), discriminator (D) and a fully con-
nected feature fusion classifiers. Illustration of the proposed D-BANN. This architecture
includes shared low-level layers, two independent subnets (S1 and S2), discriminator
(D) and a fully connected feature fusion classifiers.

2.1 Loss Functions of the Discriminator

In the GAN model [2], the form of adversarial loss is a two-play minimax game
between the discriminator D and the generator G as in Eq. (1). It aims at max-
imizing the distinction between the generated data and real data for D and
minimizing the distribution distance between G(z) and the real data for G.

min
G

max
D

V (D,G) = Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1 − D(G(z)))] (1)

In D-PCN [11,12], the adversarial loss is modified to a two-play max max set
as denoted in Eq. (2). The discriminator is tuned to classify the features from
Subnet1 as “real” and the features from Subnet2 as “false.”

max
S1,S2

max
D

V (S1, S2,D) = Ex[logD(S1(x))] + Ex[log(1 − D(S2(x)))] (2)

where the S1 and S2 denote extractors of Subnet1 and Subnet2 respectively.
When training the dual-branch model with such adversarial loss on high-

dimensional attribute images, the convergence of the model is hard to reach due
to the vanishing gradient. To solve the problem, we introduce the Wasserstein
distance in WGAN [1]. The overall objective function is denoted in Eq. (3).
Different from the general GAN models, there is no generative component in
the dual-branch architecture. The subnets of the network perform interactive
learning with the discriminator through the adversarial loss.

max
S1,S2

max
D,‖D‖L≤1

V (D,S1, S2) = Ex∼sub2[D(S2(x))] − Ex∼sub1[D(S1(x))] (3)

where D is a 1-Lipschitz function, by which, the calculation for the Wasserstein
distance can be simplified.

To extract distinctive and discriminative features from dual branch net-
work, the adversarial loss drives the dual-branches Subnet1 and Subnet2 to
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learn as diverse as possible representation. We take alternative optimization to
adjust the adversarial learning process correspondingly. The resulted subnets can
learn complementary features to enhance the representation ability for attribute
recognition.

2.2 Training Process

For training the combined network model, we adopt the alternative strategy for
a stable model. The subnets are initialized separately and jointly refined with
the competition of adversarial learning. The discriminator plays different roles
in different stages.

Low-Level Shared Layers. The shared layers serve to extract low-level fea-
tures. They are trained through jointing separately with the two subnets, and
the parameters are shared between the dual-branches. The design of low-level
shared layers can be regarded as mimic the vision system of humans in sharing
low-level neural paths.

Discriminator. The discriminator is trained to assign the correct labels to
samples from Subnet1 and Subnet2, which makes the two extractors receive
complementary features to avoid redundancy. The objective function of the dis-
criminator is defined as in Eq. (4).

Ld = min
D,‖D‖L≤1

−V (D,S1, S2) (4)

here we employ Wasserstein distance as the loss function of the discriminator. In
training, the parameters of discriminator are tuned alternatively jointing with
Subnet1 or Subnet2 separately. The discriminator plays a key role in alterna-
tive training. The extractors from Subnet1 and Subnet2 use the discriminator
as part of the loss function. Moreover, the Subnet1 extractor updates its param-
eters to extract features that look more ‘real.’ The discriminator, on the other
hand, updates its parameters to make itself better at picking out ‘false’ features
from ‘real’ features. We train the discriminator and the extractor form Subnet1
iteratively, and they are playing the game of ‘cat and mouse’ until the system
reaches a balanced state. Besides, through the training of the discriminator, the
weight from the Subnet2 has been further optimized.

Subnet1. The resulted feature maps of the shared layers are sent to Subnet1 for
training. Taking the cross-entropy as loss function, the initial training of Subnet1
follows Eq. (5).

Lsub1 = Lcls1 (5)

where the Lcls1 denotes the error of classifier of Subnet1. After the initialization
of Subnet2, the parameters of Subnet1 are fine-tuned with the supervision of the
discriminator, and the objective function is denoted in Eq. (6).

Lsub1 = Lcls1 + α1Ldisc1, Ldisc1 = −Ex∼sub1[D(S1(x))] (6)
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where α1 is the hyperparameter to balance the contributions of the two parts of
the loss, the Ldisc1 guides the features learned with the Subnet1 to be classified
as “true” by the discriminator.

Subnet2. The training of Subnet2 is under the constraints of the discriminator
to achieve both initial and fine-tuned parameters. The loss function of Subnet2
is defined as in Eq. (7).

Lsub2 = Lcls2 + α2Ldisc2, Ldisc2 = −Ex∼sub2[D(S2(x))] (7)

where α2 is a hyperparameter to balance the two parts of losses, and D(S2(x))
denotes the output of discriminator for Subnet2. The discriminator acts as a
regular term in the initialization of Subnet 2. In the alternative fine-tuned stage,
the discriminator guides the dual-branches to learn different features.

Fusion Layers. With the trained the parallel networks, the features from Sub-
net1 and Subnet2 are integrated and fused in feature level as input to the final
label predictor. The training of the fully connected layers is based on the loss
function defined in Eq. (8).

L = Llp + λ1Lsub1 + λ2Lsub2 (8)

where the Llp means the classification error of the final label predictor. Lsub1

and Lsub2 are regular terms balanced with two hyper-parameters λ1 and λ2

respectively.

3 Experiment

3.1 Datasets

To verify the validity of our model in attribute recognition, we have conducted
sufficient experiments on three attribute datasets, including one face attribute
dataset CelebA [7], two pedestrian attribute datasets Market-1501 [6] and Duke
[6]. For pedestrian attributes datasets, we observe that several attributes are
either more positive or more negative correlated with each other. As shown in

Table 1. Comparison of mean recognition accuracy on Market-1501, Duke and CelebA
datasets. Numbers in brackets are +/=/−, which indicates D-BANN performs bet-
ter/equally well/worse compared other approaches.

Datasets Market-1501 Duke Datasets CelebA

Methods AVG +/=/− AVG +/=/− Methods AVG +/=/−
PedAtrNet [6] 88.19 7/0/5 82.39 5/0/5 Baseline [13] 80.03 40/0/0

APR [6] 88.16 6/0/6 86.42 4/0/6 Liu et al. [7] 87.33 39/0/1

D-PCN [11] 88.13 9/1/2 85.54 8/0/2 Independent [3] 91.06 24/5/11

Ours 88.29 86.63 Ours 91.14



18 Y. Fang et al.

(a) Market-1501 attribute dataset (b) Market-1501 attribute dataset

(c) Duke attribute dataset (d) Duke attribute dataset

Fig. 2. (a) and (c) shows examples of attribute correlations on the Market-1501 and
Duke datasets. (b) and (d) are performance comparison on Market-1501 and Duke
attribute dataset.

Fig. 2(a) and (c), a high positive correlation exists between the attribute “gen-
der” and “hair” in Market-1501 dataset, and a high negative attribute exists
between the attribute “downblue” and “downblack” in Duke attribute datasets.
Such correlation may deteriorate the identification ability of a single branch
model. While with the dual-branch structure of D-BANN, more abundant rep-
resentation can be learned to promote the overall performance.

3.2 Experimental Analysis and Comparison

In order to evaluate the effect of D-BANN, we conduct the attribute classifica-
tion on Market-1501 and Duke attribute datasets. We compare our model with
D-PCN [11] and two multi-task learning models, i.e. PedAtrNet [6] and APR
[6]. We take the ResNet50 as the backbone of Subnet1 and Subset2 for a fair
comparison.

In Table 1, D-BANN significantly outperforms D-PCN achieves accuracy by
par with the multi-task methods on two pedestrian datasets. The comparison
also demonstrates the stability of our method. For counting of ranks on a sin-
gle attribute, D-BANN shows obvious superiority over the compared methods
on the Market-1501 and Duke attribute datasets. The recognition accuracy on
attributes “C.up” and “C.low” is greatly improved with our method.

We also compare the recognition results of 40 attributes on the CelebA
dataset with the other attributes recognition methods, including Independent
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Fig. 3. Attribute recognition accuracy on CelebA dataset.

CNNs [3], Liu et al. [7], and the baseline [13]. We use VGG16 as the backbone of
Subnet1 and Subset2. The results are summarized in Fig. 3, in which D-BANN
outperforms other compared single-task models and achieves the best result in
rank counting.

Further, for intuitive observation of the effectiveness of our model, we use
Grad-CAM [9] to visualize D-BANN. The thermal maps are shown in the Fig. 4.
In the response map of Grad-CAM, the gradual process from red to blue rep-
resents the gradual process of D-BANN attention from strong to weak. We can
observe the obvious correlation between the D-BANN feature and human visual
perception. People can quickly locate the part of the object that they want to
observe while ignoring other things that are not related to the task. Similarly,
the attention of D-BANN also responds strongly to the task-related features.
The results of the visualization also verify the effectiveness of D-BANN.

Fig. 4. Grad-CAM visualization of D-BANN on CelebA dataset, Market-1501 attribute
and Duke attribute dataset.

4 Conclusion

In this paper, we propose a dual adversarial neural network that can enhance
the representation ability of CNN features. Inspired by the idea of adversarial
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learning, we employ the discriminator to drive the parallel network to extract
features as complementary as possible. The training strategy ensures the differ-
ence of features learned by parallel networks. The proposed method significantly
outperforms several other methods for attribute recognition in several adapta-
tion scenarios. Besides, the visualization experiment proves the stability of our
model. In future work, we intend to employ other effective feature fusion methods
and explore more deeply the theoretical explanation of our model.

Acknowledgement. The work is supported by the National Natural Science Founda-
tion of China under Grant No.: 61976132 and the National Natural Science Foundation
of Shanghai under Grant No.: 19ZR1419200.

References

1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint
arXiv:1701.07875 (2017)

2. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680 (2014)

3. Hand, E.M., Chellappa, R.: Attributes for improved attributes: a multi-task net-
work utilizing implicit and explicit relationships for facial attribute classification.
In: AAAI, pp. 4068–4074 (2017)

4. Hou, S., Liu, X., Wang, Z.: DualNet: learn complementary features for image recog-
nition. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp.
502–510. IEEE (2017)

5. Lin, T.Y., RoyChowdhury, A., Maji, S.: Bilinear CNN models for fine-grained
visual recognition. In: Proceedings of the IEEE International Conference on Com-
puter Vision, pp. 1449–1457 (2015)

6. Ou, X., Ma, Q., Wang, Y.: Improving person re-identification. Multimed. Tools
Appl. 78, 28257–28283 (2019)

7. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild.
In: Proceedings of the IEEE International Conference on Computer Vision, pp.
3730–3738 (2015)

8. Murthy, V.N., Singh, V., Chen, T., Manmatha, R., Comaniciu, D.: Deep decision
network for multi-class image classification. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2240–2248 (2016)

9. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D., et al.:
Grad-CAM: visual explanations from deep networks via gradient-based localiza-
tion. ICCV, 618–626 (2017)

10. Yan, Z., et al.: HD-CNN: hierarchical deep convolutional neural networks for large
scale visual recognition. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 2740–2748 (2015)

11. Yang, S., Gang, P.: D-PCN: parallel convolutional neural networks for image recog-
nition in reverse adversarial style (2017)

12. Yang, S., Peng, G.: D-PCN: parallel convolutional networks for image recognition
via a discriminator (2017)

13. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS,
vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10590-1 53

http://arxiv.org/abs/1701.07875
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53


Data Augment in Imbalanced Learning
Based on Generative Adversarial

Networks

Zhuocheng Zhou1, Bofeng Zhang1(B), Ying Lv1, Tian Shi1,
and Furong Chang1,2

1 School of Computer Engineering and Science, Shanghai University, Shanghai, China
{bearing512,bfzhang,lvying2016}@shu.edu.cn

2 School of Computer Science and Technology, Kashi University,
Kashi, Xinjiang, China

Abstract. Imbalanced learning is a traditional problem in machine
learning and widely occurs in many applications. Most of the methods
apply simple geometric transformation for data augment to imbalanced
datasets. Due to those methods learn from local information, they might
generate noisy samples in the dataset with high dimension and special
complexity. To solve the problem, we propose an improved Generative
Adversarial Networks with modification function (GAN-MF) to approxi-
mate the true distribution of the minority class of the dataset. The model
could generate data from an overall perspective to overcome the limita-
tion of the simple geometric transformation. The performance of GAN-
MF is compared against multiple standard oversampling algorithms on
several imbalanced learning tasks. Experiments demonstrate that the
model has an improvement in data augment for imbalanced learning.

Keywords: Imbalanced learning · Generative Adversarial Networks
(GAN) · Data augment · Modification function

1 Introduction

Learning from the imbalanced dataset is challenging and meaningful in many
common areas including fraud detection, healthcare and medical diagnosis and
many other applications. The reason why the performance of classifier drops
sharply when dataset is imbalanced is that most standard algorithms assume or
expect that the class distribution is balanced. So that, features of the minority
class might be missed or neglected.

Imbalanced learning refers to the dataset in which one or several classes are
outnumbered than the others. The gap in number of instances among the classes
is defined as the imbalanced ratio (IR) [7].
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Devoted to improving the performance of imbalanced learning, different
methods have been proposed, those could be summarized into several categories.
The first is from the data perspective, focusing on reinforcing the learning on
the minority by the means of sampling and feature selection [2]. Besides, syn-
thetic sampling for data augment is also widely used. The second is to encourage
the classifiers to minimize the cost errors by introduced cost-sensitive, ensemble
learning and kernel-based methods [3,9]. The third is to restructure the classifier
to suit the task according to the background of the applications. For instance,
the algorithm of transfer learning and genetic algorithm are integrated in imbal-
anced learning [1].

However, with the rise in data complexity, methods mentioned above might
be insufficient, especially in terms of data augment. Inspired by the fact that
Deep Generative Models (DGMs) can synthesize new samples based on the dis-
tribution captured from the overall class rather than local information [8]. We
try to synthesize sampling based on Generative Adversarial Networks (GAN)
for data augment to improve the imbalanced binary classification. Whereas, the
vanilla GAN model is restricted to continuous derivable variables for the gradient
policy and the instability in training for model collapse and vanishing gradient.

To settle the matters, we proposed a novel GAN model (GAN-MF) based
on a modification function f (x) to approximate the true data distribution of the
minority class. With the help of the modification function, the numeric discrete
detests in imbalanced learning are converted into datasets with approximate
Gaussian distribution that could be accepted by the GAN model and be trained
in a stable way. The performance of the model is compared against multiple
standard over-sampling algorithms and another generative model of Variational
Auto-Encoder (VAE) based on 6 classifies. Experiments show GAN-MF has
improved the results in imbalanced learning tasks.

The sections in the paper are organized as follows. In Sect. 2, an overview
of related previous works regarding to GAN models and imbalanced learning
are described. In Sect. 3, the model of the GAN-MF and application to the
imbalanced learning is stated. In Sect. 4, the experiments and the results are
addressed in detail. Finally, conclusions are provided in Sect. 5.

2 Related Works

Because of the simplicity and effectiveness of the algorithm, algorithms based
on data augment are most widely used [6]. They offer additional minority-class
instances derived by applying simple geometric transformations for the training.
As the most classic one, Synthetic Minority Over-sampling Technique (SMOTE)
provides a mechanism in creating artificial data based on the feature space sim-
ilarities among the existing minority in the d-dimension dataspace X. The new
instance xnew is created by (xi +λ(xj −xi)), where xi,j is the minority instance
in X, and xj is selected considering to the k-nearest neighbor for xi. Therefore,
xnew is created in the vector between xi,j , located in a random percent of way
from xi,j as λ ∈ [0, 1].
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However, SMOTE has a vague understanding of the boundary and might
generate noisy samples. To modify the algorithm, several rules including Edited
Nearest Neighbor, balanced and weight level have been introduced into the algo-
rithm which is summarized in [5]. Since they learn from local information, they
might be ineffective in dealing with data in high dimensions.

DMGs have been gradually introduced to data augment for the excellent
capability to represent multidimensional and complex data. Neural augment is
firstly proposed in imbalanced picture classification in [11]. After that, Balanc-
ing GAN (BAGAN) [10] goes further more by taking attention mechanism to
the training. The method based on Conditional generative adversarial networks
(CGAN) [4] has also been addressed in learning numeric imbalanced data where
additional space Y , as the label of the instance, is introduced to extra valuable
information from latent space.

Although many efforts have been made, little research has been conducted in
using GANs in learning the numerical variables dataset, and there is hardly no
evidence suggests whether it is effective for GANs to generate discrete skewed
data in dealing with imbalance learning. Meanwhile, it is unknown whether
GANs have a shortage of capacity and training time when compared with stan-
dard over-sampling methods.

3 GAN-MF Model for Imbalanced Learning

3.1 The GAN-MF Model

The aim of generative model is to learn the data probability distribution pdata(x)
over the real space Rd. Although GANs have shown excellent ability to capture
the distribution in many applications, the vanilla GAN model has been proved
to be unsuitable to deal with discrete data for the model has hardly no gradient
in generation process [12]. In addition, the model has a problem in training for
model collapse and gradient vanish.

Thus, we introduced a modification function to figure out the limitation
of the GAN model. The modification function f(x) serves the role to convert
problems of discrete data into an approximate continuous variable one that can
be served by the GAN model. In other words, the d-dimensional real space is Rd

is mapped to a special vector space Rd′
where numerical differences in features

are relatively smooth and representative features of the dataset are preserved.
As the result, the two-player minimax game between the discriminator D

and the generator G is improved. As G acts the role of producing fake data with
striking resemblance from the latent variable z, D tells the data from sampled
from the true data distribution pdata(f(x)) apart from those forged by G, where
z is defined on the latent space Z.

The value function of the GAN-MF model is described in (1), where E()
represents the calculated expectation. From the view of D, it will maximize the
outs if given data from real data and minimize the output if given data from
G. Thus, D is optimized followed as log(1 − D(G(z)). At the same time, G tries
the best to maximize the output of G when the fake is presented to D. G is
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optimized by log D(f(x)). Finally, the generator’s distribution pg(x) approaches
to pdata(f(x)). The distribution of discrete dataset is related to G(z, θ), where
θ is tuning parameters of the G.

min
G

max
D

V = Ex∼pdata(f(x))(log D(f(x))) + Ez∼pz(Z)[log(1 − D(G(z)))] (1)

3.2 Modification Function

With the help of modification function, the model has the ability to approximate
the data distribution of the minority and generate augmented datasets that
can present characteristics in a much smaller size than the simple geometric
transformation.

Jensen-Shannon divergence and Wasserstein distance are widely used as the
way to measure the difference in data distribution and optimizer for the network.
We defined a vector x = (x1, x2, x3, ...xn) as a discrete multivariate random vari-
able where values of xi are from fractions and integers. When we try to evaluate
the Wasserstein distance between two probability distributions Pa and Pb, where
P(a,b) is over the set of values for x, we find that it is a Linear Program (LP)
problem. Therefore, the runtime reflects exponential growth with the increase in
dimensions of data and variety of variables.

W (Pa, Pb) = minγ∈∏
(Pa,Pb)

∑

i

∑

j

γ(xi, xj)d(xi, xj) (2)

where d(xi, xj) is the distance between xi, xj and
∏

(Pa, Pb) is defined as the set
of joint probability distribution γ(xi, xj) whose marginals are Pa and Pb.

The same problem also occurs in the JSD which is used in most GAN mod-
els. As a consequence, it is clear that learning directly from difference in discrete
mathematical distribution is not easy. Since the fact that it is difficult to mea-
sure the difference in discrete data distribution, the modification f(x) become
significant to GAN-MF. The modification we proposed is shown in (3), where μi

is the mean of the feature xi is and σi is the standard deviation of xi.

max(0,
xi − μi

σi
) (3)

Suppose that the networks is defined as U = Wx + b, Z = F (U), where F ()
is the activation function and W , b is the vector of weights and bias. When the
modification is worked to the algorithm, the networks is transformed into (4):

U(f(x)) = W [max(0,
xi − μi

σi
)] + b (4)

Therefore, if xi > μi, U(f(x)) = W (xi−μi

σi
) + b. All the features has been

transformed to an approximate Gaussian distribution N(0, 1) which could be
accepted by the GAN model and positive to the convergence of the networks. If
xi < μi, xi would be 0 in x. The vector would become sparse and the features
would be more independent.
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Fig. 1. GAN-MF for imbalanced learning. M refers to the minority of the dataset, G
′

is the augmented dataset generated by G∗ for training. (Color figure online)

4 Experiments and Results

The framework of the GAN-MF Model in imbalanced learning we proposed is
shown in Fig. 1.

(1) k-fold cross validation is applied with k = 5, the dataset is factitiously divided
into 5 parts. Each part has approximately equal instances for both classes.

(2) All the hyperparameters of classifiers are performed with maximum accuracy
under original dataset and used in subsequent experiments.

(3) The minority examples M colored in blue in Fig. 1 are isolated for training
the GAN model G∗ with tuning parameters.

(4) G∗ as a generative model could generate artificial dataset G
′

by receiving
random noise as input. Hence, the dataset used for training the classifies is
composed of G

′
(colored green in Fig. 1) and sampled from real ones in M .

In this work, we rebalanced the dataset to the equal IR to the traditional
methods. It made sure that classifies could learn unbrokenly. We doubled or
tripled the number of minority classes in training for the methods based on deep
generative models since they learn from an overall view.

Datasets. Several datasets from the Machine Learning Repository UCI and a
credit card detection dataset were chosen for experiments. Aiming to objectively
test the performance of the GAN-MF model, by the means of the under-sampling
and random-sampling, the datasets from UCI were generated into additional
dataset according to IR of 4, 10 on purpose. This procedure was applied only
when the instances of the minority in the sub-dataset is no less than 5. Table 1
shows the datasets in detail. Values separated by comma in the table cells are
related to the same dataset over original status and different IR in 4 and 10.

Architecture of the GAN-MF Model. In this work, both G and D used
a module of multilayer perceptron with one single hidden layer. No convolu-
tion layers was need. Binary cross-entropy was served as the loss function. Relu
was selected as the activation function in the output layer for G when Sigmoid
was used in D. As Adam optimizer was used as the optimizer in G, Stochastic
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Table 1. Description of the datasets in detail.

Dataset Features Majority instances Minority instances IR

Segment 16 1980,1000,1000 330,250,100 6,4,10

German 24 700,400,400 300,100,40 2.333,4,10

Pima 8 500,400,400 268,100,40 1.8656,4,10

Liver 10 416,400,400 165,100,40 2.491,4,10

Haberman 3 255,200,200 81,50,20 2.778,4,10

Ionosphere 34 255,200,200 126,50,20 1.786,4,10

Breastcancer 16 458,400,400 241,100,40 6,4,10

Credit card 29 284315 492 577.876

Gradient Descent(SGD) was chosen in D. Dropouts was used in G with a prob-
ability of 0.5. The input random noise followed a normal distribution. The other
hyperparameters of the networks are described in Table 2. The optimal range
for the numbers of epochs shoule be 5000–15000, much smaller than the one in
the picture. The batch size should be set carefully to ensure that the final num-
ber of minority class instances is sufficient for the training. No dimensionality
reduction methods were used. All samples with missing values were deleted.

Table 2. Parameters for GAN-MF model in detail. Including dimension dz, number
of hidden units for G and D, learning rate and batch size. The values in the same
cell refers to the parameters under the IR of 4 and 10. NG and ND is defined as the
number of units for hidden layer of G, D.

Dataset dz NG ND Learning rate Batch size

Segment 80,120 100,50 30,130 0.0005,0.0005 20,10

German 150,100 90,80 50,50 0.0005,0.0005 16,8

Pima 20,8 50,45 80,80 0.0005,0.0005 8,8

Liver 50,25 35,50 20,30 0.0001,0.0005 5,5

Haberman 10,10 20,20 10,15 0.0005,0.0005 10,8

Ionoshere 200,120 30,25 90,90 0.0005,0.0005 8,8

Breastcancer 70,70 90,90 30,30 0.0005,0.0005 10,10

Creditcard 200 36 100 0.0001,0.0001 10

Assessment Metric. F-measure, the geometric mean of specificity and sen-
sitivity (G-mean) and Area Under the ROC Curve (AUC) were chosen as the
assessment criteria. k-Nearest Neighbors (KNN), Logistic Regression (LR), Deci-
sion Trees (DT), AdaBoosting classifier, Nave Bayes (NB) and an ensemble learn-
ing method based on the simple voting (Vote) method were chosen as classifies.
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Furthermore, a ranking score and the Friedman test were given for more holistic
evaluation of the results. The ranking score was applied to each data augment
method for the experiments of 14 datasets under different assessment metrics and
classifiers. In the rank, the best performing method ranks 1 and the worst one
ranks 6. Besides, we defined the under-fitting as the situation that F-measure
was under 50% and G-mean was under 40%. The under-fitting methods were
set 6 in the rank. The Friedman test is a non-parametric statistical test, and
widely used to detect the difference between treatments across multiple research
attempts. The null hypothesis in the work is whether GAN-MF model is as
effective as traditional over-sampling methods for data augment in imbalanced
learning.

Results. The meaning ranking results are summarized in Fig. 2, where each
plot is related to three assessment metrics and a classifier. Each mean rank is the
result of 14 datasets based on the same classify. From a macro perspective, the
model of GAN-MF has shown the improvement in most classifiers and datasets.

With fewer training data for data augment, we observe that the GAN-
MF outperforms all other data augment methods when the voting algorithm

Fig. 2. Result for mean ranking of various data augment methods.
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Table 3. Result of Friedman test. If p < α, reject the hypothesis.

α = 0.05 KNN DT LR NB Adaboost Vote

X2
γ 6.81 3.857 5.857 4.333 9.95 4.904

p 0.235 0.570 0.320 0.502 0.077 0.427

is selected as the classifier. It is also clear that the GAN-MF has an advantage
to the metric of G-mean and AUC in more than four-fifths of cases.

The result of the Friedman test is shown in Table 3. All the p-values are
more than the given standard value and the hypothesis are all not rejected
where α = 0.05. It means that the performance of the classifies show no bias
in different methods and GAN-MF model is superior to traditional methods in
data augment for imbalanced learning.

In the terms of the vibration in the mean rank for the GAN-MF, it should
be noted that F-measure might be sick since the classifies would be favor to the
majority and mark a high score for original imbalanced data. Both GAN and
VAE have done a bad performance especially in the dataset with fewer features
and instances which result in the drop in meaning rank.

As it can be seen from Table 4, G-mean and AUC have improved appreciably
and F-measure holds the line when augmented data synthesized by GAN-MF is
used in training. Each result is the average of the cross validation. The instance of

Table 4. Results of credit card fraud detection.

Metric Methods None Smote Adasyn SmoteEnn VAE GAN-MF

F-measure KNN 0.99962 0.99839 0.99839 0.99822 0.99962 0.99964

DT 0.80092 0.85970 0.85956 0.85972 0.81792 0.83056

LR 0.99957 0.98131 0.93163 0.98128 0.81752 0.86709

NB 0.98873 0.98766 0.97642 0.98759 0.98723 0.98765

Adaboosting 0.85081 0.83962 0.83865 0.83865 0.98773 0.99887

Vote 0.99778 0.99353 0.98388 0.99331 0.99947 0.99965

G-mean KNN 0.84812 0.89138 0.89013 0.89686 0.84812 0.90812

DT 0.67981 0.57068 0.58051 0.60438 0.71749 0.71979

LR 0.77057 0.92087 0.90380 0.93396 0.71803 0.83957

NB 0.89860 0.91339 0.91993 0.91332 0.91576 0.92349

Adaboosting 0.66077 0.77537 0.76366 0.76366 0.79003 0.84511

Vote 0.87027 0.91506 0.91865 0.91598 0.87436 0.91948

AUC KNN 0.86145 0.89785 0.89682 0.90276 0.86145 0.91389

DT 0.76956 0.70109 0.70920 0.71636 0.76339 0.77974

LR 0.80050 0.92197 0.90644 0.93503 0.78298 0.85602

NB 0.90253 0.91570 0.92111 0.91563 0.91782 0.92469

Adaboosting 0.73837 0.81944 0.80377 0.80377 0.81732 0.85964

Vote 0.87997 0.91850 0.92157 0.91930 0.88362 0.90901
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the augmented data generated by GAN-MF for training is about 1100, about one
hundredth of the ones based on simple geometric transformation. Since GAN-
MF learn the screwed dataset from an overall way, the classify can capture the
representative feature in a more effective way. In the terms of G-mean and AUC,
the GAN-MF model has outperformed in two-thirds of classifies. The classify of
Adaboosting and KNN have been obviously improved by the GAN-MF.

5 Conclusion

In this work, we proposed a GAN-MF model for data augment to improve the
imbalanced learning. Since the model learns the dataset from an overall view,
it can generate data for augmentation based on the learned distribution. Mod-
ification function is employed to converts the numeric discrete detests into the
one that could be train in a stable way. The model has been evaluated on sev-
eral datasets, with much fewer augmented data, the model has done a good
performance for most classifies, especially in dataset with high dimension.

More work should be taken to overcome the limitation of the model in stabi-
lization, capacity and training time. The whole model still suffers from collapse
problem. Our future work will try more different networks as well as take more
other deep generative models into practice.
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Abstract. Pedestrian parcel inspection is a common security measure
in some public places like railway entrances. Automatic identification of
the affiliation between pedestrians and parcels is an important task in an
intelligent security inspection system. However, it is very challenging due
to the high pedestrian volume in these places. In this paper, we propose
a deep learning scheme for extracting pedestrian-parcel tuples from cam-
era videos, which includes three modules, i.e. detection, interaction and
re-identification of pedestrians and parcels. We first detect pedestrians
and parcels in each frame, and then discriminate the affiliation between
pedestrians and parcels by interaction behavior analysis, finally discard
the redundant affiliations by re-identification of pedestrians and parcels.
In the interaction module, we propose a lightweight interaction model for
discriminating the affiliation between pedestrians and parcels in a single
RGB image. Experiments on a video data at a subway entrance validate
the proposed approach.

Keywords: Deep learning · Detection · Intelligent security inspection

1 Introduction

With the successful application of computer vision technology in visual surveil-
lance, intelligent security inspection gradually attracts researcher’s attention.
In subway entrances, pedestrian parcel inspection is the most common scenario
for security inspection. Every day, thousands of parcels pass security inspection.
Once a dangerous parcel has been found out, it is necessary to look for the corre-
sponding potential criminal which carries the dangerous parcel. Therefore, how
to accurately identify and record the affiliation between pedestrians and parcels
in real time from subway entrance video is essential to subway security.

Given a video, our goal is to capture the coordinate of pedestrians and parcels
from it and calibrate the affiliation between the pedestrians and the parcels. But
due to the high pedestrian volume in subway entrances, it comes a big challenge.
Fortunately, the power of deep learning makes it possible. In recent years, deep
c© Springer Nature Switzerland AG 2019
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learning has achieved great success in various fields such as object detection [12],
classification [3], and re-identification [8]. By leveraging deep learning, we can
tackle many challenging task like the one we just mentioned.

In this paper, we propose a deep learning scheme for extracting pedestrian-
parcel tuples from camera videos, which includes three modules, i.e. detection,
interaction and re-identification of pedestrians and parcels. We first detect pedes-
trians and parcels in each frame, and then discriminate the affiliation between
pedestrians and parcels by interaction behavior analysis, finally discard the
redundant affiliations by re-identification of pedestrians and parcels.

The major contributions of our work are two folds:

– We propose a lightweight interaction model in the interaction module to dis-
criminate the affiliation between pedestrians and parcels in a single RGB
image.

– We propose a deep learning frame for extracting pedestrian-parcel tuples from
camera videos and obtain a powerful performance.

2 Method

In this section, we present our deep learning scheme for extracting pedestrian-
parcel tuple from a video, where we use three deep learning modules, i.e. detec-
tion, interaction and re-identification. As show in Fig. 1, for each frame, we first
detect pedestrians and parcels by detection module, and then crop the joint
area of the candidate pedestrian-parcel pairs. After that, we use the interaction
module to discriminate the affiliation of candidate pedestrian-parcel pairs and
then use the Re-ID module to extract the feature of associated pedestrian-parcel
pair. Finally, the algorithm merges the two information streams with previous
results, and then updates the current results.

Fig. 1. Overview of the proposed scheme.
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2.1 Detection Module

Object detection is a fundamental task in computer vision. The aim of object
detection is to locate all pre-specified objects. Existing deep learning based meth-
ods are mainly divided into two categories, single-stage and two-stage detectors.
Single-stage detectors, such as YOLO [9–11] and SSD [7], have a simple structure
and is fast. R-CNN [1] and its derived structure Faster R-CNN [12] are the rep-
resentative two-stage detectors. Compared to single-stage detectors, two-stage
detectors is slower but more accurate.

Due to the high pedestrian volume in subway entrances, two-stage detectors
with higher precision and recall is more suitable than one-stage detectors. Thus,
in our work, we choose Faster R-CNN as our detection network to accurately
detect pedestrians and parcels in each frame. In the Faster R-CNN network,
a convolutional backbone is used to extract the features of image first, then a
region proposal network (RPN) is used to score thousands of region proposals.
After that, a small part of high-scoring region proposals is picked out and resized
to a same size by a RoI pooling layer. Finally, all picked region proposals are
sent into the R-CNN network, and the R-CNN network outputs a vector whose
length is proportional to the number of categories for each region proposal. For
each category, the R-CNN network outputs a 4-dimensional vector representing
the size and offset and a score for each region proposal. After that, we use
a hyperparameter H1 as threshold to filter region proposals whose pedestrian
score is lower than H1 while another hyperparameter H2 is used to filter region
proposals whose parcel score is lower than H2. In our work, H1 is set to 0.8 and
H2 is set to 0.7. One more step is to use non-maximum suppression algorithm
to filter most repeated regions. Finally, we obtain pedestrians detection results
Ai = {ai0, ai1, ...} and parcels detection results Bi = {bi0, bi1, ...} for frame i.

2.2 Interaction Module

Understanding human-object interaction detection is an important task in visual
analysis. The aim of the interaction module is to discriminate the affiliation
between pedestrians and parcels in a single RGB image.

When interactions between pedestrians and parcels happen, it is impossi-
ble to have a large distance between them. So for the detected pedestrians and
parcels in one frame, we first extract possible pedestrian-parcel pairs accord-
ing to the boundary relationship between pedestrian bounding box and parcel
bounding box. For each pedestrian bounding box aim = (ax

im, ay
im, aw

im, ah
im) and

parcel bounding box bin = (bx
in, by

in, bw
in, bh

in), compute an extension box Ebin.

Ebin = (bx
in, by

in, 2 × bw
in, 2 × bh

in) . (1)

After that, compute IOU(aim, Ebin). If it’s positive, then (aim, bin) is a candi-
date pair. Note that box1∩box2 represents the overlapping area of the two boxes
while box1 ∪ box2 represents the joint area.

IOU(box1, box2) =
box1 ∩ box2

box1 ∪ box2
. (2)
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This step will remove many impossible combinations of pedestrians and parcels,
so that the load of the interaction module can be decreased.

Fig. 2. Interaction model. The blue block represents a convolutional layer, while the
orange block represents a pooling layer and the green block represents a fully connected
layer. The (3×3×64) means that the convolutional layer has 64 channels, and its kernal
size is 3×3. The FC(512) represents that the fully connected layer has 512-dimension.
And the tail ×2 means the current layer is repeated twice. (Color figure online)

We propose a lightweight interaction model to discriminate the affiliation of
the pedestrian-parcel pairs. Figure 2 shows our interaction network structure.
For each pedestrian-parcel pair, we crop joint area, zero the pixels outside the
pedestrian and parcel bounding box, and resize the croped image to 224 * 224
as the input of the interaction network. At the last layer, we apply a softmax
function to standardize output. The output of the network is a 2-dimensional
vector that represents the associated score and unassociated score. A parcel bin

is considered to be associated with a pedestrian aim if the associated score is
higher than a hyperparameter H3 which is set to 0.5 in our work. For one parcel
bin, if there are multiple pedestrians associated with it, then we consider the
pedestrian with the highest associated score as its associated target.

In train process, we use a focal loss [5] to optimize our network. Focal loss
is an advanced method to balance training weight between hard samples and
easy samples. As shown in Eq. 3, the parameter t represents the class while pt

represents the confidence of class t. The αt is calculated by Eq. 4. The parameters
α and γ are hyperparameters selected by experience. In our work, α is set to
0.25 and γ is set to 2.

FL(pt) = −αt(1 − pt)γ log(pt), t ∈ {0, 1} . (3)

αt = t × α + (1 − t) × (1 − α) . (4)

2.3 Re-ID Module

Re-identification is to match the same subject in the images of different scenes
or different times. Due to the large amount of duplicate information among
frames, we need to discard redundant affiliations by re-identification of pedestri-
ans and parcels. We use a standard baseline [8] as our re-identification network.
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The structure of this network consists of a ResNet-50 [3] backbone, an average
pooling layer, a 512-dimensional fully connected layer and a 751-dimensional
fully connected layer. Note that there is a batch normlization operation after the
512-dimensional fully connected layer. The output of the last layer is 751 dimen-
sion because the baseline network was trained as a classifier on a dataset of 751
categories. Each pedestrian or parcel image is resized to 256×128, then sent into
the re-identification network. The output of the 512-dimensional fully connected
layer is used as the feature f of the input image.

For each pedestrian pair (a1, a2), its similarity is measured by fa1 ·fa2 , which
is a number between 0 and 1. Because pedestrian re-identification is a similarity
problem, the model can also be used to parcel re-identification.

2.4 Algorithm

In this section, we give the algorithm diagram of the whole system for an easy
implementation. Since the frame changes very little in a short time, we only
process 1 frame every 5 observed frames to reduce the burden of system. Our
algorithm procedure is showed as Algorithm 1.

Algorithm 1
1: Sequences ← {}, Results ← {}
2: for frame i = 0 → N do
3: Ai, Bi = Detection(), CandidatePairs = {}
4: for aim in Ai do
5: for bin in Bi do
6: if IOU(aim, Ebin) > 0 and Interaction(aim, bin) > H3 then
7: CandidatePairs.add((aim, bin))
8: end if
9: end for

10: end for
11: for j = 0 → len(CandidatePairs) do
12: if maxk(Avesim(Seqk, aim)) < H4 or Sequences is empty then
13: generate new Seq
14: Seq ← {(aij , bij)}
15: Sequences.add(Seq)
16: else
17: Seqk.add((aim, bin))
18: end if
19: end for
20: for j = 0 → len(Sequences) do
21: if Interval(Seqj , i) > H5 or len(Seqj) > H6 then
22: Results.add(Seqj), Sequences.remove(Seqj)
23: end if
24: end for
25: end for
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In this algorithm diagram, we first detect pedestrians and parcels in current
frame, and then extract candidate pedestrian-parcel pairs from the detection
results, finally match the same pedestrians or parcels between current frame and
previous multiple frames by re-identification to discard the redundant affiliations.
Sequences is a set for caching unfinished pedestrians sequence with correspond-
ing parcels, while Results is used for saving finished ones. For current frame, we
define a set named CandidatePairs for saving all candidate pedestrian-parcel
pairs. Function Avesim() calculates an average similarity between aim and the
pedestrians stream in Seqk. Another function Interval() returns an integer rep-
resenting the frame interval between current frame i and the latest pair in Seqj .
H4 is a hyperparameter which is set to 0.7 in our work while H5 is set to 25 and
H6 is set to 100.

3 Experiments

3.1 Experimental Setup

Dataset. For the detection module, we labeled pedestrians and parcels from
3000 images extracted from a video. Any two images have an interval of more
than one second. 80% of the images are used as training set while the rest as
testing set.

For the interaction module, we labeled 5000 associated and 3756 unassociated
pedestrian-parcels pairs from about 4000 different images. 90% of the pairs are
used for training and the rest is used for testing.

For the Re-ID module, we use a public dataset called Market1501. It contains
751 individuals for training and 750 individuals for testing.

Evaluation Metrics. We evaluate the detection module performance using the
commonly used mean average precision (mAP) [4]. For the interaction module,
we use F1 score [2] to make an evaluation. And Rank-1, Rank-5, Rank-10 and
mAP [6] results are used to evaluate the Re-ID module.

Implementation Details. For the detection module, we use a learning rate
of 0.001, a weight decay of 0.0005 and a momentum of 0.9 to train network
for 70 K iterations. For the Re-ID module, we use a learning rate of 0.005, a
weight decay of 0.0005 and a momentum of 0.9 to train network for 60 epochs.
And the interaction module is trained for 70 K iterations with a learning rate of
0.0001 and an Adam optimizer. All experiments are done on a single NVIDIA
GTX1080Ti GPU.
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3.2 Results

In the detection module, the AP of pedestrians is 0.890 while parcels’ is 0.503,
and the mAP is 0.697. In the interaction module, the results are 450 TP (True
Positive), 90 FP (False Positive), 261 TN (True Negative) and 75 FN (False
Negative). So the F1 score of interaction module is 0.845. In the Re-ID module,
Rank-1 is 0.884, Rank-5 is 0.955, Rank-10 is 0.971 and mAP is 0.723.

Fig. 3. Visualization. The image is a sequence of one pedestrian and its parcel
extracted from a continuous frame stream.

From the results of detection module, we can see that the AP of parcel
detection results is lower than the one of pedestrian detection results. The main
reason is that the appearance, shape and scale of parcel images change dramat-
ically with variations of camera viewpoints and we have not enough training
data of parcels, while the pedestrian detection is a more common task solved
using Faster RNN. Moreover, occlusions of parcels are more serious than pedes-
trians with a high pedestrian volume. From the results of interaction module, we
can see that our proposed interaction model have an excellent performance in
discriminating the affiliation between pedestrians and parcels. The accuracy is
450/(90 + 450) = 83.3%, and the recall is 450/(75 + 450) = 85.7%. Considering
the small size of the training dataset, the error rate of the model is acceptable.
The results of Re-ID module shows that the module has a powerful performance.
It provides a strong support for our work.

Although the results of detection module and interaction module are not
so satisfied, they will not bring about a significant impact on final result of
the pedestrian-parcel tuple extraction. This is because the results are only for
images, while the ultimate goal of the whole system is to extract pedestrian-
parcel tuples from whole video. The correct pedestrian-parcel tuples can be
obtained, provided that there exists one frame handled well during the interac-
tion process between pedestrians and parcels. We visualize results of our scheme
at Fig. 3. The visualization shows that our scheme has a powerful performance
in extracting pedestrian-parcel tuples from videos.
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4 Conclusions

Automatic identification of the affiliation between pedestrians and parcels is
an important task in an intelligent security inspection system. In this paper,
we propose a deep learning scheme for extracting pedestrian-parcel tuples from
camera videos, which includes three modules, i.e. detection, interaction and re-
identification of pedestrians and parcels. In the interaction module, we propose
a lightweight interaction model for discriminating the affiliation between pedes-
trians and parcels in a single RGB image. The proposed approach is validated
using the video data captured at subway entrances, and shows a good perfor-
mance. However, some issues like parcel detection still need to be improved. In
the future work, we will annotate more training data, and continue to improve
the performance of the whole system.
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Abstract. Generative adversarial network (GAN) is an implicit gener-
ative model known for its ability to generate sharp images. However,
it is poor at generating diverse data, which refers to the mode collapse
problem. It turns out that GAN is prone to emphasizing the quality of
samples but ignoring their diversity. When mode collapse happens, the
support of the generated data distribution is not aligned with that of
the real data distribution. We thus propose Support Regularized-GAN
(SR-GAN) to address such a mode collapse issue by matching their sup-
port. Our experiments on synthetic and real-world datasets show that
our regularization can mitigate the mode collapse and also improve the
data quality.

Keywords: GANs · Mode collapse · Support matching

1 Introduction

Generative adversarial networks (GANs) [3] implicitly model the statistical dis-
tributions for real data and have distinguished abilities in generating sharp
images. Regarding the architecture of GANs, there are two networks – one is
called the generator, which aims to generate samples like real data; another is
called the discriminator, which examines input samples whether they are real or
fake. GANs do not need an explicit form of the data distribution and instead
train the generator by a binary classification of the discriminator.

GAN, however, suffers from several challenging problems. Mode collapse is
one of the major challenges, which refers to poor mode diversity in generated
samples [7]. There are two types of mode collapse being observed: entire modes
of the input data are never generated, or the generator just generates some of the
modes [7]. Like shown in Fig. 1a, the vanilla GAN only generates one mode of
the data. Arjovsky et al. [1] derive that the unsaturated objective in the vanilla
GAN is equivalent to minimize the reverse Kullback-Leibler (KL) divergence and
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(a) GAN with mode collapse (b) SR-GAN

Fig. 1. (a) Problem: GAN suffers from the mode collapse, i.e., only generating one out
of three modes. (b) Our solution (SR-GAN): red panels are the estimated support of
real data. They are used to penalize the generated modes with no/scarce samples and
guide the generator to disperse samples with all modes. (Color figure online)

maximize Jensen-Shannon (JS) divergence between the real data distribution
and the generated data distribution simultaneously. The KL term assigns an
extremely high cost to generating fake looking samples, and an extremely low
cost to missing modes, which results in GAN’s mode collapse problem.

Since the GAN’s objective causes the mode collapse, we propose to add reg-
ularization to improve it. In Fig. 1a, we can observe that when mode collapse
arises, the support of the real data distribution, namely, the domain of data
space, and the support of the generated data distribution cannot be matched,
which motivates us to use such matching as a regularization for GANs (Fig. 1b).

Our Contributions. We propose Support Regularized-GAN (SR-GAN) to
improve mode diversity. Our main idea is to align the support of the gener-
ated data distribution with that of the real data distribution. To be specific, a
support estimator is used to capture the structure of the real data support. Then
an extra support matching regularization term is introduced to enforce the gen-
erator to cover all sub-structures of the data support. Experimental results on
synthetic and real-world datasets show that the support matching indeed avoids
the mode collapse and also improves the data quality for GANs.

2 Related Work

Many works are proposed to solve the mode collapse problem. In particular, there
are two works most related to ours [2,6], which is to add an explicit regularization
in the GAN’s objective. DAN-S/2S [6] uses Maximum Mean Discrepancy to
tell the difference between the real data distribution and the generated data
distribution and use it as a regularization for GAN while LBT-GAN [2] utilizes
the likelihood of the real data to guide the generator to cover all modes of the
data through the density estimator. These two works are based on the statistics
of the real data. However, LBT-GAN defines a bilevel optimization problem and
has a high computational cost. DAN-S/2S needs to define one more discriminator
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to discriminate among multiple samples. Our idea is also based on the estimation
on the statistics of the real data. But differently, we propose to estimate the
support of the real data distribution, namely, capturing the regions in data space
where the probability density lives. In doing so, we solve an easier problem than
density estimation. In our SR-GAN, we pre-estimate the support of the real data
distribution by using Cluster Support Vector Data Description (ClusterSVDD)
[4], with each SVDD covering one sub-structure of the support. Other methods
of support estimation can be referred to [8] and [10].

3 Support Matching as a Mode Regularizer

When mode collapse happens in the GANs, the support, which refers to the
regions in data space where the probability density is larger than zero [8], of the
generated data distribution cannot align with that of the real data distribution.
So we propose to use support matching between the real data distribution and
the generated data distribution as a mode regularizer. Through this regular-
izer, we push the generator to cover all modes of the real data; otherwise, the
mismatching will occur and cause the penalty. Specifically, we capture the sub-
structures of the support by using ClusterSVDD [4], which fits multiple hyper-
spheres on the support of the data distribution. Each sphere in ClusterSVDD
will cover one sub-structure of the support, referred to one mode of the data.
Therefore, the estimated spheres can be regarded as mode indicators for the
generator to tell whether there is data generating in a certain mode.

3.1 Support Estimation on Real Data Distribution

We use ClusterSVDD to estimate the support of the real data distribution. This
method unifies SVDD [10] and k-means clustering, which fits K hyperspheres
that can be defined by its centers and radius {ck, Rk}Kk=1, on the support of the
real data distribution. With {ck, Rk}Kk=1, we calculate the cluster label yi for
each sample and collect samples with regard to each cluster Xk as follows:

yi = argmink∈{1,...,K} ‖ck − φ (xi)‖2 − R2
k, ∀i = 1, . . . , N, (1)

Xk = {xi|yi = k, i = 1, . . . , N} , ∀k = 1, . . . ,K. (2)

Each Xk is then used to solve one SVDD optimization problem [10].

3.2 Support Matching as a Regularizer

We use the estimated spheres {ck, Rk}Kk=1 to evaluate the support of the gener-
ated data distribution and align it with that of the real data distribution. We
apply Eq. (2) to divide generated data into K groups {Xk}Kk=1 and then match
the size of the groups between the real data and the generated data. K is set to
the number of the modes in the data. If some mode is missed by the generator,
the size of its corresponding group would be zero, i.e., |Xk| = 0, which causes
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(a) GAN (b) LBT-GAN (c) DAN-S (d) SR-GAN

Fig. 2. Visual comparison of generated samples on the 2D ring data (Upper) and the
2D grid data (Lower). More overlapping between the generated samples and the real
samples denotes a better generation.

the difference between the real data and the generated data. Such difference
will guide the generator to generate data that is not covered currently. Since
argmin function has no derivative, we instead replace it with softmax function
for calculating the regularization term in GAN’s objective as follows:

fk(xi) =
exp(−β(‖ck − φ (xi)‖2 − R2

k))∑
j exp(−β(‖cj − φ (xi)‖2 − R2

j ))
. (3)

The matching of the support between the real data distribution and the gener-
ated data distribution is defined as a regularization for GAN. In short, the objec-
tive of SR-GAN consists of two terms, i.e., the discriminator and the generator:

min
D

Epdata(x)[− log D(x)] + Ep(z)[− log(1 − D(G(z)))], (4a)

min
G

Ep(z)[− log D(G(z))] + λ ∗
∑

k

(Epdata(x)[fk(x)] − Ep(z)[fk(G(z))])2, (4b)

where G is denoted as the generator network. D is denoted as the discriminator
network. p(z) is the distribution of the input noise. pdata(x) is the distribution
of the real data. λ balances the image quality and the mode diversity.
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4 Experiments

We apply our proposed SR-GAN1 on synthetic datasets and real-world datasets
to evaluate the performance of SR-GAN in terms of improving mode diversity.

Baselines. We compare SR-GAN with the vanilla GAN [3], LBT-GAN [2] and
DAN-S [6] (We only compare with DAN-S since DAN-S has comparative results
with DAN-2S). LBT-GAN and DAN-S are similar methods to ours, i.e., defining
a regularization for GAN based on the statistics of the real data distribution.

Table 1. PHQS and NMC on the 2D ring and the 2D grid data. The results are
averaged over five trials with the standard error. Higher is better for two metrics.

2D Ring 2D Grid

PHQS (%) NMC (Max 8) PHQS (%) NMC (Max 100)

GAN 0.2 ± 0.14 0.4 ± 0.24 7.7 ± 1.46 9.4 ± 1.69

LBT-GAN 10.4 ± 3.82 7.8 ± 0.20 14.5 ± 2.70 100.0± 0.00

DAN-S 47.5 ± 5.46 8.0± 0.00 15.7 ± 0.44 99.4 ± 0.24

SR-GAN 91.7± 0.97 8.0± 0.00 45.3± 2.46 100.0± 0.00

Model Architectures and Hyperparameters. Following [7], fully connected
networks (FCNs) are used for the generator network and the discriminator net-
work on the synthetic datasets and the SatImage dataset. A recurrent neural
network (RNN) is used for the generator and a convolutional neural network
(CNN) for the discriminator (RNN-CNN) on the MNIST dataset. Furthermore,
the FCNs are also applied for the generator and the discriminator (FCN-FCN)
on MNIST following [6]. We keep the architectures similar for all GANs in order
to make a fair comparison. In terms of the hyperparameters, the number of
clusters K in CSVDD is set to the number of classes in the datasets. The trade-
off factor λ is set to 1 for synthetic datasets and the SatImage dataset, 10 for
MNIST with the RNN-CNN architecture and 50 for MNIST with the FCN-FCN
architecture. β is set to 10 for all datasets.

4.1 Synthetic Datasets

We construct two synthetic datasets following [2]: (1) 2D ring, i.e., mixture of
eight 2D Gaussian distributions with covariance matrix (CM) 0.02I arranged
in a ring; (2) 2D grid, i.e., mixture of 100 2D Gaussian distributions with CM
0.01I arranged in a 10-by-10 grid. Same in [9], we use the percentage of high
quality Samples (PHQS), and the number of mode covered (NMC) to measure
the quality and diversity of the generated data, respectively.

1 https://github.com/EvaFlower/SR-GAN.

https://github.com/EvaFlower/SR-GAN
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Figure 2 shows the visualization of samples generated by GAN and its vari-
ants on the 2D ring and the 2D grid datasets, respectively. We can observe
that: (1) the vanilla GAN suffers from severe mode collapse problems on both
datasets. Regarding the 2D ring data (Fig. 2 Upper), GAN only generates sam-
ples nearly one mode. Regarding the 2D grid data (Fig. 2 Lower), GAN covers
few modes. (2) In terms of LBT-GAN, DAN-S and SR-GAN, all real samples
are surrounded by the generated samples, which means that they can cover all
modes of the data. (3) The density of the data generated by GAN’s variants is
not equal to that of the real data. However, SR-GAN can learn a closer distribu-
tion comparing to other baselines. Table 1’s quantitative results are consistent
with the visualization results. LBT-GAN, DAN-S, and our SR-GAN achieve the
maximum NMC while GAN gains small NMC on both two datasets. In addi-
tion, our SR-GAN achieves the highest PHQS, which means that SR-GAN can
generate more high quality samples than LBT-GAN and DAN-S.

Table 2. NMC and KL on SatImage. The results are averaged over five trials with the
standard error. Higher is better for NMC; lower is better for KL.

NMC (Max 6) KL

GAN 2.0 ± 0.77 1.38 ± 0.390

LBT-GAN 6.0± 0.00 0.21 ± 0.018

DAN-S 6.0± 0.00 0.06 ± 0.019

SR-GAN 6.0± 0.00 0.02± 0.005

4.2 SatImage Dataset

We then apply SR-GAN on a simple real-world dataset, i.e., SatImage dataset2.
This dataset contains 4,435 instances with 36 attributes and 6 classes, which
each class is regarded as one mode.

We also use NMC to evaluate the mode diversity on SatImage. The number
of modes here is estimated using a trained classifier. We do not count high
quality samples since it is hard to evaluate it on real-world datasets. Instead we
count a mode as a covered mode if the number of its samples is greater than
α% × #ofsamples

#ofmodes (α = 10). The KL divergence between the generated data and
the real data over class [7] (KL) is used to evaluate the quality of the generation.

It shows in Table 2 that (1) GAN only generates around two out of six modes,
which denotes that GAN also suffers from a severe mode collapse problem on the
simple real-world dataset. (2) LBT-GAN, DAN-S and our SR-GAN can cover all
modes of the SatImage data. (3) In addition, our SR-GAN achieves the lowest
KL divergence, which means that it can learn a more accurate data distribution.

2 https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multiclass/satimage.
scale.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/satimage.scale
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/satimage.scale
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4.3 MNIST Dataset

We further explore the superiority of our SR-GAN in terms of improving mode
diversity on a more complex dataset: MNIST. It consists of zero to nine digits,
denoted as 10 modes. We adopt two architectures: FCN-FCN and RNN-CNN.

Instead of doing the support estimation on raw image data directly, we apply
support estimation on the embedding space. Particularly, we use deep neural
networks [5] as feature extractors and input the discrete embedding features into
ClusterSVDD. The dimension of the features is set to that of the input noise.

We use NMC and KL same in Sect. 4.2 to measure the diversity and the
quality of the generated data, respectively.

MNIST with the FCN-FCN Architecture. The upper panel of Fig. 3 shows
that: (1) the vanilla GAN and LBT-GAN both suffer from a severe mode collapse
issue on MNIST. The visualization shows that they only generate few of ten
digits. (2) DAN-S and SR-GAN can significantly mitigate the mode collapse.
However, the performance of SR-GAN is inferior to that of DAN-S. That is
because, in SR-GAN, we train the support regularization independently from
the GAN’s objective for simplicity. A better result could be achieved through
training them in a unified framework, which we leave for a future work. The
results in Table 3 (Left) is consistent with the visualization results.

MNIST with the RNN-CNN Architecture. The RNN-CNN architecture
is asymmetric, resulting in a more complex power balance [7]. Therefore, its
training is much harder than the previous FCN-FCN architecture. The lower
panel of Fig. 3 shows that: (1) the samples generated by GAN, LBT-GAN and

(a) Real (b) GAN (c) LBT-GAN (d) DAN-S (e) SR-GAN

Fig. 3. Visual comparison of generated samples on the MNIST data. First column:
real samples from the MNIST dataset. Upper column 2–5: the generation with
the FCN-FCN architecture. Lower column 2–5: the generation with the RNN-CNN
architecture, which needs a more complex balance between the asymmetric architecture
and thus is harder to train. The training of LBT-GAN with the RNN-CNN architecture
is unstable and provides meaningless results.
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Table 3. NMC and KL on MNIST. The results are averaged over five trials with
the standard error. Higher is better for NMC; lower is better for KL. The results of
LBT-GAN is unavailable since it generates meaningless samples.

MNIST (FCN-FCN) MNIST (CNN-RNN)

NMC (Max 10) KL NMC (Max 10) KL

GAN 2.6 ± 0.25 1.57 ± 0.038 2.8 ± 0.80 1.70 ± 0.240

LBT-GAN 4.0 ± 0.00 1.28 ± 0.107 − −
DAN-S 10.0± 0.00 0.01± 0.001 1.8 ± 0.20 1.86 ± 0.110

SR-GAN 8.2 ± 1.36 0.50 ± 0.259 10.0± 0.00 0.12± 0.025

DAN-S with the RNN-CNN architecture are less sharper compared to the results
with the FCN-FCN architecture. This is because the asymmetric RNN-CNN
architecture is harder to train. LBT-GAN even generates meaningless samples.
(2) The images generated by GAN and DAN-S share only one single style within
one mode. (3) SR-GAN achieves the best performance and covers all modes. It
can generate diverse styles for the digits. The results in Table 3 (Right) are
consistent with the visualization.

5 Conclusions

In this paper, we address the mode collapse problem by aligning the support of
the generated data distribution with that of the real data distribution. The
experiments show that our SR-GAN can avoid the mode collapse and also
improve the data quality. SR-GAN introduces a simple extra regularization for
GAN and does not modify any paradigm of GAN. Therefore the proposed sup-
port regularization term can be easy to be applied to other GANs, like condi-
tional GAN, to solve the mode collapse problem.
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Abstract. Retinal blood vessels are considered to be the reliable diag-
nostic biomarkers of ophthalmologic and diabetic retinopathy. Monitor-
ing and diagnosis totally depends on expert analysis of both thin and
thick retinal vessels which has recently been carried out by various arti-
ficial intelligent techniques. Existing deep learning methods attempt to
segment retinal vessels using a unified loss function optimized for both
thin and thick vessels with equal importance. Due to variable thickness,
biased distribution, and difference in spatial features of thin and thick
vessels, unified loss function are more influential towards identification of
thick vessels resulting in weak segmentation. To address this problem, a
conditional patch-based generative adversarial network is proposed which
utilizes a generator network and a patch-based discriminator network
conditioned on the sample data with an additional loss function to learn
both thin and thick vessels. Experiments are conducted on publicly avail-
able STARE and DRIVE datasets which show that the proposed model
outperforms the state-of-the-art methods.

Keywords: Deep Learning · Generative Adversarial Network ·
Segmentation · Retinal Vessels

1 Introduction

Deep learning has influenced image analysis in various important applica-
tion areas including remote-sensing, autonomous vehicles, and specially medi-
cal [1,15]. Usually, diagnostic analysis and treatment which covers medical dis-
orders, diabetic retinopathy, and glaucoma have been carried on retinal vessels
of opthalmologic fundus images [18]. Morphological attributes and retinal vascu-
lar structures including vascular tree patterns, vessels thickness, color, density,
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crookedness, and relative angles are the key features used in the diagnostic pro-
cess by ophthalmologists [7]. Thickness and visibility of retinal vessels are the
core attributes for diabetic retinopathy analysis [2]. However, conventional and
manual approaches for vascular analysis are time-consuming and prone to human
error. Therefore, computer-assisted detection of retinal vessels is inevitable to
segment out the retinal vessels from fundus images and mainly categorized into
three approaches: unsupervised learning, supervised learning, and deep learning.

Unsupervised learning approaches extracts vessel pattern without class
labels, mainly thorough filter-based approach. Image filters, such as Gaussian
blur, are utilized to enhance vascular features. Zhang et al. combined the
matched filter and first-order derivative of Gaussian filter to extract retinal vessel
features [24]. Similarly, Fraz et al. applied the same approach in four directions
along with multi-directional morphological top-hat operator to detect retinal
vessels [6]. Yin et al. worked on orientation invariant approach and used Fourier
transform to extract energy maps, consequently detecting retinal vessels using
an orientation-aware detector [22]. A similar approach of using Wavelet trans-
form to map images into a 3D lifted-domain was proposed in [25]. They utilized
the Gaussian filter to detect retinal vessels.

Supervised approaches intend to assign a class label to each pixel of the
image. These approaches can be based on either traditional machine learning or
deep learning. The former utilizes classifiers that learn decision boundaries on
handcrafted features e.g. Support Vector Machine (SVM) and K-nearest neigh-
bor classifier (KNN).

However, more recently, Convolutional Neural Networks (CNNs) got pop-
ularity for segmentation problems since they learn the features directly from
the input data. In the case of retinal vessel segmentation, CNNs surpass tra-
ditional handcrafted approaches [14]. However, the problem of blurred output
images and false positives around indistinct tiny vessel branches is persistent in
these methods. The main reason behind this limitation is use of a unified loss
function in a pixel-wise manner to segment both thin and thick vessels. This
led to blurred thin vessels resulting in non acceptable segmentation maps dur-
ing binarization of generated probability maps. To address these issues a novel
approach for retinal vessel segmentation using Generative Adversarial Networks
(GAN) has been proposed in this research. Basically, a patch-based discrimina-
tor is utilized to learn inconsistencies and sharp edges of high-resolution blood
vessels. Additionally, a loss term is integrated within the main objective func-
tion to learn low-frequency edges. We show that the proposed method is able to
effectively segment out thick and thin vascular pixels form non-vascular pixels
on two benchmark datasets namely DRIVE [16] and STARE [10]. Our results
show a significant boost in the performance as compare to the state-of-the-art
methods.

2 Methodology

Adversarial learning approach combines generator and discriminator networks
in such a way that conditional input provides a head start to the overall learning
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Fig. 1. The proposed Conditional Patch-based Generative Adversarial Network.

process. Generator network G expects noise and conditional input sample and
learn to generate the synthetic retinal map. Discriminator network D takes two
sets of input: conditional input and a generated synthetic map (fake sample) and
conditional input and actual segmentation map (/real sample/ground truth).
Segmentation maps generated from generator network are divided into rectan-
gular patches and discriminator tries to discriminate each patch. This patch
based discriminator is deployed to discriminate between actual or synthetically
generated segmentation maps as shown in Fig. 1.

2.1 Objective Function

In adversarial learning, generator network G tries to map input conditional
sample xw×h and noise vector to its corresponding segmentation map yw×h

in encoder/decoder arrangement such that the difference between yw×h and
synthetic vessel map G(x, z) is reduced (w:width and h:height of image). Dis-
criminator network takes two pairs {x, y} and {x,G(x, z)} as input and predicts
the score between 0 or 1 as {0, 1}n where n is a hyperparameter of the model
and represents the total number of patches fed to the discriminator D. n could
be selected between 0 and the total number of pixels of image. The objective
function of the proposed model can be formulated as:

J = arg min
G

max
D

Ex,y

( − log(D(x, y)
)

+ Ex,z

( − log(1 − D(x,G(x, z)))
)

+λLL1(G)
(1)

where Ex,z and Ex,y are loss functions for generator G and discriminator D
respectively. To handle the problem of blurred outputs caused by L2 norm
reported in literature, we integrated L1 norm in the main objective function
to capture low and high-frequency components of the fundus retinal images. L1

norm can be formulated as:

LL1(G) = Ex,y,z

[
||y − G(x, z)||1

]
(2)

where λ is a hyperparameter. The noise vector z is selected from a normal
distribution to ensure that the generator learns a random sample at each training
step. This also prevents the local minima problems.
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2.2 Patch-Based Discrimination

To detect high-frequency components and thin vessels, patch-based discriminator
network is proposed which penalize each patch and discriminate real or generated
synthesized segmentation maps. This kind of approach treats each individual
rectangular patch as a stand-alone image and results in the probability map on
each patch. The final result against an image is obtained by averaging all patch
based results. Patch based discriminator processes input as a Markov random
field by assuming independence among all patches. The small size of the patch
allows fast convergence of network and results in high-resolution segmentation
maps.

2.3 Model Architecture

To extract low level features, proposed model followed inspiration form UNet [19]
and SegNet [4]. The generative network is comprised of encoder and decoder
networks. Encoder network extracts the hidden features and reduces the size
of the input image whereas the decoder network reconstructs and up-sample
at each stage till the last layer. Each input image passes through the entire
generator network and skip connections between encoder and decoder network
acts as bridge to semantic gap between the feature maps of the encoder and
decoder prior to fusion.

2.4 Hyperparameter Tuning

The proposed model is trained in a manner such that a the generator network
is trained and generates random output regardless of input sample and tries to
learn the patterns of input as per given ground truths. Meanwhile, the discrim-
inator network tries to discriminate the generated outputs of generator network
and the ground truths. Further, discriminator learns to utilize the conditional
samples (x) to learn the pattern of blood vessels in fundoscopic images. Stochas-
tic gradient decent with Adam optimizer is used to train the generator network.
All the hyperparameters used in training of the proposed model are selected
empirically, which include trade-off coefficient (λ = 10), learning rate (lr =
0.002), learning rate decaying factor (η = 0.75) and momentum (m = 0.002).

2.5 Datasets and Evaluation Metrices

The proposed model is trained and evaluated on two publicly available datasets
include DRIVE [16], STARE [10]. We followed the same evaluation metrics and
protocols to conduct a fair evaluation with the reported state-of-the-art methods.
Accuracy (Acc), sensitivity (Se) and specificity (Sp) are used as a benchmark
for quantitative evaluation and area under the receiving operating curve (AUC)
is used for the qualitative evaluation.
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Table 1. Performance comparison of the proposed model with sate-of-the-art methods.

Scheme Methods Year DRIVE STARE

Acc Sp Se AUC Acc Sp Se AUC

Human Observer 0.9472 0.9724 0.7760 − 0.9349 0.9384 0.8952 −
Unsupervised zhang [24] 2010 0.9382 0.9724 0.7120 − 0.9484 0.9753 0.7177 −

Fraz [6] 2012 0.9430 0.9759 0.7152 − 0.9442 0.9686 0.7311 −
Roychowdhuray [20] 2015 0.9494 0.9782 0.7395 0.9672 0.9560 0.9842 0.7317 0.9673

Azzopardi [3] 2015 0.9442 0.9704 0.7655 0.9614 0.9497 0.9701 0.7716 0.9563

Yin [22] 2015 0.9403 0.9790 0.7246 − 0.9325 0.9419 0.8541 −
Zhang [25] 2016 0.9476 0.9725 0.7743 0.9636 0.9554 0.9758 0.7791 0.9748

Supervised You [23] 2011 0.9434 0.9751 0.7410 − 0.9497 0.9756 0.7260 −
Marin [13] 2011 0.9452 0.9801 0.7067 0.9588 0.9526 0.9819 0.6944 0.9769

Fraz [8] 2012 0.9480 0.9807 0.7406 0.9747 0.9534 0.9763 0.7548 0.9768

Orlando [17] 2017 − 0.9684 0.7897 − − 0.9738 0.7680 −
Dasgupta [5] 2017 0.9533 0.9801 0.7691 0.9744 − − − −

Deep Learning Melin [14] 2015 0.9466 0.9785 0.7276 0.9749 − − − −
Li [11] 2016 0.9527 0.9816 0.7569 0.9738 0.9628 0.9844 0.7726 0.9879

Liskowski [12] 2016 0.9515 0.9806 0.7520 0.9710 0.9696 0.9866 0.8145 0.9880

Fu [9] 2016 0.9523 − 0.7603 − 0.9585 − 0.7412 −
Zengqiang [21] 2018 0.9538 0.9820 0.7631 0.9750 0.9636 0.9857 0.7735 0.9833

Proposed 2019 0.9562 0.9824 0.7746 0.9753 0.9647 0.9869 0.7940 0.9885

3 Results and Discussion

Evaluation of the proposed model is conducted on DRIVE and STARE datasets
and categorized into unsupervised, supervised and deep learning schemes as
summarized in Table 1. Acc, Se, Sp and AUC values are mentioned against the
proposed method and reported in the literature.

In unsupervised techniques, the most recent findings were reported in [25]
where researchers used left invariant rotating derivative to get enhanced reti-
nal vessels and obtained binary segmentation using thresholding. Their method
outperformed the previous unsupervised techniques on DRIVE and STARE
datasets [3,8,20,22,24]. In supervised learning techniques, [5] achieved best
results on DRIVE dataset by deploying a combination of convolutional neural
network and structured predictions. The second best method [6] in supervised
learning used conditional random field model with a fully connected method and
achieved comparable performance on DRIVE and STARE datasets as compared
to other supervised learning schemes [8,13,23].

For the DRIVE dataset, the proposed model achieves 0.9562, 0.9824, 0.7746
and 0.9753 for Acc, Sp, Se and AUC respectively, where the model achieves
better results for Acc, Sp and AUC as compared to the all current state-of-the-
art unsupervised, supervised and deep learning techniques. However Orlando [17]
outperforms all the methods in terms of Se as shown in Table 1, the only Se norm
is not conclusive. In contrast, the performance of the proposed model is much
better than all the compared methods.

On the STARE fundoscopic image dataset, the proposed model achieves
0.9647, 0.9862, 0.7940 and 0.9885 for Acc, Sp, Se and AUC respectively.
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Fig. 2. Exemplar results of the proposed model on challenging cases: (a): central reflex
vessels, (b): cotton wools, (c): low contrast, (d) lesions. From top to bottom: input
fundus image, enlarged target patch of fundus image, corresponding manual annotation
and the predicted probability maps.

In terms of Sp and AUC, the proposed model outperforms all the compared tech-
niques. However, Yin [22] reported the best performance in terms of Se by
achieving 0.0601 more sensitivity but obtains 0.030 lesser specificities. Simi-
larly, Zengqiang [21] achieves better results in terms of Acc by achieving 0.9696
accuracy but lags in other evaluation benchmarks as compared to the proposed
method.

Presence of lesions and cotton wools in fundoscopic images mainly affect the
local features and the thick vessels. Other challenges are the presence of central
reflex vessels and low contrasts. To address four types of challenges (central reflex
vessels, cotton wools, low contrast, and lesions) in segmentation of fundoscopic
images, the proposed model is able to segment out the retinal vessels in these
challenging scenarios. By integrating L1 norm in the main objective function,
the generator network is able to detect low contrast and thin retinal vessels as
shown in Fig. 2. The generator network learns the low contrast vessels whereas
the discriminator network forces the model to learn the non-vessel pixels too by
predicting a zero score. In this way, the entire model learns the structure and
appearance of vessels simultaneously and the model is able to address the central
reflex vessel problem. Patch based discriminator network allows the model to
capture thin vessels in the presence of lesions and cotton wools. In summary,



Conditional Patch-Based GAN for Retinal Vessel Segmentation 55

the proposed generative adversarial network can effectively address the main
challenging cases by learning generator and discriminator network alternatively
and integrating a custom loss term.

4 Conclusion

A novel generative adversarial network based deep learning model has been pro-
posed, that can potentially address segmentation of retinal blood vessels in fun-
doscopic images. Training the generator network to learn small transitions in thin
vessels and allowing the patch based discriminator to discriminate vascular and
non-vascular pixels. Results on publicly available datasets showed that the pro-
posed model is competitive with current state-of-the-art techniques. Averaging
the patch based results over small patches of fundoscopic image and integration
of additional loss term into the main objective function leverage and enhances
the effectiveness of the proposed model. The model has the potential to probe
the different patch sizes so that the influence of patch-based discriminator on
segmentation performance can be better analyzed.
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Abstract. Deep neural networks have achieved high performance in a
variety of image recognition tasks. However, it is reported that the per-
formance on image recognition of these networks is unstable to slight per-
turbations of images. To verify this weakness, we propose DeceiveDeep,
a gradient-based algorithm for deceiving deep neural networks in this
paper. There exists a lot of gradient-based attack methods, such as the
L-BFGS, FGSM, and Deepfool. Specifically, based on an original method,
L-BFGS, we exploit the Euclid norm of the gradient to update the space
vector in an image to generate a deceivable image for fooling deep neu-
ral networks. We construct three types of deep neural network models
and one convolutional neural network for testing the proposed algorithm.
Based on the MNIST dataset and the Fashion-MNIST dataset, we eval-
uate the effectiveness of DeceiveDeep in terms of accuracy on training
and testing data, and CNN model, respectively. The experimental results
show that, comparing with L-BFGS, DeceiveDeep dramatically decreases
the accuracy of the deep models on image recognition.

1 Introduction

Deep Neural Networks (DNNs) have achieved high performance, and supervised
learning shows essential part in this area. However, it is similar to a black-box
that we can not understand the processing procedure exactly. In [1,2], it suggests
that the space, rather than the individual unit, contains the semantic information
in the high layers of neural networks [3–6].

There are some works investigating how to fool deep neural networks. From
[7], we know that deep neural network has two counter-intuitive properties. Due
to the works [8–11], activating a given cell by looking for the maximum input set
to analyze the semantics of each cell. In [12], the authors propose a method about
computing continuous vector representations of words from very large datasets.
Specifically, evolutionary algorithms or grandient ascent to generate images that
revealed high accuracy by convolutional neural networks in [13,14]. The authors
in [15] show a way that DNNs and human vision differ, and use evolutionary
algorithms to do generated fooled images to do prediction [5]. Although the state-
of-the-art deep neural networks can recognize natural images fast and accurately
c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, CCIS 1142, pp. 57–65, 2019.
https://doi.org/10.1007/978-3-030-36808-1_7
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[16–19], they are also easily fooled into declaring familiar objects. There exists a
lot of gradient-based attack methods, such as the L-BFGS [4], FGSM [20], and
Deepfool [21].

The main purpose of this paper is to generate deceivable images that fool
the neural network models without causing human visual errors, to protect
users’ privacy and security. Therefore, based on the original method L-BFGS [4],
we propose DeceiveDeep, a gradient-based algorithm for deceiving deep neural
networks.

The remainder of this paper is organized as follows: Sect. 2 details the pro-
posed gradient-based algorithm. In Sect. 3, we construct three types of deep
neural networks and on convolutional neural network for performance evalua-
tion. In Sect. 4, we introduce the datasets for the performance evaluation and
then evaluate the accuracy on the proposed deep neural networks with input
images generated by DeceiveDeep. We conclude this work in Sect. 5.

2 Gradient-Based Algorithm

2.1 Original Method

We denote f : Rm → {1 · · · k} as a classifier mapping input image vectors to a
discrete label set. The loss function is denoted by lossf : Rm × {1 · · · k} → R

+.
Taking a given image x ∈ R

m, target label l ∈ {1 · · · k} and perturbation r into
consideration, the goal is to solve the optimization problem in Eq. (1) [5]:

min ||r||2
s.t. f(x + r) = l

x + r ∈ [0, 1]m
(1)

where minimizer gradient r might not be unique, but we denote x + r for an
arbitrarily chosen minimizer by D(x, l), where D(x, f(x)) = f(x). We can find
the minimum c of an approximation closing to a function D(x, l) by performing
line-search, as shown in Eq. (2):

min c|r| + lossf (x + r, l)
s.t. x + r ∈ [0, 1]m (2)

We denote the space information by dx for fooling images, and we imply the
following rule, as shown in Eq. (3):

x = x + dx (3)

2.2 Improved Method

A deceivable image is produced by the gradient ascent and an image is a space
vector including information. However, deep neural networks learned by back-
propagation have non-intuitive characteristics and intrinsic blind spots [5]. Nev-
ertheless, gradient plus original image without processing to generate fooling
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images, which does not have a robust way to avoid semantic error. The original
meaning of gradient is a vector, which indicates that the directional derivative
of a function at this point is the maximum value along this direction. That is,
the function changes rapidly along this direction at this point, and the change
rate is the maximum (the modulus of the gradient).

To calculate an image space, we introduce Euclid norm which is often used
to measure the length or size of each vector in a vector space (or matrix), as
shown in Eq. (4):

||r||2 =

√
√
√
√

i∑

N

r2i (4)

Thus, keeping the basic concepts to some extent, we use Euclid norm to
upgrade Eq. (3) for space information:

dx =
λ × r

||r||2 (5)

Then, Eq. (3) can be updated as Eq. (6) via gradient ascend:

x = x +
λ × r

||r||2 (6)

2.3 Gradient-Based Algorithm (DeceiveDeep)

There is a well-known algorithm proposed to produce novel images, evolution-
ary algorithm inspired by Darwinian evolution [7]. They contain a population
of images that alternately face selection and then random perturbation. How-
ever, due to [8], this method has a series of limits and problems, such as only
performing well on one subject in an image rather than multi-subjects.

There are heaps of useless space in an image where we can add some noise,
and then the image will change in the unit’s area. We try to add minimum
noise to generate the least effect on an image. With an image as the input,
neural network models can predict the category of the image with a prediction
probability, which is used for determination. Then, we adjust the probability by
backpropagation and update the parameters of the network to fool the neural
network model. By varying the final probability value, we can calculate the
increase of an image gradient based on the original one, and then add the image
gradient to the original image to generate an image for fooling deep neural
networks.

Based on the above discussion and Eq. (6), we propose DeceiveDeep, the
gradient-based algorithm to generate deceivable images that can fool deep neural
networks in Algorithm 1.
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Algorithm 1. Gradient-based Algorithm for Generating Deceivable Images
(DeceiveDeep)
Input: image x, neural model f , label lx, target label lt, learning rate λ
Output: fooling image xf

1: for loop in 100 iterations:
2: do
3: true scores = f(x); get target label lt = Random();
4: calculate target score st = s[lx, lt];
5: calculate back propagation in term of hidden layer

neurons st.backward();
6: calculate gradient r about x → xf ;
7: get dx = λ×r

||r||2 ;
8: generate fooling image xf = x + dx;
9: end for

10: until STOP

3 Deep Neural Network Models

Based on deceivable images by DeceiveDeep, we test the image recognition accu-
racy of deep nerual networks. Therefore, we construct three types of deep neural
networks and one convolutional neural network.

3.1 Proposed Deep Neural Networks

We build three types of architectures for deep neural networks, to compare with
[5]: FC network model, FC100 network model, and FC200 network model. We
refer to our network as “FC”, which has a simple fully connected network with
one or more hidden layers, and a classifier including Softmax or ReLU. The
number of image pixels is 784; thus, we set all the first layer as 784 neurons to
accept image, thereby preventing loss of images. The pixel intensities are scaled
to be in the range [0, 1].

3.2 Convolutional Neural Network

Convolutional Neural Network (CNN) is composed of input layers, output layers,
and multiple hidden layers, which can be divided into convolution layer, pooling
layer, ReLU layer, and fully connected layer. Compared with traditional neu-
ral networks, CNN has three major features: local connectivity pattern, weight
sharing, and multiple convolution kernel.

4 Experiments and Results

In this section, we first introduce the datasets for the image recognition, and
then evaluate the accuracy on the proposed deep neural network models with
input images generated by DeceiveDeep.
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4.1 Dataset

In our experiments, we select two datasets: MNIST and Fashion-MNIST for the
image recognition of DeceiveDeep.

MNIST1 dataset is a handwriting dataset, and all images are 28 × 28.
Fashion-MNIST2 is an image dataset that replaces the MNIST handwrit-

ten digital set, and has the same size to MNIST.

4.2 Accuracy on Testing Data

To evaluate the effectiveness of DeceiveDeep, we conduct experiments on the
accuracy of the proposed deep neural network models with deceivable images
generated by DeceiveDeep as testing data. For the proposed deep neural network
models, we use the original image data to train them and exploit the deceivable
images generated by DeceiveDeep for testing. In the testing step, we exploit the
deceivable image data generated by the gradient-based algorithm to test them.

The results upon MNIST dataset with deceivable images as testing data
are listed in Table 1. As shown in Table 1, we evaluate the accuracy of image
recognition on three models with different λ values.

Table 1. Accuracy on MNIST dataset with deceivable images as testing data

Model name Description Original accuracy Our accuracy

FC Softmax 98% 10%

with λ = 10−5

FC Sigmoid network 90% 9%

100-100-10 with λ = 10−5

FC Sigmoid network 85% 9%

100-100-10 with λ = 10−6

FC Sigmoid network 90% 9%

200-200-10 with λ = 10−5

FC Sigmoid network 85% 9%

200-200-10 with λ = 10−6

4.3 Accuracy on Training and Testing Data

To further evaluate the efficiency of DeceiveDeep, we conduct experiments on
the accuracy of image recognition of the proposed deep neural network models
with deceivable images generated by DeceiveDeep as training and testing data.
Half of the images are used to train the models and the rest are used to test
them.
1 http://yann.lecun.com/exdb/mnist/.
2 https://github.com/zalandoresearch/fashion-mnist.

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
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Based on the MNIST dataset, the results of the accuracy of deceivable images
based on the MNIST dataset are listed in Table 2. As illustrated in Table 2, we
list the original accuracy, the accuracy based on [5], and that on DeceiveDeep
under different models with different λ values. From the Table, DeceiveDeep
shows the best fooling effect with the average accuracy 6.9% compared with the
original algorithm (average accuracy of 90.12%) and [5] (average accuracy of
10.46%). Specifically, the FC model with λ = 10−3 reaches the highest accuracy
97.27% based on the original MNIST dataset. Based on the algorithm in [5], the
accuracy drops to 9.85% while it further decreases to 5.4% based on DeceiveDeep.

Based on the Fashion-MNIST dataset, the results of the accuracy of deceiv-
able image recognition based on the Fashion-MNIST dataset are listed in Table 3.
In Table 3, we list the same accuracy under different models with different λ val-
ues as Table 2. As shown in Table 3, DeceiveDeep shows the best fooling effect
with the average accuracy 8.44% compared to the original algorithm with an
average accuracy of 82.3% and [5] with an average accuracy of 10.7%. More
specifically, the FC model with λ = 10−3 achieves the highest accuracy 93.27%
based on the original Fashion-MNIST dataset. Based on the algorithm in [5],
the accuracy decreases to 9.13% while it further drops to 6.72% based on
DeceiveDeep. In addition, the FC100-100-10 model shows the lowest accuracy
5.85% based on DeceiveDeep.

Table 2. Accuracy on deceivable images
based on MNIST dataset

Model Name Description Original Accuracy Accuracy in [5] Our Accuracy

FC
Softmax

(with λ = 10−4) 93.32% 9.42% 6.2%

FC
Softmax

(with λ = 10−3) 97.27% 9.85% 5.4%

FC
Softmax

(with λ = 10−2) 90.97% 11.71% 9.2%

FC
Softmax

(with λ = 1) 80.08% 14.00% 10.3%

FC100-100-10
Sigmoid network
( with λ = 10−5) 90.11% 9.12% 5.87%

FC100-100-10
Sigmoid network
( with λ = 10−6) 86.85% 9.38% 5.84%

FC200-200-10
Sigmoid network
( with λ = 10−5) 91.56% 10.45% 6.28%

FC200-200-10
Sigmoid network
( with λ = 10−6) 90.78% 9.75% 6.12%

Table 3. Accuracy on deceivable images
based on Fashion-MNIST dataset

Model Name Description Original Accuracy Accuracy in [5] Our Accuracy

FC
Softmax

(with λ = 10−4) 92.75% 9.21% 7.4%

FC
Softmax

(with λ = 10−3) 93.27% 9.13% 6.72%

FC
Softmax

(with λ = 10−2) 90.01% 10.58% 10.01%

FC
Softmax

(with λ = 1) 78.81% 16.24% 14.57%

FC100-100-10
Sigmoid network
( with λ = 10−5) 90.25% 9.01% 5.85%

FC100-100-10
Sigmoid network
( with λ = 10−6) 71.82% 12.42% 9.98%

FC200-200-10
Sigmoid network
( with λ = 10−5) 70.58% 9.89% 6.51%

FC200-200-10
Sigmoid network
( with λ = 10−6) 70.87% 9.12% 6.48%

4.4 Accuracy on CNN

In order to further verify the effectiveness of the proposed algorithm, we con-
duct experiments on the image recognition accuracy of the Convolutional Neural
Network (CNN) model, as shown in Fig. 1.

For the MNIST dataset, the CNN model achieves 99.25% accuracy based on
the original algorithm, L-BFGS; however, it greatly drops to 9% based on the
proposed algorithm. For the Fashion-MNIST dataset, the CNN model reaches
90.11% accuracy, but with data generated by our algorithm, it achieves 12%
accuracy.
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Fig. 1. Convolutional Neural Network Model

4.5 Discussion

Human eyes are unable to distinguish the difference between the processed image
and the original image, mainly because we cannot see the difference directly
from the appearance by adding minimal noise to the image. This approach does
address privacy and security issues. For example, the content of an image can
be easily distinguished by humans eyes, whereas a very robust model cannot
because of the difference in the underlying composition of the image. In today’s
society, the rapid development of machine learning has spawned a large number
of applications of artificial intelligence. For privacy and security, we need to
guard against not only autonomous attack means from human beings, but also
efficient attack means from machines.

The experimental results show that the image recognition accuracy of the
neural network models is greatly reduced, which shows the validity and ratio-
nality of DeceiveDeep. It also proves that the proposed algorithm is effective and
reasonable.

5 Conclusion

Through this paper, we can find that deep neural network is easy to be deceived,
and the main reason is derived from its property and attribute. To protect user
privacy and avoid privacy leakage problem, we propose DeceiveDeep, a gradient-
based algorithm to deceive deep neural networks. Then, We construct three
types of deep neural network models and one convolutional neural network for
testing DeceiveDeep on image recognition. Based on the MNIST dataset and
the Fashion-MNIST dataset, we evaluate the effectiveness of DeceiveDeep in
terms of accuracy on training and testing data, and CNN model, respectively.
The experimental results show that the deep neural networks achieve the low-
est accuracy 9% on the MNIST dataset with deceivable images produced by
DeceiveDeep as testing data for image recognition, 5.4% on that dataset with
DeceiveDeep-generated deceivable images as training and testing data, 5.85% on
the Fashion-MNIST dataset. CNN reaches 9% accuracy on the MNIST dataset
processed by DeceiveDeep and 12% accuracy on the Fashion-MNIST dataset.
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Comparing with the original method, DeceiveDeep dramatically decreases the
accuracy of the deep models on image recognition.
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Abstract. The performance of handwritten Chinese character recogni-
tion (HCCR) has been greatly improved by using deep learning methods
in recent years. But few people pay attention to the influence of writing
style on it. In this paper, we aim to improve the performance of HCCR
further by weakening the influence of different writing styles. We pro-
pose a writing style adversarial network (WSAN) which includes three
parts: feature extractor, character classifier and writer classifier. In the
training process, we first preprocess raw image with feature extractor.
Afterwards, the learned features are fed into both the character classifier
and the writer classifier. We apply joint optimization on the top of these
two classifiers. Specifically, we minimize the loss value of the character
classifier to achieve character recognition function. At the same time, we
maximize the loss value of the writer classifier to reduce the influence of
writing style in HCCR. The experimental results on CASIA-HWDB1.1
prove that the proposed WSAN has a promoting effect on HCCR. And
the experiments on the offline HCCR competition dataset of ICDAR-
2013 also give competitive results compared with other methods.

Keywords: Handwritten chinese character recognition · Style
adversarial network · Gradient reversal layer

1 Introduction

The importance of HCCR is well recognized in both information retrieval and
text recognition. The development of HCCR system has a long history and
many methods have been proposed. However, some of the previously proposed
methods, including both deep learning and machine learning based methods,
were carefully designed for a specific distribution of training data, but ignore
the effect of writing styles.

Figure 1 shows four examples of the same characters written by two writers.
It is obvious that the writing styles of the two writers are different, and that

c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, CCIS 1142, pp. 66–74, 2019.
https://doi.org/10.1007/978-3-030-36808-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36808-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-36808-1_8


WSAN for HCCR 67

Fig. 1. Different handwriting styles from the two writers.

will produce different features for the same character. So we aim to weaken the
impact of writing style on HCCR.

In this paper, we propose a novel domain adversarial based method, named
writing style adversarial network(WSAN), to recognize new writing styles. On
the one hand, we minimize the loss of character classifier to reach the purpose
of character recognition. On the other hand, we maximize the loss of writer
classifier to suppress writing styles.

In conclusion, the contributions of this work are:

1. We propose a domain adversarial neural network for handwritten Chinese
character recognition, which is designed to reduce the variety between people’s
writing styles.

2. We propose a productive learning strategy by jointly optimizing the loss of
recognition layer and write style discriminator. The result shows that it can
improve both the recognition accuracy and training coverage speed.

3. We conduct two experiments on public datasets: CASIA-HWDB1.0, CASIA-
HWDB1.1 and ICDAR-2013, the result demonstrates the effectiveness of our
proposed methods. We have released the source code along with the paper1.

2 Related Work

2.1 HCCR

The earlier classifiers used on HCCR are the traditional ones, including KNN,
SVM, MQDF [1], etc., in which MQDF achieved comparable performance, but
still far from application requirements.

Benefited from the improvement of computational performance and the
enlargement of dataset, convolution neural networks (CNN) greatly promotes
the performance of character recognition. The first CNN successfully applies to
HCCR is multi-column deep neural network (MCDNN) [2], which is composed
of multiple CNN, and its recognition rate approaches human performance. In
the offline HCCR competition held by ICDAR in 2013, Fujitsu R&D Center

1 https://github.com/qq2294011886/WSAN HCCR.

https://github.com/qq2294011886/WSAN_HCCR
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win the first place with an accuracy of 94.77%. The high performance of their
model is based on the voting of 4 CNN. They use a voting model of four alter-
nately trained relaxation convolutional neural network (ATR-CNN) to increase
the recognition rate to 96.06%, narrowing the gap of recognition rate between
machine and human to 0.07% [3].

The first model that outperforms human-level is proposed by Zhong [4]. By
properly incorporating directional feature maps (DFM), the recognition rates of
single HCCR-GoogLeNet models and ensemble HCCR-GoogLeNet models reach
96.35% and 96.74%, respectively, on the offline HCCR competition ICDAR-2013.
Zhang et al. [5] combine the traditional normalization-cooperated direction-
decomposed feature map (directMap) with the deep convolutional neural net-
work (convNet) to obtain a correct rate of 96.95%. They add an adaptation
layer to the pre-trained convNet of this model, that increases the recognition
rate to 97.37%. In the HCCR-CNN12Layer model proposed by Xiao et al. [6],
the parametric rectifier linear unit (PReLU) is used instead of the rectifier linear
unit (ReLU), and batch normalization layer is added after the convolution layer,
which makes the recognition rate as high as 97.59%.

2.2 Domain Adversarial Network

The domain adversarial network (DAN) is successfully applied to the domain
adaptation by Ganin et al. [7] for the first time. This network reduces the varia-
tion of feature distribution between the source domain and the target domain by
learning the feature mapping between them. The model proposed by Ganin et
al. achieves excellent performance in domain adaptation tasks such as sentiment
analysis and image classification.

Domain adversarial network is widely used in many fields. Park et al. [8]
applies the domain adversarial method to image-text multimodal learning for the
first time. Compared to the previously proposed method, the domain adversarial
method does not require the image-text pair to extract the semantic information
of the image and the text, only needs the category label. The domain adversarial
network is used by Kim et al. [9] to solve the problem of data transfer of the
spoken language understanding (SLU). Data transfer involves two aspects, one
is the transfer from synthetic data to live user data, and the other is the transfer
from stale data to current data. The experimental results prove that the domain
adversarial network has positive influence in both supervised and unsupervised
scenarios. Liu et al. [10] propose an adversarial multi-task learning framework
to alleviate the interference between shared and private feature spaces in text
classification tasks.

Now using a single-domain discriminator to align the source and target
domains has not met the requirements. Pei et al. [11] present a multi-adversarial
domain adaptation (MADA) approach to capture multi-mode structures and
achieve fine-grained alignment of multi-domain discriminators.
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3 Proposed Method

Writing styles vary from person to person, which may have a certain impact
on HCCR. In this paper, we propose a network, named WSAN, to reduce the
influence of writing style on HCCR.

3.1 Model

The proposed network is shown in Fig. 2. It consists of three parts: feature extrac-
tor, character classifier, and writer classifier.

Fig. 2. The structure of WSAN model.

Fig. 3. The structure of feature extractor.

The feature extractor is a 14-layer CNN network, the specific structure is
shown in Fig. 3. In order to speed up the training and improve the generaliza-
tion ability of the network, we add the batch normalization layer behind each
convolutional layer. To prevent overfitting, we add the dropout layer behind the
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max pooling layer and the global average pooling(GAP)[12] layer in the both
middle and final layers of the feature extractor. The character classifier and the
writer classifier have the same structure, including the fully connected layer and
the softmax classifier. The softmax classifier of the character classifier outputs
a 3755-dimensional vector. The softmax classifier of the writer classifier outputs
a vector of m dimensions, which represents the number of writers in training
dataset. In the experiment conducted on CASIA-HWDB1.0, m is 420, and m is
300 in another experiment.

3.2 Learning

Forward Propagation. For the ith sample xi, the feature map output from fea-
ture extractor fi, the probability distribution of character recognition result yi,
and the probability distribution of writer recognition result wi can be calculated
by Eq. 1.

fi = Gf (xi; θf ), yi = Gy(fi; θy), wi = Gw(fi; θw) (1)

In Eq. 1, Gf (.; θf ), Gy(.; θy), Gw(.; θw) are feature extractor, character clas-
sifier and writer classifier shown in Fig. 2, and the θf , θy, and θw represent the
trainable parameters of them. These trainable parameters are assigned using the
glorot uniformly distributed initialization method at the beginning.

Loss Function. During training, we not only minimize the loss of the character
classifier, but also maximize the loss of the writer classifier. Based on this idea,
we propose a calculation method for the loss function. The specific formula is as
shown in Eq. 2.

L(θf , θy, θw) =
N∑

i=1

Li
y(θf , θy) − λ

N∑

i=1

Li
w(θf , θw) (2)

In Eq. 2, for N training samples, Li
y represents the loss function of the char-

acter classifier of the xi, and Li
w represents the loss function of writer classifier

of the xi, and the hyperparameter λ controls the trade-off between character
classifier and writer classifier. Among them, Li

y(θf , θy) and Li
w(θf , θw) are cal-

culated by cross-entropy loss function, as shown in Eqs. 3 and 4. y′
i and w′

i are
real character label and writer label of xi, they are one-hot vector. Ky and Kw

are the total number of character and writer on training set.

Li
y(θf , θy) = −

Ky∑

k=1

y′
ik log yik = −

Ky∑

k=1

y′
ik log Gy(Gf (xi; θf ); θy)k (3)

Li
w(θf , θw) = −

Kw∑

k=1

w′
ik log wik = −

Kw∑

k=1

w′
ik log Gw(Gf (xi; θf ); θw)k (4)

We add a gradient reversal layer (GRL) [7] between the feature extractor and
the writer classifier, as shown in Fig. 2. During back propagation, the GRL can
update the feature extractor with the objective of maximizing the loss of writer
classifier by reversing the gradient from writer classifier.
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4 Experiments

4.1 Dataset

For evaluating the effectiveness of WSAN, we conduct the first experiment on the
CASIA-HWDB1.1 test set compiled by the Chinese Academy of Sciences [13],
where the training set is CASIA-HWDB1.1 training set. And the comparison
experiment is conducted on the HCCR competition dataset ICDAR-2013, where
the training set consists of CASIA-HWDB1.0 and CASIA-HWDB1.1.

4.2 The Evaluation of WSAN Effectiveness

To validate the superiority of our model, we conduct experiments on two
datasets. The first experiment was done on CASIA-HWDB1.1 to verify the effec-
tiveness of WSAN. The networks trained by Zhang et al. [14] is to verify the
impact of network depth on the recognition accuracy. The networks can be com-
bined with the style adversarial layer without changing the key parts of the
original network. To save the cost and time of training, we select five of these
networks and retrain them with WSAN. Then compare it with the network
without WSAN.

From the experimental results in Table 1, we can see that after adding the
WSAN, the top-1 and top-5 accuracy of the 3755-class classification is improved.

Table 1. The 3755-class classification results on the CASIA-HWDB1.1 test set.

Methods Top 1 (%) Top 5 (%)

w/o WSAN w WSAN w/o WSAN w WSAN

DCNN-M6 94.60 95.02 98.90 99.04

DCNN-M6+ 94.90 95.19 99.10 99.19

DCNN-M7-1 95.10 95.51 99.20 99.43

DCNN-M7-2 95.00 95.37 99.20 98.37

DCNN-Ensemble 95.50 95.86 99.30 99.53

In the experiment, we also find that the convergence rate of the model with
WSAN is faster than that without WSAN. As shown in Fig. 4, the ensemble
model without WSAN uses more than 7,000 mini-batch when the recognition
rate reached 80%, while the ensemble model used less than 4,000 mini-batch after
adding the WSAN. When the model is trained, if there is a tendency to overfit
the writing style, the gradient reversal layer can correct the gradient descent
from the wrong direction, which can accelerate the convergence of the model.
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Fig. 4. Comparisons of convergence rates of models with and without WSAN.

4.3 Evaluation on ICDAR-2013

In the second experiment, we train the network on datasets CASIA-HWDB1.0
and CASIA-HWDB1.1 and test on the HCCR competition dataset ICDAR-
2013. We compare our model with several representative models. The experiment
results are shown in Table 2. It can be seen that the accuracy of our model reaches
97.27% in the ICDAR-2013 dataset.

Table 2. Classification results on the ICDAR-2013 database.

Methods Top 1 accuracy (%) Top 5 accuracy (%)

DCNN-M6 [14] 94.35 98.48

DCNN-M7-1 [14] 94.41 98.58

DCNN-Ensemble [14] 94.67 98.84

HCCR-AlexNet [15] 95.49 98.91

HCCR-GoogleNet [16] 96.26 99.58

Gabor+HCCR-GoogLeNet [4] 96.35 99.60

HCCR-Ensemble-GoogLeNet [4] 96.74 99.65

DirectMap+ConvNet+Adaptation [5] 97.37 n/a

HCCR-CNN12Layer [6] 97.59 n/a

Cascaded Model [17] 97.14 n/a

Ours Model(w/o WSAN) 96.89 99.59

Ours Model(w WSAN) 97.27 99.68

The reason why the accuracy of our model is lower than that of [5] and [6] is as
follows: (1) The model in [5] combines domain knowledge with deep convolution
neural network. However, our proposed model is an end-to-end model that does
not require researchers to have prior knowledge. (2) The convolution kernel in
[6] is deeper, and the model uses up to 48.7 MB of memory, while our model uses
only 28.7 M of memory.
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5 Conclusion

In this paper, we propose a novel adversarial network for handwritten Chinese
character recognition called WSAN, which is designed to suppress the nega-
tive impact of writing style on character recognition. WSAN includes feature
extractor, character classifier and writer classifier. We employ feature extractor
to learn deep representations for raw image and then jointly optimize the net-
work by minimize the loss of the character classifier and maximize the loss of
the writer classifier. The experiments on two public datasets demonstrate that
the proposed network achieves comparable performance on HCCR.

Acknowledgement. The work is supported by Shanghai Natural Science Foundation
(No. 19ZR1415900).
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Abstract. In this paper, we propose an end-to-end Recovering Super-
Resolution Generative Adversarial Network (RSRGAN) to automatically
learn super-resolution underwater images. RSRGAN mainly includes two
parts. The first part is a Recovering GAN, aiming at color correction
and removing noise in the images. The generator of Recovering GAN is
based on an encoder-decoder network with self-attention on the global
feature. The second part is a Super-Resolution GAN, which adopts the
residual-in-residual dense block in its generator, to add details onto the
results fed from the Recovering GAN. Both qualitative and quantitative
experimental results show the advantage of RSRGAN over the state-of-
the-art approaches for underwater image super-resolution.

Keywords: Underwater images · Super-resolution · Generative
adversarial network

1 Introduction

Underwater images generally suffer from severe degradation, such as lack of
contrast, color casting and noise. The poor visibility of underwater images limits
the performance of subsequent vision tasks. Hence, high-resolution (HR) images
are desirable for many underwater applications.

In this paper, we propose an end-to-end Recovering Super-Resolution Gen-
erative Adversarial Network (RSRGAN) to generate the super-resolution (SR)
underwater images. We solve the problem in two stages. In the first stage, we
use the first part of RSRGAN, called Recovering GAN, to correct the color and
remove the noise of the underwater images. In the second stage, we use the sec-
ond part of RSRGAN, called Super-Resolution GAN, to enrich the fine texture
details of the images restored by the Recovering GAN. RSRGAN combines the
generators of both GAN models and fine-tunes the entire model with the Super-
Resolution GAN’s discriminator. Experimental results show that RSRGAN out-
performs the state-of-the-art methods for underwater image super-resolution.
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2 Related Work

As far as we know, there are very few super-resolution methods for underwater
images. In this section, we mainly introduce the recent approaches for underwater
image restoration and single image super-resolution (SISR).

2.1 Underwater Images Restoration

Typical underwater restoration algorithms, such as histogram equalization and
automatic white balance [9], improve the visual quality to some extent, but they
suffer from noise amplification and color deviations problems. The emergence
of generative adversarial network (GAN) [4] provides a new chance for under-
water image restoration problem. Fabbri et al. designed a GAN model with a
fully convolutional encoder-decoder generator to restore underwater images [3].
However, this method cannot perform well on the heavy noise images.

2.2 Single Image Super-Resolution (SISR)

Interpolation and sparse representation learning are widely used SR methods
[17]. However, the generated SR images generally lack detailed textures. With
the development of deep learning, Dong et al. [2] used a three-layer fully con-
volutional network to get HR images. Kim et al. used a 20-layer VGG [13] to
obtain SR images [6]. In [8], the authors proposed the enhanced deep residual
networks for SISR. As GAN-based models boom, Ledig et al. [7] and Wang et al.
[15] employed GAN with the perceptual loss for the applications of image SR.
But unfortunately, these methods are only performed on the natural images.
Particularly, Lu et al. [10] applied denoising and descattering methods to the
SR underwater images. However, denoising and descattering brought additional
blur to the SR images.

3 The Proposed Model

The goal of this work is to establish an underwater super-resolution system. The
proposed RSRGAN includes two parts, Recovering GAN and Super-Resolution
GAN. Figure 1 shows the architecture of RSRGAN.

3.1 Recovering GAN

To recover the clear image IR from the noisy and degraded image IU , we propose
a GAN-based model, Recovering GAN, which can be formalized as:

min
GR

max
DR

V (GR,DR) = EIT ∼ptrain(IT )[log DR(IT )]+

EIU∼pG(IU )[log(1 − DR(GR(IU )))], (1)

where IT is the clear image (ground-truth) corresponding to IU .
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Fig. 1. The architecture of RSRGAN. The pretrained generators of both GAN models
are combined as the generator of RSRGAN. The discriminator of the Super-Resolution
GAN is used as the discriminator of RSRGAN. The light-colored parts are the discrim-
inator of Recovering GAN only used for its pre-training.

Network Architecture. The generator of Recovering GAN is a fully convo-
lutional encoder-decoder, as shown in Fig. 2. Every step in the encoder consists
of a 3 × 3 convolutions with stride 1 and a 3 × 3 convolutions with stride 2 (in
orange color). Every step in the decoder consists of an upsampling of the feature
map followed by two 3×3 convolutions, a concatenation with the corresponding
cropped feature map from the encoder, and a 3 × 3 convolution (in blue color).
The other three 3 × 3 convolutions process the feature maps to an image (in
purple color). Each convolutional layer is followed by the spectral normalization
(SN) [11] and Leaky ReLU activation (α = 0.2). Furthermore, we implement a
self-attention block [14] on the global feature map before the decoder.

Fig. 2. The generator of Recovering GAN. Orange and blue boxes correspond to the
feature maps in the encoder and decoder, respectively. The number of channels is
denoted below the box. The size of the feature maps is denoted on the top of the box.
Green boxes represent the global feature. Dark blue boxes represent copied feature
maps, while purple boxes display the process from the feature maps to an image.
(Color figure online)

The discriminator network DR contains 4 convolutional blocks followed by
a 3 × 3 convolution to obtain a 16 × 16 probability matrix for image patches
classification. Here, each convolutional block consists of a 3×3 convolution with
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stride 1 and a 3 × 3 convolution with stride 2. The numbers of feature maps of
the blocks increase by a factor of 2 from 64 to 512. Each convolutional layer is
followed by the SN and Leaky ReLU activation (α = 0.2). The discriminator
loss is defined as:

LR
D = −EIT ∼ptrain(IT )[log DR(IT )] + EIU∼pG(IU )[log(DR(GR(IU )))]. (2)

Loss Function. We define the adversarial loss of the generator as:

LR
Adv = −EIU∼pG(IU )[log(DR(GR(IU )))]. (3)

In Recovering GAN, we adopt the Mean Absolute Error (MAE) loss to measure
the similarity between pixels:

LR
MAE =

1

WH

W∑

x=1

H∑

y=1

|IR
x,y − GR(IU )x,y|. (4)

Furthermore, we define the perceptual loss as:

LR
V GG =

1

Wi,jHi,j

Wi,j∑

x=1

Hi,j∑

y=1

|φi,j(I
R)x,y − φi,j(GR(IU ))x,y|, (5)

where φi,j is the feature map obtained by the j-th convolution (after activation)
before the i-th max pooling layer within the pre-trained VGG-19 network [13],
while Wi,j and Hi,j are the dimensions of the respective feature maps.

3.2 Super-Resolution GAN

The Super-Resolution GAN is trained to generate corresponding ISR given ILR

(IR). The objective function of Super-Resolution GAN can be formalized as:

min
GSR

max
DSR

V (GSR,DSR) =EIHR∼ptrain(IHR)[log DSR(IHR)]+

EILR∼pG(ILR)[log(1 − DSR(GSR(ILR)))]. (6)

Network Architecture. The generator of Super-Resolution GAN includes 16
residual-in-residual blocks [15], as shown in Fig. 3. Specifically, each of the blocks
consists of 3 dense blocks and each dense block has 5 convolutional layers. The
convolutions are 3 × 3 with stride 1 and the residual scaling parameter is 0.2.
The pixel-shuffle layer increases the resolution of the input image. In addition,
each convolutional layer in the generator is followed by the SN.

The discriminator’s structure of Super-Resolution GAN is similar to that in
Recovering GAN. However, we want to predict the probability that a real image
IHR is relatively more realistic than a fake one ISR. The relativistic discriminator
is formalized as:

DSR(IHR, ISR) = σ(PSR(IHR) − E[PSR(ISR)]), (7)

DSR(ISR, IHR) = σ(PSR(ISR) − E[PSR(IHR)]), (8)
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Fig. 3. The generator of Super-Resolution GAN.

where PSR(I) is the patch discriminator output, σ is the sigmoid function, E[·]
takes an average for the images in the batch, and ISR = GSR(ILR). The dis-
criminator loss is then defined as:

LSR
D =EIHR∼ptrain(IHR)[log DSR(IHR, GSR(ILR))]+

EILR∼pG(ILR)[log(1 − DSR(GSR(ILR), IHR))]. (9)

Loss Function. Similar to the Recovering GAN, Super-Resolution GAN uses
the MAE loss and perceptual loss to optimize the generator:

LSR
MAE =

1

r2WH

rW∑

x=1

rH∑

y=1

|IHR
x,y − GSR(ILR)x,y|, (10)

LSR
V GG =

1

Wi,jHi,j

Wi,j∑

x=1

Hi,j∑

y=1

|φi,j(I
HR)x,y − φi,j(GSR(ILR))x,y|. (11)

Meanwhile, the adversarial loss for the generator is:

LSR
Adv =EIHR∼ptrain(IHR)[log(1 − DSR(IHR, GSR(ILR)))]+

EILR∼pG(ILR)[log DSR(GSR(ILR), IHR)]. (12)

We can see that, the adversarial loss for the generator benefits from the gradients
from both IHR and ISR = GSR(ILR), while previous GAN generator is only
benefited from the generated data.

3.3 Recovering Super-Resolution GAN (RSRGAN)

We combine the generators of pre-trained Recovering GAN and Super-Resoluiton
GAN as the generator of RSRGAN. Furthermore, we use the discriminator of
Super-Resolution GAN as the discriminator of RSRGAN. Finally, we fine-tune
RSRGAN as an end-to-end network.
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The loss function of RSRGAN can be defined as the weighted sum of the
losses aforementioned:

LSR = λR1L
R
MAE + λR2L

R
VGG + λR3L

R
Adv + λR4L

R
D+

λSR1L
SR
MAE + λSR2L

SR
V GG + λSR3L

SR
Adv + λSR4L

SR
D , (13)

where λR1 ∼ λR4 and λSR1 ∼ λSR4 denote the weights for Recovering GAN’s
loss and Super-Resolution GAN’s loss, respectively.

In general, removing noise from images may introduce artifacts. The Super-
Resolution GAN in RSRGAN can generate textural details to avoid the artifacts.
Moreover, the end-to-end training of RSRGAN can lead to better performance
than employing Recovering GAN and Super-Resolution GAN separately.

4 Experiments

In this section, we compared RSRGAN with several state-of-the-art methods
for underwater image super-resolution. For the parameters, we empirically set
λR2 = λSR2 = 2 × 10−2, λR3 = λSR3 = 1 × 10−2. In addition, we set λR1 =
λR4 = λSR1 = λSR4 = 1 as normal GAN-based model. The learning rate was
set to 2 × 10−5, and the Adam optimizer with β1 = 0.9 and β2 = 0.999 was
employed for the network training.

4.1 Dataset

For this research, there are no available datasets yet, which contain pairs of clear
ground-truth and corresponding low quality underwater images. Following [3], we
used images from ImageNet to train a CycleGAN that learned the mapping from
natural to underwater images. After that, we used the CycleGAN to generate
underwater images with those containing marine creatures. Finally, we added
marine snow noise [1] to the underwater images. Concretely, we used 5000 image
pairs for training and 1100 image pairs for test.

4.2 Evaluation of the Underwater Image Restoration

Figure 4 shows some samples of the original images and the restored images
obtained by Recovering GAN and some state-of-the-art image restoration meth-
ods, feeding them with the noisy underwater images. It is obvious that the
restored images by CycleGAN [18] and UGAN [3] lack brightness. Pix2Pix [5]
recovered the color of the images well, but the noise still remained. In contrast,
Recovering GAN achieved the best performance. It not only recovered the color
of the images, but also removed the noise in the images. Hence, Recovering GAN
is beneficial for underwater image super-resolution.
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(a) Origial (b) CycleGAN (c) UGAN (d) Pix2Pix (e) RGAN

Fig. 4. Comparison between Recovering GAN (RGAN for short here) and the state-
of-the-art methods for underwater image restoration.

4.3 Evaluation of the Underwater Image Super-Resolution

Figure 5 shows the super-resolution images generated by Super-Resolution GAN,
VDSR [6], SRCNN [2] and ESRGAN [2], feeding them with the restored images
by Recovering GAN. We can see that Super-Resolution GAN outperforms the
compared SR methods in both sharpness and details. For instance, Super-
Resolution GAN can produce sharper and more natural fins and contour line
of the fish’s face than the compared methods.

(a) Origial HR (b) VDSR (c) SRCNN (d) ESRGAN (e) SRGAN

Fig. 5. Comparison between Super-Resolution GAN (SRGAN for short here) and the
state-of-the-art methods for image SR.

4.4 Performance of RSRGAN

To quantitatively compare RSRGAN and the state-of-the-art methods, the per-
formance of some image restoration methods followed by several SR methods
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were evaluated in terms of peak signal to noise ratio (PSNR) and structural
similarity index (SSIM) [16]. The results are shown in Table 1. It is easy to see
that, the results from Recovering GAN in the last column are obviously higher
than those in the other columns. Furthermore, Super-Resolution GAN is more
powerful than the other compared SR methods. More importantly, RSRGAN
delivers the best performance in terms of both PSNR and SSIM. Particularly,
it performs better than employing Recovering GAN and Super-Resolution GAN
separately, which confirms the effectiveness of the end-to-end architecture.

Table 1. Comparison of underwater image super-resolution results in terms of PSNR
(dB)/SSIM. The first row shows the names of the image restoration methods, while
the first column shows the names of the image super-resolution methods.

SR Restoration

CycleGAN [18] UGAN [3] Pix2Pix [5] Recovering GAN

bicubic 16.70dB/0.5575 21.76dB/0.7195 18.87dB/0.6210 22.78dB/0.7322

VDSR [6] 16.85dB/0.5957 22.65dB/0.7811 19.21dB/0.6725 23.10dB/0.7689

EDSR [8] 16.84dB/0.5776 19.97dB/0.6404 18.67dB/0.5992 21.12dB/0.6378

ESPCN [12] 16.76dB/0.5735 21.47dB/0.6494 18.56dB/0.5978 21.12dB/0.6378

SRCNN [2] 16.72dB/0.5723 20.13dB/0.6462 18.55dB/0.5960 21.34dB/0.6440

SRGAN [7] 16.71dB/0.5747 19.68dB/0.6393 18.42dB/0.5945 20.71dB/0.6312

ESRGAN [15] 16.87dB/0.5906 22.54dB/0.7738 19.23dB/0.6633 23.66dB/0.7806

our SRGAN - - - 24.04dB/0.7832

RSRGAN 24.16dB/0.7886

5 Conclution

We propose an end-to-end RSRGAN model for underwater image super-
resolution. RSRGAN includes two parts: Recovering GAN and Super-Resolution
GAN. Recovering GAN corrects the color distortion and removes the noise in the
images, while Super-Resolution GAN enriches the texture details to the results
fed from Recovering GAN. RSRGAN combines the generators of Recovering
GAN and Super-Resolution GAN, while fine-tunes the entire model with the
discriminator of Super-Resolution GAN. The qualitative and quantitative com-
parison results demonstrate the superiority of RSRGAN over the state-of-the-art
methods for underwater image super-resolution.
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Abstract. Convolution neural network is a widely used model in the
relation extraction (RE) task. Previous work simply uses max pooling to
select features, which cannot preserve the position information and deal
with the long sentences. In addition, the critical information for relation
classification tends to present in a certain segment. A better method
to extract feature in segment level is needed. In this paper, we pro-
pose a novel model with hierarchical attention, which can capture both
local syntactic features and global structural features. A position-aware
attention pooling is designed to calculate the importance of convolution
features and capture the fine-grained information. A segment-level self-
attention is used to capture the most important segment in the sentence.
We also use the skills of entity-mask and entity-aware to make our model
focus on different aspects of information at different stages. Experiments
show that the proposed method can accurately capture the key infor-
mation in sentences and greatly improve the performance of relation
classification comparing to state-of-the-art methods.

Keywords: Relation extraction · Hierarchical attention · Entity-aware

1 Introduction

Relation extraction (RE) aims to obtain semantic relations between two given
entities from plain text, such as the following examples: contains, lives in, capital
of. It is an important task in natural language processing, particularly in knowl-
edge graph construction, paragraph understanding and question answering.

Traditional RE suffered from the lack of training data. To solve this problem,
distant supervision was proposed [8]. Distant supervision can easily generate
a large amount of training data, but it also brings some challenges. Distant
supervision is often used to address open corpora, such as Wikipedia and the
New York Times. We counted the distribution of sentence length in a NYT
dataset developed by Riedel et al. [11]. Over 70% of the sentences are longer
than 30 words, and nearly half of the sentences are longer than 40 words. The
performance of traditional methods decreases as the sentence length increases.
We need to find more effective methods to capture features.

c© Springer Nature Switzerland AG 2019
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In this study, we propose a novel model to address the limitations in fea-
ture extracting. Our model uses hierarchical attention to capture both local
and global features. Also, entity-aware and position-aware is added to assist the
classification prediction. The key contributions of this paper include:

– We apply hierarchical attention to better capture useful information. Position-
aware attention is applied to capture the fine-grained features during the max
pooling process. The sentences is divided into three segments according to the
position of two entities. Self-attention is applied to these three segments to
obtain the structural information in the high level.

– The entity mask is used in the input layer to help model focus on the global
syntactic features. The entity-aware is applied in the output layer so that the
semantic relation between two entities can be taken into account during the
predict process.

– Experiments show that our methods can greatly improve the performance
compared with the state-of-art models.

2 Related Work

Relation Extraction is an important work in NLP. Early methods proposed var-
ious features to identify different relations, particularly with supervised meth-
ods [1,4,10,13]. Recent years, neural networks were widely used in NLP. Var-
ious models were applied in RE task, including convolution neural network
[6,9,12,17–19], recurrent neural networks [20] and long short-term memory
network [21]. Attention mechanism is also applied to relation extraction task
[3,6,21]. Some recent works try to capture more useful features with the help of
side information [5,7,15].

Most methods based on CNN simply use max pooling to select convolution
features, which ignores position information of the convolution features. Mean-
while, as the length of training sentences increases, the key information is often
present in a certain segment. We need a better method to capture the structural
information at segment level. To address these limitations, we propose a novel
model which combines CNN with hierarchical attention.

3 Framework

We propose a novel framework for relation extraction, which uses hierarchical
attention and entity-aware to help capture better semantic features. Figure 1
shows our neural network architecture.

Each sentence is transformed into a vector consisting of word embedding
and position embedding. The specific entity words are masked and replaced
with Subject and Object. Convolution Neural Network is used to extract features
from the input sentence. Features are divided into three segments according to
the entity position. The position-aware attention pooling is used to preserve the
useful information, and then segment-level self-attention is used to capture the
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structural information. Finally, we combine the feature information with the
entity information to get the predict output. These part is described in detail
below.

Fig. 1. The architecture of our method. Position-aware attention pooling and segment-
level self-attention are used to capture both local and global features.

3.1 Vector Representation

The input of our model is the sequence of words in a sentence. Similar to pre-
vious papers [19], we use word embedding to capture the semantic information
and position embedding to capture the structural information. Specifically, two
specific tokens, Sub and Obj, are used to represent the entities in this phase,
which we called entity masks. The dimension of each word in the input sentence
is d = dw + 2 × dp, where dw is the word embedding dimension and dp is the
position embedding dimension.

3.2 Convolution

We use CNN to extract features from sentences. Given a input representation
R, the convolution operation is applied to R with the sliding window of size k.
We define the convolution matrix as Wc ∈ R

dc×(k×d), where dc is the number of
filters. The output of the i-th convolutional filter can be expressed as:

ci = [Wcq + bc]i (1)

where qi = ri−k+1:i(1 ≤ i ≤ N + k − 1) means the concatenation of k word
embeddings. As for the boundary of sentences, k−1

2 padding tokens are placed
at the beginning and the end of the sentence.
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3.3 Position-Aware Attention Max Pooling

Similar to previous work [18], the output of each convolutional filter pi is divided
into three segments {c1i , c

2
i , c

3
i } according to the position of two entities. For the

i-th filter, the attention weight of each feature aij can be calculated as:

uij = q�Wa[hj , p
s
j , p

o
j ] (2)

aij =
exp (uij)∑n
j=1 exp (uij)

(3)

The attention weight in each segment cij is calculated separately. Here hj ∈
R

dc is the output of the convolutional filters in position j. psj and poj are the
word position embeddings relative to the subject entity and object entity. The
output of attention max pooling is calculated as:

zki = max(ak
ijc

k
ij) 1 ≤ i ≤ dc, 1 ≤ j ≤ n, 1 ≤ k ≤ 3 (4)

3.4 Segment-Level Self-Attention

We calculate the relation between three segments based on the multi-head atten-
tion [16], which we called segment-level self-attention. We set the feature dimen-
sion dc = 600 and employ h = 6 parallel attention heads. In each head we set
the dimension of keys and values dk = dv = dc/h = 100. This part is composed
of two identical layers. Similar to [16], we add a fully connected feed-forward
network after each self-attention layer. The dimension of the fully connected is
dff = 2048.

3.5 Entity-Aware Output

Here we use the entity-aware softmax output, which concatenates the entity
words and the feature vector, to help the relation prediction. The combined
vector is fed into a softmax classifer:

o = softmax (Wc[hs, e1, e2] + bc) (5)

where Wc ∈ R
(3dc+2de)×r, bc ∈ R

r and r is the number of possible relation types.
e1 and e2 is the word embedding of the subject entity and object entity. Since
each entity may have several words, we pad all the entity to the length of 5
words and de = 5dw.

3.6 Loss Function

The softmax output can be interpreted as the probability score of different rela-
tions. We design a new loss function to help training:

Jc = exp
(
γ

(
m − S+

x + S−
x

))
(6)
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where m is a margin and γ is a scaling factor. The margin gives extra penalization
on the difference in scores and the scaling factor helps to magnifies the scores.
S+
x refers to the score for the correct relation label and S−

x refers to the highest
score among all the wrong relations. By minimizing this loss function, we hope
our model can give scores with a difference greater than m between positive label
and negative label.

Table 1. Parameter settings

Word dimension dw 300 Position dimension dp 50 Windows size k 3

Learning rate λ 0.0003 margin m 1.0 scaling factor γ 2.0

4 Experiments

4.1 Experimental Setup

Dataset and Evaluation Metrics. We evaluate our method on a widely used
dataset developed by Riedel [11]. This dataset is generated by aligning relation
facts in Freebase with the New York Times (NYT) corpus. Training set contains
522611 sentences, and test set contains 172448 sentences. There are 53 relations
including a special relation NA which indicates no relation between two entities.

Following previous work [8], we evaluate our model in two ways. We first
compare the extracted relation facts with the Freebase data and report the
precision/recall curves of the experiments. Then we manually check the precision
of top N sentences in our experiments.

Parameter Settings. We use the word2vec model to pre-train the word rep-
resentation. The detailed parameter settings are given in Table 1.

4.2 Precision/Recall Curve

The held-out evaluation provides an approximate measure of precision without
consuming human evaluation. The relation facts extracted from the test data
are automatically compared with those in Freebase.

To evaluate our model, we select several traditional models as baseline. Mintz
[8], MultiR [2] and MIML [14] are feature-based models. PCNN+ONE [18] uses
piecewise convolutional neural network and select one instance from each bag.
PCNN+ATT [6] uses selective attention mechanism over instances to reduce the
weights of noisy data.

As shown in Fig. 2, our method achieve the best performance in the entire
interval. Our model simply select the sentence which get the highest scores in an
entity bag. Even so, we still get better performance compared with PCNN+ATT,
which demonstrates the effectiveness of our hierarchical attention and entity-
aware for relation extraction.
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4.3 Manual Evaluation

Distant supervision brings many noisy instances to the dataset. In order to better
demonstrate the performance of our model, we select two types of specific data
and conduct extra experiments on them.

Fig. 2. Precision recall curves of our method and baselines.

Table 2. Top-N prediction accuracy for entity pairs present in freebase.

Model 100 500 1000 Avg

PCNN+ONE 99 98.6 97.1 98.23

PCNN+ATT 100 99 98.4 99.13

Our method 100 99.8 99.6 99.8

Freebase Evaluation. We select the test sentences whose entity pairs actu-
ally exist in the freebase. Although there may be some noisy instances, we can
approximate that the labels are correct when we predict based on the entity bag.
We make the relation prediction for these selected test sentences and the results
are shown in Table 2.

From the results we can see that our method achieve the highest accuracy.
Our method can keep the accuracy at a high level even in the top-1000 experi-
ment, which indicates the effectiveness of our method.

NA Evaluation. In Riedel dataset, 166003 test sentences belong to NA relation,
accounting for the majority of test set. However, many of them are false negative
instances, which means there is actually a relation between two entities but it is
missing in Freebase. We performed relation prediction for the sentences in which
at least one of the participating entity is not present in freebase. We conducted
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manual evaluation for the top 100, top 200, and top 300 sentences which were
predicted to have a certain relation.

Table 3 shows the Top-N prediction accuracy. We can observe that: (1) Many
NA sentences are indeed false negative instances, which proves the necessity
of this experiment. (2) The accuracy of relation prediction has been greatly
improved with our method.

Table 3. Top-N prediction accuracy for entity pairs not present in freebase.

Model 100 200 300 Avg

PCNN+MAX 86 81 74.66 80.56

PCNN+ATT 89 84 79.33 84.11

Our method 96 91 84 90.33

5 Conclusion

In this paper, we propose a novel model for the relation extraction task. We
use the hierarchical attention to capture both fine-grained and structural infor-
mation. We introduce the position-aware attention pooling, which can obtain
better features compared with traditional max pooling. We use the segment-
level self-attention to capture structural features in high level. We also apply
the entity mask and entity aware mechanism in the input layer and output layer
respectively. As a result, our model can extract more useful information from
the training sentences. Experiments demonstrate that our method can improve
the performance of the state-of-the-art models.

Acknowledgements. This research work has been funded by the National Natu-
ral Science Foundation of China (Grant No. 61772337, U1736207), and the National
Key Research and Development Program of China NO. 2016QY03D0604 and
2018YFC0830703.
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Abstract. The broad learning system (BLS) approach provides low
computational complexity solutions for training flat structure feedfor-
ward networks. However, many BLS algorithms deal with the faultless
situation only. This paper addresses the fault tolerant ability of BLS
networks. We call our approach fault tolerant BLS (FTBLS). First, we
develop a fault tolerant objective function for BLS. Based on the devel-
oped objective function, we develop a training algorithm to construct a
BLS network. The simulation results show that our proposed FTBLS is
much better than the classical BLS.

Keywords: Broad learning system · Fault tolerance · Multiplicative
noise

1 Introduction

Single hidden layered networks are well known for their universal approximation
capability [1,2]. Inspired by feature extraction, the broad learning system (BLS)
concept [3] was proposed to construct a flat structure network. It processes its
input data using some feature mapped functions and uses the obtained features
as its processed inputs. No iterative training procedures are required in the
BLS concept. The desired output weights could be calculated easily by ridge
regression. From this point of view, the BLS concept is computationally efficient.

Although the original BLS and its variants are proved to be effective in han-
dling some benchmark datasets, existing BLS approaches focus on faultless sit-
uation only. In the implementation of a well-trained neural network, fault/noise
occurrences are unavoidable [4,5]. To handle fault, such as weight and node
failure in BLS networks, it is vital to understand how fault/noise affect the
performance of a well trained BLS network. To best of our knowledge, there
are few results on fault tolerant issues of BLS. This paper investigates the per-
formance of BLS under noise situation, in which multiplicative noise occur at
the feature nodes, the enhancement nodes and output weights concurrently. To
mitigate the effect of such noise, we develop a fault tolerant objective function.
Based on the developed objective function, we train a BLS network with the
c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, CCIS 1142, pp. 95–103, 2019.
https://doi.org/10.1007/978-3-030-36808-1_11
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Fig. 1. The structure of the BLS network.

proposed objective function. We call our approach fault tolerant BLS (FTBLS)
algorithm. Several simulations are carried out to show that our FTBLS algorithm
can greatly suppress the effect of multiplicative noise.

The rest of this paper is organized as follows. The background of BLS is given
in Sect. 2. The proposed FTBLS algorithm is developed in Sect. 3. Simulation
results are provided in Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 Background of Broad Learning System

Figure 1 shows a classical BLS network [3]. It has two types of nodes, calling
feature mapped nodes and enhancement nodes. The details of the BLS model
and its learning algorithm are given in the rest of this section.

2.1 Feature Mapped Nodes and Enhancement Nodes

Considering a regression problem, the input and output of the network are
denoted as x ∈ R

D and o ∈ R, respectively. Let x̄ = [xT, 1]T be the input
augmented with 1.

Feature Mapped Nodes: There are n groups of feature nodes and there are ri

nodes in the i-th group. In order to explore hidden features of input data, for each
group of feature nodes, a learned projection matrix, denoted as Ψ i ∈ R

(D+1)×ri ,
is employed to project the input data to produce the i-th set of mapped features.
The output gi of the i-th group of feature nodes is given by

gi = [g1, · · · , gri
]T = ΨT

i x̄ ∀ i = 1, · · · , n. (1)

The construction process of Ψ i’s is based on a sparse optimization process and
will be presented in Sect. 2.3. Here, we follow the standard BLS system and
do not apply the nonlinear activation function on gi’s. We pack the outputs
of all feature nodes together as g = [gT

1 , · · · ,gT
n ]T ∈ R

∑n
i=1 ri and denote q =

[gT, 1]T ∈ R

∑n
i=1 ri+1.
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Enhancement Nodes: There are m groups of enhancement nodes. Each group
has pj nodes. The inputs of the enhancement nodes are taken from feature
mapped nodes. The outputs of the j-th group of enhancement nodes are given by

hj = [h1, · · · , hpj
]T = ξj(WT

hj
q) ∀ j = 1 · · · ,m, (2)

where ξj(·) is a nonlinear activation function for j-th group of enhancement
nodes. In this paper, we use tanh as the activation function for all groups,
given by

ξj(u) = tanh(u) =
2

1 + exp(−2u)
− 1. (3)

We pack the outputs of all enhancement nodes together as η = [hT
1 , · · · ,hT

m]T ∈
R

∑m
j=1 pj .

2.2 Network Output

We denote output of the network as o. We pack the outputs of features nodes
and the outputs of enhancement nodes as a = [gT|ηT]T. The network output
for a given input vector is given by o = aTwm, where wm is the output weight
vector of the network.

2.3 Construction of the Projection Matrices: Ψi and the Weight
Matrices of the Enhancement Nodes: Whj

The way to construct the projection matrix is based on [3,6,7]. The training
set is denoted as {(x1, y1), · · · , (xN , yN )}, where xk ∈ R

D is the input vector
of the k-th training sample and yk is its the desire output. We first group all
xk’s together to form training data matrices: x = [x1| · · · |xN ]T and x̄ = [x|1],
where 1 is a vector whose elements are equal to 1. The BLS first associates a
random projection matrix W̄ fi

∈ R
(D+1)×ri for each group of feature mapped

nodes. The elements of W̄ fi
are randomly generated. It should be noticed that

the BLS do not use W̄ fi
’s as Ψ i’s.

With the random matrix W̄ fi
[3,6,7], we obtain a random projection data

matrix Qi = φi(X̄W̄ fi
), where φi can be any activation function. In [3,6,7], the

BLS considers linear function and then the random projection matrix is given by

Qi = x̄W̄ fi
. (4)

The projection matrix Ψ i is the solution of the following sparse approximation
problem:

min
Ψ i

‖QiΨ
T
i − X̄‖2F + ρ‖Ψ i‖1 (5)

where ρ in (5) is a regularization parameter for sparse regularization.
For each group of the enhancement nodes, weight matrix W hj

is
randomly generated [3,6,7].
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2.4 Output Weight Vector

The next step is to construct the output weight vector wm. Given the n projec-
tion matrices Ψ i’s of the feature mapped nodes and the training data matrices
x̄, for the i-th group of feature mapped nodes, we have the i-th set of features
of the training data: Zi = x̄ΨT

i . We pack all the feature values of the training
data together to get

Zn = [Z1, · · · ,Zn]. (6)

Similarly, the outputs of enhancement nodes are Hj = ξj([Zn|1])W hj
, for j =

1, · · · ,m. We pack all the outputs of enhancements nodes together as

Hm = [H1, · · · ,Hm]. (7)

It should be noted that wm can be computed with ease via ridge regression
approximation of [Zn|Hm]†, given by

wm = [Zn|Hm]†y (8)

where y = [y1, · · · , yN ]T is the collection of the training outputs, and [Zn|Hm]†

can be obtained by

[Zn|Hm]† = lim
λ→0

(λI + [Zn|Hm]T [Zn|Hm])−1[Zn|Hm]T . (9)

An alternative way is to formulate the training problem as an optimization
problem, given by arg min

wm

‖Awm − y‖22 + λ‖wm‖22, where A = [Zn|Hm].

3 The Proposed Fault Tolerant BLS (FTBLS)

Let gli be the output of the li-th node of the i-th group of the feature nodes.
When it is affected by multiplicative noise, its value becomes

g̃li = (1 + δf )gli , (10)

where li = 1, · · · , ri. In (10) δf ’s are independent and identically distributed
(i.i.d.) random variables with zero mean and variance equal to σ2

φ. The variance
σ2

φ describes the noise intensity. Hence, given the training data matrix, the n

groups of feature nodes affected by noise become Z̃
n

=
[
Z̃1, · · · , Z̃n

]
.

Let hlj be the output of the lj-th node of the j-th group of enhancement
nodes. Consider that the input weights of the enhancement nodes are affected
by multiplicative noise. Hence, with the aids of Taylor series, the output of a
faulty enhancement node can be modelled as

h̃lj = hlj + δhwT
hlj

Δhlj ∀ lj = 1, · · · , pj (11)
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where Δhlj =
∂ξj(w

T
hlj

q)

∂whlj

. Also, δh’s are i.i.d. random variables with zero mean

and variance equal to σ2
ξ . Hence, the m groups of enhancement nodes affected

by noise become H̃
m

=
[
H̃1, · · · , H̃m

]
.

Furthermore, when the output weights of a BLS network are affected by
noise, the weight value can be described as

w̃m
l = (1 + δw)wm

l (12)

for all l, where δw’s are i.i.d. random variables with zero mean and variance
equal to σ2

w.
From the statistics properties of δf ’s, δh’s and δw’s, the first order statistics

are given by 〈
g̃liw̃

m
li

〉
= gliwli , and

〈
h̃lj w̃

m
j

〉
= hljwlj . (13)

The second order statistics are given by
〈
g̃liw̃

m
li

〉
= gliwli (14a)〈

h̃lj w̃
m
j

〉
= hljwlj (14b)

〈
g̃2li(w̃

m
li )2)

〉
=

(
1 + σ2

w

)
(1 + σ2

φ)g2li(w
m
li )2 (14c)〈

h̃2
lj (w̃

m
lj )2

〉
=

(
1 + σ2

w

) (
h2

ljw
2
lj + σ2

ξ

(
wT

�lj
ΔhljΔhT

ljw�lj

))
(14d)

〈
g̃liw̃

m
li g̃li′ w̃

m
li′

〉
= gliwligli′ wli′ , ∀ li �= li′ (14e)

〈
h̃lj w̃

m
lj h̃lj′ w̃

m
lj′

〉
= hljwljhlj′ wlj′ , ∀ lj �= lj′ (14f)

where 〈·〉 is the expectation operator.
Based on the fault model given by (10)–(14), the training set error for a

specific fault pattern (described as δf ’s, δh’s, and δw’s), is given by

ζ̃ = ‖Ãw̃m − y‖22 (15)

It should be recalled that A = [Zn|Hm]. Hence, Ã = [Z̃
n|H̃m

].
In order to obtain the output weight vector that minimizes the training set

error, we choose to minimize the expectation of the objective function stated
in (15). Now, along with the statistics properties developed in (13) and simple
manipulation, the following objective function is obtained:

J =
〈
‖Ãw̃m − y‖22

〉
=

1
N

‖Awm − y‖22 +
1
N

(
(ww)TRwm

)
, (16)

where R is a (
∑n

i=1 ri +
∑n

j=1 pj) × (
∑n

i=1 ri +
∑n

j=1 pj) diagonal matrix,
given by

R = σ2
wdiag(AT A) + (1 + σ2

w)diag(S) (17)
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where diag(·) is the diagonal operator which extracts the diagonal elements of
a matrix to form a diagonal matrix. The matrix S is a block diagonal matrix,
given by

S =
[
σ2

φ(Zn)TZn ∅
∅ σ2

ξ∇FT∇F )

]
, (18)

where ∇F = [∇F 1, · · · ,∇F m] and ∇F j = WT
hj

∂ξ([Zn|1N×1]W hj
)

∂W hj
. By consider-

ing (3), ∇F j can be rewritten as

∇F j!([Zn|1N×1]W hj
) 	

(
1N×pj

−ξ([Zn|1N×1]W hj
) 	 ξ([Zn|1N×1]W hj

)
)

,

(19)
where j = 1, · · · ,m and 	 denotes Hadamard product.

Clearly, (16) is a convex function. Therefore, by setting its gradient to zero,
we can obtain optimal output weight (wm)∗ which results in minimizing the
training set error under the fault situation. The optimal output weight vector is
given by

(wm)∗ = (R + [Zn|Hm]T[Zn|Hm])−1Zn|Hm]Ty. (20)

One merit of our proposed learning algorithm (20) is that there is no tuning
parameter. In the traditional BLS, we need to tune λ by trial and error (Table 1).

4 Numerical Experiments

In this section, the proposed FTBLS algorithm is compared with the original
BLS algorithm. Four real life datasets from University of California Irvine (UCI)
regression repository [8]. The datasets include Concrete Compressive Strength,
Abalone, Wine Quality White (WQW), and Airfoil Self Noise (ASN). summa-
rizes the properties of these datasets.

Table 1. Details of the data-sets

Data-set Training set size Test set size Number of features

Concrete 500 530 9

Abalone 2000 2177 8

Whine Quality Qhite (WQW) 2000 2898 11

Airfoil Self Noise (ASN) 751 752 5

The data is pre-processed as follows. The input features are normalized to
the range of [−1, 1]. The target outputs are normalized to the range of [0, 1].
In addition, the input weights and the biases of the enhancement nodes are
generated randomly between the range [−1, 1]. For BLS, the main drawback of
the original BLS algorithm is that there is no simple way to find an appropriate
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λ. In our experiments, we try various λ values and select the value based on the
training set. Table 2 shows those λ values.

We compare the traditional BLS algorithm with the proposed FTBLS under
various fault levels. Three fault levels are considered. They are {σ2

φ = σ2
ξ = σ2

w =
0.01}, {σ2

φ = σ2
ξ = σ2

w = 0.09}, and {σ2
φ = σ2

ξ = σ2
w = 0.25}. In the experiment,

we set ri = 20, n = 20. With this setting, we obtain 400 feature mapped nodes.
In addition, we set m = 1, pj = 200. Hence, we obtain 200 enhancement nodes.
For fair comparison, we implement the same number of feature mapped nodes
for the proposed FTBLS and the traditional BLS algorithm. Similarly, we use
the same number of enhancement nodes for both algorithms.

In our numerical experiments, the simulation was ran for 20 times. In each
trial, the samples of datasets were randomly split into training and testing set.
Table 3 shows average test set mean square of error (MSE) over 20 trials.

Table 2. Tuning parameter settings of the traditional BLS algorithm

Data-set Parameter

Concrete λ = {0.01, 0.03, 0.06, 0.08, 0.1, 5, 8, 10}
Abalone λ = {0.01, 0.05, 0.06, 0.08, 0.3, 5, 8, 10}
Wine Quality White (WQW) λ = {0.001, 0.005, 0.01, 0.06, 0.3, 5, 8, 10}
Airfoil Self Noise (ASN) λ = {0.005, 0.01, 0.06, 0.1, 0.3, 5, 8, 10}

From the result in Table 3, the average test set MSEs of the proposed FTBLS
algorithm are smaller than those of the traditional BLS. For instance, in the
Abalone dataset, when the fault level is small, i.e., σ2

φ = σ2
ξ = σ2

w = 0.01, the
average MSE of the traditional BLS is 0.0683, while the MSE of the proposed
FTBLS is 0.0083 which is better than that of original BLS. Furthermore, when
the fault level is increased to a larger value of σ2

φ = σ2
ξ = σ2

w = 0.25, the average
MSE of the traditional BLS is 1.0967 which is very large, while the average MSE
of our proposed approach slightly increases to 0.0089. Obviously, the performance
of FTBLS is better than that of original BLS. For other datasets, from Table 3,
we have similar performance across. In addition, from the standard deviation
(SD) in Table 3, it is observed that our proposed approach has smaller SD values.
That means, the performance of our proposed FTBLS is more stable.

In order to further validate that our proposed FTBLS outperforms the tra-
ditional BLS, we carry out a paired t-test between the two algorithms. Table 4
summarizes the result of the paired t-test obtained.

For 20 trials and the one-tailed test with 95% level of confidence, the critical
t-value is 1.729. From the Table, it is clear that all the p-values are smaller than
0.05 and all the test t-values are greater than 1.729. In other words, it is proven
that on average the proposed FTBLS is better than the traditional BLS under
faulty network. Furthermore, all confidence intervals in Table 4 do not include
zero. Therefore, we have enough confidence to say that the improvement of our
proposed algorithm is significant.
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Table 3. Average MSE for test data-sets of the faulty network. The average values are
taken over 20 trials. There are 400 feature mapped nodes and 200 enhancement nodes.

Data set Fault level BLS FTBLS

Average
MSE

Standard
Deviation (SD)

Average
MSE

Standard
Deviation (SD)

Concrete σ2
φ = σ2

ξ = σ2
w = 0.01 0.1343 0.0152 0.0183 0.0008

σ2
φ = σ2

ξ = σ2
w = 0.09 0.7007 0.1226 0.0200 0.0009

σ2
φ = σ2

ξ = σ2
w = 0.25 2.0785 0.3849 0.0216 0.0009

Abalone σ2
φ = σ2

ξ = σ2
w = 0.01 0.0683 0.0125 0.0083 0.0003

σ2
φ = σ2

ξ = σ2
w = 0.09 0.3678 0.1017 0.0084 0.0003

σ2
φ = σ2

ξ = σ2
w = 0.25 1.0967 0.3200 0.0089 0.0003

WQW σ2
φ = σ2

ξ = σ2
w = 0.01 0.1238 0.0135 0.0175 0.0004

σ2
φ = σ2

ξ = σ2
w = 0.09 0.5937 0.1230 0.0181 0.0005

σ2
φ = σ2

ξ = σ2
w = 0.25 1.7365 0.3909 0.0188 0.0005

ASN σ2
φ = σ2

ξ = σ2
w = 0.01 0.1876 0.0223 0.0169 0.0005

σ2
φ = σ2

ξ = σ2
w = 0.09 1.1486 0.1676 0.0179 0.0006

σ2
φ = σ2

ξ = σ2
w = 0.25 3.4875 0.5221 0.0190 0.0006

Table 4. The paired t-test result between BLS and FTBLS

Data set Fault level BLS vs. FTBLS

AVG difference t-value p-value Confidence interval

Concrete σ2
φ = σ2

ξ = σ2
w = 0.01 0.1160 34.01 1.74 × 10−18 [0.1089 − 0.1231]

σ2
φ = σ2

ξ = σ2
w = 0.09 0.6807 24.84 5.99 × 10−16 [0.6234 − 0.7381]

σ2
φ = σ2

ξ = σ2
w = 0.25 2.0585 23.92 1.20 × 10−15 [1.8784 − 2.2386]

Abalone σ2
φ = σ2

ξ = σ2
w = 0.01 0.0600 21.3 1.04 × 10−14 [0.0541 − 0.0659]

σ2
φ = σ2

ξ = σ2
w = 0.09 0.3593 15.78 2.25 × 10−12 [0.3116 − 0.4070]

σ2
φ = σ2

ξ = σ2
w = 0.25 1.0879 15.20 4.36 × 10−12 [0.9381 − 1.2377]

WQW σ2
φ = σ2

ξ = σ2
w = 0.01 0.1063 24.23 7.46 × 10−29 [0.5929 − 0.6139]

σ2
φ = σ2

ξ = σ2
w = 0.09 0.5756 20.90 1.43 × 10−14 [0.5180 − 0.6332]

σ2
φ = σ2

ξ = σ2
w = 0.25 1.7177 19.64 4.42 × 10−14 [1.5347 − 1.9008]

ASN σ2
φ = σ2

ξ = σ2
w = 0.01 0.1708 33.75 2.01 × 10−18 [0.1602 − 0.1814]

σ2
φ = σ2

ξ = σ2
w = 0.09 1.1307 30.10 1.70 × 10−17 [1.0521 − 1.2093]

σ2
φ = σ2

ξ = σ2
w = 0.25 3.4685 29.69 2.20 × 10−17 [3.2240 − 3.7131]

5 Conclusion

This paper aims at minimizing the influence of noise on a trained BLS network.
In order to achieve this goal, we develop a new objective function to improve
the robustness of a noisy BLS network, in which multiplicative noise exist in
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feature mapped nodes, the input weights of enhancement nodes, and the output
weights. From the developed objective function, we propose a regularizer which
does not need to be tuned to achieve the aforementioned goal. We train the BLS
with the proposed fault tolerant objective function. The simulation experiments
show that the proposed algorithm outperforms the original BLS.
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Group Loss: An Efficient Strategy for Salient
Object Detection
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Abstract. Deep convolutional neural networks (CNNs) have recently achieved
great improvements in salient object detection. Most existing CNN-based
models adopt cross entropy loss to optimize the networks for its capability in
probability prediction. The function of cross entropy loss in salient object
detection can be seemed as a pixel-wise label classification for images, which
automatically predict whether the pixel is salient or non-salient. However, cross
entropy loss pays attention to each single pixel of image when classifying the
label, which doesn’t consider the relationship with other pixels. In this paper, we
propose an additional loss function, called group loss, to improve the above
limitation of cross entropy loss. In our model, group loss as well as cross
entropy loss work together to optimize the network for better saliency detection
performance. The purpose of group loss is to make the difference between
salient pixels smaller while the distance between salient and non-salient pixels
as large as possible. Meanwhile, due to the large computation cost of pixel-wise
comparisons, we design a superpixel pooling layer for computing group loss
with no additional parameters, which converts the computation of group loss to
superpixel level. The experimental results show that the introduction of group
loss improves the performance of CNN network in salient object detection,
which makes the boundaries of salient objects more distinct.

Keywords: Salient object detection � Convolutional neural network � Group
loss � Superpixel pooling layer

1 Introduction

Salient object detection aims to automatically extract the most visually distinctive
objects of an image from the rest part of background. It tends to focus on very few
objects in an image, which actually attract human attention most. This attention-
focused property means that salient object detection can discover the most critical
information from the image, thus help to improve the performance of some follow-up
computer vision tasks, including video compression, object tracking, image retrieval,
object recognition, image semantic segmentation, etc.

Although many conventional saliency detection methods [1–6] combining with
hand-crafted features have achieved great saliency performance with simple cases, they
cannot handle images with complex scenes well. In order to obtain more robust features
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than the hand-crafted features, convolutional neural networks (CNNs) [7] are intro-
duced to salient object detection. Many works [8, 9] have proved the priority of CNNs
in mining high-level features and generating the saliency map representation.

Existing CNN based models usually use cross entropy loss to optimize the network,
which does a pixel-wise label classification for images, and achieve great saliency
prediction performance. However, cross entropy loss focuses most its attention on each
pixel and doesn’t take the relationship between pixels into account. To improve the
limitation of cross entropy loss, we propose a new loss function, called group loss, for
salient object detection.

The main highlights of our work are as follows.

(1) We propose a new loss function, called group loss, for salient object detection to
take the relationship between pixels into account. The purpose is to make the
difference between salient pixels smaller and the distance between salient and non-
salient pixels as large as possible in specific feature space, thus making the
boundaries of salient objects in saliency map more distinct. Group loss and cross
entropy losswork together to optimize theCNNnetwork for salient object detection.

(2) As the computation cost of group loss at pixel-wise level is large, we design a
superpixel pooling layer for computing group loss. The superpixel pooling inputs
a feature map and a superpixel map, and does max pooling operation to the input
feature map to extract main features of each superpixel, taking the superpixel map
as the mask of irregular pooling shape. This proposed layer is essentially a
pooling layer, which means the model has no additional parameters to learn.

The rest part of this paper is organized as below. Section 2 gives a detailed
description of our proposed group loss and the CNN based model for salient object
detection. The experimental results and related analysis are discussed in Sect. 3.
Finally, Sect. 4 makes an overall summary of this paper.

2 Proposed Model

2.1 Overview

The whole architecture of the propose model is shown in Fig. 1. The structure outside
the red rectangle is a baseline network for salient object detection. The network consists
of 2 parts, including feature extraction part and up-sampling part. The baseline network
we use in our model is VGG-16 net. Cross entropy loss is used to train the network for
salient object detection.

In order to improve the limitation of cross entropy loss mentioned above, we
propose group loss for salient object detection and design a superpixel pooling layer to
compute it, which is shown in the red rectangle in Fig. 1. The inputs of the superpixel
pooling layer are the feature map exported from up-sampling part and the superpixel
map of original image with k superpixels. The superpixel pooling layer do max pooling
operation to the feature map and the superpixel map plays the role of a mask for
irregular shape pooling. The output of this layer is a k � C pooling map for computing
group loss. Group loss and cross entropy loss work together to optimize the network for
better salient object detection performance.
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A detailed description of each component in our proposed model is presented in the
followed subsections.

2.2 Superpixel Pooling Layer

It takes a large amount of computation cost for pixel-wise comparisons in group loss. In
order to improve this problem, we design a superpixel pooling layer, which convert the
computation to superpixel level and then extract the main features of superpixels.
A superpixel is composed of a series of adjacent pixels with similar properties, which
can represent these pixels on a larger dimension to some extent. Hence, using super-
pixels for group loss computation can greatly reduce the computation cost and achieve
the purpose of separating the salient and non-salient pixels in the meantime.

The red rectangle in Fig. 1 shows the pipeline of how the superpixel pooling layer
works in our model. The superpixel pooling layer has two inputs, including a feature
map and a superpixel map. The feature map is the output of the up-sampling part in
Fig. 1, whose size is W � H � C, while the superpixel pooling layer is a W � H � 1
map containing k superpixels in total, which is generated from Simple Linear Iterative
Clustering (SLIC) method [10]. The superpixel map is divided into k areas, where each
superpixel represents an irregular shape area, as the result of which the superpixel map
is seen as a mask for the feature map in subsequent pooling operation. Different from
the common way that we do pooling operation at each d � d regular rectangular area,
we do max pooling operation for each channel of the feature map at k irregular areas,
which are consistent with the corresponding superpixel areas in superpixel map, so that
the output of the superpixel pooling layer is a k � C pooling map, which contains the
main features of each superpixel. Finally, this pooling map is then used to compute our
proposed group loss.

1

saliency map

Fig. 1. The whole architecture of the proposed model. The model adopts cross entropy loss and
proposed group loss together to optimize its parameters. The superpixel map is visualized for a
more intuitive view. (Color figure online)
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2.3 Group Loss

The purpose to design this group loss is to make up for cross entropy loss that it mainly
focuses on each pixel, and take the relationship of different pixels into account. This
group loss makes the difference between pixels in same class smaller and the difference
between pixels in different classes larger, which makes the boundaries of salient objects
in saliency map clearer. In practice, as the computation cost of group loss at pixel level
is huge, we compute this group loss at superpixel level.

As described in Subsect. 2.2, the final output of superpixel pooling layer is a
pooling map for computing group loss, of which each row vector Ci represents the
features of corresponding superpixel. Group loss consists of two parts, Lsalient and
Ldiffer . Lsalient measures the variance between superpixels which belongs to salient
object, while Ldiffer measures the distance between non-salient superpixels and salient
superpixels in specific feature space.

The Lsalient in group loss is defined as follows:

Lsalient ¼ 1
M

PM

i¼1
Ci � C
� �2 ð1Þ

where M denotes the number of salient superpixels in the superpixel map and Ci

represents the corresponding feature vector of superpixel in the pooling map. C in
Eq. (1) is the mean value of the feature vectors of these salient superpixels, which can
be calculated by:

C ¼ 1
M

PM

i¼1
Ci ð2Þ

The Ldiffer in group loss is given by:

Ldiffer ¼ 1
N

PN

j¼1
max 0;D� C � Cj

�
�

�
�

� �
ð3Þ

where N denotes the number of non-salient superpixels and D is a threshold judging
whether the distance between this non-salient superpixels and other salient superpixels
is far enough in this feature space.

Group loss is the combination of the above two loss functions:

LGroup ¼ Lsalient þ Ldiffer ð4Þ

Therefore, the entire loss function of the proposed model is expressed as:

L ¼ Lcross þ Lgroup ð5Þ

The cross entropy loss Lcross in Eq. (5) can be represented by:
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Lcross ¼ � 1
S

PS

i¼1
gilogyi þ 1� gið Þ log 1� yið Þ½ � ð6Þ

where S is the number of pixels of the image. gi 2 ½0; 1� denotes the saliency ground
truth of each pixel and yi is the prediction score of each pixel.

3 Experimental Results

3.1 Experiment Settings

We evaluate the saliency detection performance of our model on 4 datasets, including
MSRA-B [11], ECSSD [12], PASCAL-S [13] and SED2 [14]. All these four datasets
own pixel-wise salient object detection ground truth and are widely adopted in visual
saliency research.

In the experiments, the base learning rate is set to 10�4 and the threshold D in group
loss is set to 1:0 during the training process. In superpixel pooling layer, the number of
superpixels in each superpixel map is 196 and the salient pixel rate of each superpixel,
which judges whether this superpixel is salient or not, is set to 0.5. In test phase, we just
use the baseline network outside the red rectangle in Fig. 1 to generate saliency maps
of images and it spends around 0.05 s processing one image.

3.2 Evaluation Metrics

In the experiments, we evaluate the saliency performance of all models by adopting
two metrics, including F-measure and mean absolute error (MAE).

F-measure is the weighted combination of precision and recall, which evaluate the
quality of saliency maps comprehensively. MAE measures the average pixel-wise error
between the saliency map S and ground truth G.

3.3 Saliency Performance Comparison

We evaluate our model on four datasets with several state-of-the-art algorithms for
comparison, including region-based contrast (RC) [5], graph-based manifold ranking
(GMR) [2], discriminative regional feature integration (DRFI) [15], multiscale deep
features (MDF) [9], multi-context deep learning (MCDL) [8], encoded low level dis-
tance (ELD) [16] and deep image saliency computing (DISC) [17].

Figure 2 gives an intuitive saliency performance comparison between our model
and other compared models. As shown in the saliency maps in Fig. 2, our model is able
to achieve favorable saliency detection results compared with other models, especially
that the boundaries of salient objects in our model are relatively distinct.

More detailed quantitative comparisons are presented in Table 1. The comparison
results show that our model, which is optimized by both cross entropy loss and pro-
posed group loss, has a competitive saliency detection performance against other
models. Especially, it is worth noting that we achieve high Favg among all these four
datasets, which shows the stability of our model on salient object detection.
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3.4 Contribution of Group Loss

In order to evaluate the effectiveness of group loss in our model, we compare the
saliency performance of our model with a raw CNN model, which is just optimized by
cross entropy loss. As the proposed superpixel pooling layer in our model does not
introduce additional parameters, the learnable network structure in our model is con-
sistent with that of the raw CNN model, which is same with the CNN structure outside
the red rectangle in Fig. 1. Both two models start training under the same experiment
settings and evaluate their saliency results.

Table 2 shows the detailed saliency detection performance of both two models on
four datasets. The results of F-measure and MAE shows the overall improvement of
our model in salient object detection brought by the introduction of group loss. A visual
saliency comparison on several sample images of the two models is shown in Fig. 3.
We can intuitively figure out that the introduction of group loss improves the capability
of CNN model in detecting a more distinct boundary of salient object.

Fig. 2. Visual comparison between saliency maps of different models.

Table 1. Quantitatively comparison between our proposed approach and other methods on four
datasets, involving F-measure and MAE.

MSRA-B ECSSD PASCAL-S SED2

Fmax Favg MAE Fmax Favg MAE Fmax Favg MAE Fmax Favg MAE

RC 0.8323 0.8076 0.0544 0.7381 0.6771 0.1506 0.4670 0.3617 0.1607 0.7949 0.7467 0.1099

GMR 0.8396 0.8363 0.0371 0.7375 0.6423 0.1481 0.6448 0.5897 0.1011 0.7883 0.7324 0.1298

DRFI 0.8625 0.8360 0.0493 0.7860 0.6672 0.1185 0.6757 0.5942 0.0854 0.8597 0.7759 0.0945

MDF 0.8853 0.8534 0.0507 0.8316 0.8100 0.0225 0.7610 0.7134 0.0227 0.8828 0.8029 0.0245

MCDL 0.8720 0.8486 0.0247 0.8205 0.7809 0.0276 0.7256 0.6795 0.0425 0.7931 0.7432 0.0201

ELD 0.8805 0.8577 0.0303 0.8684 0.8177 0.0317 0.7775 0.7190 0.0482 0.8200 0.7331 0.0271

DISC 0.9054 0.8664 0.0283 0.8563 0.8127 0.0410 0.7583 0.6742 0.0555 0.8079 0.7249 0.0275

Ours 0.8741 0.8628 0.0258 0.8492 0.8398 0.0337 0.7525 0.7388 0.0638 0.8765 0.8583 0.0072
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4 Conclusion

Existing CNN based models for salient object detection usually adopt cross entropy
loss to optimize the network and achieves great saliency performance. However, cross
entropy loss pays attention to each pixel and does not take the relationship between
pixels into account. In this paper, we propose group loss as supplement of cross
entropy loss, which tends to make the difference between salient pixels smaller and
difference between salient and non-salient pixels larger. Moreover, a superpixel pooling
layer is designed to convert the computation of group loss to superpixel level for
reducing computation cost with no additional learnable parameters. Experimental
results show that the introduction of group loss is able to improve the saliency per-
formance of CNN model and make the boundaries of salient objects more distinct.

Acknowledgments. This work was supported in part by National Natural Science Foundation
of China under grant 61771145 and 61371148.

Table 2. The saliency detection performance comparison between our proposed model (group
loss + cross entropy loss in Table 2) and the raw CNN model (cross entropy loss in Table 2).

MSRA-B ECSSD PASCAL-S SED2

Group loss + Cross entropy loss Fmax 0.8741 0.8492 0.7525 0.8765
Favg 0.8628 0.8398 0.7388 0.8583
MAE 0.0258 0.0337 0.0638 0.0072

Cross entropy loss Fmax 0.8523 0.8258 0.7282 0.8480
Favg 0.8300 0.8080 0.7104 0.8280
MAE 0.0330 0.0387 0.0645 0.0115

Fig. 3. The visual comparison between our proposed model and the raw CNN model.
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Abstract. Recently, the Graph Convolutional Networks (GCNs) have
achieved state-of-the-art performance in many graph data related tasks.
However, traditional GCNs may generate redundant information in the
message passing phase. In order to solve this problem, we propose a novel
graph convolution named Push-and-Pull Convolution (PPC), which fol-
lows the message passing framework. On the one hand, for each star-
shaped subgraph, PPC uses a node pair based message generation func-
tion to calculate the message pushed by each local node to the central
node. On the other hand, in the message aggregation substep, each cen-
tral node pulls valuable information from the messages pushed by its
local nodes based on a gate network with pre-perceiving function. Based
on the PPC, a new network named Push-and-Pull Graph Convolutional
Network (PPGCN) is proposed for graph classification. PPGCN stacks
multiple PPC layers to extend the receptive field of each node, then
applies a global pooling layer to get the graph embedding based on the
concatenation of all PPC layers’ outputs. The new network is permu-
tation invariant and can be trained end-to-end. We evaluate the per-
formance of PPGCN in 6 graph classification datasets. Compared with
state-of-the-art baselines, PPGCN achieves the top-1 accuracy on 4 of 6
datasets.

Keywords: Graph classification · Graph Convolutional Networks ·
Node embedding · Message passing

1 Introduction

In recent years, there is a growing interest in developing Graph Neural Networks
(GNNs) for graph learning. Among which, GCNs have achieved state-of-the-
art performance in many graph data related tasks such as node classification,
link prediction and graph classification [1,7,19]. GCNs methods fall into two
classes, spectral-based and spatial-based. Spectral-based methods rely on the
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eigen-decomposition of the Laplacian matrix, thus they cannot be applied to
graphs with different structures.

On the contrary, spatial-based methods, such as DCNN [1], MPNN [4] and
DGCNN [19] directly operate convolution on the graph nodes and their neigh-
bors, which imitates the convolution operation on image. For each node, spatial-
based convolution operations usually construct a corresponding node-centered
star-shaped subgraph through the adjacent matrix, where each edge associates
the central node with a original neighbor node. Then the embeddings of all the
nodes in the subgraph are aggregated to calculated the new embedding of the
central node.

Most GCNs, as well as many GNNs, can be grouped into a generic framework
called Message Passing Neural Networks [4]. The framework consists of two
phases, the message passing phase and readout phase. In order to extend the
receptive field of each node, multiple message passing steps (which corresponding
to the convolution layers in GCNs), optionally alternate with pooling layers, are
stacked in the message passing phase. Although MPNNs framework supports
message selection in the message passing phase, most GCNs don’t make full use
of it. In those methods, each node either pass the same message to its neighbors,
or accept messages from its neighbors fairly. In this case, information redundancy
problem may appears in the message passing phase, which will be explained by
an example in Sect. 3.1.

Inspired by the EdgeConv [15] and Graph Attention Network (GAT) [12], we
propose a novel graph convolution named Push-and-Pull Convolution (PPC),
and a corresponding graph neural network named Push-and-Pull Graph Convo-
lutional Network (PPGCN). For the sake of discussion, we decompose each mes-
sage passing step into three substeps: message generation, message aggregation
and update. In the message generation substep, each local node in the subgraph
pushes message to the central node base on the embeddings of the central node
and of itself; in the message aggregation substep, based on the output of a gate
network, the central node pulls valuable information from pushed messages sent
by local nodes. In order to reduce information redundancy, the gate network
pre-perceives the pushed messages in advance and assigns a corresponding input
coefficient to each pushed message. Figure 1 illustrate the process of PPC. The
reason why the new graph convolution named push-and-pull, is because we think
that the message passing process is based on the push action performed by each
local node and the pull action performed by central node, which is similar to
the Label Propagation Algorithm in community detection related tasks [6]. We
evaluate the effectiveness of our new network-PPGCN in 6 graph classification
datasets, and the results show that it achieves the top-1 accuracy on 4 of 6
datasets.

2 Related Work

Here, we give a brief introduction to the MPNNs framework, EdgeConv
and GAT.
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Fig. 1. The process of a PPC operation consists of three substeps: message gener-
ation, message aggregation and update. In message generation, we take the embed-
ding of central node v0 into account; in message aggregation, the pushed-messages
{m(t)

01 ,m
(t)
02 ,m

(t)
03 } are aggregated with different input coefficients at time step t. Besides,

a neural network is used as the update function to make the embeddings more
discriminative.

Definition. Given a graph G as (V,E,X), where V = {vi}, i ∈ {1, ..., Nv} is the
set of nodes, Nv denotes the number of nodes, which equals to |V|; E is the set of
edges, Ne denotes the number of edges, which equals to |E|, and eij = (vi, vj) ∈ E
denotes an edge; X ∈ R

n×c is the node features matrix, where each row denotes
the c-dimensional feature vector of a node.

The adjacent matrix of graph is denoted as A ∈ R
Nv×Nv . In this paper,

We only consider simple graph, where A is a symmetric binary matrix. The
original graphs in datasets have no self-loops. For graph with node labels or
node attributes, each row of X can be the one-hot encoding of the node label
or be the attributes vector. For graph without node labels and node attributes,
we use the one-hot encoding of the node degree as the node feature, where
degree(vi) =

∑N
j=1 Aij . For a node v, we use N(v) to denote the neighbor nodes

set.

2.1 Message Passing Neural Networks

Many graph neural networks for graph classification task abide by the principle
of message passing framework [4]. The MPNNs consist of message passing phase
and readout phase. Following the program architecture in [3], we decompose the
message passing phase into message generation function M(t)(·), aggregation
function �(t)(·) and update function U (t)(·) at each time step t.

a(t)
v = �

w∈v∪N(v)
({M(t)(h(t−1)

v , h(t−1)
w ; evw)}) (1)

h(t)
v = U (t)(h(t−1)

v , a(t)
v ) (2)

where the h
(t−1)
v is the embedding of node v at time step (t − 1), i.e the output

of the (t − 1)th graph convolution layer. The evw represents the optional edge
feature associated with node v and w. The aggregation function can be MAX,
MEAN, weighted SUM or a network.

The readout function READOUT(·) is used to get the graph embedding:

hg = READOUT({h(T )
v |v ∈ V }) (3)
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where hg is the graph embedding, T is the total time steps of message passing.
READOUT(·) is a global pooling function, which can usually be a summation,
mean, or max operation, even a neural network.

The Eqs. 1 and 2 show the powerful generalization capability of the MPNNs
framework, which can support message selection, so our model also follows this
framework.

2.2 EdgeConv and GAT

Recently, Wang et al. propose a novel graph convolution operation for point cloud
data called EdgeConv [15], which can fit into the framework of MPNNs without
readout phase. In the message generation substep, for each node vc, EdgeConv
performs a convolution-like operation on the node pairs {(vc, vi)}, vi ∈ vc∪N(vc),
to extract edge features. Then, the central node vc aggregates the edge features
to update its node embedding. The message passing process of EdgeConv is
shown in Fig. 2(b).

There also has been a growing interest in using attention mechanism for
graphs [12]. The key idea of graph attention models is assigning different weights
to different nodes, walks and etc. It employs attention mechanism to aggregate
the neighboring nodes features. The calculation process of GAT also can fit into
the framework of MPNNs without readout phase, as shown in Fig. 2(c).

The above two models perform information selection either in the message
generation substep or the message aggregation substep. In contrast, the PPC
proposed in this paper will perform information selection in both substeps.

(a) Example graph
(b) EdgeConv (c) GAT

Fig. 2. Figure 2(a) shows the sub-graph structure with v0 as the central node.
Figure 2(b) describes the corresponding message passing process of EdgeConv.
Figure 2(c) illustrates the corresponding message passing process of single head GAT.

3 Proposed Method

3.1 Preliminaries

Since the neighborhood aggregation in GNNs is analogous to its 1-dimensional
form of the Weisfeiler-Lehman subtree kernel [16], here we draw the subtree
structure rooted at a fixed node to represent message passing process. We use
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Fig. 3. We use the subtree structure rooted at the central node to illustrate the process
of message passing. For better understanding, we remove the self loop. The structure
information of the third layer consists of the structure information perceived from the
first two steps. The h

(t)
i presents the embedding of node vi at time step t. The area

marked by red dashed line in Fig. 3(d) represents redundant information produced in
the message generation substep, and the areas marked by green dashed line in Fig. 3(e)
represents redundant information produced in the message aggregation substep. (Color
figure online)

the example in Fig. 3 to explain the potential information redundancy problem
of traditional GCNs in message passing.

As shown in the Fig. 3(d), when v2 passes the message to vc at time step 3,
a part of subtree structure information of v2 (marked by red dashed line) has
already been perceived by vc at time step 2. Therefore, the repeated subtree
structure information is redundant to vc at time step 3. Similar cases happen
to other neighbor nodes. Thus, in order to push informative message to vc, the
neighbor nodes should consider the embedding of central node.

On the other hand, in the message generation substep, even if each neighbor
node considering the embedding of central node, redundant information may
still be introduced when vc aggregates all the messages passed to it. As shown in
Fig. 3(e), v1 and v2 push the same message to vc (marked by green dashed line).
Therefore, it is necessary for the central node to pre-perceive all the messages in
advance, so that it can filter the redundant information when doing aggregation
operation.

In some sense, redundant information can be reduced by the information
selection operation in the aggregation substep only. At this point, the messages
passed to the central node will contain a lot of redundant information, which
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may increase the training difficulty of the model. An effective method is that
each node performs message filtering beforehand, according to the embedding
of the central node. Therefore, we suggest considering both the “push” and the
“pull” operations in the message passing process.

3.2 Push-and-Pull Convolution

In order to reduce the information redundancy in the message passing phase, the
Push-and-Pull Convolution is proposed based on the intuition derived from the
above example. When calculating the pushed-message, both the embedding of
central node and local node are considered by the message generation function;
when aggregating the pushed messages from local nodes, the PPC assigns a
corresponding input coefficient to each pushed message by a gate network which
pre-perceives the messages pushed by all local nodes in advance. PPC aims to
extract informative messages and reduce the information redundancy through
the above two substeps.

In the message generation substep, the pushed-message is calculated as
follows:

m
(t)
ij = M(t)

PPC(h(t−1)
i , h

(t−1)
j )

= RELU(W (t)
1 [h(t−1)

i ‖h
(t−1)
j ] + b

(t)
1 ), vj ∈ vi ∪ N(vi) (4)

where m
(t)
ij is the pushed-message from node j to node i, M(t)

PPC(·) is the message

generation function at time step t, which is parameterized by {W (t)
1 , b

(t)
1 }.

After obtaining the pushed-messages, PPC pulls informative messages by
using aggregation function:

a
(t)
i = �PPC

vj∈vi∪N(vi)

(t)({m
(t)
ij }) =

∑

vj∈vi∪N(vi)

α
(t)
ij × m

(t)
ij (5)

α
(t)
ij = gate(t)({m

(t)
ij })

= Sigmoid(A(t)
2 Relu(A(t)

1 [PPM
(t)
i ‖m

(t)
ij ]), vj ∈ vi ∪ N(vi) (6)

PPM
(t)
i =

∑

vj∈vi∪N(vi)

m
(t)
ij (7)

where a
(t)
i is the pulled-message. PPM

(t)
i is the pre-perceived message of central

node, which is used by gate network gate(t)(·) to filter the redundant information.
The aggregation function �(t)

PPC is a weighted summation over the messages
pushed by local nodes. The input coefficients of pushed messages from local
nodes which belongs to vi∪N(vi) are assigned by the gate mechanism gate(t)(·),
which is parameterized by {A(t)

1 ,A
(t)
2 }.
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Finally, PPC use the update function to map node embedding into a more
discriminative latent space:

h
(t)
i = UPPC(t)(a(t)

i ) = RELU(W (t)
3 (RELU(W (t)

2 a
(t)
i + b

(t)
2 )) + b

(t)
3 ) (8)

where the update function UPPC(t)(·) is parameterized by
{
W

(t)
2 ,W

(t)
3 ,

b
(t)
2 , b

(t)
3

}
.

The whole process of a PPC layer is shown in Fig. 1. Obviously, the PPC is
permutation invariant.

3.3 PPGCN Towards Graph Classification

Fig. 4. The architecture of PPGCN. The vi denotes the node i, The h
(t)
i denotes the

embedding of vi at time step t.

Based on the MPNNs framework, a new network named Push-and-Pull Graph
Convolution Network (PPGCN) is proposed in this paper. Firstly, PPGCN use a
parameter matrix to transform original node embeddings into R

c. Secondly, we
stack multiple PPC layers to obtain node embeddings at different scales; as the
number of layer increases, the receptive field of each node enlarges. Besides, to
consider structural information under all scales, PPGCN combines node embed-
dings from all layers by using jumping network architecture [17]. Finally, PPGCN
uses a global pooling layer to transform node embeddings into graph embedding
and feed them into a fully connected network for graph classification. The whole
architecture is shown in Fig. 4.

Since both the PPC layers and the global pooling layer are permutation
invariant, the permutation invariance of PPGCN model can be easily derived.

4 Experiments

In order to evaluate the performance of our model, we compare it with eight
baseline algorithms, including four graph kernels and four deep learning methods
in 6 graph classification datasets.
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4.1 Experiment Configuration

Datasets. The datasets including 3 bioinformatics datasets - MUTAG, PTC,
PROTEINS, and 3 social network datasets IMDB-BINARY (IMDB-B), IMDB-
MULTI (IMDB-M) and COLLAB. The bioinformatics datasets use categorical
node labels as input features. The social network datasets do not have node
labels, therefore we follow the convention, using one-hot encodings of node
degrees as input features [3].

Baselines and Experimental Setup. We compare the graph classification
accuracy of our model with four graph kernels: the graphlet kernel (GK) [11],
the Weisfeiler-Lehman subtree kernel (WL) [10], the Shortest-Path kernel (SP)
[2], the Random Walk kernel (RW) [14], and four other current the state-of-the-
art deep learning approches for graph classification: Deep graph kernel (DGK)
[18], Diffusion-CNN (DCNN) [1], DGCNN [19], PATCHYSAN [9]. To conduct
the ablation study, we also evaluate the performance of EdgeConv and GAT on
graph classification task. Considering the EdgeConv and GAT are not originally
designed for graph classification, here we combine the EdgeConv and GAT with
global sum pooling layer.

For our model, the Adam optimizer with L2 regularization is used for opti-
mization, and the learning rate is decayed by half every 50 epochs. The drop out
rate is set to 0.2, batch size is set to 50. We stack three PPC layers in the message
passing phase, and batch normalization is applied before and after the update
substep of every PPC layer. The other candidate hyper-parameters tuned during
the experiment are as follows: the number of epoch ∈ {100, 200}; the dimension
of pushed-message ∈ {32, 64, 128}; the dimension of pulled-message ∈ {16, 32};
the number of hidden units of update network ∈ {16, 32}; initial learning rate
∈ {0.001, 0.01}. All of the results are obtained under 10 fold cross validation.

4.2 Results for Graph Classification

We use the testing results reported in related literatures for baseline comparison.
Table 1 lists the experiment results of PPGCN and baselines. We observe that
our PPGCN model obtains the highest average performance among all social
network datasets, which contains exceptionally dense graphs and rich node inter-
action information. Among the baseline methods, the kernel algorithm WL also
performs quite well, achieving the second-best accuracy on the all social net-
work datasets. But the other deep learning methods are all behind the PPGCN

and WL.
Besides, in the biochemical dataset MUTAG, PPGCN also achieves the

best performance. In PTC dataset, the accuracy of PPGCN is slightly behind
PatchySan algorithm and ranks second. However, the PPGCN does not perform
well on larger biochemical dataset - PROTEINS. PPGCN is not so effective in
some biochemical datasets, probably because the edge features of biochemical
datasets are more complex (e.g. molecular bonds), and may need to introduce
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Table 1. Classification accuracies in percent, and the standard deviation (behind ±).

Method Data set

MUTAG PTC PROTEINS IMDB-B IMDB-M COLLAB

Kernel GK [5,8,13] 81.58 ± 2.11 57.26 ± 1.41 71.67 ± 0.55 65.87 ± 0.98 43.89 ± 0.38 72.84 ± 0.28

WL [5,8,13] 80.72 ± 3.00 57.97 ± 0.49 74.68 ± 0.49 73.40 ± 4.63 49.33 ± 4.75 79.02 ± 1.77

SP [8,13] 85.79 ± 2.51 58.24 ± 2.44 75.07 ± 0.54 – – –

RW [8,13] 83.68 ± 1.66 57.85 ± 1.30 74.22 ± 0.42 – – –

GNN PatchySan [8,13] 88.90 ± 4.37 62.29±5.68 75.00 ± 2.51 71.00 ± 2.29 45.23 ± 2.84 72.60 ± 2.15

DGK [8,13] 82.66 ± 1.45 60.08 ± 2.55 75.68±0.54 66.96 ± 0.56 44.55 ± 0.52 73.09 ± 0.25

DCNN [8,13] 66.98 56.60 ± 2.89 61.29 ± 1.60 49.06 ± 1.37 33.49 ± 1.42 52.11 ± 0.71

DGCNN [8,13] 85.83 ± 1.66 58.59 ± 2.47 75.54 ± 0.94 70.03 ± 0.86 47.83 ± 0.85 73.76 ± 0.49

EdgeConv-sum 69.02 ± 7.08 56.99 ± 1.99 59.57 ± 0.17 54.40 ± 8.98 34.00 ± 2.00 –

GAT-sum 84.59 ± 6.30 58.14 ± 3.16 71.15 ± 7.12 72.50 ± 3.58 46.87 ± 3.17 71.84 ± 4.09

PPGCN 90.51±4.81 59.62 ± 5.42 72.30 ± 4.06 73.70±3.65 51.20±3.54 80.82±1.37

additional labels and other attribute information of edges. But compared with
other deep learning methods, PPGCN still shows comparable performance.

5 Conclusion

In this paper, we first analyze the feature redundancy problem that may occur
in the message passing process of the traditional GCNs. In order to solve this
problem, we propose a novel graph convolution named Push-and-Pull Convolu-
tion (PPC), which aims to generate and aggregate informative messages in the
message passing phase. Further more, a new model named Push-and-Pull Graph
Convolutional Network (PPGCN) is proposed for graph classification task.

In the future, we will consider the heterogeneous graph with additional edge
labels and other attributes information. Furthermore, as a node embedding
method, PPC also can be applied to other graph learning tasks, such as node
classification task, link predicition task and etc.
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Abstract. Predicting the trend of water quality is essential in envi-
ronmental management decision support systems. Despite various data-
driven models in water quality prediction, most studies focus on predict-
ing a single water quality variable. When multiple water quality vari-
ables need to be estimated, preparing several data-driven models may
require unaffordable computing resources. Also, the changing patterns
of several water quality variables can only be revealed by processing
long term historical observations, which is not well supported by con-
ventional data-driven models. In this paper, we propose a multi-task
temporal convolution network (MTCN) for predicting multiple water
quality variables. The temporal convolution offers one the capability to
explore the temporal dependencies among a remarkably long histori-
cal period. Furthermore, instead of providing predictions for only one
water quality variable, the MTCN is designed to predict multiple water
quality variables simultaneously. Data collected from the Burnett River,
Queensland is used to evaluate the MTCN. Compared to training a set
of single-task TCNs for each variable separately, the proposed MTCN
achieves the best RMSE scores in predicting both temperature and DO
in the following 48 time steps but only requires 53% of the total training
time of the TCN. Therefore, the MTCN is an encouraging approach for
water quality management by processing a large amount of sensor data.

Keywords: Prediction model · Multi-task learning · Water quality

1 Introduction

Water quality is one of the major issues today because of its effects on human
health and aquatic ecosystems. The water quality deterioration can be attributed
to urbanisation, population growth, excessive water consumption, industrial
wastewater discharge, and agricultural activities in the catchments [5]. An under-
standing of water quality dynamics is critical to the intelligent decision making
in regards to ecological conservation [12,13].
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Capturing long-term dependencies in time series data remains a fundamental
challenge [17,18]. Despite advances in building models based on recurrent neu-
ral networks (RNNs), those models are still difficult to scale to very long data
sequences. In the study proposed by Wang et al. [15], the maximum number
of historical time steps used in their dissolved oxygen predictive model is five.
Moon et al. [11] proposed an RNN-based model in forecasting electrical conduc-
tivity. Their model achieved the best performance when processing the inputs
from 24 previous timesteps. Inputs with a small number of timesteps limits these
RNN-based predictive models in identifying the long-range changing patterns,
which is critical in numerous water quality variables.

Temporal Convolutional Networks (TCNs) overcome the previous shortcom-
ings by capturing long-range patterns using a hierarchy of temporal convolutional
filters [7]. Instead of using recurrent structure to maintain temporal dependen-
cies, the TCN applies various sizes of convolutional filters to obtain the temporal
dependencies at different time scale. Also, the dilated convolutions [14] increase
the receptive field significantly so long historical data can be utilised.

Furthermore, most water quality researchers build predictive models for sin-
gle water quality variable. For example, Alizadeh et al. [2] applied 30 different
artificial neural network (ANN) models to predict daily values of salinity, tem-
perature and DO separately. In the study conducted by Kim and Seo [6], an
ANN ensemble model was developed to forecast the water quality variables such
as pH, DO, turbidity, total nitrogen and phosphorus. The ANN ensemble model
included 150 individual ANN models, with each of them needing to be trained
and evaluated. In these studies, though all the models indeed deal with the same
datasets, they cannot obtain benefits from each other’s learning process.

Multi-task learning is an essential machine learning paradigm which aims
at improving the generalisation performance of a task by using other related
tasks [8]. It is prevalent in various applications ranging from computer vision
[10] to speech recognition [4]. In the context of water quality prediction, each
water quality variable interacts with and influences other variables in the same
ecosystem. The temporal patterns of one water quality variable can, therefore,
be precious in guiding us predicting other water constituents’ values.

In this paper, we propose a multi-task temporal convolution network
(MTCN) for predicting multiple water quality variables. The key contributions
include:

– We develop a multi-variable predictive model to forecast various water quality
constituents simultaneously. Applying a unified model in predicting multiple
variables enables the knowledge sharing between multiple learning processes,
and also reduces the necessities of computing resources significantly.

– We applied the temporal convolution network (TCN) to learn the long-term
temporal dependencies for water quality data. Comparing to the RNN-based
models, the TCN exhibits longer effective history data than the recurrent
counterparts. The experiments demonstrate that the MTCN can obtain supe-
rior performance compared to equivalent separately trained models.
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2 Proposed Multi-task Temporal Convolution Network

In this section, we propose a water quality multi-variable predictive model for
forecasting various water quality constituents simultaneously. A TCN-based pre-
dictive model is built by following the multi-task learning paradigm. The model
is designed to learn the temporal dependencies among various water quality
monitoring properties within a long period of time. Each predictive task can
benefit from the shared hidden representations. Moreover, task-specific layers
are assigned to forecast the corresponded water quality variable concurrently.

We implement a temporal convolutional network similar to the one proposed
by Bai et al. [3]. The TCN includes a stack of causal convolutional layers. Causal
convolution is used to make sure the model will not capture information from
the future time index to help the prediction task. In addition, the dilated con-
volutions and the residual connections are integrated into the TCN to enhance
the utilization of long historical observations without the vastly deep structure.

Output

Hidden

Hidden

Input

d = 1

d = 2

d = 4

Fig. 1. The TCN with dilated convolutions. The dilated causal convolution is defined
with dilation factors d = [1, 2, 4], and filter size k = 2. In this case, the TCN is able to
cover 8 numbers of historical observations.

2.1 Dilated Convolution

Figure 1 illustrates the way of applying dilated convolutions to increase the size
of the receptive field. The dilated convolution operator can apply the same filter
at different time scales using different dilation factors. 1D dilated convolution is
defined as:

g[i] =
L∑

l=1

f [i + d · l]h[l], (1)

where f [i] and g[i] are the input and output time series, h[l] denotes the filter
of length L and d corresponds to the dilation rate.
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Fig. 2. Residual unit in the TCN. With the help of the skip connection within the
residual unit, one can propagate larger gradients through the neural network.

2.2 Residual Unit

A residual unit defined in Bai et al.’s study [3] is implemented to improve the
TCN’s stability. The residual block (Fig. 2) includes two dilated causal convo-
lutional layers. The weight normalization is applied to the convolutional filters
and a spatial drop out is added after each dilated convolution for regularization.
In addition, the input of the residual unit is added to the output through an
additional 1 × 1 convolution.

2.3 Multi-task Temporal Convolution Network

In this subsection, we developed our multi-task temporal convolution network
(MTCN) based on the TCN and the multi-task learning paradigm.

The proposed MTCN is illustrated in Fig. 3. By adjusting the dilation factors
and filter size, the MTCN can cover a wide range of time series data by applying
a hierarchy of filters with various sizes. In addition, the residual connections help
to maintain the stability of the deep neural network by enhancing the information
flow through the initial layer to the last layer in the deep neural network. The
task-specific dense layers with the linear activation function are added on top of
the shared convolutional layers.

3 Evaluation

In this section, we evaluate the effectiveness of the MTCN by using the water
quality data collected by a water quality monitoring program in Australia.
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Fig. 3. The proposed MTCN. ô and p̂ represent the predictions of different variables.

3.1 Water Quality Sensor Data

The Burnett River is located on the southern Queensland coast and flows into
the coral sea of the South Pacific Ocean. Cultivation of sugarcane and small
crops are important lands uses in this region. A YSI model 6-Series Sonde is
deployed in the river monitoring the water quality [1]. Temperature, electric
conductivity (EC), pH, dissolved oxygen (DO), turbidity and chlorophyll-a (Chl-
a) are recorded with half an hour time interval (Table 1).

Table 1. Water quality data during 1/3/2014 and 31/3/2018.

Variables Unit Min Max Mean Std Dev

Temperature ◦C 13.60 32.71 24.64 3.96

Electrical conductivity µS/cm 2 50720 35931.09 14428.10

pH 6.62 8.63 7.85 0.63

Dissolved oxygen mg L−1 2.06 13.90 6.64 0.98

Turbidity NTU 0.1 1850 19.85 87.18

Chlorophyll-a µg L−1 0.1 345.60 10.07 31.89

We choose the sensor data from 1/3/2014–31/3/2017 as training data and
sensor data from 1/4/2017–31/3/2018 as testing data. During the training, 10%
samples are selected as validation data. Considering the missing and abnormal
measurements are inevitable in the monitoring network, we cleaned and normal-
ized the chosen datasets first before feeding into the neural network models.

Beside this, studies [9,16] confirm that the concentration of DO in surface
water is controlled by temperature and has both a seasonal and a daily cycle.
We designed an MTCN to predict DO and temperature simultaneously. Two
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comparative TCNs were also designed to forecast the DO concentration and
temperature separately.

3.2 Experimental Settings

To measure the performance of the predictive model, we used the mean abso-
lute error (MAE) and the root mean square error (RMSE). Also, some of the
optimised key hyperparameters are listed in Table 2.

Table 2. Key hyperparameters of the MTCN.

Hyperparameters Value

No. of dense layers (per task) 2

No. of units in dense layers (per task) [64, 48]

Dilated factors [1, 2, 4, 8, 16, 32, 64]

Kernel size 3

Dropout rate 0.6

Based on the dilated factors and filter’s kernel size (Table 2), the MTCN
can cover 192 historical observations for predicting both the temperature and
dissolved oxygen values in the future 48 time index. According to this experi-
mental design, the MTCN is able to forecast the changing of the temperature
and dissolved oxygen in the following 24 h.

3.3 Experimental Results and Discussion

We also compare the MTCN with the single-task TCN. The single-task TCN
shares the same hyperparameter setting with MTCN, while it does not have the
task-specific dense layer and multiple outputs. Hence, multiple TCNs have to be
trained to meet the requirements of multi-variables prediction.

Table 3. Performance measurement.

Model Metrics Prediction accuracy Training time

Temperature DO

MTCN RMSE 0.59 0.49 9H:58M

MAE 0.37 0.27

TCN RMSE 0.60 0.49 18H:49M

MAE 0.38 0.26
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Fig. 4. Predicting the trend of DO and temperature by using the MTCN. 48 predictions
are generated every half an hour based on historical inputs data.

Table 3 illustrates model performance for both MTCN and TCN. Benefiting
from the temporal convolutional architecture, dilated convolution and the resid-
ual unit, both MTCN and TCN achieve remarkable predictive accuracy for both
DO and temperature. As shown in Fig. 4a, the MTCN captures the trend of DO
in the following 24 h, and also gives the proper estimation when the concentra-
tion of DO drops significantly. Similarly, the temperature predictions generated
by the MTCN follow the expected daily temperature variation in Fig. 4b. Fur-
thermore, the MTCN gains the best performance of both RMSE and MAE in
predicting the change of temperature. Similarly, the MTCN also achieves the
best RMSE scores in predicting the trend of DO.

In addition, the MTCN implemented in this experiment includes 1,304,096
trainable parameters, while the TCN with a single prediction task only has
710,064 parameters to train. To make a fair comparison, the training process
was stopped after the 900th epoch for all the models listed in Table 3. Larger
hidden parameters in the MTCN indicates that it requires more training epochs
to converge, while the total training time is still much less than training sepa-
rate TCNs for individual tasks. Therefore, the MTCN offers an efficient way in
building predictive model for a number of water quality variables.

4 Conclusion

The development of reliable water quality predictions is critical to improve the
management of aquatic ecosystems. This paper proposed a multi-task temporal
convolutional network for predicting multiple water quality variables simulta-
neously. Experimental results were presented to demonstrate that the proposed
model can achieve promising predictive accuracy for long term water quality
prediction while requiring a significantly reduced training time.

Acknowledgement. This work was conducted within the CSIRO Digiscape Future
Science Platform.
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Abstract. The relational database is designed to store and process large amount
of information such as business records and personal data. There are many
policies and access control techniques for database security, but they are not
sufficient for detecting insider attacks. In order to detect threats for the database
application, it is necessary to adopt role-based access control (RBAC) and
classify the roles according to the authority of each user. In this paper, we
propose a method of classifying user’s role and authority using the CNN-LSTM
neural networks by extracting features from SQL queries. In the anomaly
detection method, CNN automatically extracts important features from database
query and LSTM models the temporal information of the SQL sequence. The
class activation map also identifies the SQL query features that affect the clas-
sification. Experiments with the TPC-E scenario-based benchmark query dataset
show that the CNN-LSTM neural networks surpass other state-of-the-art
machine learning methods, achieving an overall accuracy of 93.3% and recall of
88.7%. We also identify the characteristics of misclassification data through
statistical analysis.

Keywords: Deep learning � Convolutional neural network � Long short-term
memory � Database security � Access control

1 Introduction

The relational database management system (RDBMS) is the most popular for storing
information of the company. It is based on a relational database model. Many com-
panies require high security of the RDBMS because they store confidential information
in the database for long periods of time [1]. Especially as the size of the company
grows, many employees access the database. Therefore, system access should be
controlled according to their authority. Role-based access control (RBAC) is the way to
restrict database access based on the role of individual users within an enterprise [2].
RBAC allows employees to grant access only to the information they need to perform
their tasks and prevent access to unrelated information [3].

Database intrusion detection systems identify and report access to unauthorized
users by insider attacks through query patterns. Intrusion detection systems must
accurately determine if a user’s role matches to the database security [4]. In this paper,
we use the RBAC in RDBMS, and classify roles according to user’s SQL query based
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on TPC-E benchmark. This benchmark is gathered using the RBAC schema. The TPC-
E benchmark is an online transaction processing (OLTP) workload from a brokerage
firm [5]. There is a total of 11 roles in the TPC-E benchmark. User roles consist of
brokers, customers, market transactions, and so on. Table 1 shows a virtual scenario of
a TPC-E dataset generated by online transaction simulation. Figure 1(a) represents the
connections among brokers, customers, and market transactions that make up the TPC-
E benchmark schema. We preprocess SQL queries and extract features according to
each role. Each feature represents the number of query elements that make up the
select, from, where, order by, and group by clauses. Figure 1(b) shows the complex
distribution of SQL query features according to the TPC-E benchmark role. Each role
is difficult to classify because of the overlap of similar distributions.

In this paper, we propose CNN-LSTM networks that combine CNN and LSTM to
extract features from relational database queries and perform intrusion detection.
RBAC-based access control represents abnormal queries using 11 roles of the database
query. The proposed CNN-LSTM networks transform preprocessed database queries

Table 1. TPC-E benchmark scenario

Role Transaction Data manipulation Authority

1 Broker-Volume Select Only Read-Only
2 Customer-Position
3 Market-Watch
4 Security-Detail
5 Trade-Status
6 Trade-Lookup
7 Trade-Order Select/Insert Only Read/Write
8 Trade-Update Select/Update Only
9 Data-Maintenance
10 Market-Feed Select/Insert/Update/Delete
11 Trade-Result

Fig. 1. TPC-E benchmark schema and distribution of SQL query data
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using multiple CNN layers to reduce spectrum. The output of this CNN layer is used as
input to the LSTM layer to model the sequence information among features. We can
easily classify the role by mapping the function to a separate space. We also use the
class activation map to identify the SQL query elements that affect the classification.

2 Related Works

In Table 2, there are many researchers to extract features from network packets or
database queries and perform intrusion detection. Intrusion detection systems have
been actively studied in the field of network systems, but these settings are inadequate
for database security. Intrusion detection systems typically have three categories: sta-
tistical modeling, machine learning modeling, and neural network modeling.

Table 2. Related works on intrusion detection system

Category Author Year Data Method Description

Statistical
modeling

Ramachandran
et al. [6]

2017 Database
query

DBSCAN Clustering
using machine
learning

Kumar et al. [7] 2015 TCP/IP
packet

k-means
clustering

Gaussian
similarity
measure

Horng et al. [8] 2011 TCP/IP
packet

Hierarchical
clustering

Feature
selection using
hierarchical
clustering

Machine
learning
modeling

Ronao et al. [9] 2016 Database
query

Random forest Using
weighted
voting and
PCA

Rai et al. [10] 2016 TCP/IP
packet

Decision tree Improving the
performance of
DT

Mulay et al. [11] 2010 TCP/IP
packet

Decision tree Decision tree
and SVM
integrated
model

Neural
network
modeling

Kim et al. [12] 2017 Database
query

Convolutional
neural network

Deep learning
based on
learning
classifier

Qiu et al. [13] 2015 TCP/IP
packet

BP neural
network

BP neural
network
performance
improvement

Devaraju
et al. [14]

2013 TCP/IP
packet

Multi-layer
perceptron

Intrusion
detection using
five classifiers
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Horng et al. proposed intrusion detection system by extracting features from net-
work traffic by combining hierarchical clustering algorithms with classification models
[8]. Statistical modeling is the technique that identifies the characteristics of data with
simple sampling. But as the amount of data should be sufficient, it is difficult to
improve the performance. Mulay et al. performed intrusion detection in the TCP/IP
packet using a model that incorporates a decision tree and SVM [11]. Machine learning
methods can interpret variables that influence database intrusion detection. However,
they make the simple decision boundary. It has the disadvantage of modeling discrete
data rather than continuous data, and structurally converges to local optima, resulting in
low performance. Devaraju and Ramakrishnan also performed intrusion detection in
TCP/IP communication using multi-layer perceptron [14]. Neural network modeling
generates more complex decision boundary than other machine learning techniques.
However, overfitting problem occurs because of the slow learning and the difficulty of
finding optimal parameter values. It is also difficult to model the spatial and temporal
features of TCP/IP packet or database queries.

3 The Proposed CNN-LSTM Neural Networks

In order to learn the CNN-LSTM networks for classifying authority in DBMS, we need
to understand the features of SQL query [15, 16]. Figure 2 shows the CNN-LSTM
intrusion detection architecture for database access control. Input features extracted
from the SQL query are composed of elements (SELECT, FROM, WHERE,
GROUP BY, ORDER BY). We preprocess the clause elements of the SQL query to
create a total of 277 feature vectors. We use the generated feature vectors as inputs to
our proposed CNN-LSTM intrusion detection model. Figure 3 represents an example
of the parsed features extracted from SQL queries.

Fig. 2. The proposed CNN-LSTM intrusion detection structure
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The CNN-LSTM network takes 277 parsed query log feature as input. First, we use
CNN to extract features that have an important effect on role classification in parsed
queries. Equation (1) represents the operation of l, the convolutional network. It con-
sists of several ml�1

1 feature maps. The size of each feature map is ml�1
2 � ml�1

3 . The ith

feature map is represented by Y l
i. B

l
i represents a bias matrix. Kl

i;j represents a filter

connecting the ith feature map of layer l and the jth feature map in layer l� 1. Equa-
tion (2) represents the pooling layer that reduces the size of parsed query. It also
increases computational efficiency. R represents the pooling size and T represents how
much it strides the area. We adjust the settings of pooling according to performance.

yli ¼ Bl
i þ

Xml�1
1

j¼1

Kl
i;j � Y l�1

j ð1Þ

plij ¼ max
r2R

yl�1
i�T þ r;j ð2Þ

The LSTM layer uses memory cells to store the temporal sequence of the query
feature vectors. It utilizes input i, output o and forget f gate to efficiently store SQL
query feature. It also controls the flow of data using hidden state h and cell states c for
storage. Equations (3), (4) and (5) represent equations for calculating LSTM output.

i
f
o
g

0
B@

1
CA ¼

sigmoid
sigmoid
sigmoid
tanh

0
BB@

1
CCAwl hl�1

t
hlt�1

� �
þ

bi
bf
bo
bc

0
BB@

1
CCA ð3Þ

ct ¼ f t � ct�1 þ it � g ð4Þ

ht ¼ ot � r ctð Þ ð5Þ

Fig. 3. An example of extracting parsed query from SQL queries
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Equations (6) and (7) represent the results of the fully connected layer and softmax
operation. We use the softmax to classify the given user’s role. The output of a fully
connected layer is represented by softmax with a value between 0 and 1. L is the last
layer index, L is the activity class probability, and Nc is the number of roles.

dli ¼
X
j

r W l�1
ji hl�1

i

� �þ bl�1
i

� �
ð6Þ

P cjdð Þ ¼ argmaxc2C
exp dL�1wLð ÞPNc
k¼1 exp dL�1wkð Þ ð7Þ

4 Experimental Results

4.1 TPC-E Benchmark Dataset

To evaluate the anomaly query classification in RBAC-based DBMS, we use the TPC-
E benchmark, which simulates the online transaction processing (OLTP) workload. We
have adopted standard transactions that correspond to the 11 roles. Each role consists of
customer, broker, market, and so on. It also contains read-only and read/write trans-
actions. To verify the proposed CNN-LSTM networks, we generated 11,000 SQL
query data for 11 labels. It consists of 33 tables and 191 attributes. The SQL query
vector is preprocessed for anomaly detection.

4.2 Performance Comparison

For the performance evaluation of the classifier, 10-fold cross validation is used. The
proposed method achieves the best performance compared to other machine learning
systems, followed by the random forest, decision tree, and k-nearest neighbor (KNN).
Figure 4 is a box plot showing the accuracy achieved with 10-fold cross validation.

Fig. 4. Comparison of accuracy from 10-fold cross validation
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4.3 Misclassification Data Analysis

The misclassification data are analyzed using the probability density function in Fig. 5.
We select the features that have a large impact on the misclassification and then
compare the probability density functions of the features of the classified data features
with those of the misclassified data. We can see that the probability density is sig-
nificantly different in several intervals of the probability density function. These fea-
tures make it difficult to classify each role.

4.4 Analysis of Influential Variables

We can use the global average pooling layer, and shed light on influential SQL query
variables. We analyze the variables that influenced the intrusion detection. A class
activation map for a particular category indicates the discriminative feature regions
used by the CNN to identify that role category [15]. We use a CNN-LSTM network
and just before the final fully connected layer and softmax layer, we also use global
average pooling on the convolutional feature maps and apply them as SQL query
features. The model focuses on both queryLength and where ClausNum at the same
time when misclassifying role 7 and role 11. The model focuses on tableId and
fieldNum when misclassifying role 6 and role 8. The blue areas in the Fig. 6 represent
variables that are important for role classification.

Fig. 5. Misclassification analysis using the probability density function
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5 Conclusions

This paper proposes CNN-LSTM networks that can classify 11 roles for intrusion
detection for RBAC-administered RDBMS. Our model automatically classifies a large
number of queries to protect against unauthorized user threats. We have found an
optimal architecture through parametric tuning, model comparison experiments and
data analysis. We combine CNN and LSTM to automatically model the complex and
sequential characteristics of database queries. We confirm the characteristics of the
misclassification data using statistical analysis and the classification characteristics
using the class activation map. The CNN-LSTM model classifies and extracts the roles
that could not be distinguished by using the conventional machine learning methods.
However, we have manually optimized the CNN-LSTM neural network. Further
research is needed to automatically find the optimal parameters of the CNN-LSTM
model for intrusion detection.
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Abstract. Designing a model to quickly obtain an accurate matching cost is a
vital problem in the stereo matching method. We present an algorithm called
MC-HDCNN, which is based on hybrid dilated convolution neural network, for
computing matching cost of two image patches. HDCNN uses the dilated
convolution of the series to obtain a larger receptive field, while avoiding the
“gridding” effect and ensuring the integrity of the receptive field. In addition, by
adding batch normalization layer after each layer of the convolution, the gra-
dient dispersion in the backward propagation and the generalization of the
network can be improved effectively. We evaluate our method on the KITTI
stereo data set. The results show that the proposed algorithm has certain
advantages in accuracy and speed.

Keywords: Stereo vision � Matching cost � Similarity learning � HDC

1 Introduction

In recent years, stereo vision has been widely used in the areas of intelligent driving,
robot navigation, and remote sensing measurement. Stereo matching can obtain dis-
parity maps from stereo images, and how to efficiently obtain accurate and dense
disparity maps is vital for stereo vision. Therefore, stereo matching is an important
research direction for scholars.

The stereo matching algorithm mainly includes four steps: matching cost compu-
tation, cost (support) aggregation, disparity computation/optimization and disparity
refinement [1]. The matching cost computation in the traditional method mainly
includes (SAD), (NCC) and Census transform, etc. These algorithms have poor
matching accuracy for areas where the texture is not obvious, and are susceptible to
noise. With the development of deep learning, scholars began to use CNN to compute
the cost of matching. In 2015, LeCun et al. [2] proposed an image patches matching
method based on convolutional neural network, and proposed fast and accurate net-
work structures. However, there are still shortcomings such as receptive field too small,
low matching accuracy, and slow processing speed. Therefore, we propose the MC-
HDCNN algorithm to increase the receptive field, and ensure the running speed, while
the computation accuracy has a certain improvement.
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The contributions of this paper are:

(1) We enlarged the receptive field from 9 � 9 to 25 � 25 by using dilated convo-
lution to replace the traditional convolution, improved the matching accuracy;

(2) In order to avoid the “gridding” effect, we used two series of hybrid dilated
convolution and reasonably designed the dilation rate to ensure that all infor-
mation of the receptive field is accepted;

(3) We added the corresponding batch normalization layer [3] after each convolu-
tional layer, and improved the network training speed and generalization.
The convolutional network was trained in the KITTI2012 and KITTI2015 data
sets and verified with the corresponding test sets. The results showed that the
disparity map obtained by our algorithm is denser than the traditional matching
method. Compared with MC-CNN, our algorithm has certain advantages in
running time and matching accuracy.

2 Related Work

In this section, we introduce the traditional and CNN-based stereo matching
algorithms.

The traditional algorithms mainly divided into local matching algorithm, global
matching algorithm and semi-global matching algorithm between them. The local
matching algorithm is computed based on the window, in order to avoid fixed-size
windows blurring the edge details, Yoon et al. [4] proposed an adaptive weighting
algorithm. The algorithm assigns different weights to the pixel points according to the
gray and geometric distance between the pixel and the central pixel, so that the edge
information is well preserved. The global matching algorithm solves the optimal dis-
parity value by establishing and minimizing the global energy function. Dynamic
programming method leads to horizontal band effect, so Lei et al. [5] proposed a
dynamic programming algorithm based on tree structure to eliminate sideband effects.
The graph cut method has a large computational complexity and a long running time.
Kolmogorov et al. [6] added a unique constraint to the energy function to effectively
reduce the amount of computation and achieved good results. The semi-global
matching algorithm was proposed by Hirschmüller [7], and it uses the energy function
to compute the matching cost, performs cost aggregation along different paths, and uses
linear scan optimization to reduce the computational complexity.

LeCun [8] first used CNN to learn the similarity of stereo images and compute the
cost of stereo matching. Lou et al. [9] proposed that regarding the computation of
matching cost as a multi-classification problem, and improved the computational
efficiency. Park et al. [10] proposed using the pyramid pool structure to increase the
receptive field and improved the computation accuracy. However, the raw-disparity
results of CNN have too much matching errors. Disparity regression using CNN
integrates all steps of stereo matching into a network to form an end-to-end stereo
matching convolutional neural network. Mayer et al. [11] first proposed the end-to-end
network DispNet, which uses a codec structure to directly generate a disparity
map. Kendall et al. [12] proposed using 3D convolution for semantic understanding to
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extract depth features, and performing disparity regression through a differentiable
“Soft Argmin” operation to achieve disparity learning with sub-pixel precision. The
EdgeStereo network proposed by Song [13] et al. consists of two sub-networks, CP-
RPN and HED. The CP-RPN is responsible for generating the initial disparity map, and
the HED is responsible for extracting the edge information. The outputs of the two sub-
networks are fused by the residual network to obtain the final disparity map.

3 Architecture of MC-HDCNN

In this section, we propose a novel CNN architecture MC-HDCNN (Matching Cost by
Hybrid Dilated Convolution Neural Network). It is an improvement based on the MC-
CNN-fast algorithm and is a shared weight siamese network.

The proposed algorithm uses the dilated convolution to learn the similarity of stereo
image patches, and the receptive field is nearly tripled. It can better acquire image
information and improve the accuracy of disparity computation. At the same time, to
ensure the continuity of the information, we divide three consecutive dilated convo-
lution into a set of HDC, and the dilation rate of HDC is set to r = 1, 2, 3. We add two
sets of HDC in our architecture. And we add a batch normalization layer after the
convolutional layer to improve the training speed of the network. The network uses
cosine similarity to measure the properties of the left and right input patches as the final
output of the network. Figure 1 shows the architecture of MC-HDCNN.

Conv2 3×3
Rate=2(64)

Conv1 3×3
Rate=1(64)

ReLu
BatchNorm

ReLu
BatchNorm

Conv3 3×3
Rate=3(64)

ReLu
BatchNorm

Conv2 3×3
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BatchNorm

ReLu
BatchNorm

Conv3 3×3
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Fig. 1. Architecture of MC-HDCNN. Two sets of hybrid dilated convolution with dilation rates
(1, 2 and 3) were added in the network.
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3.1 Dilated Convolution

The original convolutional neural network uses four 3 � 3 convolution kernels with a
stride of 1. The size of the receptive field is 9 � 9, so the received information is too
small, and the mismatch rate is high. To enlarge the receptive field, there are three
common methods: (1) using larger convolution kernels; (2) adding more convolution
layers; (3) adding pooling layers.

However, the above methods will greatly increase the number of parameters of the
CNN, reduce the efficiency of the algorithm, and the pooling layer will cause loss of
feature information. To enlarge the receptive field under the premise of ensuring the
running speed and computation accuracy, this paper replaces the ordinary convolution
kernel with the same size dilated convolution kernel.

Dilated convolution is achieved by inserting zeros into a common convolution
kernel. For a convolution kernel of size k � k, when the dilation rate is r, the size of the
dilated convolution kernel is kd � kd, where kd = k + (k−1) ∙ (r−1). As shown in
Fig. 2, the receptive field is enlarged from 3 � 3 to 5 � 5, when we replace the 3 � 3
convolution kernel with a dilated convolution kernel whose dilation rate is 2.

3.2 Hybrid Dilated Convolution (HDC)

In multi-layer dilated convolution, for a pixel p in the layer n, the information con-
ducing to it comes from a nearby kd � kd region in layer n−1 centered at p. Because the
dilated convolution is used, the actual pixels taking part in the computation from the
kd � kd region are just k � k, and there will be a gap of r−1 between them. As shown
in Fig. 3(a), if k = 3 and r = 2, then only 9 of the 25 pixels take part in the convolution
operation. If the multi-layer dilated convolution uses the same dilation rate r, the top-
level pixel p is affected by at most the bottom-layer ðw0 � h0Þ=r2 pixels. When r = 2, at
least 75% of the information will be lost. If a larger dilation rate is used, the actual
number of pixels involved in the computation will be sparser, and the local information
will be lost, resulting in the “gridding” effect (Fig. 3(a)).

In order to avoid the above problems, Wang et al. [14] proposed hybrid dilated
convolution. HDC ensures that the final receptive field covers the entire area by

Fig. 2. The 3 � 3 convolutional layer with dilation rate 2. The receptive field is enlarged from
3 � 3 to 5 � 5.
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designing reasonable dilation rate, avoiding voids or loss of edge information. Suppose
there are N dilated convolution layers with dilation rates of ½r1; . . .; ri; . . .; rn�. And the
size of the convolution kernels is K � K. Define the “maximum distance between two
non-zero values” as:

Mi ¼ max½Miþ 1 � 2ri; Miþ 1 � 2ðMiþ 1 � riÞ; ri� ð1Þ

with Mn = rn. The design goal of hybrid dilated convolution is to let M2 � K, and
avoid using the same dilatation rate for each layer. Therefore, the HDC designed in this
paper adopts the dilated convolution with the dilatation rates of 1, 2 and 3, as shown in
Fig. 3(b). The size of the receptive field is the same as 3 convolution layers network
with dilatation rate of 2. However, HDC guarantees the integrity of the receptive field
and is more accurate. Another benefit of HDC is the ability to use any size of dilatation
rate that meets the requirements, naturally expanding the receptive field without the
need for additional modules.

4 Experiments and Results

We used the KITTI2012 and KITTI2015 stereo image datasets to train and verify the
experimental results. 40 pairs of image data in two data sets are taken as verification
sets and the remaining images are used as training sets. Considering that the color
information has less influence on the algorithm of this paper, we converted all color
images to grayscale.

4.1 Training Set Preparation

As described above, we extract a positive and a negative training example for each
image position of the KITTI data set, whose true disparity is known. Each example is a

(a)

(b)

Fig. 3. Explanation of the gridding problem. (a) Three dilated convolutional layers with a
dilation rate of 2. (b) Three dilated convolutional layers with the dilation rates of 1, 2, and 3.
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pair of image patches from left and right images, respectively. We define p as the center
of the left image patch and q as the center of the right image patch. Define d as the
correct disparity for position p. When p = (x, y), the positive example is obtained by
setting q as:

qpos ¼ ðx� dþ opos; yÞ ð2Þ

where opos is a random number chose from (−1, 1). And the negative example is
obtained by setting q as:

qneg ¼ ðx� dþ oneg; yÞ ð3Þ

where oneg is a random number chose from(−10, −4) and (4, 10). We generate
examples for each pixel in pair of images according to the above rules, and finally get
40 million examples.

4.2 Comparison and Discussion

In order to evaluate the algorithm, the computation results of MC-HDCNN are com-
pared with the original MC-CNN algorithm, and both algorithms use the same sub-
sequent processing steps.

Table 1 shows the raw-disparity results of MC-HDCNN and MC-CNN without
subsequent processing. We can see that the error rate computed by our algorithm on the
KITTI2012 data set is 7.01%, which is 8.69% and 6.48% lower than the MC-CNN-fast
algorithm and the MC-CNN-acrt algorithm, respectively; the error rate on the
KITTI2015 dataset is 7.73%, which is 7.93% and 5.65% lower than the MC-CNN-fast
algorithm and the MC-CNN-acrt algorithm, respectively. At the same time, our algo-
rithm runtime is much less than the MC-CNN-acrt, and is close to the MC-CNN-fast.

In addition to comparison with the original algorithm, we also carefully compare
the error results of the improved network with fast convolution network, weak
supervised learning convolution network, MC-CNN-fast and MC-CNN-act algorithms.
As shown in Tables 2 and 3, the values in the table are the rate of pixels where the true
disparity differs from the predicted disparity by more than m (m = 2, 3, 4, 5) pixels.

Table 1. Comparison of MC-HDCNN、MC-CNN-acrt and MC-CNN-fast without subsequent
processing. The “Matching error” is the percentage of miss-matching pixels with threshold 3.0.
The “Runtime” is the time required for CNN to compute a pair of stereo images, in seconds.

Methods Matching error Runtime
KITTI2012 KITTI2015

MC-HDCNN 7.01 7.73 0.28
MC-CNN-acrt 13.49 13.38 35
MC-CNN-fast 15.70 15.66 0.20
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The table shows that the improved method performs closely to the MC-CNN-acrt
algorithm in the KITTI2012 dataset, and performs better in the KITTI2015 dataset.

The predicted disparity maps computed by our method in this paper are shown in
Fig. 4, which are the test results of the KITTI2012 and KITTI2015 data sets respec-
tively. Red pixels on error graphs represent miss-matching pixels with threshold 3.0.
We can see that our method can obtain accurate and dense disparity maps, and the edge
information is better preserved, such as the edges of vehicles and utility poles. The
distinction between foreground and background is more obvious, the shaded area
matches correctly, and the influence of illumination is less.

Table 2. Error comparison of disparity with different algorithms (KITTI2012)

Methods >2 pixel >3 pixel >4 pixel >5 pixel

Fast CNN 4.98 3.07 2.39 2.03
MC-CNN-WS 4.76 3.02 2.33 1.96
MC-CNN-fast 4.81 2.97 2.26 1.91
MC-CNN-acrt 4.28 2.63 2.02 1.72
MC-HDCNN 4.67 2.70 2.08 1.79

Table 3. Error comparison of disparity with different algorithms (KITTI2015)

Methods >2 pixel >3 pixel >4 pixel >5 pixel

Fast CNN 6.78 4.38 2.56 2.03
MC-CNN-WS 6.75 3.78 2.91 2.35
MC-CNN-fast 7.46 3.95 2.80 2.30
MC-CNN-acrt 6.38 3.27 2.37 1.97
MC-HDCNN 5.92 2.93 2.18 1.86

Error 0.91%

(a)

(b)

(c)

(d)

Error 0.62%

Fig. 4. The results of MC-HDCNN in KITTI2012 and KITTI2015 data sets. From top to
bottom: (a) input image; (b) predicted disparity map; (c) true disparity map; (d) error graph
(Color figure online)
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5 Conclusions and Future Work

We propose a stereo matching method based on hybrid dilated convolution in this
paper. Its receptive field has expanded to nearly 3 times without adding additional
modules. At the same time, it avoids the “gridding” effect, and accepts all the infor-
mation of the receptive field. The algorithm verification on the KITTI2012 and
KITTI2015 datasets shows that the disparity computation results of our algorithm have
certain advantage in accuracy compared with the similar deep learning methods, and
the running speed can also meet the requirements of real-time computing. However the
raw-disparity results of CNN have too much matching errors, we still need subsequent
disparity optimization. In the future we will focus on improving the network to
compute enough accurate disparity maps and adding more efficient disparity opti-
mization algorithm.
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Abstract. Chest radiography is the most common examination for a radiolo-
gist. This demands correct and immediate diagnosis of a patient’s thorax to
avoid life threatening diseases. Not only certified radiologists are hard to find,
stress, fatigue and experience contribute to the quality of an examination. It is
ideal that a chest X-ray can be interpreted by an automated deep learning
algorithm. In this paper, we proposed a stage-wise model that is founded on a
ResNet-50 based deep convolutional neural networks architecture to detect the
presence and absence of twelve thorax diseases. This novel model has incor-
porated various recent techniques such as transfer learning, fine tuning, fit one
cycle function and discriminative learning rates. The experiments were per-
formed on 10% of the largest collection of chest X-rays to date, the MIMIC-
CXR dataset. The model was trained for eight epochs using a subset of the
available multi-view chest X-rays. The absolute labelling performance has
achieved an encouraging average AUC of 0.779.

Keywords: Convolutional neural network � Thorax disease � Chest X-ray

1 Introduction

Currently, analyzing chest x-rays depends on the availability of professional radiolo-
gist. In some regions, access to such radiologists is limited [1]. Additionally, clinicians
in emergency department and intensive care unit needs fast and accurate interpretations
of medical images [2]. Globally, chest X-ray is the most common radiological
examinations that required correct and fast analysis [1]. An automated and precise
system that can flag potentially life-threatening diseases could allow care providers to
handle emergency cases efficiently.

However, interpreting X-rays to detect thoracic diseases is still a challenging job.
This is due to the highly diverse appearance of lesion areas on chest X-rays. Unlike the
traditional computer-aided detection (CAD) systems that interpret medical images
automatically to offer an objective diagnosis that assist radiologists [3], deep learning is
able to learn useful features which are beyond the limit of radiology detection [4]. For
example, deep learning has been applied on Mammography to discriminate breast
cancer with microcalcification [5], on ultrasound to differentiate breast lesions and on
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CT lung scans to classify pulmonary [6]. Researchers [5, 6] showed a significant
performance boost by their deep learning based models over the conventional CAD
systems.

In this study, we present a supervised deep learning model using convolutional
neural network to detect twelve thoracic diseases by reading a given chest X-ray.
Residual network (ResNet-50) [7] is the backbone network for our model because it
has clearly shown its outstanding performance on computer vision.

2 Related Work

Recently, several deep learning models that classify thorax diseases have been pro-
posed as a result of the public release of a collection of large datasets namely Indiana
Chest X-Ray [8], ChestX-ray14 [9], CheXpert [1], PadChest [10] and MIMIC-CXR
[9]. For example, CheXNet [11], text-image embedding network (TieNet) [12],
attention guided convolutional neural network (AG-CNN) [13], learning to diagnose
from scratch network [14] classify thorax diseases from frontal chest x-rays using
ChestX-ray14. However, [15] suggest that using lateral view enhances the performance
for certain prediction tasks such as pleural effusion. Further, [2] proposed DualNet
model to prove that simultaneous processing of both frontal and lateral chest X-ray
inputs results in better classification performance. Unlike ChestX-ray14 [9] that only
presents the frontal view of chest X-ray, MIMIC-CXR is a multi-view version of
radiographs dataset. DualNet employed a limited released version of the MIMIC-CXR
dataset to automate reading of frontal and lateral chest X-rays.

Convolutional neural network (CNN) which is a supervised deep learning model is
the most common used deep learning technique for thoracic disease classification. It
has also seen the widest variety in architectures, such as AlexNet [16], VGG-16 [17],
DenseNet [18] and ResNet [7]. CNN-based classification model [19], for instance,
adopt VGG-16 and ResNet-101 to classify X-rays based on nine chest diseases like
emphysema and bronchitis. ResNet won the ImageNet large scale visual recognition
challenge (ILSVRC) in 2015 with 3.6% top five error rate, which enables automated
image classification to beat human brains with 5% error for the first time. ResNet is a
feed forward network that contains several basic residual blocks, refer to Fig. 1, to
handle the vanishing gradients [20] and the degradation issue.

Consistent with recent proposed CNN models on automated chest x-rays classifi-
cation [2, 11, 19], we focus on training CNN models to detect 12 common thoracic
diseases namely enlarged cardiomediastinum, cardiomegaly, airspace opacity, lung
lesion, edema, consolidation, pneumonia, atelectasis, pneumothorax, pleural effusion,
pleural other and fracture (Fig. 2). Unique from past works, we propose a novel stage

+ReLU activation 
Convolution Convolution 

ReLU activation 

Fig. 1. A basic residual block
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wise training approach to observe the model’s performance and hence reduce training
time and increase accuracy. We adopt a combination of recent techniques on
multi-view chest X-rays including ResNet-50, transfer learning, fine tuning, fit one
cycle function [21] and discriminative learning rates [22].

3 Proposed Model

3.1 Structure Overview

The task of detecting thorax diseases in chest x-rays is divided into 12 sub-tasks, where
each task considers the presence and absence of a specific disease. Among the proposed
variations of ResNet layers (i.e. 34, 50, 101, 152 and 1202), we adopt the popular
ResNet-50 network which consists of 49 convolution layers and ends with 1 fully
connected layer. Equation 1 defines the last output of residual unit xl, where F xl�1ð Þ is
the generated output after performing the convolution operations, batch normalization
and activation function on xl�1. Importantly, we use cyclical learning rates to enhance
performance by decreasing the number of epochs required to accomplish the accuracy
threshold. For each binary label problem, ResNet is used as the baseline CNN archi-
tecture in three main training stages (Fig. 3).

xl ¼ Fðxl�1Þþ xl�1 ð1Þ

3.2 Training Stages

In the first stage, the pre-trained ResNet-50 with the default fastai [23] hyperparameter
values is trained for three epochs. That is setting all layers to frozen, excluding the final
dense layer and examining each X-ray three times. In other words, the first stage
embraces transfer learning approach to train faster with a model that is already trained
to recognize 1000 categories of things in ImageNet. At the end of stage-1, model’s
weights were saved.

Enlarged cardiomediastinum Cardiomegaly Airspace opacity Lung lesion

Edema Consolidation Pneumonia Atelectasis

Pneumothorax Pleural effusion Pleural other Fracture

Fig. 2. Examples of Twelve Thoracic Diseases from MIMIC-CXR Dataset. Each disease is
associated with frontal and lateral views of chest X-rays.
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In the second stage, the whole model is trained again for one epoch by unfreezing
the layers and calling the fit-one-cycle method. The objective of this stage is to observe
the model’s performance to reduce training time and increase accuracy. If the AUC is
decreased at the end of this training stage, stage-1 weights are re-loaded.

In the third stage, the whole model is trained again for four epochs using the
optimal learning rate finder. The learning rate is set by default to about 1e−3 at stage-1
and changed manually to a range of lower learning rates (1e−6 to 1e−4) at stage 3.
Figure 4 illustrates the plotted learning rate after the first and second stages of the
model, where the red dots on the graphs indicate the steepest gradient point. Using
different learning rates for each layer at this stage is in line with the discriminate fine-
tuning technique to tune each layer with various learning rates. In this case, the model’s
parameters h and the learning rate g are split into h1; . . .; hL

� �
at time step t and

g1; . . .; gL
� �

respectively, where L is the number of layers. This updated version of the
regular stochastic gradient descent (SGD) with discriminative fine-tuning is defined in
Eq. 2, where rhl J is the gradient of the model’s objective function.

hlt ¼ hlt�1 � gl � rhl jðhÞ ð2Þ

Output Classes

Training 
(ResNet-50)

0 (Normal) 1 (Abnoraml)

Input Image
Chest X-ray 

(3 * 224 * 224)
Batch = 64

Stage 1
Frozen Layers 
epoch = (1-3)

Stage 2
Unfrozen Layers

epoch = 4

Stage 3
Unfrozen Layers

epoch = (5-8)

Fig. 3. Overall illustration of our model.
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4 Experiment

4.1 Dataset

MIMIC-CXR is the largest dataset of chest x-rays to date that consist of 371,920
images and relevant 227,943 studies derived from Beth Israel Deaconess Center [24].
Images are annotated with 14 labels, which overlap with those of the popular
ChestX-ray14 dataset and match the co-released CheXpert dataset. Labels are extracted
from the associated free-text radiology reports using the CheXpert labeler tool. The
training labels for each observation are 0 for negative, 1 for positive, −1 for uncertain
and blank for unknown. We organized a subset of 10% of the MIMIC-CXR v1.0.0 into
training and validation sets that contains 33,195 and 3,688 images respectively.

Enlarged cardiomediastinum Cardiomegaly Airspace opacity

Lung lesion Edema Consolidation

Pneumonia Atelectasis Pneumothorax

Pleural effusion Pleural other Fracture

Fig. 4. Fluctuated Learning Rate (LR). Per pathology, the plot at the right represents the LR
after stage-1 training and the plot at the left shows the LR after stage-2 training. Note the x-axis
represents what happens as the LR is increased and the y-axis indicates what the loss is. (Color
figure online)

Table 1. The MIMIC-CXR Dataset with 12 Labeled Pathologies. We account the number of
positive and negative observations in %10 of the dataset.

Pathology Positive (%) Negative (%)

Enlarged cardiom. 1019 (2.8) 35367 (97.19)
Cardiomegaly 6932 (18.79) 29951 (81.2)
Airspace opacity 7582 (20.42) 29542 (79.57)
Lung lesion 1060 (2.82) 36472 (97.17)
Edema 3964 (11.06) 31859 (88.93)
Consolidation 1410 (3.8) 35634 (96.19)
Pneumonia 2738 (7.83) 32202 (92.16)
Atelectasis 6356 (17.54) 29876 (82.45)
Pneumothorax 1523 (4.05) 36059 (95.94)
Pleural effusion 7869 (21.34) 28994 (78.65)
Pleural other 425 (1.13) 37132 (98.86)
Fracture 805 (2.13) 36829 (97.86)
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The validation set was selected at random. During training, the uncertain and
unknown labels were ignored. Table 1 shows the positive and negative cases for each
observation.

4.2 Pre-processing

Prior to models training, we employ several augmentation strategies (refer to Table 2)
as data augmentation is a critical step of deep CNNs in medical imaging [25]. We crop
each x-ray in both the training and validation sets to 224 by 224 pixels to reduces
training time while maintaining robust model’s performance. For example, training the
model to diagnose cardiomegaly using 299 by 299 pixels would increase training time
without improving the AUC per epoch (refer to Table 3). We perform a horizontal flip
only for each image in the training set, since vertical flips often do not reflect chest
x-rays (i.e. an upside-down chest x-ray may not improve training). The maximum
lighting of the image is set to 0.3 with applying probability of 0.5. Note that no vertical
flips, rotations, zooms or wraps were done on the images. In addition, uncertain and
unknown labels were dropped.

4.3 Training

The training algorithms were evaluated in twelve pathologies: enlarged cardiomedi-
astinum, cardiomegaly, airspace opacity, lung lesion, edema, consolidation, pneumo-
nia, atelectasis, pneumothorax, pleural effusion, pleural other and fracture. We used
PyTorch software [26], fastai library, n1-highmem-8 (8 vCPUs, 52 GB memory)
machine and 4 x NVIDIA Tesla P4 GPUs. This is in accordance with [27] work that
demonstrate how time-per-epoch for the ResNet-50 architecture scale much better

Table 2. Data Augmentation for Chest X-rays. We applied a list of transforms parameters to the
trained images.

Parameter Value

Size 224
Flip (horizontally) True
Lighting 0.3
Affine 0.5

Table 3. AUC per Epoch for Training ResNet-50 CNN. This model detects cardiomegaly using
299� 299 or 224� 224 pixels of chest X-rays.

Image size
(pixels)

Epoch Avg. AUC per
Epoch1 2 3 4 5 6 7 8

299 0.565 0.733 0.758 0.791 0.798 0.804 0.804 0.807 0.757
224 0.725 0.733 0.747 0.785 0.793 0.799 0.802 0.802 0.773
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when training it on multiple GPUs. Table 4 records the time per epoch for training
ResNet-50 based model to detect cardiomegaly using different number of GPUs, where
parallel training on 4 GPUs reduce training time by around 20 min.

4.4 Results

Table 5 shows the Area Under Curve (AUC) results of each pathology computed on
the validation set for each of the eight training epochs. It can be seen that detection
performance for each pathology fluctuate over epochs. For individual training epochs,
the eighth unfrozen epoch accomplish a higher average AUC (0.777), compared to the
first (0.670), second (0.704), third (0.718), forth (0.711), fifth (0.753), sixth (0.765) and
seventh (0.776). Compared with stage-1 (epoch 1–3) and stage 2 (epoch 4), stage 3
(epoch 5–8) results in larger AUC values for all pathologies. This difference is likely
due to the discriminative learning rates at the third stage of training.

Table 4. Time per Epoch for Training ResNet-50 CNN. This model detects cardiomegaly using
single NVIDIA Tesla P4 GPU or 4 x NVIDIA Tesla P4 GPUs in a parallel training. Note the
batch size is set to 64 images and the image size is set to 224 pixels.

No. of
GPUs

Epoch Avg. time
per Epoch
(min)

1 2 3 4 5 6 7 8

1 32:42 32:26 32:36 34:34 33:40 33:52 33:58 34:00 33:28
4 13:32 12:54 13:01 13:05 13:07 13:08 13:07 13:06 13:07

Table 5. The Compression of AUC Scores in each Epoch. We trained each pathology for 8
epochs.

Pathology Epoch
1 2 3 4 5 6 7 8

Enlarged cardiom. 0.670 0.694 0.700 0.544 0.702 0.705 0.708 0.710
Cardiomegaly 0.725 0.733 0.747 0.785 0.793 0.799 0.802 0.802
Airspace opacity 0.621 0.687 0.694 0.712 0.730 0.730 0.733 0.737
Lung lesion 0.520 0.638 0.612 0.638 0.651 0.688 0.730 0.729
Edema 0.816 0.848 0.857 0.887 0.892 0.894 0.896 0.897
Consolidation 0.748 0.758 0.769 0.778 0.788 0.797 0.797 0.799
Pneumonia 0.556 0.531 0.545 0.497 0.550 0.585 0.580 0.587
Atelectasis 0.706 0.706 0.743 0.827 0.830 0.835 0.837 0.838
Pneumothorax 0.710 0.786 0.817 0.839 0.853 0.862 0.868 0.860
Pleural effusion 0.837 0.869 0.881 0.891 0.903 0.906 0.905 0.899
Pleural other 0.585 0.637 0.676 0.533 0.707 0.736 0.739 0.727
Fracture 0.546 0.563 0.576 0.606 0.636 0.648 0.711 0.741
Average 0.670 0.704 0.718 0.711 0.753 0.765 0.776 0.777
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Table 6 compares the per pathology AUC results between our proposed model and
DualNet architecture using MIMIC-CXR dataset. We employed 10% of the dataset
using all available frontal and lateral views of the chest X-rays. DualNet, on the other
hand, considered a combination of posteroanterior (PA) and lateral as well as a com-
posite of anteroposterior (AP) and lateral. In 5 out of 7 overlap pathologies, our model
performs better than both DualNet models. Overall, it can be seen that average AUC is
higher for our multi-view classifiers (0.779), compared to both PA-lateral (0.722) and
AP-lateral (0.677).

4.5 Analysis

In DualNet model, chest X-rays labels were extracted from the associated radiology
reports using an open source tool developed by the National Institute of Health (NIH),
the NegBio labeler1 [28]. This tool was used to annotate the popular ChestX-ray14
dataset. In contrast, our model follows the public released labels by [24] that utilized a
different open source tool created by Stanford machine learning group, the CheXpert
labeler2. Although the labeling algorithm of CheXpert is built upon the work of
NegBio, it achieves a higher F1 score. Hence, our model is trained on a better anno-
tated chest X-rays than DualNet. Interestingly, we reach improved results over those
achieved by DualNet using small image sizes 224 by 224 pixels instead of 512 by 512
pixels.

Table 6. The Compression of AUC Scores. DualNet model used an older limited released
version of the MIMIC-CXR dataset. Our model used 10% of the publicly released version of the
dataset. Note that we ignored uncertain and unknown labels.

Pathology DualNet [2] Our model
PA + Lateral AP + Lateral Multi-view

Enlarged cardiom. – – 0.710
Cardiomegaly 0.840 0.755 0.802
Airspace opacity – – 0.737
Lung lesion – – 0.730
Edema 0.734 0.749 0.897
Consolidation 0.632 0.623 0.799
Pneumonia 0.625 0.593 0.587
Atelectasis 0.766 0.671 0.838
Pneumothorax 0.706 0.621 0.868
Pleural effusion 0.757 0.733 0.906
Pleural other – – 0.739
Fracture – – 0.741
Average 0.722 0.677 0.779

1 https://github.com/ncbi-nlp/NegBio.
2 https://github.com/stanfordmlgroup/chexpert-labeler.
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Nevertheless MIMIC-CXR is the largest open source X-ray images to date, the
class labels in the training set are noisy because they were mined by natural language
processing tool, rather than by experienced radiologist. Figure 5 visualizes the most
incorrect predicted X-rays by our model with heatmaps, using the activations of the
wrongly predicted class. In addition, the positive-negative subsets ratio was highly
imbalanced in the enlarged cardiomediastinum, lung lesion, consolidation, pneu-
mothorax, pleural other and fracture sets (Table 1). Yet, our model’s AUC for each of
these pathologies is above 0.7 (Table 6).

5 Conclusion

In this paper, ResNet-50 CNN based stage wise models have been proposed to detect
twelve thorax diseases on 10% of the largest chest X-rays dataset to date, the MIMIC-
CXR dataset. The absolute labelling performance with an average weighted AUC of
0.779 is encouraging, since we used only a subset of the available chest X-rays. In
future work, we plan to improve our CNN model performance through utilizing
common image-based classification techniques, in particular data augmentation.
Importantly, we will incorporate useful information from the free-text radiology reports
such as patient’s history and clinical records to accurately recognize the presence and
absence of thorax diseases.
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Abstract. Recent research shows that the static and dynamic features
of a lip utterance contain abundant identity-related information. In this
paper, a new deep convolutional neural network scheme is proposed. The
entire lip utterance is first divided into a series of overlapping segments;
then an adaptive scheme is designed to automatically examine the dis-
criminative power and assign a corresponding weight of each segment in
the entire utterance. The final authentication result of the entire utter-
ance is determined by weighted voting of the results for all the segments.
In addition, considering the various lighting condition in the natural envi-
ronment, an illumination normalization procedure is proposed. Experi-
mental results show that different segments of the same utterance have
different discriminative power for user authentication, and focusing on
the discriminative details will be more effective. The proposed method
has shown superior performance compared with two state-of-the-art lip
authentication approaches investigated.

Keywords: Visual speaker authentication · 3DCNN · Lip feature ·
Discriminative weight

1 Introduction

In recent years, user authentication based on human biometric features has
received much attention. In addition to the face [14], iris [15], and fingerprint [5],
lip feature is also a popular biometric feature. Lip feature is a twin-biometric
with a high discriminative power [2,11]. Speakers can be distinguished from
different lip shapes and unique talking habits that are difficult to imitate [7,19].

Lip biometrics as a means of visual speaker authentication, was first intro-
duced by Suzuki et al. [18]. Over the past decade, various ways have been pro-
posed to verify human identity using lip features. Broun et al. [3] used the poly-
nomial based approach [4] as the classifier. Based on the XM2VTS database,
they achieved an FRR of 4.4% and an FAR of 8.2%. Chan et al. [6] proposed
an ordinal contrast measure called Local Ordinal Contrast Pattern (LOCP).
They obtained a very low HTER of 0.36% on the XM2VTS dataset. In our
c© Springer Nature Switzerland AG 2019
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previous work, Lai et al. [17] proposed a visual speaker authentication scheme
which handles static lip appearance, lip movements during a specific word and
lip movements during a word transition. Modeling dynamic and static segments
using HMM-UBM and linear SVM, respectively.

The above methods have demonstrated that lip feature is effective and reli-
able in verifying the identity of the speaker. However, there are still two chal-
lenging tasks, one is how to highlight the speaker’s unique speaking habits, the
other is how to enhance the robustness in complex lighting environments. In
order to handle the two challenges, a new visual speaker authentication scheme
is proposed. The major contributions of this paper can be summarized as follows:

(1) A new deep convolutional neural network scheme is proposed, which can
automatically examine the discriminative power of each segment in the utterance
and provide more reliable authentication results.

(2) An illumination pre-processing method to overcome the influence of illu-
mination is introduced to enhance the robustness of illumination variation.

(3) Experimental results show that the proposed approach achieves excellent
authentication performance compared with two recent approaches investigated.

2 Motivation

In the previous work of our group [17], it has been demonstrated that the
speaker’s identity can be better recognized in some specific words or word tran-
sitions rather than the entire utterance. In this paper, we extend the above idea
and propose a new deep neural network scheme for visual speaker authentication.

In our approach, the entire utterance is first divided into a series of overlap-
ping segments. Then each segment is fed into a 3D convolutional neural network
(3DCNN) to extract discriminative features. Meanwhile, a weighting measure
which describes the discriminative power of the segment is automatically com-
puted by examining the L-2 norm of the feature vector. The final authentication
result can be obtained by weighted voting over the results for all the segments.
With the above strategy, the discriminative segments will have more impact on
the final authentication result and thus it will outperform the sentence level
authentication approaches where all the segments have the same impact.

3 The Proposed Method

In general, visual speaker authentication is a two-class classification problem, i.e.,
a client or an imposter. In this section, considering the various lighting condition,
an illumination normalization procedure is proposed. Then, the visual speaker
authentication scheme based on discriminative segment analysis is proposed.
Finally, the implementation procedure is introduced. The details are as follows.
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Fig. 1. The influence of illumination pre-processing

3.1 Illumination Pre-processing

In order to overcome the influence of illumination, referring to [1], an illumination
normalization procedure is introduced as follows. The intensities of each channel
of the input RGB image are stretched to [0, 255], the effects are shown in Fig. 1.
The first row is the original image, and the second row is the image after the
illumination pre-processing. It can be seen that this method can alleviate the
situation where the light is too dark.

For R, G and B channels in the original image, the intensities of each channel
are stretched to [0, 255]. For example, in the R channel, the maximum and
minimum intensity are labeled as IR,max, IR,min, respectively. After processing,
the intensity IR in the original image is calculated as I ′

R in Eq. 1. The pre-
processing of G and B channels is the same as that of R channel.

I ′
R =

IR − IR,min

IR,max − IR,min
× 255 (1)

3.2 The Visual Speaker Authentication Scheme Based
on Discriminative Degment Analysis

A weighting measure is proposed to describe the discriminative power of the seg-
ment. The overall architecture of the proposed authentication system is shown
in Fig. 2. The entire utterance is divided into a series of overlapping segments
with predefined fixed time window size T and step size S. Then each segment is
fed into a 3D convolutional neural network (3DCNN) [10] to extract discrimina-
tive feature. Meanwhile, a weighting measure which describes the discriminative
power of the segment is automatically computed by examining the L-2 norm of
the feature vector. The final authentication result, can be obtained by weighted
voting over the authentication results for all the segments. The details are as
follows:

(1) Given a predefined time window size T and step size S, the entire utter-
ance contains V frames can be divided into K overlapping segments, where K
can be obtained by K = �(V − T )/S� + 1. A series of segments in the same
utterance are marked as (E1, E2, ..., Ei, ..., Ek).

(2) For each segment Ei in the same entire utterance, 3DCNN is used for
lip feature extraction. After the softmax layer, the predicted probability pi is
obtained. Meanwhile, the discriminative power wi of the segment Ei is extracted
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Fig. 2. Sketch of lip feature extraction procedure

from the last fully connected layer by calculating the L-2 norm of fi as Eq. 2.
Finally, the final result of the entire utterance r can be obtained by weighted
voting over the authentication results for all the segments as Eq. 3.

wi = ‖fi‖2 (2)

r =
k∑

i=1

wi × pi (3)

(3) Note that when classifying with categorical crossentropy loss function,
the network gives a very high probability to the label with higher probability,
so that the majority of the maximum predicted values are distributed in [0.9,
1]. So a deformed sigmoid function in Eq. 4 is used to extend the difference, to
highlight the effect of higher predicted values.

p′
i =

1
1 + e(−α×(pi−β))

(4)

3.3 Implementation Procedure

The detailed network structure of the 3DCNN in Fig. 3 is given as follows: (1)
A five-level pyramid is constructed, for conv1b, 2b, 3b, 4a and 4b, a stride of
(1, 2, 2) is set (stride is 1 in the temporal domain and stride is 2 in the spatial
domain) and a stride of (1, 1, 1) is set for the rest layers; (2) Batch normalization
is applied after each pyramid to solve the gradient disappearance and explosion
in training and speed up the convergence of the model; (3) All the 3D kernels are
of the size 3 × 3 × 3, which are set empirically to achieve the best performance
compared with some other kernel sizes; (4) Except for the last layer using the
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Fig. 3. The network structure of the 3DCNN

Fig. 4. Sample lip images in our dataset

Fig. 5. The speaker authentication protocol in our experiment

softmax as activation functions, the activation functions of the other layers are
ReLU, which alleviates over-fitting and reduces the cost of calculation; (5) In
the training stage, the Adam optimizer is adopted to speed up training with an
initial learning rate of 0.001, and categorical crossentropy loss is adopted as the
loss function.

4 Experiments and Discussions

Since in most public speaker datasets, the lip region is of low resolution. To
better evaluate the performance of our method, we have constructed a dataset
containing 52 speakers under the natural environments. In the dataset, each
speaker is required to read 200 four-digit utterances from “0000” to “9999”,
where the vocabulary is from 0 to 9. Among the 200 utterances, all speakers
have the same 50 fixed utterances, the remaining 150 are random. The spatial
resolution of the lip region is 50 × 100 pixels. Some sample are illustrated in
Fig. 4.

In the visual speaker authentication scenario, the Lausanne protocol [12] is
adopted in our experiment, which runs as follows and is illustrated in Fig. 5.

(1) Training stage: 30 users out of 52 users in the dataset are randomly
selected to train 30 two-class classification model. 150 utterances (including
50 fixed and 100 random utterances) for the client and 29 other speakers as
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imposters (4350 utterances in all) are used to form the training set. Considering
that the number of client samples is so small, data augmentation and random
sampling techniques is applied.

(2) Evaluation stage: Based on the two-class classification model mentioned
in (1), for each authentication experiment, 25 utterances of the client and 1450
utterances of the other 29 speakers are used as the positive and negative eval-
uation samples, respectively. The threshold H for authentication is adjusted to
obtain the equal error rate (EER), where the false accept rate (FAReval) equals
to the false rejection rate (FRReval) in the evaluation set.

(3) Test stage: The remaining 25 utterances of the client and the random 1100
utterances of the other unused 22 speakers are used as the client and imposter’s
test samples. The Half Total Error Rate (HTER) in the test set is computed as
HTER = (FARtest + FRRtest)/2 by using the client model and the threshold
H obtained from the evaluation stage.

(4) Finally, the average HTER over the 30 selected speakers are computed
to evaluate the authentication performance to avoid any bias.

4.1 Selection of the Time Window

In our experiments, the entire utterance is divided into overlapping subsequences
with time window T . In order to achieve the best performance, in Table 1, exper-
iments are performed on T sizes of 8, 16, 24, 32, respectively.

Table 1 mainly includes the influence of window size on performance and
calculation. When T is too large (T = 32), training samples are much reduced,
and the authentication accuracy after voting is not significant, because each
subsequence tends to be similar. When T is small (T = 8), there are more
training samples, and get a very low EER but a high HTER, this is because each
subsequence does not contain enough identity-related information. Therefore,
considering the performance and calculation, the T is set to 16 in the following
experiment to obtain the best authentication performance.

Table 1. Influence of the time window T (EER/HTER in %)

T 8 16 24 32

EER 0.146 0.189 0.285 3.8298

HTER 0.454 0.402 0.411 4.2791

Params 24M 40M 56M 72M

4.2 Results Using Our Network

Illumination Pre-processing. In view of the diversity of illumination, the
method mentioned in Sect. 3.1 is applied. The intensities of each channel of
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Table 2. Influence of illumination pre-processing (EER/HTER in %)

Methods With pre-processing Without pre-processing

Subsequence Entire utterance Subsequence Entire utterance

EER 0.599 0.189 0.489 0.67

HTER 0.593 0.402 2.684 1.867

the input image are stretched and distributed at [0, 255]. Based on 3DCNN,
experiments are performed to calculate the results of subsequence (prediction for
each segment) and entire utterance with or without illumination pre-processing,
respectively. As shown in Table 2, this pre-processing improves the performance
of both the subsequence and the entire utterance.

Optimizing the Probability Distribution of a Segment. For each segment,
as the majority of the maximum predicted values are distributed in [0.9, 1]. In
order to enhances the higher probability distribution value, the pi is optimized
by a deformed sigmoid Eq. 4, setting α = 10, β = 0.97, the weights originally
distributed in [0.9, 1] are stretched to [0.33, 0.58]. The original method and the
method above described is labeled as ‘without nonlinear’ and ‘with nonlinear’,
respectively. Table 3 shows that this optimization can improve the performance.

Table 3. Optimizing the probability distribution of a segment (EER/HTER in %)

Methods Without nonlinear With nonlinear

EER 0.211 0.189

HTER 0.498 0.402

4.3 Performance Comparison with Existing Approaches

In order to fully evaluate the proposed method, two recent methods of visual
speaker authentication, namely Liao’s [10] and Chan’s [6], are adopted to com-
pare. Table 4 shows the experimental results, it can be concluded that our
method achieves the best performance compared to the other two methods.

Table 4. Use different authentication mechanisms (EER/HTER in %)

Methods Our method Liao’s Chan’s

EER 0.189 0.368 3.594

HTER 0.402 0.556 5.793
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5 Conclusion

In this paper, a new deep neural network scheme for visual speaker authentica-
tion is proposed the segments. Experiments prove that comparing with analyzing
the entire sequence indiscriminately, focusing on the discriminative details are
more effective. It is effective to calculate the weight of each segment by exam-
ining the L-2 norm of the feature vector in the last fully connected layer. In
addition, illumination normalization and optimized probability distribution are
proposed to further improve performance. Experiments have shown that the
proposed method has better performance than the lip authentication schemes
investigated.

Acknowledgment. The work described in this paper is fully supported by NSFC
Fund (No. 61771310).
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Abstract. Intrusion detection system is an important network security
facility. With the fast development of information technology, the infor-
mation security is getting more serious. On the other side, making the
IT equipment more intelligent via AI methods becomes a research hot-
pot. Recent studies show that temporal convolutional networks can out-
perform recurrent networks and convolutional architectures in sequence
modeling problems. In this work, we propose a data processing method
for intrusion detection. We conduct a systematic evaluation of temporal
convolutional networks for intrusion detection with NSL KDD data set.
Compared with other standard baseline machine learning methods and
some advanced deep learning architectures, the proposed model gives
a promising performance in different level tests. With limited compu-
tational cost, TCN model converges fast and shows good performance.
The proposed model can be easily adjusted to raw inputs and can be
extended to large-scale online applications.

Keywords: Intrusion detection · Temporal convolutional networks ·
NSL KDD

1 Introduction

With the fast growth of information technology, more and more electrical and
electronic equipment are connected to the network, which brings convenience
and efficiency. However, the endless incidents of network security result in huge
losses and panic emotion to people and the popularity of security technology
is making the situation worse. Intrusion detection system (IDS) is designed to
recognize the attacks and treats from the network. IDS was first proposed by
Denning in 1986 [3]. Intrusion detection is very important in nowadays’ severe
information security trend. In recent years IDS has evolved to take protection
responding to attacks (not alarms only), which makes the facility more crucial
and valuable.

In practice, most intrusion detection systems work with a set of rules which
define the abnormal behaviors of users, systems and the network protocols. IDS
detects attacks via rules that are called misuse mode. In contrast to misuse detec-
tion mode, IDS can also work in anomaly detection mode. Anomaly detection
c© Springer Nature Switzerland AG 2019
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mode does not specify specific attack behavior, but gives a description of system
running environment parameters by using statistic methods, machine learning
or other AI methods. In this work, we using deep learning method to solve the
anomaly detection problem.

Intrusion detection systems are applied in a variety of network structures.
IDS can be divided into host-based or network-based according to its deploy
mode. IDS which deploys on a host and do attacks recognition by monitoring
the host events and network flow to host is so called host-based IDS. The other
network-based IDS is deployed in a network, usually deploying on a mirror port
of network switch and monitor the bypass network flow data. The two deploy
methods have respective advantages and disadvantages. There are many famous
important intrusion detection systems in history (e.g. Stanford’s IDES, UCDavis’
NSM). Snort and Bro are both open source software and widely used in both
research and practice. In this work, we focus on the network-based intrusion
detection system.

Temporal convolutional networks (TCN) is proposed for sequence modeling
[1]. Traditional convolutional neural networks are not suitable for sequence mod-
eling problem, because the convolutional kernel size limits the model’s long time
series gain ability. The temporal convolutional networks use causal convolution
structure, dialed convolution structure and residual connections to learn the
sequence model. By evaluation of multiple sequence modeling tasks, the tempo-
ral convolutional networks can achieve or even exceed various RNN structure.

Inspired by the temporal convolutional networks, we apply the model to
intrusion detection scenario. To our best knowledge, there is still no work evalu-
ating the TCN’s performance on intrusion detection. We use NSL KDD to test
the model’s performance, which is a successor data set of KDD99 and very pop-
ular in study work. The remainder of this paper is organized as follows: Sect. 2
introduces related literal intrusion detection works via various deep learning
structures. Section 3 gives a detailed specification of temporal convolutional net-
works and the proposed method to use the model. Section 4 shows the evaluation
experiment on the model with analysis and comparison to other methods. In the
end, we give our conclusion and the future work in Sect. 5.

2 Related Work

Because the anomaly detection mode can find novel attack forms, there have been
a lot of work that uses machine learning methods to achieve intrusion detection.
Since deep learning has achieved great success in computer vision, audio pro-
cessing, natural language processing, etc., literature work has introduced deep
models into intrusion detection scenario [10]. Deep learning can do classifica-
tion tasks without feature engineering. Some early work uses deep structures
to extract feature automatically [5–7]. Some work uses different presentations
of network data and introduces convolutional neural networks [12,13]. [11] uses
semantic representation of the network data and does binary classification tests
via LSTM. [19] gives a comprehensive test on recurrent neural network structure.
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Some work tries to take the advantages of both CNN or RNN, using variant or
hybrid architectures to recognize attacks [17,18,22].

3 Proposed Method

Temporal convolutional network (TCN) is a novel neural network architecture
which was proposed in 2018 [1]. Aiming to solve time series prediction problem,
TCN introduces 1D convolution, dilated convolution, causal convolution and
residual block to make the model sequence sensitive, receptive field scalable,
temporal casual sensitive and vanishing gradient immune. Temporal convolu-
tional network is tested on several sequence modeling tasks (e.g. Seq.MNIST,
Adding problem, Music JSB Chorales, Word-level PTB etc.) in that work. The
performance is better than standard LSTM and GRU, which gives us inspiration
to introduce the model into intrusion detection.

The overall architecture is shown in Fig. 1. Our intrusion detection model is
based on the network. The raw data from network can be captured either from
a network switch mirror port in bypass mode or simply from a network adapter
in promiscuous mode. Some software can give a vivid illustration of the pcap
format (e.g Wireshark). The raw data is binary bits sequence. Our model can
directly process the data format without data preprocessing, and reasons for the
advantage will be given in detail in following chapters. However, lots of work uses
the abstract KDD99 format, which have statistical results of raw data features
and some categorical features parsed by specific protocols. For fair comparison
we test the model with this kind of data. We use ordinal encoding to convert the
categorical features, with the numeric features with stand scale conversion and
Boolean features remaining unchanged. Unlike some work which uses feature
engineering, our method simply retains the data information without conversion
or feature selection. We will give a detailed analysis of TCN’s structure with
each kind of feature types and show how the model can get the information of
data presentation.

3.1 Temporal Convolutional Networks

There is a lot of work using recurrent neural network to solve intrusion detection
issues as sequence modeling. And some work uses hybrid architecture and use
RNN-like as independent part of the overall model. RNN-like network can cap-
ture temporal sequence information, but still suffers the attenuation problem of
long signal. There is also some work trying to use convolutional neural network
to solve sequence problem. 1-D convolutional operator is evolved from the orig-
inal 2-D operator for image recognition and some special variant structures are
also introduced from various CNN structure. Every specially designed structure
makes the TCN more suitable for sequence modeling problem than RNN.

1-D Convolutions. Convolution operator can be seen as a signal multiplied
with its effective function in a time period. It is a sum of weighted discrete
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Fig. 1. Overview of Deep & Shallow model for intrusion detection

points. When the concept of convolutional neural networks (CNN) is introduced
into neural network, CNN use a 2-D filter to weight the pix feature of the input
image and move the filters by rows and columns. That is the 2-D convolution
operator’s original meaning. When the input is sequence data, the filter need not
move by rows and columns, instead just in sequence direction. The comparison
illustration is shown in Fig. 2.

Fig. 2. Comparison of 1-D convolution & 2-D convolution

Causal Convolution. Causal convolution means that the output of time t
only has relationship with the input data before it. The convolution operator
has inputs from earlier time than time t. A major advantage of using causal
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convolution is that the output would not be affected by the future sequence value,
while some bidirectional structures do not have this salient (e.g. bidirectional
RNN). In our intrusion detection practice, the data is obtained off-line, the causal
convolution is not so crucial. However, when coming to the on-line scenario, it
can be useful.

Fig. 3. Illustration of a stack of causal convolutional layers

Dilated Convolution. Dilated convolution is introduced to audio recognition
[8,16], signal processing [4,9] and image segmentation [2,21]. Lots of work has
shown that dilated convolution structure can get the reception field enlarged
by stacking the dilated convolution filters. Figure 3 gives a detailed depict of
dilated convolutions: 1, 2, 4 and 8. By skipping input sequence with a certain
step, dilated convolution filter can get an enlarged field of perception than the
original filter. The enlarged perception can get longer dependence relationship
with fewer layers and parameters, which makes the network easier to be trained
and get convergence. We define the input 1-D sequence as x ∈ Rn and a filter
f : {0, . . . , k − 1} → R. The dialed convolution operation F on element s of the
sequence data can be expressed formally as:

F (s) = (x ∗d f) (s) =
k−1∑

i=0

f(i) · xs−d·i (1)

where d stands for the dilation factor, ∗ stands for convolution operator and
k stands for the filter size. When d = 1, the dilated convolution degenerates
to standard convolution. The reception field of dilated convolution increases
exponentially. With the dilated factor d, the model can get a large reception
field through very few layers. E.g. in Fig. 3 the dilated filter was enlarged 8
times. The basic dilated filter structure can be stacked. If there are ns stacks of
dilated filter structure, the reception is ns·kernel size·last dilation. By stacking
dilated convolution layers, the model can get a very large receptive field.
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Residual Connections. Residual Connections can provide a more flex fea-
ture expression. With different layer levels extracting different sizes of features,
residual connections can recombine them. Formally, the residual block can be
written as:

o = Activation(x + F(x)). (2)

And the residual connections are friendly for training deep networks by speed-
ing up convergence. The residual block for TCN is shown in Fig. 4(a), and the
residual connection of TCN is shown in Fig. 4(b).

Fig. 4. TCN residual block and an example of residual connection in a TCN

3.2 Data Presentation

There are different kinds of data types in the abstracted data form, in which
different features have meaningful physical or statistic information. The famous
KDD99 data set and its successor NSL KDD is abstracted data set. The data
form is widely used in evaluation of intrusion detection. 2-D convolutional models
need an image transformation of data [12,13], but the feature conversion process
may cause precision loss. The RNN structure face the same problem: the quality
of embedding operation will affect the learning effect [11,14].

Due to the salient of dilated convolution and the residual block, the different
feature scale can be learned with recombination. And by stacking the dilated
layers, the model can learn different scale of features. The TCN model can deal
with the raw binary type of data or a simple presentation of abstracted data
without feature engineering, which is also one of the most outstanding advan-
tages of deep-learning.
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Symbolic Features. There are several symbolic features in the abstracted form
of data set. E.g. feature ‘protocol type’ gives the protocol used in the connec-
tion, and its column has ‘tcp, udp, icmp’ in value. Feature ‘service’ gives the
destination network service and feature ‘flag’ gives the status of the connection
(normal or error). Lots of work uses one-hot encoding to this kind of categorical
data and some work uses word2vec models or embedding functions to embedding
the data. Due to the strong feature learning ability of TCN, we use an ordinary
encoding to encode the category data. While the ordinary encoding retaining all
the information, it also has a very short length, which is more conducive to model
learning. The ordinary encoding is efficiently coded as integers, for instance ‘tcp’
coded as ‘0’, ‘udp’ coded as ‘1’, and ‘icmp’ coded as ‘2’.

Numeric Features. Some numeric features are described with int or float
values. The statistical results have different dimensions which have big difference
in quantity. However, the TCN model can deal with different scales of input data,
so we keep the numeric features the same value as original.

Boolean Features. Some features have Boolean values, e.g. ‘land’, ‘logged in’,
‘root shell’, etc. We keep the Boolean value ‘0’ or ‘1’ unchanged.

4 Experiment and Results

We use NSL KDD as our evaluating data set. NSL KDD data set is a dataset
which has abstracted data form. NSL KDD dataset improves data duplication
and data imbalance in KDD99 dataset. And NSL KDD keeps all the features of
KDD99. KDD99 is an authoritative dataset in intrusion detection. NSL KDD
has become a successor dataset of KDD99.

We evaluate the TCN model with different structures, using test dataset of
different level to test the model’s performance on 2 classifications and 5 classi-
fications problems. And we give comparative analysis of other machine learning
base-line methods and some advanced deep learning methods.

4.1 Implementation Detail

We evaluate the TCN model on a PC with a Intel i7-4790 CPU and 8 GB Mem-
ory. We use Keras with TensorFlow backend as our emulating software frame
work. Three TCN models with different stacked layers are trained by 20 epochs
with batch-size = 32 and evaluated by Test+ and Test−21. We set the dropout
factor = 0.05, dilated factor = 16 and filter numbers = 25 by comparisons of dif-
ferent tests. The training process uses Adam as optimizer and categorical cross
entropy as cost function.
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4.2 Performance Metric

We use accuracy as a main indicator in our comparative experiments. The preci-
sion and recall are also tested to give a description of the model’s sensitivity and
coverage capacity. And the harmonic mean of precision and recall is reflected by
F1 score.

4.3 Results and Comparative Analysis

There are 5 category labels in the dataset: (normal, dos, U2R, R2L, probe) or
simply 2 category species (normal, vicious). There are two test dataset Test+

and Test−21 in NSL KDD. To evaluate the model’s performance on recognizing
novel attacks NSL KDD includes different amount of novel attacks test dataset.
Qualitatively, the Test−21 includes more difficult data than Test+. We test TCN
with different stacked layers for binary classification both on Test+ and Test−21.
Table 1 shows the details of these tests.

Table 1. Binary classification metrics of different layers of TCN

Accuracy Precision Recall F1 score

TCN (1 dilation convolutional layer on Test+) 82.56% 96.96% 71.60% 82.38%

TCN (1 dilation convolutional layer on Test−21) 67.32% 95.42% 63.11% 75.97%

TCN (2 dilation convolutional layers on Test+) 76.80% 95.81% 61.97% 75.26%

TCN (2 dilation convolutional layers on Test−21) 57.45% 94.54% 50.95% 66.22%

TCN (3 dilation convolutional layers on Test+) 75.50% 94.69% 94.68% 94.69%

TCN (3 dilation convolutional layers on Test−21) 48.62% 84.16% 84.13% 84.14%

We can see that TCN with 1 dilation convolutional layer have achieved the
best performance on NSL KDD dataset. We think the NSL KDD training data
sequence is not too long to need a more deeper structure. Shadow models already
get to convergence very fast. Raw long sequence data flow may need deeper
structure. On the other side, this can be a great advantage of TCN, it is effective
and easy to train.

There is a lot of work use NSL KDD dataset to evaluate deep model. How-
ever, some work uses feature engineering to improve performance and some work
give their results by cross-validation treating the train set and test set as a whole
data set. In fact, the test set (test+ and test−21) include many novel attacks,
which can effectively test the model’s anomaly detection ability. The popular
NSL KDD is proposed by Tavallaee in [14], several machine learning are tested
as base-line method. For fair comparisons, we list different models tested on
NSL KDD test dataset with binary classification.

As show in Table 2, our model achieved a accuracy 82.56% on test+ and
67.32% on test−21. The performance on a relative easy test+ is the second best
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performance (weaker than RNN). We think the TCN can get more better per-
formance than RNN, if the input sequence is longer. Considering our model
is more fast convergence than RNN when the model achieves the same perfor-
mance nearly, the result is very promising. When tested on a more harder test−21

data set, the model get a relatively good score like RNN. Our proposed method
outperforms than the base-line machine learning methods

Besides the model’s accuracy advantage, the TCN structure has more advan-
tages. First, the TCN model is simple and has fast rate of convergence. Among
all the deep learning models, the TCN has a shadow structure and is very easy
to train. The effective structure can be applied to on-line scenario. Second, the
TCN model can adapt to other input formats very easily. Unlike other method
needing feature engineering or feature conversion, the input data of TCN can be
raw and simple.

Table 2. Comparison of different models

Model Test+ Test−21

J48 [15] 81.05% 63.97%

Naive Bayes [15] 76.56% 55.77%

NB Tree [15] 82.02% 66.16%

Random Forest [15] 80.67% 63.26%

Random Tree [15] 81.59% 58.51%

Muti-layer Perceptron [15] 77.41% 57.34%

SVM [15] 69.52% 42.29%

CNN (ResNet50) [12] 79.14% 81.57%

CNN (GoogLeNet) [12] 77.04% 81.84%

RNN [20] 83.28% 68.55%

Semantic LSTM [11] 82.21% 66.10%

TCN (proposed method) 82.56% 67.32%

5 Conclusion and Future Work

We evaluate the temporal convolutional network for intrusion detection in this
paper. We give the details of how to use KDD99\NSL KDD data format via
TCN model. We compare the TCN model with different layers to find an opti-
mal structure. By comparing with other base-line methods and other advanced
deep learning methods, our model achieves a promising performance. With very
limited computational cost, TCN model converges fast and gets relatively good
accuracy. In addition, this model can easily adjust to raw inputs and can be
extended to large-scale online applications.
As future work, we would have more intrusion detection dataset to test the
model. And more variant model structures with the dilated convolution layer
are also in consideration.
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Abstract. Deep Neural Networks (DNNs) generalize well despite their
massive size and capability of memorizing all examples. There is a
hypothesis that DNNs start learning from simple patterns and the
hypothesis is based on the existence of examples that are consistently
well-classified at the early training stage (i.e., easy examples) and exam-
ples misclassified (i.e., hard examples). Easy examples are the evidence
that DNNs start learning from specific patterns and there is a consistent
learning process. It is important to know how DNNs learn patterns and
obtain generalization ability, however, properties of easy and hard exam-
ples are not thoroughly investigated (e.g., contributions to generalization
and visual appearances). In this work, we study the similarities of easy
and hard examples respectively for different Convolutional Neural Net-
work (CNN) architectures, assessing how those examples contribute to
generalization. Our results show that easy examples are visually similar
to each other and hard examples are visually diverse, and both exam-
ples are largely shared across different CNN architectures. Moreover,
while hard examples tend to contribute more to generalization than easy
examples, removing a large number of easy examples leads to poor gen-
eralization. By analyzing those results, we hypothesize that biases in
a dataset and Stochastic Gradient Descent (SGD) are the reasons why
CNNs have consistent easy and hard examples. Furthermore, we show
that large scale classification datasets can be efficiently compressed by
using easiness proposed in this work.

Keywords: Easy examples · Hard examples · Deep Neural Networks ·
Dataset compression

1 Introduction

From a traditional perspective of generalization, overly expressive models can
memorize all examples and result in poor generalization. However, deep neural
networks (DNNs) achieve an excellent generalization performance even if models
are over-parameterized [16]. The reason for this phenomenon remains unclear.
Arpit et al. [1] show that DNNs do not memorize examples, and propose a
hypothesis that DNNs start learning from simple patterns. Their hypothesis is
c© Springer Nature Switzerland AG 2019
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based on the existence of examples that are consistently well-classified at the
early training stage (i.e., easy examples) and examples misclassified (i.e., hard
examples). If DNNs memorize examples in brute force way, easy examples should
not exist. Easy examples are the evidence that DNNs start learning from specific
patterns and there is a consistent learning process. Therefore, we believe that
analyzing easy and hard examples is one of the keys to understanding what kind
of learning process DNNs have and how DNNs obtain generalization ability.

In this work, we study easy and hard examples, and their intriguing properties
are shown. For our experiments, we introduce easiness as a metric to measure
how early examples are classified correctly. In addition, we calculate the matching
rates of easy and hard examples between different CNN architectures. As a result,
we discover that both easy and hard examples are largely shared across CNNs,
and easy examples are visually similar to each other and hard examples are
visually diverse.

These results imply that CNNs start learning from a larger set of visually
similar images and we hypothesize that easy and hard examples originate from
biases in a dataset and Stochastic Gradient Descent (SGD). A dataset naturally
contains various biases leading some images to appear as a majority or a minority.
For instance, if there are many white dogs and rarely black dogs in dog images,
the majority of visually similar images (i.e., white dogs) become easy examples
and visually unique examples (i.e., black dogs) become hard examples. Since
SGD randomly picks samples for training a model, discriminative patterns in
easy examples tend to be focused more than those in hard examples. Thus, the
gradient values of easy examples dominate the direction of the update at the
beginning of training. Such intra-class biases are the reason why some examples
are classified well at an early training stage.

According to this hypothesis, the gradient values of easy examples are
thought to be redundant and we may be able to remove easy examples without
significantly affecting generalization ability. To investigate how easy and hard
examples contribute differently to generalization, we conduct ablation experi-
ments. We find that hard examples contribute more to generalization than easy
examples, however, removing a large number of easy examples leads to poor
generalization. By using easiness, we show that datasets can be efficiently com-
pressed than random selection even in the large-scale ImageNet-1k dataset [11].
Our contributions are as follows:

– We propose easiness to measure how early an example is classified correctly
– Empirical finding and analysis of easy and hard examples based on easiness.

For instance, easy examples are visually similar to each other and hard exam-
ples are visually diverse, and both easy and hard examples are largely shared
across different CNN architectures. We hypothesize such properties originate
from the biases in the dataset and SGD.

– We demonstrate dataset compression by easiness. It is more efficient than
random selection and works even for the large-scale ImageNet-1k dataset.
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2 Method

2.1 Easiness

To measure how early an example is classified correctly, we introduce easiness
eTxi

∈ R as a criterion, where xi represents one example and T ∈ N is the number
of the model updates. For a criterion of how correctly a model classifies the
example, the loss value is appropriate. However, since the model is stochastically
updated, the loss value is uncertain in a single trial. To improve the certainty
of the loss value, it is necessary to take an average of the loss value over several
times. We propose easiness eTxi

that is the averaged loss value as follows:

eTxi
=

1
M

M∑

m=1

L(ti, f(xi,WT
m)), (1)

where f(xi,WT
m) is the prediction and ti is the corresponding ground truth

label. L is the loss function, for which we use the cross-entropy in this work
since we focus on image classification. M ∈ N is the number of trials and we set
M as 10 in this work.

In this work, we define 10% of the examples with the lowest easiness
as easy examples and 10% of the highest as hard examples.

2.2 Matching Rate

It is important to know how large easy and hard examples are shared between
various CNN architectures. If easy and hard examples are not shared, it means
that the learning process depends on the architecture of CNN and model-
dependent analysis would be required. To calculate the consistency of the set
of examples, we use matching rate in this work. Let us consider two different
sets of examples XA and XB . The matching rate MAB ∈ [0, 1] between XA and
XB is calculated as

MAB =
|XA ∩ XB |

max(|XA| , |XB |) , (2)

where | | denotes the size of a set.

3 Experiments

3.1 Preparations

We use CIFAR-10 [5] and ImageNet 2012 dataset (ImageNet-1k) [11] for our
experiments.

CIFAR-10. CIFAR-10 is the image classification dataset. There are 50000 train-
ing images and 10000 validation images with 10 classes. For data augmenta-
tion and preprocessing, translation by 4 pixels, stochastic horizontal flipping,
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and global contrast normalization are applied onto images with 32 × 32 pixels.
We use three types of models of WRN 16-4 [15], DenseNet-BC 12-100 [4] and
ResNeXt 4-64d [14].

ImageNet-1k. ImageNet-1k is the large scale dataset for the image classifi-
cation. There are 1.28M training images and 50k validation images with 1000
classes. For data augmentation and preprocessing, resizing images with the scale
and aspect ratio augmentation and stochastic horizontal flipping are applied
onto images. Then, global contrast normalization is applied to randomly cropped
images with 224 × 224 pixels. In this work, we use AlexNet [6], ResNet-18 [3],
ResNet-50 and DenseNet-121 [4].

As the optimizer, we use Momentum SGD with 0.9 momentum and weight
decay of 0.0001. The initial learning rate is 0.1 and it is divided by 10 at [150th,
250th] epochs and [100th, 150th, 190th] epochs on CIFAR-10 and ImageNet-1k,
respectively.

3.2 Visual Property of Easy and Hard Examples

Figure 1 shows easy and hard examples in CIFAR-10 and ImageNet-1k dataset.
Regardless of the size of the dataset, easy examples are visually similar to each
other, and hard examples tend to be visually diverse.

In [2,10], the diversity of images is investigated by averaging the group of
images. The more diverse the images are, the more uniform the average image
is. The averaged images of easy and hard examples are shown in Fig. 2. The
averaged image of hard examples is more uniform than the averaged easy or
random examples, thus hard examples are the most diverse among three.

Those results imply that CNNs start learning from a large set of visually
similar images.

3.3 Are Easy and Hard Examples Are Common Between Different
CNN Architectures?

To investigate whether easy and hard examples are shared across different CNN
architectures, we calculate matching rates according to easiness.

Results are shown in Fig. 3. The horizontal axis is the epoch and the vertical
axis is the matching rate of easy and hard examples between different CNN
architectures. Easy and hard examples are largely shared at an early epoch
and the matching rate is high across any architectures compared to random
case. These results indicate that the learning process is similar regardless of the
difference in the architecture design of CNN.
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(a) Easiest examples of dog (b) Hardest examples of dog

(c) Easiest examples of panda (d) Hardest examples of panda

Fig. 1. Easiest and hardest examples of CIFAR-10 and ImageNet-1k dataset. (a–b)
are from CIFAR-10 with easiness of WRN 16-4. (c–d) are from ImageNet-1k with
easiness of AlexNet.

(a) Averaged easy examples
of horse

(b) Averaged random
examples of horse

(c) Averaged hard examples
of horse

Fig. 2. Averaged easy, random and hard examples of the horse in CIFAR-10. The
easiness is calculated by WRN 16-4. Each average image uses 500 images.
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(a) The matching rate of easy examples (b) The matching rate of hard examples

Fig. 3. The matching rate of easy and hard examples between different CNNs in
ImageNet-1k. “random” represents the chance rate of the case that 10% of images are
randomly sampled.

3.4 Why Some Examples Are Consistently Easy or Hard?

Results in previous experiments show that

– CNNs start learning from a larger set of visually similar images,
– Easy and hard examples are largely shared across different CNN architectures.

We hypothesize that this phenomenon originates from dataset biases and
Stochastic Gradient Descent (SGD).

There are many biases in the dataset and [13] mentions several biases in a
dataset. Selection bias means that examples in a dataset tend to have particular
kinds of images (example: there are many examples of a sports car in the car
category). Capture bias represents the manner in which photos are usually taken
(example: a picture of a dog is usually taken from the front with the dog looking
at the photographer and occupying most of the picture). Easy examples are the
result of such biases.

The parameters of CNN are updated by SGD based on calculated derivative
values. Since easy examples are visually similar to each other, it is expected
that they get similar derivative values, and conversely, the derivative values of
hard examples are unique. Therefore, the derivative values of easy examples are
somewhat redundant. As a result, the derivative values of easy examples domi-
nate the update of parameters at the beginning of learning. From this learning
process, we can explain why easy examples are classified well at an early stage,
and easy and hard examples are common between different CNN architectures.

Arpit et al. [1] hypothesizes that CNN learns from simple patterns. They
measure the complexity of decision boundaries by Critical Sample Ratio (CSR).
CSR counts how many training examples are fooled by adversarial noises with
radius r. The higher CSR is, the more complex decision boundaries are. Their
results show that CSR becomes higher as CNN continues training, indicating
that CNN firstly learns from simple patterns. However, their hypothesis does
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not explain our results well such as the question of “why the learned simple
patterns are consistent between different CNNs”.

Our hypothesis is the extension of Arpit et al. [1] in this respect. We argue
that CNNs firstly learn from simple patterns and such patterns are affected by
the intra-class biases in a dataset.

3.5 Generalization and Easiness

We perform ablation experiments on easy and hard examples to investigate if
they equally contribute to the generalization ability. For this purpose, we decide
which examples to ablate based on easiness. In detail, we first normalize easiness
eTxi

by dividing each eTxi
by

∑N
i=1 e

T
xi

, where N is the size of examples. We
randomly select which to ablate by using the normalized easiness.

The result is shown in Fig. 4(a, b). The horizontal axis is the ablation ratio
and the vertical axis is accuracy. If ablation ratio is 0.3, then the size of the train-
ing dataset is 70%. “easy”, “hard” and “random” on figures means easy, hard
and randomly selected examples are mainly removed, respectively. “stepwise” is
the gradual case of “easy”.

As can be seen in Fig. 4a, removing hard examples consistently degrades
the classification performance more drastically than other strategies. Therefore,
we conclude that hard examples contribute more to generalization than easy
examples do.

However, as can be seen in “easy” of Fig. 4a, if we remove too many easy
examples, the accuracy starts degrading sharply. This phenomenon can be
explained by our hypothesis. Since a dataset is randomly split into training and
testing subsets, training and testing share the same biases. For example, if white
dogs are easy examples and black dogs are hard examples in the training dataset,
there are more white dogs than black dogs in the testing dataset too. Thus, if the
trained model fails to learn white dogs (i.e., easy examples), the test accuracy
will drop sharply since there are many white dogs in the testing dataset. There-
fore, it is better to keep some easy examples even though redundant images can
be ablated with less affecting generalization ability.

“stepwise” keeps some of the easy examples while ablating them. As can be
seen in Fig. 4, “stepwise” gives the best performance. In addition, in Fig. 4b,
“stepwise” outperforms “random” case even in the large-scale ImageNet-1k
dataset. The difference in accuracy between “random” and “stepwise” is around
1.1% at 0.3 ablation ratio. It is approximately worth extra 100k images to achieve
the comparable accuracy in “random”.

4 Related Work

A dataset naturally contains various biases. For instance, Ponce et al. [10] shows
some averaged images of Caltech-101 [9] are not homogeneous and recognizable.
They claim that Caltech-101 may have inter-class variability but lacks intra-class
variability. In this work, we find that easy examples lack intra-class variability,
and hard examples are more diverse than easy examples.
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(a) CIFAR-10 (b) ImageNet-1k

Fig. 4. The result of the ablation experiments. The vertical axis is accuracy and the
horizontal axis is ablation ratio. If ablation ratio is 0.3, it means that 30% of examples in
the dataset are discarded. WRN 16-4 and ResNet-50 are used respectively for CIFAR-
10 and ImageNet-1k dataset. “easy”, “hard” and “random” on figures means easy,
hard and randomly selected examples are mainly removed, respectively. “stepwise” is
the gradual case of “easy”. Unlike “easy” that ablating examples in one shot, every
time “stepwise” ablates 10% of easy examples in the dataset and re-calculate easiness
until reaching the target ablation ratio.

Arpit et al. [1] investigate the memorization of DNNs, and claims that DNNs
tend to prioritize learning simple patterns first. They analyze the complexity of
the decision boundary based on Critical Sample Ratio (CSR). CSR is the crite-
rion of how many training examples change the predictions by adding adversar-
ial noises with radius r. The high CSR means that CNN has complex decision
boundaries. Arpit et al. [1] empirically show that CSR becomes higher as CNNs
continue training and propose the hypothesis that CNN learns from simple pat-
terns. However, their hypothesis does not explain why firstly learned simple
patterns are consistent between different CNN architectures. Our hypothesis is
the extension of [1] in this respect. We argue that CNN firstly learns from simple
patterns and such patterns are affected by the intra-class biases in a dataset.

Lapedriza et al. [7] investigate well-classified examples and misclassified
examples at the end of training based on SVMs with hand-crafted features in
the small-scale datasets. They conclude that some examples are the reason to
degrade the model’s performances and examples with high loss values contribute
to generalization well. In this work, we empirically investigate and analyze prop-
erties of examples at an early training stage in CNNs, and perform experiments
on the large-scale ImageNet-1k dataset.

Toneva et al. [12] empirically investigate forgettable and unforgettable exam-
ples on small-scale MNIST [8] and CIFAR-10 dataset. The difference of the met-
ric between [12] and our easiness is to use the loss values of the model with
small updates unlike tracking the degradation of the accuracy across the whole
training period in [12]. Table 1 shows the matching rates between easy and hard
examples at the beginning and at the end of the training. As can be seen in
Table 1, easy and hard examples are different, especially in ResNeXt. Therefore,



Empirical Study of Easy and Hard Examples in CNN Training 187

we assume easy and hard examples are different from forgettable and unforget-
table examples since [12] use records of the whole training period.

Table 1. The matching rates between easy and hard examples at the beginning and
at the end of training in CIFAR-10. The chance rate is 0.1.

Model Easy or hard Matching rate

WRN 16-40 Easy 0.18

Hard 0.255

DenseNet-BC 12-100 Easy 0.24

Hard 0.279

ResNeXt 4-64d Easy 0.129

Hard 0.174

5 Conclusion

In this work, easy and hard examples are investigated to understand the learning
process of DNNs.

Firstly, the metric of easiness is introduced to define easy and hard examples.
Then, we discover that easy and hard examples are common among different
CNN architectures, and easy examples are visually similar to each other and
hard examples are visually diverse. To explain these phenomena, we propose
the hypothesis that biases in the dataset and SGD make some examples easy or
hard.

From this hypothesis, we consider easy examples are visually redundant and
can be removed without significantly affecting the generalization ability of a
model. In ablation experiments, we demonstrate that hard examples contribute
more to generalization ability than easy examples in CIFAR-10 and the large-
scale ImageNet-1k dataset. Therefore, the dataset can be efficiently compressed
than random selections by using easiness.

For future work, further analysis of intra-class biases is fruitful directions. In
addition, studying how to design biases in a dataset is promising directions to
control the learning process of CNNs.
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Abstract. As the amount of user-generated content on the web contin-
ues to increase, a great interest has been shown in aspect-level sentiment
analysis, which provides more detailed information than general senti-
ment analysis. In recent years, neural-based models have achieved success
in this task because of their powerful representation learning capabilities.
However, they ignore that the sentiment polarity of the target is related
to the entire text structure. In this paper, we present a method based on
graph convolutional neural networks named GCNDA, in which the given
text is considered as a graph and the target is the specific region of the
graph. Dual graph-based attention models are used to concentrate on
the relation between words and certain regions of the graph. We conduct
comprehensive experiments on publicly accessible datasets, and results
demonstrate that our model outperforms the state-of-the-art baselines.

Keywords: Aspect Based Sentiment Analysis · Graph Convolutional
Networks · Attention mechanisms

1 Introduction

Sentiment analysis [19], also known as opinion mining [13,20], is a vital task in
text mining. For example, consumers want to know sentiment of existing users
about products, meanwhile business want to obtain public opinions for their
decision making. Due to its great value in practical applications, it has attracted
widespread attention from both the industry and academic communities.
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Typically, users write both positive and negative aspects in the same review,
although the general sentiment may be positive or negative. Given the review
“the food is so good and so popular that waiting can really be a nightmare”. It
expresses negative sentiment towards “waiting” while holding positive sentiment
towards “food”. Aspect Based Sentiment Analysis (ABSA) is a fine-grained task
in the field of sentiment classification [13,22]. The goal of this subtask is to
predict the sentiment polarity of aspects that appear in a given text.

The existing deep learning models mainly rely on Recurrent Neural Networks
(RNNs) [12,16,23,26,30], Memory Networks [4,6,14,24] and Convolutional Neu-
ral Networks (CNNs) [28]. However, these architectures run on a grid or sequen-
tial structure without using the entire graphical text structure. Therefore, they
are difficult to obtain a structural relationship between words [29].

Text graph has been widely used in NLP tasks [1,7,18,27], which can grasp
the entire text structure. Moreover, the Graph Convolutional Networks (GCNs)
[9] have demonstrated the powerful ability to obtain hidden representation of
nodes in a graphical structure. Inspired by this, we develop a deep learning
framework based on graph convolutional networks to obtain structural infor-
mation. To emphasis the relation between context and aspect words, we design
dual graph-based attention models for the ABSA task. One is Graph Atten-
tion Mechanism (GAM), which learns attention weights for words to different
neighbor words in the context. The other is an Aspect-based Structural Atten-
tion Mechanism (ABSAM), which focus on the part of aspect terms in the text
graph.

2 Graph Convolutional Networks

Graph convolutional networks [3] have been proposed for learning over graphs.
The majority of these methods do not scale to large graphs or are designed
for whole-graph classification. Kipf and Welling [9] proposed a localized first-
order approximation of spectral graph convolutions, which is very effective for
the semi-supervised nodes classification. Since the GCNs succeeded in nodes
classification, they have been introduced into NLP tasks such as semantic role
labeling [17], machine translation [2].

3 Our Model

We assume that sentiment polarity of aspect terms is not only related to target
words, but also to the whole text. Since it is necessary to take fully account of
the relation between words in a given text, our model is based on the graph
where the text is regarded as a graph and the aspect terms are considered part
of the graph.

Our framework (GCNDA) can be divided into two parts, one is a text graph
representation and the other is an aspect-based structural attention. We employ
multiple GCN layers with GAM to get the text hidden state, and the aspect-
based structural attention model to obtain the specific regions representation.



GCNDA for Aspect Based Sentiment Analysis 191

Then, two hidden states are fed forward to the fully connected (FC) layer.
Finally, the representation vectors are put into the softmax layer to get the
class label. In the following, we will explain each part of the framework in detail.

3.1 Graph Construction

In our approach, operations are performed on the text graph, so the structure of
the text is important. To illustrate the effectiveness of our model, we construct
undirected text graph in two ways, one based on co-occurrence information and
the other on syntactic dependencies, which are widely used in the literature.

For the given text, each vertex corresponds to a word. For the co-occurrence
graph, if two nodes vi and vj have a co-occurrence relation, the edge (vi, vj)
is established. Where co-occurrence relation is defined as two nodes co-occur
within the specific window size. The edge weight of (vi, vj) is the number of
co-occurrences. For the syntactic dependency graph, establish connections for
the dependencies where two nodes belong to a specific part of speech set. The
adjacency matrix A is obtained by the undirected graph structure.

3.2 Text Graph Representation

After the graph construction, the given text is converted to a graph. The text
graph representation is obtained by input nodes and adjacency matrix. Each
node corresponds to the word wsi and is represented by the vector xi of the
dimension D after the embedding layer. Usually, the length N of words set in
the corpus is larger than the length M of the set in the text. Since it is not
necessary to build the adjacency matrix A∈ R

N×N for each given text, we
covert nodes sequence to the current text words sequence, then the adjacency
matrix A becomes R

M×M , and L represents the Laplacian matrix of A.
After embedding layer, the initial representation of nodes is defined as H(0) =

X ∈ R
M×D. The GAM produces the importance of node Nj to node Ni, and

the attention coefficient is computed by

eij = score(H(0)
i ,H

(0)
j ) (1)

Where score(·) is the attention function. As mentioned in [15], the score function
can be divided into “dot”, “general” and “concat”. In our model the “general”
is used, the attention score is computed by following formula.

eij = H
(0)
i (WattH

(0)
j )T (2)

Where Watt is trainable parameters. The equation indicates the importance of
the node to each node in the graph without any structural information. We
perform masked attention similar to [25], injecting the graph structure into the
mechanism as Eq. 6.

Attij =

{
exp(eij)∑

k∈N(i) exp(eik)
if j ∈ N(i)

0 others
(3)
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Where N(i) is the neighbor set of node i.
The output of the l − th GCN hidden layer can be obtained by the following

equation.

H(l+1) = Relu(β × LH(l)W (l) + (1 − β) × AttH(l)W (l)) (4)

Where β is a hyperparameter between 0 and 1, W (l) ∈ R
F×F

′
is a weight

matrix in l−th GCN layer and, and Att ∈ R
M×M is an attention matrix obtained

from Eq. (6). F and F
′
are the input and output feature sizes, respectively. Com-

pared with Eq. (3), the GCN layers in our model incorporate the graph attention
mechanism. Unlike the attention method in the graph attention network [25],
the attention weights in our model are shared among all GCN layers which is
called GAM. Equation (6) describes the GCN hidden representation consists of
two parts: one is calculated by the attention matrix and the other is the adja-
cency matrix. We assume the attention matrix represents the knowledge of the
relationship between the nodes acquired by training, while the adjacent matrix
is the relationship between nodes in the current context, both of which are pro-
portionally combined output vectors. The output of the GCNs is forwarded to
the pooling operations layers, which is the element operation on hidden vectors
to get representation of the text graph.

3.3 Aspect-Based Structural Attention

For the general graph classification based on sequential methods, one challenge
is to give the order of the recurrent neural networks [10], while for text mining,
word sequences in the original text can be used naturally.

We extend the structural attention model [11] for ABSA task. See articles
[11] for more details on the structural attention model. The sequences are pro-
duced through the aspect sequence generator. First the generator produces a set
of nodes, referred to herein as aspect structural nodes, which are in the largest
connected subgraph containing the aspect words. Then two agents are defined,
one from the left and the other from right traversing to aspect terms. At each
step, agents move along the text sequence to the word that are in aspect struc-
tural nodes. Obviously, in our approach the rank vector is the distance between
the current node and aspect structural nodes. The ultimate goal of the agent
is to collect enough information about the aspect terms. Finally, the generator
generates a left sequence and a right sequence that are fed forward to the left
and right LSTM layers, respectively. The hidden state of the aspect structural
attention is obtained by concatenating the last hidden vectors of the left and
right LSTM.

4 Experiments and Results

4.1 Experimental Setting

We test our model on three public datasets, two of them come from SemEval
2014 [22], and the third is a collection of twitters [5]. SemEval 2014 includes user-
generated reviews of laptop and restaurant domains, following previous work [24],
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Table 1. Statistics of aspects in different datasets

Datasets Positive Negative Neutral

Train Test Train Test Train Test

Restaurant 2164 728 805 196 633 196

Laptop 987 341 866 128 460 169

Twitter 1561 173 1560 173 3126 346

we removed a few examples having the “conflict” label. The statistics of the
datasets are shown in Table 1.

Our models are performed on co-occurrence graph and on syntactic depen-
dency graph, denoted as GCNDAc and GCNDAs, respectively. The window size
is set to 2 for co-occurrence graph construction, and Stanford parser1 is used for
syntactic dependency graph construction.

In experiments, four-layer GCNs with RELU activation function is developed.
We use Adam [8] optimizer with the learning rate 0.01, dropout 0.2, and the
maximum number of epoch 50. 300-dimensional word embeddings pre-trained
by GloVe [21] are utilized, which are not tuned during training time.

4.2 Compared Methods

We compare our model with following baseline methods:
TD-LSTM [23] is a model based on LSTM network, in which two LSTM

models are used to model the preceding and following contexts surrounding the
target string for sentiment classification.

MemNet [24] is a neural attention model over an external memory, which
consists of multiple computational layers.

RAM [4] is a framework that adopts multiple-attention mechanism on recur-
rent neural network.

IAN [16] is an interactive attention networks model. It uses two attention
networks to model the target and context interactively.

Cabasc [14] is based on the memory model, which can solve the semantic
mismatch problem through two attention mechanisms, namely sentence-level
content attention mechanism and context attention mechanism.

GCAE [28] is based on convolutional neural networks and gating mechanisms.
We note that in the different literature, different results are reported for the

same model performed on the same dataset. We think that the results of the
baseline methods are affected by text preprocessing and word embeddings, as
mentioned in [16]. To reveal the capability of models, same word vectors used in
our models are applied to all baselines.

1 https://nlp.stanford.edu/software/lex-parser.shtml.

https://nlp.stanford.edu/software/lex-parser.shtml
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4.3 Main Results

For all methods accuracy evaluation is used as metric, and results are shown
in Table 2. The best scores are highlighted in bold and the underlines indicate
the second best performances. As the results show, our two models, GCNDAc
and GCNDAs, consistently outperform all comparison methods on these three
datasets. GCNDAs outperforms GCNDAc on Laptop and Restaurant datasets.
This may be due to the fact that the syntactic dependency graph establishes a
connection between two long distance words, shortening the distance between
the aspect and the related words. However, the text in Twitter is irregular and
short, the dependency parsing is not guaranteed to work well. Although the
performance of GCNDA on the co-occurrence graph is not optimal, it is easier
to construct a co-occurrence graph than to build a syntactic dependency graph,
and its performance is superior to other baselines.

Table 2. Results of our model against baselines.

Methods Restaurant Laptop Twitter

TD-LSTM 75.17 66.94 67.72

MemNet 76.88 68.18 69.63

IAN 76.96 67.86 68.63

RAM 76.87 67.24 69.88

Cabasc 77.05 68.65 67.33

GCAE 76.12 68.65 69.79

GCNDAs 79.35 72.88 70.81

GCNDAc 78.93 70.21 70.81

In LSTM-based models, TD-LSTM and IAN, IAN has better results than
TD-LSTM because IAN uses context and target attention mechanisms, which
make better use of important parts of a sentence for aspect words. MemNet
is based on memory network, containing multiple attention layers, superior to
LSTM-based models on Laptop and Twitter. RAM achieves the best perfor-
mances on Twitter among baselines, which adopts not only the multi-hop atten-
tion mechanism but also deep bidirectional LSTM. Compared with RAM and
MemNet, Cabasc enhances the ability to capture important information about a
given aspect from a global perspective by sentence-level content attention mech-
anism and context attention mechanism, thus has a best performance in all
baselines on Laptop and Restaurant. GCAE utilizes convolutional neural net-
work with gating mechanisms, obtaining the best result as Cabasc on Laptop.

4.4 Effect of Hyperparameter β

The hyperparameter β is used in GCN layers, which represents the ratio obtained
from the adjacency matrix in GCN output vectors. The effect of β on perfor-
mance is shown in Fig. 1.
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(a) (b) (c)

Fig. 1. Effect of β on GCNDA

5 Conclusion

In this paper, we present a novel method based on graph convolutional networks
and two attention mechanisms for the aspect-based sentiment analysis task.
Compared with baselines on public datasets, the experimental results show that
our model outperforms the state-of-the-art baselines.

We performed our model on co-occurrence graph structure and syntactic
graph structure, and the results demonstrate that although co-occurrence graph
is simple in construction, it can achieve better performance datasets.
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Abstract. As a clean and renewable energy, wind power plays an
increasingly significant role in the power system. And wind power pre-
diction is crucial for the operation planning and cost control of power
plants. In wind power prediction, the wind-related information such as
wind speed, wind direction, air pressure and temperature will affect the
accuracy of prediction. However, most of the existing models either use
only one kind of information or fail to effectively integrate a variety
of information. Considering these problems, a new convolutional neural
network model is proposed by integrating multiple information based on
spatio-temporal features, called FB-CNN (Feature Block CNN). Obtain
the output of each convolution layers in the whole neural network, then
integrate these outputs, the prediction results are obtained through the
full connection layers in the end. Compared with the current convolu-
tional network with the highest accuracy, the proposed FB-CNN combin-
ing various features can excellently fit the actual change of wind power
data. And the Mean Square Errors (MSE) on two data sets are reduced
by 9.53% and 7.13% respectively.

Keywords: Wind power prediction · Multiple features · Convolutional
neural network

1 Introduction

Wind power, as an emerging, renewable energy that can be exploited and utilized
on a large scale, has developed rapidly in recent years [3]. However, due to the
property of the wind, turbines are unavoidably burdened with randomness and
fluctuation. Therefore, accurate wind power prediction is crucial to operate the
power system safely and stably [11], for it can help control wind power, ensure
c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, CCIS 1142, pp. 198–206, 2019.
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the stable operation of the power grid, reduce the cost of power generation,
and improve the ability of the grid to receive wind power. At present, the main
methods used to predict wind power generation include: physical methods [5],
statistical methods [13], and machine learning methods, like kNN [8], SVR [9] and
LSTM [10]. Machine learning methods effectively simplify wind power prediction,
but their prediction accuracy has failed to improve in recent years.

In this paper, a multi-feature driven model is proposed, which can effec-
tively integrate various spatio-temporal features of wind-related information and
improve the expressing ability of the features. Also, a complex convolutional
network FB-CNN model is designed, which is suitable to predict various spatio-
temporal features of the wind-related information in multi-feature driven models
and enable to fit the trend of the change of wind power data in wind farms. The
two data sets in this paper are all from National Renewable Energy Laboratory
(NREL), 2009–2010. The results show that the accuracy of proposed method
is higher than the existing prediction methods and significantly outperforms
state-of-the-art methods. The contributions of this paper are as follows:

1. A multi-feature driven model is achieved to fully integrate various spatio-
temporal features of wind-related information.

2. A complex convolutional network model is constructed, which can fit the
changing trend of wind power data well, suitable for wind power prediction
by integrating multiple features. Compared with the existing methods, the
prediction accuracy is further improved.

2 Related Work

Machine learning is often used in short-term wind power prediction. Recently,
many new methods have been proposed in recent years: Signal decomposition
algorithm, which is mainly used to pre-process the original wind speed series is a
popular idea to simplify complex problems. For example, wavelet transform [1],
Ensemble Empirical Mode Decomposition (EEMD) [7]. Hybrid model combines
multiple deep learning algorithms to improve the prediction ability of model [2].
Essentially, these methods get higher accuracy by using complex models. But
complex models would greatly increase the computing costs. Also these feature
extraction methods can not reflect the spatio-temporal changes of wind power.

How to extract features effectively is a important factor affecting the accuracy
of prediction. The most basic method relies on features extracted from the target
turbine’s own data called Single Feature (SF) and feature extracted from the
target turbine and several adjacent turbines, namely, Local-Feature (LF) [6].
The features extracted by these methods can obtain much information but no
spatial information. In [12], two convolutional network models based on scene
and spatio-temporal features called FC-CNN and E2E are proposed. According
to the geographical coordinates of the turbine, the output power of the turbine
at a certain moment is mapped to the grid to form a two-dimensional image,
namely the scene. This method of feature extraction can effectively reflect the
spatio-temporal features of wind. However, with simple structures and not take
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wind-related information into consideration, both of the two CNN models cannot
predict the results accurately. So these methods cannot produce an accurate
prediction of wind power.

3 Proposed Method

3.1 Multi-feature Driven Model

In the two data sets selected in this paper, in addition to the historical data
of turbine power, wind-related information also includes wind speed, direction,
pressure, density, temperature, etc. In the experiment, we orthogonalize the wind
direction.

The features which are selected from a variety of wind-related information are
the basis of wind power prediction based on deep learning. We use the method
mentioned in reference [12], embedding the turbine into the grid as small as
possible to construct scene. Since the scene represents the spatial distribution
of wind power in a certain time, it can effectively reflect spatio-temporal fea-
tures. So the series of multiple continuous scenes can convey the process of space
changing with time. We choose different combinations of multiple features, we
construct scene time series with each feature separately, and link them together
as input of CNN model, called Feature Block (FB). The constructing process of
multi-feature model is shown in Fig. 1. Finally, we choose the best multi-feature
combination for wind power prediction through experiments.

Fig. 1. The constructing process of the multi-feature driven model.

3.2 Feature-Block CNN

The advantage of DenseNet network is that it has a narrower network and fewer
parameters [4]. It largely results from the design of dense block structure. This
connecting mode makes the transmission of features and gradients more effec-
tive, further alleviating the problem of vanishing-gradient when deepening the
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network. It is especially suitable for wind power prediction. Therefore, we con-
struct a CNN prediction model feature-block CNN (FB-CNN) based on partial
dense block and the Feature Block we constructed.

Firstly, after receiving the input Feature Block, convolution is carried out to
preserve the spatial information of the original input image. Because the main
task at this stage is to extract features adequately, the number of channels in the
feature image increases rapidly. Then, deeper features are extracted through a
pooling layer and the size of the image is reduced. Similar multi-layer convolution
is then performed. After the convolution of each layer being saved, the output
of all convolution layers in the whole neural network is saved, and then these
outputs are integrated. And next, these convolution layers are connected by a
fully connected neural network. By fitting the complex function relationship of
the fully connected layer, the deep features are mapped to the output of each
turbine. Finally, the length of the output vector is equal to the number of pixels
in the input image, and is reconstructed into a two-dimensional image. The pixels
are mapped to the pixels of the input image one by one. The model structure is
shown in Fig. 2.

Fig. 2. The structure of Feature-Block CNN

4 Experiment and Analysis

4.1 Data Sets and Evaluating Criteria

The data sets used in this paper are the wind power data sets from NREL. We
use the output values of the turbines working every 10 min from 2009 to 2010.
2009 as a training set, 2010 as a test set. Two regions respectively with dense
and sparse turbine distribution are selected as data sets, which can verify the
validity of our method more comprehensively. In the first data set, the number
of turbines there reaches 559. In the second data set reaches 397 turbines.
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We use Mean Square Error (MSE) to evaluate the accuracy of the prediction
model. The calculation process of MSE is shown in Formula (1), where X denotes
the sequence of true values, Y the sequence of predicted values, and n the length
of the sequence. Peak signal-to-noise ratio (PSNR) is often used to measure the
quality of signal reconstruction in the fields such as image compression. The
formula is shown in (2), in which MAXI is the maximum value of the color of
an image point. If each sampling point is represented by 8 bits, it would come
to the number of 255.

MSE =
1
n

n∑

i=0

(Xi − Yi)2 (1)

PSNR = 10 · log10(MAX2
I

MSE
) (2)

4.2 Experimental Results and Comparison

In order to verify the validity of multiple features, firstly in feature selection,
we use power combined with other features, and select 10 min as the interval
to extract historical features based on the proposed FB-CNN. In time predic-
tion, 30 min is used as the prediction time which is widely used in most of the
references. The experimental results are shown in Table 1.

Table 1. Experimental results of combination two features

Feature Pow Pow+Spe Pow+Dre Pow+Tem Pow+Pre Pow+Den

MSE (data set1) 1.821 1.782 1.775 1.782 1.813 1.822

PSNR 45.527 45.622 45.639 45.622 45.547 45.525

MSE (data set2) 2.002 1.955 1.952 1.969 1.958 1.952

PSNR 45.073 45.219 45.226 45.188 45.213 45.226

The calculation formulas for achieving the relevant wind power are formula
(3), in which A denotes the sweep area, V the wind speed, and Cp the value
of wind power conversion. Different technology of manufacturers would result
in different values. The value of D represents the air density, which decreases
with the increase of altitude. And η is a coefficient. By this formula, we select
four related features for wind power prediction, gradually add other features,
and finally use all the features for prediction. The prediction results are shown
in Table 2.

P =
1
2
AV 3CpDη (3)

To verify the effectiveness of the proposed method, the experimental results
are compared with the existing time series prediction methods and two methods
proposed in the reference [12] (E2E and FC-CNN). For LSTM, SVR, and kNN



A Wind Power Prediction Method Based on Deep Convolutional Network 203

Table 2. Prediction results of multiple feature combinations

Feature Pow+Spe+
Pre+Den

Pow+Spe+Pre
+Den+Dre

Pow+Spe+Pre
+Den+Tem

All features

MSE (data set1) 1.787 1.736 1.781 1.756

PSNR 45.610 45.735 45.624 45.686

MSE (data set2) 1.953 1.916 1.951 1.958

PSNR 45.224 45.307 45.228 45.213

Table 3. The comparison between the experimental results of the proposed method
and the existing methods.

Method kNN SVR LSTM E2E FC-CNN FB-CNN

MSE (data set1) FW = 3 Max 5.745 5.512 5.335 4.578 4.250 3.941

Min 0.053 0.052 0.053 0.163 0.078 0.073

Ave 2.736 2.633 2.640 2.120 1.928 1.736

FW = 4 Max 5.867 5.441 5.380 4.566 4.267 3.941

Min 0.054 0.052 0.053 0.190 0.079 0.079

Ave 2.793 2.599 2.658 2.123 1.919 1.748

FW = 5 Max 5.999 * 5.442 4.677 4.262 3.929

Min 0.055 * 0.053 0.178 0.073 0.074

Ave 2.859 * 2.671 2.163 1.923 1.738

PSNR * * * 44.867 45.300 45.735

MSE (data set2) FW = 3 Max 4.637 4.831 4.741 4.410 3.703 3.562

Min 1.236 1.203 1.269 0.979 0.917 0.839

Ave 2.982 2.893 2.977 2.402 2.088 1.916

FW = 4 Max 4.680 4.815 4.761 4.102 3.623 3.544

Min 1.252 1.190 1.255 1.059 0.904 0.842

Ave 3.040 2.867 2.991 2.374 2.063 1.924

FW = 5 Max 4.713 * 4.782 4.052 3.623 3.530

Min 1.275 * 1.278 1.060 0.911 0.851

Ave 3.099 * 3.007 2.366 2.068 1.946

PSNR * * * 44.391 44.985 45.307

methods, we selected local feature extraction features. The experimental results
of feature windows of 3, 4 and 5 (the number of historical features extracted) in
two data sets are shown in Table 3. Because the time cost of SVR when FW =
5 is too high, we only give the case of SVR when FW = 3 and FW = 4.
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Fig. 3. The comparison of prediction error distribution of several methods: the left side
is dataset 1, and the right side is dataset 2

Fig. 4. Prediction error of each method at each turbines (data set 2)

4.3 Analysis of Experimental Results

From Table 1, it can be seen that the selection of different features has different
improved on the prediction accuracy, among which the combination of power and
wind direction has the best effect. Table 2 shows the prediction results of multiple
feature combinations. And what should not be ignored is that more features may
not come to a better prediction. The results show that the combination of power,
wind speed, air pressure, density and wind direction achieves the best prediction
accuracy. Compared with that of single feature, on the two data sets, the MSEs
reduce by 4.67% and 4.30% respectively.

In Table 3, It can be clearly seen that compared with SVR which has the best
single point prediction results at present, our prediction accuracy has increased
by 33.21% and 33.17%, more than that of KNN, by 36.55% and 35.75%. Similarly,
compared with the FC-CNN, the higher accuracy in the two methods proposed
in the paper [12], increased by 9.53% and 7.13%. As an evaluating criteria of
image quality, the PSNR value of the proposed method on two data sets is also
the highest, 45.735 and 45.307. It is further proved that our method is effective
and the best results are obtained in the regions with both dense and sparse
turbines.

In the Fig. 3, we compare the SVR witch has the best single point predic-
tion performance, the convolutional network FC-CNN and the method proposed
method in this paper. The horizontal axis represents the value of MSE, and the
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vertical axis represents the Probability Density (PDF). Obviously, The proba-
bility density of FB-CNN is above FC-CNN and SVR in the region with small
MSE value. In order to better demonstrate the effectiveness of the proposed
method, we select all turbines from the data set and plot the MSE curves of all
the methods on the turbines, as shown in Fig. 4. FB-CNN performs best among
these methods.

5 Conclusion

In this paper, a method of wind power prediction is proposed using complex con-
volutional neural network based on multiple features. The Multi-feature driven
model expressing spatio-temporal features and various wind related information
effectively. The FB-CNN model could extract deep features and predict make
more accurate prediction. The proposed method also performs better in terms
of stability. It has crucial value and broad prospect in practical application.
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Abstract. Deep convolutional neural network (ConvNet) is applied to
versatile image recognition tasks with great success, though demanding
high computation cost. Toward efficient computation, we propose a sim-
ple ConvNet architecture based on local descriptors in the bag-of-features
framework. The local descriptors are formulated in a simple form of MLP
and thus are efficiently computed on various ROI in a flexible manner.
The proposed method is effectively trained in an end-to-end manner by
reformulating the MLP descriptor into the form of deep ConvNet stacking
convolution layers linearly. Through projection-based visual word encod-
ing, the local descriptors are aggregated and fed into a classifier for image
recognition tasks, which enables us to compute the network forwarding
pass by matrix-vector multiplication. In the experiments on image classi-
fication, the proposed method is analyzed thoroughly, exhibiting favorable
generalization performance on various tasks.

1 Introduction

Hand-crafted local descriptors, such as SIFT [15], extracted from small image
patches have played a key role on various computer vision tasks; image classi-
fication was enthusiastically addressed by utilizing the descriptors in the bag-
of-features (BoF) framework [9,22]. In this decade, however, deep convolutional
neural networks (ConvNets) [11,26] defeat them with promising performance,
though the hand-crafted descriptor is practically useful due to the low compu-
tation cost [30]. While the ConvNet works on whole input image through deeply
stacked convolution operations, it is internally dependent on local image feature
extraction directed by the last convolution, e.g., at so-called conv5 layer.

The local descriptors embedded in the deep ConvNets can be exposed and then
combined with the traditional encoding schemes, such as Fisher kernel and bag of
visual words, for image retrieval [16] and texture recognition [5]. There are also
methods to leverage the ConvNet more directly to extract convolutional descrip-
tors from image patches mainly on the task of patch matching [18,25]. Those Con-
vNet based descriptors are built on stacked convolution operations with compu-
tational burden [25], thus demanding sophisticated devices such as GPUs, unlike
the hand-crafted SIFT. On the other hand, the hand-crafted descriptors are com-
bined with neural network classifier of MLP through the Fisher kernel encoding
c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, CCIS 1142, pp. 207–215, 2019.
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Fig. 1. Proposed network architecture based on MLP local descriptors.

Table 1. Baseline ConvNet architecture based on VGG16 [26].

Block Layers Channel

L
oc

al
de

sc
ri
pt

or
(L

=
1
8
1
) 1 {3 × 3 Conv. + BatchNorm} ×2 64

Down-sampling by 2-pixel stride
2 {3 × 3 Conv. + BatchNorm} ×2 128

Down-sampling by 2-pixel stride
3 {3 × 3 Conv. + BatchNorm} ×3 256

Down-sampling by 2-pixel stride
4 {3 × 3 Conv. + BatchNorm} ×3 512

Down-sampling by 2-pixel stride
5 {3 × 3 Conv. + BatchNorm} ×3 512

ReLU 512
MLP {1 × 1 Conv. + BatchNorm + ReLU}×0 512
BoW 1 × 1 Conv. + BatchNorm + ReLU 4096

Global Average Pooling 4096
FC1 FC + BatchNorm + ReLU 4096
FC2 0001CF

SoftMax 1000

in [19]. The method improves performance of the SVM classification approach [22],
though being slightly inferior to AlexNet [11], which reveals the less discrimina-
tivity of the hand-crafted descriptor than the learned one.

In this work, we formulate a simple ConvNet toward efficient computation by
explicitly considering the bag-of-features approach in the end-to-end framework.
In contrast to the hybrid method [19] incorporating the hand-crafted descriptors
with neural network classifier, we propose a simple form of local descriptor fol-
lowed by visual word encoding, all of which are trained in an end-to-end manner
as in the standard deep ConvNets. The simple architecture in descriptor design
is based on MLP which comprises a linear projection and a non-linear function,
i.e., ReLU [17]; as a result, our model only requires matrix-vector multiplication
efficiently computed by well established technique on various devices [8].

In the case that local patches are sampled at regular grids over an input
image, the computation of our local descriptors, especially at the first layer of
the MLP, can be regarded as convolution operation, thereby exhibiting similarity
to the deep ConvNets. From the architectural viewpoint of ConvNets, however,
the proposed model contrasts with the standard ConvNets as follows. The model
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based on the local descriptors contains only one convolution layer followed by
several matrix-vector multiplication in MLP; the spatial convolution operates
only on an input RGB image. Thus, from this viewpoint, our model is less
convolutional compared to the deep ConvNets [2]. Such a simple computational
procedure enables us to efficiently compute the forwarding pass of the model. In
addition, it is possible to efficiently compute the local descriptors at regular grids
by leveraging the convolution theorem [4] to perform the only one convolution
via FFT. The other research line toward lightweight ConvNet is found in recent
years [23,29]. While those works focus on slimming ConvNet still heavily relying
on convolutional operation, we simplify the form of local descriptor through
breaking dependence on the convolution to achieve computational efficiency as
well as generalization performance.

On the other hand, the proposed model based on local descriptors in the
BoF framework flexibly deals with any shape of ROI beyond simple regular
grids unlike the standard ConvNets usually working on the regular lattice. The
MLP-based feature extraction for local descriptors is also found in PointNet [20]
to cope with point cloud data for 3D recognition. In this work, we employ an
MLP model for computational efficiency and show favorable performance on
image recognition tasks in spite of the simple formulation.

2 MLP-Based BoF Network

We build the neural network based on bag of local descriptors which are com-
puted by applying multilayer perceptron (MLP) to local image patches, as shown
in Fig. 1. Thus, computation for this network is simply composed of ReLU [17]
and matrix-vector multiplication which is well-established operation on various
devices [8]. While the similar MLP architecture is found in small image classifi-
cation such as for MNIST [12], in this work, we leverage it to extract features
from local patches in the bag-of-feature framework. Following [10], the descriptor
x ∈ R

512 is encoded into word representation y ∈ R
4096 via linear projection by

the word vectors {wi}4096i=1 with ReLU;

yi = max[w�
i x − ρi, 0] = ReLU(w�

i x − ρi), (1)

where ρi is a threshold for assigning the i-th word weight yi to the descriptor
x on the basis of inner-product similarity. The word representation aggregated
across patches is then finally fed into the MLP classifier.

2.1 Training MLP Descriptor Through Linear ConvNet

The network (Fig. 1) can be trained end-to-end as in the deep ConvNets
[11,26]. It, however, would be problematic to directly train the MLP descriptor
which contains large projection matrix V ∈ R

3L2×512 in the first fully-connected
layer; it depends on the patch size L × L, say L = 29, which is larger than
the standard convolution size, e.g., 3 × 3. Thus, we reformulate the first fully-
connected projection into a tractable form by means of ConvNet. It should be
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noted that our model is trained in a form of deep ConvNet but is deployed as
the MLP-based form which is equivalent to the deep ConvNet.

In the descriptor MLP, the first fully-connected linear projection is viewed
as convolution (without sliding) with the filters whose size corresponds to the
patch size L×L×3; this is just a transformation of the projection matrix V via
unfolding. The moderately large L × L spatial filters are difficult to adequately
learn due to the high degree of freedom (DoF). To mitigate it, we explicitly
impose decomposability into local convolutions on the L × L convolution filters.
This constraint is well validated by the Fractal structure, wavelet analysis and
recent advances in deep ConvNet for image recognition. Thereby, the L×L con-
volution is approximated by stacking smaller convolutions, which results in the
form of linear ConvNet (Fig. 1 & Table 1) without any non-linear functions, e.g.,
ReLUs; a linear deep model is not bad even from the optimization viewpoint [7].
The linearly stacked convolution layers are compressed into a single convolution
layer by enlarging the convolution filter as follows. Given two stacked convolu-
tions whose filters are F of lF × lF and G of lG × lG, we can describe the first
convolution layer followed by down-sampling with factor s as

Ĩ(p) =
∑

δ∈Z2

F (δ)I(p − δ), J(p) = Ĩ(sp), (2)

where I, Ĩ and J are input, intermediate and output feature maps, respectively,
where the pixel position is denoted by p. Then, the second convolution layer is

J̃(p) =
∑

ε∈Z2

G(ε)J(p − ε) =
∑

ε∈Z2

G(ε)Ĩ(sp − sε)

=
∑

ε∈Z2

Ĝ(ε)Ĩ(sp − ε) =
∑

δ ,ε∈Z2

Ĝ(ε)F (δ)I(sp − ε − δ)

=
∑

η∈Z2

∑

δ∈Z2

Ĝ(η − δ)F (δ)

︸ ︷︷ ︸
Compressed filterH(η)

I(sp − η), (3)

where J̃ is the output feature map, and we use the dilated filter of Ĝ(ε) = G( ε
s )

if ε
s ∈ Z

2 otherwise 0, and transform the variable as η = δ + ε. The size lH of
the compressed filter H is lH = s(lG − 1) + lF . Thus, the patch size L, hyper-
parameter of the descriptor, is naturally determined according to the architecture
of the linear ConvNet.

This linear ConvNet is followed by the non-linear MLP to extract discrimi-
native descriptors. The MLP is implemented as NiN module [14] of 1 × 1 convo-
lution + ReLU layers, and thus in the case of regularly sampling patches on an
input image during training, we implement our network (Fig. 1) by deep Con-
vNet (e.g., Table 1) to effectively train the local descriptors and BoW model in
an end-to-end approach. Once the network is trained, the linear ConvNet part is
compressed by (3) into the fully-connected layer to form MLP-based descriptors.
And, for densely computing descriptors on an image as in training, the descriptor
can be efficiently extracted by applying the convolution theorem [4] via FFT.
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3 Experimental Results

We evaluate various configurations of the MLP-based local descriptor in our
network by training the corresponding ConvNets on a ImageNet dataset of 1000
object classes. All the models are implemented by using MatConvNet [27] follow-
ing the good practice provided; the stochastic gradient descent is applied with
the learning rate decreasing in a log-scale from 0.1 to 0.0001 over 40 epochs,
the momentum of 0.9, the weight decay of 0.0005 and the mini-batch size of
64 samples. We measure the performance of top-5 error rate by single center
cropping [11] on the ImageNet validation set.

Table 2. Performance analysis on various configuration of the local descriptor. The
performance is evaluated by top-5 error rate (%) on ImageNet validation set. The
baseline architecture in Table 1 is sequentially updated by the one denoted in bold font
from (a) to (f).

(a) Convolutions per block
Architecture Error (%)

Table 1 [L=181] 31.18
{3 × 3 Conv. + BN}×2 [L=125] 29.31
{3 × 3 Conv. + BN}×1 [L=63] 29.17

(b) Down-sampling
Method Error (%)

striding [L=63] 29.17
avg.-pool [L=78] 30.79

(c) Convolution Filter size
Filter size Error (%)

3 × 3 [L=63] 29.17
5 × 5 [L=125] 27.59
7 × 7 [L=187] 28.12

(d) Depth of Linear ConvNet
# of block Error (%)
5 [L=125] 27.59
4 [L=61] 24.71
3 [L=29] 24.76
2 [L=13] 30.61

(e) Degree of non-linearity
Depth 4 block 3 block
in MLP[L=61] [L=29]

0 24.71 24.76
1 20.29 19.80
2 18.55 18.00

(f) Training form of descriptor
Form Error (%)

linear ConvNet [L=29] 18.00
29 × 29 Conv. [L=29] 22.24

3.1 Quantitative Ablation Study

We modify the baseline ConvNet (Table 1), according to the following analyses
with keeping the descriptor dimensionality as 512.

Number of Convolution. The baseline model (Table 1) contains 13 layers of
3× 3 convolution, 2 or 3 layers per block, across five blocks. Table 2a shows that
the performance is improved by decreasing the number of 3 × 3 convolutions
per block in contrast to the non-linear ConvNet containing ReLUs [26]; only one
3 × 3 convolution per block works well.

Local Pooling. In the linear ConvNet (Table 1), the feature maps are simply
down-sized by 2-pixel striding, since 2 × 2 local average pooling degrades per-
formance as shown in Table 2b. The local pooling is composed of 2 × 2 average
filtering and 2-pixel striding, which unfavorably increases the convolution layers
harming performance as implied in Table 2a.

Convolution Filter Size. On the other hand, by moderately enlarging the
convolution filter size, we can improve performance as shown in Table 2c; the
5 × 5 convolution produces the best performance. Note that at each block one
5×5 convolution is equivalent to two stacked 3×3 convolutions (Table 2a), which
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4 blocks & 2 MLP (size: 61 × 61) 3 blocks & 2 MLP (size: 29 × 29)

Fig. 2. The principal filters (columns of Ul) by applying SVD to the learned filters.

conveys the insight that the larger-sized convolution in the shallower net is more
effective than stacking smaller ones for a deep linear ConvNet.

Depth. Then, the number of blocks, depth, in the linear ConvNet stacking 5×5
convolutions is evaluated in Table 2d. The depth significantly affects the com-
pressed filter size, i.e., the patch size L. Compared to the larger patch descriptor,
the moderate-sized ones produce the better performance; both the three (L = 29)
and four (L = 61) blocks provide competitively good performance.

Non-linearity. The local descriptor is endowed with the non-linearity by the
latter MLP part (Fig. 1 & Table 1) following the linear ConvNet part. Thus, the
non-linearity is controlled by the depth of the MLP and Table 2e shows the
performance improvement due to the higher non-linearity of the deeper MLP.

Training Form. As shown in Table 2f for training local descriptors, the form of
linear ConvNet is superior to the naive MLP form, i.e., one L × L convolution,

Based on the above analyses, we build the effective descriptor by stacking
three 5 × 5 convolution blocks interlaced with the down-sampling of 2-pixel
striding and two-layer MLP, which operates on a 29 × 29 patch with 4-pixel
step for ImageNet classification. This configuration of the descriptor is closely
related to the good practice [22] of the hand-crafted descriptor which extracts
SIFT from 24 × 24 patches every 4 pixels on an image for image classification.

3.2 Qualitative Analysis

We qualitatively analyze the L × L spatial filter learned by the linear ConvNet.
For mining the principal characteristics in the spatial filters, we apply SVD

to the (vectorized) filters V ∈ R
3L2×512 as V = Uldiag(s)U�

r ; the filters are
decomposed into 512 components, the columns of Ul ∈ R

3L2×512. As shown in
Fig. 2, the deeper linear ConvNet of 4 blocks activates the filter weights only
on a small spatial region due to the larger patch size, while the filter weights
by the shallower one are diversely distributed. Thus, we can conclude that for
constructing the effective linear convolutional features, it is necessary to design
moderately deep (linear) ConvNet to provide a proper receptive field, followed
by the highly non-linear MLP.

3.3 Generality

The proposed simple network exhibits superior performance (18.00%) to
AlexNet [11] which produces 19.29% on the ImageNet dataset. We further show
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Table 3. The performance comparison on various image classification tasks. The per-
formance is measured by classification accuracy (%).

Type Object Scene Other

Dataset VOC2007 [1] Caltech256 [6] SUN397 [28] MIT67 [21] FMD [24] Event8 [13]

Ours 78.22 66.71 50.78 66.48 79.23 95.14

AlexNet 77.87 73.79 48.36 63.96 72.75 95.07

Hand-craft [9] 63.83 57.4 46.1 63.4 57.3 92.6

the generality of the descriptor-based simple network across various image recog-
nition tasks. For that purpose, the model trained on the ImageNet dataset
(Sect. 3.1) is transferred to the other datasets. For simplicity, the pre-trained
network is applied to extract a 4096-dimensional image feature vector at FC1

(Table 1) which is followed by the linear SVM classifier. It is noteworthy that
in our model, the descriptors are computed on 29 × 29 local patches every 4
pixels and then encoded into the word representation in a quite similar manner
to the hand-crafted methods in the BoF framework [9,22]. For comparison, we
employ the same procedure for the pre-trained AlexNet and also show the per-
formances reported by the hand-crafted method [9] on the datasets of various
image recognition tasks.

Table 3 shows the performance results on various tasks of image classifi-
cation. As mentioned in [3], the AlexNet exhibits favorable transferability on
object recognition tasks which are closely related to ImageNet classification.
On the other hand, the proposed model produces superior performance even to
the AlexNet on the other types of tasks while working competitively with the
AlexNet on the object classification tasks. The network simply relying on the
MLP-based local descriptors is endowed with such a better generalization per-
formance. And, our method consistently outperforms the hand-crafted one [9]
based on the SIFT-based descriptors, demonstrating that our descriptor trained
end-to-end on ImageNet dataset is well discriminative with favorable generality.

4 Conclusion

We have proposed a simple network architecture for image recognition toward
efficient computation. The proposed method is explicitly built upon the bag-
of-features procedure which leverages local descriptors and visual word based
representation to extract image features. While the descriptor is formulated by
means of simple MLP for efficiency, it is effectively trained in an end-to-end man-
ner through transforming the MLP into a form of ConvNet, by utilizing stan-
dard techniques/procedures tailored for deep ConvNets on ImageNet dataset.
The proposed network mainly composed of simple MLP computation exhibits
favorable performance not only on the ImageNet classification task but also on
the other various image recognition tasks.



214 T. Kobayashi et al.

References

1. The PASCAL Visual Object Classes Challenge 2007 (VOC2007). http://www.
pascal-network.org/challenges/VOC/voc2007/index.html
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Abstract. Brain-Computer Interface (BCI) is a powerful technology
that allows human beings to communicate with computers or to control
devices. Owing to their convenient collection, non-invasive Electroen-
cephalography (EEG) signals play an important role in BCI systems.
Design of high-performance motion intention recognition algorithm based
on EEG data under cross-subject and multi-category circumstances is a
crucial challenge. Towards this purpose, a convolutional recurrent neural
network is proposed. The raw EEG streaming is transformed into image
sequence according to its location of the primary sensorimotor area to
preserve its spatiotemporal features. A Convolutional Long Short-Term
Memory (ConvLSTM) network is used to encode spatiotemporal infor-
mation and generate a better representation from the obtained image
sequence. The spatial features are then extracted from the output of Con-
vLSTM network by convolutional layer. The convolutional layer along
with ConvLSTM network is capable of capturing the spatiotemporal
features which enables the recognition of motion intention from the raw
EEG signals. Experiments are carried out on the PhysioNet EEG motor
imagery dataset to test the performance of the proposed method. It is
shown that the proposed method can achieve high accuracy of 95.15%,
which outperforms previous methods. Meanwhile, the proposed method
can be used to design high-performance BCI systems, such as mind-
controlled exoskeletons, prosthetic hands and rehabilitation robotics.
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1 Introduction

Brain science is one of the most challenging frontier research fields in the twenty-
first century. The Brain-Computer Interface (BCI) is a kind of technology that
helps human beings to communicate with computers or to control devices. Non-
invasive Electroencephalography (EEG) is regarded as one of the most conve-
nient signal sources for BCI systems in practice. When a person is doing mental
preparations of motor activity without any muscular motion, appropriate motor
related EEG rhythms fluctuate from their scalp [1]. Many promising EEG-based
BCI systems have been developed in the literature, such as mind-controlled
exoskeletons [2], prosthetic hands [3], and rehabilitation robotics [4]. Therefore,
EEG-based intention recognition has become a significant topic because of its
industrial and medical applications.

Although a large number of scientists are trying to recognize motion inten-
tions by analyzing EEG signals, this technology is facing several challenges. The
first challenge in EEG-based intention recognition is the collected EEG signals
themselves because of the low signal-to-noise ratio, coupled with a large quantity
of noise, including external noise and physiological noise. The noise definitely
presents a severe difficulty for interpretation and analysis of the EEG signal.
Also, a typical EEG-based BCI system suffers from the high price, tolerability
of the end user, so there are limited public EEG datasets compared with audio,
image and video data. More over, most EEG-based intention recognition mainly
focuses on manual feature selection, which is time-consuming and highly relys on
human experience. For examples, some methods use multiscale principal compo-
nent analysis [5] to eliminate noise or discrete wavelet transform [6] to extract
features followed by a classification model. Finally, many research projects have
a terrible classification accuracy, though they just classify EEG signals under
the intra-subject or binary circumstances.

Recently, deep learning [7] has shown strong capability when dealing with
text, image, audio and video signals. Some researchers are trying to solve EEG-
based intention recognition problem by using deep convolutional network or
recurrent neural network. However, these methods only focus on spatial informa-
tion [8] or temporal information. Thus, current approaches can’t deal well with
EEG signals. We formulate EEG-based intention recognition as a spatiotempo-
ral sequence classification problem. In particular, we transform the spatially dis-
tributed EEG signals into 2-D images by projecting the corresponding location
of electrodes from a 3-dimensional space onto a 2-D surface [9]. The ConvLSTM
network is used to encode EEG signals from spatiotemporal EEG “movie”. Sev-
eral convolutional layers are applied to extract spatial features from the output of
the ConvLSTM network. The major contributions of this paper can be outlined
as follows:

• Firstly, we propose an end-to-end deep neural network model to recognize
motion intentions based on raw spatiotemporal EEG data.

• It is shown that the proposed convolutional recurrent neural network is capa-
ble of encoding the spatiotemporal features from the raw EEG streaming and
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recognizing motion intentions under cross-subject and multi-category classi-
fication circumstances.

• The experimental results demonstrate that the proposed method outperforms
previous methods and achieves high accuracy of 95.15% for EEG-based inten-
tion recognition.

The remainder of this paper is organized as follows: The detail of the proposed
framework is demonstrated in Sect. 2. The data processing, model training, and
the result analysis are discussed in Sect. 3. Lastly, we conclude this paper in
Sect. 4.

2 Methods

The goal of the proposed convolutional recurrent neural network is to recog-
nize motion intentions based on spatiotemporal EEG data. Figure 1 shows an
overview of the proposed method. The network is composed of a ConvLSTM
layer for encoding spatiotemporal information and generating a better represen-
tation from raw EEG data and several convolutional layers for extracting spatial
information.
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Fig. 1. The proposed convolutional recurrent neural network architecture.

2.1 Design of the Input Images from EEG Streaming

Neuroscience research found that the event-related desynchronization (ERD)
starts before the motor imagery over the contralateral hemisphere then becomes
bilaterally symmetrical with movement execution [10]. Specifically, when a per-
son executes motor imagery, the specific area of the primary sensorimotor area is
activated, in which the Rolandic mu and beta rhythms amplitude will decrease,
resulting in event-related desynchronization [11]. The electrodes measure the
EEG rhythms fluctuated from different areas of the brain. Hence, we transform
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the spatially distributed EEG signals into 2-D images by projecting the corre-
sponding location of electrodes from a 3-dimensional space onto a 2-D surface
[9]. Taking time into account, we can obtain a sequence of spatial information-
preserving images. The detail will be discussed in Sect. 3.

2.2 Convolutional LSTM

By using the sliding window approach, the obtained image sequence can be
divided into individual movie clips. The goal of the end-to-end deep neural net-
work model is to classify motion intentions based on spatiotemporal features
from EEG “movie” clips. For a model to recognize motion intentions based on
EEG “movie” clips, it should be capable of identifying how the activated area of
the primary sensorimotor is changing with time. Convolutional neural networks
(CNN) is able to generate a spatial representation. Recurrent neural networks
can encode temporal changes. Since the model should be able to deal with spa-
tiotemporal information, ConvLSTM is a suitable option.
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Fig. 2. The inner structure of a ConvLSTM cell.

ConvLSTM can encode spatiotemporal information and generate a better
representation. The convLSTM model was first introduced to deal with precipi-
tation nowcasting [12] due to its capacity of extracting spatiotemporal informa-
tion. Figure 2 shows the inner structure of a ConvLSTM cell. Different from Long
Short-Term Memory (LSTM) network, the input feature of a ConvLSTM cell is a
3-D spatiotemporal tensor, and the state-to-state and input-to-state transitions
are related to convolutional operations. The key equations of the ConvLSTM
are shown as follows:

ft = σ (Uf ∗ Xt + Wf ∗ ht−1 + bf ) (1)
it = σ (Ui ∗ Xt + Wi ∗ ht−1 + bi) (2)
ot = σ (Uo ∗ Xt + Wo ∗ ht−1 + bo) (3)
Ct = ft ◦ Ct−1 + it ◦ tanh (Uc ∗ Xt + Wc ∗ ht−1 + bc) (4)
ht = ot ◦ tanh (Ct) (5)
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In the equations, it, ot, ft are the outputs of input gate, output gate and
forget gate at time step t. ht stands for the hidden state of a cell at time step
t. Ct stands for the cell output at time step t. The symbol “∗” stands for the
convolution operator, and “o” stands for the Hadamard product.

2.3 Network Architecture

After the spatial information-preserving image sequence is obtained, the end-
to-end model is used to classify motion intentions based on the obtained image
sequence. Figure 1 shows an overview of the proposed method. By using the slid-
ing window approach, which can preserve valuable spatiotemporal information,
we divide the obtained image sequence into individual movie clips. The length
of each clip is fixed, and there are overlapping between nearby neighbors, avoid-
ing losing significant information. Then the proposed model is used to recognize
the motion intentions form the EEG “movie” clips. ConvLSTM network has
the capability to encode spatiotemporal information in its memory cell based
on the obtained EEG movie clips. In the ConvLSTM, 256 filters are applied in
all the gates, and the filter size are 3 × 3 with stride 1. Convolutional layers
receive the output of the last time step of the ConvLSTM layer, and feeds to
the fully connected layer, ending up with a softmax layer for motion intention
prediction. ReLU is used as the non-linear activation function for the output of
each convolutional layer.

3 Experiments

3.1 Dataset

Experiments are carried out on the PhysioNet EEG motor imagery dataset [13],
which contains 109 subjects. The dataset contains five motion intentions with
eye closed, imagining moving both fists, both feet, right fist and left fist. And the
dataset is collected by the BCI2000 instrumentation system, and this system has
64 channels and the sampling rate is 160 Hz. Each subject performed baseline
runs and task runs.

3.2 Implementation Details

The collected EEG data has 64 channels, and we transform the EEG streaming
into image sequence by projecting the corresponding location of electrodes from
a 3-dimensional space onto a 2-D surface at each sampling moment. The obtained
EEG image sequence is divided into clips with 10 sampling points and 5 sampling
points overlap. Three-quarters data are chosen in random as the training set, and
others are used as the validation set. The ConvLSTM layer is used to extract the
spatiotemporal information, and several convolutional layers are used to extract
spatial information. All experiments are established in Tensorflow framework
with batch size 200. We adopt the Adam optimizer with 0.0005 learning rate.
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3.3 Experiment Results

The performance of the proposed convolutional recurrent neural network is
shown in this section. We compare the results with previous methods to evalu-
ate the performance of the proposed model. Five convolutional recurrent neural
network variants and the comparison models are shown in Table 1.

Table 1. Comparison between convolutional recurrent neural network and previous
methods.

Method Multi-class Validation Accuracy (%)

Wang [14] Multi(3) Intra-Sub 84.62

Pattnaik [6] Binary Cross-Sub 80.71

Bashivan [9] Multi(4) Cross-Sub 91.11

Kevric [5] Binary Intra-Sub 92.80

ConvLSTM + 2 Conv layers Multi(5) Cross-Sub 89.39

ConvLSTM + 3 Conv layers Multi(5) Cross-Sub 94.05

ConvLSTM + 4 Conv layers Multi(5) Cross-Sub 95.15

ConvLSTM + 2 Conv + 2 pooling layers Multi(5) Cross-Sub 83.18

As is shown in Table 1, the proposed convolutional recurrent neural net-
work achieves high accuracy of 95.15% and outperforms the previous methods.
ConvLSTM network along with four convolutional layers to extract spatiotem-
poral features can hit the best performance. Although Kevric [5] centers on the
intra-subject and binary circumstance, the proposed model still achieves higher
accuracy than their method. Their model requires decomposing raw EEG sig-
nals, which may lose significant features while extracting the higher order statis-
tic features. What’s more, we add a max-pooling layer after the convolutional
layer, but the validation accuracy decreases. Max-pooling layer may make con-
volutional recurrent neural network achieve translation invariance. Thus, the
proposed model can not distinguish which area of the primary sensorimotor is
activated.

The accuracy of the proposed method lies in the range between 89% and
95.15%. A ConvLSTM layer with four convolutional layers to extract spatial
information can reach the best performance, with an improvement of 2.35%
over the previous methods [5]. The validation accuracy of ConvLSTM layer with
different convolutional layers to extract spatial features are shown in Fig. 3.

It can be seen from Fig. 3 that the validation accuracy of three convolutional
recurrent neural network variants increases rapidly from the first epoch; the val-
idation accuracy increases slowly when the epoch is from 15 to 70; all model
variants converge after several fluctuations. Although the ConvLSTM network



222 Z. Fang et al.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127

Va
lid

at
ion

Ac
cu

ra
cy

Epoch

ConvLSTM + 3 conv
ConvLSTM + 2 conv
ConvLSTM + 4 conv

Fig. 3. The validation accuracy of three model variants based on the PhysioNet dataset.
The horizontal axis stands for the number of epochs, and the left longitudinal axis
stands for validation accuracy.

with four convolutional layers doesn’t perform well after the first epoch, its
convergence rate is faster than the other two model variants. With four convo-
lutional layers to extract spatial features, the proposed model can achieve high
accuracy of 95.15%.

The result of best model variant is used to calculate the confusion matrix,
which is shown in Fig. 4. When distinguishing both feet and both fists classes or
left fist and right fist classes, the proposed model may make mistakes. However,
the proposed model outperforms previous methods. The results show that the
proposed model is capable of recognizing motion intentions under cross-subject
and multi-category classification circumstances.

Fig. 4. Confusion matrix illustrating the per-class validation accuracy.
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4 Conclusion

The work is motivated by the goal of achieving high-performance motion
intention recognition algorithm under cross-subject and multi-category circum-
stances. The EEG streaming is transformed into image sequence according to its
location of the primary sensorimotor area to preserve its spatiotemporal features.
A convolutional recurrent neural network is proposed to learn features from raw
EEG data. The proposed convolutional recurrent neural network is trained on
PhysioNet EEG motor imagery dataset, and the results demonstrate that the
proposed model outperforms the previous methods by achieving high accuracy
of 95.15%. This results show that the proposed model can be used to design
high-performance BCI systems, such as mind-controlled exoskeletons, prosthetic
hands and rehabilitation robotics.
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Abstract. Recommender systems have attracted abundant research in the past
decades. Side information is generally used besides the rating matrix to alleviate
the data sparsity problem for recommendation models. To achieve better per-
formance, in recent years deep learning (DL) technique has been introduced to
recommendation models. It can be noted that most existing recommendation
models incorporating DL technique only use one layer as the learned features;
and the learned features for all users/items have the same dimension despite the
fact that different users/items have different numbers of ratings. The afore-
mentioned issues have negative impact on the performance of these recom-
mendation models. To address the issues, in this paper we propose a Deep
neural network model based on Multi-layer prediction and Multi-granularity
latent feature vectors (DMM model). The DMM model has two features: (1) A
user or an item is represented by multiple latent vectors with different granu-
larity, which can better describe the relationships between users and items.
(2) Each layer in the DMM model produces a predicted rating for given user and
item, then the overall rating is calculated by combining all these predicted
values, which ensures fully use of the information in rating matrix and side
information and thus may result in better performance. Experimental results on
three widely used datasets demonstrate that the proposed DMM model out-
performs the compared models.
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1 Introduction

In recent years, recommender systems have attracted much attention and research [1].
Various recommendation models have been proposed in the literature, among which
collaborative filtering (CF)-based models are popular ones [2, 3]. However, one
drawback of CF-based models is that they suffer from the data sparsity problem. To
mitigate the problem, side information such as user profile attributes or item descrip-
tions is used in recommendation models besides rating matrix [4–6].

Recently, deep learning (DL) technique has been integrated into recommendation
models due to its capability of capturing non-linear and non-trivial user-item rela-
tionships [7]. Some recommendation models incorporating DL technique have been
proposed, e.g., DeepFM [8], mSDA-CF [9], AutoSVD++ [10], to improve the per-
formance of CF-based models. However, current state-of-the-art recommendation
models which incorporate DL technique still has two insufficiencies: (1) Some models
make use of only rating matrix, and side information is not used in the model, e.g.,
[11, 12]. (2) For those models using both rating matrix and side information, only one
layer, i.e., the last layer, e.g., [12, 13], or the middle layer, e.g., [4, 11], is used as the
feature leaned, which may bring about information loss and consequently affect the
performance of models.

In this paper, we propose a new CF-based recommendation model, which utilizes
both ratingmatrix and side information as the inputs. The proposedmodel is based onDL
technique and is referred to as Deep neural network model based on Multi-layer pre-
diction and Multi-granularity latent feature vectors, abbreviated as DMM model here-
after. Note that recommendation models are either for rating prediction (RP) or for top-N
recommendation [1], the proposed DMM model in this paper is for rating prediction.

The proposed DMM model has two features: (1) A user or an item is represented by
multiple latent vectors with different granularity, which can better describe the rela-
tionships between users and items. Due to the fact that the number of observed ratings
of a user/item can vary a lot in real world from that of other users/items, the ratings of a
user/item thus may contain much less/more user-item interaction information than
those of other users/items. However, most of existing rating prediction models have all
users and items represented by same-dimensional latent vectors, which would hinder
the expressing ability of the models, because the latent vectors of users/items with few
ratings may suffer from the overfitting problem while the latent vectors of users/items
with many ratings may suffer from the underfitting problem. In the proposed DMM
model, the above-mentioned issue is resolved as the model has multi-granularity layers.
(2) Each layer in the DMM model produces a predicted rating for given user and item,
then the overall rating is calculated by combining all these predicted values. Since all
layers in the DMM model contribute to the overall rating prediction, this ensures fully
use of the information in rating matrix and side information and thus would result in
better performance than existing rating prediction models that only use one layer as the
feature learned.

The remainder of this paper is organized as follows. In Sect. 2, the details of the
proposed models are presented. Experimental results are given in Sect. 3. Finally,
concluding remarks are given in Sect. 4.
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2 Methodology

2.1 Problem Definition

Similar to existing works [1, 10], the RP problem studied in this paper is defined as
follows. Given M users and N items, R 2 R

M�N is the rating matrix, rui indicates the
u-th user’s rating (preference) on the i-th item. The partial observed vector Ru� ¼
ru1; ru2; . . .; ruNf g is the u-th user’s ratings on all the N items; and the vector R�i ¼
r1i; r2i; . . .; rMif g is all the M users’ ratings on the i-th item. Denote by r̂ui the predicted

value of rui, the aim of RP is to predict the missing values in rating matrix R.

2.2 Feature Learning Network

Before we present the proposed DMM model, we first propose a feature learning net-
work (FLN) that will be adopted in the DMM model. The FLN jointly makes use of the
ratings and side information by learning latent features from both, as shown in Fig. 1.

It can be seen from Fig. 1 that the proposed FLN has two main features: (1) It uses
both side information and ratings as inputs; (2) The hidden layers form a Multi-layer
Perceptron (MLP) and thus are convenient to obtain the predicted ratings from each
layer (details in Sect. 2.3), which is different from exiting works [4, 11–13].

Formally, denote by Xs the side information, Xr is the rating vector (either Ru� or
R�i), denote by hi the hidden layers, the first hidden layer can be represented as follows:

Input layer

Hidden layers

Side information Ratings

Fig. 1. The structure of the feature learning network
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h1 ¼ u WsXs þWrXr þ b1ð Þ; ð1Þ

where Ws and Wr are side information weight matrix and ratings weight matrix,
respectively; b1 is the bias term; u �ð Þ is the activation function. Similarly, the rest
hidden layers can be formulated as follows [14]:

hi ¼ u Wihi�1 þ bið Þ; i ¼ 2; 3; . . .; ð2Þ

where Wi is the weight matrix and bi is the bias term for the i-th hidden layer.
Different from other deep neural networks, we can see from Fig. 1 that the pro-

posed FLN does not contain an output layer. The reason is that each hidden layer can
be considered to be a projecting function which projects rating vector and side infor-
mation to a corresponding low-dimensional feature space, i.e., each layer learns cor-
responding feature from rating vector and side information. Through forward
propagation, all layers of the FLN project rating vector and side information to
respective low-dimensional spaces, thus no output layer is needed in the FLN.

2.3 The DMM Model

The proposed DMM model is illustrated in Fig. 2. User features and item features are
learned by respective FLNs, the User FLN and the Item FLN. Then the learned features

are used to predict rating values by each layer r̂ 1ð Þ
ui ; r̂

2ð Þ
ui ; . . .; r̂

Lð Þ
ui ; and the overall rating

r̂ui is calculated by weighting these predicted values.
Denote by L the number of hidden layers in each FLN, kl is the number of neurons

in the l-th layer. For the User FLN, denote by Su the side information vector of user u,
the learned user features of all hidden layers can be formulated as follows:

u 1ð Þ
u ¼ r WS

uSu þWR
u Ru� þ b 1ð Þ

u

� �
; ð3Þ

u lð Þ
u ¼ r W lð Þ

u u l�1ð Þ þ b lð Þ
u

� �
; l ¼ 2; 3; � � � ; L; ð4Þ

where u lð Þ
u 2 R

M�kl denotes the l-th user feature for user u, Su denotes side information
vector of user u,WS

u andWR
u denote user side information weight matrix and user rating

vector weight matrix, respectively. W lð Þ
u and b lð Þ

u denote the weight matrix and the bias
term for the l-th layer of the User FLN, respectively. Sigmoid function r �ð Þ is used as
the activation function for each layer in the DMM model:

r xð Þ ¼ 1
1þ e�x

ð5Þ

Other kinds of activation functions such as ReLU and tanh are also used in neural
networks. Here we chose sigmoid to be the activation function for the following
reasons: (1) ReLU filters all negative values in forward propagation, which discards
some latent information and therefore has negative impact on the effectiveness of
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learned features; (2) The output value of sigmoid falls between 0 and 1, unlike tanh’s
output value (between −1 and 1), which can be considered to be a probabilistic value,
therefore it may better represent users’ preferences and items’ characteristics.

Similarly, we have item feature layers of the Item FLN formulated by:

v 1ð Þ
i ¼ r WS

i Si þWR
i R�i þ b 1ð Þ

i

� �
; ð6Þ

v lð Þ
i ¼ r W lð Þ

i v l�1ð Þ þ b lð Þ
i

� �
; l ¼ 2; 3; � � � ;L ð7Þ

Through the two FLNs, user preferences and item characteristics are mapped into L

low-dimensional feature vectors u 1ð Þ
u ; u 2ð Þ

u ; . . .; u Lð Þ
u and v 1ð Þ

i ; v 2ð Þ
i ; . . .; v Lð Þ

i , which are
shown in Eqs. (8 and 9):

u lð Þ
u ¼ r W lð Þ

u � � � r WS
uSu þWR

u Ru� þ b 1ð Þ
u

� �
� � �

� �
þ b lð Þ

u

� �
; l ¼ 1; 2; � � � ; L ð8Þ

v lð Þ
i ¼ r W lð Þ

i � � � r WS
i Si þWR

i R�i þ b 1ð Þ
i

� �
� � �

� �
þ b lð Þ

i

� �
; l ¼ 1; 2; � � � ; L ð9Þ

At the l-th layer of both FLNs, we use the learned user feature vector u lð Þ
u and item

feature vector v lð Þ
i to generate the predicted value r̂ lð Þ

ui of user u on item i as follows:

Layer 1 Layer 1

Layer 2 Layer 2

Layer L Layer L

Rating
Matrix

TargetTraining

u-th row of R i-th column of R

2 0 1 4 053 1 5 2 0 4User side information Item side information

User 
FLN

Item 
FLN

Fig. 2. The structure of the DMM model
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r̂ðlÞui ¼ uðlÞ
T

u vðlÞi ð10Þ

By combining the predicted values of L layers with respective weights, the pre-
dicted overall rating is calculated as follows:

r̂ui ¼
XL

l¼1
alr̂

lð Þ
ui ; ð11Þ

where al is a hyperparameter representing the weight of the l-th layer. As we have

analyzed, we predict ratings r̂ 1ð Þ
ui ; r̂

2ð Þ
ui ; . . .; r̂

Lð Þ
ui in L low-dimensional spaces rather than

just in one low-dimensional space, which ensures the fully use of rating information
and side information. By weighting the predicted values from different low-
dimensional spaces, the DMM model could have better generalization ability.

2.4 Optimization

Parameters are learned by minimizing the following objective function:

L ¼
X

ðu;iÞ2Tr rui � r̂uið Þ2 þ kX Hð Þ; ð12Þ

where Tr is the collection of (user, item) pairs in training set. To avoid overfitting, the
regularization term X Hð Þ is used, and k is the regularization hyperparameter.

X Hð Þ ¼ PL
l¼2 kW lð Þ

u k2 þkW lð Þ
i k2 þkb lð Þ

u k2 þkb lð Þ
i k2

� �
þkWS

uk2 þkWR
u k2 þkWS

i k2 þkWR
i k2 þkb 1ð Þ

u k2 þkb 1ð Þ
i k2

ð13Þ

Stochastic gradient descent (SGD) is used to minimize (12) to learn model parameters.

3 Experimental Study

We compare the DMM model with the following three state-of-the-art models which
adopt DL technique to conduct rating prediction: Semi-AutoEncoder [4], AutoSVD++
[10], and ReDa [11]. In addition, the following two classical rating prediction models
are compared with in the experimental study as well: Biased SVD [15], SVD++ [15].

Some other baseline models such as probabilistic rating autoencoder [16],
marginalized stacked denoising autoencoder for collaborative filtering [9] have been
outperformed by the compared models [10, 11] and therefore are not considered in our
experiments. As the proposed DMM model is a rating prediction recommendation
model, it is not suitable to conduct comparative studies of it and top-N recommendation
models such as [5, 12, 13, 18].
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MovieLens [17] are widely used for the evaluation of recommendation models,
e.g., [10, 18]. Three real-world datasets from MovieLens, ML-100k, ML-1M and ML-
HetRec, are used in our experiments. Moreover, user and item side information in
ML-100k, ML-1M and ML-HetRec are used to construct Su and Si. User side infor-
mation contains gender, age, occupation, etc., and item side information contains
release date and a vector indicating genre of the movie.

The root mean squared error (RMSE) is adopted, similar to [2, 9, 10].

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Tej j

X
ði;jÞ2Te rij � r̂ij

� �2s
; ð14Þ

where Te is the collection of (user, item) pairs in test set, and Tej j denotes the number
of pairs in Te collection.

3.1 Experiment #1: Performance Comparison

We construct five training sets with different percentages of ratings (50%, 60%, 70%,
80% and 90%, respectively) [11, 19] randomly selected from the original dataset, and
the rest of the ratings are used as the test set. The following hyperparameters are
adopted: k ¼ 0:01, g ¼ 0:001. In each FLN, we have 6 hidden layers with different
dimensions k ¼ 200; 100; 64; 50; 32; 16ð Þ, and the weights to these hidden layers are
a ¼ 0:05; 0:05; 0:1; 0; 1; 0:2; 0:5ð Þ. The experiment is repeated for 5 times on each
constructed training set, and the average RMSE and standard deviation are summarized
in Table 1, in which the smallest RMSE in each row is reported in bold.

As can be seen, all models have better performance when the sampling ratio of
training data increases. For all sampling ratios, the proposed DMM model achieves the
best performance on ML-100k, ML-1M and ML-HetRec datasets, which suggests that
the learned features by the proposed DMM model can better describe the relationship
between users and items than those of compared models.

Table 1. Performance comparison of the proposed DMM model and 5 other models.

Data set Sampling
ratio

Biased SVD SVD++ Semi-
autoencoder

ReDa AutoSVD++ DMM Improvement

ML-100k 50% 0.9329 ±

0.0000
0.9199 ±

0.0004
0.9247 ±

0.0003
0.9217 ±

0.0015
0.9142 ±

0.0004
0.9049 ±

0.0007
1.03%–3.09%

60% 0.9328 ±

0.0001
0.9157 ±

0.0003
0.9181 ±

0.0004
0.9201 ±

0.0012
0.9118 ±

0.0003
0.9039 ±

0.0003
0.87%–3.20%

70% 0.9268 ±

0.0001
0.9050 ±

0.0002
0.9064 ±

0.0011
0.9103 ±

0.0013
0.9016 ±

0.0002
0.8911 ±

0.0006
1.18%–4.01%

80% 0.9243 ±

0.0001
0.8994 ±

0.0002
0.8959 ±

0.0010
0.9057 ±

0.0012
0.8957 ±

0.0004
0.8846 ±

0.0004
1.25%–4.49%

90% 0.9112 ±

0.0001
0.8838 ±

0.0006
0.8810 ±

0.0004
0.8933 ±

0.0024
0.8804 ±

0.0004
0.8664 ±

0.0001
1.61%–5.17%

(continued)
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3.2 Experiment #2: Is Multi-layer Structure Helpful?

As there is no existing work on using multiple learned features of users and items to
predict ratings, it would be interesting to study whether the multi-layer structure can
indeed help in making accurate rating predictions. Towards this end, we investigate the
relationship between the performance of the DMM model and the layer weights a. We
thus conduct a second experiment using four different settings of a: (1) Last-layer-only:
a ¼ 0; 0; 0; 0; 0; 1ð Þ. (2) Mean: predicted ratings in different layers are combined with
the same weight, a ¼ 1

6 ;
1
6 ;

1
6 ;

1
6 ;

1
6 ;

1
6

� �
. (3) Increasing: a ¼ 0:05; 0:05; 0:1; 0; 1;ð

0:2; 0:5Þ. (4) Decreasing, a ¼ 0:5; 0:2; 0:1; 0; 1; 0:05; 0:05ð Þ. Other hyperparameters
such as k and g stay the same as Experiment #1. The results are presented in Table 2.

It can be seen from Table 2 that the mean, decreasing and increasing settings
outperform the last-layer-only setting, except for the value underlined. This suggests
that the multi-layer structure be helpful yet a good weight setting is also important.
From Table 2, we can observe that the increasing setting performs better than the mean
setting, and the mean setting performs better than the decreasing setting. This indicates
that the learned feature of deeper hidden layer is more effective in predicting ratings
than that of shallower layer, therefore deeper layer deserves higher weight.

Table 1. (continued)

Data set Sampling
ratio

Biased SVD SVD++ Semi-
autoencoder

ReDa AutoSVD++ DMM Improvement

ML-1M 50% 0.8709 ±

0.0001
0.8742 ±

0.0001
0.8828 ±

0.0002
0.8745 ±

0.0013
0.8626 ±

0.0001
0.8596 ±

0.0003
0.35%–2.70%

60% 0.8633 ±

0.0000
0.8579 ±

0.0001
0.8746 ±

0.0002
0.8692 ±

0.0008
0.8553 ±

0.0001
0.8522 ±

0.0002
0.36%–2.63%

70% 0.8582 ±

0.0000
0.8505 ±

0.0002
0.8650 ±

0.0004
0.8649 ±

0.0016
0.8479 ±

0.0001
0.8440 ±

0.0003
0.46%–2.49%

80% 0.8566 ±

0.0001
0.8470 ±

0.0001
0.8614 ±

0.0002
0.8645 ±

0.0014
0.8447 ±

0.0002
0.8414 ±

0.0002
0.39%–2.75%

90% 0.8510 ±

0.0001
0.8392 ±

0.0001
0.8505 ±

0.0002
0.8587 ±

0.0008
0.8368 ±

0.0002
0.8301 ±

0.0002
0.81%–3.45%

ML-HetRec 50% 0.8215 ±

0.0002
0.8169 ±

0.0002
0.8445 ±

0.0011
0.8237 ±

0.0013
0.8143 ±

0.0003
0.8093 ±

0.0003
0.62%–4.35%

60% 0.8153 ±

0.0001
0.8119 ±

0.0003
0.8370 ±

0.0008
0.8203 ±

0.0007
0.8094 ±

0.0002
0.8044 ±

0.0001
0.62%–4.05%

70% 0.8084 ±

0.0001
0.8044 ±

0.0002
0.8266 ±

0.0012
0.8148 ±

0.0013
0.8016 ±

0.0002
0.7979 ±

0.0003
0.46%–3.60%

80% 0.8052 ±

0.0002
0.7991 ±

0.0004
0.8209 ±

0.0004
0.8141 ±

0.0008
0.7972 ±

0.0001
0.7942 ±

0.0003
0.38%–3.36%

90% 0.8007 ±

0.0001
0.7906 ±

0.0002
0.8140 ±

0.0010
0.8094 ±

0.0015
0.7915 ±

0.0001
0.7831 ±

0.0002
0.95%–3.95%

Table 2. RMSE of the DMM model with different layer weight settings

Datasets Last-layer-only Mean Decreasing Increasing

ML-100k 0.9036 0.8754 0.8956 0.8664
ML-1M 0.8643 0.8467 0.8656 0.8301
ML-HetRec 0.8273 0.8011 0.8237 0.7831
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4 Conclusions

In this paper, we propose a deep neural network model based on multi-layer prediction
and multi-granularity latent feature vectors. Different from existing models incorpo-
rating DL technique, the proposed model is capable to learn multiple features in dif-
ferent low-dimensional spaces for users and items from rating matrix and side
information, which better describes the relationships between users and items; more-
over, all layers in the proposed model contribute to the predicted overall rating, which
ensures fully use of the information in rating matrix and side information. Experimental
results on three datasets suggest that the proposed model have better performance than
the compared models.
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Abstract. In the era of information, recommender systems are playing
an indispensable role in our lives. A lot of deep learning based recom-
mender systems have been created and proven to be good progress. How-
ever, users’ decisions are determined by both long-term and short-term
preferences, and most of the existing efforts study these two requirements
separately. In this paper, we seek to build a bridge between the long-term
and short-term preferences. We propose a Long & Short-term Preference
Model (LSPM), which incorporates LSTM and self-attention mechanism
to learn the short-term preference and jointly model the long-term prefer-
ence by a neural latent factor model. We conduct experiments to demon-
strate the effectiveness of LSPM on three public datasets. Compared
with the state-of-the-art methods, LSPM got a significant improvement
in HR@10 and NDCG@10, which relatively increased by 3.875% and
6.363%. We publish our code at https://github.com/chenjie04/LSPM/.

Keywords: Deep learning · Collaborative filtering · Short-term
preference · Long-term preference

1 Introduction

Recently, deep learning has made gigantic strides in many research areas [9].
It also brings a revolution to recommender systems [2]. A lot of deep learning
based recommender systems have been created and proven to be good progress
[3]. The latent factor techniques are the most effective methods for capturing the
long-term preference which reflects users’ inherent characteristics [8]. Session-
based recommendations have shown a great advantage in extracting the short-
term preference from the recent historical interactions [7]. However, the users’
decisions are determined by both long-term and short-term preferences, a natural
way to improve recommendation is to combine both of them. In this work, we
seek to build a bridge between the long-term and short-term preferences.
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We focus on implicit feedback setting and propose a Long & Short-term
Preference Model (LSPM), which consists of a short-term preference module
and a long-term preference module. More precisely, the short-term preference
module is built on the LSTM network and self-attention mechanism to learn
the short-term preference from recent historical interactions, and the long-term
preference module is a neural latent factor model which is good at capturing long-
term preference by considering the whole user-item matrix. By fusing the long-
term preference and short-term preference greatly, LSPM can provide users with
satisfactory recommendations. We conduct experiments on three public datasets.
The results show that LSPM got a superior performance. Compared with the
state-of-the-art methods, LSPM got a significant improvement in HR@10 and
NDCG@10, which relatively increased by 3.875% and 6.363%.

The main contributions of this work are as follows.

1. We propose a Long & Short-term Preference Model, which has an advantage
in modeling user’s long-term preference and short-term preference.

2. LSPM introduces the short-term preference into latent factor model, which
improve the performance of the recommendations.

3. We conduct experiments on three public datasets to demonstrate the effec-
tiveness of LSPM, and it outperforms the competitive baselines.

The structure of the paper is as follows. We start with related work in Sect. 2.
In Sect. 3, we formalize the recommendation with implicit feedback and describe
LSPM in detail. Experiments are presented in Sect. 4 to demonstrate its effec-
tiveness. Finally, conclusions are presented in Sect. 5.

2 Related Work

In this section, we briefly review the related works from three perspectives: latent
factor techniques, session-based recommendations and the combination of long
& short-term preferences.

Latent factor techniques are the most effective methods for captur-
ing long-term preference. Salakhutdinov et al. [14] use Restricted Boltzmann
Machine to extract latent features of users’ preference from user-item matrix.
He et al. [6] replace the inner product with an MLP as the interaction function.
ParVecMF fuses the textual user reviews along with the matrix factorization [1].
CoupledCF jointly learns explicit and implicit couplings within/between users
and items for deep CF recommendation [19]. [18] proposes an expressive Deep
Item-based Collaborative Filtering solution by accounting for the nonlinear and
higher-order relationship among items.

Session-based recommendations have shown a great advantage in
extracting short-term preference from the recent historical interactions. Hidasi
et al. [7] take the lead in exploring GRUs for the prediction of the next user action
in a session. Li et al. [10] argue that both the user’s sequential behavior and the
main purpose in the current session should be considered in recommendations.
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Tuan et al. [15] describe a method that combines session clicks and content fea-
tures to generate recommendations. Wu et al. [17] incorporate different kinds of
user search behaviors to learn the session representation.

The combination of long & short-term preference is a natural way to
improve the performances of recommender system. Liu et al. [13] explicitly take
the effects of users’ current actions on their next moves into account. BINN learns
historical preference and present motivation of the target users by discrimina-
tively exploiting users’ behaviors [11]. Zhang et al. [20] propose an AttRec model
that takes both short-term intention and long-term intention into consideration.
In this work, we only compare AttRec with our work.

3 Long & Short-Term Preference Model

3.1 Preliminaries

Let U = {u1, u2, ..., uM} denote a set of users and I = {i1, i2, ..., iN} for items.
We define the user-item interaction matrix Y = RM∗N as Eq. 1.

yui =

{
1 if interactions (click, view and so on) is observed;
0 otherwise.

(1)

Let Hui = (x0, x1, x2, ..., xn) denote the historical interactions before user u
interacts with the item i. The recommendation with implicit feedback can be
thought as estimating how likely user u will interact with item i in the future,
which can be expressed as ŷui = f(u, i,Hui|Θ).

3.2 Architecture

The Long & Short-term Preference Model proposed in this paper aims to jointly
model the user’s short-term preference and long-term preference for recommen-
dations. The framework of LSPM is shown in Fig. 1.
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Fig. 1. The framework of Long & Short-term Preference Model.
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LSPM comprises of three modules: short-term preference module, long-term
preference module and an output module. The short-term preference module
consists of a short-term preference encoder to extract the short-term preference
from historical interactions Hui and an MLP to learn how the item i fits the
user’s short-term preference. The long-term preference module is a neural latent
factor model which learns how the item i fits the user’s long-term preference.
At last, the output module fuses the long-term and short-term preferences to
obtain the final prediction.

3.3 Short-Term Preference Module

Recent historical interactions indicate users’ special need and personalized taste
in this short interval, which is what we call short-term preference. A short-term
preference encoder which combines a LSTM network and a self-attention block
is proposed to capture short-term preference, as shown in Fig. 1(a).

LSTM receives the user’s recent interactions Hui as input and outputs hidden
states H, which can be expressed as,

Hui = (x0, x1, ..., xt, ..., xn) (2)
ht = LSTM(xt, ht−1) (3)
H = (h0, h1, ..., ht, ..., hn) (4)

Where xt ∈ Rd is the embedding of item t, ht ∈ Rd and H ∈ Rn∗d. We use
a self-attention block [12] to learn the short-term preference,

a = softmax(W2tanh(W1H
T + b1) + b2) (5)

m = aH (6)

Where W1 ∈ Rda∗d, W2 ∈ Rda , and da is a hyperparameter. The weight
vector a indicates the importance of each hidden state. The hidden states of
LSTM H are weighted sum to get the short-term preference m. Then, we use
an MLP to model the interaction between short-term preference and item i, it
output a predictive vector v1 which indicates how the item i fits the short-term
preference,

v1 = ln = an(WT
n (an−1(...a1(WT

1

[
m
ei

]
+ b1))) + bn) (7)

Where Wx, bx, and ax represent the corresponding weight matrix, bias, and
activation function respectively.

3.4 Long-Term Preference Module

Long-term preference refers to the long-lasting, stable and general preference,
which can be captured by the conventional latent factor model [8]. We implement
our long-term preference module base on MLP, as shown in Fig. 1(b).
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Each item i or user u is associated with a vector, named as qi ∈ Rd or pu ∈ Rd.
Long-term preference module consumes qi or pu and outputs a predictive vector
v2, which indicate how the item i fits the long-term preference, defined as Eq. 8.

v2 = ln = an(WT
n (an−1(...a1(WT

1

[
pu
qi

]
+ b1))) + bn) (8)

3.5 Output Module

Due to the complexity of the real world, short-term preference is likely to be
biased. It is necessary to introduce a long-term preference to ensure the recom-
mendation is in the right direction. We use fully connected layers to merge this
two preferences and make the final prediction, as shown in Eq. 9.

ŷui = σ(hT .relu(WT
1

[
v1
v2

]
+ b1) + b2) (9)

Where the final prediction score ŷui indicates how likely user u will interact
with the item i in the future.

3.6 Model Learning

The recommendation problem with implicit feedback can be regarded as a two-
class classification problem. And, we choose the binary cross-entropy as our loss
function. It is defined as Eq. 10.

loss = −
∑

(u,i)∈y∪y−
ylogŷui + (1 − y)log(1 − ŷui) (10)

Here y denotes the positive sample set and y− means the negative sample
set. We randomly sample 4 negative samples for each positive one and optimize
our model by the adaptive gradient descent algorithm - Adam.

4 Experiments

4.1 Experimental Settings

BaseLines. In this section, to evaluate the effectiveness of LSPM, we compare
it with three baseline methods that are

– NeuMF [6] is a composite matrix factorization jointly coupled with a mul-
tilayer perceptron model for item ranking.

– AttRec [20] takes both short-term and long-term intentions into considera-
tion. We use an MLP network to replace the Euclidean distance metric.

– LSPM-base, we also implement a simple version of the LSPM model, in
which the MLP network is replaced by an inner product function.



242 J. Chen et al.

Table 1. Statistics of the datasets used in experiments

Dataset Users Items Interactions

Movielens-1M 6040 3706 1000209

Movielens-10M 69878 10677 10000054

Movielens-20M 138493 26744 20000263

Amazon-Books 12252 5362 516486

Amazon-Electronics 3426 11777 107186

Taobao User-Behavior 197598 2215070 20039836

Datasets. The datasets employed in experiments are three public datasets,
that are (1) Movie Lens datasets [4]. (2) Amazon review dataset [5].
(3) Taobao User-Behavior dataset [21]. After data preprocessing, detail
statistics of the datasets are presented in Table 1.

Evaluation. We evaluate our model by the leave-one-out evaluation [6] and
measure performance by HR [6] (Hit-Rate) and NDCG [16] (Normalized Dis-
counted Cumulative Gain) metrics. Intuitively, HR measures the presence of the
positive item and NDCG measures the item’s position in the ranked list.

Parameters Setting. Hyperparameters are tuned according to a validation
set. After a grid search was performed, the hyperparameters were set as follows,
the learning − rate was set to 0.001, batch−size was set to 1024, and employed
a 4-layer MLP in long-term and short-term module.

4.2 Performance Comparison

Table 2 lists the performance of LSPM and baselines for HR and NDCG with
cut off at 10, in which the history size is set to 9, and embedding size is set to
64.

First, we can see that LSPM achieves the best performance on the all
datasets, significantly outperforming the state-of-the-art method AttRec by a
large margin. On average, the relative improvement of HR@10 and NDCG@10
over this baseline is 3.875% and 6.343%, respectively. The experimental results
demonstrate that the combination of long-term preference and short-term pref-
erence gives an advantage to recommendations.

From the experimental results, we also have the following findings:

– NeuMF gives poor performance in most datasets. This indicates that latent
factor models, which rely heavily on the long-term preference, may fail to
provide accurate recommendations in some situation where the short-term
preference can make a difference.
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Table 2. Experimental results for different methods on public datasets.

Dataset Metric NeuMF AttRec LSPM-base LSPM Improv

Movielens-20m HR@10 0.6330 0.7321 0.7485 0.7634 4.28%

NDCG@10 0.3798 0.4823 0.4979 0.5240 8.65%

Movielens-10m HR@10 0.8833 0.9223 0.9241 0.9336 1.23%

NDCG@10 0.6298 0.7140 0.7221 0.7426 4.30%

Movielens-1m HR@10 0.7018 0.8069 0.8255 0.8303 2.90%

NDCG@10 0.4247 0.5788 0.6037 0.6240 7.81%

Amazon-books HR@10 0.6947 0.7426 0.7355 0.7489 0.85%

NDCG@10 0.4134 0.4895 0.4730 0.5045 3.25%

Amazon-electronics HR@10 0.5394 0.5152 0.5406 0.5552 7.76%

NDCG@10 0.3383 0.3254 0.3313 0.3455 6.18%

Taobao-User Behavior HR@10 0.7461 0.7507 0.7775 0.7975 6.23%

NDCG@10 0.5923 0.6034 0.6376 0.6471 7.24%

Note: The best results are highlighted in bold . The Improv was computed compare
with the AttRec model.

– AttRec significantly outperform the NeuMF model, as it combines the benefits
of both long-term and short-term preference. However, AttRec perform worse
than our model, which might be caused by the lack of autoregression property
in transformer.

– It is worth mentioning that the LSPM-base also achieves good performance
than AttRec. This demonstrates the efficiency of the proposed model.

4.3 Impact of History Size

For a particular dataset, considering too many historical interactions will
increase the complexity and introduce noise, but too few will fail to capture the
useful dependencies in history. Here, we conduct experiments on the MovieLens-
1m dataset to study the impact of history size on the performance. We perform
a grid search over {5, 7, 9, 11, 13, 15}. Results are shown in Fig. 2.

Fig. 2. Performances of LSPM w.r.t different history size.

We can see from Fig. 2 that performance begins to decrease when the his-
tory size is larger than 11. The decline of performance might be caused by the
fact that too large a history size will bring the noise in, and our self-attention
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Fig. 3. Performances of LSPM w.r.t embedding size.

mechanism cannot effectively offset it. For different data sets, we should choose
an appropriate history size.

4.4 Impact of Embedding Size

In general, the larger size of the embedding is, the more information can be
carried, and the performance will improve. To study the impact of embedding
size, we conduct experiments on MovieLens-1m dataset, in which the embedding
size is searched on {32, 64, 128, 300}. The results are shown in Fig. 3.

In the first stage of training, the performance is better, as the embedding size
growing. When the models converge, they tend to get the same performances. We
think the embedding size of 32 is large enough to capture complex structures.
When embedding size grows larger, the gain from increasing embedding size
can’t trade off the complexity it brings in.

5 Conclusion and Future Works

In this work, we propose a Long & Short-term Preference Model, which incor-
porates LSTM and self-attention mechanism to learn the short-term preference
and jointly model the long-term preference by a neural latent factor model. By
fusing the long-term and short-term preferences, LSPM can achieve more satis-
factory recommendations. Comprehensive experiments on three public datasets
demonstrate the effectiveness of the proposed model.

In the future, we will introduce more information into the model to provide
users with more accurate recommendations. In addition, we argue that the self-
attention module used in this paper cannot eliminate the noise caused by a long
history effectively. Thus, eliminating the noise should be an interesting research
direction.
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Abstract. Training deep networks requires large volumes of data. How-
ever, for many companies developing new products, those data may not
be available and public data-sets may not be adapted to their particular
use-case. In this paper, we explain how we achieved a production ready
slot filling deep neural network for our new single-field search engine
without initial natural language data. First, we implemented a baseline
by using recurrent neural networks trained on expert defined templates
with parameters extracted from our knowledge databases. Then, we col-
lected actual natural language data by deploying this baseline in produc-
tion on a small part of our traffic. Finally, we improved our algorithm
by adding a knowledge vector as input of the deep learning model and
training it on pseudo-labeled production data. We provide detailed exper-
imental reports and show the impact of hyper-parameters and algorithm
modifications in our use-case.

Keywords: Deep learning · Slot filling · Data generation ·
Pseudo-labeling · Knowledge database

1 Introduction: A Journey to a Single-Field Search
Engine

PagesJaunes is a french search engine specialized in the search of local businesses.
Historically, the search engine inputs are separated in two fields, the WhoWhat
and the Where. To be able to understand queries in natural language, we replaced
the two fields with a single-field (see Fig. 1). This change is motivated by the
democratization of dialogue systems available in smart-phones (Google Assis-
tant, Siri), home-devices (Google Home, Amazon Echo) and the development
of our own chat-bot. Being able to proceed queries in natural language is an
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important challenge to tackle to achieve a presence on those supports. However,
the single-field is only a proof of concept and our back-end still requires two
separated fields. To be able to use the existing back-end, we needed to map the
component of single-field queries to the WhoWhat and Where fields. The task of
extracting sub-concepts from a sentence is commonly known as slot filling.

Fig. 1. The PagesJaunes single-
field search engine

In the following sections, we relate the chal-
lenges we faced and how we overcame them. In
Sect. 2, we detail why we chose to implement our
own slot filling solution instead of using a com-
mercial one. In Sect. 3 we show how we used gen-
erated synthetic natural language data to train a
recurrent neural network (RNN) and the results
we obtained by deploying it on production on a small part of our traffic. Then,
in Sect. 4, we present the improvements we made to our algorithm, by includ-
ing features extracted from our knowledge data-bases and by auto-labeling the
queries collected in production. Through the paper, we show how each modifi-
cation impacted the performances of our solution. The complete results of our
experiments are detailed in Sect. 5.

2 Slot Filling

2.1 Problem Setting

The Slot Filling problem consists of extracting sub-concepts, defined as entities,
from a semantic frame, namely a user query. This is commonly performed as
a supervised sequence classification problem where tokens are associated with
corresponding slots. Usually, the slot filling task is proceeded after an intent
detection task, whose purpose is to understand the general meaning of the user
query. However, in our proof of concept, only one intention is supported by
default: the search of local businesses. Table 1 shows an example of query where
the slots are labeled following the In/Out/Begin (IOB) representation [13].

Table 1. Example of slot filling task with IOB representations of the slots.

Query I am looking for a vegan restaurant in Paris

Slot O O O O O B-WhoWhat I-WhoWhat O B-Where

Intent FIND BUSINESS

2.2 Commercial Solutions and State of the Art

Several commercial solutions can be used on slot filling tasks, such as Google
DialogFlow1 or Microsoft Luis2. Those softwares are based on the definition of
1 Google DialogFlow, https://dialogflow.com/.
2 Microsoft Luis, https://www.luis.ai/.

https://dialogflow.com/
https://www.luis.ai/
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intents and entities. Each intent is associated with several sentences, that provide
examples of what a user could ask the system. Each of them can contains several
slots that are filled with entities. For example, the sentence “I am looking for a
restaurant in Paris” can be associated with the intent FIND BUSINESS where
the slots WhoWhat and Where are respectively filled with the entities restaurant
and Paris.

Table 2. Performances of commercial
solutions on a slot filling task performed
on hand labeled production queries. The
accuracy is the proportion of queries where
the slots have been successfully labeled.

Algorithm Accuracy

Google DialogFlow 0.74

Microsoft Luis 0.64

DialogFlow and Luis can accept
a limited number of entities by slot,
in the order of ten thousands. Our
solution must be able to manage sev-
eral million entities by slot. As seen
in Table 2, those commercial solutions
failed to provide acceptable perfor-
mances when challenged on our use-
case3. The goal was to use the final
solution inside our production environ-
ment, thus it had to achieve better performances. We chose to implement a
customized solution based on state of the art research.

The slot filling task is a challenging problem widely studied in the natural lan-
guage understanding literature. One common method to address the slot filling
task is to use expert knowledges, templates and dictionaries [14]. This approach
has the advantage to be straightforward to implement but is domain dependent
and can struggle to generalize on new domains. An alternative to those meth-
ods was to use conditional modeling algorithms, such as conditional random
fields (CRF) [7,15]. Several works [8,9] challenged various network architec-
tures against networks using recurrent layers. Models built with recurrent layers
showed state of the art performances on the slot filling task and outperformed
existing algorithms.

3 Deploying the First Model in Production

During this project, we implemented different algorithms from the literature: an
algorithm based on our knowledge database; a CRF; several RNN based neural
networks. Our experimentations confirmed the insight provided by the literature
as the RNN based models outperformed the knowledge based algorithm and the
CRF. In the following, we present the methodology used to obtain our first model
without initial natural language data and the results obtained after deploying
the RNN on a small traffic in our production environment.

3.1 Generation of Synthetic Training Data from Templates

The main challenge we faced when beginning this project was the absence of nat-
ural language data related to the search of local businesses, even unlabeled ones.
3 Accuracies reported in Table 2 are obtained on our most recent testing set. At the

beginning of the project, we challenged both solutions on a smaller set containing
queries made by experts.
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Nearly exhaustive databases of businesses, keywords and localities were available
but were only used in the two fields search. Taking example on DialogFlow, we
implemented a text generator based on sentence templates where the slots would
be filled by entities from our databases (see Fig. 2).

(Give me|Tell me|What is) the (phone|number|num) of (BUSINESS NAME).

Fig. 2. An example of template

Around fifty templates were defined by experts and added to the text gen-
erator. The main advantage of this approach is to know the label of each word
by construction. Indeed, when generating a query, the indexes of each slot is
known, as well as their type (WhoWhat or Where). By using those templates we
generated a labeled dataset of several million queries.

3.2 The Initial Slot Filling Deep Neural Network

In this subsection we detail the steps used to process the queries before feeding
it to the network.

Word Embedding is a technique used to map textual data to dense real
valued vectors. When learned with appropriate algorithms they produce vector
space where distance encode semantic similarity. Algorithms using word embed-
dings as inputs show good generalization properties on natural language process-
ing tasks [12]. FastText library [2] is used here for its capacity to create vector
for unseen word during training. This is particularly crucial in our use-case as
users can make mistakes when writing queries.

Query Tokenization consits of, in our case, extracting words in the query
and normalizing them by removing punctuation, accents and uppercase. In some
cases, those special characters contain an important part of the information by
highlighting theWhoWhat and theWhere from the rest of the sentence. However,
most of the real-world queries do not contain this sort of characters, so we did
not consider them. Moreover, if the RNN achieves a high accuracy with those
generic conditions, it would be able to cope with every way to write words.

Recurrent Neural Networks [9] are used for their good performances on
the slot filling task. Actually, their ability to capture individual words and their
contextual information is beneficial for the slot filling task. More specifically,
bi-GRUs [3,5] shown to be particularly promising among other tested RNN
architectures on our use-case. The implementation details are listed in Sect. 5.
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3.3 Labeling Production Data to Build a Validation/Test Dataset

We constituted a dataset of 6000 labeled single-field queries from production.
Table 3 shows the accuracy of different baselines and of the retained RNN on
this dataset. The RNN clearly outperformed the knowledge based algorithm and
the CRF. The implementation of our knowledge based algorithm was quite naive
and only looked for the largest matching expressions in our database. However,
it showed unexpected performances and we decided to take advantage of those
knowledge by combining them with the RNN. This improvement is detailed in
the next section.

Table 3. Performances of several algorithms on a slot filling task performed on our
use-case (details are provided in Sect. 5). The accuracy is the proportion of queries
where the slots have been successfully labeled.

Algorithm Accuracy

Knowledge Based Algorithm 0.764

Conditional Random Fields 0.778

RNN 0.840

4 Continuous Improvements

After the labelization of production data, we continued to improve our solution.
We made two main improvements, adding a knowledge vector in input of the
network (see Subsect. 4.1) and integrating pseudo-labeled production data to the
training set (see Subsect. 4.2).

4.1 Taking Advantage of Our Existing Knowledge Databases

During the review of miss-classified queries we noticed that, for some of them,
human experts had to use database queries to know if some sub-concepts of
the query were business names and/or localities. As the current model did not
achieve human-like performances, we had the intuition that to be able to perform
better, we could include information from our databases as inputs of the network.
Indeed, as those concepts are quite rare in Wikipedia documents, using the only
information from the embedding may not be enough to solve the task.

N-Gram of Words. A list of every word N-gram is generated from the user
query and each database is queried to see if it contains the N-gram. Each of
them is thus associated with its frequency inside the WhoWhat and Where fields
and its presence inside each database (businesses names and activities/keywords;
the localities (cities/points of interest/addresses). See Fig. 3 for an example of
N-gram decomposition.
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Fig. 3. Decomposition of a query in n-gram and search of matches in several database.
In this example, activity db contains the business activities, city db the cities and
whowhat/where db the history of the inputs inside the WhoWhat and Where fields.
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Fig. 4. The final architecture
used by our RNN taking advan-
tage of our knowledge database.

A Knowledge Matrix by token of the
query is built by aggregating every information
about it. The two dimensions of this matrix
present: the size N of the N-grams (N =
1, 2, 3, 4+); the binning of frequencies inside the
different fields (i.e. WhoWhat and Where) and
the presence of the N-grams inside the differ-
ent databases. Notice that features activated
by an N-grams are activated on the knowledge
matrix of all words compounding the N-grams.
The knowledge matrix is finally flattened to form
a knowledge vector. As shown in Fig. 4, the
knowledge vector is forwarded through a dense
layer before being fed to the RNN to expose non-
linear relationships between the raw knowledge features. We call one output of
this layer a knowledge embedding.

4.2 Achieving a Better Sentence Embedding with Pseudo-labeling

The main drawback of our model was the training set which is generated and
does not include actual production data. Hand labeled data are not in sufficient
quantities and are only used for validation and test. To include actual data, we
create a pseudo-labeled data-set by labeling the production data with a RNN
trained on the templates. This method is called pseudo-labeling [4] and achieves
an effect similar to entropy regularization. It has the main advantage to allow
the network to be trained on the actual distribution of queries. Indeed, while
the sentences generated by the template are correctly labeled, the distribution
of each type of queries may not reflect ground truth - actually, it does not. We
train our network by incorporating pseudo-labeled data in the template dataset.
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5 Experimentation

Optimizing Hyper-Parameters with Random Search. We optimize the
hyper-parameters through a Random Search [1]: many networks are trained with
sets of hyper-parameters sampled over distributions of Table 4. It has been shown
that this approach is more efficient than grid-search or manual-search, especially
when the hyper-parameter space is high dimensional.

Table 4. The sampling distribution of each hyper-parameter.

Parameter Sampling distribution Description

batch size choice([128, 256, 512]) Batch size

learning rate log uniform(10−5, 10−1) Learning Rate

knowledge emb size int.uniform(32, 512) Size of the knowledge
embedding layer

concat dropout float.uniform(0.01, 0.4) Dropout value of the
concatenation layer

rnn layers choice([1, 2]) Number of RNN layers
(bi-GRU)

rnn size int.uniform(32, 1024) Size of the RNN layers
(bi-GRU)

rnn dropout float.uniform(0.1, 0.4) Dropout value of the
RNN outputs

dense size int.uniform(32, 1024) Size of the dense layer
after the RNN

dense dropout float.uniform(0.1, 0.4) Dropout value of the
dense layer after the
RNN

pseudo label ratio choice([0, 0.1, 0.2, 0.3, 0.4, 0.5]) Ratio of pseudo-labeled
data in training

use knowledge vector choice([True, False]) Availability of the
Knowledge Vector

Implementation Details. The network is implemented in Pytorch [11]. Inter-
mediate dense layers are activated through rectified linear units [10] and the pre-
diction layer through a sigmoid function. The network is trained using the Adam
optimizer [6]. The 6000 hand labeled queries are shuffled and separated into vali-
dation and test sets, each containing 3000 queries. Best models are selected using
the accuracy on the validation set.

Results. More than 300 networks were trained using the random search. Table 5
presents the accuracies of the best networks obtained through the random search
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for each combination of improvements. Without surprise, the baseline RNN
shows a lower accuracy than the improved networks. Indeed, the models suffer
from the absence of actual natural language data and from the large number of
entity values (several million). On another side, networks trained with a part
of pseudo-labeled data or with knowledge vectors as input data achieve
an higher accuracy. Combining both shows significant improvement over other
networks. More than half of the best networks trained using both Knowledge
Vectors and Pseudo-Labeling outperform the networks obtained by training
the RNN alone or by using only one of the improvements.

Table 5. Recapitulation of the results obtained by the Recurrent Neural Network
(RNN), the RNN with Knowledges Vectors (KV) as additional inputs, the RNN trained
on templates and pseudo-labeled data and the combination of both.

Algorithm Accuracy

Templates Validation Test

RNN 0.936 0.824 0.840

RNN+PL 0.928 0.856 0.867

RNN+KV 0.939 0.857 0.866

RNN+KV+PL 0.921 0.875 0.886

We also observe that pseudo-labeled data decrease the accuracy of the net-
works on the data generated from templates. This can be explained by the differ-
ence of distributions between generated and production data. However, as seen
previously, including pseudo-labeled data increases the accuracy of the models
significantly on validation and test.

6 Conclusion

During this work, many obstacles were faced, including the lack of real word
labeled data. We showed that on the slot filling task, a baseline good enough
(when manually tested by experts) to be used on a proof of concept can be
achieved with data generated from templates. After manually labeling produc-
tion data, we experimentally demonstrated that, on our use-case, combining
pseudo-labeling with knowledge data allows to perform better. This work is an
actual example of pseudo-labeling allowing to raise the performances of a net-
work to a next level on a real world problem. Moreover, the use of random search
was crucial in the search of a good combination of hyper-parameters. We think
that the methodology implemented during this project will be useful to many
practitioners trying to solve real world natural language understanding tasks.
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Abstract. Ensemble learning is a powerful tool in machine learning and it is
very significant to utilize the mechanism of ensemble learning to improve the
performance of deep learning for recognition and classification tasks. In this
paper, we propose a general ensemble learning framework of deep neural net-
works based on swarm intelligence algorithms for solving the combination coef-
ficients to the outputs of these component deep neural networks. We formulate
the weights assigning problem for the deep neural networks as an optimization
problem whose objective function is highly complicated and use swarm intelli-
gence algorithms to solve it. We evaluate this ensemble learning framework on
two real-world datasets, Market-1501 for person re-identification and CIFAR for
image classification, and show that it outperforms a single deep neural network
remarkably.

Keywords: Deep learning · Ensemble learning · Swarm intelligence

1 Introduction

Deep learning [13] has shown its great power in various research fields. In real-world
applications, researchers and engineers often train multiple networks for a specific task
and integrate the networks via simply averaging the outputs. However, due to the dif-
ferent characteristics of different networks, assigning equal weight to each network is
unreasonable. Integrating multiple networks to obtain better performance falls into the
category of ensemble learning [4], based on the philosophy that the whole is more than
the sum of parts. We want to make the best use of the advantages and bypass the dis-
advantages of various networks, thus it is necessary and significant to consider how to
integrate the networks more effectively.

In this paper, we propose a general ensemble learning framework of deep neural
networks based on swarm intelligence. In the proposed framework, the objective func-
tion is a certain performance measure of the network, and the variables are combi-
nation coefficients of networks. Since the objective function is non-differentiable and
highly complicated, we regard it as a black-box and solve the optimization problem via
swarm intelligence algorithms. As a specific application, we apply our proposed ensem-
ble learning framework to person re-identification task. To further claim the generality
of the framework, we adapt it to image classification task and conduct experiments on
c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, CCIS 1142, pp. 256–264, 2019.
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CIFAR dataset [12]. The experimental results on CIFAR also confirm that the proposed
method is very effective.

The rest of this paper is organized as follows. We review related work in Sect. 2.
The ensemble learning framework is proposed in Sect. 3. We formulate the ensemble
learning problem for re-identification task and describe the detailed algorithm in Sect. 4,
including experimental results and analysis. Experiments on CIFAR are presented in
Sect. 5 as an example of applying the framework to the image classification task. Finally,
we give a brief conclusion in Sect. 6.

2 Related Work

Ensemble learning [4] is a widely used technique in statistical learning. Some previ-
ous works have been done in the area of ensemble learning methods for deep neural
networks. Specifically, an efficient model averaging method for deep neural networks
was proposed in [15]. The key point of this work is to group the hidden layer of a sin-
gle network, while our work emphasizes on exploiting advantages of different networks.
Some ensemble methods for deep neural networks have been proposed for specific tasks
[3,11], but our proposed framework is general and can be applied to various application
scenes.

Person re-identification [24] is an active research topic in the field of computer
vision. Most deep learning methods [14,18,25] train a convolutional neural network
as a feature extractor, then calculate the similarity between a pair of probe and gallery
images based on their features. Different network structures and loss functions influ-
ence the performance significantly. Metric learning methods [21,22] are commonly
used to improve performance on re-identification tasks, which share similarities with
our method. However, metric learning usually aims at the output of a single network,
while our method involves combining outputs of multiple networks.

3 Ensemble Learning Framework

3.1 Problem Formulation

For a given task, suppose we have trained n neural networks {Ni}n
i=1, which may have

different network structures, loss functions or training datasets. The output of network
Ni is denoted by o(Ni), which determines the performance of the network. Formally,
we have a performance evaluation function f which depends on an evaluation dataset
E , then f(o(Ni); E) measures how well the network Ni performs on evaluation set E .

It’s reasonable to assume that a linear combination of the outputs {o(Ni)}n
i=1 leads

to a better performance. More precisely, for certain weights ω = (ω1, ω2, · · · , ωn),
f(

∑n
i=1 ωio(Ni); E) is large in value, indicating that combining the outputs of differ-

ent networks yields better performance. Without loss of generality, we may assume∑n
i=1 ωi = 1, since scaling the output has no influence on performance in most cases.

Furthermore, we assume the performance of each single network is not too bad, thus
we can constrain ωi ≥ 0, i = 1, 2, · · · , n. This means no network plays a negative role
in the combination.
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We need to find an ω such that f(
∑n

i=1 ωio(Ni); E) is largest in order to obtain the
best result. Ideally, E should be chosen as the test set, but the test set is not accessible in
real applications, thus we need a proper strategy for choosing E , which may be relevant
to the task, and we will show how to choose E in Sects. 4 and 5. Now we can formulate
the ensemble learning problem as a optimization problem as

max
ω=(ω1,ω2,··· ,ωn)

f(
n∑

i=1

ωio(Ni); E) s.t.
n∑

i=1

ωi = 1 and ωi ≥ 0, ∀i = 1, · · · , n. (1)

3.2 Optimization Procedure

In most cases, the performance evaluation function f is a black-box: we can calculate
the value of f given input, but it is impossible to write f in an explicit form, let alone
calculating the derivatives. Therefore, gradient-based optimization algorithms are not
suitable for this problem. Instead, we propose to solve the optimization problem via
swarm intelligence methods. Swarm intelligence algorithms are effective in optimiza-
tion problems with highly complicated objective functions. We have a wide range of
algorithms to choose in practice, such as particle swarm optimization algorithm (PSO),
artificial bee colony algorithm (ABC), genetic algorithm (GA) and so on.

Algorithm 1. General ensemble learning framework of deep neural networks
Input: evaluation set E , trained networks {Ni}ni=1, evaluation function f
Output: ensemble weights ω = (ω1, ω2, · · · , ωn)

1: Set objective function as f(
∑n

i=1 ωio(Ni) : E)
2: Initialize swarm states
3: for each iteration do
4: Update swarm states via swarm intelligence algorithm

5: Calculate ω according to the final swarm state
6: Return ω = (ω1, ω2, · · · , ωn)

When we apply the framework in an application, we should clarify four issues:
the output of the networks {o(Ni)}n

i=1, the evaluation set E , the performance evalua-
tion function f and the optimization algorithm. Once we have determined these issues,
the general framework becomes a concrete algorithm. Since one can vary the settings
according to the specific task, we claim the framework is suitable for a wide range of
problems.

4 Experiment Study I: Person Re-identification

4.1 Formulation for Re-identification

In person re-identification task, a trained neural network can be viewed as a feature
extractor. We use N to denote a neural network whose feature dimension is d, then
for a given image q in query set Q, we can extract the feature N (q) ∈ R

d. Similarly,
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suppose the gallery set is G, for each g ∈ G the feature is N (g) ∈ R
d. Then neural

network N induces a similarity metric function as dN (q, g) = 〈N (q),N (g)〉, where
the last term is the standard inner product in R

d. Suppose there are n trained neural
networks {Ni}n

i=1 and correspondingly, n similarity metric functions {dNi
}n

i=1. We
then have o(Ni) = dNi

, and use dω to denote
∑n

i=1 ωio(Ni).
The training set can be randomly divided into training part and evaluation part.

The training part is used to train the neural networks, and the evaluation part forms
the evaluation set E . For evaluation function, we set f to be the mAP after re-ranking.
Furthermore, we choose particle swarm optimization (PSO) as the optimization method.

4.2 Experimental Settings

We use Market-1501 dataset [24] in this experiment. We train models on Market-1501
dataset with various network structures and loss functions. For network structures, we
consider ResNet-50 [5] and DenseNet-121 [10]. For loss functions, we consider label
smoothed cross entropy loss [19], center loss [20] and triplet loss [17]. Since the size
of training set is relatively small, we use ResNet-50 and DenseNet-121 pre-trained on
ImageNet dataset [2]. We use stochastic gradient descent (SGD) optimizer with batch
equal to 32. Nesterov’s acceleration, weight decay, and momentum are also used. In
the training phase, the learning rates for network parameters are set to be small (0.01),
except for the classifier block (0.1). The maximum epoch is set to be 60 and the learning
rates are divided by 10 after 30 epochs. Random rotation, random crop, random erasing
[27] and color jitter are used as data augmentation techniques.

Under the experimental settings above we train 6 neural networks on Market-1501.
The performances of these models are reported in Table 1. Here, we consider Rank-1,
Rank-5, Rank-10 accuracies and mean average precision (mAP) after re-ranking on the
test set.

Table 1. Accuracies of various base models on Market-1501.

Model Network Loss Rank-1 Rank-5 Rank-10 mAP

NRE Resnet-50 Cross entropy 93.26% 94.71% 95.99% 84.35%

NRC Resnet-50 Center loss 89.52% 94.12% 95.69% 84.32%

NRT Resnet-50 Triplet loss 91.21% 95.22% 96.56% 86.58%

NDE Densenet-121 Cross entropy 91.24% 95.10% 96.17% 86.39%

NDC Densenet-121 Center loss 92.22% 95.99% 96.94% 87.18%

NDT Densenet-121 Triplet loss 89.49% 94.09% 95.87% 84.06%

4.3 Results of Ensemble Learning

In this section, we investigate whether integrating different models leads to performance
improvement. We consider three kinds of ensemble here.
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– Type 1: Integrate models with a fixed network structure and different loss functions.
– Type 2: Integrate models with fixed loss function and different network structures.
– Type 3: All models are integrated.

For comparison, we also evaluate the performance of the simple averaging strategy,
that is to say, we assign equal weight to each model. In the following, N1 + N2 means
we integrate N1 and N2 together, and the weights are listed below. The experimental
results are shown in Table 2.

According to Table 2, we have three observations. First, compared with Table 1,
we can see that integrating multiple networks outperforms a single network. When we
use a single network, NRT has the best mAP 86.58%. However, when we consider
more networks, almost all the models have higher mAP. This observation confirms the
philosophy of ensemble learning: the whole is greater than the sum of parts. Second,
weights assigned by the proposed ensemble learning framework lead to higher mAP and
Rank-1 accuracy compared with simple averaging strategy. Therefore, we conclude that
the ensemble learning framework is effective. Last but not least, the weights found by
PSO are reasonable in the sense that better base learner has larger weight while worse
base learner has a lower weight.

Table 2. Accuracies of different ensemble models on Market-1501.

Ensemble
type

Models and weights Rank-1 Rank-5 Rank-10 mAP

Type-1 NRE +NRC +NRT

(0.0603, 0.0446, 0.8951)
92.22% 95.90% 97.03% 88.86%

NRE +NRC +
NRT (1/3, 1/3, 1/3)

91.57% 95.01% 96.44% 86.99%

NDE +NDC +NDT

(0.2460, 0.6030, 0.1509)
93.14% 96.26% 97.34% 89.44%

NDE +NDC +NDT

(1/3, 1/3, 1/3)
93.08% 96.56% 97.51% 89.24%

Type-2 NRE +NDE (0.1726, 0.8274) 92.37% 95.46% 96.67% 87.84%

NRE +NDE (1/2, 1/2) 91.95% 95.58% 96.62% 87.71%

NRC +NDC (0.4208, 0.5792) 92.43% 95.90% 97.27% 89.30%

NRC +NDC (1/2, 1/2) 92.46% 95.99% 97.27% 88.26%

NRT +NDT (0.9307, 0.0693) 92.01% 95.84% 97.09% 87.72%

NRT +NDT (1/2, 1/2) 90.62% 94.60% 96.14% 85.37%

Type-3 NRE +NRC +NRT +NDE +
NDC +NDT

(0.1817, 0.1027, 0.1692, 0.2392,
0.2135, 0.0937)

93.82% 96.62% 97.54% 89.70%

NRE +NRC +NRT +NDE +
NDC +NDT

(1/6, 1/6, 1/6, 1/6, 1/6, 1/6)

93.65% 96.67% 97.54% 89.64%
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4.4 Comparisons and Discussions

Market-1501 is a widely-used person re-identification dataset, and the performances of
various methods are recorded on the home page of this dataset. Here, we compare the
best model obtained in the last subsection with state-of-the-art methods1 in Table 3.

Table 3. Comparisons with state-of-the-art methods on Market-1501 dataset.

Method Rank-1 Rank-5 Rank-10 mAP

Zhang et al. [26] 88.79% – – 83.79%

Hermans et al. [7] 91.75% 95.78 % – 87.18%

Sarfraz et al. [16] 90.30% – – 84.00%

Zhong et al. [27] 89.13% – – 83.93%

Li et al. [14] 93.80% – – 82.80%

Ours 93.82% 96.62% 97.54% 89.70%

Our best result outperforms state-of-the-art results. However, we confess that our
best model requires higher computational cost and running time. In the training stage,
we need to train multiple neural networks. In the test stage, we have to do the forward
computation several times. Thus, the proposed framework may not be suitable for real-
time tasks. Besides, one may ask, why we don’t train the models jointly just like a
mixture of expert model? Simultaneously training several models needs a large memory,
which is unrealistic in certain scenes when the computational resources are scarce. On
the other hand, training a single network is easy even on a personal computer. Thus, we
choose to train the networks individually, then combine the outputs.

5 Experiment Study II: Image Classification

5.1 Formulation for Image Classification

To show the proposed framework is general, we consider image classification task in
this part. Specifically, we use CIFAR dataset [12] in this experiment. Assume there are
n trained neural networks {Ni}n

i=1. In a classification problem, given the input image x,
the output Ni(x) is a probability distribution over classes. Sine

∑n
i=1 ωi = 1, ωi ≥ 0,∑n

i=1 ωiNi(x) is still a probability distribution over classes. We use all the images in
the training set to train the models. Then we randomly choose 2000 images from the
standard test set as an evaluation set E , and the remaining 8000 images are used for per-
formance testing. In this way, we guarantee that the test set and evaluation set have no
overlap. The performance evaluation function f is set to be the classification accuracy,
and we consider PSO, ABC, and GA as optimization methods in this experiment.

1 Data source: www.liangzheng.org/Project/state of the art market1501.html.

www.liangzheng.org/Project/state_of_the_art_market1501.html
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5.2 Experimental Settings

For the image classification task, we need the features to be separable rather than dis-
criminative, thus we only use cross-entropy loss. Instead, we consider various network
structures, including ResNet [5], PreAct ResNet [6], Wide ResNet [23], SeNet [9],
MobileNet [8] and Dual Path Net [1]. For CIFAR-100 (CIFAR-10), we train the net-
works for 100 (50) epochs with batch size equals to 128 (128). The learning rate is set
to be 0.1 (0.1) initially and divided by 10 (10) every 30 (20) epochs. When we integrate
multiple networks, we use PSO, SA, and ABC as optimization algorithms.

5.3 Experimental Results

The experimental results are listed in Table 4. In this table, PSO, GA, and ABC mean
that we combine all the models by the proposed ensemble learning framework, using
PSO, GA, ABC as the optimization algorithm respectively. For comparison, we also
assign equal weight to each network, and the corresponding results are shown in the
AVE row. Due to the page limit, the weights assigned to networks are omitted here.

Table 4. Accuracies of different models on CIFAR-10 and CIFAR-100. The left table shows
classification accuracies of baseline models, and the right table shows the performances obtained
by ensemble methods.

CIFAR-10 CIFAR-100

ResNet 93.13% 77.30%

PreAct ResNet 93.11% 77.26%

Wide ResNet 93.68% 78.99%

SeNet 92.59% 76.71%

MobileNet 90.34% 71.96%

Dual Path Net 91.84% 77.68%

CIFAR-10 CIFAR-100

PSO 94.46% 81.54%

GA 94.18% 81.70%

ABC 94.18% 81.46%

AVE 94.06% 81.24%

With the proposed ensemble learning framework, we significantly improve the accu-
racies on CIFAR-10 and CIFAR-100 compared with a single network. All ensemble
learning results outperform simple averaging strategy. This indicates that the proposed
ensemble learning framework is more effective in solving the weight assigning problem.
Different swarm intelligence algorithms lead to different results, among which PSO
yields the best accuracy on CIFAR-10 while GA leads to best accuracy on CIFAR-100.

6 Conclusion

We have proposed a general ensemble learning framework of deep neural networks
based on swarm intelligence. Compared to current ensemble methods in deep learning,
our framework is universal and extensible, which can be applied in various applications.
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Specifically, we adopt the proposed method to the person re-identification task and
image classification task. The extensive experimental results on Market-1501 dataset
and CIFAR dataset show that the proposed ensemble method is both effective and
general.
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Abstract. Real-time semantic segmentation is a challenging task in computer
vision. Many researches emphasize real-time inference speed while neglecting
segmentation quality. To tackle this problem, we propose a framework called
DSMRSeg to achieve high-speed with high-accuracy result after training on
only one GPU. Overall, we accomplish this by three core components: (1) Dual-
Stage Feature Pyramid Network structure is designed to obtain richer multi-scale
information and enhance the entire features hierarchy by bidirectionally prop-
agating features with strong semantics and accurate localization. (2) Multi-
Range Context Module is developed to expand receptive fields by aggregating
the local dense features and multi-range context information. (3) Light-weight
Feature Fusion Module is proposed to merge dual-stage features effectively. We
evaluate DSMRSeg on Cityscapes, CamVid and BDD100K datasets and pro-
duce competitive results compared with the state-of-the-art methods. Specifi-
cally, DSMRSeg achieves 75.5% mIoU on Cityscapes test set, with speed of 40
FPS on one NVIDIA GTX1080 card for 1024 � 512 high-resolution image.

Keywords: Deep neural networks � Real-time semantic segmentation

1 Introduction

Semantic segmentation performs pixel-level label prediction for images [1]. With the
development of deep convolutional neural networks [2] has made notable progress in
providing accurate segmentation results. However, then consist of extremely deep and
wide layers, with huge parameters and computation complexity.

There are three methods accomplish real-time semantic segmentation. (1) Based on
light-weight networks. [3, 4] uses light-weight networks of pre-training on ImageNet,
such as ShuffleNet [5], as encoder part. Then skip connection or U-shape structure is
used as decoder [1]. Though it is simple and effective, the receptive fields of light-
weight networks is too small to cover large objects, resulting in low accuracy.
(2) Based on context module. [6–8] adds context module at every stage of network,
produces 1/8 feature map resolution and from scratch training. It not only expands
receptive field, but also preserves spatial information. However, it discards decoder,
lack multi-scale information and weaken feature discriminating ability. (3) Based on
multi-branch structure. Some branches preserve the spatial information, while others

© Springer Nature Switzerland AG 2019
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obtain sufficient receptive field, finally, combine multi-branches results [9–12]. Nev-
ertheless, it also can’t exploit the multi-scale information effectively. Therefore, these
three methods achieve high-speed, but low-accuracy segmentation results.

To achievement good trade-off on accuracy and speed, we first propose a novel
Dual-Stage Feature Pyramid Network (DSFPN), which obtains richer multi-scale
information and enhances the entire features hierarchy by bidirectionally propagating
semantically strong and accurate localization features. Firstly, we choice light-weight
network as encoder to achieve high-speed, like [9, 12]. Then, we design a Inverted FPN
structure to propagate the accurate localization features to all levels. Finally, to
strengthen the multi-scale features capability, we add extra top-down path on the
Inverted FPN features. However, the decoder of DSFPN is much deep, resulting in
vanishing gradient as introduced in [2]. To address it, we propose Long-Range
Residual (LRR) unit, it can reuse previous features, enhances feature discriminating
ability.

Furthermore, we propose Multi-Range Context Module (MRCM), which aggre-
gates local dense features and multi-range context, to expand receptive fields of light-
weight encoder tremendously. Small-range local feature expresses local texture and
large-range feature can leverage more context information, learning long-range rela-
tionship between pixels. Meanwhile, DSFPN has different features representation,
instead of simple summation them, we develop a light-weight Dual-stage Feature
Fusion Module (DFFM) to merge these features.

Based on the above insight, we propose Dual-Stage feature pyramid and Multi-
Range context aggregation network, named DSMRSeg. It achieves 75.5% mIoU on
Cityscapes test set, with speed of 40 FPS on GTX1080 card.
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2 Related Work

We introduce real-time semantic segmentation, with related work on context modules.

Real-Time Semantic Segmentation: Real-time semantic segmentation requires good
trade-off on accuracy and speed. ENet [15] removes the last stage of the model to get
extremely high speed, which the accuracy is very low. ERFNet designs factorized
convnet to reduce computation cost. Based on PSPNet [16], ICNet [12] uses image
cascade network to speed up the semantic segmentation. ESPNet [7] proposes efficient
spatial pyramid to achieve real-time. [9–11] fused spatial path and context path to
obtain better accuracy and speed. More recently, DFANet [17] utilizes deep feature
aggregation network under resource constraints.

Context Module: Deeplabv2 [18] proposes ASPP module which uses dilated con-
volutions of different dilation rate to obtain rich context. Deeplabv3 [19] adds global
average pooling with ASPP module to capture global context of the image. However,
the dilated convolution based methods only obtain sparse context information, leads to
low quality result. Furthermore, PSP module [16] uses different scales of average
pooling layers to aggregate context, which lack adaptive context information. Recently,
DANet [20] collects useful context information by using attention mechanism, which
has high computation complexity, leads to non real-time speed.

3 DSMRSeg

3.1 Dual-Stage Feature Pyramid Network

We build a effective and efficient feature pyramid network, DSFPN, bidirectionally
propagates features with strong semantics and accurate localization, as illustrated in
Fig. 1. We first choice light-weight network as encoder to achieve high-speed, such as
ResNet18 [2]. We define the four stages of encoder using {C2, C3, C4, C5}, and
followed by FPN [14] to get valid features {P2, P3, P4, P5}. To propagate the accurate
localization information of P2 to all level P3–P5, we design a bottom-up path, named
Inverted FPN, to obtain new features level {DC2, DC3, DC4, DC5}. Furthermore, we
strengthen the features hierarchy to get richer multi-scale information by using new
top-down path corresponding to {DC2, DC3, DC4, DC5}, and use {DP2, DP3, DP4,
DP5} denote these generated features. We bidirectionally propagating features with
strong semantics and accurate localization by fusing top-down and bottom-up path.

Especially, we use 1 � 1 convolution and bilinear interpolation generate {DP2,
DP3, DP4, DP5}, like FPN (we use 128 channels). However, DSFPN decoder is
deeper, leads to vanishing gradient problem, the result is sub-optimize. Inspired by
residual unit [2], we propose Long-Range Residual (LRR) unit, as shown in Fig. 1. It
not only facilitates information flow, but also reuses {C2, C3, C4, C5} and {P2, P3, P4,
P5} features, enhances feature discriminating ability across scales. Thus, we first
downsampling DCi−1 by using a 3 � 3 convolution with stride 2, and utilize 1 � 1
convolutions in order to be aligned Pi, Ci, with DCi−1, then sum up Pi, Ci, and DCi−1 to
get feature DCi. Repeat the process to obtain {DC2, DC3, DC4, DC5}.

DSMRSeg: DSFP and MRC Aggregation for Real-Time Semantic Segmentation 267



3.2 Multi-Range Context Module

Motivation: Receptive fields is key for semantic segmentation. Large receptive field
provides rich context information, and learn the long-range relationship between pixels.
Philosophical ASPP [19] and PSP [16] context module expand receptive field by
dilated convolutions and pooling operation. However, the former ignores dense context
information. The latter collects context in a non-adaptive manner, missing the differ-
ence of local representation and context dependencies for different categories.

MRCM: Based on the above insight, we propose the Multi-Range Context Module
(MRCM), aggregates local dense feature and multi-range context to expand receptive
field tremendously in a adaptive manner. Especially, as shown in Fig. 1. We first
cascade three 3 � 3 dilated convolution layers with different dilation rate (we empir-
ically use 3, 5, 7 in experiments) to obtain rich multi-range features. Then we combine
last features (e.g., C5) of backbone (e.g., ResNet18) to generate the dense local features.
Finally, we aggregate local and context features by concatenate.

However, dilated convolution can cause gridding artifacts [26], missing the local
information and irrelevant of large range context. Inspired by [26], we design a novel
light-weight DwF operation based on Depthwise [25] and Factorized [8] convolutions,
it smoothes every dilated convolution to mitigate the gridding artifacts, as Fig. 1.

3.3 Dual-Stage Feature Fusion Module

DSFPN obtains dual-stage features Out1 and Out2 by upsample and summation multi-
layers features {P2, P3, P4, P5} and {DP2, DP3, DP4, DP5}, which belong to different
feature representation. Instead of simple sum up Out1 and Out2, we introduce a light-
weight Dual-stage Feature Fusion Module (DFFM) to combine them. Especially, Fig. 1
shows the details of this module, we first concatenate Out1 and Out2, then we use 3 � 3
convolution layer to fuse them. Next, following the SE block [27], we first learn a
weight vector, then, re-weighting features by the rescaling operation which each of the
features is enhanced or weakened by learned weight vector.

3.4 Network Architecture

The Fig. 1 shows our network architecture, DSMRSeg. We use pre-trained ResNet18
[2] with FPN [14] model as effective backbone. All network is end-to-end trained by
cross-entropy loss. To stabilize the training process, main loss together with auxiliary
loss are used to help optimization [16], where the main loss is defined on the final
output of the network and the auxiliary loss is defined on Out1 with weight of 0.4.
Meanwhile, we build a simplified network architecture, SSMRSeg, which only employ
our MRCM module.
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4 Experiments

In this section, we evaluate the proposed DSMRSeg on Cityscapes [21], CamVid [22],
BDD100K [23] road scene datasets. The performances are reported using the mIoU in
all experiments. Especially, our implementation is based on PyTorch on only one
GTX1080 desktop. We employ Adam with weight delay = 4e−4. The cosine learning
rate policy is used, in which set base learning rate to 4e−4, the min learning rate is
1e−6. For data augmentation, we employ random mirror, mean subtraction and random
scale on the input images. Due to the memory limitation, we employ 12 batch size and
448 � 448 fixed size for CamVid, 8 batch size and 640 � 640 size for other datasets.
Code will be made available upon publication.

4.1 Ablation Study

Strong Baseline. We use the ResNet18-FPN [2, 14] as the backbone, and upsample
the P3, P4, P5 feature map to P2 size. Then directly upsample output after summation
of P2, P3, P4, P5 as original input image, like FCN [1]. The performance of the base
model as our baseline, as shown in Table 1, achieves 71.712% mIoU performance.

Ablation for MRCM. (1) MRCM. It aggregate the local dense feature and multi-
range context to expand receptive field tremendously. Therefore, it improve the per-
formance from 71.712% to 75.229%, as shown in Table 1. (2) ASPP [19] and PSP
[16]. The ASPP and PSP is widely used in the semantic segmentation, and achieve
state-of-the-art results. But our MRCM improve the performance 0.505% and 1.017%
relative to ASPP and PSP without extra parameters, as shown in Table 1. (3) DwF. The
performance drops 0.462% if we remove the DwF operation.

Ablation for DSFPN. It obtains rich multi-scale information and enhance the entire
feature hierarchy by fusing top-down and bottom-up path. As shown in Table 2, it
improves the performance from 75.229% to 75.880%.

Ablation for LRR. To mitigate vanishing gradient problem caused by the deeper
decoder, we propose novel LRR unit, it reuses previous stage features, enhance dis-
criminating ability. The effect of the LRR is presented in Table 2.

Table 1. Validation of the different context module. All models were trained on Cityscapes
train set, the evaluation is performed on Cityscapes val set.

Method MRCM w/o DwF ASPP PSP Params (M) mIoU (%)

Baseline 11.82 71.712
+ASPP [19]

p
12.10 74.724

+PSP [16]
p

12.21 74.212
+MRCM w/o DwF

p
12.30 74.767

+MRCM
p

12.30 75.229
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Ablation for DSFFM. We introduce a light-weight DSFFM module to combine
output features of DSFPN. First, we evaluate the performance of directly summation,
then compare it with our proposed feature fusion module. The Table 2 shows our
DSFFM outperform the summation method, from 75.930% to 76.835%.

4.2 Speed Analysis

We measure inference speed on the GTX1080 and Jetson TX2 in different resolution
input image of DSMRSeg and SSMRSeg, as shown in Fig. 2. Especially, for
1024 � 512 high-resolution input, DSMRSeg/SSMRSeg achieve 40/82 FPS on one
GTX1080, and for 360 � 640 input, DSMRSeg/SSMRSeg get 8.6/14.5 FPS on Jetson
TX2. Therefore, our model obtain good trade-off on speed and accuracy.

4.3 Comparison with State-of-the-Arts

Cityscapes. We report the results of the proposed method on Cityscapes test set as
shown in Table 3. Our SSMRSeg and DSMRSeg achieve large accuracy gain compare
to the real-time methods which from scratch training, such as ENet [15], ERFNet [8],
and CGNet [6] et al. For using pre-training model on the ImageNet, [12] and [17],
DSMRSeg improve the performance 6.0% and 4.2%. Especially, compared with the
previous state-of-the-art method BiseNet [9], DSMRSeg obtain better segmentation
accuracy with less parameters. Figure 3 shows the Cityscapes test set visualization
results where the DSMRSeg model performed better.

Table 2. Validation of the proposed core components. All models were trained on Cityscapes
train set, the evaluation is performed on Cityscapes val set.

Method MRCM DSFM LRR DFFM Summation mIoU (%)

Baseline 71.712
SSMRSeg

p
75.229

+DSFPN
p p p

75.880
+LRR

p p p p
75.930

+DFFM
p p p p

76.835
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the different resolution input image.

270 M. Yang and Y. Shi



CamVid. The Table 4 shows the statistic result on CamVid test set. We adopt the
960 � 720 image resolution for training and testing, like as [9, 17]. Our methods get
much higher segmentation accuracy than other state-of-the-art real-time methods.

BDD100K. As shown in Table 4, our model achieves 57.3% performance on val set.
It’s better than the strong baseline, DRN [24], on the BDD100K dataset.

Table 3. Accuracy comparison of our method against other state-of-the-art methods on
Cityscapes test set. Our models were trained on Cityscapes train set. “–” indicates that the
methods didn’t give the corresponding result. “MS” indicates use Multi-Scale test of {0.5, 0.75,
1.0, 1.25}.

Method Backbone Params (M) mIoU (%)
Test set Val set

PSPNet [16] ResNet 250.8 78.4 –

ENet [15] From scratch 0.4 58.3 –

SegNet [13] VGG16 29.5 56.1 –

ShuffleSeg [4] ShuffleNet – 58.3 –

ERFNet [8] From scratch 2.03 68.0 –

BiseNet [9] Xception39 5.8 68.4 69.0
BiseNet [9] ResNet18 49.0 74.7 74.8
ICNet [12] PSPNet50 26.5 69.5 67.7
ContextNet [10] From scratch 0.9 66.1 65.9
CGNet [6] From scratch 0.5 64.8 63.5
Fast SCNN [11] From scratch 1.11 68.0 68.6
ESPNet [7] From scratch 0.4 60.3 –

DFANet [17] Xception 7.8 71.3 71.9
DSMRSeg ResNet18 13.82 75.5 76.8
DSMRSeg-MS ResNet18 – 77.5
SSMRSeg ResNet18 12.30 74.5 75.2
SSMRSeg-MS ResNet18 – 76.5
DSMRSeg MobileNetv2 4.33 73.4 75.0

Fig. 3. The visualization results on Cityscapes test set. From left to right: original image,
groundtruth, SSMRSeg, DSMRSeg.
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5 Conclusion and Future Work

In this paper, we propose SSMRSeg/DSMRSeg network for real-time Semantic Seg-
mentation. Analysis and Quantitative experimental results on Cityscapes, CamVid,
BDD100K dataset are presented to demonstrate the effectiveness of our method.
Finally, we intend to achieve better trade-off on the speed and accuracy in future.
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Abstract. Embedding machine or deep learning software into safety-
critical systems such as autonomous vehicles requires software verifica-
tion and validation. Such software adds non traceable hazards to tradi-
tional hardware and sensors failures, not to mention attacks that fool the
prediction of a DNN and hampers its robustness. Formal methods from
computer science are now applied to deep neural networks to assess the
local and global robustness of a given DNN. Typically static analysis with
Abstract Interpretation or SAT solvers approaches are applied to neural
networks and leverages the important progress of formal methods over
the last decades. Such approaches estimate bounds on the perturbation of
the inputs and formally guarantee the same DNN prediction within these
bounds. However formal methods over DNN for image perception system
have only been applied to simple image attacks (2D rotation, brightness).
In this work, we extend the definition of Lower and Upper Bounds to
assess the robustness of a DNN perception system against more generic
attacks. We propose a general method to verify object recognition sys-
tems using Abstract Interpretation theory. Another major contribution
is the adaptation of Upper and Lower Bounds with the abstract inter-
vals to support more complex attacks. We consider the three following
classes: convolutional attacks, occlusion attacks and geometrical transfor-
mations. For the last one, we generalize the geometrical transformations
with displacements in the three-dimensional space.
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1 Introduction

1.1 AI Safety for Critical Systems

Despite significant success on image recognition tasks [17], automatic speech
recognition [5], natural language processing [21] and many other AI-related tasks
[1], deep learning models do not achieve sufficient confidence, explainability and
transparency levels to be integrated into safety-critical systems, [11]. Amongst
the very reasons that hamper DNN deployment in such systems (in transporta-
tion, energy production, military, medical...) the following aspects need to be
rigorously addressed:

1. Train and deploy ML or DL models that are consistent with specifications
(e.g. Stop when a pedestrian crosses the road)

2. Test compliance with respect to these specifications and exhaustively detect
worst cases (e.g. find all possible inputs where the specification Stop when a
pedestrian crosses the road fails)

3. Demonstrate the consistency of the ML model with respect to specifications
with formal methods (e.g. for all possible inputs with a domain of definition
verify that the software is consistent with respect to the specification Stop
when a pedestrian crosses the road)

These aspects are related to the correct-by-construction design principle, iden-
tified in [16] as one of the 5 main challenges towards verification of Artificial Intel-
ligence (AI Safety field), the other being environment modelling, formal specifi-
cation, the modelling of the learning aspect of such systems and the computa-
tional engines. In this work, we hope to contribute to the correct-by-construction
design principle aspect by enhancing robustness estimation of a general DNN
object recognition system with respect to general and realistic attacks over inputs
(images). Our work lie at the frontier between computer vision, deep learning and
safety considerations and is aiming towards the validation of perception systems
that are to be used in transportation systems (automotive, railroad, aircraft,
ship).

1.2 Adversarial Attacks on DNN and Abstract Interpretation

In the mean time, there is both a growing general interest for AI-related prod-
ucts and an important societal pressure for risk mitigation of such products,
especially for object detection in the automotive sector. This is where ensuring
safety of perception systems becomes critical not only from safety considera-
tion but also to guarantee general public acceptance. In this field, perception
systems that recognize objects or persons poorly can significantly falsify enforce-
ment actions dictated by the decision system. Therefore, it is important to ensure
high operating safety as well as traffic safety. Recently, several researchers have
demonstrated the lack of robustness of DNN against numerous attacks. Authors,
in [9], have explained the sensibility causes of neural networks and have proposed
an optimization (FGSM Fast-Gradient Sign Method) method to automatically
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generate adversarial examples. The adversarial examples correspond to images
that are very close to the correctly classified images, while the DNN fails when
classifying them. Authors have also demonstrated that training neural network
along with adversarial examples may reduce the system sensitivity and improve
the system robustness. To cope with this problem, researchers have proposed
methods for automatically validate DNN and more generally Artificial Neural
Networks. These methods can be broken down into three principal categories:

– linear or mixed integer programming approaches, [6,13] that focus on
the reachability aspect of safety, i.e. determine whether some states (or bugs)
can be attained by the neural network

– algebraic approaches [4] that focus more on the poorly understand theo-
retical properties of neural networks and aims at representing the function a
given NN has actually learnt by means of more expressive and interpretable
objects (typically kernels)

– formal methods [3] who aim to bring the rigorous and mathematical arse-
nal of formal proofs (static analysis with Abstract Interpretation, Boolean
Satisfiability (SAT solvers), Boolean reasoning on Binary Decision Diagrams,
Satisfiability Modulo Theories (SMT solvers)) already in use for Computer
Aided Design of integrated circuits or in railway certification to neural net-
works seen as a software.

In this work, we focus on formal methods for NN-based object recognition
systems and we propose a new formulation to assess the robustness of a given
NN-based image classifier. We also highlight the importance of attack definition
level. For example, authors, in [7,18,19], have introduced a certification method
of neural network mainly based on the abstract interpretation. Experimental
results on MNIST database have proven the capability of a such system to certify
the robustness against attacks including simple contrast, FGSM noise and L∞
attacks. Recent works (notably [19]) consider the robustness against geometric
transformation attacks as a simple plane rotation. In this paper, we propose
a generalization of Lower and Upper Bound concepts that allows us to verify
the robustness of a NN against a larger class of attacks which is a mandatory
requirement for critical safety systems.

The remaining of this paper is organized as follows. Section 2 is dedicated
to state the fundamental concepts of the incomplete verification approach based
on the Abstract Interpretation theory. We demonstrate in Sect. 3 the different
possible attacks within a perception context and how to evaluate the robustness
against each of these attacks. Our experimentation settings and results will be
given in Sect. 4. Finally, in Sect. 5, we draw our conclusions and we discuss some
future perspectives.

2 State of the Art and Related Works

2.1 Abstract Interpretations for Neural Networks Verification

Abstract Interpretation is an approximation approach to infer semantic proper-
ties from computer programs and demonstrate their soundness, see [2]. Static
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analysis by Abstract Interpretation allows to automatically extract information
about all possible states of execution of a computer program and is used for
automatic debugging, optimizing compilers and code execution and to certify
programs against some classes of bugs. One of the first application of static anal-
ysis with Abstract Interpretation for NN can be found in [15] but focused at that
time on shallow NN (MLP). Recently some authors in [7,18,19] have reused and
adapted this method for verifying the robustness property of larger neural net-
works by proposing abstract transformers for each type of activation function. In
what follows, we recall in a synthetic way some notions. Let X̄ be a given input.
X̄ may undergo a deformation or even an attack. In such a case, x̄ ∈ X̄ will be
transformed into x̄ε. The original inputs perturbed by ε are denoted by RX̄,ε.
Verifying the robustness property for RX̄,ε consists of checking the property over
the whole possible perturbation of X̄. Let CL be the robustness condition that
defines the output ensembles with the same label L. We denote Ȳ the set of each
prediction for each element in RX̄,ε.

CL = {ȳ ∈ Ȳ | argmax ȳi = L} (1)

The (RX̄,ε, CL) property is verified only if the outputs OR of RX̄,ε are included in
CL. However, in reality, we are not able to control the behavior of hidden layers.
Accordingly, we have no knowledge about OR. The Abstract Interpretation is
a proposed alternative to face this shortcoming. In fact, it allows to determine
an abstract domain thought transformers and verifies the inclusion condition in
new abstract domains αR, which is an abstraction of X̄. Thanks to the neural
network outputs, we denote the output abstract domain αO

R.
The (RX̄,ε, CL) property is checked:

– If the outputs OR of RX̄,ε are included in CL.
– If the outputs in αO

R of the abstraction αR of RX̄,ε are included in CL.

It seems necessary to define abstract transformers that are precise for the differ-
ent existent activation functions. Authors in [7], have proposed a neural network
analyzer known under the name of AI2. This analyzer may automatically prove
the robustness of different architectures neural networks, including convolutional
neural networks. The test results demonstrate that AI2 analyzer is fully accurate
and may be used to certify the most recent defense efficiency for neural networks.
Scalability is one of the major shortcoming of this approach.

Authors, in [18], have proposed an alternative solution, called DeepZ, for
dealing with the scalability problem. DeepZ allows also to certify the robustness
of neural network. It is characterized by its highly precision arithmetic in floating
point and it manages several activation functions, including ReLU (REctified
Linear Unit), TanH, and Sigmoid. It is worth noting that DeepZ is based on
the abstract domains and more particularly the zonotopes [8]. Another analyzer,
called DeepPoly, have been introduced in [7]. This approach relies on a novel
abstract domain that merge polyhedron with floating point and intervals, see
Fig. 1. Moreover, polygons live in a 2-dimensional space, while polyhedra live in
a 3-dimensional one, and we have to take in account the fact that the generalized
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Fig. 1. Example of two abstract domains: intervals vs polyhedra on a set of 6 three-
dimensional points

notion of the formers to a n ≥ 3-dimensional space is the domain of polytopes.
DeepPoly analyser supports refine transformation as well as modern activation
functions such as ReLU, sigmoid, TanH and maxpool. According to authors,
DeepPoly is the more precise comparatively with the AI2 and DeepZ and manage
also deep convolutional neural networks. This method has been used to check
complex perturbation, including 2D rotation.

2.2 Lower and Upper Bound for Contrast and Geometrical Attacks

The definition of the abstract domain is a crucial step in the abstract interpre-
tation verification process. The more precise the abstract domain is, the more
complete is the verification. The three most used domains are: zonotopes, poly-
topes and abstract intervals. In the case of luminosity disturbance, the lower
bound LB and the upper bound UB, which are the minimal brightness and its
maximal value, are simple. We can approximate it to a brightness shift. Indeed,
these two values allows us to define the abstract intervals that we need.

In the case of plane rotation, the contribution of the neighboring pixels for the
intensity of the disturbed pixel is proportional to its distance from the initial
pixel. This approximation lets us estimating the possible LB and UB, which
give us the polytopes in which each rotated pixel is going to end. Combined
with abstract intervals, they allow us to compute the needed abstract domain.
It is desirable to add a tracing algorithm which subdivides the rotation interval
into sub-intervals. Such procedure check whether the neural network is able to
recognize the object when his orientation on the image change.

3 Image Attacks and Their Abstract Domains

Image attacks have been well-studied over the last few years for solving real
world problems in several areas. Examples include the digital watermark. There
are several kinds of attacks (see Fig. 2), in this work we focus on:

– occlusion attacks that mask some parts of the images
– frequential attacks that modify the spectral components of the images
– geometric image transformation that comes from sensor errors or limits

(typically distortion)
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Fig. 2. Some classical on images from [10] (a) JPEG (b) noise (c) occlusion

We identify two classes within occlusion attacks: additive and substractive.
Malicious users try to detect the presence of an object as well as the location
of this object to extract it from the target image. Analogically, one can define
additive attacks that replaces a portion of the image by another portion.

Regarding the frequential attacks, they can be classified in two groups: fil-
tering and compression. For example, when smoothing images in photo editing
the high-frequency components are usually attenuated. Frequential attacks may
also be due to compression as a format conversion or when setting different
compression rates.

Concerning the geometric image transformations, the basic ones include rota-
tion, uniform scale change, reflection and shearing.

3.1 Lower and Upper Bound for 3D Rotation

In this subsection, we consider a more complex geometrical transformation. This
kind of transformations take into consideration the rigidity of the objects as
well as the possible displacements in the real world (Fig. 3). To explain the
relationship between the object displacement and its projection on the image,
we refer to the pinhole camera model, which is very efficient and simple as it
was described in [20]. Based on the pinhole camera model, we consider image
plane that corresponds to a straight line {(x1, x2, x3)t ∀ xi ∈ R} R

3, with x2 =
1. The image of a given point (x1, x2, x3)t upon an image plane is given by:
j(x1, x2, x3) = x3+ix1

x2
= x3 + ix1 with (x1, x2, x3)t, a point in the image plane

and j a projection from R
3 in R

2.
The distortion of projected objects are generated through the applied rota-

tion and translations followed by a projection upon an image plane. The image
plane may be regarded as an extension of a complex line Ĉ = C ∪ {∞} with its
affine part C defined by x2 = 1. The special linear group SL(2,C), made up of
all complex 2 × 2 matrix with determinant 1 defined as

SL(2,C) :=
{(

a b
c d

)
| a, b, c, d ∈ C, ad − bc = 1

}
(2)

SL(2,C) acts on the image plane Ĉ with the transformation g and the group
of projective transformation is set to:

PSL(2,C) = SL(2,C)
+̄Id

(3)



280 M. Mziou Sallami et al.

The special unitary group SU(2) defined as:

SU(2) :=
{(

α −β
β α

)
: α, β ∈, |α|2 + |β|2 = 1

}

is a maximal compact subgroup of SL(2,C). Using these definitions, one can
easily prove that there exist two elements for every rotation r of SO(3) such

that k = ±
(

ā −b̄
b a

)
and consequently k.z = az+b

−b̄+ā
with:

a = ± cos(
φ

2
)e

i(ψ1+ψ2)
2 , b = ±i sin(

φ

2
)e

i(ψ1−ψ2)
2

Consider Algorithm1 coupled with Algorithm2, which rotates an image by
three angles. To compute the intensity of a given transformed pixel (x,y), we first
computes the projection based on a and b values. By enumerating all possible
integer values of clow, chigh, vlow and vhigh, we can identify a polygon where
the pixel (x, y) is. The contribution of each pixel belonging to this polygon is
proportional to its distance from the real position (x, y). Note that g and −g
have the same orbits, which shows that ψ1 and ψ2 have the same behavior. We
can only consider one of the two parameters for our experiments.

To verify that for any image I ∈ X, for any angle φ ∈ [φmin, φmax] and any
angle ψ1 ∈ [ψ1

min, ψ1
max] the neural network N classifies Iε=(φ,ψ1) to the class of

I, we cannot simply enumerate all possible rotations as done for simpler rotation
algorithms and concrete images [14]. To refine UB et LB for large enough inter-
vals, it is possible to subdivide intervals into several segments. This partitioning
technique is coupled with batching to obtain precise enough output intervals. In
the two algorithms, each temporary lower and upper bounds are initialized respec-
tively to 255 and null matrices, and the T matrix is initialized to zeros too.

Fig. 3. Visualization of a projective effect resulting from a 3D rotation

3.2 Lower and Upper Bound for Convolutional Attacks

This kind of attacks includes filtering operations. Suppose that we have a filter
with size n × n. It consists of replacing a given pixel by the sum of the product
of this pixel and its n × n − 1 surrounding pixels by the filter’s corresponding
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Algorithm 1. Rotate Image I by 3D rotation

1: procedure Procedure Image_Rotation
Input: I ∈ [0, 255]m×n;φ, ψ1, ψ2 ∈ [−π, π]; T , TLB , TUB ∈ [0, 255]m×n

2: (a, b) = (cos(φ
2 )e

i(ψ1+ψ2)
2 , i sin(φ

2 )e
i(ψ1−ψ2)

2 )
3: for c ∈ {1, . . . , m}; v ∈ {1, . . . , n} do
4: (x, y, z) = (c − m+1

2 , n+1
2 − v, x + iy)

5: z = (az+b)

−bz+a

6: (y′, x′) = (Im(z), Re(z))
7: (c′

low, c′
high) ← (max(1, m+1

2 − y′),min(m, m+1
2 − y′)

8: (v′
low, v′

high) ← (max(1, x′ + n+1
2 ),min(n, x′ + n+1

2 )
9: RLow

c,v ← min(255,minc′∈[c′
low,c′

high],v
′∈[v′

low,v′
high]

I[c′, v′]
10: RHight

c,v ← max(0,maxc′∈[c′
low,c′

high],v
′∈[v′

low,v′
high]

I[c′, v′]

11: t ← ∑c′=c′
high,v′=v′

high

c′=c′
low,v′=v′

low
max(0, 1 − √

(v′ − x′)2 + (c′ − y′)2)

12: t′ ← ∑c′=c′
high,v′=v′

high

c′=c′
low,v′=v′

low
(max(0, 1−√

(v′ − x′)2 + (c′ − y′)2)×I[c′, v′])
13: if t �= 0 then
14: T [c, v] ← 1

t × t′

15: TLB [c, v] ← min(TLB [c, v], RLow
c,v )

16: TUB [c, v] ← max(TUB [c, v], RHight
c,v )

17: else
18: T [c, v], TLB [c, v], TUB [c, v] ← 0
19: Return T, TLB , TUB

Algorithm 2. Lower and Upper Bound for 3D Rotation (on a rotation interval)
1: procedure Procedure Rotation_Lower_Upper_Bound

Input: I, T I
LB , T I

UB ∈ [0, 255]m×n; bsφ, bsψ1 , bsψ2 ∈ N

φmin, φmaxψ1
min, ψ1

max, ψ2
mmin, ψ2

max,∈ [−π, π]

2: (stepφ, stepψ1, stepψ2)=( |φmax−φmin|
bsφ

, |ψ1
max−ψ1

min|
bsψ1

, |ψ2
max−ψ2

min|
bsψ2

)
3: Compute lists φall, ψ

1
all, ψ

2
all of all values using their respective steps

4: for (φ0, ψ
1
0 , ψ

2
0) ∈ (φall, ψ

1
all, ψ

2
all) do

5: (T, TLB , TUB) ← IMAGE_ROTATION(I, φ0, ψ
1
0 , ψ

2
0)

6: T I
LB = min(T I

LB , TLB)

7: T I
UB = max(T I

UB , TUB)

8: Return T I
LB , T I

UB

value. Our approach consists of defining a LB and an UB independently of the
applied filter coefficients. The pixel on the filtered image is estimated accord-
ing to the size of the filter. Each pixel, in his neighborhood, can be replaced
by the nearest neighbor intensity value to find the LB. The final LB and UB
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correspond respectively to the min and the max values between the LB and
the UB images relatives to the two dimensions (Fig. 4). Algorithm3 describes in
more details the different steps.

Fig. 4. Effects of filter size on UB and LB

Algorithm 3. Lower and Upper Bound for convolution
1: procedure Procedure Convolution_Lower_Upper_Bound

Input: I ∈ [0, 255]m×n;h,w ∈ �1, T �, T size of the filter
2: ILB , IUB ← I
3: for c ∈ {1, . . . ,m}; v ∈ {1, . . . , n} do
4: L1[c, v] ← min(Neighbors(I, h, c, v))
5: U1[c, v] ← max(Neighbors(I, h, c, v))
6: L2[c, v] ← min(Neighbors(I, w, c, v))
7: U2[c, v] ← max(Neighbors(I, w, c, v))
8: ILB [c, v] ← min(L1[c, v], L2[c, v])
9: IUB [c, v] ← max(U1[c, v], U2[c, v])

10: Return ILB , IUB

Algorithm 4. Lower and Upper Bound for occlusion
1: procedure Procedure occlusion_Lower_Upper_Bound

Input: I ∈ [0, 255]m×n;h,w ∈ �1, T �, T filter size; c0 ∈ [1,m], v0 ∈ [1, n]
2: ILB , IUB ← I
3: M1 ← Mask(h, c0, v0)
4: M2 ← Mask(w, c0, v0)
5: IM1, IM2 ← I × M1, I × M2
6: ILB , IUB ← min(IM1, IM2),max(IM1, IM2)
7: Return ILB , IUB
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3.3 Lower and Upper Bound for Occlusion Attack

With regards to the occlusion attacks, the image undergoes the disappearance of
some pixels. It is a passage from gray level to black level through a given mask.

Let us denote by I the input image and let M1 and M2 be two given masks.
We consider the lower bound ML and the upper bound MU of the mask M .
Algorithm4 describes the process to compute LB and UB with occlusion attack.
The position of the mask center denoted by c0 and v0 are given as input. We
have also the dimension h and w for the two masks. We apply the obtained
masks for yielding the lower bound and the upper bound images.

4 Experimentation Settings and Results

This section is devoted to highlighting our experimentation settings and results
for evaluating the effectiveness of our approach for verifying the robustness prop-
erties for complexes attacks including the convolution, the occultation and the
3D attacks.

4.1 Experimentation Settings

Herein, we point out the two main setting that allow us to carry out our experi-
mentations. The first one is the evaluation dataset and the second one concerns
the neural networks. Regarding the evaluation dataset, we relied on the MNIST
dataset [12], one of the well commonly database within the fields of artificial
intelligence and machine learning. It contains grayscale images of size 28 × 28
pixels. We have select, for the evaluation, the first 50 images as a test set. Our
robustness criterion is then calculated as the number of verified image over the
total number of well classified instance by the neural network. The robustness
metric is set to: Robustness = Verified images

Well classified images

4.2 Experimentation Results

As described in earlier sections, we can apply our method to prove a neural net-
work robustness against 3D rotations. Specifically, our analysis can prove if the
MNIST network can classify a given image of a digit correctly even if each pixel
is perturbed with three rotation using an arbitrary angle. Rotations according
to ψ1 and ψ2 generate plane rotations in the plane of the image. So, to test
the robustness of the neural network, just consider either ψ1 or ψ2 coupled with
φ. Figure 5b shows example of robustness surface for φ ∈ [0, 10◦], ψ1 ∈ [0, 30◦].
We split the interval of φ [0, 10] into 50 batches, for ψ1, we split the interval
into 30 batches. To analyze a batch, we split the corresponding interval into 10
input intervals for interval analysis, resulting in 10 regions for each batch. We
then run DeepPoly on the smallest common bounding boxes of all regions in
each batch, 100 times in total. The results show that neural network models are
more sensitive to rotations around the optical axis. This is expected since this
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rotation according to φ generates a greater deformation on the image than rota-
tion according to ψ1. Among the three studied attacks, convolutional attacks
seem the strongest. Figure 5a shows the robustness results for different mod-
els of neural networks. On a basis of 50 images that have different classes, we
represent the quotient between the number of image well classified and the num-
ber of image verified. For the different models, robustness does not exceed 8%.
Occlusion attacks depend heavily on the surface of the hidden region (Fig. 6).
In experiments, it was assumed that masks are positioned in the center of grav-
ity of the image. Such simplification is possible for images with a single object
on a black background. Otherwise, all possible positions and masks dimension
must be considered. For the 3 models, the robustness decreases according to the
number of deleted pixels.

5 Conclusion

We introduced a new approach to verify the object recognition system based on
neural networks. The core idea is the adequate formulation of abstract intervals
for each attack. These formula enable us to extend the deeppoly analyser and
evaluate a wide range of attacks such as convolution and occlusion. We believe
this work is a promising step towards a validation of a perception or object
recognition system. As perspective, we plan to test more complex attacks such
as attacks caused by weather conditions such as fog or snow.

Fig. 5. (a) Robustness variation according to filters size for different fully connected
neural networks, (b) Robustness variation according to 3D rotation
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Fig. 6. Robustness variation according to occlusion surface for different fully connected
neural networks
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Abstract. Deep learning algorithms have achieved excellent perfor-
mance lately in a wide range of fields (e.g., computer version). How-
ever, a severe challenge faced by deep learning is the high dependency
on hyper-parameters. The algorithm results may fluctuate dramatically
under the different configuration of hyper-parameters. Addressing the
above issue, this paper presents an efficient Orthogonal Array Tuning
Method (OATM) for deep learning hyper-parameter tuning. We describe
the OATM approach in five detailed steps and elaborate on it using two
widely used deep neural network structures (Recurrent Neural Networks
and Convolutional Neural Networks). The proposed method is com-
pared to the state-of-the-art hyper-parameter tuning methods including
manually (e.g., grid search and random search) and automatically (e.g.,
Bayesian Optimization) ones. The experiment results state that OATM
can significantly save the tuning time compared to the state-of-the-art
methods while preserving the satisfying performance.

Keywords: Orthogonal array · Hyper-parameter · Deep learning

1 Introduction

Deep learning has been recently attracting much attention in both academia
and industry, due to its excellent performance on various research areas such
as computer vision, speech recognition, natural language processing, and brain-
computer interface [11]. Nevertheless, deep learning faces an important chal-
lenge that the performance of the algorithm highly depends on the selection of
hyper-parameters. Compared with traditional machine learning algorithms, deep
learning requires hyper-parameter tuning more urgently because deep neural
networks: (1) have more hyper-parameters to be tunned; (2) have higher depen-
dency on the configuration of hyper-parameters. [10] reports the deep learn-
ing classification accuracy dramatically fluctuates from 32.2% to 92.6% due to
the different selection of hyper-parameters. Therefore, an effective and efficient
hyper-parameter tuning method is necessary.

c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, CCIS 1142, pp. 287–295, 2019.
https://doi.org/10.1007/978-3-030-36808-1_31
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However, most of the existing hyper-parameter tuning methods have some
drawbacks. In particular, grid search traverses all the possible combinations of
different hyper-parameters, which is a time-consuming and ad-hoc process [2].
Random Search, which is developed based on grid research, set up a grid of
hyper-parameter values and selects random combinations to train the algorithm
[2]. Random search method oversteps some disadvantages of grid search such
as time-consuming but meanwhile brings a major disadvantage which cannot
converge to the global optimum [1]. The randomly selected hyper-parameter
combinations cannot guarantee a steady and competitive result. Apart from the
manually tuning methods, automated tuning methods being more popular in
recent years [7]. Bayesian Optimization, a most widely-used automated hyper-
parameter tunning approach, attempts to find the global optimum in a minimum
number of steps. Nevertheless, the results of Bayesian optimization are sensitive
to parameters of the surrogate model and the performance is highly depending
on the quality of the learning model [3].

To address the aforementioned issue, we propose the Orthogonal Array Tun-
ing Method (OATM) which can achieve a trade-off of the less tuning time
and competitive performance. In detail, the OATM manner is proposed based
on Taguchi Approach [8]. The OATM is a highly fractional orthogonal design
method that is based on a design matrix and allows the user to consider a selected
subset of combinations of multiple factors at multiple levels. Additionally, the
OATM is balanced to ensure that all possible values of all hyper-parameters are
considered equally. Moreover, OATM has been commonly used as an experimen-
tal design method in a wide variety of domains like mechanical engineering [6]
and electrical engineering [5]. To our best knowledge, our work is the first batch
of work adopting orthogonal array into parameter tuning in deep learning.

The proposed OATM adopts the orthogonal array to extract the most repre-
sentative and balanced combinations from the whole set of possible combinations.
The proposed OATM will be explained in detail in the context of two popular
deep learning structures (Sect. 4). In addition, the OATM is evaluated over three
datasets, which demonstrate the universality and adaptability. We notice that
source codes performing grid search, random search, and especially Bayesian
Optimization on deep learning are hard to online acquire. Thus, we provide the
reusable source codes and datasets for reproduction1.

2 Orthogonal Array Tuning

In this section, we first provide the background knowledge of orthogonal array,
namely, the definition, the compose principles, and the terminology. Then, we
report the working procedure of OATM.

2.1 Orthogonal Array Tuning Method

In this section, we propose the Orthogonal Array Tuning Method inspired by
the basic principles of orthogonal array. Although deep learning algorithms can
1 https://github.com/xiangzhang1015/OATM.

https://github.com/xiangzhang1015/OATM


Deep Neural Network Hyperparameter Optimization 289

achieve good performance in many research areas, tuning the hyper-parameters
(e.g., the number of layers, the number of nodes in each layer and the learning
rate) is time-consuming and dependent on user’s expertise.

In OATM, the hyper-parameters are regarded as factors and different values
of each hyper-parameter are regarded as levels. The procedure is listed as follows.

– Step 1: Build the F-L (factor-level) table. Determine the number of to-be-
tuned factors and the number of levels for each factor. The levels should be
determined by experience and literature. We further suppose each factor has
the same number of levels2.

– Step 2: Construct Orthogonal Array Tuning table. The constructed table
should obey the basic composition principles. Here3 shows some commonly
used tables. The Orthogonal Array Tuning table is marked as LM (hk) which
has k factors, h levels, and totally M rows.

– Step 3: Run the experiments with the hyper-parameters determined by the
Orthogonal Array Tuning table.

– Step 4: Range analysis. This is the key step of OATM. Based on the exper-
iment results in the previous step, range analysis method is employed to
analyze the results and figure out the optimal levels and importance of each
factor. The importance of a factor is defined by its influence on the results of
the experiments. Note that range analysis optimizes each factor and combines
the optimal levels together, which means that the optimized hyper-parameter
combination is not restricted to the existing Orthogonal Array table.

– Step 5: Run the experiment with the optimal hyper-parameters setting.

3 Experimental Setting

To evaluate the proposed OATM, we design extensive experiments to tune the
hyper-parameters of two most widely used deep learning structures, i.e., the
Recurrent Neural Networks (RNNs) and the Convolutional Neural Networks
(CNNs). Both of the two deep learning structures are employed on three real-
world applications: (1) a human intention recognition task based on the Elec-
troencephalography (EEG) signals [12]; (2) activity recognition based on wear-
able sensors like Inertial Measurement Unit (IMU); (3) activity recognition based
on pervasive sensors like Radio Frequency IDentification (RFID).

3.1 Data Setting

The proposed OATM is evaluated over three different tasks on three benchmark
datasets where each is divided into a training set (80%) and a testing set (20%).

2 For the sake of simplicity, we consider all the factors with the same number of levels.
More advanced knowledge can be found in [8] for more complex situations.

3 https://www.york.ac.uk/depts/maths/tables/taguchi table.htm.

https://www.york.ac.uk/depts/maths/tables/taguchi_table.htm
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Fig. 1. The schematic diagram of RNN structure. ‘H’ denotes Hidden, where, for exam-
ple, the H 1 layer denotes the first hidden layer.

EEG-Based Intention Recognition. We select the widely used EEG dataset
from PhysioNet eegmmidb database4 which contains 5 different categories. In
this paper, we choose a subset of eegmmidb which contains 28,000 EEG samples.
Every sample is a vector with 64 elements corresponding to 64 channels.

IMU-Based Activity Recognition. This dataset is collected by 9 participants
[4], which contains 1200000 samples. 8 ADLs are selected as a subset of our paper.
The activity is measured by 3 IMUs and each IMU collects sensor signal with
14 dimensions including two 3-axis accelerometers, one 3-axis gyroscopes, one
3-axis magnetometers, and one thermometer.

RFID-Based Activity Recognition. We collect the signals from passive
RFID tags [9] and have 3100 samples in total. 21 activities, including 18 ADLs
(Activity of Daily Living) and 3 abnormal falls, are performed by 6 subjects.
Each sample has 12 dimensions corresponding to 12 RFID tags. RSSI measures
the power present in a received radio signal, which is a convenient environmental
measurement in ubiquitous computing.

3.2 Deep Learning Structures

In this section, we briefly describe RNN and CNN structures and then introduce
the key hyper-parameters that will be tuned in the experiments.

RNN Structure. The RNN structure used in this paper is shown in Fig. 1. In
the hidden layer, to implement the recurrent function, two LSTM (Long Short-
Term Memory) layer is concentrated. LSTM is a simple cell structure which can
be used to build a recurrent neural network. Different from other fully connected
layers, LSTM layer is composed of cells (shown as rectangles) instead of neural
nodes (shown as circles).

In this RNN structure, based on the deep learning hyper-parameters tun-
ing experience, the learning rate, the regularization, and the number of nodes
in each hidden layer are key factors affecting the algorithm performance. The
loss is calculated by cross-entropy function, and the regularization method is �2

4 https://www.physionet.org/pn4/EEGmmidb/.

https://www.physionet.org/pn4/EEGmmidb/
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norm with the coefficient λ, The loss is finally optimized by the AdamOptimizer
algorithm. In summary, we choose four factors as to-be-tuned hyper-parameters:
the learning rate lr, the regularization coefficient λ, the number of hidden layers
nl, and the number of nodes5 in each hidden layer nn.

Fig. 2. The schematic diagram of CNN structure. C, P, and FC denote convolutional
layer, pooling layer, and fully connected layer, respectively.

CNN Structure. The CNN diagram is presented in Fig. 2. The loss function,
regularization method, and optimizer are the same as those in the RNN struc-
ture. Based on hyper-parameters tuning experience on CNN, we choose four
most crucial factors to be tuned by OATM: the learning rate lr′, the filter size
f ′, the number of convolutional and pooling layers n′

l
6, and the number of nodes

n′
n in the second fully connected layer.

4 Results and Analysis

4.1 Overall Comparison

In this section, we compare the proposed OATM with the most competitive state-
of-the-art hyper-parameter tuning approaches including two manually methods
(grid search and random search) and an automated one (Bayesian Optimization).
It’s easy to compute that there are 81 = 34 exhausted combinations in grid
search since we have four factors with three levels of the hyper-parameters. Thus,
grid search requires 81 runnings to get the optimal hyper-parameters. On the
other hand, our method requires only 9 runnings described in the corresponding
orthogonal array table (detailed in Sect. 4.2). Due to the numbers of runnings
in random search and Bayesian Optimization are manually set, they are set as
9 runnings which is same with our method in order to keep fair comparison.
The baselines are introduced here: (1) Grid search simply goes through all the
possible combinations according to the values provided which is exhaustive [2];
(2) Random search randomly picks combinations from all possible ones. It may
not find a decent combination but is widely adopted in industry for the high-
efficiency [1]; (3)Bayesian optimization uses a Gaussian process to minimize the
loss function in order to maximize performance [7].
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Table 1. Comparison with the state-of-the-art methods over three datasets and two
deep learning architectures. The F1 ∼ F4 represent four tuning factors. Acc, Prec and
F-1 denote accuracy, precision and F-1 score, respectively. #-R denotes the number of
runnings.

Data Models Methods Optimal factors Metrics

F1 F2 F3 F4 #-R Time (s) Acc Prec Recall F-1

EEG RNN Grid 0.005 0.004 6 64 81 6853.6 0.9251 0.9324 0.9139 0.9231

Random 0.01 0.008 6 32 9 766.8 0.7941 0.8003 0.7941 0.7947

BO 0.0135 0.0049 5 32 9 703.4 0.718 0.7246 0.6474 0.6838

Ours 0.005 0.004 6 64 9 821.9 0.925 0.9335 0.9223 0.9279

CNN Grid 0.005 4 3 192 81 31891.5 0.828 0.8137 0.8256 0.8269

Random 0.003 2 1 128 9 662.8 0.7268 0.7277 0.7269 0.7266

BO 0.001 4 3 139 9 721.9 0.7244 0.7302 0.7244 0.7263

Ours 0.003 4 1 128 9 680.4 0.797 0.7969 0.8112 0.8003

IMU RNN Grid 0.005 0.004 6 96 81 3027.2 0.9936 0.9909 0.9976 0.9971

Random 0.015 0.004 4 32 9 1008.5 0.9139 0.9209 0.9412 0.9156

BO 0.0132 0.0041 4 48 9 1078.8 0.9872 0.9877 0.9851 0.9863

Ours 0.005 0.004 6 64 9 1138.2 0.9913 0.9924 0.9905 0.9919

CNN Grid 0.003 2 1 128 81 41804.9 0.9732 0.9708 0.9708 0.9707

Random 0.003 2 2 128 9 7089.2 0.9692 0.9691 0.9692 0.9691

BO 0.0012 2 2 192 9 6559.7 0.9696 0.9702 0.9701 0.9701

Ours 0.003 2 2 128 9 6809.8 0.9702 0.9699 0.9703 0.9702

RFID RNN Grid 0.005 0.008 6 96 81 2846.1 0.9342 0.9388 0.9201 0.9252

Random 0.005 0.012 4 32 9 642.3 0.8891 0.9138 0.8826 0.8895

BO 0.0142 0.0093 6 79 9 452.2 0.9071 0.8556 0.8486 0.8436

Ours 0.005 0.008 6 64 9 497.1 0.9134 0.9138 0.9029 0.9162

CNN Grid 0.005 4 2 192 81 7890.8 0.9316 0.9513 0.9316 0.9375

Random 0.005 2 1 128 9 1210.3 0.8683 0.9113 0.8684 0.8779

BO 0.005 5 3 64 9 872.9 0.9168 0.9058 0.9194 0.9086

Ours 0.005 4 3 192 9 980.3 0.9235 0.9316 0.9188 0.9326

Table 2. Factor-Level table of RNN and CNN.

Factor 1 (lr) Factor 2 (λ) Factor 3 (nl) Factor 4 (nn)

RNN Level 1 0.005 0.004 4 32

Level 2 0.01 0.008 5 64

Level 3 0.015 0.012 6 96

Factor 1 (lr′) Factor 2 (f ′) Factor 3 (n′
l) Factor 4 (n′

n)

CNN Level 1 0.001 [1, 2] 1 64

Level 2 0.003 [1, 4] 2 128

Level 3 0.005 [1, 6] 3 192

5 Assume all the hidden layers have the same fixed number of nodes.
6 We consider each convolutional layer and the following pooling layer as whole.
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The hyper-parameter levels are selected based on empirical values. For grid
search, random search, and our OATM, the empirical values are discrete as
listed in Table 2 (take eegmmidb as an example). For Bayesian Optimization,
the hyper-parameter ranges from the maximum and minimum of each factor.

The comparison results are shown in Table 1. It can be observed that: (1)
under the same running numbers (9 runnings), our method outperforms the
random search and Bayesian Optimization over all the datasets and deep learning
architectures; (2) our method performs slightly lower than grid search but still
competitive, however, take EEG dataset with RNN as an example, our approach
saves 88% tuning time which is indicated from that the OATM only requires 9
runnings and costs 821.9 s while grid search requires 81 runnings and 6853.6 s; (3)
the optimal factors selected by our method approximate to the global optimal
factors selected by grid search.

4.2 Case Study in RNN and CNN

In this section, we take EEG classification as an example to present the detailed
procedure of OATM in RNN and CNN architectures. The overall paradigm can
be divided into five steps.

Step 1: Build the F-L Table. According to the description in Sect. 3.2, OATM
will work on four different hyper-parameters (factors): the learning rate lr, the
l-2 norm coefficient λ, the number of hidden layers nl, and the number of nodes
nn. The number of levels h is set to be 3 which could be much larger in real-
world applications. Based on the related work and tuning experience [10], the
empirical values are shown in Table 2.

Table 3. Range analysis of RNN and CNN

(a) Range analysis of RNN
Row No. Factor 1 (lr) Factor 2 (λ) Factor 3 (nl) Factor 4 (nn) Acc

1 0.005 0.004 4 32 0.875
2 0.005 0.008 5 64 0.8
3 0.005 0.012 6 96 0.521
4 0.01 0.004 5 96 0.888
5 0.01 0.008 6 32 0.797
6 0.01 0.012 4 64 0.451
7 0.015 0.004 6 64 0.897
8 0.015 0.008 4 96 0.335
9 0.015 0.012 5 32 0.471

Rlevel1 2.196 2.66 1.661 2.143
Rlevel2 2.136 1.932 2.159 2.148
Rlevel3 1.703 1.443 2.215 1.744
Alevel1 0.732 0.887 0.554 0.714
Alevel2 0.712 0.644 0.720 0.716
Alevel3 0.568 0.481 0.738 0.581

Lowest Acc 0.568 0.481 0.554 0.581
Highest Acc 0.732 0.887 0.738 0.716

Range 0.164 0.406 0.184 0.135
Importance lambda > nl > lr > nn

Best Level Level 1 Level 1 Level 3 Level 2
Optimal Value 0.005 0.004 6 64 0.925

(b) Range analysis of CNN
Row No. Factor 1 (lr′) Factor 2 (f ′) Factor 3 (n′

l) Factor 4 (n′
n) Acc

1 0.001 [1,2] 1 64 0.707
2 0.001 [1,4] 2 128 0.771
3 0.001 [1,6] 3 192 0.775
4 0.003 [1,2] 2 192 0.779
5 0.003 [1,4] 3 64 0.752
6 0.003 [1,6] 1 128 0.797
7 0.005 [1,2] 3 128 0.784
8 0.005 [1,4] 1 192 0.782
9 0.005 [1,6] 2 64 0.756

Rlevel1 2.253 2.27 2.993 2.215
Rlevel2 2.328 2.305 2.306 2.352
Rlevel3 2.322 2.328 2.311 2.336
Alevel1 0.751 0.757 0.998 0.738
Alevel2 0.776 0.768 0.769 0.784
Alevel3 0.774 0.776 0.770 0.779

Lowest Acc 0.751 0.757 0.769 0.738
Highest Acc 0.776 0.776 0.998 0.784

Range 0.025 0.019 0.229 0.046
Importance n′

l > n′
n > lr′ > f ′

Best Level Level 2 Level 3 Level 1 Level 2
Optimal Value 0.003 [1,6] 1 128 0.797
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Step 2: OATM Table. Choose a suitable Orthogonal Array table with 4 factors
and 3 levels for our experiments in this link7 wich contains 9 combinations.
The OATM table should satisfy two basic principles: (1) in each column, different
levels have the same appear times; (2) in any two randomly-selected columns,
nine differently-ordered element combinations are completed and balanced.

Step 3: Run the Experiments. Following the OATM table, run the 9 exper-
iments and record the classification accuracy. In our case, each experiment runs
5 times with the corresponding average accuracy recorded. Each experiment is
trained for 1,000 iterations to guarantee the convergence.

Step 4: Range Analysis. This is the key step of Orthogonal Array Tuning.
The overall range analysis procedure and results are shown in Table 3a. The first
9 rows are measured and recorded in Step 3. Rleveli denotes the sum of accuracy
under level i. For example, Rlevel1 in factor 1 is the sum of the accuracy in the
first 3 rows (2.196 = 0.875 + 0.8 + 0.521), where factor 1 is on level 1. Aleveli

denotes the average accuracy of level i, calculated by Aleveli = Rleveli/h. In
the above example, we calculate Alevel1 as 0.732 = 2.196/3. Lowest and highest
accuracy values, measuring the maximum and minimum of Aleveli respectively,
are used to calculate the range of Aleveli. The importance denotes how important
the factor is, which is ranked by the range value. Best level is the selected optimal
level based on the Highest Acc while Optimal Value represents the corresponding
value of the best level.

Step 5: Run the Optimal Setting. Run the experiment with the optimal
hyper-parameters (lr = 0.004, λ = 0.005, nl = 6, and nn = 64) and finally
achieve the optimal accuracy as 0.925. It can be observed that: (1) the optimal
accuracy 0.925 is higher than the maximum of the accuracy (0.897) in the OATM
experiments, which demonstrates that the OATM is enabled to approximate the
global optimal instead of the local optimal; (2) the importance of each factor is
ranked through the range analysis: lambda > nl > lr > nn, which can guide the
researcher to grasp the dominating variable in the RNN structure and be helpful
in the future algorithm development.

The OATM paradigm of CNN is similar to RNN. Here, we only report the
F-L table (Table 2) and the range analysis table (Table 3b).

5 Discussion and Conclusion

One disadvantage of OATM is that it requires the empirical values as prereq-
uisites. The values of the F-L table should be chosen appropriately. However,
this is the common drawback of all the tuning methods. For instance, the
hyper-parameter ranges in Bayesian Optimization are also pre-defined based

7 https://www.york.ac.uk/depts/maths/tables/taguchi table.htm.

https://www.york.ac.uk/depts/maths/tables/taguchi_table.htm
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on empirical values. In summary, we present an efficient OATM approach for
hyper-parameter tuning in the context of deep learning. The proposed OATM is
evaluated over two popular deep learning structures (RNN and CNN) over three
real-world datasets. The experiment results show that our approach outperforms
state-of-the-art hyper-parameter tuning methods.
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Abstract. In software engineering, a code smell is an indication of a
deeper problem in the source code, hindering the maintainability and
evolvability of the system. In the literature, there is a significant empha-
sis on the detection of code smells because of its importance as a main-
tenance task. Most of previous studies focus in their analyses on one
source of information, i.e. structural, historical or semantic information.
However, some instances of bad smells could be identified by a type
of information but missed by another one. In this paper, we propose
an improved detection approach that combines structural and semantic
information in order to fully exploit their complementarity in the identi-
fication of code smells. Both information are extracted separately using
conventional and deep learning methods. For the evaluation, we have
selected five open source projects which are JHotDraw, Apache Karaf,
Freemind, Apache Nutch and JEdit. In order to optimize our perfor-
mance results, we have set up four different experiments and compare
between them. The obtained accuracy results confirm the effectiveness of
combining structural and semantic information in improving the detec-
tion of code smells.

Keywords: Deep learning · Code smells · Variational auto-encoder ·
Semantic information · Structural information

1 Introduction

Over its evolution, the more the software system is affected by continuous
changes, the more complex it becomes. Among the implications of this phe-
nomenon, there exist potential problems that may hamper the software main-
tainability and evolvability. Code smells are examples of indicators that are asso-
ciated with poor design and/or implementation problems [2]. They are generally
induced because of an unwitting misunderstanding of developers in adapting
with the continuous changes. Therefore, this implies the non-compliance with
the software design principles, which in turn affects the software quality.

The impact of code smells on the software maintenance has been widely
studied in many research studies [13,19,21]. They have demonstrated that there
c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, CCIS 1142, pp. 296–304, 2019.
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is a high diffusion of code smells over the software systems [13]. Also, they have
indicated that the software quality is deteriorated which hinders its evolution.
The refactoring is the appropriate technique devoted to deal with this type of
problem. It is designed to reconstruct the internal software structure without
affecting its external behaviour [2].

In the literature, there exist several researches to identify code smells [1,4,
6,10,11]. Most of the previous works exploit in their detection one source of
information that could be structural, historical or semantic. Among these latter
types, the structural information is more used than the others [5,18]. However, it
has been proven that the historical and semantic information have the ability to
identify additional instances of code smells [12]. This efficiency is due to the fact
that each source of information has its own characteristics to identify specific
aspects of code smells.

Theoretically, the complementarity has been studied between many types of
information. In [11], the authors have shown that there are some complementari-
ties between structural and textual information in order to obtain better results.
Using the overlap metrics, the complementarity has been proven. In another
work [12], there has been observed that the structural and historical information
could be complementary. Based on these research observations, an opportunity
of combination was apparent to improve the detection of code smells.

Given that there exist instances of code smells that are identified by a type
of information but missed by another one and vice versa, we attempt in this
paper to take advantage of two sources of information that are semantic and
structural information by means of conventional and deep learning methods.
In our previous study [6], a variational auto-encoder has been implemented to
generate a deep representation that embeds the needed semantic information
hidden into the Abstract Syntax Trees. In this paper, we propose an improved
approach to identify code smells by combining different sources of information.
Overall, we conduct 20 different experiments (four experiments over each of
the five studied software projects) in order to determine the optimal way to
combine information. Based on the reported findings, we have observed that the
performance depends on some factors that we will discuss across the experiments.

The rest of the paper is organized as follows. Section 2 presents the back-
ground on code smells and reviews related work. Section 3 outlines our proposed
research methodology. Section 4 shows the experimental set-up and evaluates the
performance of our approach. Finally, Sect. 5 concludes the paper and outlines
possible future research directions.

2 Code Smells and Existing Detection Approaches

In this section, we first introduce the target code smells. Then, we review the
previous works related to the detection approaches based on more than one
source of information.
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2.1 Code Smells

Originally, the term code smell was coined by Fowler et al. [2] as an indication
of poor design and/or implementation choices. The authors have provided a
catalogue of 22 code smells with their appropriate refactoring operations. The
purpose of refactoring is to reduce complexity and maintain the code simple
and easier to evolve. In our study, we focus on three types of code smells: Blob,
Feature Envy and Long Method.

– Blob is detected in the project where a class is monopolizing the most of the
system’s functionalities. In this class, there is a large number of attributes
and methods that are depending on other classes [2].

– Feature Envy indicates a method that is more interested in exploiting the
functionalities of a class other than its own. Thus, it accesses the data from
other classes and causes a high coupling with them. Move Field and Move
Method are the associated refactoring operations with this smell [2].

– Long Method is identified by its domination in implementing the main
functionality of the class. This method includes a large number of data and
causes complexity. Extract Method is the appropriate refactoring operation
for this smell [2].

The selection of these three code smells is justified by their frequent detection
in other studies [1,4,9–11]. Also, they belong to different levels of granularity
that are class and method levels. Lastly, they are the target smells in the web-
based platform Landfill [14] with which we intend to perform our experiments.

2.2 Existing Detection Approaches

Detecting code smells has attracted significant attention from both industry
and academia as an important maintenance task. Most of previous approaches
treated the detection problem based on one source of information [5], i.e. struc-
tural [1,4], historical [10] and semantic information [6,11]. Nonetheless, some
instances of bad smells could be identified by a type of information but missed
by another one. As stated by Palomba et al. [11,12,15], there exists a comple-
mentarity between different sources of information that could achieve better per-
formance results. In the following, we discuss the existing detection approaches
with respect to the nature of the source of information. We will emphasize our
review mainly on the studies that are based on more than one source of infor-
mation (multi-source) in their identification of code smells.

Very few researches have been conducted regarding the code smells identi-
fication based on different types of information. Fu and Shen [3] have used the
evolutionary history of projects in order to extract the historical information by
using the association rules. In their approach, they have combined the historical
and structural information to find three types of bad smells which are Duplicated
Code, Shotgun Surgery, and Divergent Change.

Liu et al. [9] have exploited both textual and structural information to
detect Feature Envy. From the identifier names, the textual information has been
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extracted using Convolutional Neural Network (CNN). While for the structural
information, the authors have used the distance metrics defined in [20] to identify
the Feature Envy smell and its Move Method opportunities.

Our work differs from the aforementioned approaches in that we will extract
the needed features from other sources of information. The semantic information
is generated from the Abstract Syntax Tree, whereas the structural information
is based on the object-oriented metrics. In addition, we will compare between
different experiments in order to determine the best way of combination.

3 Methodology Description

As shown in Fig. 1, our approach consists of two separate phases. The first one
extracts the semantic information using a variational auto-encoder. The sec-
ond one extracts the structural information. Once the needed information are
extracted, they will be combined by means of a classification algorithm to deter-
mine the nature of the testing instance.

Fig. 1. The process of our improved approach to identify code smells

3.1 Semantic Information Extraction

In this phase, the source code is first parsed into the needed granularity of
representation. According to Peng et al. [16], there are different granularities
that are character-level, token-level, nodes of Abstract Syntax Trees, statement-
level and higher. In our case, we need the nodes of Abstract Syntax Trees as
the appropriate representation that preserves the hidden semantic in the source
code [16,22].

The step of nodes selection is optional (framed by a dashed line in Fig. 1).
This step will be applied or ignored according to the studied experiment (see
Sect. 4), which means all nodes or a subset of them will be encoded. It is impor-
tant to mention that due to space limitations, we do not list the details about
the selected nodes.

As the variational auto-encoder accepts real-valued vectors as input, we will
apply a conversion of the nodes vector to integer vectors. Each node will be
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identified by a unique integer and the length of vectors will be unified by padding
with zero [22]. Afterwards, the vectors will be fed into the variational auto-
encoder in order to generate the embedded semantic information.

The variational auto-encoder [7] has been selected because it is a generative
algorithm that approximates the latent representation using a Bayesian inference
approach. As shown in Fig. 2, the architecture of the variational auto-encoder is
composed of two neural networks that are encoder and decoder. For a given input
(x), the encoder network qø(z|x) produces a deep representation (z). Then, the
decoder network pθ(x|z) reconstructs the input by means of a reverse mapping to
get the output (x̂). The joint distribution is defined as pθ(x, z) = pθ(x | z)pθ(z).

Fig. 2. A variational auto-encoder architecture

The mean and variance variables are estimated in order to specify a Gaussian
distribution. Then, the marginal likelihood of each data point (Eq. 1) is measured
to be summed (Eq. 2), where KL is the Kullback-Leibler divergence between the
posterior and prior distributions.

log pθ(x(i)) = DKL(qø(z|x)||pθ(z)) + L(θ, ø;x(i)) (1)

log pθ(x(1), ..., x(N)) =
N∑

i=1

log pθ(x(i)) (2)

3.2 Structural Information Extraction

A metric is a quantifiable characteristic that is measured to describe a particular
aspect of a software. In this phase, the step of metrics calculation is accomplished
by Metrics tool [17]. Metrics is a plug-in that calculates different metrics for Java
projects. The calculated metrics belong to different quality dimensions, i.e. size
(e.g. LOC), complexity (e.g. WMC) and inheritance (e.g. DIT).

As shown in Fig. 1, the step of metrics selection (or feature selection) is
optional (framed by a dashed line). The purpose of the feature selection is to
identify the relevant features from a large set of features [8]. The selected features
are more correlated to the class distribution and the rest may not have an impact
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on the performance. To deal with, we use a feature selection technique that
belongs to the feature-weighting algorithms. The Gain Ratio technique has been
selected to measure the importance of metrics.

3.3 Code Smells Identification

At the end of the two phases, the semantic and structural information are com-
bined. Afterwards, they will be fed into a classifier that is the Logistic Regression
in order to determine the nature of the testing instance.

4 Experimental Evaluation

In this section, we evaluate the performance of our approach. To deal with, our
evaluation aims at answering these two research questions (RQs):

– RQ1 : What is the optimal way to combine between semantic and structural
information in order to enhance the performance results?

– RQ2 : To what extent does the nodes and metrics selection improve the code
smells identification?

4.1 Dataset

To evaluate our combination method, we use a public dataset based on Java
software projects. The dataset is a web-based platform named Landfill [14]. In
this dataset, test smells and code smells are mined over 20 open source systems.
In our experiments, the code smells are our target.

From the Landfill dataset, we have selected five projects that are JHotDraw,
Apache Karaf, Freemind, Apache Nutch and JEdit. These projects belong to
different domains and sizes. They are available on Github1 and SourceForge2.
For each project, we will apply four different experiments in order to answer the
addressed research questions.

4.2 Experimental Results

In order to respond to the first research question RQ1 , we set up four different
experiments over each software project. The experiments are defined as follows:

– Exp1: All Nodes with All Metrics
– Exp2: All Nodes with Selected Metrics
– Exp3: Selected Nodes with All Metrics
– Exp4: Selected Nodes with Selected Metrics

1 https://github.com.
2 https://sourceforge.net.

https://github.com
https://sourceforge.net
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Table 1. Performance comparison of different experiments

Projects SmellsExp1 Exp2 Exp3 Exp4

P R F1 P R F1 P R F1 P R F1

JHotDraw Blob 74,11%76,11%75,10%75,45%77.85%76.63%75.01%80.04%77.44%78.99%82.74%80.82%

FE 75.78%77.82%76.79%75.91%76.81%76.36%73.85%78.93%76.31%76.23%79.98%78.06%

LM 74.33%77.01%75.65%75.79%77.52%76.65%75.19%78.97%77.03%79.23%81.47%80.33%

Apache Karaf Blob 71.20%76.53%73.77%70.78%74.98%72.82%74.59%78.23%76.37%76.75%79.89%78.29%

FE 73.12%78.18%75.57%73.88%78.10%75.93%77.14%80.07%78.58%79.12%84.01%81.49%

LM 74.51%78.97%76.68%75.97%79.12%77.51%75.79%81.47%78.53%80.09%86.12%83.00%

Freemind Blob 70.56%75.14%72.78%68.41%70.38%69.38%75.41%76.99%76.19%75.79%78.93%77.33%

FE 76.66%77.99%77.32%71.03%73.95%72.46%77.52%79.39%78.44%79.21%82.18%80.67%

LM 76.15%81.02%78.51%71.21%73.92%72.54%79.23%81.95%80.57%81.23%87.47%84.23%

Apache NutchBlob 74.37%77.23%75.77%75.18%77.58%76.36%78.21%80.10%79.14%77.89%79.21%78.54%

FE 75.79%78.95%77.34%70.23%72.13%71.17%76.10%78.91%77.48%77.21%79.92%78.54%

LM 76.71%81.47%79.02%71.97%73.85%72.90%78.26%79.58%78.91%80.17%85.48%82.74%

JEdit Blob 69.51%75.62%72.44%70.01%72.90%71.43%74.98%76.92%75.94%76.92%78.96%77.93%

FE 71.52%75.69%73.55%74.00%76.82%75.38%77.93%79.22%78.57%78.26%81.74%79.96%

LM 70.23%74.91%72.49%71.76%75.19%73.43%79.23%80.02%79.62%81.35%87.65%84.38%

To evaluate the performance of the approach, we use True Positive (TP),
True Negative (TN), False Positive (FP) and False Negative (FN). These four
measurements are used to compute Precision = TP/(TP + FP ), Recall =
TP/(TP + FN), and F −measure(F1) = 2∗(Precision ∗ Recall)/(Precision+
Recall).

Table 1 reports the results of the four experiments. In Exp1 and Exp2, the
results of F-measure were slightly convergent. The common factor between both
first experiments was the use of all nodes. Although we have applied the metrics
selection in the Exp2, there is not a remarkable change in the computed results.
While in Exp3 and Exp4, we reached more better results than the first ones. In
Exp3, the F-measure ranges between 76.19% and 80.57%. However, we found
that Exp4 achieves better results. The recall ranges between 78.96% and 87.65%
while the precision ranges between 75.79% and 81.35%. We have reached an
average of F-measure equal to 80.42%.

Overall, to answer the RQ1 , it can be concluded that the selection of both
nodes and metrics is a key factor for enhancing the results. Consequently, the
optimal way to combine the two sources of information is insured by selecting
the nodes prior to the encoding step and also by selecting the most relevant
metrics.

To answer the second research question RQ2 , Fig. 3 shows, for each code
smell, a comparison between the four experiments based on F-measure. The
F-measure has been chosen as the comparative measurement because it is a
harmonic mean between precision and recall values.

We found that the worst results were obtained from Exp1, where there is not
a selection step neither for the nodes nor for the metrics. It is clearly observed
from the results of Exp1 and Exp2 vs. Exp3 and Exp4 that the selection of nodes
has more influence than the selection of metrics. The results make a remarkable
enhancement starting from Exp3 and Exp4, where the common point between
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Fig. 3. The comparison between the four experiments using F-measure for (a) Blob,
(b) Feature Envy and (c) Long Method

them is the selected nodes. This is may be due to the large number of nodes
compared to the number of metrics. As a consequence, this implies that the
selection of nodes is more important than the metrics selection. Nonetheless, we
cannot claim that the metrics selection serves no purpose, because it has shown a
slight improvement. To this end, both selecting nodes and metrics are important
in optimizing the code smells identification.

5 Conclusion

In this paper, we have proposed an improved approach to identify three target
code smells. We have combined semantic and structural information to take full
advantage of both these sources.

To evaluate our approach’s performance, we have experimented different sce-
narios of combination. We have selected five open source projects from a public
dataset. On each software, we have conducted four different experiments in order
to define the best way of combination. Over the different experiments, we have
reached significant performance results. We have observed that the application
of nodes selection and metrics selection have improved the results. These latter
steps have proved their efficiency by outperforming the results of the compared
experiments.

In future work, we would like to expand our approach to identify other types
of code smells that are scattered at different levels of granularity. Furthermore,
we intend to explore other opportunities to combine other types of information.
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Abstract. Commonly used convolutional operation does not have the
ability to learn invariant information of images. However, some hand-
crafted image feature extractors, like Gabor wavelets, are robust to
object’s scale and orientation transformations. Hence, how to combine
Gabor filters with convolutional kernels for image feature extraction is
an interesting and urgent issue in recent research of image representa-
tion learning using deep convolutional neural networks (DCNNs). In this
paper, we propose a new method, named learnable Gabor convolutional
networks (LGCNs), to combine the Gabor filters and convolutional ker-
nels together to form the Gabor convolutional filters (GCFs) for invariant
information learning of images. The scale and orientation parameters in
the Gabor function can be learned simultaneously with other parameters
during the networks’ training. Experimental results show that LGCNs
perform better than the corresponding DCNNs and other related meth-
ods in image classification tasks.

Keywords: Gabor wavelets · Deep convolutional neural networks ·
Invariant information · Gabor convolutional filters · Image classification

1 Introduction

In recent years, deep convolutional neural networks (DCNNs) have attracted
much attention in the areas related to deep learning. DCNNs learn the new
representations of images with the convolutional kernels. However, the convolu-
tional kernels cannot extract invariant information from images. Alternatively,
Gabor wavelets are widely used for image processing tasks, as they can extract
both scale and orientation invariant information from images.

In [7] and [16], the convolutional kernels in the shallow layers of DCNNs were
demonstrated to perform similarly as the Gabor filters. Subsequently, Sarwar
et al. applied the Gabor filters in several layers of DCNNs for fast learning
[13]. Wang et al. used the Gabor transformations to replace the convolutional
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operation for images feature extraction [15]. Specifically, Luan et al. proposed
the Gabor convolutional networks (GCNs), which integrated the Gabor filters
into DCNNs, to enhance the resistance of the learned features to the orientation
and scale changes [11]. However, GCNs simply use the same number of Gabor
fitlers in each layer and can not update the parameters in the Gabor function.

In this paper, we propose a new model called learnable Gabor convolutional
networks (LGCNs), which use Gabor filters to adaptively adjust convolutional
kernels to form the Gabor convolutional filters (GCFs). Concretely, the adjust-
ing method is element-wise multiplication of the convolutional kernels by the
learnable Gabor filters. In general, the filters in the shallow layers of DCNNs
can extract the low level information like edge and corner in an image. Further-
more, the kernels in the middle and deep layers of DCNNs can extract relatively
higher level information, such as parts and semantic features. Correspondingly,
we divide the DCNNs model into three stages corresponding to the levels of
feature learning. In different stages, the convolutional kernels are manipulated
by different numbers of Gabor filters: four Gabor filters in the low level stage,
two and one in the middle and high level stages, respectively. Additionally, we
derive the formulas to update the scale and orientation parameters in the Gabor
functions.

The contributions of this work can be summarized as follows:

1. We propose the learnable Gabor convolutional networks (LGCNs), which use
Gabor filters to adaptively adjust the convolutional filters in DCNNs.

2. The scale and orientation parameters of the Gabor functions can be learned
together with others in LCGNs by the back-propagation (BP) algorithm dur-
ing the model training.

2 Related Work

2.1 Gabor Filters

Gabor functions were proposed by Dennis Gabor in 1946 [3]. The 2D Gabor
function is a product of an elliptical Gaussian and a complex plane wave. The
Gabor function can be defined as follows [4]:

g(x, y;λ, θ, ψ, σ, γ) = exp(−x′2 + γ2y′2

2σ2
) exp(i(2π

x′

λ
+ ψ)), (1)

where
x′ = x cos θ + y sin θ, y′ = −x sin θ + y cos θ. (2)

Here, γ is spatial aspect ratio, which determines the ellipticity of the receptive
field, λ is the wavelength and 1/λ is the spatial frequency of the cosine factor.
In addition, θ is the orientation parameter, φ is the phase offset, and σ is the
standard deviation of the Gaussian factor, while x and y indicate the position
of the pixel on the x-axis and y-axis.
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2.2 DCNNs

DCNNs have made a major breakthrough in the area of image classification
[7,10]. Evidences show that the deeper the DCNNs, the better the classification
results can be obtained [14]. However, traditional DCNNs cannot handle the
problem of large spatial transformations in images.

To solve the above problem in DCNNs, several methods have been proposed.
Among others, max-pooling is a down-sampling method [1]. It enables DCNNs to
handle small spatial transformations in images. Transformation-invariant pooling
(TI-pooling) utilizes parallel architectures to output the transformation invariant
features before the fully-connected layers [8]. In addition, spatial transformer net-
works (STN) use an additional module to handle the spatial transformation prob-
lem [6]. Oriented response networks (ORNs) rotate the convolutional kernels to
encode the rotation-invariant information into DCNNs [17]. However, ORNs are
more suitable for small size convolutional kernels, i.e. 3 × 3.

2.3 Combination of Gabor Wavelets and DCNNs

Since the convolutional kernels perform similarly with Gabor filters in the shal-
low layers of DCNNs, [15] replaced the convolutional kernels with the Gabor
filters for image feature learning. Sarwar et al. used the Gabor filters in sev-
eral layers of DCNNs, which significantly reduced the storage requirements and
training time with minimal degradation of the classification accuracy [13]. How-
ever, these methods only simply apply the Gabor filters as substitutes of the
convolutional kernels in DCNNs.

Luan et al. proposed a convolutional kernel manipulation method named
Gabor convolutional networks (GCNs) [11]. GCNs combine the Gabor filters and
convolutional kernels to form the Gabor orientation filters (GoFs) in DCNNs.
However, GCNs cannot learn the parameters of the Gabor functions in the train-
ing processes, which limits the performance of GCNs in image classification tasks.

3 Learnable Gabor Convolutional Networks (LGCNs)

In this section, we introduce a new deep architecture named learnable Gabor
convolutional networks (LGCNs), which use the Gabor filters to adjust the con-
volutional kernels in DCNNs and form the Gabor convolutional filters (GCFs).

3.1 GCFs

To obtain the GCFs, we manipulate each convolutional kernel with the Gabor
filters. Concretely, a GCF can be computed as:

Mk = C ∗ Gk(λ, θ), (3)

where Mk denotes a GCF, C denotes a convolutional kernel, Gk(λ, θ) denotes
the kth Gabor filters, while λ and θ are the scale and orientation parameters in
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the Gabor function. In addition, ∗ stands for the element-wise multiplication,
where C and G have the same size.

In LGCNs, we divide the convolutional layers into three stages and manip-
ulate the convolutional kernels in each stage respectively. Suppose the convolu-
tional layers can be equally divided into three stages. We use four Gabor filters
in the first stage, two Gabor filters in the second stage and one Gabor filter
in the third stage. Figure 1 illustrates the computation of the GCFs with the
convolutional kernels and Gabor filters in the three stages. Additionally, when
the convolutional layers cannot be divided into three stages equally, we have two
solutions with respect to the two cases that the remainder of the layers is 2 or
the remainder of the layers is 1. If the remainder is 2, we use the first number,
which is a multiple of three and larger than the number of convolutional layers,
to determine the split points. If the remainder is 1, we choose to neglect the first
convolutional layer and only divide the remainders.

Fig. 1. Illustration of the computation of GCFs with the convolutional kernels and
Gabor filters in the three stages of convolutional operations. (a) shows the computation
in the first stage. A convolutional kernel is shown in the left column, which is adjusted
by four Gabor filters as shown in the middle column. (b) and (c) shows the computation
in the second and third stages, respectively.

3.2 Update of the Parameters in the Gabor Functions

In LGCNs, we only use the real part of the Gabor filters, which can be expressed
as:

gr(x, y;λ, θ, ψ, σ, γ) = exp(−x′2 + γ2y′2

2σ2
) cos(2π

x′

λ
+ ψ). (4)

The gradient of this function with respect to the scale and orientation parameters
can be written as:

∂gr

∂λ
= 2π

x′

λ2
exp(−x′2 + γ2y′2

2σ2
) sin(2π

x′

λ
+ ψ), (5)

∂gr

∂θ
= − exp(−x′2 + γ2y′2

2σ2
)[

x′ dx′
dθ + γ2y′ dy′

dθ

σ2
cos(2π

x′

λ
+ ψ)

+
2π

λ

dx′

dθ
sin(2π

x′

λ
+ ψ)],

(6)



Learnable Gabor Convolutional Networks 309

where
dx′

dθ
= y cos θ − x sin θ,

dy′

dθ
= −x cos θ − y sin θ. (7)

The gradient functions with respect to the scale and orientation parameters
in the kth Gabor filter are:

δk
λ =

1
J

1
N

J∑

j=1

N∑

n=1

Cl
j,n

∂L

∂M l
i,n

∂M l
i,n

∂Gk,n(λ, θ)
∂Gk,n(λ, θ)

∂λ
, (8)

δk
θ =

1
J

1
N

J∑

j=1

N∑

n=1

Cl
j,n

∂L

∂M l
i,n

∂M l
i,n

∂Gk,n(λ, θ)
∂Gk,n(λ, θ)

∂θ
, (9)

where N denotes the kernel size of the filters and J is the number of the con-
volutional kernels which are adjusted by Gk in layer l. The update functions of
the scale and orientation parameters in the kth Gabor filter can be expressed as:

λk = λk − ηδk
λ, θk = θk − ηδk

θ , (10)

where η denotes to the learning rate in the training processes. Particularly, the
update functions of the convolutional kernels are the same as the conventional
DCNNs, except the multiplication with the Gabor functions.

Fig. 2. The architectures of the baseline CNNs, STN [6], GCNs [11] and LGCNs.

4 Experiments

In our experiments, we evaluated LGCNs on the MNIST [9], MNIST-rot, SVHN
[12] and CINIC-10 [2] datasets. All experiments were implemented in Pytorch
with the NVIDIA GeForce GTX 1080Ti and Titan X GPU platforms.
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4.1 Results Obtained on the MNIST and MNIST-rot Datasets

MNIST. We compared LGCNs with baseline CNNs, STN [6] and GCNs [11].
The architecture of baseline CNNs, STN, GCNs and LGCNs are shown in Fig. 2.
We trained all these networks using the Stochastic Gradient Descent (SGD)
algorithm with momentum 0.9, initial learning rate 0.01, a learning rate decay
factor of 3e−05 per 10 epochs, and batch-size 128.

Table 1. Results obtained on the MNIST and the MNIST-rot datasets.

Model Channels Time (s)

MNIST/

MNIST-rot

Parameters (M) Error rate (%)

MNIST/

MNIST-rot

Baseline CNNs (3 × 3) 40-80-120-160-160 4.96/12.05 0.69 0.73/1.39

STN (3 × 3) 40-80-120-160-160 10.80/26.11 0.70 0.56/1.25

GCNs (3 × 3) 10(×4)-20(×4)-30(×4)-40(×4)-40(×4) 5.61/11.60 0.31 0.62/1.38

GCNs (5 × 5) 10(×4)-20(×4)-30(×4)-40(×4)-40(×4) 8.12/12.17 0.54 0.58/1.40

LGCNs (3 × 3) 10(×4)-20(×4)-60(×2)-80(×2)-160(×1) 12.00/12.12 0.54 0.52/1.24

LGCNs (5 × 5) 10(×4)-20(×4)-60(×2)-80(×2)-160(×1) 18.60/18.39 1.20 0.47/1.04

In STN, a spatial transformation (ST) layer was implemented before the
first convolutional layer, and the rest was the same as the baseline CNNs. In
GCNs, each convolutional kernel was combined with four Gabor filters in each
layer. Table 1 shows the results obtained by the baseline CNNs, STN, GCNs
and LGCNs. Especially, the second column shows the number of the convolu-
tional kernels in each convolutional layer of the compared models. For GCNs and
LGCNs, p(×q) denotes that we used p convolutional kernels and each of them
was adjusted by q Gabor filters. The third column shows the average training
time of one epoch for the corresponding model. The left half shows the training
time on the MNIST dataset, while the right half shows that on the MNIST-rot
dataset. Because the scale and orientation parameters were updated during the
model training, LGCNs were slightly slower than the other models. The fourth
column shows the parameter size of each model. From Table 1, we can see that,
LGCNs with 3 × 3 convolutional kernels can achieve a better result with 0.52%
error rate than the baseline CNNs and GCNs. With 5 × 5 convolutional kernels,
LGCNs perform best among the compared methods on the MNIST dataset, with
error rate 0.47%.

MNIST-rot. MNIST-rot was obtained by randomly rotating each digit image
between [0, 2π] in the MNIST dataset. From Table 1, we can see that, LGCNs
with 3 × 3 convolutional filters and 5 × 5 convolutional filters can achieve 1.24%
and 1.04% error rates respectively, which are better than that obtained by other
compared methods. This demonstrates that LGCNs have the ability to extract
the orientation invariant information of the digit images.
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4.2 Results Obtained on the SVHN Dataset

The Street View House Numbers (SVHN) dataset [12] is a real-world image
dataset, which is obtained from the house numbers in Google Street View images.
The SVHN dataset contains more than 600,000 labeled digit images: 73,257
digits for training, 26,032 digits for test, and 531,131 additional digits. In our
experiment, we only used the training and test sets.

Table 2. Classification results obtained on the SVHN dataset.

Model ResNet-110 GCN-Res110 LGCN-Res110

Channels 16-32-64 4(×4)-8(×4)-16(×4) 4(×4)-16(×2)-64(×1)

Parameters (M) 1.73 0.44 1.52

Error rate (%) 6.03 6.43 5.49

We selected ResNet-110 [5] with 3 × 3 convolutional kernels as a baseline
model. ResNet-110 includes a convolutional layer, 3 stages with 36 convolutional
layers per stage and 16, 32, 64 channels per layer in the corresponding stage, and
a fully connected layer. Hence, there are 109 convolutional layers in ResNet-110,
which cannot be divided into three stages equally. We chose the second method
to divide ResNet-110 to form the LGCNs-Res110 and GCN-Res110, neglecting
the first convolutional layer. LGCNs-Res110 used 4, 2, 1 Gabor filters to adjust
the convolutional kernels in the three stages, respectively. GCN-Res110 used 4
Gabor filters in each stage to keep the same number of channels with ResNet-
110 and LGCNs-Res110. In the second row of Table 2, we show the number
of channels per stage in ResNet-110, GCN-Res110 and LGCNs-Res110. From
Table 2, we can see that LGCN-Res110 improves both ResNet-110 and GCN-
Res110. Additionally, LGCN-Res110 has less parameters than ResNet-110.

4.3 Results Obtained on the CINIC-10 Dataset

The CINIC-10 dataset [5] contains the images from the CIFAR-10 data set and a
selection of the ImageNet images (which are downsampled to 32×32). It is split
into three equal subsets: train, validation, and test sets, each of which contains
90,000 images. We tested ResNet-110, GCN-Res110 and LGCN-Res110, and the
error rate curves against the training epochs are shown in Fig. 3. It can be seen
that LGCN-Res110 learns faster than GCN-Res110 and ResNet-110. Moreover,
LGCN-Res110 achieved a better result compared with both ResNet-110 and
GCN-Res110 (with error rate 29.48%, 32.77% and 32.19%, respectively).
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Fig. 3. The error rate curves of ResNet-110, GCN-Res110 and LGCN-Res110 on the
CINIC-10 dataset.

5 Conclusion

Traditional convolutional kernels cannot learn the invariant information of
images. In this paper, we propose a new method named learnable Gabor convolu-
tional networks (LGCNs), to manipulate the convolutional kernels using Gabor
filters for invariant information learning of images. The scale and orientation
parameters in the Gabor functions can be learned simultaneously with other
parameters during the training of LGCNs. Extensive experiments demonstrate
the advantages of LGCNs over related state-of-the-art approaches.
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Abstract. Information overloading leads to the need for an efficient
search tool to eliminate a considerable amount of irrelevant or unimpor-
tant data and present the contents in an easy-browsing form. Person-
alized faceted search has been one of the potential tools to provide a
hierarchical list of facets or categories that helps searchers to organize
the information of the search results. Facet selection is one of the impor-
tant steps to pursue a good faceted search. Collaborative-based person-
alization was introduced to facet selection. Previous studies have been
performed on the use of Collaborative Filtering techniques for personal-
ized facet selection. However, none of the study has investigated Artificial
neural network techniques on personalized facet selection. Therefore, this
study aims to investigate the possible use of deep Autoencoder on the
prediction of facet interests. Autoencoder model was applied to address
the association of collaborative interest in facets. The experiments were
conducted on 100K and 1M rating records of Movielen dataset. Rating
score was used to represent the explicit feedback on facet interests. The
performance was reported by comparing the proposed technique and the
state-of-the-art model-based Collaborative Filtering techniques in terms
of prediction accuracy and computational time. The results showed that
the proposed Autoencoder-based model achieved better performance and
it was able to significantly improve the prediction of personal facet
interests.

Keywords: Deep Autoencoder · Faceted search · Personalized facet
selection

1 Introduction

With the exponential increasing of digital data, information retrieval system has
been improved to provide greater accessing services for searchers to meet their
information need. The progressive movement from query formation to informa-
tion browsing can facilitate searchers to make direct access to their desirable
information instead of surfing a sequential list of search results [14]. Faceted
search is one of these potential features which provides a navigating category
or facet of the knowledge underlying the search results [2]. With faceted search,
c© Springer Nature Switzerland AG 2019
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facets are filtered from search results and represented in the form of a hierar-
chical list [2,20] which is particularly useful when searchers have to face with
a large volume of search results [14]. Dynamic faceted search has replaced the
traditional form of faceted search from the situation that search environment has
been changed from searching on a fixed set of data to scalable volume. It has
been applied to various applications such as E-commerce [18] and social media
[12]. Facet selection is one of the main steps to create an appropriate faceted
list [2,20]. Without selection process, dynamic faceted search becomes useless.
A long list of facets can be produced and those items may not be interested by
searchers [18]. Browsing through an irrelevant facet list does not help searching
activity, but adding more effort to searchers. Facet selection needs to be person-
alized in order to produce a facet list which is relevant to the personal interests
of each searcher. Personalization was first introduced to facet selection by [6].

Deriving searchers’ interests from their own profiles may not be enough to
develop personalization due to human information seeking behavior [2]. Inter-
ests from the past may not be adequate to predict current interests. Incorpo-
rating current interests from other people’s opinions to predict the interests of
individual person is an alternative way to develop personalization which called
collaborative approach. Collaborative approach is based on the assumption that
it is likely that people who have similar interests will also prefer the same items
[17]. Collaborative approach has been one of the most successful techniques used
in building recommender systems [10]. Collaborative Filtering (CF), one tech-
nique of collaborative approach, was first applied to personalize facet selection
by Koren et al. [6]. The recent experimental study carried out by Chantamunee,
et al. [3] showed that CF had the capability to significantly predict facet inter-
ests. The study reported that model-based CF achieved higher prediction accu-
racy than memory-based methods where Singular Value Decomposition (SVD)
performed the best [10]. However, none of the studies has investigated Artifi-
cial Neural Network (ANN) techniques for personalized facet selection. ANN,
deep learning in particular, is recently considered as one of the widely used
model-based techniques for modeling collaborative information in recommender
systems [19].

Several deep learning models have been applied in recommender systems [19].
In recent years, Autoencoder has attracted researchers in the area due to the
capability of learning latent representation and predicting user preferences using
content reconstruction technique [17]. The idea of Autoencoder is to operate
dimensional reduction which is similar to the concept of SVD [7] where SVD
is the best performer in the recent study by Chantamunee et al. [3]. Hence, it
motivates this paper to investigate Autoencoder on the prediction of personal
facet interests.

The main two contributions of this paper are presented as follows: (1) This
paper aims to investigate deep Autoencoder in personalized facet selection. The
performance will be measured by comparing to the state-of-the-art statistical
CF methods where the performance is previously reported in [3]. (2) This paper
further investigates the applicability of the deep Autoencoder to larger dataset
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by investigating whether the volume of training data has an effect on the pre-
diction of personalized facets. The remainder of this paper is organized as fol-
lows: Sect. 2 provides the related works and backgrounds. Section 3 presents the
proposed model. Section 4 describes the detail of the experiments, the dataset,
and evaluation metrics. Section 4 gives the experimental results and discussions.
Finally, Sect. 5 gives the conclusion.

2 Background and Related Works

2.1 Personalization on Facet Selection

Facet selection is one of the major processes to create faceted search where the
task is to select a set of representative facets to construct a hierarchical search
filter list [20]. The success of faceted search heavily relies on the performance of
facet selection and ranking processes [1]. In recent years, faceted search has been
changed to dynamic scheme. Facet list is automatically created and dynamically
changed by certain criterion. In Kim et al. [5], information of the last searched
facets was adopted to predict a current facet list for movie web engine. Count-
based greedy algorithm was proposed to facet selection by [9]. The counting
number was used to select a set of preferable facets. Vandic et al. [18] further
used counting algorithm to count the frequency of products that were related to
pre-defined facet values. The number of clicks was considered as a key factor to
select a set of expected facets in [13].

However, these proposed works did not guarantee whether the selected facets
satisfied the interests of an individual searcher. In general, searchers’ satisfac-
tion is the major purpose of a search engine. Searchers navigate the list to find
their desirable facets where they are, in the worst situation, possibly shown at
the bottom of the list. Personalization was then introduced to facet selection.
Initially, user profile and search history were used to derive searchers’ interests.
In [8], the information of user activities and user-predefined interests was anal-
ysed to relate a set of preferable facets. However, past information may not be
enough to generate current interests. The study by Tuong et al. [8] suggested
that the frequency of current interaction was able to significantly select more
representative facets than using search history.

The lack of user preferences’s information is a major consideration for per-
sonalization task. Associating the interests from similar group people to generate
user’s own interests appears to be an alternative approach, known as collabora-
tive approach. Collaborative approach provides the ability to relate collaborative
interests to new users or users who have few interests in particular. The state-
of-the-art statistical CF methods were applied to produce personalized facet
selection in [3]. The study reported that model-based CF methods, SVD in par-
ticular, were able to predict more preferable facets than memory-based methods
for most cases. However, none of the work has applied ANN, deep learning in
particular, to personalized facet selection. Artificial neural network has been an
active technique which is mostly used to model user preferences in recommender
systems [19].
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2.2 Autoencoder for Collaborative-Based Personalization

Personalization has been developed based on collaborative information by replac-
ing the traditional use of personal profiles [3]. Collaborative-based personaliza-
tion has achieved great success in the area of recommender systems [10]. Deep
learning technique has recently received much attention and become an active
model to develop personalization in recommender system [19] with the ability
to learn the pattern of user preferences in collaborative environment. With deep
learning, the accuracy of personalization has improved from past works, which
used the traditional CF techniques [19].

In recent years, Autoencoder has attracted the attention of many researchers
in the area of personalization due to its capability of predicting expected personal
interests by reconstructing new user preferences from collaborative information
[17]. Basically, low-level features are learned at the bottleneck layer (encoding
process) and unknown user preferences are then generated during the last layer,
called reconstruction layer (decoding process) [19]. A number of works have
proposed variants of Autoencoder to personalize items’ recommendation. Three-
layer U-AutoRec and I-AutoRec models were proposed by Sedhain et al. [15] for
predicting user-based and item-based recommendation respectively. Liu et al.
[11] integrated Stacked Denoising Autoencoder (SDE) to Neural-based Collabo-
rative Filtering to create a hybrid recommender system. SDE was used to learn
the information of user and item prior to feeding to the ANN-based Collaborative
Filtering.

3 Deep Autoencoder for Personalized Facet Selection

This paper investigates the application of deep Autoencoder to model user-facet
interaction in order to develop personalization in facet selection. The proposed
model is separated into two parts: (1) encoding part (feature learning) which is
operated in the form of multiple hidden layers, and (2) decoding part upsamples
the output which is situated at the output layer. The purpose of decoding part
is to reconstruct the embedded user-facet ratings and predict unknown ratings.
Increasing more layers for encoder part is examined in the experiments in order
to investigate whether deeper layer has an influence on learning performance.

The proposed model aims to minimize the error from predicting personal
facet interests. Mean Squared Error (MSE) was utilized as the loss function in the
experiments. To prevent model overfitting, regularization method was adopted
where L1 and L2 regularization were chosen. In addition, five activation functions
including Sigmoid, Tanh, Relu, Elu, and linear function were tested while the
choices of model optimizers were Adam (Adaptive Moment Estimation), SGD
(Stochastic Gradient Descent), and Adagrad. Figure 1 presents the architecture.
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4 Experiment Detail

4.1 Experimental Setup

Explicit user feedback was used to represent user preferences on facets. User
rating was chosen in this experiment to represent explicit feedback. The range
of rating score is within 1 to 5 where 1 denoted the least preference.

This paper compared the performance of the proposed model against the-
state-of-the-art CF techniques. CF is classified into two main approaches:
memory-based and model-based CF [10]. However, regarding to the experiment
reported by Chantamunee et al. [3], model-based CF obtained better prediction
than memory-based approach. Therefore, the techniques by model-based app-
roach was only taken into the investigation. The comparison techniques includes
SVD, SVD++, NMF (Normalised Matrix Factorisation), and PMF (Probabilis-
tic Matrix Factorisation). The public toolkit, Surprise1, was employed to imple-
ment CF techniques.

Fig. 1. The architecture of deep autoencoder model for personalized facet selection.

The comparison CF methods are not able to apply straight to personalized
facet selection. The techniques are originally designed for recommending items
in recommender systems. The prediction is made at item level. Facet, however,
is the metadata of items. The example of facets for item book could be author,
book title, and year. In order to perform the comparison, this paper therefore
transformed the information of user-item ratings to user-facet ratings prior to
feeding into the methods. The procedure of facet extraction is described in [3].

4.2 Dataset

The experiments were conducted based on the MovieLens-100K and MovieLens-
1M datasets [4]. The datasets contained the information of movie metadata and
user ratings. User id was used to represent individual user. The dataset only con-
tains rating for users who rate more than 20 movies. From the metadata, facets
1 http://surpriselib.com/.

http://surpriselib.com/
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were extracted and selected to four attributes including genre, actor/actress, key-
word and production company. For the experiments, the dataset was randomly
divided into 80% for training and 20% for testing.

4.3 Evaluation Metrics

The evaluation was measured by the accuracy of rating prediction and calcu-
lation time. Root Mean Squared Error (RMSE) was chosen for measuring the
prediction accuracy as being done in [3]. RMSE is a common evaluational tool
in recommendation task [16]. The lower value indicates that prediction error
is small which gives a better prediction accuracy. Computation time includes
training and prediction times.

5 Results and Discussions

This section presents the experimental results from the investigation of employ-
ing deep Autoencoder on predicting facet interests. The experiments were run on
2.9 GHz Intel Core i5 CPU and 8 GB RAM. In the experiments, four facets were
tested including facet genre, keyword, actor/actress, and production company.

For parameters’ setting, regularization was adopted to the proposed model
in order to prevent model overfitting. L1 and L2 regularization methods were
tested and the results were shown that L2 regularization outperformed another
method. Hence, L2 regularization method was selected to run the model where
the value of beta was set to 0.01. In addition, Linear function was chosen as the
activation function due to its performance above Sigmoid, Relu, Elu and Tanh
in the experiment. The proposed model was trained for 500 epochs and learning
rate was set to 0.01. The number of nodes for each hidden layer was set to 100.
Adam optimizer was chosen as being outperformed another two optimizers.

With Movielen-100K dataset, the results were shown that the Autoencoder-
based facet prediction models obtained higher prediction accuracy values for all
facets. The best RMSE scores were reported at 0.0011 by the 1-hidden-layer
Autoencoder model with L2 regularization (AE (1L) + L2), 0.2788 by the 2-
hidden-layer model with L2 regularization (Deep-AE (2L) + L2), 0.6474 by the
1-hidden-layer Autoencoder model (AE (1L)), and 0.5401 by the 1-hidden-layer
Autoencoder model (AE (1L)) for facet genre, production company, keyword,
and actor/actress respectively. The prediction for personal facet interests was
improved from the previous outperformer, SVD, did in [3]. It appeared that the
Autoencoder model achieved the remarkable results on predicting the interests
on facet genre. In the experiment, movie genre included only 20 values. The
number of facet values was limited so that it may be easier for Autoencoder to
learn the pattern and reconstruct the unknown ratings. The results on 100K-
dataset are presented in Table 1.

The results were further confirmed by the experiment on larger dataset. The
same four facets were then generated from 1M rating records of Movielen dataset.
The experiment produced the results in the same direction that was done on
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100K rating records. Table 1 shows the results of prediction accuracy carried out
on Movielen-1M dataset. In conclusion, the proposed model outperformed the
CF techniques. However, the Autoencoder-based model did not fit too well on
the facets that were formed by name entity and free texts. In addition, facet
keyword contained some special characters from foreign languages. It is likely
to be difficult for pure Autoencoder model to learn the patterns. It may need
text filtering process prior to feeding the content to the model. Alternatively,
CNN can be another choice for learning facet preferences due to the feature of
information filtering that can be done in the model. Dropout, another potential
regularization technique [7], could be applied to the proposed model in order to
drop noise nodes. These will be taken into consideration for future works.

In term of computation time, the Autoencoder-based models required much
longer training time than CF methods, but it achieved less time on facet pre-
diction. For instance, for facet keyword (on 100K records), training time was
approximately ranged from 30 to 50 s while the model-based Collaborative Filter-
ing techniques spent less time during 6 to 11 s. Prediction time for Autoencoder-
based models was about 0.02 to 0.03 s while prediction time of the CF tech-
niques was about 0.25 s in average. With spending shorter time for predic-
tion, the Autoencoder-based model is rather appropriate for online real time
prediction.

The experiments showed that modeling by deep layers achieved higher pre-
diction accuracy in some cases. In addition, the experiments suggested that
employing Adam optimizer in Autoencoder-based model was able to solve the
problem of data sparsity in facet prediction where the percentage of data spar-
sity was high in facet keyword, actor/actress, and production company. When
using Adagrad and SGD optimization for the Autoencoder models, their results
are poorer when compared to the CF techniques.

Table 1. Facet prediction accuracy on Movielen-100K and Movielen-1M dataset mea-
sured by RMSE.

Techniques/facets Genre Product. com. Keyword Actor/actress

100K 1M 100K 1M 100K 1M 100K 1M

Proposed methods

AE (1L) 0.0022 0.0048 0.2888 0.1195 0.6474 0.7194 0.5401 0.6752

AE (1L) + L2 0.0011 0.0026 0.2861 0.1194 0.6496 0.7169 0.5439 0.6646

Deep-AE (2L) 0.0016 0.0038 0.2813 0.1175 0.6660 0.7441 0.5517 0.6897

Deep-AE (2L) + L2 0.0033 0.0024 0.2788 0.1271 0.6566 0.7526 0.5563 0.6893

Deep-AE (3L) 0.0042 0.0026 0.2834 0.1588 0.6711 0.7870 0.5636 0.7140

Deep-AE (3L) + L2 0.0292 0.0025 0.2803 0.1266 0.6653 0.7770 0.5593 0.7197

Model-based CF

SVD 0.6572 0.6841 0.6089 0.5940 0.8256 0.8009 0.8193 0.8602

SVD++ 0.6502 0.6798 0.6586 0.5873 0.8262 0.8146 0.8208 0.8912

NMF 0.6837 0.7144 0.7811 0.7101 0.8713 0.9094 0.8812 0.9283

PMF 0.6824 0.6918 0.9899 1.8368 0.8501 0.8023 0.8514 0.8635
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6 Conclusion

This paper presents a study of employing Autoencoder model to predict facet
interests in personalized faceted search. The performance accelerated by the
choices of multiple layers along with regularization methods, optimizers, and
activation functions were reported. The proposed Autoencoder-based models
were compared to the model-based CF techniques. The evaluation was mea-
sured in terms of prediction accuracy using RMSE and computation time. The
experimental results showed that the proposed models obtained higher predic-
tion accuracy than the models fitted by CF techniques for all facets. As expected,
the proposed methods spent much time on training. However, the proposed mod-
els gave faster prediction. The study was extended on larger datasets and the
results presented similar behaviour. Future work may consider the use of text
filtering technique to improve the prediction on the facet formed by name entity
and free texts.
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Abstract. In recent years, Deep Reinforcement Learning (DRL) has
achieved great successes in many large scale applications, e.g., the Deep
Q-Network (DQN) surpasses the level of professional human players in
most of the challenging Atari 2600 games. As DQN transforms the whole
input frames into some feature vectors by using convolutional neural net-
works (CNNs) at each decision step, all objects in the system are treated
equally in the process of the feature extraction. However, in reality, for
complex systems where many objects exist, the optimal action taken by
the agent may only be affected by some important objects, which may
lead to inefficiency or poor performance of DQN. In order to alleviate
this problem, in this paper, we introduce two approaches that integrate
global and local attention mechanisms respectively into the DQN model.
For the approach with global attention, the agent is able to focus on
all objects to varying degrees; for the approach with local attention, the
agent is allowed to focus only on a few objects of great importance with
the result that a better strategy can be learned by the agent. The perfor-
mance of our proposed approaches are demonstrated on some benchmark
domains. Source code is available at https://github.com/DMU-XMU/
Attention-based-DQN.

Keywords: Deep Reinforcement Learning · Deep Q-Network · Atari
2600 games · Complex systems · Attention mechanisms

1 Introduction

Recent research has shown that Deep Reinforcement Learning (DRL) provides a
power framework to solve the real-world problems where the input data is high
dimensional. For example, the Deep Q-Network (DQN) model [11] is capable of
learning control strategies directly from raw input frames to actions by combining
deep neural networks with reinforcement learning. However, a possible drawback
of DQN is that the agent is forced to consider all the information of the input
frames in each decision-making, which makes the network hard to be trained
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well when many objects exist in the environment but some of them may have
no effects on the agent’s decision.

In the DRL literature, inspired by the human perception [2], attention mech-
anisms has been integrated with the related algorithms, e.g., the Deep Atten-
tion Recurrent Q-Network (DARQN) models [12], where Deep Recurrent Q-
Network (DRQN) [4] is combined with soft and hard attention mechanisms
respectively to make agents selectively focus only on some important objects
of visual input. Both of them add attention to current frame at each time
step. However, given only a single frame, most of games become a Partially-
Observable Markov Decision Process (POMDP) rather than a Markov Decision
Process (MDP). As a consequence, for the DARQN algorithm, to obtain the
state of the moving object, attention must be paid to this object continuously,
e.g., several frames, which will cause agents to ignore other objects, resulting in
inefficiency of DQN.

In order to overcome this shortcoming of the DARQN model, in this paper,
global and local attention-based DQN models are proposed. Given a history
of the same length, in our approach, instead of only focusing on the current
frame, the agent selectly focuses on the related regions of the input frames
to directly obtain the states of all objects in regions of interest. Compared to
soft DARQN [12], the global attention model can greatly improve the train-
ing efficiency without using a recurrent neural network. Due to the limitation
of DARQN model, when hard attention is used, agents can only focus on one
region at each decision time while our model can make agents focus on multiple
regions (see Sect. 4.2 for details).

2 Related Work

In real-world applications, many problems are partially observable. The methods
to solve them are divided to model-based and model-free methods. For model-
based methods, the standard approaches are to establish environmental models
firstly and then use environmental models to plan. An alternative interesting
method of modeling is Predictive State Representations (PSRs) [6,8], which
uses predictive vectors of action-observation series occurring in the future to
represent the system states. Furthermore, agents can update the PSR model
while planning through online learning [7].

For model-free methods, e.g., DQN uses the last four stacked frames as state
to convert problems to a MDP. And for the problem of limited memory of DQN,
DRQN [4] replaces the first fully-connected layer behind the convolutional net-
works by a recurrent LSTM network. Based on DRQN, DARQN [12] enables
the agent to selectively focus on information of importance by adding visual
attention mechanisms.

In other fields, visual attention mechanisms are widely used and have gained
remarkable performance over many challenging problems. The recurrent neu-
ral network of visual attention (RAM) proposed in [10] outperforms a convo-
lution neural network baseline significantly on image classification tasks and
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dynamic visual control problems. Subsequently, the deep recurrent visual atten-
tion model (DRAM), a extended version of RAM, is able to recognize multiple
objects in images and be more accurate than the state-of-the-art convolutional
networks by using fewer parameters and less computation [1]. But both of them
are non-differentiable, which should be trained by using reinforcement learning
methods. More recently, the Deep Recurrent Attentive Writer (DRAW) neu-
ral network [3], considered as “Differentiable RAM”, demonstrates a significant
improvement in test error on cluttered MNIST classification over the original
RAM network.

3 Background

3.1 Deep Q-Network

Deep Q-Network uses deep neural networks parametered with θ as an approxi-
mator of state-action value functions defined as Q(s, a; θ). Given a current state
s, DQN can output values for each possible action a to help the agent to make
decisions. The loss function of DQN is defined as follows [11]:

L(θ) = E[(r + γ max
a′

Q(s′, a′|θ−) − Q(s, a|θ))2] (1)

where θ− is the parameters of target network, which is a replication of θ every
fixed steps to stabilise the learning and γ is a discount factor that makes a
trade-off between immediate rewards and future rewards. Experiences stored as
〈s, a, r, s′ 〉 can be sampled repeatedly for training, which denotes the process
that at some time step, the agent executes action a in the current state s and
receives next state s′ and an immediate reward r. And parameters are updated
with a learning rate α as [11]:

θt+1 = θt − α∇θt
L(θt) (2)

3.2 Attention Mechanisms

Attention mechanisms have been widely used in different fields, usually divided
into soft attention and hard attention as [13].

The soft attention mechanism [9,12,13] is to assign attention weight between
0 and 1 to each pixel of the feature map. The hard attention mechanism [1,
10,12,13] is to select an attention area of the image, often called a glimpse,
where the attention weight of this part is 1, and the attention weight of other
areas is 0, e.g. image cropping, which is usually non-differentiable. However, a
differentiable hard attention mechanism called the read mechanism is proposed
in [3]. By applying a N × N grid of two-dimensional Gaussian filters consisting
of the horizontal and vertical filterbank matrices FX ∈ R

N×A and FY ∈ R
N×B

to a input image with A columns and B rows, the read mechanism can extract
a N × N glimpse g as [3]:

g = γFY xFT
X (3)



326 K. Ni et al.

where γ is a scalar intensity. Both γ and the parameters of filterbank matrices
are determined by a linear transformation of the hidden state h of LSTM [3]:

(∼
gX ,

∼
gY , log σ2, log

∼
δ , log γ

)
= Linear(h) (4)

where σ is standard deviation,
(∼
gX ,

∼
gY

)
is the grid center and stride

∼
δ controls

the scope of glimpses. To make the initial glimpse cover the entire input image,
∼
gX ,

∼
gY ,

∼
δ are scaled as follows [3]:

gX =
A + 1

2

(∼
gX + 1

)
(5)

gY =
B + 1

2

(∼
gY + 1

)
(6)

δ =
max(A,B) − 1

N − 1
∼
δ (7)

and then the mean locations μi
X , μi

Y of filters at row i, column j are computed
as [3]:

μi
X = gX +

(
i − N

2
− 0.5

)
· δ (8)

μj
Y = gY +

(
j − N

2
− 0.5

)
· δ (9)

given the parameters μi
X , μi

Y , σ, filterbank matrices FX ∈ R
N×A and FY ∈

R
N×B can be obtained via [3]:

FX [i, a] = Softmax

(
exp

(
− (a − μi

X)2

2σ2

))
(10)

FY [j, b] = Softmax

(
exp

(
− (b − μj

Y )
2

2σ2

))
(11)

4 Attention-Based Deep Q-Network

We integrate two attention mechanisms respectively with DQN so that the
extended attention-based DQN models including global and local can perform
well in many complex environments. Both of these two models consist of three
components: the feature extraction network, the attention network and the
action network.

Common to them is that they share a same feature network and a similar
action network. The feature extraction network calculates a feature representa-
tion V with given stacked frames of the history as input. And its structure is the
same as convolutional neural networks of DQN. The action network is simply
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composed of full-connected layers. Its output is state-action values evaluated,
referred to as Q-values.

The difference between these two types of models is whether the attention of
the agent is placed on the whole feature map or on only a part of the feature map.
It is worth noting that both our models exert attention on four stacked frames
instead of one frame at each step as DARQN. In the following subsections, we
describe two different attention networks in detail.

4.1 Global Attention Model

The global attention model is to place a weight distribution on the feature map
and does not need to use recurrent neural network, which is more efficient than the
soft DARQN model that requires attention on each frame. The attention network
of this model includes a regression network and a glimpse network. The regression
network produces weights for each position of the feature map by using a fully-
connected layer followed by a Softmax function, and then the glimpse network
calculates the element-wise product of weight map and feature map.

In detail, firstly, the feature map is reshaped to V = [v1, v2, . . . , vL], vm ∈
R

D, L = H × W , where H,W,D are respectively height, width and channel of
V . Then we use the feature map V to product a positive attention weight αm

for each region vm via a linear transformation. Below are the specific definitions
of generating a weighted feature map Z = [z1, z2, . . . , zL], zm ∈ R

D:

α = Softmax(Tanh(Linear(V ))) (12)

zm = αmvm (13)

where Linear is a fully-connected layer in the regress network. At each decision
step, the agent pays more attention to some important regions by giving a greater
weight and suppresses the information of the unimportant regions by giving a
weight of approximately 0.

4.2 Local Attention Model

The local attention model is an aggregation of read mechanism introduced in [3]
and DQN. Different from [1,3,10], it extracts glimpses from the feature represen-
tation V instead of the input images, which reduces the amount of calculation.
And then a LSTM network is used to integrate the information of these glimpses
sequentially and produce attention parameters for next glimpse. Figure 1 shows
the generation of k glimpses, where k is set according to the specific environment.
We first transpose the feature map V to V T = [v1, v2, . . . , vD], vn ∈ R

H×W . By
applying a two-dimensional Gaussian filter consisting of a group column Gaus-
sian filters FX ∈ R

N×W and a group of row Gaussian filters FY ∈ R
N×H to

each vn separately as formula (3), the read mechanism can extract a N ×N ×D
glimpse G. With glimpse G as input, the LSTM updates its hidden state dynam-
ically as:

ct, ht = LSTM(G, ct−1, ht−1|W ) (14)
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Fig. 1. The network architecture of the local attention model

where the memory state c and the hidden state h of the LSTM are both initialized
to 0. And W is the parameters of the LSTM. Then ht is used as input of the
regression network to generate the next attention parameters through formula
(4). Therefore, we can enable agents to focus on k regions in each decision, by
setting the unroll step of LSTM to k.

An interesting part of this attention mechanism is that the larger a scope of
the feature map V covered by glimpse, the lower the resolution of the glimpse
will be, which requires the agent to make a trade-off between view and detail.
As shown in Fig. 2, the left glimpse has a wider view but low resolution and
the right is the opposite. To ensure that the agent has a global view at the
beginning so that it can master roughly the motion states of each object, we use
the normalization of Eqs. (5)–(7).

Fig. 2. Visualization of the results of extracting a 36×36 glimpse with different δ from
a 84 × 84 gray frame of the game of Seaquest. The boxes in two big pictures are the
areas covered by glimpses, and the two small pictures is the extracted glimpses. The
left glimpse has a big δ while the right glimpse has a small δ.

Since DARQN needs to keep track of the same object in order to obtain the
state of this object, the hard DARQN model will limit the agent to only focus
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on an area of input. For complex environments such as the game of Seaquest,
if the agent only tracks the trajectory of an enemy, then it may suddenly lose
a life because the agent does not know that the oxygen has been exhausted.
Different from the hard DARQN model, at each unroll step of LSTM, as our
agent focuses on an area of four stacked frames instead of current frame so that
it can immediately get the state of objects in the area. Therefore, the agent
can get the full information of k regions at each decision step. In the game of
Seaquest, our agent with the local attention can sequentially select and focus
on different objects such as the enemy and the oxygen with the local attention,
which makes the agent survive more easily because of not ignoring the lack of
oxygen. Another advantage of the local model over hard DARQN is that our
model is differentiable.

5 Experiments

We selected several complex Atari 2600 games to test our models and compared
the results to those of DQN [11] and soft DARQN [12] with 4 frames history.
Simultaneously, we tested our models in two simple environments and compared
their performance with that in complex environments to show which environ-
ments they are more suitable for.

Table 1. The best average reward per episode for the four models on 11 Atari 2600
games. The first nine rows are complex environments and the rest are simple environ-
ments.

DQN soft DARQN gloal DQN local DQN

Assault 1151.4 1155.2 1159.1 1455.7

Asterix 2640 2585 3025 3360

Breakout 151.2 143.3 187.2 208.7

DemonAttack 1397 1876 3418.5 5432

Jamesbond 255 585 555 525

Pooyan 2687.5 2443.5 2980 3265.0

Seaquest 1868 4739 6412 7160

SpaceInvaders 518.5 502 538.5 589

StarGunner 9000 5350 8940 12200

Pong 15.2 17.3 16.7 17.9

Boxing 94 94.3 94 96.1

In all our experiments, the hidden units and unroll steps of LSTM in the
local attention model was set to 256 and 4 respectively. The size of memory was
200,000 and the discount factor γ was set to 0.99. At the first 50,000 steps, the
agent used a random strategy in order to collect various experiences. After this,
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Fig. 3. Average reward curves for the four models on 8 Atari 2600 games, of which the
first two rows are complex environments and the remaining are simple environments.

the agent was trained every 4 steps with experiences of batch size 32 sampled
from the memory by running an ε-greedy strategy, where ε decayed linearly from
1 to 0.05 over 1 million steps. And models were assigned to the target network
every 10,000 training steps. We used a ADAM optimization [5] to update the
weights of the network with a learning rate of 0.0001. All models were trained on
a GPU 2080TI for 2.5 million steps and evaluated every 10000 steps of training.
We used the average rewards of 10 episodes as the evaluation results. And the
main comparison results of the four models on 11 Atari games are presented in
Table 1, which demonstrated the superiority of our models. We selected several
environments to show their reward curves. In order to smooth the curves, we took
the average value of 20 points before and after each point as the value of that
point. The comparison results of the four models in two types of environment
are presented in Fig. 3.

As shown in Fig. 3, both the global and local models are almost superior to
DQN and the soft DARQN model in these 6 complex games, especially in the
games of Seaquest and DemonAttack. And the local model tends to perform
better. The performance of the soft DARQN model was not greatly improved
compared with DQN in other games except for the games of Seaquest. Moreover,
our global model requires only approximately 12 h to train for 2.5 million steps,
which is more efficient than soft DARQN that needs to take about 16 h.



Attention-Based Deep Q-Network in Complex Systems 331

And in Pong and Boxing games, the final performance of the four models
was almost the same. This can be well explained: in the game of Pong, there are
only two objects in fact, a racket and a ball, so that whether or not attention is
added will not make much difference to the final scores. In addition, our models
can also be compared with other state-of-the-art DQN by setting their training
mode and loss functions to the same.

6 Conclusion

In this paper, we integrate DQN with two efficient differentiable attention-based
DQN models: global and local. The global attention model adds a weight to each
location of the feature map, corresponding to a fixed size area in the original
image. The local attention model only focuses on a part of the feature map at
a time, which can make a trade-off between the size and resolution of regions of
interest as needed. In experiments, we show that these two models are generally
superior to DQN and the soft DARQN model in complex environments. And we
will try to test our models in more challenging tasks in future work.
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Abstract. The results of chest X-ray (CXR) analysis of 2D images
to get the statistically reliable predictions of some lung diseases by
computer-aided diagnosis (CADx) based on the convolutional neural
network (CNN) are presented for the largest open CXR dataset with
radiologist-labeled reference standard evaluation sets (CheXpert). The
results demonstrate the lower validation loss and higher area under curve
(AUC) values for the receiver operating characteristic curve (ROC) for
the models with lung mask segmentation (for 4 from 14 lung diseases)
and data augmentation (for 10 from 14 lung diseases) for small image
sizes (320 × 320 pixels) and standard CNN (like DenseNet121) even.
Moreover, the additional training leads to the lower validation loss and
higher AUC values for the model with data augmentation. The further
progress of CADx is assumed to be obtained for the big datasets with
the bigger original image sizes by longer training with the tuned data
augmentation.

Keywords: Deep learning · Convolutional neural network ·
Segmentation · Data augmentation · Chest X-ray · Computer-aided
diagnosis

1 Introduction

Chest X-ray (CXR) imaging is the most common imaging technology used for
screening, diagnosis, and management of many life threatening diseases, espe-
cially lung diseases like pneumonia, tuberculosis, cancer, etc. Manual CXR image
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interpretation by expert radiologists is a long and complicated process. More-
over, the number of certified radiologists is not enough to organize nationwide
screening for reasonable time. That is why the progress in automated CXR image
interpretation close to the level of expert radiologists could provide substantial
benefit for large-scale (nation-wide and worldwide) screening. The main prereq-
uisites for such a progress are (a) large labeled datasets that follow strong refer-
ence standards and provide expert metrics for comparison, (b) reliable prediction
models that are close to or outperform expert human performance, and (c) pow-
erful computing infrastructures for training and updating the models with a pur-
pose to provide the high-performance prediction. Availability of open datasets
with labeled CXR images [1], new deep learning models [2], and new generation
of general-purpose graphic processing cards (GPU) and tensor processing (TP)
hardware [3] allowed data scientists to apply their deep learning algorithms for
anatomical structure detection, segmentation, computer-aided detection (CADe)
of suspicious regions, and computer-aided diagnosis (CADx).

2 Problem and Related Work

Recently, numerous important results were obtained in the field of CADx for
an assessment of lung diseases by deep learning from CXR image analysis [3–8].
They become possible due to availability of various datasets with CXR images
released for public domain recently: from small ones like JSRT dataset with 247
images of cancer [9]; LIDC dataset with ∼103 images [10]; Montgomery County
(MC) dataset with 138 images, Shenzhen Hospital (SH) dataset with 662 images
[11] and up to the huge ones like ChestX-ray14 [12] with >105 images and CheX-
pert (Chest eXpert) [5] with >2.2 ∗ 105 images. The new algorithms for medical
image analysis [1], especially deep learning methods [2], have allowed scientists
to detect automatically many lung diseases from CXR images at a level exceed-
ing certified radiologists [4,5]. In addition to the newly available datasets and
the better deep learning models, the progress of data processing techniques and
development of have allowed researchers to get the better performance of predic-
tion (lower loss and higher accuracy). For example, various segmentation meth-
ods were applied like the active shape models, active appearance models, and a
multi-resolution pixel classification method [13,14], “internal segmentation” by
exclusion of the effect of some body parts that shadow the lung, for example, ribs
and clavicles [15]. The current and previous attempts to perform training for the
tiny (<103 images) CXR datasets without any pre-processing were performed
and failed, but “external lung segmentation” (exclusion of outside regions which
are not pertinent to lungs) was demonstrated to be effective to provide success-
ful training and, moreover, to increase the accuracy of predictions [6–8]. But the
open question is how these techniques can be useful for the really big datasets
(>105 images) for the multi-class and multi-label classification tasks and what
is their impact on the accuracy of prediction of some classes. The main aim of
this paper is to present the new results on application of some data processing
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technique (lung segmentation in combination with/without data augmentation)
for CADx of 14 lung pathologies for the newly available biggest dataset CheX-
pert [4,5].

3 Dataset and Models

Dataset. In this work, CheXpert was used, which consists of 224,316 chest
radiographs of 65,240 patients labeled for the presence of 14 common chest
radiographic observations (no findings, diseases and other abnormalities) [5].
The images are available in low-quality and high-quality versions, where images
can have a little bit various sizes and aspect ratios. In this work we used the
low-quality version (CheXpert-v1.0-small), where all images where resized to
the uniform size of 320 × 320 pixels, and the similar work on the high-quality
version will be published elsewhere [16]. The training subset contains >200, 000
images. The validation subset and test set were provided by creators of CheXpert
dataset. The validation subset contains 234 images (from 200 patients) randomly
sampled from the full dataset with no patient overlap with the report evaluation
set. The test subset consists of 500 studies (from 500 patients) randomly sampled
from the 1000 studies in the report test set. The details as to their labeling, radi-
ologist annotations, and benchmarks of radiologist performance can be found in
the relevant paper [5].

Data Processing Techniques. Recently, efficiency of some data processing
techniques (like lung segmentation, bone shadow exclusion, and t-distributed
stochastic neighbor embedding (t-SNE) for exclusion of outliers, etc.) was
demonstrated by us for the small datasets (<103 images) for analysis of CXR
2D images to identify marks of lung cancer and tuberculosis [6–8]. Here some of
these methods, actually lung segmentation and data augmentation were used.
Lung segmentation was performed automatically by the previously trained model
[6–8] based on U-Net [17] for the whole CheXpert dataset (Fig. 1). Data augmen-
tation included the following image transformations with random parameters:
horizontal flip, vertical flip, rotation (up to 5◦), color jitter, resized crop (with
a scale in the range from 0.9 to 1.0 and ratio from 0.9 to 1.1), and perspective
distortion (with a scale = 0.1).

Fig. 1. The original CheXpert image (left) and its segmented image (right).
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Model. In this work the deep learning model was used with the DenseNet121
convolutional neural network architecture [18], as far as the DenseNet121 archi-
tecture and its variations give the best results at the moment [5]. The dataset
images were input into the network with size 320 × 320 pixels. The Adam opti-
mizer was used with β1 = 0.9, β2 = 0.999, and learning rate 10−4 which was
fixed during the training. The batch size was equal to 32 images. As far as some
labels have uncertain labels, in this work the uncertain labels for any of the
observations were replaced by the 1 label (so-called U-Ones model) [5].

4 Results

The model was trained on GPU card (NVIDIA Titan 1080) by means of Ten-
sorFlow machine learning framework [19] for: the original dataset (O); the seg-
mented dataset (S), the original dataset with data augmentation (OA), and the
segmented dataset with data augmentation (SA). The training was performed
during 3 epochs (for O and S) and 18 epochs (for OA and SA) with checkpoints
every 2240 iterations and calculation of training and validation losses. At each
checkpoint the trained model was saved when the current validation loss was
lower than the minimal loss at the previous checkpoints. For the model with
the minimal validation loss the receiver operating characteristic curves (ROC)
were created for all 14 chest radiographic observations (listed in Table 1, column
“Pathologies”). Then the areas under curve (AUC) for ROCs were calculated.

Original Dataset. AUC values (Table 1, column O) demonstrate that some
pathologies (No Finding, Cardiomegaly, Edema, Pleural Effusion, Support
Devices) can be predicted with the better performance (AUC > 0.80) in compari-
son to others (Enlarged Cardiomegaly, Lung Opacity, Consolidation, Atelectasis)
with the much lower performance (AUC < 0.70).

Segmented Dataset. AUC values (Table 1, column S) demonstrate the same
division of pathologies to three groups that can be predicted with the better,
medium, and lower prediction performance. In comparison to the model trained
on the original dataset the increase of the AUC values for 4 from 14 patholo-
gies only (like No Finding, Lung Opacity, Consolidation, Pleural Other) was
observed, while the AUC values decreased for 10 others.

Original Dataset with Data Augmentation. In comparison to the model
trained on the original dataset the increase of AUC values (Fig. 2; Table 1, col-
umn OA) is observed for nearly all pathologies (10 from 14), except for Enlarged
Cardiomegaly, Pneumonia, Pleural Other, Support Devices. But it should be
noted that additional training during 15 epochs has led to the increase of AUC
values for all pathologies (they are given in parentheses in column OA, Table 1).
Finally, OA allowed us to improve AUC values for 14 pathologies from 14.

Segmented Dataset with Data Augmentation. In comparison to the model
trained on the original dataset the increase of AUC values (Table 1, column SA)
was observed for some pathologies (6 from 14), namely for No Finding, Lung
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Fig. 2. ROC-curves and AUC values for the model trained using the original dataset
with data augmentation (OA). The vertical axes are for true positive rate values, and
horizontal axes are for false positive rate ones. The color (in the electronic version)
dots are data by the 3 expert radiologists (Rad1, Rad2, Rad3) and their majority vote
(RadMaj) given for comparison for the relevant diseases [5].

Opacity, Lung Lesion, Edema, Consolidation, and Pleural Effusion. The addi-
tional training during 15 epochs has led to the increase of AUC values (they
are given in parentheses in column SA, Table 1) for 4 more pathologies like Car-
diomegaly, Atelectasis, Pneumothorax, and Pleural Other. Finally, SA allowed
us to improve AUC values for 10 pathologies from 14.

5 Discussion

The results obtained are summarized in Table 1 and emphasized by colors (in
electronic version): the highest AUC values after 3 training epochs – by the
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Table 1. AUC values for the models trained using different approaches. The values in
parentheses were obtained after additional training during 15 epochs (2nd/3rd runs).

Pathology O OA (+15 epochs) S SA (+15 epochs)

No Findings 0.82 0.86 (0.88/0.88) 0.83 0.86 (0.84/0.83)

Enlarged Cardiomegaly 0.64 0.63 (0.65/0.59) 0.50 0.56 (0.60/0.61)

Cardiomegaly 0.82 0.84 (0.88/0.86) 0.76 0.81 (0.85/0.81)

Lung Opacity 0.66 0.73 (0.72/0.75) 0.70 0.69 (0.69/0.72)

Lung Lesion 0.77 0.79 (0.76/0.83) 0.68 0.79 (0.78/0.77)

Edema 0.82 0.85 (0.82/0.87) 0.81 0.84 (0.87/0.84)

Consolidation 0.65 0.67 (0.66/0.69) 0.68 0.67 (0.69/0.66)

Pneumonia 0.71 0.70 (0.71/0.81) 0.69 0.68 (0.69/0.71)

Atelectasis 0.67 0.68 (0.71/0.72) 0.64 0.66 (0.71/0.72)

Pneumothorax 0.75 0.83 (0.79/0.80) 0.74 0.71 (0.77/0.79)

Pleural Effusion 0.81 0.84 (0.86/0.85) 0.78 0.83 (0.81/0.81)

Pleural Other 0.75 0.70 (0.79/0.84) 0.79 0.69 (0.74/0.79)

Fracture 0.76 0.83 (0.71/0.86) 0.71 0.63 (0.71/0.65)

Support Devices 0.88 0.85 (0.88/0.89) 0.80 0.82 (0.84/0.83)

mAUC (mean AUC) 0.75 0.77 (0.77/0.80) 0.72 0.73 (0.76/0.75)

black bold font, the highest AUC values after 18 training epochs – by the red
bold font, and the lowest AUC values – by the blue italic font. AUC values
in parentheses correspond to the different runs and illustrate the wide scatter
of AUC values. The AUC values for all pathologies can be improved by these
techniques, but the highest AUC values can be obtained for the bigger number
of pathologies due to data augmentation of the original dataset (OA) with the
performance close or equal to the expert radiologists (Rad1, Rad2, Rad3, Rad-
Maj points in Fig. 2) for small image sizes (320 × 320 pixels) even. This impact
is visualized by the majority of the black bold (after 3 epochs) and the red bold
AUC values (after 18 epochs) in column OA (Table 1). In reverse, segmentation
mainly leads to the decrease of the AUC values nearly for all pathologies, and
this impact is visualized by the majority of the blue italic AUC values in columns
S and SA (Table 1). These results for the large CheXpert dataset contradict the
results previously obtained by us for the very small datasets (662 images) [9,10],
where the segmentation and augmentation improved the prediction of lung dis-
eases [8]. It means that as far as segmentation allows to decrease the number of
non-relevant features (by cropping out the regions outside of lungs) it is useful
for the relatively small datasets. But for the large datasets the segmentation
is not critically useful anymore, because such non-relevant features are effec-
tively excluded after processing the sufficiently high number of images. Never-
theless, the data augmentation techniques remain important as far as they mimic
variability of scanning conditions like different angles of scanning, slight distor-
tions, small scaling up and down, etc. But the more careful investigation of data
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augmentation intensity, especially for the larger CXR images (like CheXpert),
is of great importance to find the most appropriate set of data augmentation
hyperparameters (angles, scales, etc.). It should be noted that high variability of
AUC values for some pathologies on the same validation dataset after different
training runs (Table 1 and [5]) remains a challenge for the real medical image
applications of these methods and models. It is especially important aspect in
the view of high variability of lungs for people of various ages, genders, geo-
graphical origin, substance abuse, professional activity, general health state, and
other parameters of patients. In this context the better progress can be reached
by further sharing the similar datasets around the world in the spirit of open
science, volunteer data collection, processing and computing [20,21].

6 Conclusions

The results obtained here demonstrate the high efficiency of data augmentation
technique and the limited usefulness of lung segmentation for CADx of some
lung diseases for the models trained on the large (>105 images) lung image
dataset, namely, CheXpert dataset, for small image sizes (320 × 320 pixels) and
standard CNN (like DenseNet121) even. Lung mask segmentation has a subtle
effect on the validation loss (for 4 from 14 lung diseases) for small image sizes
(320 × 320 pixels) even in comparison to the original and other pre-processed
datasets after data augmentation. For the large datasets the segmentation is not
useful, because non-relevant features are effectively excluded after processing the
sufficiently high number of images. The additional training for model with data
augmentation results in the lower validation loss and the higher AUC values
for 10 from 14 lung diseases. The matter is the data augmentation techniques
allow to mimic variability of scanning conditions like different angles of scanning,
slight distortions, small scaling up and down, etc. That is why, the more careful
investigation of data augmentation intensity is of great importance to find the
most appropriate set of data augmentation hyperparameters (angles, scales, etc).
In conclusion, besides the more complex deep CNNs, the better progress of CADx
for the big datasets (like CheXpert) could be obtained for some lung diseases
by longer training after the tuned data augmentation, especially for larger CXR
images.
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Abstract. In this paper we present a perceptual and error-based
comparison study of the efficacy of four different deep-learned super-
resolution architectures, ESPCN, SRResNet, ProGanSR and LapSRN,
all performed on photo-realistic images by a factor of 4x; adapting some
of the current state-of-the-art architectures using Convolutional Neural
Networks (CNNs). The resultant application and the implemented CNNs
are tested with objective (Peak-Signal-to-Noise ratio and Structural Sim-
ilarity Index) and perceptual metrics (Mean Opinion Score testing), to
judge their relative quality and implementation within the program. The
results of these tests demonstrate the effectiveness of super-resolution,
showing that most network implementations give an average gain of +1
to +2 dB (in PSNR), and an average gain of +0.05 to +0.1 (in SSIM)
over traditional Bicubic scaling. The results of the perception test also
show that participants almost always prefer the images scaled using each
CNN model compared to traditional Bicubic scaling. These findings also
present a look into new diverging paths in super-resolution research;
where the focus is now shifting from solely error-reduction, objective-
based models to perceptually focused models that satisfy human percep-
tion of a high-resolution image.

1 Introduction

Traditional image scaling techniques such as nearest-neighbour, bilinear, and
bicubic interpolation offer computationally quick methods of increasing the size
of an image, but they do not provide any benefit to quality as they cannot
construct or infer new data; able to only increase the scale of what is already
present in the original image.

Nearest neighbour interpolation works by first enlarging the image by the
desired factor and spreading the already available pixels within the newly defined
space. The original pixels are surrounded by a ‘grid’ of blank space in which
there are no original pixels from the image; the blank spaces are then filled by
copying the ‘nearest-neighbour’ pixels to the blank space, turning one pixel to
four identical pixels (for 4x scale). To perform bilinear interpolation, pixels are
sampled in two directions. This type of scaling takes the closest 4 pixels located
c© Springer Nature Switzerland AG 2019
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diagonally into account (2× 2) and takes a weighted average, as opposed to
nearest-neighbours singular sample. Bicubic interpolation further considers the
weighted average of the nearest 16 pixels (in a grid of 4× 4), which produces an
overall smoother image and reduces artefacts. Because the region of sampling
is greater for this algorithm compared to others, pixels closer to the chosen
interpolated pixel are given a greater weighting in the calculation.

Whilst such image resampling techniques increase the actual ‘resolution’ of
the image when upscaling, they do not present any added detail that contributes
to the increase in spatial resolution of the final image. This results in an equal or
less-than equally detailed output image, such that one might refer to the output
as ‘blurry’ when compared to a similar image of native resolution. This issue has
led to the research and development of machine learned models to improve upon
traditional methods of image upscaling; a method known as super-resolution.

1.1 Motivation and Rationale

Super-Resolution can have applications in surveillance, medical imaging, astro-
nomical observation, and so on (Yue et al.) [5]. Super-Resolution also has novel
uses; a popular application of such techniques is upscaling textures from older
video games to bring them into the modern era, as well as enhancing old low-
resolution photographs, or enhancing complex drawings and diagrams. Image
super-resolution by nature is an ill-posed problem as there is no true output to
an image that does not have a corresponding high-resolution parent. There are
a number of different approaches that have been taken using machine learning
and convolutional neural networks (CNNs) for image super-resolution; such as
SRCNN, SSResNet, Deep Image Prior and ESPCN. These all attempt, using
different architectures, to up-scale an image while retaining/reconstructing fine
image detail that is not found within the original low-resolution image (such as
sharp edges on geometric shapes, or texture detail on small scale objects). Many
of these methods for super resolution exist in a primitive form however; the
majority being simply proposals that offer independent python command line
implementations based on Linux, or working models built using and running
within MATLAB.

1.2 Related Literature

ESPCN. The following method by Shi et al. [4] ESPCN, uses a shallow 3-layer
convolutional neural network and avoids upscaling the low-resolution input like
in (Dong et al.) [3]. A convolutional layer is applied directly on the low-resolution
input to extract the feature maps, followed by a sub-pixel convolutional layer to
upscale these feature maps to produce the super resolution output. This method
differs from Dong et al. [3] in that it uses an efficient sub-pixel convolution layer
instead of deconvolution layer (which recovers resolution from the max pooling
layer, also known as backwards convolution). This pixel shuffle layer is faster than
methods that use a deconvolution layer specifically in training, as well as being
faster than methods performing upscaling or pre-processing before convolution is
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applied. In Shi et al. [4], ESPCN with ReLU activation trained with ImageNet
data achieved significantly better performance compared to SRCNN models.
Training the ESPCN model with more images saw a greater gain in PSNR than
the values found with SRCNN. Interestingly, performance on this architecture
is found to be high enough that it is capable of running on video without severe
performance degradation.

SRResNet. Another architecture by Ledig et al. [6] presents a method of
Super-resolution combining error reduction focused architectures with a GAN
architecture. The authors pose that while performance and accuracy of current
super-resolution models are a benefit, recovering fine-detail in the image has not
yet been tackled successfully. Most methods (A+, SRCNN, ESPCN, and Lap-
SRN for example) are based on Mean Squared Error (MSE) reduction during
reconstruction. While the resultant PSNR values for these techniques are high,
high-frequency details are missing and the images do not give the visual percep-
tion of being high-resolution to the human eye. By combining a CNN optimised
for Mean Squared Error (SRResNet) with a Generative Adversarial Network-
based model (SRGAN), this problem can be overcome. This architecture sees
greater gains in PSNR and SSIM over both ESPCN (Shi et al.) [4] and SRCNN
(Dong et al.) [3], however as the authors rightfully state, that these values are
not representative of the fine detail reconstruction that SRGAN provides. The
authors therefore take an extra step and use Mean Opinion Score testing to
quantify the super resolution capabilities of each of these models (Fig. 1).

Fig. 1. The architecture of SRResNet
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LapSRN. The architecture by Lai et al. [7] referred to as LapSRN provides an
alternative process of super-resolution using Laplacian pyramids. The authors
highlight drawbacks of using pre-processing methods found in other techniques,
in that they increase the computational cost unnecessarily and do not pro-
vide any additional high frequency information for a HR output. Many tech-
niques focus around MSE loss, resulting in overly smooth images (the same
low-resolution patch may have multiple high-resolution output patches in cor-
respondence). The authors propose a progressive approach which eliminates the
single up-sampling step that most other models use (SRCNN, ESPCN use direct
reconstruction in a single step), to progressively reconstruct images along the net-
work. The Laplacian Pyramid structure of this network is a key concept; where
weights are shared across pyramid levels to reduce network parameters. This
subsequently allows for multi-scale training for different levels of super resolu-
tion at once (2x, 4x, 8x pyramids). The authors also state the LapSRN can be
easily extended to incorporate adversarial training as a part of GAN, as found
in Ledig et al. [6] and Wang et al. [8], however this is not provided in the paper.

ProSR. Taking the concept of progressive reconstruction a step further, Wang
et al. [8] propose an architecture that combines two methods, ProSR; a pro-
gressive method to upscale images in intermediate steps, and ProGanSR which
follows the same design principle but allows for more photo-realistic results to
be generated using a GAN. This diverges from other traditional methods in that
it takes a progressive approach with “curriculum learning” as opposed to direct
methods which upsample in a single final step. The basis of this is that the
network up-samples the image in intermediate steps while the learning process
increases in difficulty along with these steps. His approach shares similarity in
concept with LapSRN (Lai et al.) [7] due to their progressive approaches, but the
authors of ProSR note that the Laplacian pyramid structure increases difficulty
of optimisation and reduces performance on levels higher up the pyramid struc-
ture. The authors propose Dense Compression Units consisting of both Dense
Blocks and Compression.

2 Design and Development

Neural Network development took place using Python 3 with PyTorch 1.0. The
GUI was developed using Qt for Python. The four models mentioned above were
chosen for implementation; ESPCN [4], SRResNet(w/o GAN) [6], LapSRN [7],
ProGanSR [8]. Each has a PyTorch implementation officially provided by the
author or independently implemented in Python. Each models code was further
adapted to work with the GUI code to produce the resultant application.

2.1 Training

All models are trained for a desired resolution multiplier of 4x. Training was per-
formed locally using an NVIDIA GeForce GTX 1080 Ti. Training was performed
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Fig. 2. The architecture of ProSR (without GAN) as found in [8]

using CUDA v9.0 to provide faster execution and training speeds. Datasets used
for training include BSDS500 (Arbelaez et al.) [2], DIV2K (Agustsson et al.) [1].
In order to train, the data set images are first downscaled by 4x. An independent
implementation of MATLAB’s imresize function was used, as this provides the
best results for bicubic downscaling compared to other methods found within
Python. Training datasets were also augmented with random cropping, flipping,
and transposing of each image. Each model was trained individually via said local
machine, or via the provided model from the author for 100 Epochs (Fig. 2).

2.2 Testing

Two tests performed, a test validating output images from the application using
PSNR and SSIM with a python script; and another evaluating human perception
on the same set of test images to judge percieved quality via a survey. The
Python implementations are not a perfect recreation of the models described in
the relevant literature, as such the results for PSNR found within the literature
are typically greater than those of the python versions when tested with similar
images. The PSNR and SSIM testing for images within relevant literature is
performed on the Y channel, and so for this test the image channels are separated,
and testing is performed on the Y channel.

2.3 Similar Work

Applications such as Waifu2x and Topaz A.I. Gigapixel perform similar functions
to the proposed application; Waifu2x works best on non-photoreal images such
as drawings and cartoons at up to 2x factor scaling based around the (no longer
state-of-the-art) SRCNN architecture, and Gigapixel is a proprietary piece of
software in which the algorithms used are unknown. This prototype application
differs from both of these in that it is a free application that makes practical use
of more up-to-date, publicly available image scaling networks in a user-friendly
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manner through a GUI; by compiling the current and more recent state-of-the-
art models together in the application, instead of a single model used in either
program mentioned.

A qualitative survey was created to test the results of the networks used in
the application on human perception. The same 5 images from the previous test
were used, each run through the application with the downscale option selected.
The image scaling options for each image were; Bicubic, ESPCN, SRResNet,
LapSRN, and ProGanSR. This resulted in a total of 25 images that were given
to participants. 20 Participants responded to the survey. Participants were asked
to rank the images in order of visual quality and realism, where a rank of 1 is the
highest quality and most visually pleasing image, and a rank of 5 is the lowest
quality and least visually pleasing image. Participants are not given the Ground
Truth image as reference, and the names of each model are not divulged.

3 Results and Evaluation

3.1 PSNR and SSIM

On the ‘statuette’ image set, bicubic scaling appears to give the highest value
results for both SSIM and PSNR. It is unclear why this happens, but it is only
the case on this image. This example is some justification as to why PSNR and
SSIM alone are not a concrete metrics for judging image quality. SRResNet has
the most occurrences of the highest values of PSNR and SSIM on the 5 sets of
test images, in both test runs. SRResNet also outperforms ProSR when tested
against these metrics, which is to be expected. ESPCN falls behind bicubic
scaling in many of these test cases, in both SSIM and PSNR. The majority of
results gathered in this test show that error-focused architectures do outperform
both traditional scaling methods and perceptual-focused architectures. It is clear
when looking at the images PSNR and SSIM alone do not provide the optimal
method for judging the visual quality of a super-resolved image (Table 1).

Table 1. The results of the PSNR and SSIM Test on a custom set of 5 images.

Image set Test ProSR SRResNet LapSRN ESPCN Bicubic

Sign PSNR (dB) 27.674 27.792 28.006 24.283 24.844

- SSIM 0.888 0.883 0.885 0.696 0.787

Dog PSNR (dB) 25.325 27.146 25.478 25.738 26.438

- SSIM 0.753 0.800 0.791 0.741 0.776

Statuette PSNR (dB) 24.300 26.054 25.007 24.004 27.766

- SSIM 0.836 0.826 0.821 0.813 0.856

Bluebell PSNR (dB) 22.604 23.815 22.767 21.235 22.061

- SSIM 0.746 0.788 0.765 0.689 0.693

View PSNR (dB) 21.950 23.504 22.735 22.367 21.083

- SSIM 0.644 0.704 0.697 0.663 0.574
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3.2 Perceptual Study

ESPCN was ranked lowest of the tested group, only barely contesting bicubic
scaling in most cases. Looking at the images, there is only a minute difference
between ESPCN and Bicubic, with ESPCN looking slightly sharper than the
Bicubic images. As expected, Bicubic scaling provides the worst quality results
and this is reflected in the participants’ response. In 3 out of 5 test cases, Bicubic
scaling is ranked higher than or equal to ESPCN. Therefore, it can be determined
from this that ESPCN provides an alternative to Bicubic scaling, not a true
replacement as was expected with the other models (Fig. 3).

Fig. 3. A bar graph showing the total aggregate results of perceptual testing on the
same 5 images.

4 Conclusion

This paper has presented a study and prototype implementation of state-of-the-
art techniques for super-resolution within a x64 and Unix compatible application,
allowing for any user to upscale a desired image using these techniques without
the need for knowledge of programming or deep learning. Through testing, we
find that the error-focused architectures (based around PSNR, SSIM, and Mean-
Square Error testing) provide some excellent techniques for objective super-
resolution, but result in often murky and smudged images. The perceptually-
focused architectures, a more recent development making use of adversarial net-
works, give promising results that better represent true, high-resolution images
able to fool the human perception. In the context of applications of these mod-
els, perceptual approaches that hallucinate finer detail might be less suited for
medical applications or surveillance because the data they produce is techni-
cally not present within the original image, giving an advantage to error-focused
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approaches. Perceptual approaches may therefore be more useful for applica-
tions that do not specifically require the content of the images to be accurate
(such as personal photos). This gives merit to the suggestion that one path for
super-resolution is not necessarily better than another.

5 Further Work

The application can be extended to work on other forms of media with further
training, such as drawings or animations. Re-training each network with more
data is another viable further step, in order to provide more optimal results on
photographic images. The tool could also be extended to process larger images
in a memory-saving manner, as larger images currently require high amounts of
VRAM to process. Further optimization techniques can be utilised to streamline
the process and make it more practical for real time and networking appli-
cations. A further study could be conducted to compare the relative quality
of each architecture with and without GAN; current testing only shows that
human participants prefer GAN-processed images, but not which GAN archi-
tecture specifically.

References

1. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution:
dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pp. 126–135 (2017)

2. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical
image segmentation. IEEE TPAMI 33(5), 898–916 (2011)

3. Dong, C., Change Loy, C., He, K., Tang, X.: Image super-resolution using deep
convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307
(2015)

4. Shi, W., et al.: Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.
IEEE (2016)

5. Yue, L., Shen, H., Li, J., Yuan, Q., Zhang, H., Zhang, L.: Image super-resolution:
the techniques, applications, and future. Signal Process. 128, 389–408 (2016)

6. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative
adversarial network. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI, USA, 16–21 July 2017. IEEE (2017)

7. Lai, W., Huang, J., Ahuja, N., Yang, M.: Fast and accurate image super-resolution
with deep Laplacian pyramid networks. IEEE Trans. Pattern Anal. Mach. Intell.
(2018)

8. Wang, Y., Perazzi, F., McWilliams, B., Sorkine-Hornung, A., Sorkine-Hornung, O.,
Schroers, C.: A fully progressive approach to single-image super-resolution. In: 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), Salt Lake City, UT, USA, 18–22 June 2018. IEEE (2018)



Embeddings and Feature Fusion



A Robust Embedding for Attributed
Networks with Outliers

Cheng Zhang1,2, Le Zhang1,2, Yuanye He2, and Daren Zha2(B)

1 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

2 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{zhangcheng,zhangle,heyuanye,zhadaren}@iie.ac.cn

Abstract. Network embedding, as a promising tool, aims to learn low-
dimensional embeddings for nodes in a network. Most existing methods
work well when the topological structure is closely correlated to node
attributes. However, real-world networks often contain outliers that have
abnormal attributes. These attributes are quite different from the proper-
ties of their neighboring nodes, and they are not consistent with network
structure. Thus, outliers exert negative impacts on the learned embed-
dings. Several methods only obtain unsatisfied results as they don’t con-
sider the effects of outliers.Hence, how to eliminate outlier impacts is essen-
tial for network embedding. In this paper, we propose a novel method
called REANO for learning a Roust Embedding for an Attributed Net-
work with Outliers. An overview of REANO combines residual analysis
with attributed network embedding. In detail, residual analysis smooths
out the negative impacts from outliers. Meanwhile, network embedding
aggregates node attributes with network structure by using deep neural
networks. By developing a joint optimization framework, REANO effec-
tively alleviates outlier effects on the learned embeddings, and improve the
robustness of node embeddings. Experiments on real-world datasets and
manually planted outliers show that REANO learns more robust embed-
dings of nodes than the state-of-the-art algorithms.

Keywords: Network outliers · Network embedding · Attributed
networks

1 Introduction

Attributed networks are ubiquitous in real-world systems such as social net-
works and academic citation networks. They often contain both network struc-
ture and node attributes [15,24]. And these rich properties of nodes reflect the
homophily correlation with the topological structure [15,24]. Specifically, nodes
usually share similar properties with their structural neighboring nodes, and
their proximities are enhanced by considering both of network structure and
node attributes [7,23]. Centered around this goal, researchers have proposed
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attributed network embedding. It aims to embed each node of the network into
a low-dimensional vector space so that its proximity in terms of both structure
and attribute information are well preserved [3,6,22]. The learned embeddings
are directly applied to various applications such as node classification [9,10] and
anomaly detection [4,8].

Fig. 1. An illustration of an attributed network with outliers. We highlight the outlier
node and its abnormal attributes by red. In this network, nodes denote users having four
attributes (education, country, gender, company), and edges describe their friendship
relations. Node 5 and 9 are two typical outliers. They contain abnormal attributes that
are obviously deviated from their normal neighbors. Respectively, the education and
company attributes of node 5 and 9 are very different from their structural neighbors.
(Color figure online)

Recently, most existing attributed network embedding models have been
proposed [11,22]. They generate desirable node embeddings by exploiting the
structure and attribute information jointly. These methods work reasonably
well when they run on a normal environment, and assume that all attributes
of nodes are closely correlated to network structure [7,23]. However, real-world
networks often contain abnormal information, and even face noisy scenarios with
anomalous nodes [1,2]. These outliers, which are shown in Fig. 1, have very dif-
ferent attributes from their neighborhoods. Actually, these outliers bring adverse
impacts on the embeddings of nodes [3,13]. Hence, it’s essential to eliminate the
outlier effects and improve the robustness of the learned node embeddings.

It is a nontrivial task to develop a robust network embedding for attributed
networks with outliers. There are two main reasons. Firstly, due to the large-scale
and high dimensionality of node attributes, there are usually anomalous nodes in
real-world datasets [1]. And how to address these outliers is essential for network
embedding [3,13]. Besides, although current works on attributed networks could
effectively either detect outliers [4,12] or obtain desirable node embeddings [9,
22], the bewildering combination of network embedding and detection outliers
makes the robust embedding learning still difficult. If we regard them as two
independent steps, there merely produce unsatisfied results [7,23].

To overcome the aforementioned challenges, in this paper, we propose a
novel model called REANO that learns a Robust Embedding for Attributed
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Networks with Outliers. In detail, REANO uses residual analysis [12,19] to
smooth out abnormal information arising from anomalous nodes. Meanwhile,
REANO employs deep neural networks [6,13] to incorporate node attributes
and network structure into a joint embedding space. Besides, by designing a
joint optimization framework, REANO combines residual analysis with network
embedding as a whole. Thus, REANO improves the robustness of the learned
node embeddings, while effectively alleviating adverse impacts from outliers. And
we conduct experimental tasks and manually planted outliers to demonstrate the
effectiveness of our proposed model. In summary, we have the following main
contributions:

– We explicitly account for negative effects of outliers on the learned node
embeddings, and leverage residual analysis for smoothing out these impacts.

– We employ network embedding based on deep neural networks to incorporate
node attributes and network structure into a joint embedding space.

– We perform experimental tasks on real-world datasets and manually planted
outliers to verify its superior performance than the state-of-the-art baselines.

2 Related Works

Existing network embedding algorithms consist of plain network embedding and
attributed network embedding [7,23]. The former only considers network struc-
ture, while the latter preserves both structural and attribute information. Specif-
ically, inspired by Skip-Gram [16], DeepWalk [17], LINE [18] and Node2Vec [5]
ensure that the embeddings of the two structurally connected nodes are simi-
lar. SDNE applies autoencoder to capture the non-linear structure for network
embedding [20]. These algorithms only exploit the topological structure for gen-
erating embeddings. Researchers have proposed ideas for embedding attributed
networks also [7,23]. As the first attempt, TADW improves network representa-
tion by injecting texts [21]. LANE jointly leverages topological structure, node
attributes and labels [9]. Furthermore, GCN [11] and GraphSage [6] use con-
volutional neural networks for learning the embeddings on attributed networks.
However, all of these methods mentioned above do not directly account for out-
liers, and hence are often prone to be affected heavily by them [13].

Current efforts attempt to detect network outliers by adopting the idea of
embedding [7,23]. For instance, Embed employs embedding for discovering struc-
turally inconsistent nodes and regards them as outliers [8]. APE maps entities
into a unified embedding space, then uses Noise-Contrastive Estimation to find
abnormal events in this space [4]. Although these algorithms explicitly account
for the outlier impacts, they target for spotting outliers, not for network embed-
ding [1]. More recently, SEANO effectively smooths out the effects of outliers on
the learned embeddings by predicting the class labels and node context [13].

3 Problem Statement

In this section, we give some notations that will be used in the paper and describe
our problem. Given an attributed network G = (V, E , A), where V is the set of |V|
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nodes and E denotes undirected edges of the network. A ∈ R
|V|×m is the attribute

matrix that collects all node attributes, and a row ai ∈ R
m in the matrix A

represents the node vi’s attributes. Since the given network G has abnormal
attributes arising from outliers, our problem is to learn a robust low-dimensional
embedding vector zi ∈ R

d for each node vi ∈ V, where d � |V|. Specifically, the
learned embeddings not only effectively eliminate adverse impacts from outliers,
but also seamlessly encode the topological structure with node attributes.

4 Methodology

In this section, we firstly present the overall architecture of REANO and its
detailed implementation, then introduce a joint framework to optimize this
model (Fig. 2).

Fig. 2. The overall framework of REANO combines residual analysis with attributed
network embedding. Inspired by residual analysis [19], the residual matrix R firstly fil-
ters out the abnormal information arising from outliers, then obtains normal attributes
Â of nodes. Meanwhile, network embedding employs multilayer neural networks to map
the remaining attributes Â and structural information E into a joint embedding space
zi ∈ R

d, where a node vi’s attributes are aggregated with the properties of its neighbors
N (vi). Then, the generated embedding zi of node vi are fed into the softmax function
to predict its structural contexts Cvi . Through iteratively optimizing residual analysis

and network embedding, REANO learns robust node embeddings zi ≡ h
(k)
vi , ∀vi ∈ V,

while effectively alleviating adverse impacts of outliers.

The core idea of REANO is that an attributed network exists anomalous
nodes that have quite different attributes from its normal neighbors, and these
outliers can exert adverse effects on the learned embeddings. In order to improve
the robustness of node embeddings, we need to capture and eliminate the abnor-
malities from node attributes, then get the remaining attributes without outliers.
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Simultaneously, we incorporate these normal attributes and network structure
into a joint embedding space, in which effectively preserves the proximities of
nodes in terms of both structural and attribute information.

4.1 Residual Analysis

We start from the situation that only node attributes are available. As pro-
posed to [12,19], residual analysis has a good capability of detecting outliers
on networks. And it performs detection outliers by studying the residual errors
between true data and the estimated one. For instance, if a certain node contains
abnormal information, the residual matrix designed by residual analysis could
effectively distill the abnormalities from the original data [25]. Therefore, this
node is of a large possibility to be anomalous as it has a pretty large error [12].
On the contrary, if the node has any abnormal information, its residual value is
quite small, and this node has a small chance to be an anomalous.

Motived by this fact that residual analysis is capable of eliminating abnormal
attributes of nodes and measuring the degrees of these abnormalities, similar to
[19,25], we also construct a residual matrix R ∈ R

|V|×m to filer out the abnormal
information arising from network outliers. Mathematically, it is formulated as:

Ã = A − R (1)

Here the vector R (i, :) denotes the residual value of a node vi’s attributes A (i, :),
and Ã (i, :) represents the remaining attributes of the corresponding node vi.
Obviously, these node attributes involve any abnormalities. As proposed in [19,
25], we also compute the regularization term of R (i, :) to reflect the abnormality
degree of the node vi.

4.2 Attributed Network Embedding

In order to learn robust embeddings of nodes in the network, it’s demand for net-
work embedding that not only explicitly eliminates the noisy information from
node attributes, but also exploits the normal attribute and structural infor-
mation jointly. As shown in Sect. 4.1, through smoothing out the abnormali-
ties arising from outliers, REANO gets the remaining attributes Â, which are
consistent with the topological structure. According to the homophily theories
[15,24], nodes sharing similar attributes tend to connect with each other when
nodes behave as expected. Therefore, jointly learning from the two information
of both the remaining node attributes and network structure could draw towards
a better embedding. As proposed in [6,13], REANO also designs k-layer neural
networks (where k ≥ 2) to incorporate node attributes and network structure.

Specifically, at the bottom layer of this neural network architecture, REANO
randomly samples a fixed-size set of neighborhoods N (vi) from a node vi ∈ V,
then applies an aggregator to assimilate the aforementioned two heterogeneous
information into a joint embedding space as following:

h
(k−2)
N (vi)

= MEAN (âu,∀u ∈ N (vi)) (2)
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Here MEAN denotes the aggregator. Similar to [6], it also employs the mean
operator to calculate the element-wise mean of the vectors âu,∀u ∈ N (vi),
then gets a single vector h

(k−2)
N (vi)

. Note that this aggregated vector has the same
size as the dimensionality of current node’s attributes. Subsequently, to achieve
desirable training, we concatenate the vector h

(k−2)
N (vi)

with the attribute vector

ai as proposed to [6,13]. Then the concatenation CONCAT
{

âi ∪ h
(k−2)
N (vi)

}
is fed

through a fully connected layer, where it contains a series of non-linear activation
functions σ (·). Methodically, it’s formulated as:

h(k−1)
vi

= σ
(
W(k−1) · CONCAT

{
âvi

∪ h
(k−2)
N (vi)

}
+ b(k−1)

)
(3)

where W(k−1) and b(k−1) are the weights and biases at the bottom layer respec-
tively, and the activation function σ (·) is chosen as ReLU (x) = max (0, x). And
this aggregation step transforms the input information to the node embedding
h
(k−1)
vi , which is regarded as the feature vector used at the next step. Similarly,

at the middle layer, REANO also aggregates the features of the nodes in its
immediate neighboring nodes N (vi) as following:

h
(k−1)
N (vi)

= MEAN
(
h(k−1)
u ,∀u ∈ N (vi)

)
(4)

h(k)
vi

= σ
(
W(k) · CONCAT

{
h(k−1)
vi

∪ h
(k−1)
N (vi)

}
+ b(k)

)
(5)

where W (k) and b(k) are the weights and biases at the middle layer separately,
and the activation function σ (x) is also used as ReLU (x). Therefore, the middle
layer generates the embedding h

(k)
vi of a certain node vi. For simplicity, the

learned node embedding is rewritten as zi ≡ h
(k)
vi , ∀vi ∈ V.

In order to maximize the correlations between network structure and node
attributes, as proposed to [22,24], we encourage a node vi and its contextual
node vj to have similar embeddings. And this process is written as following:

P (vj |vi) =
exp (zj · zi)∑

v′ ∈V exp (zv′ · zi)
(6)

Here the contexts Ci = {vi−t, · · · , vi+t}\vi of a certain node vi are generated by
performing random walk on the network as proposed to [5,17]. Specifically, the
probability P (vj |vi) in Eq. (6) is computed by the softmax function as follows:

Lne = −
∑
vi∈V

∑

v′∈Ci

log (P (zv′ |zi)) (7)

Actually, calculating the Eq. (7) directly is rather expensive because it needs to
run through all nodes. We therefore adopt the negative sampling strategy [16]
to speed up the training process. Accordingly, Eq. (7) is rewritten as follows:

Lne = −
∑
vi∈V

∑
vj∈Ci

⎧
⎨
⎩log σ

(
zTvi

· zvj

)
+

|neg|∑
l=1

Evl∼Pn(vi) log
(
−zTvi

· zul
i

)
⎫
⎬
⎭ (8)
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where zul
i

is randomly sampled the lth negative node for node vi. In total, we
sample |neg| negatives. And the sampled ratio is Pn (vi) ∝ r0.75i , where ri is the
node vi’s degree. Hence, the loss function in Eq. (8) encourages nearby nodes to
have similar embeddings, while making the embeddings of disparate nodes be
highly distinct.

4.3 A Joint Optimization Framework

Algorithm 1. The REANO Algorithm
Input: an attributed network G = (V, E , A), walk length l, paths per node γ, embed-

ding dimension d, constraint parameters β and α.
Output: the embedding Φ (vi) for each node vi ∈ V
1: Perform random walk(l, γ) on the network G;
2: Generate the positive and negative contexts for each node vi ∈ V;
3: Initialize the residual matrix R with zeros matrix
4: while not converged do
5: Employ the residual matrix R to filter out origin attributes A of nodes;
6: for each node vi ∈ V do
7: Aggregate vi’s attributes âi with its nearby attributes âN (vi) on Eq.(2).

8: Learn the node vi’s features h
(k−1)
vi from Eq.(3).

9: Aggregate vi’s features h
(k−1)
vi with its neighbors’ features h

(k−1)

N (vi)
on Eq.(4).

10: Learn the node vi’s embedding h
(k)
vi from Eq.(5).

11: end for
12: for each node vi ∈ V do
13: for each context node vj ∈ Ci do
14: Compute the loss function L on Eq.(9)
15: end for
16: end for
17: Update weights/biases and the residual matrix R by the gradient �L and the

learning ratio η
18: end while
19: Obtain the robust embedding zvi for each node vi ∈ V in G.

According to [12,25], there always exists a small part of outliers in the network.
In order to have better performance, the �1,2-norm

∥∥RT
∥∥
2,1

should be imposed
on the Eq. (8). Similar to [13,25], Eq. (8) should also add the regularization
terms

∑K
k=1

(∥∥W(k−1)
∥∥2

F
+

∥∥b(k−1)
∥∥2

F

)
to get better training. And the final

loss function is formulated as follows:

L = Lne + α
∥∥RT

∥∥
2,1

+
β

2

K∑
k=1

(∥∥∥W(k−1)
∥∥∥
2

F
+

∥∥∥b(k−1)
∥∥∥
2

F

)
(9)
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where the parameter β ≥ 0 controls the column sparsity of matrix R and the
weight α is to balance the loss. To minimize the Eq. (8), the learned final embed-
dings of nodes in the network can seamlessly encode node attributes with network
structure, while effectively eliminating negative impacts from outliers.

Noting that the REANO consists of two parts: residual analysis and
attributed network embedding. If we treat them as two independent steps rather
than a whole, it may result in a suboptimal performance [22,24]. Therefore, we
develop a joint optimization framework, which is summarized in Algorithm 1. By
using the stochastic gradient algorithm to optimize for Eq. (9), we can achieve
the goal of improving the robustness of the node embeddings.

5 Experiments

5.1 Experimental Settings

Datasets. There are four real-world attributed networks used in our experi-
ments. In detail, the former three datasets are used for node classification task,
and the later one presents at a case study. These first three datasets including
Cora, Citeseer, and Pubmed1, were used in previous works [6,13], in which nodes
denote published papers and edges represent the citation links between them.
The attributes of each node are a list of keywords of the corresponding paper.
And each node only contains a class label. Besides, the last dataset is Disney2

collected from Amazon co-purchased network. Nodes in this dataset represent
movie products and attributes describe their properties such as ratings, product
prices and so on. Then the class label indicates whether the node is an outlier
or not. We summary the details of these network datasets in Table 1.

Table 1. A summary of the three real-world network datasets

Dataset # of Nodes # of Edges # of Attributes # of Labels

Cora 2,708 5,278 1,433 7

Citeseer 3,312 4,660 3,703 6

PubMed 19,717 44,338 500 3

Disney 124 334 28 2

To check the robustness of the methods to outliers, as proposed in [3,13], we
manually plant a total of 5% outliers in the first three datasets. This planted
process involves: firstly we randomly select 5% of nodes, including both labeled
and unlabeled nodes; then we modify their attributes based on the natural per-
turbation scheme depicted by [13,14]. Specifically, for a planted outlier vi, we
randomly select another m = min

(
100, n

4

)
nodes and pick the node vj with the

most different attributes from vi among these selected nodes, i.e., maximizing
‖ai − aj‖2. Finally, we replace the attributes ai of node vi by vj .
1 http://linqs.cs.umd.edu/projects/projects/lbc.
2 http://www.ipd.kit.edu/muellere/consub/.

http://linqs.cs.umd.edu/projects/projects/lbc
http://www.ipd.kit.edu/muellere/consub/
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Baselines. To evaluate the effectiveness of our proposed model, we compare it
with the following baseline methods:

– DeepWalk [17] performs random walks to get structure information, and
learns node embeddings by inputing this information into Skip-Gram [16].

– LINE [18] defines the first- and second-order proximity among nodes. After
learning from these two definitions, LINE concatenates them together to form
the final embeddings. And it considers the structural information only.

– TADW [21] is the first attempt to jointly exploit the topological structure
and text features for network embedding. In this version, we regard node
attributes as text features of nodes.

– LANE [9] maps three kinds of information (i.e., network structure, node
attributes and labels) into a unified space to generate the embeddings. Here,
we only use the version that does not consider label information.

– GCN [11] is a neural-network method, and it generates node embeddings by
performing convolutional operation on the attributed network.

– SEANO [13] obtains a robust network embedding by designing dual inputs
and dual outputs to aggregate a node’s neighborhood attributes and its labels,
while mitigating the adverse impact of outliers in the learning process.

In our baselines, the former two methods consider network structure only,
while the latter four algorithms leverage both the structural and attribute infor-
mation jointly. Besides, among these baselines, SEANO is capable of eliminating
the adverse effects of outliers on the learned embeddings, but the rest of these
methods don’t account the outlier impacts during embedding process.

Parameter settings. For all baselines, we implement them following the orig-
inal authors, and set default parameters as their report. To be fair comparison,
we set the size d of the learned embeddings as 128 for all baseline algorithms.
For SEANO, the variant λ is set to 0.5. For REANO, we set window size t as 10,
walk length l as 80, walks per node γ as 5, and the sizes of negative samples |neg|
as 5, neural network layers k as 3 for all datasets, and the regularizer coefficient
α is to 0.5. And we implement REANO using the Pytorch package in Python.

5.2 Node Classification

In this section, we carry out node classification task on the first three real world
datasets as well as their outlier version to verify the effectiveness of our proposed
model. For these tasks, we get the embeddings of nodes and treat them as the
features to train a SVM classifier [17,22]. We split the set of nodes into training
set and testing set. The training set size is fixed at 50% of nodes in each data.
Then the remaining nodes, which are removed their labels, are used to compare
the performance of different algorithms. And we use the popular evaluation
criteria, i.e., Accuracy to measure the classification performance. In general, the
higher accuracy is, the better classification performance can obtain. We repeat
this process 10 times and report the average classification results in Table 2.
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Table 2. Classification accuracy of different algorithms on the original datasets and
the noisy datasets (mark with *). We use bold to highlight the best results.

Datasets Cora Citeseer Pubmed Cora* Citeseer* Pubmed*

DeepWalk 0.547 0.562 0.682 0.539 0.557 0.671

LINE 0.527 0.532 0.690 0.509 0.519 0.685

TADW 0.606 0.686 0.738 0.464 0.516 0.594

LANE 0.596 0.626 0.711 0.456 0.443 0.572

GCN 0.626 0.681 0.753 0.466 0.531 0.604

SEANO 0.652 0.719 0.801 0.642 0.712 0.793

REANO 0.678 0.741 0.821 0.662 0.729 0.809

On all the datasets, REANO consistently achieves the best classification accu-
racy both in the presence of original data and outlier version since it effectively
eliminates adverse effects of outliers on the learned node embeddings. For Cora
and Cora* datasets, REANO respectively gains about 3.6% and 3.1% improve-
ment than SEANO, which is the second best algorithm for classification. It’s
obvious that TADW, LANE and GCN, which work well on normal datasets,
produce unsatisfied results in the presence of just 5% outliers. That’s because
these three approaches fail to account for the negative impacts from outliers,
thus they merely have suboptimal accuracy. Besides, DeepWalk and LINE suffer
few impacts from outliers as they only focus on the topological structure. How-
ever, they ignore rich attributes of nodes, and gain weak results than the rest
of baseline methods on the normal datasets. In addition, SEANO leverages par-
tial label information to alleviate noise impacts from outliers, therefore obtains
stable classification performances in terms of both original and outlier datasets.

5.3 A Case Study

In this part, we employ a case study to show the effectiveness of REMAD in
detecting outliers. Since the Disney dataset has intrinsic outlier nodes, we should
not inject the anomalous into original dataset. REMAD uses the residual matrix
R to filter out abnormal attribute information. Therefore, we rank the nodes in
order of the higher norm of the matrix R, and choose the top three nodes as
outliers. The detection result is shown in Fig. 3.

From the Fig. 3, we observe that there are three outliers like Node N1, N2

and N3 in the Disney dataset. Among these outliers, node N1 refers to the film
The Many Adventures of Winnie the Pooh, and node N2 refers to the film Buzz
Lightyear of Star Command. They have quit different rating attributes from
their neighboring products, and are associated with large residual values, thus
are typical outliers. Moreover, node N3 corresponds to the film The Nightmare
Before Christmas/James and the Giant Peach is an another anomaly. Obviously,
this node is a structurally isolated product so that it also has a larger residual
error than other products. In a nutshell, our proposed model REMAD can help
us discover outliers of different formats.
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Fig. 3. Visualization of three outliers (N1, N2 and N3) detected by REMAD on Disney
dataset. And we use the pink color to highlight outlier nodes. (Color figure online)

6 Conclusion

In this work, we propose a novel embedding method called REANO for learning
a Robust Embedding for an Attributed Network while accounting for negative
effects of the network outliers. Methodologically, our proposed model combines
residual analysis with deep attributed embedding. In detail, REANO filters out
the noisy attributes of outliers by residual matrix. Furthermore, network embed-
ding based on deep neural networks aggregates the remaining attribute informa-
tion and the topological structure into a joint embedding space. Through a joint
training framework, REANO obtains the robustness of node embeddings while
eliminating the outlier effects. Our experimental results on real-world datasets
and manually planted outliers show the effectiveness of our proposed model. In
the future, we plan to study how the outliers would bring the impacts on the
embedding for a dynamic attributed network.
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Abstract. Crowd density estimation has important practical signifi-
cance for effectively suppressing the occurrence of stampede accidents.
However, the crowd counting task can be easily interfered by various fac-
tors such as perspective, congestion, occlusion, density, etc., which makes
accurate crowd counting a challenging task. To solve these problems, in
this paper, we propose an effective hierarchical aggregation module to
fuse different scale information in the network. Since the crowd count-
ing task is seriously interfered by the surrounding environment, in this
paper we propose to use attention mechanism module to weight the spa-
tial position of the network learned feature map to effectively limit the
interference of the background region to the crowd counting task. Finally,
a large number of related experiments show that our model in this paper
has strong generalization ability while having better performance on sev-
eral public datasets compared to existing model algorithms.

Keywords: Crowd counting · Effective hierarchical aggregation ·
Attention mechanism

1 Introduction

In recent years, urban population continues to increase. In this case, the scene of
large-scale crowd gathering becomes more frequent and this may lead to severe
congestion. Although video surveillance is generally available in these public
places, the utilization of monitoring information is very low. Therefore, using
computer vision technology to effectively estimate crowd density has received
more and more attention. With this technology, people can quickly estimate
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the number of people in the monitoring scene, and make some abnormal warn-
ings based on the population density distribution information to minimize the
possibility of accidents and ensure crowd safety.

The ultimate goal of crowd density estimation is to accurately estimate the
total number of people in a given image. In the actual scene, which makes crowd-
ing counting task more difficult are the shooting angle, camera focal length,
crowd intensity, background interference, etc. Specifically, the existing related
research methods can be mainly divided into two major categories: a target-
based detection algorithm and a feature-based regression algorithm.

Target-based detection algorithms generally use haar-like wavelet [1], edge,
shape and other manual features to extract the whole-body features of pedes-
trians, and then use classical methods, random forests, etc.) to detect pedes-
trians. Navnne [2] et al. used the Histograms of Oriented Gradients (HOG)
combined with SVM to achieve more accurate pedestrian detection. Zhang [3]
et al. used the background difference method to extract the foreground region
of the image, and then they used a contour detection algorithm to find the
image of the mountain-like shape in the foreground region to achieve simple
segmentation of pedestrians. Li [4] et al. proposed a reasonable combination of
Mosaic Image Difference (MID) algorithm and HOG feature to achieve accurate
counting. Although these improved algorithms solve the performance variation
problems caused by overlap and occlusion to a certain extent, but for extremely
dense scenes, they are still powerless. And the algorithm based on target detec-
tion are generally time consuming, which severely limits their application in real
life.

Feature-based regression algorithms are usually function maps for learning
image features and the number of people in an image. In [5], Cho et al. proposed
a counting algorithm based on feed-forward neural network (FFNN). Lempit-
sky V first proposed in the [6] to use the density map to indirectly realize the
crowd counting method. Zhang et al. [7] proposed to learn two related objective
functions of the degree of intensiveness and the number of people in a network.
These research methods focus more on the accuracy of the final count than on
the clarity and correctness of the density map itself. However, the density map
carries a lot of useful information.

In view of the above problems, in this paper, we propose the following two
methods to improve the accuracy of crowd counting:

• Effective hierarchical aggregation module. In this paper, we explore the impor-
tance of scale information for crowd counting, and propose an effective hier-
archical aggregation module to effectively fuse different scale information in
the network.

• Attention mechanism. Considering that the crowd counting task is to estimate
the specific targets in the image and these targets are seriously interfered by
the surrounding environment. We propose to use the attention mechanism
module to weight the network learned feature map in a spatial position to
effectively limit the interference of the background region to the crowd count-
ing task.
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In addition, through reasonable model design and parameters debugging,
the model of this paper achieves state-of-the-art on several public datasets than
existing model algorithms.

2 Methods

This paper proposes a crowd counting model based on deep feature fusion. The
network structure designed in this paper is given in Fig. 1. The network consists
of three parts: scale-aware module, effective hierarchical aggregation module and
the attention mechanism module. Below we will detail each module. Consider
sharp changes of head size in crowd counting task. Inspired by the literature
[8,21], in this paper, we use a simple and efficient scale-aware model. The net-
work adopts an iterative feature transfer method, which not only enhances the
transmission of features in the network, but also gradually uses deep features
to extract the semantic information of shallow features. So we choose the scale-
aware model as our basic model.

Fig. 1. Network structure diagram

2.1 Effective Hierarchical Aggregation Module

In the network, it can be found that the part feature output of X(0, 1) is the
feature information of the small-scale target, and X(0, 4) is the feature extrac-
tion of the large-scale target in the image, which just matches the law of the
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distribution of human head in the crowd counting task. Therefore, this paper
innovatively combines the shallow target feature information with the deep fea-
ture information.

The design of this module firstly passes small-scale features through a resid-
ual module to extract more scale semantic information, and the residual module
is added to deliver more information backwards. The module superimposes the
features of the two scales as a rough fusion feature, and then combines a convolu-
tion operation for feature fusion to effectively fuse the two scale features together.
And the output of current module will directly serve as the input of next fusion
module to realize a hierarchical fusion mode. After three fusion operations, the
feature information of four scales can be effectively fuse together. Finally, the
output characteristics of the final fusion module are used to generate the final
estimated density map. The specific hierarchical aggregation module is shown in
the Fig. 2.

Fig. 2. Effective hierarchical aggregation module

2.2 Attention Mechanism Module

For the output of the effective hierarchical aggregation module, the features
of different layers are redundant, which makes it difficult to directly learn the
best mapping between the network feature and the density map. Therefore, in
this paper, the attention mechanism module is embedded in effective hierarchi-
cal aggregation module. This self-supervised attention mechanism brings two
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benefits. First, it makes it easier for the network to distinguish between back-
ground and prospects. Second, the network generates the final output density
map in an appropriate ratio.

For attention mechanism module, assuming that the input feature is X ∈
RH×W×C , where H,W,C denote respectively the height, width, and channel
number of the feature map. Firstly, the network learns spatial information
through convolution layer to get corresponding mapping X ′ = W × X + B,
where W denotes the weight parameter of convolution kernel, and B denotes
bias term, X ′ ∈ RH×W×C . Then a sigmoid function is used for nonlinear activa-
tion to obtain the weight of each position of the feature. Finally, the f(W ∗X+B)
is multiplied by the original input feature X to recalibrate the input features.
This process can be summarized as:

Y = X ∗ f(W ∗ X + B), Y ∈ RH∗W∗C (1)

The weighting method based on feature recalibration can be changed accord-
ing to the change of the data, that is, the attention mechanism module can output
the most suitable weight according to the input change, thereby implementing
an adaptive weighting.

3 Experiments

This paper use MAE (Mean Absolute Error) and MSE (Mean Square Error) to
measure the accuracy and robustness of the model.

3.1 Dataset

In this paper, crowd counting task mainly uses three datasets. Shanghai Tech
[9] dataset mainly consists of Part A and Part B. The UCF CC 50 [10] dataset
is a dataset with extremely crowded distribution. UCF QNRF [11] is a dataset
of a large dense scene. A comparison of their specific data information is given
in Table 1.

Table 1. Information on three datasets used in the experiments. Total images are the
sum of train images and test images; Resolution means the resolution of the images
in this dataset; Min, Max and Ave mean minimum, maximum and average number of
people in a images respectively.

Datasets Total images Resolution Min Max Ave Total count

Shanghai Tech Part A 482 Difference 33 3139 501 241677

Shanghai Tech Part B 716 768 × 1024 9 578 123 88488

UCF CC 50 50 Difference 94 4543 1279 63974

UCF QNRF 1535 Difference 49 12865 815 1251642
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3.2 Ablation Experiments

In order to explore the effectiveness of the proposed module, we perform an
ablation experiment. ModelA is the Scale-aware Model, that is our baseline
model. ModelB adds a multi-scale feature Concatenate module (MS Concat)
based on ModelA. ModelC consists of a base model and an effective hierarchi-
cal aggregation module (EHA). ModelD introduces attention mechanism (AT)
based on ModelC. For the model self-evaluation, all experiments used Shang-
haiTech Part B dataset, and final experimental verification results are shown in
Table 2.

Comparing the results of ModelC and ModelB, we can find that ModelC has a
significant improvement over ModelB. It can be clearly stated that the effective
hierarchical aggregation module proposed in this paper is more effective than
the direct superposition method. And the paper finds that ModelC has achieved
a great improvement on MAE and MSE compared with ModelA, which shows
that the aggregation of hierarchical information can effectively achieve accurate
estimation of human heads at different scales. By comparing the ModelD and
ModelC, it can be found that attention mechanism improves the performance
of the model. This method refines the original features and make the model
recalibrate the feature in a dynamic way.

Table 2. Evaluation results of each module

Name Model MAE MSE

ModelA Baseline 9.2 13.5

ModelB Baseline+MS Concat 8.4 13.7

ModelC Baseline+EHA 8.1 12.4

ModelD Baseline+EHA+AT 7.4 11.4

3.3 Comparison with Other Models

In order to verify the comprehensive performance of our final model(ModelD)
from various angles, in this chapter, we will verify the performance of our model
on each large dataset. Table 3 shows the performance of these models on the
Shanghai Tech dataset and the UCF CC 50 dataset. Table 4 shows the perfor-
mance of these models on the UCF QNRF dataset.

Through the above comparison experiments, it can be found that the model
of this paper has achieved superior performance on a number of open challenge
datasets, and the generalization ability is relatively strong. In particular, for
the ShanghaiTech Part B dataset, our model achieve nearly 50% performance
improvement over CP-CNN. The results of this experiment show that the model
in this paper has comparative performance on a general dense dataset. Especially
for the UCF CC 50 dataset with very few images, our model still achieves an
excellent performance. The MAE of our model for the UCF QNRF dataset also
get good results.
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Table 3. Comparison of experimental results of the model on Shanghai Tech and
UCF CC 50

Part A Part B UCF CC 50

MAE MSE MAE MSE MAE MSE

Crowdnet [12] – – – – 452 –

Hydra 2s [13] – – – – 333.7 425.3

Zhang [7] 181.8 277.7 32.0 49.8 467.0 498.5

MCNN [9] 110.2 173.2 26.4 41.3 377.6 509.1

FCN [14] 126.5 173.5 23.8 33.1 338.6 424.5

Switch-CNN [15] 90.4 135.0 21.6 33.4 318.6 439.2

CP-CNN [20] 73.6 106.4 20.1 30.1 295.8 320.9

SaCNN [16] 86.8 139.2 16.2 25.8 314.9 424.8

DR-ResNet [17] 86.3 124.2 14.5 21.0 307.4 421.6

ACSCP [18] 75.7 102.7 17.2 27.4 291.0 404.6

Ours 70.6 117.5 7.4 11.4 268.2 384.4

Table 4. Experiment results on UCF QNRF

Model MAE MSE

Idrees [10] 31.5 508

MCNN [9] 277 –

CMTL [19] 252 514

Switch-CNN [15] 228 445

CL [11] 132 191

Ours 130 208

4 Conclusion

An effective hierarchical aggregation module proposed in this paper realize the
effective extraction of human head information at different scales. The introduc-
tion of attention mechanism can achieve dynamic fine-tuning of feature informa-
tion. Due to the introduction of the above method, our model finally achieves
excellent performance on each dataset and has strong generalization ability.
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Abstract. In this study, we attempt to extract knowledge by collecting results
from multiple environments using an autonomous learning agent. A common
factor of the environment is extracted by applying non-negative matrix factor-
ization to the set of learning results of the reinforcement learning agent. In
transfer learning of knowledge management of agents, as the number of expe-
rienced tasks increases, the knowledge database becomes larger and the cost of
knowledge selection increases. By the proposed approach, an agent that can
adapt to multiple environments can be developed without increasing cost of
knowledge selection.

Keywords: Reinforcement learning � Non-negative matrix factorization �
Transfer learning � Knowledge reuse � Agent

1 Introduction

In this study, we aim to improve the learning efficiency in a new environment by
reusing past learning results. In recent years, the development of AI peripheral tech-
nology centering on machine learning is remarkable, and the intelligence of many
artifacts is in progress. Behavioral selection by autonomous agents is of great impor-
tance, and research has been actively conducted on various approaches such as rein-
forcement learning for a long time. Adaptation and learning to a single task are not
enough to achieve higher-level artificial intelligence. Hence, it is essential to build a
learning agent that can adapt to multiple tasks and environments.

When we look at the intellectual activities that we carry out on a day-to-day basis,
we can respond differently to various problem settings such as multiple tasks and
environments. Even in an inexperienced task, intelligent species such as humans can
use similar knowledge experienced in the past, to cope with unknown problems quickly
and efficiently, to learn easily. Abilities like this is one of the essential functions
required for future autonomous agents to deepen their relationship with life and society.

Despite the fact that such knowledge processing is easy for human beings, the
achievement of engineering in general learning systems and their discussions have not
been enough, and previous knowledge can be directly identified. It remains within the
framework of reusing transfer learning.

Extracting useful information from the database of learning results is important for
knowledge management of agents, that have been used in multiple environments. For
general transfer of knowledge to reinforcement learning agents, a database of
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knowledge, acquired from multiple environments have been constructed. Reusable
knowledge is chosen for this knowledge database; thus, knowledge that is most suitable
for accomplishing the current task, can be selected from past experiences.

In the previous studies on knowledge reuse, behavioral rules in the knowledge
database included those that are used directly along with those that reconstruct the
database by clustering. Previous approaches to reuse learning results caused problems
in the knowledge selection as they directly used past learning results. In this research,
we apply unsupervised learning to a database of knowledge composed of multiple
learning results, and extract factored information from the agent’s behavioral rules, to
streamline the reuse of knowledge. Many conventional approaches have the potential to
streamline learning with small knowledge databases. However, it is not efficient
enough to build an intelligent system for large-scale knowledge, which will be required
in recent years to accomplish various tasks.

As the number of tasks experienced in the past increases, a growth in the size of the
knowledge database has been observed. Due to this reason, the computational effi-
ciency may deteriorate because the agent has too many options on the task of reusing
knowledge. Furthermore, in the transfer learning framework, it is necessary to carry out
a large number of useless trials in situations where there is a large amount of non-
reusable knowledge. Reusing knowledge in a multi-user agent-like framework is not
compatible with large-scale knowledge databases because it uses hierarchical cluster-
ing. While the prior studies use knowledge directly, this approach extracts information
of partially similar factors from the knowledge database and uses it for knowledge
reuse. We aim to streamline knowledge selection in a large-scale knowledge database
by reusing factorial information on behavior.

2 Related Works

Importance of transfer learning has increased in recent years because it can reuse model
of learning results in situations where data acquisition is limited. And in recent years, it
is applied also to transfer learning of the action rule of a learning agent. In general,
many approaches of agent’s knowledge transfer method construct a database of
acquired knowledge for multiple environments and streamline learning by reusing
knowledge based on them. Reusable knowledge to this knowledge database, that is,
knowledge most suitable for accomplishing the current task is selected from past
experiences. The main theme of many previous researches is how to select appropriate
knowledge and how to use the selected knowledge, etc., here, the rules of behavior in
the knowledge database are often used directly. These have the problem that, as the size
of the database increases, the options for knowledge to be reused increase and the
system operation becomes inefficient.

There is also an approach to deal with by clustering multiple environments.
However, there is a limit to the size of problems that can be dealt with and it is not
suitable for large-scale environments. In addition, deep learning approaches have also
been studied in recent years, and they have been successful. However, the agent must
be trial-and-error massively in advance because data of a sufficiently large size is
required in advance to use deep learning models. Because transfer learning requires the
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construction of a model covering a sufficient environment across tasks, the application
of deep learning is limited to situations where massive data acquisition and trial and
error are possible. Many of these methods are not factors related to multiple tasks,
meaning that they are stored one by one and reused as learning multiple environments.
This research proposes a new framework aiming at the efficiency of knowledge reuse
by extracting features that are common factors in multiple environments.

3 Proposed Method

To address the problems mentioned above, agents apply unsupervised learning to a
knowledge database accumulated through past experiences, and extract factors com-
mon to tasks, as concepts acquired, in this paper. Non-negative matrix factorization
(NMF) has been selected as a learning model to extract partially common factors as
factor information in multiple environments. By using the NMF, it is possible to
remove factors attributed to a specific environment such as noise, and it is possible to
extract only important factors from the environmental knowledge experienced in the
past. Furthermore, by achieving factor extraction in action rules through dimensional
reduction of a large-scale knowledge database, it is possible to reduce knowledge
options to be reused in an environment, as newly learned.

NMF is a dimension reduction that avoids the orthogonality of the axes occurring in
PCA and LSI by providing non-negative constraints. Therefore, if the knowledge
database can be expressed as a real value matrix that satisfies the non-negative con-
straint, extraction of common factors can be achieved by the proposed method.

In tasks where negative rewards exist, it is necessary to convert Q-table into non-
negative behavioral selectivity before learning in NMF, such as by Boltzmann selec-
tion. The matrix of knowledge set is constructed with multiple Q-tables comprising of
knowledge databases like row vector, and NMF is trained with the result. In the
proposed method, the agent decides the action based on the factor matrix representing
the local feature extracted from the learning of NMF, by reuse of knowledge. In matrix
X, which represents the original knowledge database, the number of rows and columns
correspond to the number of tasks experienced and the number of Q values,
respectively.

In the proposed method, the matrix X is decomposed into two matrices by NMF.
First, there is a matrix T, where the number of rows correspond to the number of tasks,
and the number of columns correspond to the number of factors. Second is expressed as
matrix V, in which the number of rows correspond to the number of factors and the
number of columns correspond to the Q value. Matrix V is used for knowledge reuse,
and the number of experienced tasks accumulated in the knowledge database is reduced
to the value of the base number.

Since it is necessary to extract local knowledge, application of unlearned tasks are
examined using matrix V, having elements of base and Q value. Since the element of
each row vector of V is a Q value, the agent performs selection, considering this to be a
Q-table. After the selection of behavioral factors, it is applied to a new task as
knowledge, to reuse Q values of factors for which a reduction in the number of steps
has been achieved, compared to the results of completely random trials.
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The procedure of the proposed method is as follows:

Step 1: The knowledge database X is constructed based on the action rules for
multiple tasks acquired by reinforcement learning. Acquisition of the action
rule for each task is learning based on the updated formula of general Q
learning.

Q sit; að Þ  Q sit; að Þþ a rtþ 1þ cmaxp Q sitþ 1; pð Þ � Q sit; að Þ� � ð1Þ

where, Q value for the action a in the state sit is expressed as Q sit; að Þ. a and
c are expressed as learning rates and discount rates, respectively, which
takes values > 0 or < 1. Subscript i represents an index that distinguishes
between tasks.

Step 2: A knowledge database matrix X is constructed by converting each of the Q-
tables collected in Step 1 into a row vector. Here, the elements of each row
vector of matrix X corresponds to the Q value of Q-table.

Step 3: Matrix X is calculated by product of matrix T and matrix V through learning
of NMF. The NMF update formula for the knowledge database X is as
follows.

�uik  uik
XVð Þik

UVVTð Þik
ð2Þ

�vkj  vkj
UTXð Þkj
UTUVð Þkj

ð3Þ

where, u and v represent components of the matrices U and V, respectively,
and subscripts i, j and k are indices representing the components.

Step 4: By creating the corresponding Q-table for each factor, reconstruction of the
factor matrix of action law is achieved with knowledge of the factor of
matrix V. Here, the elements of the row vector of matrix V is rearranged as
Q-table in each factor.

Step 5: The actions are selected based on each Q-table constructed in Step 4. Only
the efficient Q-tables are selected for new tasks.

Step 6: For a new task or environment, the behavior is learned with the knowledge
selected in Step 5 as the initial value.

For the selection of knowledge in Step 5, knowledge of the factor is applied when
the number of steps required to achieve the task is used as a baseline for multiple
episodes performed on the unlearned task. Reuse those factors that have been found to
have a reduced number of steps in applicable knowledge for unlearned tasks. (Fig. 1)
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4 Experimental

4.1 Experimental Settings

In this section, we evaluate the behavior of the proposed method based on computer
simulations. We adopted the maze problem, the most common experimental setup for
learning agent evaluation experiment. To simulate multiple environments in the
experimental setting, six types of mazes were prepared as learning environments.

Moreover, to perform different tasks using these environments, different initial
states (start) and goal states (goal) were set for each maze, and multiple tasks were
constructed. We collected multiple Q-tables as a database of knowledge, which were
the learning results for these environments and tasks.

In the proposed method, the superordinate concept is constructed by NMF learning
after matrix transformation. To examine the effectiveness of knowledge reuse, three
unlearned environments were prepared separately as shown in Fig. 4. The concept
acquired by the proposed method confirmed that it can be reused.

The agent’s behavior is set such that four actions can be selected from top, bottom,
left, and right in the maze, and it returns to the initial position, prior to the selected
action that collided with the wall. Boltzmann selection is adopted for action selection in
the experiment. The trial from the start to the goal is defined as one episode, and in each
setting, the Q-table after 1000 episodes of learning, is used as a sample knowledge for
that task.

The parameter setting of NMF used in the experiment was based on the number of
bases, where k = 10 and the number of updates is 100. The following values were used
for agent behavioral learning, mainly, parameter setting for reinforcement learning. For
all the environments and tasks, the learning rate a = 0.1, the discount rate c = 0.9, the
reward r = 1.0, and the initial temperature value T = 5.

Knowledge Database construction in 
Step 2 of proposed method.

Fig. 1. Structure of NMF in the research
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4.2 Experimental Results

Here we describe the results of the experiment. Figure 4 represents a factor space for a
knowledge data set. Here, each heat map represents the weight of a matrix, and the
magnitude of the weight value of each element is expressed by the corresponding shade
of color. Figure 4(a) represents the matrix of the original knowledge database. Figure 4
((b) and (c)) show factor matrices U and V acquired through NMF learning, respec-
tively. In this experiment, since each task can select 4 types of action for 16 states,
hence, it becomes a row vector of 64 (16 � 4) dimensions.

In this experiment, for each environment in Fig. 4, state No. 1, No. 4, No. 13,
No. 16 are set as the target state (goal), while the states other than these target states are
in the initial state (start). The agent learns the task, and processes the knowledge
database acquired, as matrix X. To confirm the process of the proposed method, we
performed the task of adapting to an unknown environment by using factor information
(Factor 1–10), representing the obtained upper concept.

For each of the unknown environments shown in Fig. 2, knowledge is provided to
the task in which the initial state is set to No. 1 and the target state to No. 16 along with
the task in which the initial state is set to No. 16 and target state is No. 1. Table 1 show
the results of confirming the reuse status of Table 1 show the experimental results for
the mazes A–C in Fig. 3, respectively.

To evaluate the performance that reuses knowledge, the Q value is not updated, but
the degree of task achievement in the case where only factor information is used is
evaluated. The values in the table represent the average value of the number of steps
when each task was performed 1000 times. Random in the first column of each table is
the result when the task is performed without learning, and this value is a baseline.

In the table, cells that are the results of factors below this value, that is, the
behavioral rules that can accomplish the task in few steps without learning, are shaded.

(a) Maze A (b) Maze B (c) Maze C (d) Maze D (e) Maze E (f) Maze F

Fig. 2. Experimental environments of pre-training

(a) Maze A (b) Maze B (c) Maze C

Fig. 3. Experimental environments of post-training
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The best results value for each setting is shown in bold. This shows that it is the factor
information of action applicable to an unknown task.

On Comparing the results, it can be concluded that there is a mixture of those that
are significantly below the baseline but can be applied to unknown tasks efficiently and
those that are worse on the contrary. The tasks on the left side of the table with better
values are conversely worse than the tasks on the right side. This indicates that, locally,
different knowledges can be properly extracted for each task. Figure 5 shows an
example of a learning curve in environment A (initial 1, target 16). The red line shows
factor 1 and the blue line shows factor 7 as the initial state of the Q value. Improvement
has been noticed henceforth.

4.3 Discussion

By applying the factor matrix acquired by NMF to the tasks in an unknown envi-
ronment as the initial value of Q-table, the average number of steps decreases compared
to randomly acting on the initial value which is the baseline. By extracting factors
common to multiple tasks and environments, the result shows that knowledge reuse
works effectively in an environment which is matching the factors. It was also con-
firmed that the average number of steps was higher than the baseline and the corre-
sponding factor was worse.

This means that it is possible to properly perform the feature of the tasks because
significant results may be obtained except for tasks whose results have deteriorated. In
transfer learning, a learning agent’s experience is based on a knowledge database
which is further based on the conventional methods, whereas, in an unlearned task, an
agent who has experienced many tasks have vast applicable knowledge when selecting
available knowledge. Hence, the calculation cost is likely to increase for a learning
agent.

On the other hand, it is possible to significantly reduce the applicable knowledge of
the candidate by extracting the rule that holds common locally as a factor of the
knowledge acquired for multiple tasks. From the result of Fig. 5, it can be confirmed
that since unnecessary learning processes can be eliminated by reusing factor infor-
mation acquired by the proposed method, as an initial value in action learning, it is
efficient in aiming at application of reinforcement learning in various tasks.

In this study, while the process of factor selection is simple, efficiency of the
process of factor information selection requires improvement. Construction of a
selection algorithm of factor information based on behavior, needs to be considered as
upcoming task. Furthermore, the selection of parameters suitable for the number of
factors and tasks could turn out to be an issue in future.
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knowledge database
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represents task 
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Fig. 4. Extracted knowledge space.

Fig. 5. Learning curves.

Table 1. Experimental results.

Maze A Maze B Maze C

Start No. 1 No. 16 No. 1 No. 16 No. 1 No. 16
Goal No. 16 No. 1 No. 16 No. 1 No. 16 No. 1
Random 71.56 65.19 66.47 61.78 75.85 96.24
Factor 1 100.24 29.04 99.40 29.93 128.66 40.53
Factor 2 96.86 55.40 92.69 52.48 104.22 75.16
Factor 3 38.46 95.17 38.98 88.09 63.87 95.67
Factor 4 73.06 62.83 74.99 63.90 99.01 97.85
Factor 5 31.68 104.65 32.27 105.27 48.80 129.16
Factor 6 99.17 29.24 99.71 30.96 142.75 45.13
Factor 7 29.97 102.73 30.59 94.84 35.78 156.04
Factor 8 69.48 47.47 77.57 47.96 76.30 86.35
Factor 9 52.97 56.18 54.47 55.29 69.31 84.72
Factor 10 55.40 93.30 91.12 90.02 115.94 109.74
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5 Conclusion

In this study, we constructed a distributed representation model of learning agent
knowledge by extracting common factors from a set of knowledge for multiple learned
environments. By applying non-negative matrix factorization with multiple Q-tables
representing the action rules as a data set, we could extract common factors from the set
of accumulated knowledge. As a result, by combining the factors of knowledge rep-
resented in a distributed manner, it is expected to improve the efficiency and flexibility
of learning through knowledge reuse, even for tasks intended for unknown
environments.

To construct evaluation criteria, in future, it will be considered necessary to
establish a framework for automatically discriminating factor information of acquired
knowledge that can be applied in unknown environments from those that cannot be
applied in the future. Further, extensions to more complex tasks are desired. In that
case, transfer learning using deep learning may be effective.
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Abstract. Network embedding has got enormous attention in recent
past for their wide range of applications across different types of net-
works. This paper mainly includes a simple and novel model which is
used for better node embeddings with respect to community detection in
social networks. We use existing algorithms (mainly community detec-
tion algorithm) and Representation Learning (RL) techniques to find
better embeddings that assist in better community detection.

Keywords: Community detection · Node embeddings ·
Representation learning

1 Introduction

Graphs are found everywhere and have a wide range of applications across dif-
ferent networks. Some of them are social networks, molecular graph structures,
biological protein-protein networks, and recommender systems. These applica-
tions can be readily modeled as graphs, in which interactions (i.e., edges) can
be captured between individual units (i.e., nodes). So there is always a need for
an efficient store or access.

RL is used to map or embed the nodes, or entire (sub)graphs, as points in
a low-dimensional vector space, Rd. The geometric relationships between the
embeddings in learned space should reflect the structure of the original graph.
The optimized embeddings then can be used for many subsequent downstream
machine learning tasks.

This paper mainly contains the architecture of our proposed model in Sect. 2
followed by experiments and applications conducted by us to validate our model
in Sect. 3 followed by Conclusions and Future Work.

2 Our Model

The model is simple but efficient in community detection. The steps involved in
the model are as follows:
c© Springer Nature Switzerland AG 2019
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– First identify the communities in the graph using some existing algorithm.
– Find the embeddings for all the communities separately.
– Merge the embeddings based on some criteria.

The following sections will give more information about the algorithms used
in the model.

2.1 Community Detection

There are many algorithms that find communities in the graph. They use metrics
like edge betweenness, fast greedy, infomap, label propagation, leading eigenvec-
tor, multilevel, spinglass, walktrap, etc. The algorithm we use in the model is
Clauset-Neuman-Moore greedy modularity maximization algorithm [6].

Greedy modularity maximization starts with each node in its own community
and joins the pair of communities that most increases modularity until no such
pair exists.

2.2 Node Embeddings

Once the communities are detected, the original graph edgelist is partitioned
according to the individual communities and one of the RL technique is applied
on the individual edgelist and embeddings are learned. Some of the RL tech-
niques are Laplacian Eigenmaps [2], Graph Factorization [1], GraRep [4], HOPE
[8], DeepWalk [9], node2vec [7], HARP [5], LINE [11], SDNE [12], etc.

We mostly use the default settings of the parameters values in the publicly
available implementations of the respective baseline algorithms such as https://
github.com/thunlp/OpenNE. After the node embeddings are learned accord-
ing to communities, they can be merged using one of the criteria like average,
weighted average, etc. Once we get the merged embeddings, any clustering algo-
rithms like spectral clustering, KMeans or DBSCAN can be used to find the
communities. We use spectral clustering for detecting the communities from
embeddings.

2.3 Evaluation Metric

The major problem in evaluating a community detection algorithm is that there
is no shared and universally accepted definition for a community. Anyways, if
ground truth is known then evaluation of communities can be done by assigning
labels to the nodes in the communities and testing the accuracy with respect to
the ground truth. But assigning appropriate labels to detected communities can
be done in n! ways which makes it computationally heavy to evaluate, (where n
is the number of communities detected by the algorithm). Another variant called
Normalized Mutual Information can also be used which is again computationally
expensive.

In our work, we take the idea of Normalized F1 - Communities from [10] where
they compute an average F1-Score that captures the level of approximation
reached by network partitions obtained through community detection algorithms
with respect to ground truth ones.

https://github.com/thunlp/OpenNE
https://github.com/thunlp/OpenNE
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3 Experiments

For simplicity, we used a community detection algorithm that will give disjoint
communities. While splitting the nodes according to the communities, inter-
community edges are considered in the new edgelists. This indicates for a specific
community, edgelist will also contain other community node edges and embed-
dings will also be calculated to other nodes which all are merged later by taking
an average.

The following sections will talk about datasets used in the experiments and
results followed by some applications of our model in different scenarios.

3.1 Datasets

Brief description of the datasets are given below:

– Wiki: Wiki dataset is a directed graph containing 2405 nodes with 17981
edges and 17 labels.

– Cora: Cora dataset is a directed graph containing 2708 nodes with 5429 edges
and 7 labels.

– BlogCatalog: This dataset is a social relationships network of the bloggers
listed on the BlogCatalog website. The network has 10,312 nodes, 333,983
edges and 39 different labels.

– Karate: Zachary’s karate dataset is a social network of a university karate
club. It has 34 nodes with 78 edges and 5 labels.

– Email: The email dataset was generated using email data from a large Euro-
pean research institution. It contains 1005 nodes with 25571 edges and 42
labels.
To make it simple, we have only considered single labels for the datasets. For
the case of multi-label instances in dataset, we have considered only first label
as true ground truth label.

3.2 Normalized F1 - Communities

The column heads in the tables are appended with ‘O’ or ‘M’ which indicates

– Original(O): The baseline RL algorithm is used, i.e., embeddings are unal-
tered.

– Merged(M): The baseline RL algorithm is used on our model, i.e., embed-
dings are altered by finding communities followed by merging individual
embeddings.

By comparing the two columns in Table 1, ‘AMQO - Average Matching
Quality (F1) Original’ and ‘AMQM - Average Matching Quality (F1) Merged’,
we can observe that our model is consistently performing better when compared
to that of original baseline algorithm for Cora, Wiki, and Karate datasets. And
this is true across different baseline RL algorithms. But when it comes to blog-
Catalog dataset, our model is not performing to the expected level compared
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to that of other datasets. This is because it is a huge dataset, with 39 different
labels or communities.

The performance can be easily understood by analysing the column ‘GOF -
Gain of F1’.

G =
x − y

y
∗ 100

where G is ‘GOF’, x is ‘AMQM’ and y is ‘AMQO’.
The important point to note here is ground truth matched values are

increased for all the datasets consistently across different RL algorithms which
can be seen by comparing ‘GTMO - Ground Truth Matched Original’ and
‘GTMM - Ground Truth Matched Merged’ columns. The ground truth matched
values are increasing even in the blogCatalog which performed poorly in aver-
age F1 score. The ground truth matched is improved by at least 15% for the
blogCatalog dataset across different RL techniques.

The overall quality of the communities detected in the existing model and
our merged model can be compared with ‘OQO - Overall Quality Original’ and
‘OQM - Overall Quality Merged’ columns from Table 1. Our model is performing
better compared to the original model in almost all the datasets across different
RL techniques. Cora and Wiki datasets are having higher overall quality gain
followed by Karate and blogCatalog.

3.3 Node Classification

Node classification is one of the important applications when the ground truth
information of nodes is available, i.e., labels of the nodes are available. Once the
embedding representations of the nodes are available by two models (original and
merged), the embeddings are considered as features and are used to train a ran-
dom forest classifier [3] for single-label multi-class classification. For training and
testing data, entire embedding data is split into 70% and 30% respectively. The
testing accuracies are tabulated according to different algorithms and different
baseline RL techniques in Table 2.

Our merged model is performing better than all other RL techniques for
almost all the datasets. This can be seen by comparing the ‘TAO - Testing Accu-
racy Original’ and ‘TAM - Testing Accuracy Merged’ columns in the Table 2.

3.4 Link Prediction

Link Prediction is one of the important real-life applications in social networks.
Given a social network, predicting a new link between nodes will enhance the
connectivity of the nodes. For link prediction, we have taken the existing imple-
mentation from https://github.com/lucashu1/link-prediction.

In this task, the entire edgelist of the graph is split into 60%, 30% and 10% as
training edgelist, testing edgelist and validation edgelist respectively. Giving the
train edges to the original and merged models, we will get the node embeddings.

https://github.com/lucashu1/link-prediction
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Table 1. GTMO - Ground Truth Matched Original, GTMM - Ground Truth Matched
Merged, AMQO - Average Matching Quality (F1) Original, AMQM - Average Match-
ing Quality (F1) Merged, OQO - Overall Quality Original, OQM - Overall Quality
Merged and GOF - Gain of F1 values of different datasets for various baseline RL
algorithms.

Dataset GTMO GTMM AMQO AMQM OQO OQM GOF

node2vec

BlogCatalog 0.513 0.718 0.021 0.012 0.006 0.006 −42.8571

Cora 0.429 0.571 0.081 0.096 0.015 0.031 18.5185

Wiki 0.471 0.647 0.076 0.219 0.017 0.092 188.1578

Karate 1 1 0.474 0.8 0.474 0.8 68.7763

deepWalk

BlogCatalog 0.487 0.692 0.018 0.01 0.004 0.005 −44.4444

Cora 0.286 0.286 0.091 0.147 0.007 0.012 61.5384

Wiki 0.529 0.529 0.058 0.091 0.016 0.025 56.8965

Karate 1 1 0.49 0.8 0.49 0.8 63.2653

LINE

BlogCatalog 0.385 0.538 0.034 0.032 0.005 0.009 −5.8823

Cora 0.143 0.571 0.193 0.501 0.004 0.164 159.5854

Wiki 0.294 0.294 0.071 0.118 0.006 0.01 66.1971

Karate 0.5 0.75 0.27 0.344 0.086 0.152 27.4074

Graph factorization

BlogCatalog 0.103 0.59 0.046 0.028 0 0.01 −39.1304

Cora 0.143 0.571 0.191 0.501 0.004 0.164 162.3036

Wiki 0.294 0.412 0.124 0.206 0.011 0.035 66.1290

Karate 1 1 0.49 0.8 0.49 0.8 63.2653

Table 2. Node classification results where TAO is Testing Accuracy Original and TAM
is Testing Accuracy Merged.

Dataset node2vec deepWalk LINE GF

TAO TAM TAO TAM TAO TAM TAO TAM

BlogCatalog 0.0845 0.0830 0.0981 0.0930 0.0861 0.0841 0.0977 0.0903

Cora 0.2644 0.8389 0.2614 0.8522 0.2850 0.3781 0.2850 0.5612

Wiki 0.3588 0.7475 0.3853 0.7558 0.3205 0.4784 0.3355 0.6694

Karate 0.5555 0.8888 0.3333 0.7777 0.2222 0.3333 0.3333 0.5555

But our aim is to find the edge embeddings as we are doing link prediction. Edge
embeddings can be calculated using node embeddings. Edge embedding for edge
(v1, v2) is taken as Hadamard product of the node embeddings of v1, v2.
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Table 3. VRSO - Validation ROC Score Original, VRSM - Validation ROC Score
Merged, VASO - Validation AP Score Original, VASM - Validation AP Score Merged,
TRSO - Test ROC Score Original, TRSM - Test ROC Score Merged, TASO - Test AP
Score Original, TASM - Test AP Score Merged.

node2vec link prediction

Dataset VRSO VRSM VASO VASM TRSO TRSM TASO TASM

BlogCatalog 0.7189 0.8853 0.6986 0.8637 0.7203 0.8861 0.6989 0.8661

Cora 0.4651 0.6365 0.4823 0.6455 0.4909 0.6083 0.4893 0.6157

Wiki 0.5824 0.7438 0.5691 0.7381 0.5922 0.7473 0.5770 0.7362

Karate 0.4693 0.5510 0.5793 0.6728 0.5198 0.4347 0.5679 0.4998

Email 0.5796 0.7321 0.5692 0.6919 0.5896 0.7295 0.5766 0.6936

Once the edge embeddings are calculated, the train edge embeddings are
used to train the logistic regression model. And testing and validation edge
embeddings are used to compare different algorithms performance with our
merged model. For the evaluation, metrics like the Area Under ROC Curve
(AUC ROC Score) and Average Precision score (AP) are used.

The scores in Table 3 clearly show that our merged model performs better
than the node2vec model. There is a slight decrease in performance for the Karate
dataset in the AUC ROC Score and AP, which is due to a very less number of
edges in the dataset.

Figure 1 clearly shows that the merged model outperforms the deepWalk
model for almost all of the datasets. The 2nd, 4th, 6th and 8th bars in the chart
indicates the merged model scores which are higher than 1st, 3rd, 5th and 7th

which are original deepWalk model ones.

Fig. 1. Link prediction bar graph with deepWalk
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Fig. 2. Node visualization for cora dataset

3.5 Node Visualization

Node visualization is very useful to visualize any patterns or similarities in the
data. It helps to reveal data that lies in multiple, different, manifolds, or clusters.

The cora dataset visualization is done using t-SNE for both merged model
and original model with different RL techniques and the visuals are given in the
Fig. 2. The figure show that in the merged model (2nd, 4th, 6th and 8th plots from
top-left to bottom-right), there are clear and almost well-separated communities
compared to that of the original model (1st, 3rd, 5th and 7th plots from top-left
to bottom-right) respectively. This indicates that our model is performing well
with respect to the communities.

4 Conclusions and Future Work

Our model performs better than many existing RL techniques for community
detection. Empirically we can say that the average F1 community score is higher
compared to that of existing techniques for many datasets.

Our model not only outperforms in community detection but also in many
other applications like node classification, link prediction, and node visualiza-
tion. In the case of link prediction, the results are way better which now empir-
ically shows that community-detection-based node embeddings help in better
link prediction in social networks. Node visualization of embeddings from our
model is also better compared to that of existing models. Besides these, we have
also worked on applications like KMeans Clustering and Graph Reconstruction
which empirically gave mixed results.

Exploring different kinds of community detection algorithms for finding the
communities from the edgelist is left for future work. As the embeddings are
used for further downstream machine learning tasks, we would like to work on
how our model embeddings will impact on some of the machine learning and
deep learning applications.
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Abstract. Code generation, which generates source code from natural
language, is beneficial for constructing smarter Integrated Development
Environments (IDEs), retrieving code more effectively and so on. Tra-
ditional approaches are based on matching similar code snippets, and
recently researchers pay more attention to machine learning, espe-
cially the encoder-decoder framework. Faced with code generation, most
encoder-decoder frameworks suffer from two drawbacks: (a) The length
of the code snippet is always much longer than the length of its corre-
sponding natural language, which makes it hard to align them, especially
for encoders at word level; (b) Code snippets with the same functionality
could be implemented in various ways, even completely different at word
level. For drawback (a), we propose a new Supervised Code Embedding
(SCE) model to promote the alignment between natural language and
code. For drawback (b), with the help of Abstract Syntax Tree (AST),
we propose a new distributed representation of code snippets which over-
comes this drawback. To evaluate our approaches, we build a variant
of the encoder-decoder model to generates code with the help of pre-
trained code embedding. We perform experiments on several open source
datasets. The experiment results indicate that our approaches are effec-
tive and outperform the state-of-the-art.

Keywords: Code generation · Code embedding · Supervised learning

1 Introduction

Generating code through natural languages (NL) is considered to be an impor-
tant future direction of programming. On the one hand, it can lower the thresh-
old of programming and facilitate programming process. On the other hand, it
makes programmers more productive, for example, by generating non-core code
automatically, which allows programmers to focus more on the core code. So
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using NL to map complex operations to basic code blocks receives tremendous
interest and has shown great benefits.

Traditional code generation approaches are usually based on matching similar
code snippets [5–7]. Recently, many researchers pay more attention to generating
code by machine learning. Some researchers try to bridge the gap between two
corpora by utilizing rich, existing code bases and program contexts [8,16]. Some
researchers utilize a standard or a variant encoder-decoder model to map NL to
a snippet of executable code directly [1,4,8–10,17].

Most existing approaches regard a code snippet as a simple plain sequence
of words, without taking features of itself into account. In this way, current
approaches suffer from two drawbacks: (a) the length of code snippets usually
differ a lot from that of NL, it seems a tough work for regular encoder-decoder
models or attention mechanism to align them. (b) Code snippets usually contain
multiple functional processes, and the same functionality could be implemented
in various ways. Mapping directly is likely to be disordered because there is no
strict bijection between two corpora (i.e., code snippets and the corresponding
natural language).

Faced with the drawback (a), we propose a Supervised Code Embedding
(SCE) model to pre-train distributions of code and NL at the same time, which
helps align NL and code better. Faced with (b), only considering the word-level
feature of the code is far from enough, for example, Fig. 1(a) and Fig. 1(b) show
an example of two Java functions which have the same functionality: counting
characters of a string, but implemented in two different ways. Their word-level
features are quite different, yet they own the same functionality, which will put
a heavy burden on the model training process. So we turn our attention to
proposing a new representation of code which not only takes word-level features
into account.

Abstract Syntax Tree (AST) is a tree-structural representation of source
code which describes its functionality in a specific programming language. The
leaves of the tree usually refer to user-defined values which represent identifiers
or variable types in the source code. The non-leaf nodes represent a set of struc-
ture in the programming language (such as loops or variable declarations). In
Figs. 1(a) and 1(b), the lower subfigure is the visualized AST of the above code
snippet, respectively.

As shown in Fig. 1, user-defined identifiers (such as num, str) and variable
types (such as String, int) are represented as leaves of the tree, and syntactic
structure such as judgment statement (ifStmt) and loop (ForStmt) are repre-
sented as non-leaf nodes. In AST, we call a path between two leaves or a leaf
and a root an AST path, which are marked red, yellow, blue or green respec-
tively in Fig. 1(a) and 1(b). Intuitively, every path is a functional module in the
code snippet. It is clear that although two methods are quite different in token-
level representation, their AST paths differ only in two nodes, a ForeachSt node
instead of a ForStmt node and a Method Call Expr node instead of a Unary Expr,
which are circled by red dotted lines. So faced with drawback (b), we propose a
new distributed representation of code which combines AST paths features (i.e.,
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Fig. 1. Two Java functions and their ASTs. Two Java functions have the same func-
tionally while implemented in different ways. Although They differ a lot in token-level
representation, considering their AST paths, only differ in two nodes, which are circled
by red dotted lines (Color figure online)

syntactic features) and word-level features (i.e., lexical features) of code in SCE
model.

In summary, our contributions in this paper are as follows:

– We propose a new distributed representation of code snippets which combines
AST paths features and word-level features of code.

– We propose SCE model. The model uses supervised learning to pre-train
distributions of code and NL at the same time, aims to promote aligning them.
Based on pre-trained code embeddings, we build a variant of the encoder-
decoder model to align NL and code.

– We conducted comparative experiments on real-world datasets including code
in popular high-rank Github repositories to evaluate our approaches, and
the experiment results indicate that our models are effective and outperform
mainstream approaches by 10.15% on performance in code generation.

The rest of this paper is organized as follows: our approach is presented
in Sect. 2. Section 3 introduces the experiments details. Section 4 introduces
research related to this work. Then the conclusion is shown in Sect. 5.

2 Approach

In this section, we introduce the details of our approach. The approach consists of
two stages: code embedding and code generation. Figure 2 provides an overview
of SCE model for code embedding.
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Fig. 2. Overview of Code Embedding Task. Feed NL to NL encoder to get NL embed-
ding Enl, feed code to Token Encoder and code’s AST Paths to AST encoder, then
combine their output embeddings by a fully connected layer to get Ecode. Finally, fit
the distribution of Enl and Ecode

A pair of natural language (NL) and code snippet (abbreviated as Code)
is an input for training, which all consist of a sequence of tokenized tokens1.
After represented as a vector by one-hot, NL would be fed into NL encoder.
The NL encoder is a bidirectional transformer, which captures the contextual
information for each word of NL, and generates their contextual embedding
vectors Enl

1 , Enl
2 , ...Enl

i . Finally, concatenate them to Enl. Let

Enl
1 , Enl

2 , ...Enl
i = BiTransformer(V nl

1 , V nl
2 , ...V nl

i ) (1)

Enl = [Enl
1 ;Enl

2 ; ...Enl
i ] (2)

where V i
nl is denoted as the vector of ith NL token. Then Enl would be fed to a

max-pooling layer.
The same as NL representation, we feed code tokens to Token Encoder, which

is a bidirectional transformer, the encoder encodes the tokens to Token Embed-
ding vectors and concatenate to Etokens. A max-pooling layer is followed too.

As mentioned in Sect. 1, we not only capture token-level feature but also
capture functionality feature of a code snippet by its AST paths. Every AST
path consists of two leaves and non-leaf nodes, so every path is seen as a sequence
of its non-leaf nodes’ embedding vectors and a sequence of two leaves’ tokens
embedding vectors. Let

1 More details about tokenization phase, please refer to Sect. 3.2.
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V nodes = (V node
1 , V node

2 , ..., V node
i ) (3)

V leaves = (V token
1 , V token

2 , ..., V token
j ) (4)

where V i
node is denoted as the vector of ith node. We use bi-direction LSTM to

encode the V nodes and V leaves

hnode
1 , hnode

2 , ...hnode
i = BiLSTM(V node

1 , V node
2 , ..., V node

i ) (5)

hleaves
1 , hleaves

2 , ...hleaves
j = BiLSTM(V token

1 , V token
2 , ..., V token

j ) (6)

and concatenate the bi-direction final hidden states of LSTM as the final repre-
sentation of non-leaf nodes and leaf nodes.

Enodes(V node
1 , V node

2 , ..., V node
i ) = [hnode

i ;hnode
1 ] (7)

Eleaves(V token
1 , V token

2 , ..., V token
j ) = [hleaves

j ;hleaves
1 ] (8)

Suppose a snippet of code has k AST paths, we concatenate Enodes and
Eleaves, then average the combined vector to EAST :

EAST =
1
k

k∑

k=1

[Enodes;Eleaves] (9)

A max-pooling layer is followed to reduce dimensions of EAST .
To represent the final code embedding Ecode, we concatenate the AST path

representation and token-level representation and apply a fully connected layer
to combine them

Ecode = tanh(W · [EAST ;Etokens]) (10)

where W is a (dAST + dtokens) × dhidden weight matrix.
we choose cosine similarity as our loss function to describe the distance in

distribution between Enl and Ecode,

Dloss = cos(Enl, Ecode) =
∑n

i=1 E
nl
i × Ecode

i√∑n
i=1 (Enl

i )2 ×
√∑n

i=1 (Ecode
i )2

(11)

where Enl
i , and Ecode

i are the ith dimension of Enl and Ecode.
When SCE model finishes pre-training, we use pre-trained Token encoder to

encode our code dictionary to get dictionary embedding matrix Edic.
To evaluate our model, we build a variant of the encode-decoder model with

global attention, and it focuses on the stage of generating code from NL with
the support of SCE model. Its NL encoder is transferred from SCE model’s. Its
decoder is a LSTM with global attention and uses embedding matrix Edic to
convert code snippets to continuously distributed vectors when in training stage.
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3 Experiments

3.1 Datasets

Our collected dataset2 consists of four open source datasets: Awesome Java3,
CONCODE [8]4, BigCloneBench5, and JDK source codes. Table 1 shows statis-
tics of our base datasets.

Table 1. Statistics of datasets

Datasets Projects Files Lines

Awesome java 535 264,284 26,407,592

CONCODE ∼33,000 ∼300,000 ∼13,000,000

BigCloneBench 10 9,376 2,065,108

JDK - 7,700 1,009,560

3.2 Data Preprocessing

For every Java function, function’s comments are extracted as NL inputs. The
function bodies are treated as our target code to be generated. The NL words
and code words are lower-cased. The camel-cased and underline identifiers are
split into several words, for example, split checkJavaFile to three words: check,
Java, File, split get user name to three words: get, user, name. All punctuation
marks are removed. We add [CLS] at the beginning of every sentence and add
[SEP] at the end. [UNK] is used to represent words outside the dictionary. After
these steps, every word is tokenized to token.

Javaparser lib6 is used to parse Java source codes. ASTParser lib7 is used to
build AST of code. In order to decrease noise and reinforce the learning process,
we only use the first sentence of comments since they already summarize the
function of methods according to Javadoc guidance8. Some redundant comments,
such as empty comments, one-word comments, and non-English comments, are
filtered.

Finally, we collect 3,950,164 pairs of (NL,Code) for code embedding, and
1,074,963 pairs of (NL,Code) for code generation. Each dataset is split into a
training set, and a test set in proportion with 8:2 after shuffling the pairs.
2 https://drive.google.com/open?id=1nOuZjSS9lUqWfQptUOhfX9kNKd FeCkn.
3 https://github.com/akullpp/awesome-java.
4 https://drive.google.com/drive/folders/1kC6fe7JgOmEHhVFaXjzOmKeatTJy

1I1W.
5 https://github.com/clonebench/BigCloneBench/blob/master/README.md.
6 https://github.com/javaparser/javaparser.
7 http://help.eclipse.org/mars/index.jsp.
8 https://www.oracle.com/technetwork/articles/java/index-137868.html.

https://drive.google.com/open?id=1nOuZjSS9lUqWfQptUOhfX9kNKd_FeCkn
https://github.com/akullpp/awesome-java
https://drive.google.com/drive/folders/1kC6fe7JgOmEHhVFaXjzOmKeatTJy1I1W
https://drive.google.com/drive/folders/1kC6fe7JgOmEHhVFaXjzOmKeatTJy1I1W
https://github.com/clonebench/BigCloneBench/blob/master/README.md
https://github.com/javaparser/javaparser
http://help.eclipse.org/mars/index.jsp
https://www.oracle.com/technetwork/articles/java/index-137868.html
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3.3 Experiment Setting

When in code embedding, we restrict the maximum length of NL to 20 words,
and the length of the code is limited to 100. We use 12 hidden layers to encode
NL and code tokens in the transformer, and the hidden size is 768. When in
code generation, we set the hidden size of the LSTM cells to 512, and all cells
are 2-layers. Max-pooling layer is used to reduce computation and align matrix.
We use dropout with p = 0.4. The ratio of teacher forcing is 0.5. Adam is used
as our optimizer with an initial learning rate of 0.0001 for optimization. We use
TensorFlow to implement our models.

3.4 Experiment Results

To evaluate the quality of the output, following recent works in code genera-
tion [8,11], we choose the BLEU, Precision, Recall and F-score of generated
words as our metrics. We compare our model with two baselines:

– Code Generated Methods Proposed by Iyer et al. [8]. This method is
proposed recently and outperforms the state-of-the-art in code generation. It
is abbreviated as Iyer et al..

– Code Generation Task without Code Embedding. To evaluate the
effect of code embedding, we conducted an experiment that only utilizes code
generation task to generate code which is abbreviated as without Embedding.

Table 2 illustrates the precision, recall, F-score, and BLEU results of our
approach and other baseline methods. Our approach, abbreviated as ours, out-
performs all baselines in Precision, Recall, F-score and BLEU. Our approach
achieves an improvement of 2.08 BLEU points compared with the best results
of other approaches, which outperforms current state-of-the-art methods by
10.15%.

Table 2. Precision, Recall, F-score and BLEU of Our Approach and Other Baselines

Approaches Precision Recall F-score BLEU

Iyer et al 22.67 13.56 16.97 19.35

Without embedding 19.35 11.32 14.28 20.50

Ours 28.58 16.36 20.81 22.58

The BLEU scores of ours and without Embedding show that our SCE model
could promote the effect of code generation.

4 Related Work

A number of previous researches have explored mapping NL to code blocks
[4,9,17], regular expression [12] and SQL statements [18]. Some researches
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generate code on a certain context: [13,15] generate code in the environ-
ment of database querying; Some specific research [10] generates codes in
the field of a card game, conditioned on categorical card attributes. These
works are based on a chunk of codes that implement certain business logic.
Recent researches propose models and evaluate them on domain-specific dataset
(Hearthstone & MTG, [10]; CONCODE [8]), and manual labeled per-line com-
ments (DJANGO [14]). Domain-specific data is organized based on specific busi-
ness logic. Each functionality contains business knowledge and consists of sev-
eral basic operations. Manually labeled data (DJANGO) contains programs with
short description possibly mapping to categorical data. The values need to be
copied onto the resulting code from a single domain. Some researchers use AST
to represent code [2,3] too, but they don’t fuse word-level features.

In Neural Machine Translation area, neural encoder-decoder has proved to be
effective. It also has good performance in mapping NL to programming logic and
code generation. Some methods directly generate code blocks or domain-specific
programming language using encoder-decoder model [10,14]. Some methods use
a customized decoder for capturing code structure and perform generation [16].

5 Conclusion

In the paper, we propose a new representation of code snippets which combine
features from lexical level and syntactic level. We propose a novel Supervised
Code Embedding (SCE) model to learn distributed representation of the code
and NL at the same time. We conducted several comparative experiments to
prove our approach, and experimental results show that our approach, which
outperforms state-of-the-art baselines, is significantly effective and can generate
more high-quality codes. Our future work will focus on two aspects: how to
better fuse other information, and how to generate executable code directly.
Author contributions. Han Hu,Qiuyuan Chen and Zhaoyi Liu
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Abstract. Learning network embedding for large-scale networks have
been attracting increasing attention due to their importance in support-
ing numerous network analytic and data mining tasks such as node clas-
sification, clustering and visualization. In this paper, we present a novel
framework for learning large-scale network embedding incorporating net-
work topology and community structural information. Most existing net-
work embedding methods tend to embed network topology and ignore
the partially labeled community structure information that exist in real-
world networks and thus are unable to efficiently learn and capture the
community structure of real-world networks. Unlike existing works, our
framework integrates the network topology and community structure
into the learning process. We propose a deep autoencoder model to gen-
erate low-dimensional feature representations efficiently through learning
network reconstruction and community classification tasks. The experi-
mental results on several real-world networks show that our framework
outperforms the state-of-the-art methods.

Keywords: Large-scale network embedding · Network representation
learning · Autoencoder · Community prediction

1 Introduction

Large-scale networks are prevalent in our daily lives such as social, collaboration
and citations networks. Learning a meaningful network embedding is a critical
prerequisite for applying network analytic and data mining tasks such as node
classification [7,11], link prediction [4], clustering [2], and visualization [16].

The main challenge in network embedding is to find the most informative data
representation that preserves the structural information between the vertices in
the network. There has been substantial interest in the work of learning network
embedding [3,5,16] which attracted the attention of many experts owing to its
comprehensive use in real-world applications.

Traditionally, the dimensionality reduction techniques such as Isomap [15]
and Laplacian Eigenmap [1] find a low-dimensional manifold embedded in the
high-dimensional data of the network. The main drawback of these methods
c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, CCIS 1142, pp. 397–405, 2019.
https://doi.org/10.1007/978-3-030-36808-1_43
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is having a quadratic time complexity with respect to the number of vertices.
Therefore, these techniques are inefficient when applied to large-scale networks.

Recently, several network embedding approaches adopt random walk to
exploit the network structure and learn representations using skip-gram model
such as DeepWalk [11] and Node2Vec [4]. These methods are proofed to be
identical to matrix factorization of networks [17]. However, random walks are
inefficient when applied on large-scale networks [13,16]. In addition, these meth-
ods adopt shallow model and cannot leverage the representation ability of deep
learning [6] which can efficiently learn the non-linear structure of real-world net-
works.

Another line of works address network embedding problem using deep learn-
ing, such as SDNE [16] and DNGR [2]. However, these methods suffer from
performance issues, for instance, SDNE requires model pertaining and setup of
many hyperparameters, and DNGR applies random surfing model to generate a
node probabilistic co-occurrence matrix, which makes these methods unscalable
and difficult to apply to large-scale networks. In addition, these methods ignore
the community labels that exist in real-world networks and cannot efficiently
learn the community structure of the network.

Recently, the network embedding problem was addressed using convolution
layers such as [3,5,10]. These methods recursively aggregate the neighborhood
information of each vertex in the network. These methods generally suffer from
computation and memory issues due to recursive expansion of neighborhoods.
The modeling ability of our approach is different from GCN-based methods since
we explicitly model the relationship between all vertices using the adjacency
matrix A, while these methods learn from vertex features X and adjacency
matrix A to community labels Y .

To address these challenges, we propose a novel framework based on semi-
supervised stacked sparse autoencoder model which can resolve the above issues
and improve the effectiveness and efficiency of network embedding. In summary,
the contributions of our paper are as follows:

– We propose a novel network embedding framework based on semi-supervised
stacked sparse autoencoder, named ComNE, to jointly learn features for large-
scale networks using network topology and community structure using par-
tially labeled vertices.

– We conduct extensive experiments using various real-world network datasets
and compare with state-of-the-art methods to validate our approach. Pre-
cisely, our framework outperform the baselines on challenging classification,
clustering and network visualization tasks.

2 Related Work

Over the past few years, several network embedding techniques have emerged to
address the applications of network-structured data such as vertex classification
and link prediction. The earlier works for dimensionality reduction methods
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Fig. 1. The framework of ComNE.

have been studied in the literature [1,15]. These methods generally suffer from
performance drawbacks and cannot scale to large networks.

Several approaches for learning network embedding have been proposed such
as [4,11], which adopt random walk and skip-gram procedure to learn network
embedding and generate low-dimensional representations for vertices. Recently,
Tang et al. [13] proposed two loss functions to learn the first-order and second-
order proximities of the network. Their method learns to embed local and global
structure separately and then concatenates the embedding.

Recently, network embedding approaches adapt convolutions and rely on
vertex neighborhood to learn representations such as [5,7]. These methods usu-
ally provide additional gains on different network analytic tasks. However, these
methods have performance issues due to recursive expansion of neighborhoods.

3 Method

3.1 Problem Formulation

Let G = (V,E,L) be a given network, where V = {v1, v2, ..., vn} is the set of
vertices, E = {e1, e2, ..., em} is the set of edges between a pair of vertices and
L = {l1, l2, ..., lk} is the set of community labels in the network. Each edge
is associated with a weight wi,j . A partially labeled network can be defined
as G = (VL, VU , E) where VL is the set of labeled vertices, VU is the set of
unlabeled vertices, where V = VL ∪ VU . We assume that each vertex can have
multiple labels. The main objective of network embedding is to learn a mapping
function f : V → R

|V |×d, d � n.

3.2 ComNE Framework

We propose a novel framework to preserve the network topology and commu-
nity structure using deep architecture. The fundamental ideas of the proposed
framework are as follows:

– Each vertex is mapped to a low-dimensional space that is shared across all
network vertices using stacked sparse autoencoder model.

– The linked vertices tend to have similar representations. Similarly, vertices
belong to the same community will be embedded closer to each other.
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– For every vertex, community label classification and adjacency vector recon-
struction loss will be learned and optimized simultaneously.

We apply stacked sparse encoder model to learn low-dimensional embed-
ding which is shared among all vertices. Next, we apply decoder model which
decodes structural information and reconstructs the network from the latent
space embedding. Jointly, we apply a non-linear layer (i.e., softmax or sigmoid
activation) connected to the embedding layer to decode the community struc-
ture of the latent space embedding using the labeled vertices, see Fig. 1 for
illustration.

The main goal is to optimize the encoder and decoder mappings which can
be achieved by minimizing two losses: reconstruction loss (to preserve the net-
work topology) and semi-supervised classification loss (to preserve community
structure). The network reconstruction loss is denoted by the mean square error
(MSE) given by:

L1 =
1
n

n∑

i=1

(xi − x̂i)2 (1)

where n is the number of vertices, xi is the input adjacency vector of vertex vi,
x̂i is the reconstructed vector, and L1 is the mean of sum of squared distances
between input and reconstructed vectors.

Next, the semi-supervised classification loss to preserve the community struc-
ture of the network is represented by the cross-entropy loss can be defined as:

L2 = − 1
n

n∑

i=1

k∑

j=1

yij log (ŷij) (2)

where k is the number of communities, yij is the community label for vertex vi

and ŷij is the community label prediction.
Finally, we impose the l2 norm regularization prevent model over-fitting:

Lreg =
λ

2

t∑

�=1

∥∥W �
∥∥2

2
(3)

where λ represents the regularization constant and W � is the weight matrix of
the layer � of the deep architecture.

Overall, we minimize the following loss function:

L = L1 + L2 + Lreg

=
1
n

n∑

i=1

(xi − x̂i)2 − 1
n

n∑

i=1

k∑

j=1

yij log (ŷij) +
λ

2

t∑

�=1

∥∥W �
∥∥2

2

=
1
n

n∑

i=1

(
(xi − x̂i)2 −

k∑

j=1

yij log (ŷij)
)

+
λ

2

t∑

�=1

∥∥W �
∥∥2

2

(4)



ComNE: Reinforcing Network Embedding with Community Learning 401

3.3 Complexity Analysis

The computational complexity of ComNE is of order O(n× t×d×ct) where n is
the number of vertices and t is the number of hidden layers, d is the maximum
dimension of the hidden layers, and ct is the number of iterations till convergence.
The parameters t, d and ct are unrelated with n, but are associated to the deep
autoencoder model. Hence, the computational complexity of ComNE framework
grows linearly with the number of vertices n.

4 Experiments

4.1 Datasets

An overview of the network datasets we consider in our experiments is given in
Table 1. The datasets description are as follows:

– BlogCatalog [14] is an online social network formed by the online users.
– Cora and CiteSeer [9] are research papers datasets.
– Wiki [12] is composed of real-world web pages and hyperlinks.

Table 1. Network datasets used in our experiments and autoencoder layers structure.

Dataset |V | |E| |Y | Average degree Category Layer neurons

BlogCatalog 10,312 333,983 39 64.7756 Social Network 1000-512-128

CiteSeer 3,312 4,732 6 2.8231 Citation Network 512-256-128

Cora 2,708 5,429 7 3.8981 Citation Network 512-256-128

Wiki 2,405 17,981 17 10.6121 Web page Network 512-256-128

4.2 Baseline Algorithms

We evaluate our method against the following baselines:

– DeepWalk [11]: It transforms network structure into linear sequences by
random walks and employs skip-gram model to learn network embedding.

– LINE [13]: It preserves first-order and second-order proximities in the net-
work and uses skip-gram with negative sampling to learn representation.

– SDNE [16]: It is a semi-supervised autoencoder method with objective func-
tion that exploit the first-order and second-order proximities in the network.

– Node2Vec [4]: It improves DeepWalk by adopting biased random walk to
explore diverse neighborhoods using depth-first and breath-first sampling.
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Table 2. NMI and ARI scores for vertex clustering in Cora, CiteSeer and Wiki datasets.

Algorithm Cora CiteSeer Wiki

NMI ARI NMI ARI NMI ARI

DeepWalk 0.40 0.30 0.14 0.14 0.36 0.18

LINE 0.13 0.04 0.05 0.01 0.26 0.07

SDNE 0.25 0.17 0.07 0.05 0.30 0.16

Node2Vec 0.44 0.36 0.20 0.16 0.36 0.21

ComNE (ours) 0.58 0.39 0.43 0.23 0.49 0.23

4.3 Experimental Setup

For the unsupervised network embedding baselines, we start with obtaining the
latent representations of vertices. Following, a portion of vertices and their labels
are randomly sampled from the network and used as training data for a one-vs-
rest logistic regression model. The goal is to predict the labels of the remaining
vertices. To guarantee that our experiments are reliable, the above process is
repeated for 10 times, and we report the average of the accuracy scores.

For our method, we use community labels during training. For fair compari-
son, we split each dataset into 40%, 10% and 50% train, validation, and test sets
respectively (we only use half of each dataset for model training). The structure
of autoencoder layers are listed in Table 1. We adapt early stopping procedure
with patience of 10 epochs and set a max of 100 epochs. The regularization
constant λ is set as 0.001. We adopt Adam optimizer with default learning rate.

For baseline methods, the parameters are tuned to be optimal and fair. For
DeepWalk and Node2Vec, the number of random walks to start at each node is
set as 10. The length of random walk started at each node is 80 and the window
size of skip-gram model is 10. For Node2Vec, the hyperparameters p and q are
set as 1.0. For LINE, the starting value of learning rate is 0.025. The number of
negative samples is set as 5 and the number of training samples are set as 10,000.
For SDNE, the hyperparameters α and β are set as 0.2 and 10 respectively. For
fair comparison, we use the same autoencoder structure as shown in Table 1.

4.4 Vertex Clustering with Label Information

In this experiment, we ran each baseline algorithm to obtain the embedding,
which is used as a feature representation for clustering and apply k-means algo-
rithm to the learned vertex embedding. Networks communities are used as the
ground truth to assess the quality of clustering results. We report the normalized
mutual information (NMI) and Adjusted Rand Index (ARI) as the performance
metrics. We run k-means algorithm 10 times and report the average in Table 2.

From the results, we can see that ComNE significantly outperforms the base-
lines. In other words, our model can generate vertex embedding which preserve
the structure of the original network topology and community structure.
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Fig. 2. Average of Micro-F1 and Macro-F1 scores in BlogCatalog dataset.

(a) ComNE (b) DeepWalk (c) LINE (d) SDNE (e) Node2Vec

Fig. 3. Visualization of CiteSeer dataset. Each point indicates a research paper and
the color of a point represents the category of the paper.

4.5 Multi-label Classification

In multi-label classification, each vertex is assigned multiple communities (i.e.,
communities overlap). This experiment is conducted by training a classifier
on labeled vertices using its low-dimensional embedding as features. Next, the
trained classifier is used to classify each vertex into a set of labels. We randomly
sample a portion of the labeled vertices as the training set and the remaining as
test set to evaluate the performance. We vary the training set from 10% to 90%,
and report Micro-F1 and Macro-F1 scores in Fig. 2.

From the results, we observe that our method outperforms the baselines,
which illustrates the importance of incorporating the community information.

4.6 Network Visualization

Visualization of the vertex representations assists in validating the quality of
learned vertex embedding. We conducted visualization experiment by following
[13]. After vertex embedding are learned by different network embedding meth-
ods, we apply t-SNE [8], which maps the vertex embedding vectors into a 2D
space, where each community is highlighted with a unique color.

Under the same setting, a good visualization is to see the vertices within the
same community are expected to be embedded closely. Intuitively, a visualization
with clearer boundaries between different color groups indicates better learned
representations. We can see from Fig. 3 that the visualization of our method
shows clear boundaries and compact clusters.



404 A. Fathy and K. Li

5 Conclusion

In this paper, we have proposed a deep network embedding framework, called
ComNE, for encoding each vertex as a low dimensional vector embedding. Our
model demonstrated the representation ability of stacked sparse autoencoder
in extracting meaningful information and generating informative embedding for
large-scale networks while preserving network topology and community struc-
ture. The experiments on real-world network datasets in different analytic tasks
showed that the performance of the proposed framework outperformed several
state-of-the-art baselines.
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Abstract. Two-dimensional partial least squares (2DPLS) is an effec-
tive two-view data analysis technique. However, conventional 2DPLS
only takes into account the column information of two-dimensional
images. In this paper, we simultaneously consider the column-wise and
row-wise information of two-dimensional face images. We first propose
a row-based two-dimensional PLS (r2DPLS) approach and then further
present a novel double-directional PLS (D2PLS) method. The proposed
D2PLS method can be optimized by two eigenvalue subproblems. Exper-
imental results on the AR, Yale, and AT&T face databases show that
our D2PLS method can overall achieve better recognition accuracy than
existing related methods.

Keywords: Partial least squares · Feature fusion · Face recognition

1 Introduction

Face recognition (FR) has received significant attention in the past decades.
Most of conventional FR methods are based on single facial feature descriptor.
However, in real-world face analysis system, a face image can usually be described
by multiple different representations (views) due to distinct feature extractors
or data sources. Hence, it is necessary to investigate how to recognize multi-view
face images via fully using the complementary information of different views.

Partial Least Squares (PLS) is a classical multi-view data analysis technique.
It was first proposed by Wold [1] in 1975. PLS is able to be actually regarded
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as penalized Canonical Correlation Analysis (CCA) [2] with Principal Compo-
nent Analysis (PCA) [3]. That is, it combines the merits of both CCA and
PCA approaches for two-view data analysis. In recent years, PLS has developed
rapidly regardless of theory or applications; see, for example, [4–12]. Since tradi-
tional PLS adopts a successive strategy to solve all the directions one by one, it
is possible to yield a suboptimal solution in practical calculation. To solve this
issue, Chen et al. [6] proposed a manifold optimization method to solve PLS
regression model. Xie et al. [7] combined the PCA and PLS models to present a
Principal Model Analysis (PMA) method for dimension reduction and classifica-
tion tasks. Liu et al. [8] proposed a regularized PLS for multi-label learning. In
addition, Liquet et al. [12] proposed two PLS extensions referred to as group PLS
and sparse group PLS, which can be used to capture the relationship between
two sets of data vectors.

The foregoing PLS-related methods are based on sets of data vectors. Dif-
ferent from vector form, a face image is essentially in the form of matrix, thus
having obvious spatial structure information. How to utilize such kind of spa-
tial information is an attractive topic. PLS and its preceding variants can not
directly handle the two-dimensional face matrices. They are only applicable when
all image matrices are transformed into vectors. To directly deal with image
matrices, Sun [13] and Yang et al. [14] proposed two-dimensional (2D) PLS
methods, where a face image does not need to be transformed into a vector
in advance. Later, Zhang et al. [15] presented a 2D Non-negative Sparse PLS
(2DNSPLS) for face recognition. Experimental results demonstrate the effec-
tiveness of 2DNSPLS. It should be noted that the above-mentioned 2D improve-
ments of PLS only consider the column-wise information of 2D face images and
ignore the row-wise information.

In this paper, we take into account column-wise as well as row-wise infor-
mation of 2D face features. We first propose a row-based two-dimensional PLS
(r2DPLS) approach and then further present a novel 2D approach called Double-
Directional PLS or D2PLS. The proposed D2PLS can be optimized by two eigen-
value subproblems. It is applied to 2D facial feature fusion and face recogni-
tion. Experimental results on real-world face datasets demonstrate the proposed
D2PLS method can achieve better recognition accuracy than existing related
approaches.

2 Two-Dimensional PLS

Suppose there are two random matrices X ∈ R
m×n and Y ∈ R

m×n. Let X̃ =
Xwc

x and Ỹ = Y wc
y, where wc

x ∈ R
n and wc

y ∈ R
n are, respectively, the projection

axes of X and Y . Two-dimensional PLS (2DPLS) [13] aims to search for pairs of
projection axes which maximize the covariance between X̃ and Ỹ . Concretely,
one pair of directions wc

x and wc
y can be found by

max
wc

x,w
c
y

cov(X̃, Ỹ ) s.t. (wc
x)Twc

x = 1, (wc
y)

Twc
y = 1, (1)
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where cov(·) denotes the covariance operator and

cov(X̃, Ỹ ) = E[Xwc
x − E(Xwc

x)]T [Y wc
y − E(Y wc

y)]

= (wc
x)T [E(X − EX)T (Y − EY )]wc

y

= (wc
x)TΣc

xyw
c
y

(2)

with Σc
xy = E(X −EX)T (Y −EY ) referred to as column-wise dispersion matrix

in this paper and E(·) denotes the expectation operator. The optimization prob-
lem in (1) can be solved by the following eigenvalue problem [13]:

[
Σc

xy

(Σc
xy)

T

] [
wc

x

wc
y

]
= λ

[
wc

x

wc
y

]
, (3)

where λ is the eigenvalue corresponding to the eigenvector [(wc
x)T (wc

y)
T ]T .

3 Approach

From Sect. 2, we can clearly find that conventional 2DPLS approach only con-
sider the column information of matrices. In fact, a matrix not only contains
columns but also rows. In this section, we employ the two kinds of information
and propose a Double-Directional PLS (D2PLS) method for 2D feature fusion.

3.1 Row-Based 2DPLS

Assume two random facial feature matrices are given as X ∈ R
m×n and Y ∈

R
m×n. Let row-based linear transformations of X and Y be Vx = (wr

x)TX and
Vy = (wr

y)
TY , respectively, where wr

x ∈ R
m and wr

y ∈ R
m. Then, the row-wise

dispersion matrix of Vx and Vy can be defined by

cov(Vx, Vy) = E[(wr
x)TX − E((wr

x)TX)][(wr
y)

TY − E((wr
y)

TY )]T

= (wr
x)T [E(X − EX)(Y − EY )T ]wr

y

= (wr
x)TΣr

xyw
r
y,

(4)

where Σr
xy = E(X − EX)(Y − EY )T . With (4), the model of our row-based

2DPLS (r2DPLS) can be formulated as

max
wr

x,w
r
y

(wr
x)TΣr

xyw
r
y s.t. (wr

x)Twr
x = 1, (wr

y)
Twr

y = 1. (5)

With the Lagrange multipliers, the optimization problem in (5) can be solved
by the following eigenvalue problem:

[
Σr

xy

(Σr
xy)

T

] [
wr

x

wr
y

]
= η

[
wr

x

wr
y

]
, (6)

where η is the eigenvalue corresponding to the eigenvector [(wr
x)T (wr

y)
T ]T .
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3.2 Double-Directional PLS

Now, combining the foregoing two objectives in (1) and (5) leads to our double
directional PLS method as follows.

max
wc

x,w
c
y,w

r
x,w

r
y

(1 − α)(wc
x)TΣc

xyw
c
y + α(wr

x)TΣr
xyw

r
y

s.t.

{
(wc

x)Twc
x + (wc

y)
Twc

y = 1,
(wr

x)Twr
x + (wr

y)
Twr

y = 1,

(7)

where α is a balance parameter satisfying 0 ≤ α ≤ 1. It is obvious that when
α = 0, our proposed D2PLS method reduces to 2DPLS as described in Sect. 2;
when α = 1, D2PLS reduces to r2DPLS. Thus, the proposed D2PLS integrates
the column as well as row information of 2D face images.

The Lagrangian of the problem in (7) is

L =(1 − α)(wc
x)TΣc

xyw
c
y + α(wr

x)TΣr
xyw

r
y

− η1
2

[(wc
x)Twc

x + (wc
y)

Twc
y − 1] − η2

2
[(wr

x)Twr
x + (wr

y)
Twr

y − 1],
(8)

where η1 and η2 are the Lagrange multipliers. Let ∂L/wc
x = 0, ∂L/wc

y = 0,
∂L/wr

x = 0, and ∂L/wr
y = 0. Then, we obtain

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂L/wc
x = (1 − α)Σc

xyw
c
y − η1w

c
x = 0,

∂L/wc
y = (1 − α)(Σc

xy)
Twc

x − η1w
c
y = 0,

∂L/wr
x = αΣr

xyw
r
y − η2w

r
x = 0,

∂L/wr
y = α(Σr

xy)
Twr

x − η2w
r
y = 0.

(9)

It follows that⎡
⎢⎢⎣

(1 − α)Σc
xy

(1 − α)(Σc
xy)

T

αΣr
xy

α(Σr
xy)

T

⎤
⎥⎥⎦

⎡
⎢⎢⎣

wc
x

wc
y

wr
x

wr
y

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

η1w
c
x

η1w
c
y

η2w
r
x

η2w
r
y

⎤
⎥⎥⎦ . (10)

Clearly, (10) is not an usual eigenvalue problem. Actually, it is referred to as
multivariate eigenvalue problem (MEP) [16], which has no closed-form solution
except some special cases. Thus, we relax the MEP in (10) into the following
two eigenvalue subproblems.[

Σc
xy

(Σc
xy)

T

] [
wc

x

wc
y

]
=

η1
(1 − α)

[
wc

x

wc
y

]
, (11)

and [
Σr

xy

(Σr
xy)

T

] [
wr

x

wr
y

]
=

η2
α

[
wr

x

wr
y

]
. (12)

Note that when α = 0 or α = 1, we only compute (11) or (12). We separately
select the d eigenvectors of (11) and (12) corresponding to the first d largest
eigenvalues to generate the projection matrices P c

x , P c
y , P r

x , and P r
y .
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Table 1. Average recognition accuracy (%) on different face databases.

Method AR Yale AT& T

D2PLS-FFS1 86.45 75.33 94.35

D2PLS-FFS2 82.03 74.00 93.55

r2DPLS 83.49 74.13 91.90

2DPLS 82.39 73.60 93.15

2DCCA 66.51 70.40 93.05

Feature Fusion. For 2D facial features X and Y , we are able to obtain 2D-
projection features XP c

x , Y P c
y , (P r

x )TX, and (P r
y )TY . Borrowing the idea in

[13], we use the following strategies to fuse them.

[XP c
x ;Y P c

y ;XTP r
x ;Y TP r

y ], (13)

[XP c
x + Y P c

y ;XTP r
x + Y TP r

y ]. (14)

We call (13) Feature Fusion Strategy 1 (FFS1) and (14) Feature Fusion Strategy
2 (FFS2).

4 Experiment

In this section, we perform several experiments on the AR, Yale, and AT&T face
databases to test the performance of r2DPLS and D2PLS, and compare them
with 2DPLS and two-dimensional CCA (2DCCA) [13].

4.1 Data Preparation

Data Sets. The AR database includes more than 4,000 color images of 126
people. These images are frontal view of face with different expressions, lighting
conditions, and occlusions. In this experiment, we select 120 people and each
person has 14 images with 50×40 pixels. The Yale database contains 165 images
of 15 individuals. Each person has 11 different images under various expressions
and lighting conditions. Each image is resized to 80 × 80. The AT&T database
contains 400 images from 40 people. Each person has 10 grayscale images with
size as 112×92 under different expressions, lighting conditions, facial details and
at different times.

Settings. To yield two sets of 2D facial features, we employ original 2D
face images as X and 2D wavelet-transform images as Y . The nearest neighbor
classifier is used for the classification performance test. On AR database, we
randomly select 8 images per people for training and the rest for testing. On
Yale database, we randomly choose 6 images for training and the remaining 5
images for testing. On AT&T database, we randomly choose 5 images for training
and the rest for testing. On all the three databases, 10 classification tests are
carried out independently and the average recognition results are computed.
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Number of Selected Eigenvectors

Fig. 1. Average recognition accuracy of different methods versus the number of selected
eigenvectors on the AR database.

Number of Selected Eigenvectors

Fig. 2. Average recognition accuracy of different methods versus the number of selected
eigenvectors on the Yale database.

4.2 Result

Table 1 shows the maximal average recognition results of 2DCCA, 2DPLS,
r2DPLS, and D2PLS across ten runs on all possible dimensions. Figures 1, 2,
and 3 show the average recognition results of different methods versus the top
10 eigenvectors on different databases, respectively. As we can see from Table 1,
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the proposed D2PLS with FFS1 outperforms consistently other methods, what-
ever databases are used. But, D2PLS with FFS2 performs worse than r2DPLS
on both AR and Yale databases. On the whole, our D2PLS and r2DPLS methods
perform better than 2DPLS and 2DCCA. From Figs. 1, 2, and 3, we can find
that all the methods can achieve the best results fast using a few of eigenvectors.
Also, D2PLS with FFS1 performs the best among all methods.

Number of Selected Eigenvectors

Fig. 3. Average recognition accuracy of different methods versus the number of selected
eigenvectors on the AT&T database.

5 Conclusion

In this paper, we first propose a r2DPLS approach and then further present a
Double-Directional PLS or D2PLS, which considers the column-wise and row-
wise information of 2D face images at the same time. The proposed D2PLS can be
optimized by two eigenvalue subproblems. It is applied to 2D facial feature fusion
and face recognition. Experimental results on real-world face databases show
D2PLS can achieve better recognition accuracy than existing related approaches.
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Abstract. Network representation, aiming to map each node of a net-
work into a low-dimensional space, is a fundamental problem in the net-
work analysis. Most existing works focus on the self-level or pairwise-
level relationship among nodes to capture network structure. However,
it is too simple to characterize the complex dependencies in the network.
In this paper, we introduce the theory of the ego network and present
an ego-network-level relationship. Then a deep recurrent auto-encoder
model is proposed to preserve the complex dependencies in each ego net-
work. In addition, we present two strategies to solve the sparsity prob-
lem. Finally, we conduct extensive experiments on three real datasets.
The experimental results demonstrate that the proposed model can well
preserve network structure and learn a good network representation.

Keywords: Network representation · Ego-network-level relationship ·
Recurrent auto-encoder

1 Introduction

Graph data have been widely analyzed [6,8–10]. In recent years, network rep-
resentation has been proposed and aroused considerable research interest. The
goal is to learn a low-dimensional vector for each node as its representation. One
basic requirement of network representation is to preserve the inherent network
structure. Recently, a random walk strategy is adopted to capture network struc-
ture. For example, shown in Fig. 1(b), DeepWalk [7] and Node2vec [5] exploit
the node pairwise-level relationship in the truncated random walks over a net-
work. Actually, these methods model the probabilities p(vj |vi) and p(vi|vj) for
each co-occurring node pair vi and vj . In addition, deep learning is introduced
in the network representation. As shown in Fig. 1(a), the basic idea of these
deep learning methods is characterizing the self-level relationship by modeling
the probability pautoencoder(x̂i|xi) (i.e., pencoder(h|xi) and pdecoder(x̂i|h)), where
xi and x̂i refer to the raw and reconstruction feature of node vi, and h refers to
the output of the encoder.
c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, CCIS 1142, pp. 414–422, 2019.
https://doi.org/10.1007/978-3-030-36808-1_45
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Fig. 1. Different relationship considered in existing works and our paper.

However, we argue that the pairwise-level or self-level relationship is too sim-
ple to capture the complex network. For example, as shown in Fig. 1, because
these two methods only consider the single or two-tuples dependencies in the
network representation, a multi-tuple relationship cannot be expressed directly,
even if it is just a simple triangle. Thus, the pairwise-level or self-level relation-
ship is not enough to characterize such a complex relationship in the network,
and a more complex dependence should be considered to have a better embed-
ding performance.

In this paper, to characterize the complex relationship in the network, we
introduce an ego-network-level relationship in the network representation, and
the difference between ego-network-level representation and others is shown in
Fig. 1. Ego networks have been studied in social networks to understand how
the node interacts with others [2,4]. It consists of a focal node (i.e., ego) and
the nodes to whom ego is directly connected to (these are called alters) plus the
connections, if any, among the alters. Of course, each alter in an ego network
has its own ego network, and all ego networks interlock to form a network.
As discussed above, the connection is complex in the network. We can hardly
cover all possible dependencies. Therefore, in this paper, we mainly care about
the surroundings in an ego network. The reason is that the connection from an
ego to an alter is more likely influenced by alters rather than other nodes in
a network. Then, to characterize the ego-network-level relationship, we sample
several ego-node-sequences over each ego network, and propose a deep recurrent
auto-encoder to capture each sequence. In this way, we can flexibly preserve the
ego-network-level relationship.

In summary, our main contributions are listed as follows: (1) We introduce
the ego network into network representation and propose an ego-network-level
relationship to preserve the complex network structure. (2) We design an ego-
node-sequences sampling, and propose a Deep Recurrent Auto-Encoder model
called DRAE, to characterize each ego-node-sequence, and to learn a useful rep-
resentation of each node. (3) In order to exhaustively evaluate the proposed
model, we conduct extensive experiments on three real datasets. These results
demonstrate that DRAE can effectively uncover more complex hidden features
than baselines.

2 Related Work

Recently, representation learning has become a very important task in the
network research. In this section, we mainly introduce some related methods
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Fig. 2. The framework of DRAE

including the self-level and pairwise-level methods. (1) Pairwise-level Meth-
ods. Many recent successful methods such as DeepWalk [7] and Node2vec [5]
learn the node representation based on random walk statistics. Their key innova-
tion is that if two nodes can be reached by each other on short random walks over
the graph, they are expected to have a similar representation. In this way, these
methods can naturally capture the pairwise-level relationship over the network.
(2) Self-level Methods. To extract complex structural features and learn deep,
highly non-linear node representations, the deep learning techniques are also
applied to network representation. Most of them construct a similarity matrix
and make use of deep auto-encoder to capture the network information. By
reconstructing each node feature, these methods can characterize the self-level
relationship. GraphEncoder [11] takes the adjacency matrix as input. DNGR [3]
constructs a high-order proximity matrix to capture global information. SDNE
[12] designs the second-order proximity loss to learn the global information.

3 DRAE

In this section, we introduce the proposed Deep Recurrent Auto-Encoder model
(DRAE). The overall framework of DRAE is shown in Fig. 2. Specifically, given
a network G = (V,E), we firstly adopt a restart random walk to extract raw
feature of each node. Then for each node, we focus on the ego network, and an
ego-node-sequences sampling is proposed to generate several ego-node-sequences
over the ego network. Then we feed the raw feature sequence corresponding to
the ego-node-sequence into the proposed model. Finally, with the help of the
deep model, we obtain the representation of each node.

3.1 Raw Feature Extraction

Inspired by the random walk, we adopt a restart random walk strategy to extract
raw network feature. Specifically given a network G = (V,E), we define di =∑

j ai,j , and let D = diag{d1, d2, ..., dn} be a degree matrix. Then P = D−1A is
the random walk probability between two nodes in 1-step. Consider one step of a
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restart random walk from node vi, the random walker randomly jumps to one of
the neighbors of current node with probability 1−α, and jumps back to vi with
the probability α. Then after w − 1 jumps, the next jump can be expressed as:
swi = (1 − α)sw−1

i P + αs0i ,where swi is the i-th row of Sw, and S0 is the identity
matrix.

Then the raw feature of node vi can be obtained by summarizing
s1i , s

2
i , ..., s

W
i , i.e., xi =

∑W
w=1 swi , where xi characterizes the relationship

between node vi and any other nodes in G. Finally, we adopt a normaliza-
tion strategy with point-wise mutual information as suggested in [3]: x∗

i,j =
log((xi,jQ)/(

∑n
t=1 xi,t

∑n
t=1 xt,j)),where Q =

∑n
i=1

∑n
j=1 xi,j . Then the nega-

tive value is set to 0. After the restart random walk and normalization, the raw
feature of node vi can be formed as x∗

i , and for simplify, in rest of the paper, the
symbol xi is regarded as the vector after normalization.

Ego-Node-Sequences Sampling. Although we simplify the surroundings of
each connection from the whole network into an ego network, there still exists
an amount of possible dependencies. It is impossible to consider all of these
dependencies. Thus, we design a novel sampling strategy to characterize the ego
network, and then apply the dependencies in each sample. Specifically, given a
network G = (V,E), for any node v0, we can get its ego network. We denote
Nv0 as the alters set (i.e., the neighbor nodes set) of the ego v0. Then, we
randomly select k alters from Nv0 and generate a k+1 length ego-node-sequence
SNv0

= (v0, v1, ..., vk), where vi ∈ Nv0 (i = 1, 2, ..., k). Of course, using only one
ego-node-sequence cannot fully characterize an ego network. Thus, for each ego
network, we randomly generate q ego-node-sequences.

3.2 Deep Recurrent Auto-Encoder

In this section, we first introduce a model only considering the self-level rela-
tionship, and then we extend it into the ego-network-level representation with
the help of the ego-node-sequences.

Self-Level Representation. Here we mainly apply the auto-encoder to model
the self-level relationship. Specifically, given a network G = (V,E), we can get
its raw feature matrix X by the restart random walks. For each node v, we
feed xv into the auto-encoder network, and then the hidden layer Li can be
expressed as: yi = f(Wi · yi−1 + bi), where Wi and bi are the weight and bias
of the hidden layer Li respectively, yi−1 is the output of the hidden layer Li−1,
and f is the activation function. Then the loss function can be expressed as:
l(xv; x̂v) = ‖xv − x̂v‖22, where x̂v is the output of the auto-encoder. Finally, we
take hv = ymid ∈ �d as the self-level representation, where ymid is the output of
the encoder (i.e., the middle layer Lmid).
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Ego-Network-Level Representation. Although, auto-encoder is a power-
ful model to learn the self-level representation, it is not suitable to model the
ego-network-level relationship. Therefore, based on auto-encoder, we design a
deep recurrent auto-encoder, and take place the single input with a sequence
input. Specifically, for each node v0, we sample q ego-node-sequences in the
corresponding ego network. For each sequence SNv0

= (v0, v1, ..., vk), we feed
(xv0 , xv1 , ..., xvk

) into the deep recurrent auto-encoder. In other words, for the
each time point t, the middle hidden layer Lt

mid not only receives the output of
hidden layer Lt

mid−1 produced by xvt
at the time point t, but also receives the

output of layer Lt−1
mid produced by (xv0 , xv1 , ..., xvt−1) at the time point t − 1.

So for each time point t, we can get the output expression of its middle hidden
layer Lt

mid:
yt
mid = f(Wmid · yt

mid−1 + U · yt−1
mid + bmid) (1)

where Wmid and bmid are the weight and bias of the hidden layer Lmid, U is the
weight of the information transmission between the previous time point t − 1
and the current point t, yt

mid−1 is the output of hidden layer Lmid−1 at time
point t, yt−1

mid is the output of hidden layer Lmid at time point t − 1, and f
is the activation function. Then the loss function can be expressed as follow:
Loss =

∑k
t=0 Losst =

∑k
t=0 ‖xvt

− x̂vt
‖22.

Intuitively, at time point t0, DRAE models the self-level relationship
(i.e., p(x̂v0 |xv0)). For each time point t, DRAE models the probability
p(x̂vt

|xv0 , xv1 , ..., xvt−1 , xvt
). In this way, the connection of the ego v0 and the

alter vt can be not only influenced by these two nodes, but also by the surround-
ing alters. Furthermore, multi-sampling ego-node-sequences in this ego network
can be allowed to capture as much dependencies as possible. Finally, for each
ego v0, we take the mean of y0

mid over the q ego-node-sequences as the learned
representation hv0 .

3.3 Sparsity Problem

In real life, a network is often huge and contains a large number of nodes, such as
Youtube and Wiki. However few of nodes are connected. Although, the restart
random walk enriches the reachability, there still are a lot of zero elements in
the matrix X which may bring a difficulty to learn a useful representation. To
address this problem, we introduce two strategies including penalty strategy and
implicit representation.

Penalty Strategy. Inspired by SDNE [12], we add a penalty weight E to
the reconstruction error. Thus given the input (xv0 , xv1 , ..., xvk

) for an ego-node-
sequence SNv0

= (v0, v1, ..., vk), the loss function in Equation (2) can be rewritten
as Loss =

∑k
t=0 Losst =

∑k
t=0 ‖(xvt

− x̂vt
) � rvt

‖22, where � represents the
element wise product, rvi

= (rvi,vj
)nj=1 and R = (rvi,vj

)n×n. If xvi,vj
> 0, then

rvi,vj
= ε > 1, else rvi,vj

= 1. In this way, DRAE can focus on the reachability
features, rather than zeros.

Implicit Representation. Actually, the representations of alters in each
time point t(t = 1, 2, ..., k) can also be helpful to the representation of the ego
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v0 and alleviate the sparsity problem. Here we take these representations as the
implicit representations. Specifically, for each ego network, we take the mean
of hvi

(i = 1, ..., k) over the q ego-node-sequences as implicit representation (i.e.,
himplicit =

∑
q sequences

∑k
i=1 hvi

). Finally, by concatenating the two vectors hv0

and himplicit , we obtain the final representation of the ego v0.

4 Experiments

4.1 Setting

Data. Here, we introduce three real datasets used in this paper. BlogCatalog is
a social network and represents the friendship between bloggers. Wiki contains
the links between documents in Wikipedia. Email-Eu-core represents the rela-
tionship of mail exchanging between members of European research institutions.
To sum up, the detailed statistics of these datasets are presented in Table 1.

Table 1. Datasets Information. Task ‘c’ denotes node classification, ‘s’ denotes sparsity
strategies analysis, ‘d’ denotes different level relationships comparison

Dataset #Nodes #Edges #Class Task

BlogCatalog 10312 333983 39 c

Wiki 2,405 17,981 19 c

Email-Eu-core 1,005 25,571 42 c | s | d

Baselines. In this paper, we take six different methods which focus on net-
work structure as baselines, including the self-level and pairwise-level network
representation methods. Self-level Method (1) Graph Factorization (GF) [1]
factorizes the adjacency matrix of a network by singular value decomposition
(SVD). (2) GraphEncoder [11] makes use of sparse auto-encoder, and designs a
stack model. (3) SDNE [12] considers the first and second order proximities. (4)
DNGR [3] constructs a high order matrix and learns the network structure by
denoising auto-encoder. Pairwise-level Method (1) DeepWalk [7] first gen-
erates a path by random walk, and then takes this path as the input data to
the word2vec. (2) Node2vec [5] considers a high order information of nodes and
proposes a random walk strategy.

Parameters Settings. In the baseline system, for DeepWalk, we set t = 40,
γ = 80, w = 10 as suggested in [7] for the datasets BlogCatalog, Wiki and
Email-Eu-core. For Node2vec, the walk length, per walk and windows size are
set the same as DeepWalk, and we set p = 0.25, q = 0.25 for BlogCatalog, and
p = 4, q = 0.25 for Wiki and Email-Eu-core. For SDNE, we set α = 0.2, β = 10
as suggested in [12] for all datasets. For DNGR, we set α = 0.02 as suggested in
[3] for all datasets. For our method, to fully evaluate the performance of DRAE,
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Table 2. Node Classification results

Datasets BlogCatalog Wiki Email-Eu-core

Micro-F1(%) Macro-F1(%) Micro-F1(%) Macro-F1(%) Micro-F1(%) Macro-F1(%)

Method 10% 50% 90% 10% 50% 90% 10% 50% 90% 10% 50% 90% 10% 50% 90% 10% 50% 90%

DRAE 33.28 39.03 40.93 21.05 26.43 28.35 57.88 66.81 71.12 41.10 48.85 51.50 64.57 75.77 80.00 37.85 55.16 52.41

Node2vec 34.70 37.90 38.91 16.47 21.22 21.66 58.01 65.24 67.43 37.35 45.43 47.23 61.10 72.54 75.25 27.41 45.62 42.08

DeepWalk 32.15 35.00 36.09 14.80 18.73 19.86 58.06 66.32 67.59 38.84 48.23 48.34 59.51 71.33 72.18 26.78 41.53 40.58

SDNE 31.67 36.68 38.57 13.99 20.57 23.45 56.88 65.75 68.80 35.54 44.79 45.89 48.35 67.00 73.47 23.81 42.08 42.67

DNGR 33.32 36.79 38.02 19.63 21.95 22.48 36.35 45.95 47.65 36.35 45.95 47.65 62.32 73.04 78.81 35.29 51.75 48.78

GraphEncoder 29.70 33.78 35.05 12.72 16.49 18.09 47.80 59.39 65.23 30.86 41.43 45.07 41.26 57.14 63.17 24.47 41.65 39.35

GF 27.77 31.99 32.76 13.10 16.32 16.62 49.39 60.68 62.16 32.08 42.29 44.22 48.65 60.20 66.83 30.46 44.48 41.82

we just set the same parameters for all datasets rather by experimental tuning.
Specifically, we set the restart parameter α = 0.02, the walk length W = 6,
the sampling times p = 8, the ego-node-sequence length k = 8, and the penalty
parameter ε = 10.

4.2 Classification Task

In order to compare the performance between DRAE and baselines, we take these
node representation vectors as features and apply them to the classification task.
We randomly select a part (10%, 50% and 90%) of the dataset with the labeled
nodes as the training data and take the rest as the test data. Then we use the
training data to train a one-vs-rest logistic regression classifier. We repeat this
process 10 times and report the average Macro-F1 and Micro-F1. The results
are shown in Table 2. We see that DRAE outperforms the baselines at most of
the time. For example, DRAE achieves gains of 2.02% to 8.71% and 4.9% to
11.73% on Micro-F1 and Macro-F1 on BlogCatalog(90%). It indicates DRAE,
compared with baselines, can capture a better structure of the network.

Fig. 3. Sparsity strategy analysis on Email-Eu-core

4.3 Sparsity Strategies Analysis

As we know, in the network representation, it is a big challenge to deal with
the sparsity problem. In this paper, we propose two strategies to solve this
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Fig. 4. Different level representations comparison on Email-Eu-core

problem. Here, we conduct some experiments to further analyze these two strate-
gies. Specifically, we test four variants of DRAE (denoted as WP-WI, WP-NI,
NP-WI and NP-NI). WP-NI refers to the method adopting these two strategies.
WP-NI only adopts penalty strategy. NP-WI only adopts implicit representa-
tion, and NP-NI drops all strategies. All of these variants are set in the same
parameters. Then similar to the node classification task, we take the learned rep-
resentation from different variants and test them on Email-Eu-core with training
data from 10%–90%. Because of the limited space, we only report the Micro-F1
and Macro-F1 results of 20%, 40%, 60% and 80% training data in different iter-
ation (Similar conclusion can be found in the rest results). The WP-NI-80% in
Fig. 3 refers to the result of model WP-NI trained on 80% training data, and the
others have similar meanings.

From Fig. 3, the baseline NP-NI without any sparsity strategies performs very
poorly in all cases. It demonstrates that it is very necessary to take the sparsity
problem into consideration. Besides, compared with the implicit representation
(NP-WI), the penalty strategy (WP-NI) gains more improvement. The reason is
that penalty strategy is a more direct strategy to alleviate the sparsity problem.
Furthermore, whenever any sparsity strategy is considered, the model gains a
significant improvement. Especially, DRAE (i.e., WP-WI) which considers all
of these two strategies obtains the best performance. It demonstrates that the
proposed sparsity strategies can well solve the sparsity problem.

4.4 Different Level Relationships Comparison

As discussed above, our model can be easily modified as a self-level or pairwise-
level model. In this part, we conduct experiments to give a comparison of these
three different level relationships models. Specifically, the self-level model of
DRAE refers that we directly take place the ego-node-sequence with a single
node, and the pairwise-level model refers to DRAE with k = 1. Similar to the
node classification task, we report the best Micro-F1 and Macro-F1 results on
Email-Eu-core in 100 iterations. From Fig. 4, we can see that ego-network-level
relationship makes a significant contribution to the results. It demonstrates that
it is necessary to introduce the complex dependencies in the network repre-
sentation, and the ego-network-level relationship can better characterize such
dependencies than the other two kinds of relation.
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5 Conclusion

In this paper, to solve the problem of network representation, we propose a
deep recurrent auto-encoder, called DRAE. By analyzing the ego-network-level
relationship, DRAE can well preserve the network structure. We evaluate our
model by extensive experiments. The experimental results conducted on real
datasets demonstrate substantial gains of DRAE compared with the state-of-
the-art.
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Abstract. Online movie recommender systems aim to address infor-
mation overload problem in movie perspective. Recently, incorporating
knowledge graph into recommender systems as auxiliary information
has attracted much attention due to its rich semantic content. In this
paper, we propose a deep multi-channel model for dynamic movie recom-
mendation (DMCM), which makes full use of user-item interaction and
knowledge graph. First, we learn item embedding, entity embedding and
genre embedding from interaction matrix and knowledge graph. Then we
design a CNN-based network which can fuse the learnt embeddings and
acquire the final movie representation, among which an attention module
is applied to better represent the user. Finally, the click-through rate for
the user-movie pair is calculated utilizing the obtained user and movie
representation. Results of extensive experiments on a real-world dataset
show that the proposed DMCM outperforms state-of-art baselines.

Keywords: Movie recommendation · Knowledge graph · Attention
module

1 Introduction

Due to the ever-growing volume of online movies, movie recommender system
is essential to address the information overload problem and guides users in a
personalized way. Among all kinds of recommendation strategies, collaborative
filtering has achieved significant success due to its efficiency. Nevertheless, the
performance of collaborative filtering based recommender system suffers severely
from data sparsity and cold start problems. To alleviate the above-mentioned
problems, auxiliary information such as social networks [11], images [12] and
texts [8] were incorporated in order to better comprehend user’s taste and
boost the performance of recommender system. Among various side informa-
tion, knowledge graph has drew much attention in recent years.

Knowledge graph is a centralized repository for heterogeneous information
which makes an excellent auxiliary information for movie recommendation,
c© Springer Nature Switzerland AG 2019
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Fig. 1. Illustration of knowledge graph providing supplementary information for
movies.

as is illustrated in Fig. 1; There already exist some methods that incorporate
knowledge graph into movie recommendation. For example, CKE [12] com-
bines an item’s knowledge embedding, textual embedding and image embedding
which are extracted respectively through a CF module in a unified Bayesian
framework.

Although existing methods utilizing knowledge graphs have proved their
effectiveness, most of them did not take full advantage of user-item interaction.
To address this issue, we propose DMCM, a novel framework which leverages
knowledge graph and user-item interaction and incorporates them into movie rec-
ommendation. DMCM is a hybrid deep recommendation model for click-through
rate prediction, which takes a user’s click history and a movie as input, and out-
puts the possibility that the user will click the movie.

Empirically, our studies can be mainly divided into two parts. First, we con-
duct extensive experiments to evaluate the performance of our model. Next, we
evaluate the effectiveness of our framework compared with several up-to-date
baselines. The experiment results show that DMCM gains significant improve-
ments over comparison methods.

The key contributions of this paper are summarized as follows:

• We simultaneously leverage rich heterogeneous information from knowledge
graph and content learned from user-item interaction. The representations
extracted are fused through a multi-channel module.

• We propose DMCM, a novel framework that incorporates knowledge graph
with interaction matrix for movie recommendation.

• We conduct extensive experiments on a real-world data set and evaluate the
effectiveness of our framework.

2 Preliminaries

In this section, we will give a brief introduction to the concepts and terminologies
which we shall use in the following parts.
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2.1 User-Item Interaction Matrix

Assume there are m users and n items in total, we can define the interaction
matrix R ∈ R

m×n, for each entry in the interaction matrix:

Rij =
{

1, if an interaction between user i and item j is observed;
0, otherwise. (1)

2.2 Knowledge Graph Embedding

Performance of recommender system can be significantly enhanced if we take
full advantage of knowledge graphs. By applying knowledge graph embedding
methods we can obtain low-dimensional representation vectors for each entity
and relation that preserves the original structure and semantic relationship of the
knowledge graph. In this paper some typical translation-based methods, namely
TransE [1], TransH [13], TransR [4] and TransD [3] are adopted to acquire the
embedding of the entities.

3 DMCM Framework

In this section, we present in detail how our framework leverages information
from interaction matrix and knowledge graph respectively and utilizes them for
recommendation afterwards. Our framework is illustrated in Fig. 2.

Fig. 2. The overall framework of DMCM, which takes a piece of movie and user history
as input and outputs a user’s CTR for the movie.
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3.1 Item Representation Learning

We apply Bayesian Personalized Ranking [6] (BPR) to acquire the item latent
matrix î, in which each row can be regarded as the item embedding of the
corresponding movie.

3.2 Knowledge Representation Learning

We adopt a large-scale public knowledge base Freebase as our linked knowledge
graph. To begin with, we have to apply entity linking [5] to match movies in
our dataset with entities in knowledge graph, then we could extract the needed
sub-graph. Finally, knowledge representation learning methods can be utilized
to acquire embeddings of entities.

Through the above-mentioned procedure we could obtain the embeddings
for movies and all their corresponding genres which are denoted as e and g
respectively. A movie’s genre can reflect its content to some extent. We formulate
final genre embedding ĝ of a movie as Formula (9) :

ĝ =
1

|g(m)|
∑

gi∈g(m)

gi (2)

where g(m) contains all the genres of a movie m.
Intuitively, a node’s direct neighbor should provide some supplementary

information for it. The context of an entity is defined as the set of all its
1-hop neighbors, which can be formulated as (10) :

context(e) = {ei| (e, r, ei) ∈ G or (ei, r, e) ∈ G} (3)

where G is the knowledge graph and ei is the context of e. We use the average
of context embeddings as a supplement for entity representation:

e =
1

|context(e)|
∑

ei∈context(e)

ei (4)

Thereby the final representation of an entity ê should be:

ê = e + λe (5)

λ is a parameter that balance the importance of entity and context embedding

3.3 Deep Fusing Module for Representation Extracting

After acquiring item embedding î, entity embedding ê and genre embedding
ĝ for all the movies, a CNN-based module is constructed to extract the final
representation for a movie.
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It should be noted that entity embedding and item embedding are learnt in
different space, hence a projection procedure that maps embeddings from entity
space to item space is proceeded, which can be formulated as (13) :

f(e) = tanh(Me + b) (6)

In which e is the embedding to be mapped. Then we could treat the embedding
matrices as different channels of a movie. The matrices are aligned and stacked
together and then fed into a CNN to extract features for movies.

3.4 Dynamic User Modeling

With the final movie representation v(t) obtained above. Based on the intuition
that different movie should have impact on user’s interest with varying degrees,
we apply an attention module [9] to dynamically model a user’s interest. Con-
cretely, for a user i’s clicked movie tik and a candidate movie tj , we can calculate
the attention weight through:

stik,tj = softmax
(
v

(
tik

) · v (tj)
)

=
exp

(
v

(
tik

) · v (tj)
)

∑Ni

k=1 exp
(
v

(
tik

) · v (tj)
) (7)

After acquiring the attention weight, we can dynamically model a user with
respect to candidate movie tj by:

v(i) =
Ni∑
k=1

stik,tjv
(
tik

)
(8)

Finally, user and candidate movie’s representation are concatenated and fed into
a DNN D to calculate the final click-through-rate.

4 Experiments

4.1 Dataset Introduction

We adopt a real-world dataset MovieLens-1M [2] to demonstrate the effectiveness
of our proposed method. MovieLens-1M is a widely used dataset which consists
of 6, 040 users and their ratings on more than 3, 900 movies. Since the dataset
consists of explicit feedbacks while we need implicit ones, the labels in the dataset
are transformed into 1 which indicate an existing interaction between user and
items.

Freebase is a knowledge base which contains more than 570 million entities
and 19 billion triples. We utilize Freebase to construct the knowledge graph for
our dataset. Movies which failed to link to knowledge graph were removed from
the MovieLens-1M dataset. The statistics of the final datasets are showed as
follow (Table 1).
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Table 1. Dataset statistics

Datasets

Movielens 1M #Users 6, 040

#Items 3, 689

#Ratings 998, 141

Sparsity 95.52%

Knowledge Graph #Entities 984, 583

#Link Types 542

#Triples 1, 684, 901

4.2 Experiment Setup

We choose TransD [3] as knowledge representation learning algorithm. The
dimension of entity embedding is chosen among 25, 50, 75, 100, 125 and 150,
while the dimension item embedding is set to 50, which is its optimum value.
A grid search is applied in 64, 128, 192 and 256 to find the optimal number of
filters. We utilize Adam to optimize the train lost. We choose AUC and Recall
as evaluation metrics to compare our proposed framework with baselines. For
baselines, dimension of entity embedding is set to 100, other parameters are set
as default value. We consider five methods for comparison, namely BPRMF [6],
CKE [12], SHINE [7], DKN [8] and PER [10]. BPR ignores structural knowl-
edge, DKN is fed with movie names, other methods take interaction matrix and
knowledge graph as input.

4.3 Result

In this subsection performance comparison between models is presented, and we
analysis the variants of DMCM.

Table 2. Model comparison

Model AUC Recall@1 Recall@2 Recall@5 Recall@10 Recall@20

BPRMF 0.842 0.33% 0.64% 1.53% 2.93% 5.51%

CKE 0.803 0.49% 1.51% 3.14% 4.25% 6.62%

SHINE 0.781 0.36% 1.41% 3.32% 4.11% 5.67%

DKN 0.667 0.24% 0.53% 1.11% 1.62% 3.11%

PER 0.697 3.25% 5.92% 8.85% 13.95% 19.88%

DMCM 0.856 3.66% 6.12% 8.76% 14.54% 20.13%
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Performance Comparison. In Table 2 we presented the experiment results of
different methods. We can conclude:

• BPRMF acquires a rather good result on AUC, which mainly owes to the
low sparsity of the dataset. Nevertheless, BPRMF has a comparatively low
Recall value compared with other knowledge-based methods.

• CKE performs relatively poor, probably owing to that we only utilize struc-
tural information since we have no access to textual and visual input.

• SHINE performs badly, which is probably because of the fact that knowledge
representation learning methods are more efficient than autoencoders when
leveraging information in knowledge graph.

• DKN performs worst among all methods, because news title contains abun-
dant entities and semantic information while movie names do not.

• PER performs rather well, indicating that well designed meta-path can pre-
serve structural information and enhance recommend result.

• DMCM achieves significant improvement over baselines which can be shown
in Table 2, demonstrating our proposed framework can take full advantage of
information in interaction matrix and knowledge graph.

Study of DMCM. In this subsection we analyze the structure of our framework
and influence of different module on the final result. The results are presented in
Table 3, which suggest: (1) entity, context, genre and item embeddings have pos-
itive impact on AUC; (2) TransD, which is the most complicated representation
learning model, can make the most of knowledge graph; (3) attention module
can capture different users’ taste and model user dynamically, thereby bringing
a rise in AUC.

Table 3. Study of proposed framework

Variants AUC

genre+entity(context)+item 0.852

genre+entity(without context)+item 0.850

entity(context)+item 0.847

genre+item 0.839

entity+genre 0.842

DMCM+TransE 0.839

DMCM+TransH 0.837

DMCM+TransR 0.844

DMCM+TransD 0.851

with attention module 0.852

without attention module 0.841
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5 Conclusion

In this paper, we propose DMCM, a novel framework that leverages rich het-
erogeneous information from knowledge graph and incorporates it with con-
tent learned from interaction matrix. DMCM fuses the learned representations
in a common vector space and extracts movie representations automatically.
An attention module is also adopted to capture user’s interest and model user
dynamically. Extensive experiments on real-world datasets demonstrated the
efficiency of the proposed model.
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Abstract. Cognitive development is one of the most challenging and
promising research fields in robotics, in which emotion and memory play
an important role. In this paper, an audio-semantic (AS) model combin-
ing deep convolutional neural network and recurrent attractor network
is proposed to associate music to its semantic mapping. Using the pro-
posed model, we design the system inspired by the functional structure
of the limbic system in our brain for the cognitive development of robots.
The system allows the robot to make different dance decisions based on
the corresponding semantic features obtained from music. The proposed
model borrows some mechanisms from the human brain, using the dis-
tributed attractor network to activate multiple semantic tags of music,
and the results meet the expectations. In the experiment, we show the
effectiveness of the model and apply the system on the NAO robot.

Keywords: Cognitive robot · Brain-inspired system · Emotional
model · Semantic representation

1 Introduction

With the development of robotics, a growing number of social robots have
entered people’s lives. Many robots play the role of human beings, such as car-
ing for the elderly, teaching, assisting the treatment of autistic children [3,4].
Although the intelligence level of the robot is gradually improving, in the field
of cognitive development, how to get robots to have compatible cognitive abilities
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as humans, to interact naturally with humans, or to respond quickly in chang-
ing environments, still face significant challenges and difficulties [2,13]. In recent
years, the research on the cognitive development of robots has attracted wide
attention from scholars [1,5,9,12], and these studies have demonstrated that
emotion, memory, and biological plausibility play essential roles in the cognitive
development of robots.

Music processing is a whole-brain phenomenon [15], while the Limbic sys-
tem plays a vital role for associating the auditory perception with meaning and
memory, and guide behavioral responses to music, which is consists of the hip-
pocampus, amygdala, cingulate cortex, and hypothalamus. The hippocampus
remembers songs and related experiences and contexts. The amygdala is mainly
responsible for emotional responses to music, while the prefrontal cortex and
cingulate cortex participate in behavioral decision evoked by music. The coordi-
nation of our brain regions allows us to dance to music and to feel and express
our emotions. To enable cognitive robots to perform similar functions, we design
a simple brain-inspired system based on the proposed audio-semantic model. In
the aspect of obtaining the labels of music, our work’s idea is different from
the methods like [11,14] based on the multi-label classification. Ours draws on
some mechanisms of the human brain, using the distributed attractor network
to activate multiple semantic tags.

Fig. 1. System architecture.

2 System Design

This section shows the overall architectural design of the system, as shown in
Fig. 1. In this paper, we apply the proposed system on the NAO robot, which is
a widely used programmable humanoid robot designed by Aldebaran Robotics.
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Part A is the preprocessing module of audio. For input music, the 6 s time win-
dow is used to intercept music into segments, and we apply the short-time Fourier
transform (STFT) to each music segment to obtain its mel-scale spectrogram, and
regard it as the input of the audio-semantic model. Part B is the proposed audio-
semantic model for mapping the high-level auditory pattern of music to the corre-
sponding semantic features, which will be described in detail in Sect. 4. Part C is
the behavioral decision module of the system, roughly corresponding to the func-
tional role of prefrontal cortex and cingulate cortex. It is used to make related
dance decisions after receiving the semantic features of music. We make decisions
by comparing the cosine similarity with the semantic features of different dance
types, and then randomly select a dance for display in that type.

3 Data Acquisition

GTZAN music genre dataset is utilized as the input source of music, which
contains blues, classical, country, disco, hiphop, jazz, metal, pop, reggae, and
rock in 10 genres, each of which contains 100 music clips with a length of 30 s.
We use 6 s time window, 1.5 s offset to intercept each song, and obtained a
total of 17,000 samples of 6 s in length. Each sample gets a mel-scale frequency
spectrogram through STFT. Because we use CNN network to process audio
like images, we copy the transformed data into three channels, and then divide
the training set and validation set by 7:3 to train the audio network. In order
to complete the designed experiment and extract semantic commonness from
the original features of music, it is necessary to tag music with corresponding
semantic labels consists of emotions, characteristics, and contexts (ECC). Thus
a song can be represented in semantic vector space, as shown in Fig. 2.

Fig. 2. Representation space for music semantics. (a) shows the representation space
of music genre labels. The vectors of music with different genres in this space are
orthogonal relations. (b) shows representation space of music ECC features. The vectors
of music, which express similar emotions, are closer in this space. (Color figure online)

We develop a multi-user online tagging system. For the songs that need to be
labeled, we do not show any visible features to the participates, who are required
to label the songs only by listening. In order to reduce the extra workload, we
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only randomly select 10 songs of each category, 100 songs in total, and label the
content of the first 12 s for each song, the songs are intercepted to 6 s with 2 s
offset as training data, in a total of 400. Moreover, 12 to 18 s of each song as
testing data with the same tags, in a total of 100. We provide 50 tags in three
categories: Emotion (such as fresh, joyful, sad), Characteristic (such as fast-
pace, guitar, piano), and Context (such as dinner, morning, working), named
ECC1 tags.

Participants are three males and three females, a total of 6 non-music pro-
fessionals aged 20 to 28 years old. The language of tags is the native language
of each participant, which is later uniformly translated into English. Each anno-
tator labels the same 100 song segments with a length of 12 s in random order.
Finally, for each labeled song, the tag with term frequency equal or greater than
three will be included as the ECC semantic feature of the song.

4 Model and Method

Audio-semantic model is the core of the system. The model consists of two parts,
which are responsible for mapping high-level auditory perceptual patterns to
the activation pattern representing semantic features of music. The structure is
shown in Fig. 3.

4.1 VGG16 Network for Audio Processing

In order to process music, we construct a deep convolutional network based on
the VGG16 as shown in Fig. 3 part A. The original network structure consists of
16 layers including the convolution (Conv) layer and the full connection (FC )
layer. We remove the original FC layers after Conv13 layer, replace with two
lower dimension FC layers with ReLU activation function, and add the Dropout
with the probability of 0.5. Finally, the output layer of 10 nodes is added, which
corresponds to the ten genre labels of music. The pre-trained VGG16 on Ima-
geNet dataset is used to do transfer learning for our task. We freeze the param-
eters of the first five layers of the network and then carry out fine-tuning. We
use Adam optimizer and set the learning rate to 0.001, the batch size to 128
and training epochs to 30. The network is trained with the data set described in
Sect. 2. The VGG16 is regarded as the music feature extractor. Thus we do not
need the classification result of the VGG16 network, and only keep the output
value of the penultimate layer (FC15) without activation function. In order to
get data used for driving the semantic attractor network in part B, we feed the
labeled 100 pieces of the 6-second song into the trained audio network. For 100
samples’ FC15 output, PCA is used to reduce original 512 dimensionalities to
60, to reduce computation and aggregate effective features. The dimensionality-
reduced data is used as the audio input of the semantic attractor network for
training.

1 The full ECC tags can be obtained via https://github.com/kevinleeex/DTME.

https://github.com/kevinleeex/DTME
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Fig. 3. Illustration of audio-semantic model structure.

4.2 Attractor Network for Semantics

Music can activate brain mechanisms related to semantic processing, as language
does [8]. Research on concept processing using a feature-based distributed seman-
tic model shows that statistical structural similarity of semantic and conceptual
features between objects can explain a series of behavioral and neuroimaging
data [6,10]. In this paper, we use attractor networks to obtain the semantic
features corresponding to music. Attractor network [7] is a dynamic recurrent
network which evolves into the stable pattern over time. We use the given ECC
feature tag set to construct attractor points, in a total of 50. Emotional features
correspond to the amygdala, while characteristic and context features correspond
to the hippocampus. The audio input nodes are fully forward connected to the
attractor network, and the internal nodes of the attractor network are connected
with each other. We train the attractor network to learn the corresponding binary
patterns from the input music, where ‘1’ represents the presence of this feature,
and ‘0’ represents the absence. Moreover, we use the cross-entropy of the desired
activation pattern and actual activation pattern as the loss function and use
back-propagation through time (BPTT) with 20 time-ticks iteration for train-
ing. The neuronal computation process is described in [6]. We use the first 12 s
with 6 s offset labeled data of music clips to train the attractor network, and
training will stop until 95% nodes’ activation value reaches more than 0.7. The
network uses AdaGrad optimization method with learning rate η = 0.02, which
can dynamically adjust the learning rate and is more suitable for sparse pattern
learning. The input of each epoch is a random sample sequence, and weight will
start adaptation after five time-ticks.

5 Experimental Results

5.1 Model Results

For the audio part, under the task of the music genre classification, the VGG16
variant network achieves accuracy of 95% in the training set and accuracy of
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92% in the validation set, and it performs much better than the traditional
method such as Decision Tree, Logistic Regression, Random Forest, and SVM
with manually extracting features (including spectral centroid, spectral roll-off,
zero-crossing rate, RMS, and onset strength).

For the semantic part, the average activation rate of the model reaches 95%
after 110 epochs. We use 12 to 18 s of 100 songs for testing and end up with an
average activated rate of about 71%. On the one hand, some sudden changes
in the music style may affect the testing result. On the other hand, due to
the subjectivity of music evaluation, it is impossible for human beings to evoke
precisely the same emotions and memories, even when facing the same song.
Therefore, it is reasonable to some extent for robots to make different choices
from some of us.

5.2 System Results

We integrate the trained AS model into the system and deploy the system on
the NAO robot. We program some dance clips for the robot with its developer
kit. Music and dance often need to express the same emotions. In this paper,
dance clips are classified into four types, and corresponding semantic features
are tagged with ECC feature set, see Fig. 4. Then, we select four types of songs
from the GTZAN dataset, and randomly select a song in each type and ensure
that the song did not participate in the training of semantic attractor network.
Each song captures the first 6-second segment, and then the segments are spliced
into a 24-second testing clip2, as shown in Fig. 5(a).

Fig. 4. Illustration of robot dance clips in different styles with semantic features.

Scanning the testing clip with the 6 s time window and 2 s offset to get the cor-
responding semantic features and make behavioral responses. Each test segment

2 Readers can download a copy for listening via https://github.com/kevinleeex/
DTME/blob/master/assets/testing clip.wav.

https://github.com/kevinleeex/DTME/blob/master/assets/testing_clip.wav
https://github.com/kevinleeex/DTME/blob/master/assets/testing_clip.wav
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Fig. 5. Illustration of the results on testing clips. (a) shows the mel-spectrogram of the
testing music clips. (b) denotes the associated semantic features related to the music.
(c) shows the dance decisions made by the robot. (Color figure online)

is fed to the system to obtain the corresponding output, as shown in Fig. 5(b)
and (c). Figure 5(b) shows the semantic output corresponding to the four seg-
ments with an interval of 6 s. The tags marked in black and red are the output
value of the model, the reds are the wrong output tags, the greens are the cor-
rect tags but do not appear, and the blacks are the consistent output with the
provided by the annotators. (c) shows the dance decisions made by comparing
the cosine similarity with the emotion and memory features evoked by music,
and the dance with the highest similarity score will be performed.

6 Conclusion

This work inspired by the functional structure of Limbic system of human brain
constructs a system for cognitive development of robots, which based on the
proposed model of audio mapping to semantics, to realize that robots can evoke
emotions and related memories from music. Moreover, behavioral decisions are
made through the similarity comparison between music semantics and dance
semantics in their bag-of-words vector representation, and then the robot will
dance to the music as feedback. The working principle of the model is described
in detail, and the experimental results show the effectiveness of the model. How-
ever, the audio part of the proposed model lacks some biological plausibility, and
we can consider using the spiking neural network (SNN) to enhance the biological
plausibility of the AS model, while it is suitable to capture the spatial-temporal
patterns and is advantaged in dealing with sound coding and learning [16]. Fur-
thermore, the decision module can be constructed more sophisticated according
to specific application scenarios.
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Abstract. Working-memory training has been viewed as an important inter-
vention way to improve the working memory capacity of children’s brain.
However, effective electroencephalogram (EEG) features and channel sites
correlated with working memory loads still need to be identified for future
application to brain-computer interface (BCI) system. In this experiment, 21
adolescent subjects’ EEG was recorded while they performed an n-back
working-memory task with adjustable loads (n = 1, 2, 3). Based on global
neuronal workspace (GNW) theory, a-band (4–8 Hz) weighted phase lag index
(wPLI) between signals was computed in consecutive 200-ms time windows of
each trial to construct continuously evolving functional connectivity microstates.
Statistical analysis reveals that, in post-stimulus 200–400 ms and 400–600 time
intervals, working-memory loads significant modulate functional integration of
global network, showing increasing connectivity density and decreasing char-
acteristic path length with the increase of memory loads. Classifications between
single-trail samples from high- and low-loads were conducted for local nodal
connection strength. Analytical results indicate that network vertices in right-
lateral prefrontal cortex, right inferior frontal gyrus and pre-central cortices are
highly involved in identifiable brain responses modulated by working-memory
loads, suggesting feasible EEG reference locations and novel features for future
BCI study on the development of children/adolescents’ working memory
resource.

Keywords: Working memory loads � Weighted phase lag index � EEG
functional connectivity microstates � Right-lateral frontal cortices
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1 Introduction

Working memory can be linked to IQ, ageing and mental health, and is viewed as a
central intellectual faculty of the brain [1]. In the field of educational neuroscience, how
to improve the capacity of children/adolescents’ working memory system is always a
hot topic, which has been proven to be beneficial for the intervention of attention deficit
disorder, hyperactivity disorder, dyscalculia etc. [1, 2]. In this case, identification and
extraction of neural features correlated with working memory loads is crucial to an
effective application to brain-computer interface (BCI) system.

Previous studies on working memory training mainly focused on event-related
changes of EEG power in low-frequency neuronal oscillations [3]. Global neuronal
workspace (GNW) theory has pointed out that, a global “workspace” that potentially
interconnects multiple distributed and specialized brain areas can be driven by indi-
vidual’s cognitive effort, which is usually positively correlated with workloads of
cognitive tasks [4, 5]. Recent dynamic network research reveals that different work-
loads can modulate long-distance phase synchronizations among discrete brain areas,
which can lead to changes of functional connection status due to spatial redistribution
of links in a network [5]. In order to extract effective load-dependent EEG features
from phase-synchronized networks, in this study, we collected 21 adolescents’ EEG
data by using an n-back working memory task with gradually increasing loads (n = 1,
2, 3). According to the GNW model, a weighted phase lag index (wPLI) method was
employed to construct consecutive functional networks in every 200-ms time window,
i.e., functional connectivity microstates, over the cognitive task [6], which has been
proven its effectiveness in capturing rapid reconfiguration of network topologies in our
previous study [7]. Furthermore, EEG features in individual nodes of the wPLI net-
works were extracted and classifications were performed to find out the most distin-
guishable EEG channel sites involved in the modulation of working memory loads.

2 Materials and Methods

2.1 EEG Experiment and Data Preprocess

Fig. 1. Examples of an n-back (n = 1, 2, 3) working memory task with the type of visuospatial
graph matching
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The electroencephalogram (EEG) experiment was approved by the Academic Com-
mittee of the Research Center for Learning Science, Southeast University, China. EEG
data were recorded by a 60-channel Neuroscan international 10–20 system with
sampling rate at 1000 Hz. In this experiment, 21 adolescents composed of 10 males
and 11 females aged 17.4 ± 3.3 (mean ± SD) performed an n-back (n = 1, 2, 3)
working memory task with the type of visuospatial graph matching (Fig. 1).

The raw EEG signals were preprocessed by the Scan 4.3 software. After extracting
the trials with the epoch of 1200 ms (200-ms pre-stimulus and 1000-ms post-stimulus
intervals), baseline correction, artifact rejection and low-pass filtering (1–60 Hz) were
performed subsequently for each subject. As a result, 18–45 trials were retained for
each subject under 1-back, 2-back and 3-back task conditions.

2.2 Weighted Phase Lag Index Based Functional Connectivity
Microstates

According to the GNW model, the intense mobilization/driving of workspace config-
uration of functional network is correlated with individual cognitive effort, which exerts
cognitive loads on the working memory system [4, 5]. In terms of functional con-
nectivity of brain network, the workspace formation can be quantified by a topological
transition from locally synchronized and modular subsystems to a highly integrated
global configuration pattern [5]. Therefore, in this study, continuously evolving
functional connectivity microstates were constructed over task course, in order to find
out load-modulated topological reconfigurations and specific time windows.

In sensor-level functional network construction, volume conduction of the brain is a
considerable factor that can cause spurious increase of connectivity among distributed
brain areas. Through measuring the asymmetry of the distribution of phase differences
around zero, phase lag index (PLI) quantifies the time-lagged interdependence between
two time series, which is defined as

PLI ¼ signðD£relðtÞÞh ij j ¼ 1
X

XX

x¼1
signðD£relðtxÞÞ

����

���� ð1Þ

where D£rel refers to phase difference at time-point x between two signals, sign is used
to stand for signum function, | | refers to the absolute value, and < > indicates the
operation of mean value. Instantaneous phases were produced from the Hilbert trans-
formation. Although PLI exhibits robustness against the presence of common sources
in estimating functional connectivity, it is biased and lacks ability in detecting some
changes in phase synchronization caused by noisy signals for weak coupling [6]. WPLI
is a weighted version of PLI to tackle the problems of small-magnitude synchronization
effect, by weighting each phase difference based on the magnitude of the imaginary
component of the cross-spectrum. In this study, wPLI was computed between pairwise
signals from EEG sensors to quantify phase synchrony [6].

After further filtering EEG time series into a frequency band (4–8 Hz), wPLI was
calculated within each 200-ms time window of each trial, because a-band oscillations
can be associated with cognitive and memory performance [3, 8]. For each trial
composed of 200-ms pre-stimulus and 1000-ms post-stimulus intervals, sequential
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60 � 60 association matrices were created over the task course. For each association
matrix, an adjacent matrix can be acquired after setting a threshold according the
following steps: Firstly, a fixed connection density p was set for the association matrix
from the pre-stimulus period, abiding by the Erdös-Rényi model, where p ¼ 2lnn=n (n
is the number of the EEG channels), which produced a no-task wPLI adjacency matrix.
Then the minimum wPLIs of all non-task adjacency matrices were averaged. The mean
was used as a fixed threshold that was applied to all association matrices within the
time windows in post-stimulus period, through which we got a series of task-related
adjacency matrices. For these adjacency matrices, time-sequential undirected graphs
can be constructed, which represent sequential functional connectivity microstates of
brain network in working memory information processing.

2.3 Extracting Graph Features Modulated by Working Memory Loads

To reveal the modulation effect of working memory loads on the functional connec-
tivity microstates, we measured the global structure and local node characteristic
according to graph theory [9]. In the definition of network topology from graph theory,
N represents the set of all the nodes in a network and ði; jÞ indicates the edge between
nodes i and j i; j 2 N; i 6¼ jð Þ. In the case that there is connection status between nodes i
and j, aij ¼ 1; otherwise, aij ¼ 0.

Here, connection density and characteristic path length of a functional connectivity
microstate were estimated to reflect global integration of functional network. Con-
nection density refers to the number of edges in a graph with n nodes divided by the
maximum number of possible edges ðn2 � nÞ=2½ �. Characteristic path length indicates
the average number of edges in the shortest paths between all nodes:

L ¼ 1
n

X
i2N Li ¼ 1

n

X
i2N

P
j2N;j6¼i dij
n� 1

ð2Þ

where Li refers to the average distance between node i and other nodes, and dij ¼P
auv2gi!j

auv represents the shortest path length between i and j (gi!j is the shortest

geodesic path). If node pairs i and j are disconnected, dij ¼ 1. For the two global
measurements of functional networks, one-way analysis of variance (ANOVA) was
performed between every two task conditions, using all trials as the testing samples, in
order to discover differences in network configuration caused by changed working
memory loads.

On the other hand, connection strength of individual nodes was extracted from each
functional microstate network. Nodal connection strength refers to the sum of weights
attached to ties that belong to a node in a weighted network. Here connection strength
can be given by the sum of the wPLIs of the adjacent edges connected to node i, i.e.,

si ¼
X

j2N aijwij ð3Þ

where wij represents wPLI between node i and node j.
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For each node, connection strength was extracted in the time windows with sta-
tistically significant modulation effect by the working memory loads, which constitutes
multiple-dimensional (i.e., nodal connection strength from multiple time windows)
input features for this channel used for further discriminant analysis between task
conditions. For each subject, the single-trial feature samples of a channel were

Fig. 2. WPLI-based functional microstate networks during continuous five 200-ms time
windows under 1-back, 2-back and 3-back conditions of the n-back working memory task. The
functional networks are constructed by setting a fixed threshold for association matrices of
wPLIs. The color marked in an EEG electrode represents the number of connections of the node
in a network, with its value indicated in the corresponding color bar.
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recognized by linear discriminant analysis (LDA), support vector machine (SVM) and
Naive Bayes methods, respectively, in order to reveal the distinguishable channel sites
for isolating the load-modulated network topologies. Finally, for the total subjects, the
classification results were statistically analyzed in terms of mean value and standard
deviation.

3 Results and Discussions

Under the three conditions of the n-back working memory task, the wPLI networks
within the continuous time windows are presented in Fig. 2. It can be seen that changed
working memory loads generate different levels of functional connectivity status.
Especially in post-stimulus 200–400 ms and 400–600 ms, wPLI networks show
gradually increased links following the strengthened working memory loads.

The graph-theoretical analysis provides evidence regarding load-dependent global
integration of functional networks. As shown in Fig. 3, with the increase of working
memory loads, global connection density of a-band wPLI networks tends to increase,
and characteristic path length shows a tendency of decrease in 200–400 ms and
400–600 ms time intervals. The differences are particularly remarkable between 1-back
and 3-back conditions. After a stimulus presentation, time intervals of 200–400 ms
containing P3a and 400–600 ms containing P3b have been found to be highly involved
in the onset of mentalizing process for cognitive loads exerted on the working memory
system. Although load-induced difference in global topology of wPLI networks can
also be reflected in the time window of 800–1000 ms, the links are relatively sparse in
the case of setting a same threshold for wPLI matrices (Fig. 2).

Fig. 3. Temporal evolution of global topology measurements of the wPLI-based functional
microstate networks under the 1-back, 2-back and 3-back task conditions. Left: measurements of
connection density; Right: measurements of characteristic path length.
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Further ANOVA for the single-trial samples demonstrates the modulation effect of
the working memory loads on global network topology in post-stimulus 200–400 ms
and 400–600 ms time intervals. Especially compared to 1-back task condition, there are
significant higher connection density and shorter characteristic path length of wPLI
networks formed under 3-back task condition (Fig. 4), indicating that higher cognitive
effort invested in high-load working memory task significantly induces strengthened
phase synchronizations and global integration of functional network.

For each node, connection strengths were extracted in time windows of 200–400 ms
and 400–600 ms to constitute two-dimensional input features for the discriminant
analysis between 1-back and 3-back conditions. The EEG channel sites with relatively
high accuracy through LDA, SVM and Naive Bayes methods can be seen in Fig. 5.

Fig. 5. EEG channels with relatively high classification accuracy in terms of nodal connection
strength of wPLI networks between 1-back and 3-back task conditions (two-dimensional input
features constructed by nodal connection strength in 200–400 ms and 400–600 ms intervals).
Left: EEG channel locations; Right: Brain mapping of mean classification accuracy of individual
channels, and statistical boxplots of classification accuracy for all subjects through LDA, SVM
and Naive Bayes methods.

Fig. 4. Statistical bars of connection density and characteristic path length of wPLI networks
formed in pre-stimulus −200–0 ms time window and five post-stimulus 200-ms time intervals,
for comparisons between different working memory loads (1-back, 2-back and 3-back)
(* indicates significance level p < 0.05 in the ANOVA).
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The isolated brain response area in the adaptive reconfiguration of wPLI networks
shows right hemisphere lateralization of the frontal-parietal system, especially the right
frontal lobe, including EEG channels located at right-lateral prefrontal cortex (FPZ and
FP2), right inferior frontal gyrus (F6 and F8), and right frontal-temporal cortices (FC6
and FT8). Additionally, the channels at pre-central and sensorimotor areas (FC1, C2 and
C4) also show relatively high identifiability.

4 Conclusions

By constructing a-band wPLI networks affected by different working memory loads,
our EEG study confirms different levels of global integration of functional networks.
Specifically, significant modulation effect of working memory loads can be found in
post-stimulus 200–400 ms and 400–600 ms time windows, within which individual
nodes at right-lateral frontal-temporal-precentral areas show relatively high identifia-
bility in isolating brain responses in changing wPLI network topologies.

In the brain locations involved in working memory loads, the right frontal regions,
including right-lateral prefrontal cortex and inferior frontal grus, have great potentials
in developing the cortical resource of children and early adolescents, since previous
studies have found that the brain maturation at this age stage mainly focuses on the
relationship between the frontal lobe function and higher-level cognitions [10, 11].
EEG-based BCI has been proven to be a feasible intervention way to improve child’s
performance in working memory capacity through on-line neurofeedback manipula-
tion. According to the justified EEG channel locations and time windows, further
single-trial classification for recognizing individual’s responses related to working
memory capacity is worthy to be systematically explored and improved, such as an
effective feature combination from multiple channels with optimized discriminatory
information involved in the adjustment of brain activities in response to changing
working memory loads.
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Abstract. Simultaneous Localization and Mapping (SLAM) is one of
the key technologies for autonomous driving. This paper focuses on the
autonomous parking problem. A fisheye camera with a very large field
of view is combined with the odometer inside the car to provide the
localization information in an underground garage. The odometer pro-
vides an initial estimation of pose increment, and then the odometer and
camera measurements are jointly optimized by graph optimization. The
proposed strategy is evaluated on an autonomous driving platform, and
high accuracy is achieved for the trajectory estimation with real scale.

Keywords: Autonomous driving · Visual SLAM · Sensor fusion

1 Introduction

Autonomous parking is the task to have a car park into a garage by itself without
human entering the garage. Visual SLAM is a critical technique in this process
which provides a precise localization information, especially in an underground
garage where the GPS signal is unavailable. Many excellent visual SLAM frame-
works have been proposed such as ORB-SLAM [9]. However, monocular visual
SLAM cannot get the real metric scale, and traditional pin-hole cameras have
very limited Field of View (FOV), and are prone to tracking lost, which may be
very dangerous for autonomous driving. The issue of FOV can be amended by
using large-FOV cameras such as fisheye camera, while the resolution of unde-
termined metric scale requires either using stereo vision or combining vision with
other types of sensor, such as Lidar [5], IMU [8] and Odometer [2,7,12]. How-
ever, since wheel odometer is the most common sensor for autonomous driving,
the combination of monocular vision with odometer is a good choice. [7] incor-
porates odometer into the SVO [3] to improve localization accuracy and prevent
tracking lost, and [2] does a similar work based on ORB-SLAM [9]. [12] exten-
des the functionality with map re-creation and merging. While having impressive
performance, none of those works above is for the industrial autonomous driving
situation, and all those approaches use a traditional camera.
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Fig. 1. Illustration of graph based sensor fusion strategy. Vertices are drawn with
circles and represent state variables. Sensor measurements are drawn with squares on
the edges. Each sensor measurement serves as one constraint on the state variables
connected to the edge.

Based on the well-known ORB-SLAM framework, this paper combines the
odometer measurements with fisheye camera for visual SLAM. The measure-
ments of odometer first provide an initial estimation of vehicle pose increment
between consecutive frames, and then jointly optimized in a local map with visual
measurements via bundle adjustment, which achieves accurate estimation.

In the remainder of this paper, we first describe the overall sensor fusion
scheme in Sect. 2. Then the tightly fusion is formulated in Sect. 3. In Sect. 4 the
experimental evaluation of fusion strategy is shown and the Sect. 5 concludes
this paper.

2 Sensor Fusion Scheme

The sensor fusion scheme is based on the nonlinear optimization, especially the
graph-optimization [6], formulated as a large scale bundle adjustment problem,
which is a special nonlinear least squares optimization. State variables, i.e. vehicle
poses at different time steps and landmark positions, are represented as vertices
in the graph, and the observation errors are represented as edges between cor-
responding vertices. Once the formulation is done, the problem is then solved
with graph optimization tools like g2o [6]. We take a similar strategy for sensor
fusion to VINS-Fusion [10,11].

2.1 General Sensor Fusion Strategy

The graph structure of optimization is illustrated in Fig. 1. Sensors on a vehi-
cle can be classified into three types, i.e. local interoceptive sensor (Odometer,
IMU), local exteroceptive sensor (Camera), and global sensor (GPS) [1]. Each
measurement contributes one single term to the overall least squares formula-
tion, and appears in the graph at a specific place depending on its type. All of
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Fig. 2. Graph structure of vision and odometer fusion. The constraint obtained from
odometer measurements can not only be applied to directly adjacent poses, but also
to indirectly nearby poses, forming arbitrarily complex graphs.

the sensors are associated by extrinsic parameters with respect to a reference
body frame, which are known during the offline calibration.

2.2 Odometer Model

The Ackermann model is used, and it is assumed that the odometer measures
the forward translational velocity v and rotational velocity of yaw angle ωz.
The state of odometer is represented by x = [x, y, φ]. Each time the velocity is
sampled, the state of odometer is updated as following

⎧
⎪⎨

⎪⎩

xr+1 = xr + v cos(φr)Δt

yr+1 = yr + v sin(φr)Δt

φr+1 = φr + ωzΔt,

(1)

where Δt is the sampling period and r represents time step index.

2.3 Odometer Pre-integration

Local bundle adjustment modifies state estimations of each pose several times.
Since the odometer measurements are accumulated with respect to time, it is nec-
essary to pre-integrate the odometer measurements to avoid repropagating pose
estimations. Following a similar idea of IMU preintegration [4], the accumulated
measurement values are isolated from the pose estimations of keyframes. The
idea of preintegration is illustrated in Fig. 3. Considering two states at keyframe
i and j, with the state at keyframe j accumulated based on the state at keyframe
i, the difference between the two states is
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i j ki+1 Δt

Fig. 3. Odometer measurement pre-integration.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δφij = φj − φi =
j−1∑

k=i

(ωk − nωk
)Δt

αij =
j−1∑

k=i

(vk − nvk
) cos(Δφik)Δt

βij =
j−1∑

k=i

(vk − nvk
) sin(Δφik)Δt

Δxij = xj − xi = αij cos(φi) − βij sin(φi)
Δyij = yj − yi = αij sin(φi) + βij cos(φi),

(2)

where nvk
and nωk

are measurement noises. Notice that Δφij , αij , βij are inde-
pendent of the state at i, thus can be treated as pre-integration terms. This form
coincides with simple planar Euclidean transformation, and the pre-integrated
measurements can be easily composed or decomposed. When to be used, the
pre-integrated measurements are converted to the 3D transformation as

ΔT b
ij =

⎡

⎢
⎢
⎣

cos(Δφij) − sin(Δφij) 0 αij

sin(Δφij) cos(Δφij) 0 βij

0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ , (3)

which can be further transformed to camera frame via extrinsics

ΔT c
ij = TcbΔT b

ijT
−1
cb . (4)

3 Tightly Fusion Formulation

The least squares formulation which jointly optimizes the measurements of the
two sensors consists of two terms, reprojection errors of landmarks and odometer
measurement constraints. The formulation is adapted from OKVIS [8].

J(x) =
∑

k∈K

∑

l∈J (k)

ek,l
r

T
Wk,l

r ek,l
r +

∑

(i,j)∈K
ei,j

b

T
Wi,j

b ei,j
b , (5)



454 D. Bai and J. Su

where i, j, k denotes the camera frame index and l denotes the landmark index.
The set of keyframes in the optimization window is denoted K, and the indices
of landmarks visible in the kth frame is denoted J (k). Moreover, Wk,l

r and Wi,j
b

represent the information matrices of reprojection error and odometer measure-
ment error. The state x includes all the keyframe camera poses in the optimiza-
tion window and positions of associated landmarks. Landmarks are represented
by 3D vector and camera poses are parameterized with both transformation
matrix and Lie algebra for SE(3), i.e.

xCk
= T k

cw = exp(ξ∧
k ). (6)

3.1 Reprojection Error Formulation

The formulation of reprojection error is straightforward

ek,l
r = zk,l − π(T k

cw
wPl), (7)

where zk,l is the measurement of lth landmark in kth keyframe, π(·) is the camera
projection function, wPl is lth landmark in the world frame.

3.2 Odometer Measurement Constraint Formulation

The odometer measurement constraint is defined as the error of predicted and
pre-integrated pose difference between two keyframes,

ei,j
b = log(ΔT c

ij
−1T i

cwT j
cw

−1
)∨

= log(exp(−ξij) exp(ξi) exp(−ξj))∨.
(8)

In practice, the pose-wise constraint may not only be applied to directly
adjacent keyframes, but also be applied between arbitrary keyframes, as shown
in Fig. 2. However, as the measurement error of odometer accumulates with time,
this constraint should not be applied to far keyframe pairs.

4 Experiment Results

We evaluate the proposed fusion scheme on the autonomous driving platform
shown in Fig. 4. A car with four fisheye cameras is driven in an underground
garage, but only the front camera is used for the evaluation. The car starts
from the entrance of the garage and travels alongside the main road, and after
a full cycle it returns to the starting place with a loop closure. The SLAM
algorithm is run on a laptop with Ubuntu 18.04 operation system and Intel Core
i7-7700HQ processor. Since the fisheye camera has large distortion and there
are more outliers, we set a large value of the number of ORB features to be
extracted and a large number of RANSAC iterations. An ultra-high precision
IMU is used to get a highly accurate estimation of trajectory for comparation
as groundtruth.
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Fig. 4. Experiment platform.

(a) Original ORB-SLAM. (b) Tightly Fusion.

(c) Comparation. (d) Direct connected constraints only.

Fig. 5. Experiment results.

4.1 Test of Overall Fusion Strategy

The tightly fusion scheme is run several times and the resulting trajectories
are shown in Fig. 5(b). For comparation purpose, the original ORB-SLAM
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framework with the fisheye camera model is also run several times and the
resulting trajectories are shown in Fig. 5(a), in which the initial estimation of
pose and landmarks are scaled to fit the real metric scale. The evaluation of
absolute trajectory error (ATE) and relative pose error (RPE) are shown in
Table 1a and b respectively. It can be seen that the resulting trajectories of
scaled ORB-SLAM varies greatly, while all the trajectories after fusion are very
close to the groundtruth and has a constant metric scale, and low ATE and
RPE are achieved. Figure 5(c) shows a comparation of trajectories obtained by
multiple approaches, including the tightly fusion method, scaled ORB-SLAM
and from accumulating odometer alone. The result indicates that cooperating
different types of sensors achieves better accuracy than any of the individual
sensor alone.

4.2 Effect of Multiple Order Pose-Wise Constraint

To verify the effectiveness of pose wise constraints between indirectly adjacent
poses, i.e. the connections skipping one and two time steps in Fig. 2, we run the
SLAM algorithm with only directly connected pose wise constraints enabled,
and the result is shown in Fig. 5(d). It can be seen that without the additional
connections (constraints), small scale drifts appears, indicating that the skip
frame connections help constrain the metric scale more tightly.

Table 1. Error quantities before and after tightly fusion.

(a) Absolute Trajectory Errors.

Exp. No. ORB-SLAM Tightly Fusion
1 4.845056 1.428207
2 10.705065 1.077644
3 9.797027 0.701801
4 15.683042 1.151241
5 3.903225 1.759357

Average 8.986683 1.22365

(b) Relative Pose Errors.

Exp. No. ORB-SLAM Tightly Fusion
1 0.089368 0.271601
2 0.161206 0.062519
3 0.151685 0.062894
4 0.237611 0.064279
5 0.086132 0.063030

Average 0.1452004 0.1048646

5 Conclusion

This paper combines odometer measurements with fisheye camera in a monocu-
lar visual SLAM for the application of autonomous driving. By providing visual
SLAM an initial estimation of pose increment acquired from odometer between
consecutive frames and jointly optimizing the measurements from both sensors,
the metric scale of translation is successfully recovered and a better accuracy
of estimation is achieved. Future work will be to utilize all of the four cam-
eras installed on the car, which is expected to be more robust to featureless
environment and more resistant to tracking lost.
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Abstract. The time it takes for a classifier to make an accurate predic-
tion can be crucial in many behaviour recognition problems. For example,
an autonomous vehicle should detect hazardous pedestrian behaviour
early enough for it to take appropriate measures. In this context, we
compare the switching linear dynamical system (SLDS) and a deep long
short-term memory (LSTM) neural network, which are applied to infer
pedestrian behaviour from motion tracks. We show that, though the neu-
ral network model achieves an accuracy of 80%, it requires long sequences
to achieve this (100 samples or more). The SLDS, has a lower accuracy
of 74%, but it achieves this result with short sequences (10 samples).
To our knowledge, such a comparison on sequence length has not been
considered in the literature before. The results provide a key intuition of
the suitability of the models in time-critical problems.

1 Introduction

Research in pedestrian behaviour analysis and detection has made several sig-
nificant advances in the past decade. A large portion of the literature has been
devoted to tracking and path prediction [18]. Many studies use the Switching
Linear Dynamic System (SLDS) as a framework [12–14,21]. Recently, the recur-
rent neural network (RNN) has shown to be a promising approach [2,10,19,20].
Owing to the significant advancement of the state-of-the-art in computer vision-
based pedestrian detection systems (see [15] for example), the trajectories of
the pedestrians are assumed to be known in this study. Given the pedestrian
trajectories, the behavioural class is predicted.

Several studies exist where the problem of pedestrian behaviour predic-
tion is considered. Probabilistic models such as the latent dynamic conditional
random field [22] and balanced Gaussian process dynamical models [16] have
been applied. Various forms of the RNN have been also been considered [9,23].
Although both statistical and machine learning models have been applied to the
c© Springer Nature Switzerland AG 2019
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problem, to our knowledge no specific analyses between these two model types
in terms of time-to-detection have been considered in the literature.

Our contribution is a comparison between a SLDS and a multi-layered bi-
directional LSTM neural network in the context of time-to-detection. This is per-
formed by applying the models to classify various pedestrian behaviours from the
raw motion tracks under varying sequence lengths. Varying the sequence length
provides a means to measure detection time as the number of sequential samples
the model requires to make an accurate prediction. Through the comparison, we
gain novel insight into a key difference between the models: though the neural
network is more accurate than the SLDS overall, it requires 10 times as many
sequential samples to achieve this accuracy. The SLDS is able to provide its most
accurate classification within the first few samples of the sequence. This result
is important in situations where early detection is imperative.

2 Switching Linear Dynamical System

The SLDS models a system that switches between various dynamical models.
It comprises a switching state variable st, a hidden or latent variable ht, and a
visible or observable variable vt at time t. The latent variables h1:T and observ-
able variables v1:T form a Linear Dynamic System (LDS) (where the subscript
1:T describes the sequence over all discrete time instances from 1 to T ). For
each switching state st, a LDS is defined. The model transitions between the
LDSs according to the switching state. The continuous dynamics of the LDS are
represented by a linear-Gaussian state space model. The SLDS is thus described
by following equations [1]

ht = At(st)ht−1 + ηh
t (st), (1)

vt = Bt(st)ht + ηv
t (st). (2)

Equation 1 describes the transition model and (2) describes the emission model.
The matrix At(st) is the state matrix and Bt(st) is the measurement matrix. The
noise components are modelled as white noise such that ηh

t (st) ∼ N (0, ΣH(st))
and ηv

t (st) ∼ N (0, ΣV (st)). All the LDS model parameters are conditionally
dependent on st at time t. Through this conditioning, the different dynamic
models are defined for each switching state.

The joint distribution describing the SLDS is given by:

p(s1:T , h1:T , v1:T ) = p(s1)p(h1)
T∏

t=2

p(st|st−1)p(ht|ht−1, st)
T∏

t=1

p(vt|ht). (3)

The switching state transition probability p(st|st−1) describes how the model
switches between various states. The state transition distribution p(ht|ht−1, st)
and emission distribution p(vt|ht) are assumed to be Gaussian. These describe
the dynamics of the system through the linear state space equations.

Inference in the SLDS involves inferring the latent variables st and ht given
the observations v1:t. This is typically performed using filtering and smoothing
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methods. Filtering computes p(st, ht|v1:t) and smoothing computes p(st, ht|v1:T ).
Exact inference in the SLDS is however intractable [1]. An approximate inference
algorithm such as the Generalised Pseudo Bayesian (GPB) algorithm [17] is
required. Finally, the model parameters can be computed using the Expectation
Maximisation (EM) algorithm [17].

3 Multi-layered Bidirectional LSTM

A three-layered bi-directional RNN with LSTM [8] cells is constructed. Each
LSTM layer comprises two sequences of LSTM cells propagating in opposite
directions. Together, these cell sequences form a bi-directional LSTM (BiLSTM).
The bi-directional structure provides a means to make a prediction at time t
according to the full sequence from 1 to T . Three BiLSTMs are stacked to form
three distinct layers. Multiple layers provide a deep structure which promotes
higher level feature extraction. Data samples are provided to the inputs of the
first BiLSTM layer. For each sequence step, the outputs of the third BiLSTM
layer are passed through a softmax layer which predicts the class associated
with each data sample. In the remainder of this text, this model is referred to as
the RNN.

4 Experiments

The well-known Daimler Pedestrian Path Prediction Benchmark Dataset [21]
is used in this study. The dataset comprises a collection of 68 pedestrian
sequences with 4 different pedestrian behaviour types: BendingIn, Crossing,
Starting, and Stopping. For each pedestrian sequence, bounding boxes, disparity,
X, and Z coordinates are provided. The Z-coordinate represents depth and the
X-coordinate represents the horizontal axis relative to the dataset video images.

The model parameters are estimated using the predefined training dataset
and the presented results are computed with the predefined test set. To measure
the performance of the models, accuracy, precision and recall are used.

The models are tested on sequences of varying length. This is achieved by
truncating the sequences in increments of 10 samples. That is, the models are
tested on the first 10, 20, 30, . . . , N samples of a sequence in the test set, where
N is the length of the particular sequence. Limiting the number of timesteps
provides an indication of how well the method is able to predict a behaviour
class in a short period of time. Furthermore, it provides some form of consistency
over the varying sequence lengths in the dataset.

The SLDS motion model is configured as a constant acceleration model.
The tracked X and Z coordinates are provided as observations to the SLDS.
The model parameters are learned using the EM algorithm. The switching state
is defined according to the 4 behaviour classes. The switching state transition
distribution is configured with a 0.97 probability of remaining in the current
switching state and a 0.01 probability of transitioning to one of the other three
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switching states. The prior switching state probability distribution is set to the
uniform distribution.

The RNN is configured with 32 hidden units in each LSTM cell. The ADAM
algorithm [11] is used to minimise the cross entropy of the softmax outputs.
Hyperparameters are optimised through a grid search. The model is trained over
110 epochs with a learning rate of 0.0001. The remaining ADAM parameters are
set as recommended in [11]. The model inputs include the X and Z coordinates,
the disparity, and a timestamp index.

5 Results and Discussion

The accuracy over the set of truncated sequences is presented in Fig. 1. The
RNN increases in accuracy with increasing sequence length, whereas the SLDS
decreases in accuracy with increasing sequence length. The SLDS has the highest
accuracy with a sequence of 10 samples. This implies that within the first 10
samples, the SLDS is able to classify the sequence. The RNN’s accuracy curve
saturates at 100 samples. This indicates that the RNN requires a sequence of at
least 100 samples to achieve its highest accuracy.

The SLDS performs better when provided with the shorter sequences as it
assumes a first order Markov model [1]. A first order Markov model assumes
that the current state is conditionally dependent only on the previous state.
The result is that the SLDS is not designed to model long-term dependencies.
Furthermore, the SLDS performance decreases with sequence length as it is
designed to switch between dynamics. It is more likely to switch behaviour class
in a longer sequence. The LSTM cell is specifically designed to model longer-
term dependencies in the data [8]. The result is that the RNN model performs
best with longer sequences. Another relevant difference between the models is
that the SLDS is a structured model where the dynamics have been predefined.
The RNN is a black-box model, which often requires more data for training.

The precision and recall over the set of truncated sequences are presented
in Fig. 2. Confusion matrices for the 10-sample-length and complete sequences
are presented in Table 1. As for accuracy, the RNN precision and recall values
saturate at 100 samples and the SLDS values are highest at 10 samples.

The RNN generally has a higher precision and recall than the SLDS. The
RNN however struggles to correctly predict the Starting behaviour class. The
majority of Starting samples are incorrectly associated with the BendingIn class
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Fig. 1. Accuracy (%) over the set of truncated sequences.
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Fig. 2. Precision (%) and recall (%) over the set of truncated sequences.

Table 1. Confusion matrices for the SLDS and RNN for the 10-sample-length and
complete sequence predictions. Rows and columns are ordered: BendingIn, Crossing,
Starting, and Stopping. The matrices are normalised over the rows to indicate a form
of recall.

as indicated in the complete sequence confusion matrix in Table 1. This could
be due to the short length of the Starting sequences. The poor results for the
Starting class lowers the overall accuracy of the RNN.

The lowest recall for the SLDS model is the BendingIn class, with a value
of 63%. Considering the confusion matrix, many samples were misclassified as
Starting behaviour. The model however performs well on the Crossing and Start-
ing classes. As also indicated in Fig. 2, the recall for the Crossing and Starting
classes remain fairly constant. For longer sequences, the precision and recall for
the Stopping class decreases significantly.

For the RNN with 10-sample sequences, 46% of the BendingIn samples were
incorrectly associated with the Crossing class as indicated in Table 1. When pro-
vided with the complete sequence, this reduces to 0%. Similarly, most of the
Starting samples are incorrectly associated with the Crossing class with short
sequences. When provided with the complete sequence, the incorrect classifica-
tions shift to the BendingIn class.

A set of plots describing the class predictions over the sequence samples are
presented in Fig. 3. Dark grey indicates a high probability of that the sample
belongs to a particular class. Horizontal axes plot the sequence sample numbers.
Additionally, a set of plots describing the pedestrian tracks are presented in
Fig. 4. Note that the time aspect of the track is not represented in these plots.

Figures 3a and 4a provide plots of the prediction and tracks for a pedestrian
performing the BendingIn behaviour. Both the SLDS and the RNN associate the
behaviour with the BendingIn class for the first 160 time steps. The predictions
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Fig. 3. Behaviour prediction for various test sequences and classes.
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Fig. 4. Pedestrian tracks in the X − Z plane for various test sequences and classes.

subsequently transition to the Starting class. This may be explained by the fact
that the pedestrian seems to back-track as illustrated in Fig. 4a.

A Starting behaviour class prediction is illustrated in Fig. 3b. The SLDS
predicts the correct class for the entire sequence. The RNN incorrectly predicts
the BendingIn class, but with some probability associated with the Starting
class. This result corresponds to the confusion matrix in Table 1.

Figure 3c illustrates results for the Crossing behaviour class. The pedestrian
track corresponding to this prediction is approximately linear over the space as
illustrated in Fig. 4b. With such behaviour, both models generally perform well.

An example of the Stopping behaviour class is presented in Fig. 3d. The SLDS
correctly begins by classifying the stopping behaviour class and then transitions
to the crossing class. This result corresponds to the complete sequence confusion
matrix presented in Table 1. The RNN correctly classifies the stopping class for
the entire sequence, which corresponds to the high recall for this class.
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6 Summary and Conclusion

In this study a SLDS and a three-layered bidirectional LSTM are applied to
predict pedestrian behaviour from motion tracks from the Daimler Pedestrian
Path Prediction Benchmark Dataset. The key result is that, though the RNN
is more accurate overall, it requires 100 samples to achieve this accuracy. The
SLDS achieves its most accurate predictions with 10 samples. This suggests the
SLDS may be the preferred model when quick detections are required.

There is potential for improvement of the results for both models. One app-
roach would be to include contextual information. This can be achieved in the
SLDS using methods such as those described in [3–7]. Contextual information
could include road signs, proximity to crossing areas, and traffic congestion lev-
els. Additional information relating to the urban environment could also be
influential. For example, a street may be residential or commercial.
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Abstract. Single human parsing aims at partitioning an image into
semantically consistent regions belonging to the body parts or cloth-
ing items, which has gained remarkable improvement owing to a wide
range of proposed methodologies. From the perspective of the loss design,
besides the parsing loss of the final output, most existing studies target on
exploiting multiple other losses to enhance parsing results, which is hard
to make the model reach balanced condition by adjusting their ratios and
may weaken the potential of some losses. In this work, we propose an edge
enhancement module to emphasize the potential of edge loss and bound-
ary information. At the same time, local and global information will be
explored for complex multi-class human body parsing problem by densely
connected atrous spatial pyramid pooling. This scheme results in a simple
yet powerful Edge-Enhancement Network (EEN). Extensive experiments
demonstrate that EEN achieves 56.55% mIoU on LIP dataset and 62.60%
mIoU on CIHP dataset, which outperform the state-of-the-arts by 3.45%
and 4.02%, respectively. The code of EEN is available at https://github.
com/huangxi6/EEN.

Keywords: Human body parsing · Multi-class · Edge-enhancement
network

1 Introduction

Human parsing is a sub-task of semantic segmentation, aiming at partitioning
a human body into multiple semantic parts on pixel level. There are multiple
research problems derived from this task owing to concentration on human-
centric study, such as human pose estimation [24] and fashion synthesis [29].

As for human parsing task, a number of researchers are exploring how to
design an accurate and reliable human parsing architecture upon various meth-
ods. From the perspective of the loss design, besides the parsing loss of the
final output, most of existing studies target on exploiting multiple other losses
(which denotes that the objective loss function formula contains two or more loss
terms on the basis of the initial parsing loss) to optimize parsing results, such as
adversarial loss [22], joint structure loss [12,16], edge loss [11,20], and the other
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(a) full body (b) half body

(c) only the head (d) heavy occlusion

Fig. 1. Several parsing images and edges images from LIP dataset [12] in four scenarios.

Table 1. The percentages of edge pixels in parsing pixels and all pixels on training
set.

Dataset 1000 2000 5000 10000 20000 30000 All

In parsing pixels LIP [12] 10.27 10.09 10.21 10.01 9.96 9.93 9.93

CIHP [11] 12.83 12.89 12.83 12.77 12.84 – 12.75

In all pixels LIP [12] 4.89 4.79 4.83 4.74 4.73 4.72 4.72

CIHP [11] 5.38 5.35 5.36 5.35 5.17 – 5.07

parsing loss of previous layer output [11,20]. Fortunately, these studies manifest
that other losses can encourage their models to generate more reliable results.
However, previous approaches only simply add all losses up or multiply out,
which is hard to express the influence of each loss to some extent (e.g., CE2P
[20] adds up three losses with a ratio of 1:1:1). Multiple losses from different
views are hard to make the model reach balanced condition by adjusting their
ratios, and may impair the parsing performance. In addition, such strategy may
weaken the potential of some losses applied to the loss function formula.

Different from previous works, one novelty of this work lies in we emphasize
edge loss, which is an extremely essential constraint for multi-class human body
parsing. Noticing the 9 joints defined in [12], we observe that edge information
of each class is more critical than joints information on pixel level. In Fig. 1, we
show several parsing images and the edge images in four kinds of scenes, (i.e.,
from full-body, half-body, only the head, to heavy occlusion). In the absence of
entire body information (Fig. 1(d)), there may be only one joint (head), but for
edge image there are still multiple keypoints. In Table 1, we compute the ratios
of edge pixels in human body parsing pixels and all pixels on the training set of
LIP dataset [12] and CIHP dataset [11], respectively. There are different ratios
of edge pixels in each image, while they seem to fluctuate within a small range
on each dataset. However, the 9 joints only occupy a small percentage of pixels
in an image. Based on the observations above, we design an edge enhancement
module to refine the edge information and optimize our network with edge loss.
Especially, Ruan et al. [20] identified the importance of edge details and achieved
outstanding results according to their experiments about CE2P. Different from
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the edge perceiving module of CE2P, our module is able to extract more local and
global information by incorporating multiple scale features, and we formulate a
simpler loss function that is easier to adjust parameter.

For the problem of semantic scene parsing, many researchers use multiple
pooling layers to increase the receptive field size of output neurons and extract
high-level features with fully convolutional network (FCN). However, FCN faces
a serious challenge that how to take advantage of the smaller feature maps by
multiple pooling layers but retain more useful context information. To solve this
problem, various solutions are proposed to capture wealthy context information,
such as Atrous Spatial Pyramid Pooling (ASPP) [3], pyramid pooling module
(PSP) [27], and Densely connected Atrous Spatial Pyramid Pooling (DenseA-
SPP) [26]. ASPP concatenates feature maps generated by atrous convolution
with four different dilation rates. Pyramid pooling module incorporates suitable
global features by a pyramid parsing module for more reliable scene parsing
results. Yang et al. [26] considered that ASPP suffered from the limitation of
receptive field in the high-resolution scene images.

Compared with scene parsing, human body parsing seems to be effortless
because the human body is more structural than the scene. Actually otherwise,
there are rich categories and complex conjunctions between categories in human
parsing datasets. This motivates us to design edge enhancement module and
human parsing module which both utilize the multiple scale features generated
by densely connected atrous spatial pyramid pooling to solve multi-class human
body parsing. To this end, we present a simple yet powerful Edge-Enhancement
Network (EEN), which consists of three key components, i.e., backbone network,
human parsing module and edge enhancement module. We evaluate our model on
benchmark datasets and it outperforms state-of-the-art methods. To summarize,
this paper makes three following contributions:

– We further tap the potential of edge information for complex multi-class
human body parsing, where its particularity is discovered by us.

– We formulate a powerful architecture by embedding edge enhancement mod-
ule and human parsing module together.

– The proposed EEN model surpasses previous approaches on two large bench-
marks, LIP and CIHP.

2 Related Work

2.1 Human Parsing

Human body parsing is a nontrivial task that has been approached in varied
schemes. Early researches [17,19,25] faced a particular challenge that there were
no large datasets, until Gong et al. [11,12] filled this gap. Recently, many solu-
tions have been developed from different views to explore this task based on
abundant human parsing datasets. For instance, Luo et al. [22] proposed Macro-
Micro Adversarial Network (MMAN) architecture, using two discriminators to
enhance local and global body parsing and avoid the poor convergence problems
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of adversarial networks when dealing with high resolution images. To incorpo-
rate the context and detailed information into human parsing, Ruan et al. [20]
designed a CE2P framework which leveraged three key properties, including fea-
ture resolution, global context information and edge details. With the motivation
of transfer learning, the presented Graphonomy [10] was a novel model that can
spread graph representation among the labels within one dataset and transfer
semantic information across multiple datasets.

2.2 Edge Detection

Edge detection, which is a fundamental and critical task, has far-reaching appli-
cations in different domains. During the previous years, there were many early
works [2,8,23] to encourage the development of edge detection, but these meth-
ods were less accurate and less suitable for diverse modern applications. Recently,
most of researchers primarily focused on deep learning, greatly improving edge
detection performance. For example, Hou et al. [13] explored a universal architec-
ture for three tasks, i.e., salient object segmentation, edge detection and skeleton
extraction, which indicates some similar tasks can use a model to perform well.
SE2Net [28] incorporated the edge detection and object detection tasks into a
siamese network by parallelly estimating the salient maps of edges and regions.
Besides, many research efforts [14,21] were devoted into the edge detection.
Remarkably, most of these works used ResNet-101 as the backbone network.

3 Our Approach

In this section, we first introduce the architecture of Edge-Enhancement Net-
work (EEN), and then describe it in detail. Figure 2 depicts the overall frame-
work of EEN. Being constructed based on the FCN architecture, EEN contains
three main components to learn for single human parsing in an end-to-end man-
ner, including backbone network, human parsing module and edge enhancement
module. Firstly, backbone network produces common features for human parsing
module and edge enhancement module. Secondly, since the edge pixels make up
about 10% of the parsing pixels which motivates us to explore the correlation
of human parsing task and edge detection task, we design an edge enhancement
module to generate edge score maps and transmit edge feature maps to human
parsing module. Thirdly, the human parsing module is used for incorporating
useful edge information from edge enhancement module to improve the final out-
puts. In both the training and testing phases, the input of EEN is RGB human
images. The final outputs are edge score maps and human body parsing maps.
During training, we use the edge labels for edge enhancement module and the
parsing labels for human parsing module.

Backbone Network: ResNet-101 is used as the feature extraction backbone
of our network because of its high computational effectiveness. As mentioned
in Sect. 2, many researches have demonstrated the robustness of ResNet-101 for
human parsing task and edge detection task. To evaluate the effectiveness of
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Fig. 2. Illustration of Edge-Enhancement Network (EEN).

human parsing module and edge enhancement module and obtain better rep-
resentation, we employ ResNet-101 as our backbone to further investigate the
activation of the final four feature maps.

Human Parsing Module: There are some techniques for scene parsing to
improve the performance, such as inputting the multi-scale images and using
dilated convolution layers. Nevertheless, to avoid consuming enormous memory
because of multi-scale inputs, we apply DenseASPP [26] to assemble global rich
context information to deal with the complex multi-class human body images.
DenseASPP can be described as a variant of ASPP, which connects a set of
atrous convolutional layers in a dense way. The employed DenseASPP consists
of five 1× 1 convolutions and five 3× 3 astrous convolutions with dilation rates
of 3, 6, 12, 18 and 24. The outputs of each convolutional layer are concatenated
with input feature maps. Then, the outputs of each convolutional layer are fed
into the next dilated layer. Compared with the original DenseASPP module, the
difference in our work is that each feature map undergoes In-Place Activated
BatchNorm (InPlace-ABN) [1] after convolution in each block with different
rates, whose goal is to adapt to the small batch size. Moreover, motivated by
the variant “U-Net” architecture [15], we add skip connections between the early
layer and the latter layer to retain applicable features. In the final classification
layers for human parsing, we just apply two 1 × 1 convolutional layers for K
channels parsing outputs to obtain parsing maps, where K is the numbers of
categories.

Edge Enhancement Module: This module targets on benefitting the human
parsing module with edge loss and strengthened features. To generate reliable
edge detection maps, edge enhancement module also embeds DenseASPP module
in the same way as human parsing module. We extract spatial features from the
early blocks to retain more fine-grained spatial details by 1×1 convolutions. On
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the one hand, we feed the upsampled feature maps from DenseASPP module
and the early blocks into 3× 3 convolutions. On the other hand, these maps are
concatenated with the output feature maps of decoder operation as the input of
next layers in human parsing module. Finally, these concatenated features after
3 × 3 convolutions are further reduced by 1 × 1 convolution.

In summary, the outputs of EEN consist of edge prediction maps and human
parsing maps. Hence, the whole training objective of EEN can be simply formu-
lated as:

L = Lparsing + λLedge, (1)

where Lparsing denotes the weighted cross entropy loss function between the
human parsing map and the human parsing label map, and Ledge denotes the
weighted cross entropy loss function between the edge map and the edge label
map. In addition, λ is used to tradeoff the importance between these two losses.

Due to the limitation of memory on GPUs, our network is trained with a
small batch size. To reduce its impact, InPlace-ABN [1] is applied following each
convolution layer except for the final classification layers.

4 Experiments

4.1 Datasets and Evaluation Metric

Three benchmark datasets are used in our experiments.

– LIP dataset [12] is the largest benchmark for human parsing, which contains
images in special scenarios, such as heavy occlusions, multiple person and
scene complexity. LIP contains 50462 images in total, including 30462 images
for training. 19 human part labels and a background class are defined in LIP.

– CIHP dataset [11] is collected from the real-world scenarios for single human
parsing and instance-level human parsing with multiple persons. CIHP con-
tains 38280 images, including 28280 images for training. It also contains 20
classes like LIP.

– Pascal-Person-Part dataset [7] is a subset of Pascal-VOC 2010. In this
dataset, 1716 images are annotated for training and 1817 images are anno-
tated for testing. There are 6 human part labels and a background class.

The mean Intersection over Union (mIoU) criterion is commonly applied to
measure the accuracy of human parsing models. mIoU is computed by averag-
ing the IoU values across all classes corresponding to the classification of each
benchmark. We adopt IoU for each class and mIoU for each dataset to appraise
the competence of human parsing model.

4.2 Implementation Details

Our method is implemented by extending the PyTorch framework. We use pre-
trained resenet-101 on Imagenet as the backbone network. All models are trained
on two NVIDIA TITAN RTX 2080 Ti GPUs.
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Table 2. Performance comparison on the validation set of LIP.

Method Overall accuracy Mean accuracy mean IoU

Attention [5] 83.43 54.39 42.92

SS-JPPNet [12] 84.36 54.94 44.73

MMAN [22] – – 46.81

JPPNet [16] 86.39 62.32 51.37

CE2P [20] 87.37 63.20 53.10

EEN 88.16 67.86 56.55

Due to some diversities in these datasets, we aptly use different input size for
each dataset. For LIP, the input size of image is 473 × 473 during training and
testing. For CIHP and Pascal-Person-Part, the input size of image is 512 × 512.
For data augmentation, we apply the random scaling (from 0.5 to 1.5), cropping
and left-right flipping for all datasets. In our method, the edge labels are generated
automatically from the annotated parsing images by computing the correlation of
adjacent pixels.

We apply a “poly” learning rate policy following [4]. The initial learning rate
is 0.007 during all training processes. During the experiments, we adjust the
edge loss weight λ to adapt to different datasets. We set λ = 2 for LIP dataset,
λ = 3 for CIHP dataset, and λ = 0.1 for Pascal-Person-Part dataset. The batch
size in all models is 8 and the momentum is 0.9. For fair comparisons, the models
are trained with 150 epochs on LIP dataset, 80 epochs on CIHP dataset, and
300 epochs on Pascal-Person-Part dataset. Source code is available at https://
github.com/huangxi6/EEN.

4.3 Comparison with Other Methods

In this section, we evaluate the performance of our method EEN, and compare it
with the state-of-the-art methods on three datasets. On LIP dataset, our model
yields an mIoU of 56.55%, and the details are reported in Tables 2 and 3. EEN
outperforms these five state-of-the-art methods. Especially, EEN achieves 3.45%
improvement in terms of mIoU with the best competitor CE2P and obviously
outperform SS-JPPNet [12] using joints information. Thanks to the extracted
local and global information by densely connected atrous spatial pyramid pool-
ing, our model with edge enhancement module can be more effective to analyze
multi-class human body, particularly in the case that some part classes just
have lower ratio in the entire human body, such as right shoes (see r-sh class in
Table 3).

To further evaluate the performance of our model in multi-class human pars-
ing task, we conduct experiments on CIHP dataset. The results is shown in
Table 4. As Table 4 shows, the previous work [10] achieved a most capable per-
formance with 58.58% mIoU on CIHP dataset. While our EEN surpasses their

https://github.com/huangxi6/EEN
https://github.com/huangxi6/EEN
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Table 4. Performance comparison on the validation set of CIHP.

Method Mean acc. mIoU

PGN [11] 64.22 55.80

DeepLab v3+ [6] 65.06 57.13

Graphonomy [10] 66.65 58.58

EEN (H) 71.58 60.81

EEN (H+E) 73.19 62.60

Table 5. Performance comparison in terms of per-class IoU with six state-of-the-art
methods on the PASCAL-Person-Part test set.

Method head torso u-arms l-arms u-legs l-legs bkg mIoU

SS-JPPNet [12] 83.26 62.40 47.80 45.58 42.32 39.48 94.68 59.36

MMAN [22] 82.58 62.83 48.49 47.37 42.80 40.40 94.92 59.91

Fang et al. [9] 87.15 72.28 57.07 56.21 52.43 50.36 97.72 67.60

PGN [11] 90.89 75.12 55.83 64.61 55.42 41.57 95.33 68.40

Refinenet [18] – – – – – – – 68.60

Graphonomy [10] – – – – – – – 71.14

EEN 86.96 70.95 61.08 60.94 53.18 50.63 95.80 68.51

result by improving the result up to 62.60%, and the improvement over Graphon-
omy [10] is +4.02%. In view of this experimental result, we suggest that edge
information is more critical in human images containing multiple instances.

To observe whether our model is suitable for human body parsing with
smaller number of classes, we conduct experiments on Pascal-Person-Part, which
contains only 7 classes. The comparison results are shown in Table 5. As Table 5
shows, 68.51% mIoU of EEN is not the best performer. However, it still per-
forms the competency with current state-of-the-art approaches. In particular,
our model shows the superiority in u-arms class and background class.

4.4 Ablation Study

This section presents ablation studies of our approach. In particular, we evaluate
the effect of edge enhancement module.

In Tables 3 and 4, we report the results when removing edge enhancement
module on LIP dataset and CIHP dataset, respectively. On LIP dataset, when
removing the edge enhancement module from the full architecture, mIoU will
drop by 1.87% compared with the full EEN. According to CE2P-o [20] without
edge perceiving module in Table 3, we can observe that our edge enhancement
module is better than their module used for extracting edge information. Mean-
while, EEN (H) shows the effectiveness of human parsing module according
to 54.68% mIoU compared with the baseline. On CIHP dataset, we only get
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the mIoU of 60.81% when removing edge enhancement module, leading to a
decrease of 1.79%. These results indicate that our proposed network incorporat-
ing the edge enhancement module can be generalized and work well in the case
of multi-class human body parsing.

In Fig. 3, we provide some parsing examples obtained by EEN. We evaluate
the effectiveness of edge enhancement module on LIP and CIHP datasets by
showing the ground-truth and the predictions generated by EEN without or
with the edge enhancement module.

(a) LIP (b) CIHP
EEN (H) EEN GT EEN (H) EEN GT

Fig. 3. Visualized results on LIP and CIHP datasets.

5 Conclusion

In this paper, we explore the potential of edge information to solve the problem
of multi-class human body parsing. Based on the similarity between scene pars-
ing and human parsing tasks, we propose to use densely connected atrous spa-
tial pyramid pooling to capture wealthy context information. More importantly,
we present a simple yet effective EEN including edge enhancement module to
solve multi-class complex human body parsing problem. Extensive experimental
results demonstrate its superiority on LIP and CIHP datasets, and the results
on PASCAL-Person-Part dataset shows its universality.

Acknowledgments. This work is supported by National Natural Science Foundation
of China (grants No. 61672133 and No. 61832001).

References
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Abstract. EEG-based person authentication is an important means for
modern biometrics. However EEG signals are well-known for small signal-
to-noise ratio and have many factors of variation. These variations are
caused by intrinsic factors, e.g. mental activity, mood, and health con-
ditions, as well as extrinsic factors, e.g. sensor errors, electrode displace-
ments, and user movements. These create complex variations of source
signals going from inside our brain to the recording devices. We pro-
pose vUBM, a variational inference framework to learn a simple latent
representation for complex data, facilitating authentication algorithms
in the latent space. A variational universal background model is created
for normalizing scores to further improve the performance. Extensive
experiments show the advantages of our proposed framework.

1 Introduction

EEG signals are live electrical brainwave signals emitted at the scalp. They are
known for containing a rich amount of information about brain activity. For
instance, sleep EEGs contain slow waves and awake EEGs show much higher
frequencies. Different mental activities and moods also trigger different neuronal
patterns. EEGs are also known for carrying physiology characteristics of individ-
uals. The neuronal excitation waves, propagating through our brain, penetrating
the skull, then reaching the scalp, are thought to carry the signature of carrying
mediums. Because of the skull thickness, however, the EEG signals are weak
and noisy aggregations of the sources. On the other hand, there are also noises
due to recording protocols, such as sensor imperfection, variations in the device
placements, as well as other session variability factors. All these added variations
of a source signal inside our brain introduce much difficulty in modelling EEG
signals. Therefore modelling methods should have the capability to account for
these variation.

Recent literature uses support vector machine (SVM) methods [8,9] due to
its generalization property and ability to handle high dimensional input. The
combination of SVM and UBM was introduced in [8]. However, SVM does not
c© Springer Nature Switzerland AG 2019
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scale well to big data, due to the quadratic or cubic complexity in the data
size with nonlinear kernel. As a result, some recent deep learning methods have
been introduced to modelling EEG signals [2,6,11]. Some recent works also used
generative models for augmenting EEG datasets [1] or for classification [4]. These
methods scale linearly to the size of dataset, therefore are promising to modelling
an increasing amount of EEG data, thanks to the popularity of consumer EEG
headsets. These frameworks model directly the feature vectors as opposed to
ours, which used a latent variational representation for modelling the complex
variation in the observed data, thanks to the powerful function approximation
ability by neural networks. Variational modelling in EEG signals is new and
open.

We focused on EEG-based person authentification [3] due to its attractive
biologically live characteristic. We used imagined speech EEG signals for authen-
tication. Compared to other methods, this seems more natural, convenient, and
familiar to users as they would imagine speaking their password instead of typ-
ing it. However, unlike passwords which are fixed texts, there are a lot of varia-
tions involving the imagined speaking tasks, e.g. speed, intensity, mood, focus,
and possible rhythms. These hidden factors are not easy to be captured. We
introduced variational latent variable methods for EEG-based person authen-
tification. Particularly a low dimensional latent representation to account for
the possible variations in the observed user data. This variational latent repre-
sentation opens up opportunities to model diverse variabilities inherent in the
EEG signals, allowing models to capture hidden factors of variation. We based
on the variational autoencoder framework [5] to develop a Variational Univer-
sal Background Model, which we termed vUBM. Universal background model
provides the basic for the statistical hypothesis testing framework for speaker
verification [10].

We use a latent Gaussian Mixture (GM) to model each user latent vector and
pool all the user GMs together to create a universal background model for score
nomalization purposes. With the introduction of the latent GM, however, the
minimization objective becomes difficult. Therefore, we derived an approximation
objective which is an upper bound to the target objective. We carried extensive
experiments on two datasets: (1) the MNIST dataset for testing our model; and
(2) the imagined speech dataset which is the main application of our method.

2 Methods

2.1 Variational Auto Encoder (VAE)

VAE consists of two processes, the inference process maps a input data x to a
latent distribution z, and the reconstruction process that maps the laten z to
x. Suppose the distribution of x is Bernoulli, and the prior z can be assumed a
simple normal distribution N (0, I). We will find out which latent z is mapped
to a given data point x. By using Bayes rule, we can compute the posterior of z
given x, p(z|x; θ) as follow:
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p(z|x) =
p(x|z; θ)p(z)

p(x)
(1)

However the normalization constant p(x) =
∫

p(x|z; θ)p(z)dz is intractable to
compute as it requires summing over all z. Therefore, we use an alternative
tractable distribution q(z|x;φ), such as N (μ, σ2I) for approximating the poste-
rior.

The training objective is to minimize the Kullback-Leibler distance between
the true posterior p(z|x) and the variational posterior q(z|x).

min
(θ,φ)

DKL (q(z|x;φ)‖p(z|x; θ)) (2)

where we have added the parameters (θ, φ) to show the dependence of the distri-
butions on these parameters. The parameters (θ, φ) belongs to the decoder and
the encoder networks and p(z|x; θ) is calculated as in Eq. 1. However in practice
p(z|x; θ) is difficult to evaluate (due to the normalizing constant p(x)), therefore
we use an unnormalized version p(x, z; θ) = p(z|x; θ)p(x) instead. The objective
becomes:

min
(θ,φ)

DKL (q(z|x;φ)‖p(x, z; θ))

or equivalently as

max
(θ,φ)

−DKL (q(z|x;φ)‖p(x, z; θ)) (3)

This objective is called ELBO since it can be shown equivalent to the Evi-
dence (log p(x)) Lower BOund. It can be written as follows for the optimization
objective:

ELBO(θ, φ, x) = − DKL (q(z|x;φ)‖p(x, z; θ))

= − Eq(z|x;φ) log
q(z|x;φ)
p(x, z; θ)

(4)

= − Eq(z|x;φ) log
q(z|x;φ)

p(z)p(x|z; θ)
= − DKL(q(z|x;φ)‖p(z)) + Eq(z|x;φ)p(x|z; θ) (5)

This framework is called variational auto encoder (VAE) [5]. We use the objective
5 together with the reparameterization trick [5] for training this VAE.

2.2 Mixture of Gaussians Prior for User Modelling

Because of the variation and complexity of user data, we use a Variational Gaus-
sian Mixture (VGM) prior for modelling each user in the z space, instead of using
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a single distribution. A Gaussian mixture prior for each user u is defined as fol-
lows, it is initialized randomly and learnt together with the VAE:

pu(z; γu) =
K∑

k=1

αkN (z|μk, σ2
kI) (6)

where K is the number of components, γu = (αk, μk, σ2
k) is the parameter for the

mixing weight, mean and variance of each component Gaussian for the user u.
For simplicity, we use a single Gaussian for modelling the posterior. Training

would update these parameters for each user separately. The training objective
for each user u is similar to Eq. 5 but with the additional parameter γu since the
prior is no longer N (0, I):

ELBOu(θ, φ, γu, x) = − DKL(q(z|x;φ)‖p(z; γu)) + Eq(z|x;φ)p(x|z; θ) (7)

However the KL distance between the prior mixture distribution pu(z; γu)
and the posterior single Gaussian distribution need an approximation, which is
presented in the following proposition.

Proposition 1. The variational upperbound of the Kullback-Leibler divergence
between a unimodal distribution f(x) and a mixture model g(x) =

∑
k αkgk(x) is:

DKL(f(x)‖g(x)) ≤ Dvar(f(x)‖g(x))
def
= − log

∑

k

αk exp (−DKL(f(x)‖gk(x))) . � (8)

2.3 Universal Background Model by Pooling

We approximate the background model of the null hypothesis by a large mix-
ture model constructed by pooling every user’s mixture models, except for the
target user’s model, and renormalizing the component weights, p(zx|θbg) =
1
B

∑B
b=1 p(zx|θb). We use the following three versions of the score:

score1(x, u) = log p(zx|θu) (9)

score2(x, u) = log p(zx|θu) − log
1
B

B∑

b=1

p(zx|θb) (10)

score3(x, u) = log p(zx|θu) − log max
b

p(zx|θb) (11)

where Eq. 9 refers to no background nomalization, while Eqs. 10 and 11 refer to
background nomalization applied, B is the number of background models.
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3 Experiments

3.1 Datasets

We use two datasets: (1) the popular MNIST dataset for testing our proposed
methods; and (2) an EEG imagined speech dataset to demonstrate the main
application of our methods.

The MNIST dataset has 70000 handwritten digits of ten classes ranging from
0 to 9. There are 60000 digits for training and the remaining 10000 for testing.

The imagined speech dataset [7] includes EEG signals of 15 healthy subjects
imagining to pronounce different sounds. There are four tasks of silent speech
corresponding to: (1) pronouncing vowels /a/, /i/ and /u/; (2) short words ‘in’,
‘out’ and ‘up’; (3) long words ‘cooperate’ and ‘independent’; and (4) short versus
long words ‘in’ and ‘cooporate’. There are 100 independent trials for each of the
sound, and each lasts for 5 s. Since there is no separate training and test sets for
the imagined speech dataset, we randomly split 4/5 trials for training and 1/5
trials for testing. The data were preprocessed to remove artifacts and noises and
downsampled to 128 Hz. We extracted common EEG frequency bands as follows.
First, the power spectral densities from all 64 channels are computed. Next, the
powers of five EEG frequency bands delta, theta, alpha, beta, and gamma are
calculated. This makes a feature vector of size 5 × 64 = 320 features for each
trial. The features are scaled into range [0, 1].

3.2 Models

We compare two baseline methods Gaussian and Gaussian mixture model
(GMM) to our proposed methods VAE, VGM with scoring Eq. 9, and their
UBM variants with scoring Eq. 10 or 11. Each model was trained on the training
data of each individual. Then background model for the null hypothesis is con-
structed by pooling the models of all other users. The background model score
is computed as either the average score over all individual models, Eq. 10, or the
maximum, Eq. 11, whichever is better.

Model Parameters. We use a similar setup for both datasets. The Gaussian
and GMM models have the mean and covariance parameters for each Gaus-
sian, while the VAE and VGM models have their latent means and covariances
parametrized by neural networks. Specifically, the encoder and decoder are mul-
tilayer perceptrons with 3 hidden layers, each of size 500. The output layer of
the encoder parameterizes the mean and variance of each Gaussian component,
while the output layer of the decoder parameterizes the mean of the Bernoulli
distribution. Neural network training is done by stochastic gradient descent with
batchsize 20, optimizer Adam with learning rate 0.001, and the training is run
until convergence. Different latent sizes and number of mixture components were
compared in the next section.
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3.3 Results

Performance Measures. We use Area Under Curve (AUC) and Equal Error
Rate (EER) for performance measures. The following results were reported for
the MNIST dataset and imagined speech dataset on the test sets.

MNIST Dataset. Table 1 shows the average authentication performance of
different methods on the MNIST dataset. Gaussian method has lowest AUC
score and highest EER, GMM method performs better. The variational methods
VAE and VGM have better score. With the introduction of UBM model for score
normalization all methods improve, by 1.4 to 4.7% on average, with highest AUC
score at 98.6% by VGM method. It shows that the variational latent variable
model with Gaussian mixture greatly improve the performance. This suggests
that the variational latent variable helps with modelling the data variation well.

Table 1. MNIST dataset test AUC and EER of different methods.

Without UBM EER With UBM EER

Gaussian 61.9 ± 7.4 38.1 ± 7.4 62.6 ± 7.8 37.5 ± 7.7

GMM 66.8 ± 10.1 33.3 ± 10.1 71.5 ± 13.6 28.9 ± 13.6

VAE 76.9 ± 7.7 28.7 ± 6.3 80.1 ± 8.4 26.7 ± 6.8

VGM 97.2 ± 2.1 7.9 ± 4.0 98.6 ± 1.3 5.3 ± 2.9

Table 2 compares the effects of different number of Z dimensions on the
MNIST dataset for VAE and VGM methods. It can be seen that increasing
the number of latent dimensions help improve the performance. However for
VGM model, 100 dimensions are marginally better than 40 latent dimensions,
suggesting that 40 dimensions are enough due to the flexibility of the Gaussian
mixture. Again, with the introduction of UBM model for score normalization
both methods improve.

Table 2. MNIST dataset test AUC scores of VAE and VGM at different number of Z
dimensions.

Z dimensions Without UBM EER With UBM EER

VAE 20 75.3 ± 11.7 29.7 ± 8.9 77.9 ± 13.0 28.5 ± 9.9

40 75.5 ± 10.4 24.9 ± 12.4 77.8 ± 11.8 28.2 ± 9.2

100 76.9 ± 7.7 28.7 ± 6.3 80.1 ± 8.4 26.7 ± 6.8

VGM 20 91.1 ± 7.0 14.8 ± 7.9 93.1 ± 6.8 12.8 ± 7.6

40 96.7 ± 2.0 8.5 ± 3.8 98.3 ± 1.1 5.8 ± 2.6

100 97.2 ± 2.1 7.9 ± 4.0 98.6 ± 1.3 5.3 ± 2.9
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After confirming the methods work well on the MNIST test dataset, we
carried out authentication experiments on the imagined speech dataset, which
is the main application of our models.

Imagined Speech Dataset. Table 3 shows the average authentication per-
formance of all methods on the imagined speech dataset. The VAE and VGM
models have similar performances and are better than Gaussian and GMM. It is
interesting that with UBM score normalization, the improvement jumps up to
more than 91% for all methods. The VGM has highest AUC score, at 95.3% on
average.

Table 3. Imagined speech dataset test AUC and EER of different methods.

Without UBM EER With UBM EER

Gaussian 60.2 ± 22.4 36.0 ± 20.6 91.8 ± 18.3 7.9 ± 18.0

GMM 78.0 ± 26.0 19.7 ± 23.7 91.7 ± 18.2 7.9 ± 17.9

VAE 84.6 ± 29.6 10.6 ± 19.6 93.5 ± 13.8 5.5 ± 13.4

VGM 84.5 ± 29.8 8.9 ± 15.9 95.3 ± 14.3 5.7 ± 14.5

We compare different numbers of Z dimensions in Table 4. It can be seen that
the best number of latent dimensions for VAE is 100 while it is 40 for VGM.
This effect demonstrates that the latent mixture model is flexible enough and
need only 40 latent dimensions to represent the variations in user’s EEG signals.
Using a higher number of dimensions would overfit and make the model perform
worse at test time.

Table 4. Imagined speech dataset test AUC scores of VAE and VGM at different Z
dimensions.

Z dimension Without UBM EER With UBM EER

VAE 20 85.2 ± 25.3 11.6 ± 19.5 92.9 ± 14.5 6.0 ± 13.9

40 84.1 ± 29.8 10.8 ± 19.6 91.9 ± 16.5 7.1 ± 16.0

100 84.6 ± 29.6 10.6 ± 19.6 93.5 ± 13.8 5.5 ± 13.4

VGM 20 75.9 ± 33.4 13.3 ± 17.5 93.8 ± 15.3 6.5 ± 15.7

40 84.5 ± 29.8 8.9 ± 15.9 95.3 ± 14.3 5.7 ± 14.5

100 84.4 ± 27.7 9.0 ± 16.1 93.8 ± 15.1 6.3 ± 15.3

4 Conclusion

We have developed vUBM, a Variational Universal Background Model frame-
work to model the complex data distribution by a latent variational mixture
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model for each user. A universal background model pooling all user’s models
was created for score nomalization in the hypothesis test. We derived a lower
bound objective for the optimization problem due to the complexity involved
when introducing of the latent GM. Our framework was trained end-to-end. We
carried extensive experiments on two datasets, the MNIST and the imagined
speech dataset. Experimental results showed that our methods have high perfor-
mance and are applicable for the imagined speech authentication task. Future
research direction would be applying our methods to model the diverse variations
in other EEG datasets.
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Abstract. This study examines the potential of the smart card data
in public transit systems to infer passengers’ demographic attributes,
thereby enabling a human-centered public transport service design while
reducing the use of expensive and time-consuming travel surveys. This is
challenging since travel behaviors vary significantly over the population,
space and time and developing meaningful links between them and pas-
sengers’ demographic attributes are not trivial. To achieve this, we con-
duct an extensive analysis of spatio-temporal travel behavior patterns
using smart card data from the Greater Sydney area, based on which
we develop an end-to-end Hybrid Spatial-Temporal Neural Network. In
particular, we first empirically analyze passenger movement and mobility
travel patterns from both spatial and temporal perspectives and design a
set of discriminative features to characterizing the patterns. We then pro-
pose a novel Product-based Spatial-Temporal module which encodes the
relationships across a variety of features and harnesses them collectively
under an Auto-Encoder Compression module, in order to predict passen-
gers’ demographic information. The experiments are conducted using a
large-scale real-world public transportation dataset covering 171.77 mil-
lion users. The experimental results demonstrate the effectiveness of the
proposed method against a number of established tools in the literature.

Keywords: Passenger attribute classification · Public transport
system · Deep neural networks

1 Introduction

Urban public transportation systems serve a large number of passengers on a
daily basis and plays an important role in metropolitan areas. However, current
public transportation systems’ designs are often capacity-maximizing while indi-
vidual preference is considered to a limited extent. In fact, different passenger
c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, CCIS 1142, pp. 486–494, 2019.
https://doi.org/10.1007/978-3-030-36808-1_53
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groups normally have totally different requirements. For instance, elders may pre-
fer cheaper but may be slightly slower public transport without noise and chaos.
They may be much less demanding for the length of time. On the contrary, young
commuters tend to choose fast and in straight lines since they have to save time
on the road. There is a growing trend to allow a more human-centered public
transport system, which better accommodates, e.g., different age groups and the
disabled. A systemic planning of such a human-centered public transit system
requires extensive inputs regarding passenger attributes. These inputs may be
obtained through travel surveys, which can be expensive, time-consuming and
biased. This study develops methods to infer passenger demographic attributes
(e.g. age groups) for a human-centered public transit system without surveys.

Human-centered transport design is less emphasized in traditional public
transport works, only a few studies are related to passenger attributes classifica-
tion. Shiftan et al. [1] proposed to categorize travelers into demographic groups
based on surveys, which is costly, time-consuming and highly-biased. Electronic
smart card, as a widely used tool for accessing public transport services, provides
ready-to-use passenger transit data and a potentially more efficient way to auto-
matically classify passenger attributes by mining their travel patterns. Along
this line, Mohamed et al. [2] proposed to cluster citizens into several groups
with smart card data. They clustered passengers with similar boarding times as
one class by constructing temporal passenger profiles based on the Expectation
Maximization (EM) algorithm. Hagenauer et al. [3] empirically studied a range
of machine learning methods for categorizing passengers’ travel modes and ana-
lyze the most influential factors affecting people’s travel choices. However, while
most existing studies using smart card data analyze travel patterns of users,
they often stopped at clustering users into groups based on similar patterns
observed but did not further infer attributes of users. More critically, inferring
passengers’ demographic attributes has rarely been considered. The critical fea-
tures of travel patterns associated with demographic attributes and the complex
spatio-temporal inter-correlation among features have not be uncovered.

In this work, we propose to classify and infer the passenger demographic
attributes in public transportation systems with the help of large-scale smart
card usage data and land use data. Specially, we focus on identifying the passen-
gers as three age groups, i.e., adults, seniors, and children, in this work. These
three groups generally have different preferences or needs for a public trans-
port system. We first briefly introduce the dataset used in this work. Then, we
present the powerful features including both the spatial and temporal informa-
tion together with a deep analysis of their relationships with the passenger age
groups. Based on the extracted features and analysis, a new hybrid Spatial-
Temporal correlation model based on deep neural networks is developed for
passenger age groups classification by integrating different types of features and
transit stops sparse matrix. Specifically, Product based Spatial-Temporal Module
(PSTM) is developed to capture the pairwise latent relations among temporal
and spatial features while Auto-Encoder-based Compression module (AECM)
is utilized to learn the embedding vectors of transit stops matrix. Our main
contributions are:
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(1) To the best of our knowledge, this is the first work to classify passenger
demographic attributes based on smart card data with deep neural networks.
In this context, we propose a hybrid Spatial-Temporal correlation Neural
Network to combine PSTM and AECM for classification.

(2) We uncover representative spatial and temporal passenger behavior patterns
from the raw data and analyze their correlations with passenger age groups.
This provides critical insights regarding mobility associated with age groups.

(3) We evaluate the developed method on a large-scale real-world dataset col-
lected in the largest metropolitan area in Australia (Greater Sydney area)
and demonstrate the effectiveness of the method against several baselines.

2 Data Description and Behavioural Features

2.1 Dataset Description

Smart Card Dataset is collected from Opal1, the electronic smart card ticket
system in Sydney covering main public transportation services (buses, trains, fer-
ries, and light rails). The dataset is collected from 01/Apr/2017 to 30/Jun/2017
and records 171.77 million journey transactions covering 6.37 million users. The
data does not involve personal information for protecting the privacy of users.

PoI Dataset is collected with the consideration that PoI information is close
related to a region’s function [4] and travel patterns do not only rely on the dis-
tances between two places [5]. Thus, we may infer the passengers’ trip purposes
to reflect passengers’ attributes, through analyzing the PoI information of fre-
quently visited places. In practice, we map PoI data of six categories (shopping
mall, church, school, hospital, club, and gym) to related transit stops.

Fig. 1. Journey Transaction account in a
week on different age groups

Fig. 2. Journey Transaction account in
a day on different age groups

2.2 Feature Analysis

Temporal Distribution consists of the average transaction amount in a week
and a day. Figure 1 shows that the average travel amount in a day of children is
higher than the other two groups. Children can only arrive at the destinations
by public transport without the lead of adults since they are not able to drive.

1 https://www.opal.com.au/en/about-opal/.

https://www.opal.com.au/en/about-opal/
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Figure 2 shows that peaks exist around 8 am and 5 pm for adults while peaks
exist around 8 am and 3 pm for children during weekdays since they have to work
or attend class at a fixed time. The elderly are not under pressure to study or
work, so the travel time is relatively flexible without any sharp peak or trough.

Spatial Distribution considers travel distance and PoI categories of the des-
tinations which are shown in Figs. 3 and 4. The percentage of travel distances
within 10 miles for children is 90.66% which is the largest among the three
groups since it is not safe for children to go too far. The statistical analysis on
the six categories collected from PoI of the destinations are performed to infer
the possible trip purposes. 30.93% of the places where children go most often
are schools and the ratio is higher than that of adults and seniors. Adults hold
0.19% to go to the clubs while the other two groups hold almost zero. Old people
have the highest probability to church, 6.82%.

Fig. 3. Journey distance distribution Fig. 4. PoI distribution

Fig. 5. Relationship between PoI and temporal distribution

Structural Spatio-Temporal Associations will be analyzed in this subsec-
tion. Figure 5 shows the proportional distribution of the six categories from des-
tination PoI based on arrival time. Interval 0 is the period of time for the adults
to the clubs while kids and seniors do not have this travel pattern. In Interval
1 on weekdays, children choose to go to school while the other two groups hold
less probability to school. In Interval 2, the elderly prefer to go to the church
and the ratio is higher than the other two groups.
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3 Methodology

We now present our framework of Hybrid Spatial-Temporal correlation neural
network. The architecture of our model is illustrated in Fig. 6. Throughout the
paper, the matrix is shown in the uppercase letter while a vector is represented
as a bold lowercase letter. Our model consists of two parallel sub-networks,
Product-based Spatial and Temporal Module and Auto-Encoder based Com-
pression Module. The concatenation of them is sent for classification.

Fig. 6. Neural Network Architecture

3.1 Product Based Spatial-Temporal Module

Motivated by He et al. [6], we propose the inner product module to our network
to investigate the pair-wise relations among the features since product module is
more powerful than pure concatenation or addition which are not included any
correlation among features. Moreover, the inner product module combined with
the deep neural network is able to capture non-linear latent patterns.

The feature matrix P1 ∈ R
N×D1 is embedded into five fields, where N and

D1 denote the number of test samples and dimension of features, respectively.
Each field represents one type of feature. l0−1 = (v1,v2, · · · ,vm, · · · ,vI) is the
output of embedding layer which are sent into inner product layer to find the
pairwise connection where I is the number of fields.

The definition of inner product between two vectors is a · b = aT b where
T means transpose. In the geometric sense, we can see the proximity of two
vectors in the direction from the inner product values. Therefore, we expand
the inner product to two matrices to find the relation between them. The inner
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product in the layer is defined as: A • B =
∑

m,n Am,nBm,n. Then let vm =
(vm1, vm2, · · · , vmn, · · · , vmNm

) as the mth field vector from the embedding layer
where m = (1, 2, · · · , I). The inner product of two fields is < vm, vn >= Wm

0 vm ·
Wn

0 vn where W i
0 ∈ R

M×Ni . Then we define W i
p as the ith vector weight of the

product layer and the dimension is depended on the embedding vector. The
output of product layer is l1−1 = (l1, l2, · · · , li, · · · , lDPW

) where l1−1 ∈ R
DPW

and DPW is the number of pairs. li is represented as

li =
I,M∑

m=1,n=1

(W i
p)m,n < vm, vn > (1)

l1−1 is then fed into a fully connected layer and get the ouput l2−1 ∈ R
D2−1 .

3.2 Auto-Encoder Based Compression Module

The transit stop matrix P2 is sparse with redundant information so it needs to
be compressed. Auto-Encoder is used for dimensional reduction which is able to
retain most of the original data information.

The AECM is composed of an Auto-Encoder and a fully connected layer. P2 is
fed into an Auto-Encoder to fuse features from different domains together while
keeping most of the useful information. The encoding and decoding processes are
employed with two-layer fully-connected networks and the transformation can be
described as: Ht(ri) = encoder(P2) and P̂2 = decoder(Ht(ri)), where encoder(·)
and decoder(·) represent the transformation of encoder part and decoder part
respectively. Ht(ri) is the hidden representation of P2, P̂2 is the output. The cost
function of auto-encoder is MSE (mean squared error) of P2 − P̂2 in order to
make sure that P̂2 and P2 are as similar as possible. The hidden representation
Ht(ri) is then fed into one fully connected layer for concatenation. And the result
of this module is l2−2.

3.3 Combination and Classification

To fuse the spatio-temporal relevance information and transit stops information,
we concatenate l2−1 with l2−2 together to form l2. At last, l2 is fed into one fully
connected layer to get the final classification result ŷ. The objective function of
the proposed network consists of two parts: constraint of auto-encoder in the
second part L1 and the loss of final classification in the concatenation part L2.

L1 = MSE(P2, P̂2)
L2 = Softmax cross entropy(y, ŷ)

(2)

where y is the true label of the input samples, MSE is the mean square error,
and Softmax cross entropy is the cross entropy loss for softmax function. The
overall loss is L(θ) = λ × L1 + (1 − λ) × L2 where θ represents all learnable
parameters in the network. It is obtained via Gradient Descent optimizer.
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4 Experiments

4.1 Overall Comparison

We first compare our model with several widely used classification algorithms:
Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA),
Support Vector Machine (SVM), Adaptive Boosting (Ada), Decision Tree (DT),
XGBoost [7], and Multilayer Perceptron (MLP). Jahangiri et al. [8] found that
SVM produced the best performance to classify travel mode. Table 1 summarize
the results. Our model based on deep neural networks achieves better accuracy
since non-linear relations exist among features. The auto-encoder carries out
sparse matrix analysis that SVM cannot solve. Our approach significantly out-
performs all other listed approaches, indicating that our model can be used to
capture the implicit relevance among spatial and temporal characteristics and
compress sparse matrices retaining the original data information.

Table 1. Overall comparison

Model Accuracy Recall Precision

Adult Senior Child Adult Senior Child

LDA 0.6072 0.6859 0.5765 0.5590 0.6787 0.5799 0.5617

QDA 0.4265 0.3741 0.8486 0.0570 0.6345 0.3802 0.3190

Jahangiri et al. [8] 0.5151 0.7720 0.0040 0.7692 0.5955 0.6430 0.4532

Ada 0.6370 0.7518 0.5474 0.5114 0.8729 0.5592 0.5269

DT 0.7613 0.9262 0.7545 0.6027 0.8585 0.7006 0.7143

Chen et al. [7] 0.6879 0.8312 0.5982 0.6341 0.8299 0.6112 0.6218

MLP 0.7849 0.8135 0.7512 0.7867 0.8747 0.7226 0.7576

Our 0.9237 0.8664 0.9068 0.9989 0.9027 0.8854 0.9831

4.2 Ablation Study

The results of the ablation study on the architecture of the network are listed
in Table 2. We compare Fully Connected Layer (FCL), Auto-Encoder, Inner
Product-based Module, Outer Product-based Module, and their combinations.

The outer product-based network proposed by He et al. [6] is used to explicitly
model the pairwise correlations among features for the recommendation. We have
similar input data structure as theirs consisting of several types of features, the
data used here is not one-hot encoded sparse matrix. Also, inner product judges
angle while outer product judges direction so the first one will perform better on
determining similarity. Thereby, the inner product-based layer achieves a higher
accuracy than outer product-based layer. Moreover, FCL and AE only analyze
the correlations among transit stops and temporal features were not included.
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In the compression process of FCL, important information may be discarded
while AE retains most information and achieves a better result. Consequently,
the combination of Inner Product and Auto-Encoder takes full advantage of
spatial-temporal information, which helps to produce a better result.

Table 2. Performance with different components

Model Accuracy Recall Precision

Adult Senior Child Adult Senior Child

FCL 0.8051 0.7936 0.7354 0.8864 0.8105 0.7952 0.8086

AE 0.8194 0.6226 0.8518 0.9849 0.8404 0.7275 0.9046

Inner-PNN 0.8624 0.8874 0.8304 0.8694 0.8575 0.8238 0.9087

Outer-PNN 0.8009 0.8682 0.7254 0.8090 0.8130 0.7868 0.8009

Outer-PNN + FCL 0.8792 0.7711 0.8774 0.9897 0.8754 0.8193 0.9441

Inner-PNN + FCL 0.9053 0.8352 0.8896 0.9719 0.8807 0.8615 0.9719

Outer-PNN + AE 0.9023 0.8295 0.8890 0.9889 0.8792 0.8552 0.9723

Inner-PNN + AE 0.9237 0.8664 0.9068 0.9989 0.9027 0.8854 0.9831

5 Conclusion

This paper proposes a new neural network to classify passengers based on demo-
graphic attributes by exploring the relevance among temporal-spatial informa-
tion of transit data with the Inner Product based strategy and Auto-Encoder
based method. We evaluate our approach by classifying three age groups from
real-world collected data and achieve an accuracy of 92.37% which outperforms
other classification methods. In the future, the proposed model will be further
adapted for more domains. We will maximize the use of other attributes and
develop frameworks for inferring demographic attributes of passengers, which
can further help operation of a human-centered public transport system.
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Abstract. Identification of spontaneous brain activity using the elec-
troencephalography (EEG) requires information of the frequency spec-
trum and the spatial distribution. The complex valued neural network
(CVNN) which uses complex weights and inputs has been shown higher
performance for periodic data analysis, since spectrum information is
represented by complex numbers. In spontaneous EEG analysis, the
phase information depends on the onset of the recording, thus it is not
informative. However, the conventional CVNN is not able to remove the
phase information and extract amplitude spectrum efficiently. In this
paper, we introduce two activation functions for CVNN to extract the
amplitude spectrum directly, and classify spontaneous EEG. Our exper-
imental results showed that the proposed method is higher classification
performance than the conventional CVNN, and comparable to the con-
volutional neural network (CNN). Furthermore, the proposed method
showed high performance when the number of hidden units is small.

Keywords: Complex-valued neural network (CVNN) · Spontaneous
EEG · Frequency classification

1 Introduction

Spontaneous EEG analysis is applied for estimation of human states (such
as relax, stress, and attentive), emotions (such as anger, happiness, and
(un)pleasant), classification of sleep stage, and application for neuro-marketing,
bio-feedback, and brain computer interfaces (BCI) [12,15,16,18]. Spontaneous
EEG is divided into five frequency bands, delta (0.5–4 Hz), theta (4–8 Hz), alpha
(8–13 Hz), beta (13–30 Hz), and gamma (30-Hz) bands. The power and distri-
bution of these frequency bands are related to drowsiness and arousal level, or
attentive and relax states. For example, the alpha and beta bands are related
to the degree of relaxation and tension, and alpha, delta, and theta bands are
associated with the sleep stage. In BCI, the steady state visual evoked poten-
tial (SSVEP) or the desynchronization of mu-rhythm in the specific motor area
is used [14]. In SSVEP-based BCI, a subject gazes at one of several blinking
patterns of different frequencies, and BCI determines the target command by
detecting the frequency the subject gazes from EEG [10]. For spontaneous EEG
c© Springer Nature Switzerland AG 2019
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analysis, not only the power spectrum feature, but its spatial distribution is
important. For example, the asymmetry index (ASM) is used for estimation of
emotion states [9]. Thus, in order to classify these spontaneous EEG, the ampli-
tude spectrum, its spacial distribution, time-varying information are utilized.

The complex valued neural network (CVNN), which has complex valued
weight, input, and output, has shown better performance than the real val-
ued neural network (RVNN) in various fields [1,8,16,17]. Complex feature vec-
tors represent periodic/cyclic data, such as oscillation, and wave, in particu-
lar, electromagnetics, electric circuits, acoustic/biomedical signals, and imag-
ing radar in nature. Therefore, complex data analysis by CVNN is compatible
with such periodic/cyclic data. The activation functions of CVNN are divided
into the split type f(z) = φ1(�(z)) + jφ1(�(z)) and the amplitude-phase type
f(z) = φ2(|z|) exp(j arg z). For the split type, the split-ReLU (φ1 = ReLU) and
the split-tanh (φ1 = tanh) are often used. For the amplitude-phase type func-
tion, tanh(|z|) exp(j arg z) is used [6,13]. The amplitude-phase type is used for
wave phenomenon analysis [5]. In some applications such as EEG analysis, the
phase information depends on the onset of data, and it is not informative. The
activation functions listed above keep the phase information, thus they are not
suitable for spontaneous EEG analysis.

In this paper, we propose a new activation function to extract features from
spontaneous EEG. The discrete Fourier transform (DFT) is computed by the
inner product of an input time series data and the complex sinusoidal basis.
Then its amplitude is extracted by the complex absolute function. Therefore,
we introduce the complex absolute activation function and the complex absolute
split ReLU function for CVNN. They include the feature extraction using DFT
and the complex absolute function in nature. Recently, the convolutional neural
network (CNN) shows very high performance in various research area [4,10].
CNN can extract frequency information and vanish phase information by filtering
and the pooling. However, the proposed CVNN is more direct solution, and
has compact structure. We show our experimental results on two datasets to
demonstrate the proposed method and compare with CNN and the conventional
CVNN using split-tanh, split-sigmoid, and split-ReLU.

2 Complex Valued Neural Network

The forward propagation of CVNN is calculated by the following equations,

u(l) = W (l)o(l−1) (1)
o(l) = f (l)(u(l)), l = 2, . . . , L, (2)

where o(1) is the complex valued input to the network, o(l) and f (l)(·) are the
complex valued output and the activation function in the lth layer, respectively,
and W (l) is the complex weight connecting from the (l − 1)th to the lth layer.

The weight connection W (l) is optimized to minimize a loss function E. The
square error loss or the logistic loss is often used for classification problems.
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Let dn and o
(L)
n be the target vector and output loss for the nth sample respec-

tively, then the square error En is

En = 1
2‖o(L)

n − dn‖2. (3)

The weight connection W (l) is iteratively updated,

W (l) ← W (l) + ηΔW (l), l = 2, . . . , L, (4)

where η > 0 is the learning rate. The back-propagation (BP) for CVNN is used
to optimize W (l).

Suppose that we use the split-type activation function, and let u
(l)
r be the

rth unit value of u(l) and δ
(l)
r = ∂E

∂�(u
(l)
r )

+ j ∂E

∂�(u
(l)
r )

. Then the partial derivatives

of �(W (l)) and �(W (l)) are given by

∂E

∂w
(l)
rp

= δ(l)r o
(l−1)
p , l = 2, . . . , L, (5)

where · stands for the complex conjugate, o
(l−1)
p is the pth element of o(l−1), and

w
(l)
rp is the (r, p) element of W (l). We, hereafter, omit the sample index n. δ

(l)
r

was computed by the chain rule,

�(δ(l)r ) = �(
∑

q

δ(l+1)
q w

(l+1)
qr )

∂�(f (l)(u(l)
r ))

∂�(u(l)
r )

, (6)

�(δ(l)r ) = �(
∑

q

δ(l+1)
q w

(l+1)
qr )

∂�(f (l)(u(l)
r ))

∂�(u(l)
r )

. (7)

When the amplitude-phase type f(z) = tanh(|z|) exp(j arg z) is used as the
activation function, |W | and arg(W ) are independently updated by the following
rule [5,12],

|w(l)
rp | ← |w(l)

rp | = η|o(l)r ||d(l)r | sin(arg o(l)r − arg d(l)r )
o
(l−1)
p

u
(l)
r

sin(θ(l)rp )

− η
(
1 − |(o(l)r )2|

) (
|o(l)r | − |d(l)r | cos(arg o(l)r − arg d(l)r )

)
|o(l−1)

p | cos(θ(l)rp ),

arg(w(l)
rp ) ← arg(w(l)

rp ) = −η|o(l)r ||d(l)
r | sin(arg o(l)r − arg d(l)

r )
o
(l−1)
p

u
(l)
r

cos(θ(l)
rp )

− η
(
1 − |(o(l)r )2|

) (
|o(l)r | − |d(l)

r | cos(arg o(l)r − arg d(l)
r )

)
|o(l−1)

p | sin(θ(l)
rp ),

where θ
(l)
rp = arg(o(l)r )−arg(o(l−1)

p )−arg(w(l)
rp ), d(l−1) =

(
f (l)

(
d(l)∗W (l)

))∗
and

∗ is the complex conjugate transpose.
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3 Proposed Methods

Complex valued information used in CVNN contains information of signal ampli-
tude and phase. In the analysis of spontaneous brain activity, the phase informa-
tion is determined by the onset time of the measurement start time. Although
the phase difference between channels may be informative, the absolute phase
information should be removed. Therefore, in this study, we introduce the
absolute activation function f(z) = |z| and the absolute split-ReLU function
f(z) = |ReLU(�(z)) + jReLU(�(z))| for CVNN. Since the output of the activa-
tion function is real-valued, we consider the standard RVNN structure for latter
layers. We derive BP based updating rule for the proposed CVNN. Suppose that
two layer network, the activation function of the input layer f (2)(·) in Eq. (2) is
the absolute or absolute split-ReLU, and the activation function of the output
layer is the soft-max. When we employ the cross entropy function for the error
function, the gradient is calculated using the chain rule. The gradient of E with
respect to w

(3)
pq is obtained in the same way as RVNN. We derive the gradient of

E with respect to w
(2)
qr .

∂E

∂w
(2)
qr

=
∂E

∂�(w(2)
qr )

+ j
∂E

∂�(w(2)
qr )
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q )
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∂E

∂�(u(2)
q )

)
(8)
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(9)

Therefore, when the imaginary part is also calculated and let fsReLU(x) =
ReLU(�[x]) + jReLU(�[x])., the gradients of the proposed networks are

∂E

∂w
(3)
pq

=
∂E

∂u
(3)
p

∂u
(3)
p

∂w
(3)
pq

= (o(3)p − dp)o(2)q (10)

∂E
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(2)
qr

=
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⎪⎨

⎪⎩

∑
p(o

(3)
p − dp)w

(3)
pq

u(2)
q

o
(2)
q

o
(1)
r absolute

∑
p(o

(3)
p − dp)w

(3)
pq

fsReLU(u(2)
q )

o
(2)
q

o
(1)
r absolute of split − ReLU,

(11)

The network is learned by the stochastic gradient algorithms (SGD).

4 Experiment

4.1 Dataset

We used two datasets. The first dataset is the following artificial dataset for four
class classification problem,

x[n] =
4∑

c=1

kc sin(2π
fc

fs
n + θc) + ε, (12)
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where the target frequencies are (f1, f2, f3, f4) = (3, 7, 12, 14) [Hz], ε ∼ N (0, 4),
N (μ, σ2) is the normal distribution of average μ and variance σ2, the sampling
frequency is fs = 100[Hz]. When fc is the target frequency, kc = 1, otherwise kc

is chosen from the uniform distribution in the range of [0, 1). θc is chosen from
the uniform distribution in the range of [0, 2π). We generated 4000 samples of
the same length as the input dimension of the network, and conducted 10-fold
cross validation.

The second dataset is EEG data for open and closed eyes. This dataset was
prepared and provided by the developer of BCI2000 [2,11]. We used three Pz,
O1, and O2 channels of subject one among them. The sampling frequency of
this dataset is 160 Hz. We clipped out 4000 samples of the same length as the
input dimension of the network randomly in both case. As preprocessing of all
datasets, we normalized training and test data separately. The target vector of
the proposed method was 1 or 0 (one-hot label), that of CVNN using split-ReLU,
split-sigmoid was 1 + j or 0, and that of CVNN using split-tanh was 1 + j or
−1 − j. We conducted 10-fold cross validation.

4.2 Networks

The structure of our networks used in the experiment is listed in Table 1. We
used two layer network for the proposed CVNN network, and CNN has single
1D convolution layer, the max pooling layer, and fully-connected output layer.
In the experiment on artificial data, the input dimension was 64, 128, or 256,
and the dimensions of the hidden layer were set to the values between the out-
put dimensions and the input dimensions. The number of filters and filter size
of CNN were set to the values between [5, 30], [8, inputdim/2]. In the experi-
ments on three channels EEG data, the input dimension was 192, 384, or 768.
The dimensions of the hidden layer, the number of filters and filter size were
set from the same value range as the experiment on the artificial data. The
mini-batch size was fixed to 200, and the number of epochs was fixed at 400.
He’s initialization was used to initialize the weight for CNN [3]. The weight for
the others was initialized with a normal distribution of standard deviation 0.01
and mean 0. The max pooling of 1 × 2 with the stride step two was used. The
learning rate in proposed networks, split-tanh, split-sigmoid, split-relu, and CNN
were chosen from {0.05, 0.01, 0.005}, {0.005, 0.001, 0.0005}, {0.01, 0.005, 0.001},
{0.00005, 0.00001, 0.000005}, and {0.05, 0.01, 0.005}, respectively. We selected
the learning rate that maximizes the classification accuracy among these values
at (the number of filters, filter size)= (15, input dim/2) for CNN. We selected
the learning rate that maximizes the classification accuracy among these values
at the hidden layer 50 for other networks. Table 1 shows the learning rate deter-
mined in this way. We implemented CVNN by Python 3.6.8 and Numpy 1.15.2,
and used Keras 2.2.4, Tensorflow 1.13.1 as well for CNN.
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Table 1. Networks used in experiments.

Network Hidden activation Output activation Error function Learning rate Learning rate

for three channels EEG for the other

Proposed abs soft-max cross entropy 0.01 0.01

Proposed abs-split-ReLU soft-max cross entropy 0.01 0.01

CVNN split-tanh [6] split-tanh squared 0.0005 0.001

CVNN split-sigmoid [7] split-sigmoid squared 0.01 0.005

CVNN split-ReLU [13] split-relu squared 0.00001 0.00001

CNN ReLU soft-max cross entropy 0.05 0.05

5 Results

Figures 1 and 2 show the relation between the classification accuracy and the
number of hidden units for the artificial dataset and EEG dataset. The horizontal
axis is log scale and the results of the inputs 256, 128, and 64 are represented in
order from the left. Figure 1 shows that the proposed CVNN using the absolute
activation exhibited the best classification performance. The proposed method
also shows the best classification performance for almost all range of the number
of hidden units in Fig. 2. From the figures, the proposed absolute function keeps
higher performance when the number of hidden units is small. In other words, the
proposed absolute activation function efficiently extracts information by smaller
number of units. Figure 3 compares the performance with different input length,
kernel size, and the number of kernels, where these values are chosen to have the
best test accuracy.

The proposed method shows better performance than CNN for the artificial
dataset, and comparable performance to CNN for the EEG dataset.
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Fig. 1. Test accuracies of artificial data.
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Fig. 3. Comparison of test accuracies of CVNN with absolute, split-ReLU activation
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6 Conclusion

We proposed CVNN using the absolute activation function and the absolute of
split-ReLU function for spontaneous EEG analysis. We derived updating rules
for these activation functions. In our experiment, the proposed CVNN outper-
formed conventional CVNNs, showed better performance than CNN in the arti-
ficial dataset. The proposed method showed higher performance even when the
number of hidden units is small. That is to say, the proposed absolute activation
efficiently extracts the feature from smaller number of units. For future tasks,
we will investigate the performance for multi-layered deep network structure of
the proposed CVNN.
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Abstract. Tongue coating classification has long been a challenging
task in Traditional Chinese Medicine (TCM) due to the fact that tongue
coatings are multiform. Most existing methods make use of fixed loca-
tion and handcrafted features, which may lead to inconstant performance
when the size or location of the coating region varies. To solve this prob-
lem, our paper proposes a new tongue coating classification method.
This method is mainly improved from two aspects: feature extraction
and classification method. Complex tongue coating features extracted
by Convolutional Neural Network (CNN) is used instead of handcrafted
features, and a multiple-instance Support Vector Machine (MI-SVM) is
applied to solve the uncertain location problem. Experimental results
prove that our method shows significant improvements over state-of-the-
art tougue coating classification methods.

Keywords: Tongue coating classification · Multiple-instance learning ·
Deep features

1 Introduction

According to TCM, tongues are closely related to people’s health. This paper
mainly concentrates on how to distinguish rotten-greasy tongue coating from
normal tongue coating. Rotten-greasy tongue coating is thick and loose, looks
like residues of bean curd and always exists in the middle and root of the tongue
body [1]. Normal tongue coating is usually thin and white. Figure 1 shows normal
and different rotten-greasy tongue coatings. The classification of tongue coatings
can be viewed as a fine-grained [2] classification problem since normal and rotten-
greasy tongue coating are only different symptom of the floating layer of the
tongue. It is a challenging task for there lack further information (such as the
location or size of the tongue coating patch) if a tongue image is labeled as
normal coating tongue or rotten-greasy coating tongue.
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Fig. 1. Different tongue coatings. (a) Normal tongue coating. (b-f) Typical rotten-
greasy tongue coatings.

Recently, some works have been conducted on tongue coating classification.
Li et al. [3] extracted the center patch of a tongue body and classified tongue
coating using Gabor [4] and Tamura [5] features of the patch. Qu et al. [6]
proposed a Gabor wavelet transformation-based tongue coating classification
method. Fu et al. [7] computerized tongue coating feature using deep neural net-
works. The methods mentioned above, however, have some drawbacks. Firstly,
handcrafted features used in the methods of Li and Qu cannot describe the
salient characteristic of tongue coating. Secondly, although the method of Fu
based on deep neural networks can extract deep features, it focuses on global
information rather than local information, which may capture more irrelevant
information and deteriorate the classification.

In this paper, we try to solve these problems by multiple-instance learning
(MIL) [8] and deep learning. MIL is first proposed by Dietterich et al. [8]. The
classification of tongue coatings is naturally a multiple-instance problem since
it shares similar assumptions with the multiple-instance binary classification
that a tongue is considered as a rotten-greasy coating tongue if there exist one
rotten-greasy coating patch on the tongue. So, we propose a multiple-instance
representation of the tongue, in which a rotten-greasy coating tongue containing
at least one rotten-greasy coating patch (positive instance) is treated as a pos-
itive bag, and a normal coating tongue containing only normal coating patches
(negative instances) is treated as a negative bag. The classification task for only
coarsely labeled images need to train a MI-SVM.

Since its successful usage in 2012 ImageNet competition, CNN has signifi-
cantly improved the performance of many computer vision tasks. [9] shows that
features extracted from CNN can perform well. Motivated by the success of CNN
we use a method of fine-tuned CNN instead of handcrafted feature extraction to
extract deep features of the tongue coating patches.
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Fig. 2. The diagram of the proposed method. Left: Patch selection. Middle: Feature
extraction. AlexNet is used to extract features from patch. Right: A multiple-instance
SVM is trained to classify the tongues.

The remainder of this paper is organized as follows. In Sect. 2, the proposed
method is elaborated. Experimental results of the proposed method are presented
in Sect. 3. Finally, we make a conclusion and discuss the future work in Sect. 4.

2 Method

As shown in Fig. 2, the proposed method contains three stages. First, it uti-
lizes rotten-greasy tougue coating information to select suspected tongue coat-
ing patches. Then, a CNN is used to extract fixed-length feature vectors for
each tongue coating patch. At last, feature vectors are grouped into bags and a
MI-SVM is used to do the classification.

2.1 Obtaining Convinced Rotten-Greasy Coating Patches

CNN can be powerful feature extractors. We hope that CNN can effectively
extract features combining color, shape and texture information to describe
tongue coating patches. Therefore when training a CNN, we manually obtain
patches with salient features in each tongue image as input.

The method of obtaining convinced rotten-greasy coating patches is described
as follows. For rotten-greasy tongue coating images, patches are chosen in the
area of tongue body with rotten-greasy coating characteristics. For normal
tougue coating images, patches are chosen in the area of normal coating charac-
teristics. And for each tongue image, 10–15 patches are obtained and each patch
is about 180–300 pixels wide and 240–400 pixels high.

2.2 Obtaining Suspected Rotten-Greasy Coating Patches

The goal of this stage is to find as many rotten-greasy coating patches as pos-
sible, and at least one definite rotten-greasy coating patch should be included.
According to the theory of TCM and our observation, the rotten-greasy coating
always appear in the middle and root of a tongue body, while the rest of the
tongue can be ignored.

Patches obtained from a rotten-greasy coating tongue satisfies the assump-
tion of multiple-instance binary classification that there exist at least one posi-
tive instance in a positive bag. Patches obtained from a healthy coating tongue
include only healthy ones.
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Fig. 3. The diagram of patch selection method.

The steps of obtaining the patches are as follows.
Step1: The circumscribed rectangle of the tongue is denoted as R. The height

and the width of the rectangle is denoted as H and W respectively.
Step2: Draw a horizontal line H

3 away from the top of the tongue, denoted
as Q. Use QL, QR to denote its left and right intersection point with the edge
of the tongue. The width of the intersection line is denoted by WQ.

Step3: Find C1 on line Q. C1 locates WQ

3 to the right of QL. Take C1 as the
starting point and WQ

3n as the step length, find Ci (i = 2, 3, . . . , n+1) rightwards.
For each Ci, draw square with Ci as its center and WQ

6 as its side length. The
squares represent the selected patches.

As shown in Fig. 3, by changing the side length and the step length, we can
obtain tongue patches of different sizes and numbers.

2.3 Feature Extraction

In this stage, we use a CNN to extract fixed-length feature vectors of the rotten-
greasy coating patches instead of the whole tongue image.

Architecture: We use the pretrained AlexNet described in [10]. It has 8 weight
layers, 5 of which are convolutional layers and the rest 3 are fully connected
layers. There are 4096 units in the second fully connected layer and the outputs
of this layer are used as features. Thus, we can extract a 4096-dimension feature
vector for each patch. We drop the last 1000-way fully connected layer and
replace it with a 2-way fully connected layer during the network training.

Training: The network is first pretrained on ILSVRC2012 [11] dataset and then
followed by fine-tuning on tongue coating patches. All tongue coating patches are
obtained using the method described in Sect. 2.1. These patches are only used
for fine-tuning the network. There are about 3000 rotten-greasy coating patches
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in total, which are, however, not enough to train such a high-capacity network.
The network would fail to converge if it is not pretrained. We use stochastic
gradient descent to fine-tune the network with a batch size of 128 and a learning
rate of 0.0001. We stop the training after 20 epoches since the accuracy ceases
increasing.

Testing: In this stage, the network serves as a feature extractor. The tongue
coating patches obtained according to the method described in Sect. 2.2 are
used as input, and the network outputs a 4096-deimension vector. Thus, we
can extract a 4096-dimension feature vector for every suspected tongue coating
patch.

2.4 Classifiction

In this stage, we train a MI-SVM to classify the tongue images. In the MIL task
we can learn a classifier based on a training set of bags, where each bag contains
multiple feature vectors [12]. The main idea of MI-SVM is to maximize bag
margin which serves as an extension of the instance margin of standard SVM,
and the details are well introduced in [13]. The input of a MI-SVM is a bag BI

which in our case represents tongue image I. And the instances in the bag are
the features {xi : i ∈ I} we extracted from the tongue coating patches. Instead
of explicitly associating a label yi to each instance, we associate a label YI to a
bag BI . If YI = −1, then yi = −1 for all i ∈ I. If YI = +1, then at least one
instance xi ∈ BI is a positive instance. In MI-SVM, the function margin of a
bag is defined as:

γI = YI max
i∈I

(〈ω, xi〉 + b) (1)

The MI-SVM aims at maximizing the bag margin, which is defined as follows:

min
ω,b,ξ

1
2

‖ω‖2 + C
∑

I

ξI

s.t. ∀I : YI max
i∈I

(〈ω, xi〉 + b) ≥ 1 − ξI , ξI ≥ 0
(2)

In MI-SVM, the bag margin is determined by only one of its instance. For
a positive bag, the margin is decided by the most positive instance, while the
margin of a negative bag is decided by the least negative instance [14]. The label
of the bag is then the label of the image.

3 Experiment

Experimental results are evaluated by the following three metrics: (1) accuracy
(ACC); (2) ture positive rates (TPR); (3) true negative rate (TNR). True Posi-
tive (TP) and False Negative (FN) are samples which are positive and predicted
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to be positive or negative. False Positive (FP) and True Negative (TN) are sam-
ples which are negative and predicted to be positive or negative.

ACC =
TP + TN

TP + FP + FN + TN
(3)

TPR =
TP

TP + FN
(4)

TNR =
TN

TN + FP
(5)

The tongue image dataset used in this paper is provided by Shanghai
Daosheng Medical Technology Co., Ltd. It is a dataset including 274 tongue
images, 186 of them are normal tongue coating images and 86 of them are rotten-
greasy ones. The label of a tongue image is voted by multiple TCM practitioners.
It should be noticed that the samples of ConvNet training are convinced tongue
coating patches selected using the method described in Sect. 2.1. On the other
hand, the samples of MI-SVM training are suspected tongue coating patches
selected using the method described in Sect. 2.2.

Table 1. Comparison between using MI-SVM with CNN and using CNN directly.

Method Accuracy TPR TNR

Alexnet [10] 72.2% 77.7% 69.1%

Alexnet+MI-SVM (Ours) 82.1% 82.0% 82.2%

Table 2. Comparison of different classifiers.

Classifier Accuracy

Decision tree [15] 51.9%

KNN [16] 61.1%

EMDD [17] 67.3%

MI-SVM[13] 82.1%

We present three different experiments of the proposed method. The first is
the comparison of different classifiers with the same feature extractor. Differ-
ent classifiers are evaluated for tougue coating classification using the features
extracted by a fine-tuned CNN. As shown in Table 1, the results demonstrate
that our method achieves an accuracy of 82.1% and a recall rate (TPR) of 82.0%
which is 10% and 4% higher respectively than that of using CNN directly.

The performance of other classifiers with the same features extracted using
AlexNet model is shown in Table 2. It can be seen that the accuracy of the
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proposed method is superior to that of Decision Tree [15], KNN [16] and EMDD
[17].

The second is the comparison of different feature extractors with the same
classifier. SVM is used to test the performance of different feature extraction
methods. Experimental results in Table 3 show that deep features perform better
than handcrafted features such as the features extracted by GLDM [18], Tamura
[5] and Gabor [4].

Table 3. Comparison between different features.

Feature extractor Accuracy

GLDM [18] 54.0%

Tamura [5] 60.2%

Gabor [4] 68.5%

Alexnet [10] 82.1%

The third is the comparison with other works. The three methods are: Li’s
work [3], Qu’s work [6] and Fu’s work [7]. The results of the above experiments
are listed in Table 4. It can be observed from the table that our method has the
highest accuracy.

Table 4. Comparison with otcher methods.

Method Accuracy

Li’s [3] 75.6%

Qu’s [6] 67.9%

Fu’s [7] 58.3%

AlexNet+MI-SVM (Ours) 82.1%

4 Conclusions

In this paper, we have presented a new method for tongue coating classification
using MIL and deep features. The method is divided into three stages. First,
tongue coating patches are selected. Then, a deep CNN is used to extract the
feature of each patch. At last, tongue coating is represented by a bag consisting
of multiple feature vectors and MI-SVM is used to make the final classifica-
tion. Experiment results show that the proposed method outperforms previous
methods. Future work includes two aspects: (1) Collecting more tongue samples.
Since we use a deep CNN as feature extractor, the proposed model always ben-
efits from a larger dataset. (2) Adopting more advanced network architecture to
further improve the accuracy.
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Abstract. The recent state-of-the-art advancements in vehicular ad hoc
networks (VANETs) have led to the emergence and rapid proliferation of
the promising notion of the Internet-of-Vehicles (IoV), wherein vehicles
exchange safety-critical messages with one another to ensure safe, conve-
nient, and highly efficient traffic flows. Nevertheless, such inter-vehicular
communication could not be realized until the network is completely
secured as the dissemination of even a single malicious message may
jeopardize the entire network. Accordingly, numerous trust models have
been proposed in the research literature to ensure the identification and
elimination of malicious vehicles from a network. These trust models
primarily depend on the aggregation of both direct and indirect obser-
vations, and which themselves are computed depending on the diverse
influential parameters pertinent to dynamic and distributed network-
ing environments. Still, optimum weights need to be allocated to these
parameters for generating accurate and intuitive trust values. Further-
more, once the trust for a target vehicle has been computed, a specific
threshold value equal to the minimum acceptable trust score has been
selected for identifying the malicious vehicles. Quantification of these
weights and selecting of an optimal threshold poses a significant chal-
lenge in VANETs. Accordingly, this paper focuses on employing machine
learning techniques as to cope with the said problems in VANETs. It
thus utilizes a real IoT data set by transforming it into an IoV format
and computes the feature matrix for three parameters, i.e., similarity,
familiarity, and packet delivery ratio, in two different ways, (a) all of the
stated parameters computed by each trustor for a trustee are treated as
individual features, and (b) the mean of each single parameter computed
by all of the trustors for a trustee is regarded as a collective feature. Dif-
ferent machine learning algorithms were employed for classifying vehicles
as trustworthy and untrustworthy. Simulation results revealed that the
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classification via the mean parametric scores yielded much more accurate
results in contrast to the one which takes into account the parametric
score of each trustor for a trustee on an individual basis.

1 Introduction

Over the past few decades, the state-of-the-art technological breakthroughs in
VANETs have played a significant role in the advancement of Intelligent Trans-
portation Systems, which is an indispensable constituent of the emerging and
promising paradigm of smart cities [1]. Today, the smart connected vehicles
employ the notion of vehicle-to-everything communication in order to exchange
safety-critical messages with the other vehicles on the roads, with the support-
ing roadside infrastructure and/or backbone networks, and with the vulnera-
ble pedestrians in a bid to guarantee safe, secure, and efficacious traffic flows.
Nevertheless, this could only be possible if the messages disseminated and/or
exchanged by the vehicles are legitimate and are not altered or counterfeited, or
else, this may become a potential source of threat, thereby, resulting in severe
injuries and loss of precious human lives on the roads [2,3]. Malicious vehicles
are competent of altering or counterfeiting safety messages, could restrict trusted
vehicles from taking a part in network operations, and may exhaust network
resources subsequently causing serious damage to both local and geographical
networks [3]. It is, therefore, of paramount importance to guarantee the integrity
of the disseminated and/or exchanged information so as to ensure that its sender
is trustworthy.

In a trust-based model, a vehicle is evaluated by other vehicles in a vehicular
cluster depending on several parameters, i.e., the interactions between the vehi-
cles, how similar their interests are, and how familiar/acquainted they are with
one another, among many others. The vehicle evaluating and assigning the trust
scores to other vehicles is known as the trustor, whereas, the one being evalu-
ated is referred to as the trustee. In general, this evaluation is an amalgamation
of both the direct trust and an indirect trust for each vehicle. It is extremely
indispensable to allocate weights to these parameters in order to ascertain accu-
rate and intuitive trust values. The resulting trust score highly depends on the
assigned weights and quantification of these weights further poses a considerable
challenge. This essentially necessitates an in-depth knowledge of the effects of
each of these individualized influential parameters on the trust evaluation (i.e.,
corresponding to the divergent traffic scenarios and vehicular applications) and
is a complex analysis problem in its own essence. Furthermore, once the trust
for a targeted vehicle has been computed, the malicious vehicles are identified
by opting for a specific threshold value, i.e., equal to the minimum acceptable
trust score, and the vehicles having a trust score below the specified threshold
are considered untrustworthy. Thus, an optimal threshold selection is of huge
significance, as if the threshold is extremely low, the system would not be able
to filter out all the misbehaving nodes, whereas, if the said threshold is set too
high, the trustworthy nodes might also get evicted from the network.
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Accordingly, this paper primarily focuses on exploiting machine learning tech-
niques to cope with the problems of optimal weights and threshold selection
within VANETs. It thus employs a real IoT data set by transforming it into an
IoV format and subsequently computes the feature matrix for three parameters,
i.e., similarity – manifesting as how similar are the interests of the trustor and
the trustee, familiarity – depicting how good the trustor knows the trustee, and
the packet delivery ratio – delineating the throughput between the trustor and
the trustee. The said feature matrix has been computed in two different ways, (a)
all of the stated parameters computed by each trustor for a trustee are treated
as individual features, and (b) the mean of each single parameter computed
by all of the trustors for a trustee is considered as a collective feature. Subse-
quent to the feature extraction and labelling process, different machine learn-
ing algorithms, i.e., support vector machine (SVM), k-nearest neighbors (KNN),
ensemble subspace KNN, and subspace discriminant, etc. have been employed to
classify vehicles into two classes, i.e., trustworthy and untrustworthy. Simulation
results revealed that the classification via mean parametric scores yielded more
accurate results in contrast to the one which takes into account the parametric
score of each trustor for a trustee on an individual basis.

2 Related Work

A brief glimpse of the literature reveals a number of research studies envisag-
ing various trust management models and intrusion detection frameworks for
identifying malicious vehicles and subsequently eliminating them from within
the network. Accordingly, in [3], a trust management heuristic based on job
marketing signaling scheme has been proposed in order to promote cooperative
behavior amongst different vehicles in a network. A credit is allocated to each
individual node within the network, and every time a node behaves maliciously,
an amount depending on the cost of the attack is deducted from the originally
allocated credit so as to discourage the malicious vehicles. Similarly, once a
node manifests a positive participation, the credit is subsequently increased to
encourage the node’s participation and its cooperation with the other nodes in
the network. In [4], the authors proposed a fuzzy logic-based decentralized trust
management framework that flags the unintentional misbehavior of a target vehi-
cle by amalgamating the trustor’s own experience and the suggested evaluation
of it’s neighbors. Moreover, indirect trust was also evaluated for trustees which
were not directly connected to the trustor by utilizing the notion of reinforcement
learning.

A blockchain-based privacy preserving distributed trust management scheme
has been proposed in [5] which breaks the linkability between the public key and
vehicle’s real identity to achieve the anonymity when the certification author-
ity issues or revokes the respective certificates. All the messages were recorded
in the blockchain and trust scores were assigned to each individual vehicle by
evaluating the data transmitted by them, thereby, discouraging misconduct. To
mitigate the adversarial effects of malicious attacks and misbehaving vehicles in
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VANETs, a noteworthy solution is to introduce an intrusion detection system
(IDS) which utilizes signature- and anomaly-based detection schemes for the said
purpose. Hence, a decentralized cooperative IDS has been proposed in [6] which
employed the privacy-preserving distributed machine learning for ensuring a pri-
vate collaboration. The collaborative nature of the proposed scheme encourages
all the vehicles within the network to share their trained data along with the
ground truth to provide a scalable, cost-efficacious, and higher quality mecha-
nism. Moreover, a distributed classification solution has also been achieved using
ADMM (i.e., alternating direction method of multipliers) algorithm. The IDS
suggested in [7] inspects the traffic, employs a deep belief network for simplifying
the data dimensionality, and distinguishes the genuine service requests from the
counterfeited ones. Furthermore, it implements a service-specific clustering to
ensure that the cloud services are available continuously, thereby, guaranteeing
both the quality-of-service and quality-of-experience. In [8], the IDS amalga-
mated support vector machine and the promiscuous mode in order to build the
trust table for the identification and the prevention of attacks, wherein every
vehicle monitors its neighbor for the misconduct. Similarly, authors in [9] intro-
duced multiple types of attacks in their proposed scheme by altering the safety
messages exchanged by vehicles and subsequently classified different malicious
(active) attacks by extracting distinguishing features and via utilizing machine
learning techniques.

Whilst the existing literature has already demonstrated some significant con-
tributions by applying numerous machine learning techniques, nevertheless, they
still lack the potential of being a generic algorithm that could be commonly
applied to any of the service domains and across diverse parameters. Moreover,
the existing research studies merely rely on the conventional factors in the trust
assessment process and the impact of the influential parameters (i.e., similarity,
familiarity, and packet delivery ratio) on the trust assessment and aggregation
process has been completely ignored.

3 System Model and Simulation Results

We envisage a machine learning-based trust management scheme to identify
malicious (dishonest) vehicles for eradicating them from the network in a bid
to restrict them from causing any further harm and to conserve the precious
network resources. The proposed system model comprises of two main steps. The
first step utilizes unsupervised learning algorithms to cluster and label the data,
whereas, the second step relies on supervised learning algorithms for classifying
the vehicles into two groups, i.e., untrustworthy and trustworthy.

The simulations are performed for a vehicular network (i.e., cluster) com-
prising of n vehicles as xi, where i = 1, . . . , n. Every vehicle xi has j one-hop
neighbors, where j = 1, . . . , (n − 1) and (i �= j), and is evaluated by them, i.e.,
xi is the trustee and xj is the trustor. The evaluation transpires on the basis of
three parameters, i.e., similarity (SMRi,j), familiarity (FMRi,j) and the packet
delivery ratio (PDRi,j). The parameter values vary in the range of 0 and 1,
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wherein 0 represents the lowest correlation between a pair of a trustor and a
trustee, whereas, 1 signifies the highest correlation of the said pair.

3.1 Data Set and Feature Extraction

For the envisaged system model, we have employed an IoT data set from CRAW-
DAD1 by suitably transforming it into an IoV format. The proposed trust man-
agement model has been evaluated via MATLAB simulations for 20 vehicles.
We defined three scoring parameters, i.e., similarity, familiarity, and the packet
delivery ratio for evaluating each node in the network as follows:

Similarity (SMR) – In a vehicular network, the similarity (0 ≤ SMR ≤ 1)
relates to the degree of similar content and services amongst any two vehicles.
The similarity is computed as, SMRi,j = Si,j

Sj
, where Si,j is the number of com-

mon content or services accessed by both the trustor and the trustee, and Sj is
the total number of content or services accessed by the trustor.

Familiarity (FMR) – Familiarity (0 ≤ FMR ≤ 1) suggests the degree of how
well a trustor is acquainted with the trustee. The familiarity is computed as,
FMRi,j = Fi,j

Fj
, where Fi,j is the number of common friends between both the

trustor and the trustee, and Fj is the total number of the trustor’s friends.

Packet Delivery Ratio (PDR) – The packet delivery ratio (0 ≤ PDR ≤ 1)
depicts the throughput between the trustor and the trustee. The packet deliv-
ery ratio is computed as, PDRi,j = Pi,j

Pj
, where Pi,j manifests the number of

messages disseminated by the trustee i that were successfully received by the
trustor j, and Pj is the aggregate number of messages sent to j by i.

These three parameters are calculated for each pair of a trustor and a trustee
that exists in the vehicular network and the scores are thus recorded in two
different feature matrices. In the first feature matrix, the rows in fact represent
the trustees (there are n = 20 number of rows) and the columns represent the
said parameters (SMR, FMR, and PDR) ascertained by each trustor for each
trustee on an individual basis, i.e., there are 3n − 3 number of columns. This
feature matrix (see, Eq. 1) is formed with an intent to inspect the impact of each
trustor for a trustee against each parameter in the final classification.

FM1 =

⎡
⎢⎣
SMR11 . . . SMR1n−1 FMR11 . . . FMR1n−1 PDR11 . . . PDR1n−1

...
. . .

...
...

. . .
...

...
. . .

...
SMRn1 . . . SMRnn−1 FMRn1 . . . FMRnn−1 PDRn1 . . . PDRnn−1

⎤
⎥⎦

(1)
On the contrary, in the second feature matrix, the rows represent the trustees

(there are n = 20 number of rows) and the columns signify the mean of each
1 The data set can be accessed at: https://crawdad.org/thlab/sigcomm2009/

20120715/.

https://crawdad.org/thlab/sigcomm2009/20120715/
https://crawdad.org/thlab/sigcomm2009/20120715/
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of the parameter (SMR, FMR, and PDR) computed for each trustee by all
the trustors, i.e., there are 3 columns in total. This feature matrix (see, Eq. 2)
is formulated with an aim to classify the vehicles on the basis of their mean
parametric scores.

FM2 =

⎡
⎢⎣
SMRavg1 FMRavg1 PDRavg1

...
...

...
SMRavgn FMRavgn PDRavgn

⎤
⎥⎦ (2)

3.2 Clustering and Labelling

The computed score for each parameter is used to classify the vehicles into two
clusters, i.e., trustworthy and untrustworthy. The said clusters are ascertained
by employing the algorithms that we have envisaged on the basis of the unsuper-
vised learning algorithms, i.e., k-means, fuzzy c-means, hierarchical clustering,
and gaussian mixture, to label the feature matrices obtained in the previous sub-
section. The key rationale for employing all of these four unsupervised learning
algorithms is to ensure a credible, reliable, and persistent ground truth. The
cluster closer to the origin is categorized as the malicious, whereas, the other is
regarded as the trusted one. In other words, vehicles with a higher parametric
score are more credible in contrast to the ones having a lower parametric score.
These obtained labels are subsequently incorporated into the feature matrices.
It is pertinent to mention that both of these feature matrices would have differ-
ent labels as the data points inside the said matrices are in contrast with one
another.

Owing to space constraints, only the clustering of data points (i.e., vehicles)
from FM2 into two clusters is illustrated in Fig. 1. To facilitate the visuality, the
clustering for each pair of features is depicted.

3.3 Classification Model

Subsequent to both the clustering and the labelling mechanism, the supervised
learning classifiers have been employed to the resulting feature matrices for
training with a 5-fold cross validation so as to identify malicious vehicles by
obtaining the decision boundary due to their distinct characteristics. A variety
of the machine learning techniques based on k-nearest neighbors, support vector
machine, and the ensemble classification models have been utilized.

The overall accuracy, malicious nodes’ classification accuracy, precision,
recall, F1-score, and the decision boundary for each classifier have been com-
puted for performance evaluation purposes. Simulation results revealed that the
classification via mean parametric scores yielded comparatively more accurate
results in contrast to the one which takes into account the parametric score of
each trustor for a trustee on an individual basis, as depicted in Fig. 2. It could
be observed that the minimum overall classification accuracy while taking into
account the mean parametric score is provided via Cubic KNN and Medium
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Fig. 1. Clustering of labels using unsupervised learning (a) similarity vs. familiarity,
(b) familiarity vs. packet delivery ratio, and (c) similarity vs. packet delivery ratio

KNN as 90%, whereas, while using the individual parametric scores, the min-
imum overall classification accuracy is yielded via Linear SVM and Subspace
KNN and is found to be 65%. It is pertinent to highlight that the best malicious
vehicles’ classification result of the proposed trust management model is yielded
by taking the mean parametric scores and via Subspace KNN.

Figure 3 depicts the performance evaluation of the envisaged trust model
with respect to malicious nodes’ classification in terms of precision, recall, and
F1-score. Precision is defined as the accuracy of the model to classify malicious
nodes as malicious, whereas, recall is the proportion of the malicious nodes that
have been correctly identified. F1-score represents the weighted mean of the two.
All of the three performance evaluation metrics mentioned above ranges from
0 to 1, i.e., 0 represents the worst and 1 manifests the best performing model.
It could be observed that Subspace KNN yields the perfect precision, recall,
and the F1-score equal to 1. Accordingly, Fig. 4 depicts the pair-wise decision
boundary between the trustworthy and untrustworthy vehicles using Subspace
KNN classifier.
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Fig. 2. Malicious vehicles’ classification accuracy via different machine learning classi-
fiers
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Fig. 3. Performance evaluation for malicious vehicles’ classification (Precision, Recall,
and F1-score)
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Fig. 4. Decision boundaries (a) similarity vs. familiarity, (b) familiarity vs. packet
delivery ratio, and (c) similarity vs. packet delivery ratio (boundary for untrustworthy
vehicles is depicted in red, whereas, blue manifests the trustworthy vehicles’ region)
(Color figure online)

4 Conclusion and Future Directions

In this paper, we have proposed a distributed trust management scheme that
considers the notion of similarity, familiarity, and packet delivery ratio amongst
the vehicles and employs supervised learning to identify and subsequently erad-
icate multiple malicious vehicles in real-time by ascertaining an optimal trust
threshold. Our simulation results demonstrate the significance of these selected
feature parameters in the classification of the dishonest vehicles. In the near
future, the authors intend to apply the paradigm of online machine learning for
trust management in vehicular networks to ensure a precise and resource efficient
mechanism for the early eradication of misbehaving vehicles before they could
disrupt the network performance.
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Abstract. Security verification and validation is an essential part of the
development phase in current and future vehicles. It is essential to ensure
that a sufficient level of security is achieved. This process determines
whether or not all security issues are covered and confirms that security
requirements and implemented measures meet the security needs. This
work proposes a novel ontology-based security verification and validation
model in the vehicular area. Ontologies allow creating a comprehensive
view of threats and security requirements. The proposed model performs
a series of queries and inference rules to the comprehensive view to ensure
the compliance of vehicle components with security requirements.

Keywords: Ontology · Verification and validation · Potential threats ·
Security requirements

1 Motivational Background

Modern vehicles are part of a substantial ecosystem, including communication
with stakeholders, infrastructures, customers, and authorities. The increase of
connected units in vehicles leads to a considerable number of attack surfaces,
which possibly leads to an increasing amount of security incidents. A vehicle
might perform correctly according to the functional requirements; however, it can
make other unintended tasks in the process. Furthermore, verification and vali-
dation (V&V) procedures can miss simply some of the hidden security defects,
which lead to threatening the whole vehicle. Accordingly, the vehicular security
requirements must be fulfilled [7]. One way to manage the structure of security
requirements is to define them in groups called protection profiles. A Protection
Profile (PP) is a document that describes the security considerations and result-
ing requirements for a Target of Evaluation (ToE) according to Common Criteria
c© Springer Nature Switzerland AG 2019
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(CC) [5]. The ToE is an abstract description of a system or a system unit for
specific usage. Besides, the PP identifies Security Target (ST) or security prop-
erties of ToE(s). It is essential to ensure the compliance of one or more PP(s)
with identified ToE(s) to develop secure vehicles. This is especially important
since systems designed for vehicular usage are often reused in a different context.
Assuring that such a system complies with the PP for this context ensures that
it is security needs are covered.

This work introduces a novel ontology-based security V&V model for the
vehicular industry. The model creates a comprehensive ontological representa-
tion in terms of classes, subclasses, individuals, annotations, properties, and
datatypes of vehicular ToE(s), threats, vulnerabilities, and security requirements
(according to CC). A series of inference rules are applied to the ontology to
determine whether or not the selected security requirements cover the security
gaps, and confirms if security requirements meet the actual security condition.
If this is not the case, it uses a Knowledge Base (KB) of several PPs to select
additional security requirements. These additional requirements are applied to
handle existing security weaknesses and assure the compliance with protection
profiles to meet the ST of ToE. The ontologies assist in validating and verify-
ing the operational and the performance of the security requirements against
the vehicular security gaps. The paper is organized as follows; the related work
on automotive cybersecurity is discussed in Sect. 2. The main contribution of
this work is presented in Sect. 3. A description of threats and relevant security
requirements of some interconnected units in a modern vehicle is described in
Sect. 4. Section 5 demonstrates that the importance of ontologies in the V&V
process to manage a massive amount of security requirements. Then, the paper
ends with a summary, conclusion, and presents future work.

2 Related Work

In 2010 cybersecurity began to take more attention in the automotive indus-
try [11]. The vehicles could have physical changes if malicious messages could
be injected into internal parts of a vehicle such as the Controller Area Network
(CAN bus) [8]. Nevertheless, the attack surface against vehicles not only by
physical access but also there are several remote approaches. Ref. [1] defines four
different methods for remote vehicle attacks. In modern vehicles, the diversity in
communication protocols and heterogeneity between connected units lead to a
potential increase in the number of security vulnerabilities. Furthermore, cyber-
security requires to be considered in all of the vehicular development phases. The
development of vehicles is a distributed effort, regarding different organizations
which use various methods. The majority of current security requirements ver-
ification processes are performed in the late phase of the development process
since it needs the System Under Test (SUT) to be implemented, where both
budget and time are very limiting circumstances [7].

The ontology approach has been proposed in several works in the cyber-
security domain [9]. Ref. [13] proposed a reference ontology to help in finding
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Fig. 1. The proposed ontology-based V&V model

security solutions to the Internet of Things (IoT) environment. The proposed ref-
erence ontology is based on the modeling process to unify concepts and explain
relationships among the main components of risk analysis of information secu-
rity. Ref. [12] introduced a technical framework to monitor business process and
technology assets using an ontology and knowledge reasoning for IoT security.

3 Ontology-Based Security V&V Model

The proposed model uses ontologies to describe a set of representational prim-
itives of classes, individuals, and annotations of security properties of vehicles.
The ontology generates new machine-processable meta-data for the vehicle secu-
rity information, and then the model creates a domain knowledge. The domain
knowledge is essential for identifying the relationships between threats and secu-
rity requirements to verify and validate these security requirements according to
CC in one or multiple PP(s). This Section describes the structure of the proposed
model, as shown in Fig. 1. The model consists of three main phases.

3.1 Phase One: Digesting Data

This phase receives data of ToE(s) with all related threats and security require-
ments. These data are processed by multiple sub-phases to extract the required
information [6].

– Ingestion: collects the data are as follows:
• list of identified assets with all related information,
• all the detected threats with all related information details (i.e., name,

id, type, description, and risk severity),
• list of the security requirements according to the selected PP(s).

– Digestion: processes the raw data into a standard form that can facilitate
to extract specific values from the original format.

– Absorption: extracts all data values which are needed to create an ontolog-
ical representation from the input.

– Assimilation: acts as a filter to get rid of all unnecessary data. For example,
the threats with low severity risk are not considered as significant security
issues to threaten a vehicle.
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– Ontology Mediator: this process propagates semantic annotations or state-
ments (triples) in the form of the subject (threat) – predicate (property)
– object(security requirements) which is defined the relationships between
threats and the related security requirements.

3.2 Phase Two: Ontology Builder

This phase generates a comprehensive ontological overview of the threats and its
relationships with security requirements. This overview has two main hierarchies:

– Threats Hierarchy: this is a hierarchical representation of a typical con-
struction of vehicle threats.

– Security Requirements Hierarchy: it is a semantic representation of secu-
rity requirements that are related to a specific PP for addressing potential
vehicle threats.

Afterward, this phase creates an ontology linking between the threats hier-
archical nodes and the security requirements nodes. This process defines links
between these two hierarchical ontologies, which represent that the selected secu-
rity requirements can handle one or more potential threat(s). The output of this
phase is called “Ontology Outlook” as is illustrated in Fig. 1 phase two. The
left side of the ontology outlook represents the threats, whereas the security
requirements are illustrated on the right side.

3.3 Phase Three: Security Verification and Validation

This phase is the core of the proposed model, which consists of two main parts:

Ontology Knowledge Base: this is a set of specific instances of PPs with all
included security requirements and common criteria in an ontology representa-
tion format.

Ontology Security Testing Algorithm (OnSecta): is an ontology reasoner uses the
Ontology Outlook to perform security V&V procedure:

– Ontology Compiling: this process compiles the contents of the Ontol-
ogy Outlook (i.e., classes, subclasses, terms, annotations, and properties);
this allows understanding the ontology linking between threats, and security
requirements.

– Verification: performs a set of queries for ensuring that the vehicular ToEs
are developed regarding CC according to specific PP.

– Validation: it assures the compliance of ToEs with PP to meet the actual
ST. If that is not specified, OnSecta performs a series of inference rules to
select new security requirements from other PPs in the KB to reach the actual
ST.

– Concept Validity: this activity checks the content of the ontology KB to
find new security requirements from other PPs.
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Fig. 2. Data flow between internal components in a modern vehicle

4 Case-Study: Modern Vehicles in Smart Farming

Future farming needs combination with innovative technologies to adapt and
improve the production process. Smart farming applies and combines smart
things with approaches from industry4.0 and intelligent mobility to address the
challenges and improve a holistic system [9]. Integrating modern vehicles with
current and future farming applications makes the farming process easier. The
case-study shows a simple example of interconnected units in a modern vehicle
as is depicted in Fig. 2. The Figure contains a “Sensor” unit that collects data
from the external environment. The sensor data are sent to “Sensor Control
Unit” to process these inputs. Then the “Control Unit” manipulate the data to
deliver the appropriate action to the “Actuator” unit for different action sce-
narios (i.e., drilling, fetching, cutting, etc.). Besides, the “Control Unit” controls
the tracking of the vehicle according to different situations, such as controlling
the vehicular “Brakes.”

A secure vehicle can be developed only if the exact security requirements
are fulfilled against potential threats. In the course of the authors’ research,
they developed the Threat Management Tool (ThreatGet). ThreatGet identifies,
detects, and understands potential threats in the vehicular sector. It integrates
the initial steps of the developing vehicular process to guarantee the security-
by-design [3]. In addition, the authors created a security requirement tool is
called Model-Based Security Requirement Management Tool (MORETO) [16].
MORETO aims to manage a vast number of PPs with all related security require-
ments according to CC. The ThreatGet and the MORETO tools are applied to
this example to define potential threats, manage, and select security require-
ments. Afterward, the ontology-based model is applied to validate and verify
the selected security requirements. The model generates multiple classes, sub-
classes, individuals, properties, and annotations of all detected potential threats
and selected security requirements. Then it generates the Ontology Outlook to
depict a comprehensive overview of all threats and security requirements as dis-
cussed in Sect. 3.2. Figure 3 shows the structure of the Ontology Outlook; this
structure consists of three main parts:
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Fig. 3. Ontology outlook: ontology hierarchy between threats (left) and security
requirements (right)

– Potential Threats (left-side): this hierarchy has all the vehicular units,
which are defined in this case study. The colored nodes define the threat
categories regarding the STRIDE model (i.e., Spoofing (S), Tampering (T),
Repudiation (R), Information Disclosure (ID), Denial of Service (DoS), and
Elevation of Privilege (EP)) [17]. The leaf nodes represent the actual detected
potential threats.

– The Security-Requirements (right-side): this hierarchy represents CC
are used to handle the potential threats. The colored nodes represent the
category of security requirements (i.e., access control, communication port
access, use control, data confidentiality, and so on). The leaf units represent
the exact security requirements.

– The Links Between the Two Ontologies: the links between these two
hierarchies can be defined not only between leaves of the hierarchies but also
between internal nodes. Accordingly, a node specifying a more general threat
type in the threat ontology can link to a subtree in the security requirements
hierarchy identifying a set of similar security requirements can fit for handling
related security issues [15].

OnSecta uses SPARQL language to perform queries across diverse data
sources (threats and security requirements). These queries are applied to ensure
that a vehicle is being developed based on standard security requirements,
according to CC. Besides, to assures, the compliance of ToEs with PP meet
the actual ST. OnSecta applies a series of rules to specify new PPs and selects
additional security requirements. The rules are based on Semantic Web Rule
Engine (SWRL), SWRL builds up a Horn clause representing the simple if-then
conditional statement likewise formally from the Ontology KB to select proper
security requirements [4].
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5 Model Evaluation

Ontologies are considered a powerful method that uses regular specifications for
knowledge representation such as vocabularies, taxonomies, classes, individuals,
and annotations. Ontologies function acts like the human brain. They work and
reason with concepts and relationships among multiple entities. That is consid-
ered the same way as humans perceive interlinked thoughts [14]. Furthermore,
ontologies are integrated with this proposed model to perform security verifica-
tion and validation in the vehicular domain. The vehicle development process
requires to merge a significant number of security requirements according to
multiple PPs. For instance, the requirements that relate to the Security Devel-
opment Lifecycle (SDL) are appropriate to all industrial application such as
vehicle development [10]. Managing hundreds or thousands of security require-
ments is considered a challenging task because it is time-consuming and complex
work. The structure of the ontologies has a significant role in reducing the query
complexity [2]. Furthermore, OnSecta manages ontologies by applying queries
and rules over a massive number of ontology entities and define relationships
and concept matching new security requirements to achieve a particular ST.
Especially in the automotive domain the basic hardware of ECUs is often used
for multiple vehicle types and even roles in the same vehicle where an adaption
to new roles is done only by software and configuration. Giving guidance on the
necessary security requirements for a specific role will ease the re-usability and
adaptability of ECUs.

6 Conclusion and Future Work

To conclude this contribution, security verification and validation in the vehic-
ular domain is one of the most critical challenges in the vehicular industry. On
the first hand, it is quite a time, and effort consuming process to manage hun-
dreds of interconnected units with thousands of threats. On the second hand,
multiples of security requirements address potential threats according to CC.
This work introduced an ontology-based security V&V model for current and
modern vehicles. Ontologies are used to define domain knowledge representation
of potential threats in vehicles and security requirements in multiples of PPs.
The core of this model is OnSecta, which applies queries and a series of inference
rules to perform verification and validation process to ensure the compliance of
vehicle components with PP to meet a required ST. Future work will include
the following points:

– Protection Profiles: create ontological representations of the most common
security requirements in the vehicular domain.

– OnSecta Implementation: OnSecta is still in the developing stage; the
authors work on developing the different building blocks of OnSecta.

– Comparative Study: the future work will include a comparative study
between the proposed method with other kinds of typical techniques in the
related domain to validate the superiority of the proposed method.
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Abstract. An important factor in the operational success of any tele-
operated human-swarm system is situation awareness (SA). A loss of SA
has been associated with poor human performance, which can lead to
misjudgement, errors, and life-threatening situations. One of the major
factors that causes loss of SA is the degradation of data transmission. It
is imperative to assess the SA of an operator before the performance of
a teleoperated system has declined, in particular in situations of delayed
relay and/or loss of critical information. We use electroencephalography
(EEG) to predict different levels of SA. A human-swarm simulation was
used to obtain subjective scores from participants. Quality of informa-
tion significantly affected the perception of SA of the participants. EEG
data provided objective confirmation of the resultant SA level. Theta,
Alpha, and Beta band exhibited an increase during loss of SA. Frontal
and occipital areas were identified to reflect changes in SA. These prelim-
inary results offer evidence for the potential use of EEG to offer real-time
indicators for the objective assessment of SA.

Keywords: Cognitive assessment · Human performance · EEG ·
Teleoperation

1 Introduction

Teleoperated systems provide humans the ability to perform difficult or danger-
ous tasks that otherwise cannot be achieved by having humans in-situ. Teleopera-
tion can be defined as doing work at a distance. Typical examples of applications
of teleoperated systems are: handling of nuclear materials, assisting in rescue
missions underwater or after natural disasters (e.g., earthquakes), performing
surgery on unreachable areas in the human body by a surgeon, and conducting
surveillance in war and high-risk regions. In these contexts, one or more humans
use an interface to control one or several robots from a command room, which
might be in a different geographical location from the area of operations.
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An important factor in the operational and mission success of any teleoper-
ated system is situation awareness (SA); a term that is normally used to describe
the recognition, understanding, and future projection of the elements in a situa-
tion’s context. In her seminal work, Mica Endsley [6] provided a SA framework
that decomposes it into three levels: (1) Perception of elements in the current
situation, to gather all the information that is currently available; (2) com-
prehension of current situation, to synthesize raw information into meaningful
patterns/clues to understand the current situation; and (3) projection of future
states, where the cumulative understanding of the elements in the surrounding
environment is used to predict the status and dynamics of these elements in the
future.

One of the major factors that causes loss of SA is degradation of data [6].
Failures in data transmission exhibit a common set of problems including infor-
mation latency (timing is too late to be effective), and information loss (contents
are completely lost, not consistently complete or inaccurate) [8]. In particular,
information loss, has been shown to have a degrading impact on SA [6]. In avia-
tion, for instance, Thornton [11] has shown that the number of communications
requesting clarification made by aircraft crew members was positively correlated
with the number of committed errors. Therefore, it is imperative to predict the
loss of situation awareness before performance declines.

A method that has often been used to measure SA is the situational awareness
global assessment technique (SAGAT), which was developed by Endsley [6] to
measure individual SA. In human-machine systems, it is used to evaluate system
design to ensure that the system in question supports the operator’s SA require-
ments. SAGAT is used during a simulation of the system, it works by freezing
the simulation at randomly selected times and operators answer questions about
their perception of the situation at that time. The questions examine the three
levels of SA (perception, comprehension, and projection). However, this method
is not well suited for contexts where an uninterrupted and objective assessment
is desirable.

Previous attempts to measure SA objectively are limited and have shown
diverse results. Catherwood et al. [2], used electroencephalography (EEG) to
map brain activity during loss of situation awareness in identification of target
patterns and threats in urban scenes; their results showed that loss of situation
awareness activated cortical areas associated with cognition, such as, prefrontal,
anterior cingulate, parietal, and visual regions. Yeo et al. [14] used EEG to
monitor SA in an air traffic controller (ATC) task, their model predicted the
response latency of the ATC operators with a 10% error. In another study, Berka
et al. [1] used EEG to determine SA in a naval command task; the study was
based on EEG-engagement and EEG-workload metrics and their results showed
that engagement and workload decreased as participants gained experience in
the simulation task, which represented better SA.

The effect on quality of information in the perceived SA in teleoperated
systems has not been explored in any of the current literature. We close this gap
in this paper by using electroencephalography (EEG) to predict different levels
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of SA in a human-swarm interaction task. The hypothesis of this study is that
the latency and loss of information will impact operators’ SA in our teleoperation
system and that EEG can be used to identify these changes in the perceived SA
by the operators.

2 Methods

2.1 Task and Scenario Design

The experimental task is undertaken using the Virtual Battlespace 3 (VBS3)
(Bohemia Interactive Simulations, Orlando, FL, USA) simulation environment.
Subjects teleoperate an Uninhabited Aerial Vehicle (UAV) to guide a swarm
formation of autonomous unmanned ground vehicles (UGVs). Only the UAV
remote-operator knows the destination defined by the mission profile. The UGVs
consist of a group of 4 vehicles with capabilities to self-organize to autonomously
maintain a formation during the mission. The operator’s graphical user interface
displays sufficient information to successfully guide the UAV.

The interface (Fig. 1) has two main displays located side by side on the top.
On the left side, there is a lateral view of the UAV and UGVs’ positions on a
map. The UAV is presented by a green rectangle and the UGVs are visualized
as blue rectangles. A blue star marks the UGVs’ destination on the map. On
the right side, real-time video streamed from the UAV camera is provided to
the operator. At the bottom of the interface, detailed information on the UAV
and UGVs’ status including their positions, headings and speeds are provided.
In the middle of the interface, a panel lists all possible UGV formation options,
however, for this study we limit the formation to a boxing formation alone.

Fig. 1. UAV pilot interface.

Each experiment runs a simulation that combines four scenarios of different
levels of information quality. Each scenario lasts 4 min and is repeated twice.
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Three SAGAT questions are given to the participants in each scenario, in which
the simulation is frozen at randomly-chosen times for 20 s per each question.

2.2 Experimental Design

A within-subject design with four different conditions determined by different
levels of quality of information was used in this study. The four conditions
(scenarios) are: (1) low latency/delay and low dropout; (2) low delay and high
dropout; (3) high delay and low dropout; and (4) high delay and high dropout.
The experiment is counterbalanced by using the composite 3 × 3 Latin Square
design to avoid confounding due to order effects. In our experiment, informa-
tion latency is the amount of time a video frame from the UAV camera and
the status of all vehicles to traverse in the camera’s field of view are delayed to
the interface; while, information loss is the time in which video frames and data
about the status of vehicles is lost during data transmission.

However, to study the effect of these two variables on the perceived SA,
artificial information latency and information loss are injected into the system.
These two variables are modelled using two parameters, d for the delay time
(Low d = 1 s, High d = 9 s) of information transmission, and lf for the number
of video frames lost per second (Low lf = 1 s, High lf = 9 s) in transmission.

2.3 Participants

Ten participants (mean age 31 ± 5.9 std.) were recruited for the study. The
experiment was approved by the Faculty Research Ethics Committee (approval
number: HC180554) and all participants provided written informed consent to
participate in the study. An introduction to the experimental procedure and
practice session were provided to the participants before the start of the study.
The participants were instructed to start the experiment after a 2-minute break,
the complete session lasted approximately 50 min.

2.4 Electroencephalography (EEG)

A wireless EEG acquisition system (Emotiv EPOC) was used to record neural
activity. This device has a resolution of 14 channels (plus 2 reference channels)
with a sampling frequency of 128 samples per second. Figure 2 presents the
headset and the channel positions based on the international 10–20 EEG system
of electrode placement. Channel locations correspond to: AF3, F7, F3, FC5, T7,
P7, O1, O2, P8, T8, FC6, F4, F8, AF4, M1, and M2. M1 is used as the ground
reference channel for measuring the voltage of the other channels, while M2 is
used as a feed-forward reference point to reduce external electrical interference.

EEG pre-processing was performed in Matlab (version 2018b, The Math-
Works Inc.) by using custom software. Baseline correction was performed by
subtracting the corresponding mean from a pretrial (200 ms) period from each
channel. Then, EEG signals were band-pass filtered between 2 and 43 Hz using a
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Fig. 2. Channel location of the 14-channel Emotiv headset.

FIR filter, which helps remove high-frequency artefacts and low-frequency drifts.
Electrode movement artefacts were manually removed from the data. Artefacts
from eye blinks were corrected using the multiple artefact rejection algorithm
(MARA) [13].

2.5 Feature Extraction and Classification

Feature extraction was carried out using spectral analysis. First, the power dis-
tribution from each channel was studied by transforming the EEG into power
spectral density (PSD) using a fast-Fourier transform (FFT) and using 10-s
windows with 50% overlapping windows multiplied by the Hamming function
to reduce spectral leakage. Second, from each window, the EEG channels were
decomposed into sub-bands: delta (2–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta
(12–30 Hz), and gamma (30–40 Hz). Third, the PSD results of each frequency
band were normalized (1/f) to obtain the relative PSD of each band to the base-
line time period. This normalization helps to make quantitative comparisons of
power across frequency bands. Finally, the resulting PSD values in each band
were averaged to obtain the power spectral features used for classification.

The classification task is to determine the level of SA based on the recorded
EEG signals from each participant. To identify the four levels of SA, we used
the linear discriminant analysis (LDA) algorithm. The reason to choose LDA
is because it is the most popular classifier in BCI research due to its good
performance and low computational cost, attributes needed for the development
of an on-line assessment of SA in our future work. To measure the classifier’s
performance, the data was divided into two parts with 70% for training and
the remaining 30% used for testing and to report generalisation performance.
k -fold cross validation (k = 10) was performed on the training set; the training
set was randomly divided into k partitions. Then, k -1 partitions are used to
fit the learning model and the remaining partition used to validate the model,
this process is repeated k times, and each time using a different partition to
validate the model. The final generalisation results are presented as the average
and standard deviation on the 30% untouched test set.
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3 Results

3.1 Situation Awareness

SAGAT was used with an hypothesis that in conditions with low drop out and low
delay (e.g., Scenario 1), the rate of correct responses to the questionnaire will be
higher than the rate of correct responses in conditions with high drop out and high
delay (e.g., Scenario 4). Figure 3 presents the SAGAT response obtained from the
subjects. The recorded response to each question is stored as correct or incorrect
answer for each condition and the three responses in each condition are averaged.
The overall trend of subjects’ response to SAGAT questionnaire shows higher SA
(mean = 0.83) in good-quality communication scenarios (Scenario 1) and low
SA (mean = 0.48) in bad-quality communication scenarios (Scenario 4); these
findings are in line with our hypothesis. The SAGAT response was then used for
statistical analysis.

Fig. 3. Subjects response to SAGAT questionnaire.

A repeated measures ANOVA test was used to examine changes in mean
scores under different conditions (scenarios). The research hypothesis is that the
mean SAGAT scores are significantly different in at least two conditions (i.e.,
that the distribution of responses varies according to the scenario). Therefore,
the null hypothesis is as follows, H0: The mean SAGAT scores are the same at
all conditions. The response rate of each question is measured and the observed
means (the SAGAT scores) in each condition are obtained. The level of signif-
icance to reject H0 is α = 0.05. The results (Sphericity Assumed p = 0.21)
showed that mean participants response to the SAGAT questionnaire differed
significantly between conditions [F (3, 27) = 4.541, p = .011, partial η2 = 0.335].

Tukey’s multiple comparison was used as post-hoc test. The pairwise com-
parisons revealed significant differences between the communication conditions
with good-quality(scenario 1), medium quality (scenario 2) (p = 0.026), and bad
quality (scenario 4) (p = 0.017). Based on these results, we conclude that the
difference in the mean scores of these three conditions (Scenario 1, Scenario 2,
and Scenario 4) is significant and that the situation awareness assessment is sig-
nificantly (p < 0.05) affected by the quality in communication presented in our
teleoperated system.
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3.2 Neural Response to Situation Awareness

We investigated the cognitive perception to SA using EEG. The majority of
the neural response was observed in the frontal area, in particular in the Delta,
Theta, and Alpha bands; however, in the beta and gamma bands the activation
was also observed in channels located on the temporal lobe (such as, T7 and
T9). The hypothesis is that channels with strong response will present better
discrimination between different levels of SA.

First, we determined the frequency bands that showed the best response
using all the available channels. Figure 4 presents the average response of each
feature to different levels of SA. Overall, features from all frequency bands pre-
sented an increase between Scenario 1 and Scenario 4, and this increase was
statistically significant (p < 0.01) only in Theta, Alpha, and Beta bands. These
results suggest that the operators’ perception to good-quality communication
scenarios (Scenario 1) and bad-quality communication scenarios (Scenario 4)
can be observed as an increase of PSD value in all frequency bands. Therefore,
the Theta, Alpha, and Beta bands were used as features to train our classifier
and to predict the level of SA in the operators.

Fig. 4. Average response of all subjects for each frequency band to different levels of
SA

Second, based on the observed frequency response (Fig. 4), the channels that
best responded to each scenario were explored. The response distributions of
Theta, Alpha, and Beta were explored in all channels, and the best data sep-
aration were observed in Channels F3, O2, and F4 (please refer to Fig. 2 for
cortical locations). Figure 5 shows the distributions across the scenarios (1–4)
using the average of the three bands. The overall trend among all the channels
showed similar distributions, however, these channels (F3, O2, F4) presented
better separation between good-quality communication scenarios (Scenario 1)
and bad-quality communication scenarios (Scenario 4).

Third, two conditions were tested in the classification task using the LDA
classifier to corroborate the observed distributions. These conditions are: using
features of all the frequency bands, and using features of only Theta, Alpha,
and Beta. Table 1 presents the classification results (accuracy ± std.) of these
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Fig. 5. Average response of all subjects to different levels of Situation Awareness using
Theta, Alpha, and Beta bands.

two conditions. Overall, the LDA classifier using only the three PSD features
(Theta, Alpha, Beta) showed slightly better results (76.22 ± 10.2) than the
classifier using all PSD features (72.34 ± 8.2). These results are in line with the
frequency response of each band presented in Fig. 4. For instance, the uniform
(non-significant) response of Delta and Gamma bands between scenarios (except
for Scenario 2) suggest that the discrimination between scenarios becomes more
difficult when these two bands are included in the feature space, therefore the
lower classification rate in most of the subjects.

Table 1. Performance (accuracy in %) results of the LDA classifier.

Number of features

Theta, Alpha, Beta All PSD features

Subject 1 92.03 ± 3.3 80.07 ± 4.7

Subject 2 75.22 ± 6.6 63.71 ± 6.6

Subject 3 76.99 ± 4.2 79.64 ± 5.9

Subject 4 61.94 ± 5.0 60.17 ± 6.0

Subject 5 87.61 ± 3.7 74.33 ± 5.6

Subject 6 81.41 ± 5.4 82.30 ± 4.4

Subject 7 75.39 ± 4.6 69.91 ± 5.2

Subject 8 59.13 ± 7.1 61.06 ± 7.3

Subject 9 80.53 ± 6.1 74.33 ± 6.8

Subject 10 71.94 ± 4.6 77.87 ± 5.9

Average 76.22 ± 10.2 72.34 ± 8.2
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4 Discussions

This study aimed to explore the impact of latency and loss of information on
the operators’ perception of SA and also use EEG to predict different levels of
SA in a teleoperated system.

The results of this study showed that the quality of information significantly
affected the perception of SA in the participants. In particular, the effect of
high dropouts of information (Scenario 2 and Scenario 4) was found to be more
significant (p < 0.05) than the effect of delays (Scenario 1 and Scenario 3)
in the subjective SAGAT scores. These results suggest that the loss of SA in
scenarios with high dropouts reflects the operators’ difficulty in understanding
and identifying new information after the loss of an already-familiar scenario.
These gaps of information also indicated that the operators might be missing
important information to maintain a complete perception of the environment.
This is in line with previous studies in the effect of automation in teleoperated
system, where operators encounter new information after the use of automation
and have reported poorer results in SAGAT scores [4].

In addition, EEG data provided objective confirmation of the perceived SA
in all four scenarios. In particular, Theta, Alpha, and Beta bands showed a sig-
nificant (p < 0.01) increase in the amplitude of their PSD values between the
good-quality communication scenario (Scenario 1) and the low-quality commu-
nication scenario (Scenario 4). Increased activity in the Theta band has been
related to increased mental load during focused attention [7]. Alpha band has
been associated with the level of attention in visual tasks [9]. In addition, Theta,
Alpha, and Beta bands have been linked to task engagement and attention [10].
In our study, the increase in PSD values in these bands might reflect the subjects’
adaptation effect (or increased attention) to understand (or adapt to) new infor-
mation after each loss of information during the simulation; and this increase is
more evident in Scenarios 2 and 4, where the dropout of information is as long
as 9 s.

The cortical location of the Channels F3, O2, and F4 might explain their
distribution response, in particular during the loss of SA (e.g., Scenario 4). For
instance, Catherwood et al. [2] identified F3 and F4 cortical areas (Brodmann
area BA8) as one of the regions to be associated with decisions under uncertainty,
conflict, or ambiguity; conditions that the operators might faced during the loss
of SA in our simulation. On the other hand, Channel O2 corresponds to the
occipital lobe, in particular this cortical region is responsible for processing visual
stimuli [3,12]; in our experiment, during scenarios with bad-quality information,
brain activity in the occipital region suggest that visual perception is actively
occurring. This also demonstrates that the occipital lobe is constantly processing
visual stimuli in particular after facing new or unexpected environments.

In summary, preliminary results presented in this study have provided evi-
dence of the effect of delay and dropout of information in the perception of SA
and the use of EEG as a possible objective indicator of SA. Future work will
focus on using the identified neural response to develop an on-line tool for a real-
time assessment of SA, which could improve the performance in teleoperations.
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Other human factors (e.g., workload) should be investigated to understand their
effect on the success of teleoperated systems and their interaction with situation
awareness. In addition, the use of multiple sensors (e.g., heart rate, galvanic skin
response) should be investigated [5].
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Abstract. Human-robot interaction force information is of great signif-
icance for realizing safe, compliant and efficient rehabilitation training.
In order to accurately estimate the interaction force during human-robot
interaction, an adaptive method for estimation of human-robot interac-
tion force is proposed in this paper. Firstly, the dynamics of human-
robot system are modeled, which allows to establish a state space equa-
tion. Then, the interaction force is described by a polynomial function
of time, and is introduced into the state space equation as a system
state. Meanwhile, the Kalman filter is adopted to estimate the extended
state of system online. Moreover, in order to deal with the uncertainty
of system noise covariance matrix, sage-husa adaptive Kalman filter is
used to correct the covariance matrices of system noises online. Finally,
experiments were carried out on a lower limb rehabilitation robot, and
the results show that the proposed method can precisely estimate the
interaction force and also has good real-time performance.

Keywords: Human-robot interaction · State estimation ·
Rehabilitation robot · Interaction force estimation

1 Introduction

Cerebral infarction, cerebral hemorrhage, brain trauma, acute myelitis and other
neurological diseases can cause paralysis and limb weakness. Physical exercise is
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extremely important for the recovery of paralyzed patients. Rehabilitation robot
can be applied in various periods of stroke rehabilitation, since it can be used
to promote the functional compensation and reorganization of central nervous
system through specific training and improve their daily living activities [1].

Studies have shown that rehabilitation training with patients’ active partic-
ipation can effectively promote neuroplasticity and motor function recovery [2].
Precise recognition of motion intention is the premise and one of the key issues of
active rehabilitation training [3], and meanwhile, human-robot interaction force
is an intuitive manifestation of human motion intention. Therefore, whether the
interaction force between human and robot can be estimated in real time is of
great significance for active rehabilitation training [4].

Human motion intention can be recognized by two types of methods. One
is physiological signals based method. Physiological electrical signals mainly
include muscle electrical signals and brain electrical signals. In [5], human motion
intention was detected by surface electromyography (sEMG) signals, and then
the robot motion is controlled according to human limb impedance. The physio-
logical signals directly reflect the human motion intention, but they are suscep-
tible to the surroundings. The collected EEG signals are weakly and difficult to
recognize, and they are also susceptible to external interference [6].

The alternative is motion signals based method. The motion signal sensor has
the characteristics of convenient wear, strong versatility and good environmental
adaptability. For example, in [7], the force/position sensor based method was
used to establish the moment mapping model between human limbs and robot
joints, by detecting the generated force and motion of human limbs, to determine
human motion intention. Huang placed a force sensor on the robot end effector
to estimate the wearer’s motion intention in real time [8].

Kalman filter method has higher estimation accuracy, and can also achieve
estimation of robot state at the same time. Reasonable assumptions of interac-
tion force model can improve the estimation accuracy of interaction force [9].
At present, most of the research work on human-robot interaction force uses
the constant value hypothesis [10]. Hu adopted the interaction force model with
polynomial and sinusoidal variation expression [9], which improved the effect
of dynamic hypothesis to some extent. However, in actual process of human-
robot interaction, the model of interaction force is usually time-varying, so the
assumption of fixed order cannot meet the practical demand.

Based on the dynamic model of human-robot interaction system, an extended
state space equation can be established by introducing the interaction force
model using polynomial function of time. The improved sage-husa adaptive
Kalman filter (SHAKF) is used to correct statistical characteristics of system
state noise in real time to optimize the estimation of interaction force. Finally,
the effectiveness of the proposed method is verified by experiments.

2 Human-Robot System Dynamic Model

During the rehabilitation exercise with robot, the patient’s lower limbs are usu-
ally attached to the mechanical legs, as shown in Fig. 1. The hip and knee joints
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of mechanical leg can be respectively corresponding to the joints of human leg
by adjusting the length of each link. Meanwhile, the lower limb of the human
body can be fixed on the mechanical leg by using velcro fastener. Since the ankle
joint contributes less to the end motion range, the above human-robot system
can be treated as a two-bar linkage mechanism.

Fig. 1. Experiment platform for identification and validation of dynamics

The dynamic model of human-robot system can be obtained by Euler-
Lagrange equation.

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= τ (1)

where θ and θ̇ denote the joint angular and its velocity, τ denotes the joint
moment, and L is Lagrangian equation of human-robot system.

L =
2∑

i=1

Ki − Pi (2)

where Ki and Pi denote the human-robot system’s kinetic and potential energy
of linkage i respectively. In order to obtain the kinetic and potential energy of
human-robot system, the two links are respectively considered to be composed of
innumerable mass micro-elements. Firstly, the kinetic and potential energy are
calculated for each micro-element, and then the integral operation is performed.
As a result, the kinetic and potential energy of links 1 and 2 can be obtained as
follows.
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v θ̇
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1dv

K2 =
∫
v2

1
2
ρvl

2
1θ̇

2
1dv +

∫
v2

ρvl1lv cos(θ2) cos(θv)θ̇1(θ̇1 + θ̇2)dv

+
∫
v2

1
2
ρvl

2
v(θ̇1 + θ̇2)

2
dv −

∫
v2

ρvl1lv sin(θ2) sin(θv)θ̇1(θ̇1 + θ̇2)dv

P1 =
∫
v1

ρvglv sin(θ1 + θv)dv

P2 =
∫
v2

ρvgl2 sin(θ1)dv +
∫
v2

ρvglv sin(θ1 + θ2) cos(θv)dv

+
∫
v2

ρvglv cos(θ1 + θ2) sin(θv)dv

(3)

where θ̇i represents the angular velocity of joint i, dv represents the mass micro-
element on the corresponding link, lv represents the distance between dv and
corresponding joint, θv represents the angle from the link’s midline to connection
between the joint and mass micro-element.

Combined with formulas one to three, the standard form of human-robot
system dynamic equation can be derived.

D(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) + τf = τ (4)

where θ, θ̇ and θ̈ denote the joint angular, its velocity and acceleration respec-
tively. τf denotes the classical friction term, which consists of viscous friction and
Coulomb friction. D(θ) is a symmetric positive definite matrix, C(θ, θ̇)θ̇ denotes
the Coriolis and centripetal moment, G(θ) denotes the gravitational moment.

According to the linear characteristic of robot’s dynamics, there is a param-
eter vector that makes them satisfy the following linear relationship.

D(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) + τf = Y ϕ (5)

where Y is the regression matrix of joint variable, and ϕ is an unknown constant
parameter vector.

3 Estimation of Human-Robot Interaction Force

3.1 Model of Human-Robot Interaction Force

In this paper, the joints of human lower limb are simplified into hip and knee
joint, of which the interaction force models are similar to each other. Hence, the
interaction force of hip joint is modeled below as an example.

Assuming that in the process of human-robot interaction, the change law
of hip joint’s interaction force, τa, is a polynomial function of time in a finite



544 X. Liang et al.

period. Then the dynamic expression of interaction force can be expressed as
follows. {

λ̇ = Lλ
τa = Sλ

(6)

where λ = [λ1 · · · λr+1 ], r is the order of polynomial,

L =
[
0r×1 diag(∂1, · · · , ∂r)

0 01×r

]

S =
[
1 01×r

] (7)

where diag(·) is a diagonal matrix, ∂1, · · · , ∂r is partial coefficients of polynomial.

3.2 Extended State Space Equation

We can get the following extended state space equation by introducing λ into
state vector.

ẋ = Ax + Bu + V

z = Hx + N
(8)

Therefore, the human-robot interaction force can be achieved by Eq. 9 under
the extended state space model.

τa =
[
02×4 I2×2 02×r

]
x (9)

So, the estimation of state vector can be gained by using Kalman filter.

3.3 Sage-Husa Adaptive Kalman Filter

Kalman filtering is an autoregressive optimal estimation algorithm [11], which
principle consists of two parts: state prediction process and update process. In
the prediction step, the current state is estimated by previous state value, while
in the update step, Q and R are calculated, based on which the confidence of
the estimated and the measured value are weighted. The optimal estimation
of current moment is performed according to the predicted value of previous
moment, the measured value and the error covariance of the current moment,
then the state value of next time is predicted, thereby forming an iterative loop.

x̂k|k−1 = Akx̂k−1|k−1 + Bkuk

P̂k|k−1 = AkP̂k−1|k−1A
T
k + Qk−1

Vk = Zk − Hkx̂k|k−1

Kk = P̂k|k−1H
T
k (HkP̂k|k−1H

T
k )−1

Qk = (1 − dk)Qk−1 + dk(KkVkV
T
k KT

k + AkP̂k|k−1A
T
k )

x̂k|k = x̂k|k−1 + KkVk

P̂k|k = P̂k|k−1 − KkHkP̂k|k−1

(10)



Adaptive Estimation of Human-Robot Interaction Force 545

4 Experiments and Discussion

In order to verify the effectiveness of the estimation method of human-robot
interaction force, experiments are carried out on the lower limb rehabilitation
robot, as shown in Fig. 1.

4.1 Identification and Validation of System Parameter

The parameters of human-robot system dynamic model need to be identified at
first, so that the extended state space Eq. 8 can be obtained.

The samples used for parameter identification are collected during the motion
process of performing excitation trajectory driven by motors in the human-robot
interaction system, while the subject is required to passively follow the mechan-
ical leg to move without applying any active torque. Unknown dynamic param-
eters are recognized by the Eq. 5 using the least squares method.

The parameters identification results are shown in Table 1.

Table 1. Identification results of system parameter

Parameter IU Number

ϕ1 Kg ∗ m2 23.1118

ϕ2 Nm 8.2613

ϕ3 Kg ∗ m2 −2.4986

ϕ4 Kg ∗ m2 −0.9827

ϕ5 Kg ∗ m2 −0.4954

ϕ6 Nm −7.1493

ϕ7 Nm 17.9843

ϕ8 Nm −0.5973

ϕ9 Nm 26.2949

ϕ10 Nm −1.5535

After the parameters are recognized, a reference trajectory different from
optimal excitation trajectory is carried out to verify the accuracy of identification
parameters. The root mean square errors of hip and knee joints are 0.4417 Nm
and 0.6937 Nm respectively, which indicates that the identification method used
in this paper can effectively recognize the parameters of human-robot system
dynamic model.

4.2 Estimation of Human-Robot Interaction Force

In this section, the experiment for estimation of human-robot interaction force
is performed on the lower limb rehabilitation robot to verify the effectiveness of
the proposed method.
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In the experiment, the rehabilitation robot performs treadmill trajectory in
the vertical sagittal plane. Treadmill exercise is a common rehabilitation training
mode, which can slow the muscle atrophy, promote the recovery of limb motor
function and improve blood circulation. For patients with central nervous system
injury, it also has the effect of reducing muscle tension and improving muscle
strength. During the treadmill exercise, the subject applies an interaction force
to the pedal through foot, which can be collected by force sensor mounted on
the pedal. To illustrate the effectiveness and versatility of the proposed method,
the force applied to pedal by the subject is required to be a reciprocating force
that varies in magnitude and direction over time. This force can be transformed
by Jacobian matrix J into torque of robot’s joint space.

By comparing the measured value of human’s active joint torque with the
calculated torque obtained by the proposed method, the feasibility for method of
estimating the human-robot interaction force can be verified. The experimental
results are illustrated in Fig. 2. The root mean square errors of the hip and
knee joint measurements and estimation torques are 0.1379 Nm and 0.2413Nm
respectively, which indicates that the improved sage-husa adaptive Kalman filter
method based on the force model using polynomial function of time can precisely
estimate the human-robot interaction force, thus verifying the effectiveness of the
proposed method.
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Fig. 2. Estimation of human-robot robot interaction force

5 Conclusion

In order to precisely estimate the interaction force during human-robot inter-
action, an adaptive method for estimation of human-robot interaction force is
proposed in this paper. The interaction force is fitted by polynomial and then
imported into the human-robot system dynamic model, in order to obtain the
extended state space equation. To correct the time-varying covariance matrix of
system noise, an improved sage-husa adaptive Kalman filter method is designed
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to estimate the state online. Experiments were carried out on the lower limb
rehabilitation robot. The experimental results demonstrated that the proposed
method can accurately estimate the human-robot interaction force and also has
good real-time performance, which verifies the effectiveness of the proposed
method. The experiments for paralyzed patients will be carried out in future
research to test the clinical feasibility.
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Abstract. Dropout has been introduced as a simple yet effective
method to prevent over-learning in deep learning. Although its mecha-
nism, i.e., incapable of utilizing all memorized units, seems quite natural
to human cognition, the effect of dropout on models of human cognition
has not been addressed. In the present research, we apply dropout to a
computational model of human category learning. We compared models
with and without complete memorization abilities, and results showed
that they differed acquired association weights, dimensional attention
strengths, and how they handled exceptional exemplars.

Keywords: Cognitive modeling · Dropout · Categorization

1 Introduction

High-order human cognitive processes almost always involve highly abstracted
categorical information [1,2]. For example, instead of describing every small
detailed features of an animal, “dog” (e.g. a four-legged, brown haired animal
with pointed teeth, etc), we use a word “dog” to categorically represent the
object in communication. Categorization is a form of data compression that
enables us to process, understand, and communicate complex thoughts and
ideas by efficiently utilizing task- and context-relevant information while ignoring
other types. Unlike many other methods of data compression (e.g. PCA), data
compression with humans’ categorization processes are shown to produce highly
interpretable results. We can infer several statistical properties about features
of members of a particular category, say, dogs. These are reasons why cognitive
scientists inarguably suggested that our high-order cognition is largely driven by
categorically organized knowledge.

In cognitive science, research on human categorization has been strongly asso-
ciated with computational modeling as a means to test theories of human cat-
egorization and category learning [3,4]. One important research question about
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human categorization has been how categories are represented in our mind.
Among several theories and models, cognitive models built on the basis of the
exemplar theory have shown promising results in computer simulations [3,4].
The exemplar theory of categorization assumes that humans utilize psychologi-
cal similarities or conformities between the input stimulus and previously-seen,
memorized exemplars as evidence to probabilistically assign the input stimulus
to an appropriate category.

Although exemplar models of categorization could account for several behav-
ioral data, they have been criticized for their assumptions about how they handle
exemplars. In a typical implementation, the model is assumed to be capable of
memorizing and utilizing all exemplars that an agent has encountered without
any noise. Like categorization being suggested to play a central role in high-order
human cognition, humans’ memory is also inarguably suggested to be imperfect
and erroneous, as almost every textbook on cognitive science describes limita-
tions in the human memory system [2]. Given that the human memory system
is limited, previous simulation studies on exemplar models with an unlimited
memory capacity might not have been what cognitive scientists intended to
model or describe. In the present research, we apply a limited memory system
to a computational model of human category learning to examine its effects. In
particular we apply dropout [5] (i.e., a simple yet effective method to prevent
over-learning in deep learning) to an exemplar model of category learning and
compared models with and without complete memorization capability to exam-
ine its effect on acquired association weights, dimensional attention weights, and
how they handled exceptional exemplars.

1.1 A Cognitive Model of Category Learning - ALCOVE

The exemplar theory of categorization assumes that humans utilize previously-
seen, memorized exemplars as reference points in categorization process.
ALCOVE [3] is one of the most well-known models of category learning built on
the basis of exemplar theory. One important cognitive process in ALCOVE and
many other models is a selective attention operation that translates physical or
logical distances between input stimuli and memorized exemplars into psycholog-
ical similarities between them. In ALCOVE, the psychological similarity between
a memorized exemplar Rj and input x is denoted as sj and formulated as:

sj = s(x,Rj) = exp
(
−β ·

∑
i
ai (Rji − xi)

2
)

(1)

where ai ≥ 0 is a selective attention weight allocated to feature dimension i,
and β is a constant that the experimenter can define in order to manipulate an
overall similarity gradient. In ALCOVE, even a small physical difference on one
dimension results in a significant psychological difference, when the correspond-
ing dimension is attended. In contrast, a large physical difference on another
dimension is perceived to be negligible when the dimension is weakly attended
or unattended. The similarity is highest when every “attended” feature of an
input matches that of a memorized exemplar.
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ALCOVE uses the following function to model activations of category nodes:

Ok(x) =
∑

j
wkjs(x,Rj) (2)

where wkj is learnable association weights between exemplar j and category
node k, representing how strongly or weakly category nodes and exemplars are
coupled. The probability that x being classified as category A is calculated using
the following choice rule:

P (A|x) =
exp (φ · OA(x))∑
k exp (φ · Ok(x))

(3)

where φ is a constant defining decisiveness of responses. The larger the φ, the
more decisive a simulated human is. That is, when φ is large a small differences
in category node activations would be psychologically perceived as large.

ALCOVE assumes that human is capable of and indeed memorizes and uti-
lizes many if not all previously-seen exemplars. Thus, in this model, Rj represents
all exemplars that one has encountered in the past, and those exemplar basis
units have links to every category node. A categorization response will be made
on the basis of the “collective” similarities between a input stimuli and exem-
plars from different categories. In the present paper, when dropout is applied,
ALCOVE cannot utilize exemplars that are subject to dropout.

ALCOVE adjusts its selective attention and association weights in learning.
Note that in ALCOVE’s objective function is not minimization of crossentropy
with softmax activation (Eq. 3) which is typically used in machine learning clas-
sification tasks. Rather, the objective of learning is a minimization of sum of
squared differences between the target outputs (tk) and activations of category
nodes:

E = 1/2
∑

k
(tk − Ok)2 (4)

A typical implementation of ALCOVE utilizes an online version of the gradient
descent method for learning:

Δwkj = −λW
∂E

∂wkj
,Δai = −λa

∂E

∂ai
(5)

where λW and λa are learning rates for association weights and attention, respec-
tively

2 Simulation Studies

We conducted three simulation studies to examine the effects of the incom-
plete memory system (i.e., dropout) of the exemplar model of category learn-
ing. In Simulations 1 and 2, we examined how association weights and attention
strengths were affected by dropout. In Simulation 3, we compared how ALCOVE
handled exceptional exemplars with and without dropout.
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Overview of Simulation Setups. In all simulations, there were a total of 50 train-
ing epochs, and there were a total of 10000 replications, each with different
combinations of hyperparameters. We randomly selected values of λW and λa

from the uniform distribution ranging from 0.01 to 0.50. The other hyperpa-
rameters were set at constant values (β = 3, φ = 1). At the beginning of each
replication, we randomly initialized association weights, hyperparameters, and
the order of training stimuli with the identical seed number for ALOVE with and
without dropout. Thus, in each replication, ALCOVE with and without dropout
had the identical setup. The probability of dropout was 0.5 for all simulations,
and we randomly dropped out exemplars as there is no single study indicating
which exemplars should be dropped out.

2.1 Study 1: Effects of Incomplete Memory on Association Weights

In Simulation 1, we examined the effects of incomplete memory on association
weights. In so doing, we used very simple categories that consist of 20 exemplars
with a single feature. The exemplars’ feature values were equally spaced integer
from 1 to 20. The exemplars with feature values less than or equal to 10 belong
to Category A, one with feature values more than or equal to 11 belong to
Category B.

Acquired Association Weights for Category A
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Fig. 1. Result of Simulation 1. Averaged acquired association weights to Category A
for ALCOVE with (light gray) and without (dark gray) dropout. While ALCOVE
with dropout formed evenly distributed association weights, ACOVE without dropout
utilizes exemplars that are close to the category boundary more critically than proto-
typical exemplars

Results of Study 1. Figure 1 shows the averaged acquired association weights
to Category A for ALCOVE with (light gray) and without (dark gray) dropout.
There were noticeable differences. As compared with ALCOVE with dropout,
the original ALCOVE acquired a very strong positive association between Cat-
egory A and the boundary exemplar (i.e., one with feature value equals to 10).
It also shows that original ALCOVE acquired a very strong negative association
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Fig. 2. The averaged generalization patterns for ALCOVE with (dotted line) and with-
out dropout.

between Category A and another boundary exemplar (i.e., one that belong to
Category B with feature value equals to 11). These two tendencies together indi-
cate that the original ALCOVE utilizes exemplars that are close to the category
boundary more critically than prototypical exemplars. In contrast, ALCOVE
with dropout acquired more or less evenly distributed association weights, treat-
ing all exemplars equally.

Figure 2 shows the averaged generalization patterns for ALCOVE with (dot-
ted line) and without (solid line) dropout. While the original ALCOVE could be
slightly more assertive (i.e., higher categorization probabilities) on novel stimuli
near the category boundary, ALCOVE with dropout were more assertive else-
where. In addition, there were more variabilities in the generalization patterns
for ALCOVE with dropout than ALCOVE without dropout.

2.2 Study 2: Effects of Incomplete Memory on Attention Weights

In Simulation 2, we examined the effects of incomplete memory on attention
strengths. The left panel of Fig. 3 shows the stimulus set used in Simulation
2. Note that only information from dimension 1 was needed for correct cate-
gorization. Both types of ALCOVE were predicted to pay more attention to
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Fig. 3. Left panel: Stimulus set used in Simulation 2. Note that only information from
dimension 1 was needed for the correct categorization. Middle panel: Internal represen-
tations (scaled by attention paid to dimensions 1 an 2) of categories for ALCOVE with-
out dropout. Right panel: Scaled internal representations of categories for ALCOVE
with dropout. The sizes of markers were proportional to positive association weights
between exemplars and categories in Middle and Right panels.
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this informative dimension, and we examined whether their attention learning
processes differed.

Results of Study 2. Figures 3 and 4 show the results Simulation Study 2. The
left panel of Fig. 4 shows the learning curves for ALCOVE with (dotted line) and
without (solid line) dropout. The original ALCOVE resulted in high categoriza-
tion accuracies than ALCOVE with dropout. This was simply because ALCOVE
with dropout utilizes only a half of exemplars. If ALCOVE with dropout was
capable of accessing all exemplar in predictions (but not in learning), its cate-
gorization accuracies were much higher than the original ALCOVE as shown in
the left panel of Fig. 4 (line with black circles).

The right panel of Fig. 4 shows the attention allocation curves ALCOVE
with (dotted line) and without (solid line) dropout. ALCOVE with dropout
learned to allocate a greater amount of attention to the informative dimension
than ALCOVE without dropout. The middle and right panels of Fig. 3 show
the acquired internal representations of the stimulus set for ALCOVE without
and with dropout, respectively. By internal representations, we mean that the
stimulus set was scaled by learned attention strengths (cf. Eq. 1). The sizes of
markers were proportional to positive association weights between exemplars
and categories in the middle and right panels of Fig. 3. As in Simulation 1, while
the association weights learned by ALCOVE with dropout were equally dis-
tributed, those of the original ALCOVE were not. The original ALCOVE put a
stronger emphasis on exemplars near the category boundary. ALCOVE without
dropout acquired more efficient representation properly ignoring the uninfor-
mative dimension than the original ALCOVE. The main reason why the origi-
nal ALCOVE paid a weaker amount of attention to the informative dimension
than ALCOVE with dropout was that it effectively formed strong associations
between categories and exemplars near the category boundary (i.e., exemplars
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Fig. 4. Results Simulation 2. Left panel shows the learning curves for ALCOVE with
(dotted line) and without (solid line) dropout. The line with black circles indicate the
virtual learning curve (i.e., as if all exemplars were utilized in prediction) for ALCOVE
with dropout. Right panel shows the attention allocation curves ALCOVE with (dotted
line) and without (solid line) dropout.
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that were more difficult to categorize) and thus there was no need for paying
more attention to the informative dimension.
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Fig. 5. Left panel: Stimulus set used in Simulation 3. There was an exceptional exem-
plar for each category located in the middle of each category. Middle panel: The aver-
aged association weights learned by ALCOVE without dropout. The sizes of markers
were proportional to positive association weights between exemplars and categories.
Right panel: The averaged association weights learned by ALCOVE with dropout.

2.3 Study 3: Effects of Incomplete Memory on Exceptions

There have been some debates about how humans handle exceptions during
categorization [6]. There are many cases where categories contain exceptions.
Dolphins may be a good example of exceptions, as their physical appearances,
behaviors, and the environment in which they live seem closer to those of fish
than mammals. The exemplar theory suggests that exceptions are handled in
the same manner that typical exemplars are handled. The other theory such as
the multiple representation system theory [6] indicated there are at least two
representation systems in human categorization processes, one for perceptual
and the other for semantic knowledge. The multiple representation system the-
ory suggests that typical exemplars trigger categorization based on perceptual
representation, but semantic knowledge overwrites the categorization to accom-
modate exceptions. Thus, the theory indicates a dolphin may be initially thought
as fish because of their similarities, but semantic knowledge that dolphins are
mammals prevent from categorizing it as fish and then “correctly” categorize as
mammals. In contrast to the multiple representation system theory, the exemplar
theory is often regarded as a single system theory.

In Simulation 3, we examined the effect of incomplete memorization in cate-
gory learning on how the model handled and categorized exceptional exemplars.
The left panel of Fig. 5 shows the stimulus set used in Simulation 3. There was
an exceptional exemplar for each category located around the center of each
category.

Results of Study 3. Figures 5 and 6 show the results of Simulation Study
3. The middle and right panel of Fig. 5 shows the averaged association weights
learned by ALCOVE without dropout and with dropout, respectively. The sizes
of markers were proportional to positive association weights between exemplars
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and categories. As in Simulations 1 and 2, the original ALCOVE formed strong
excitatory weights to positive exemplars (exemplars that belong to a category)
and inhibitory weights to negative exemplars (exemplars that do not belong to
a category) near the category boundaries. The strongest excitatory weights were
formed for the exceptions and the strongest inhibitory weights were formed for
exemplar near the exceptions. ALCOVE with dropout also formed the “correct”
associations between the exceptions and categories and the exemplars near the
exceptions and categories, but in a lesser magnitude.

The left and right panel of Fig. 6 shows the generalization patterns for
ALCOVE without dropout and with dropout, respectively. While the origi-
nal ALCOVE was able to exhibit “correct” categorizations for the exceptions,
ALCOVE with dropout could not “correctly” categorize them, even though it
had valid associations between the exceptions and categories. Thus, if humans
memory system was indeed limited, capable of utilizing a limited number of pre-
viously encountered exemplar (i.e., if ALCOVE with dropout is a valid model),
then the exemplar theory (or the single representation system theory) may not
be able to account for human’s ability to categorize exceptions. ALCOVE with
dropout exhibit categorization similar to that of perceptual representation in the
multiple representation system theory.

Do the results of Simulation 3 invalidate the exemplar theory or the single
representation system theory? We argue it is not necessarily true. Given that,
even with a limited memory capacity, ALCOVE with dropout formed the cor-
rect associations between the exceptions and categories as shown in Fig. 5. If
ALCOVE somehow could access to this information, it can correctly categorize
them. Let us assume that there are two exemplar referencing processes, say naive
and targeted. What we have modeled with ALCOVE with dropout in the paper
was naive exemplar referencing, randomly select exemplars in categorization. If
there was such a process as targeted exemplar referencing, selecting a limited
number of exemplars in categorization based on context, then ALCOVE with
dropout could correctly categorize exceptions with only one representation sys-
tem. Thus, like two representation systems theory, a single representation system
with multiple exemplar referencing processes can account for both failure to cat-
egorize exceptions (which often happens in real life) and successful categorization
of exceptions.

Fig. 6. Left panel: Averaged generalization pattern for ALCOVE without dropout.
Right panel: Averaged generalization pattern for ALCOVE without dropout



556 T. Matsuka et al.

3 Conclusion

In cognitive science, it is inarguably suggested that our high-order cognition is
driven mainly by categorically organized knowledge. It is also inarguably sug-
gested that the human memory system is limited. However, those two suggestions
have not been simultaneously considered. The exemplar models of categoriza-
tion have been successfully accounted for several behavioral data, but they have
been criticized for their unrealistic assumption about human’s memory system.
In the present research, we apply a limited memory system to a computational
model of human category learning to examine its effects. In particular, we apply
dropout to an exemplar model of category learning and compared models with
and without a complete memorization capability. The results of three simu-
lation studies showed several differences between them. First, while a model
with complete memorization formed strong excitatory associations between cate-
gories and positive exemplars near the category boundaries and strong inhibitory
associations between categories and negative exemplars near the boundaries, a
model with incomplete memorization tended to form equally distributed asso-
ciations. Second, a model with incomplete memorization distributes its atten-
tion more efficiently than a model with complete memorization. Third, while a
model with complete memorization could categorize exceptional exemplars “cor-
rectly,” exceptions were generally ignored by a model with incomplete memoriza-
tion. Although exceptions were ignored, a model with incomplete memorization
acquired valid associations for exceptions.

In the present paper, we incorporated naive exemplar referencing (i.e., ran-
domly select or omit exemplars) in categorization and category learning, because
we do not know how exemplars were referenced. Both empirical and computa-
tional studied are much needed to clarify about this issue and the nature of
human categorization and category learning.
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Abstract. In the current study, a novel brain-machine interaction was pro-
posed, which incorporates action observation decoding into the traditional
control circuit of a brain-machine interface. In this new brain-machine inter-
action, the machine can actively decode the user’s action observation and stop
immediately if it detects that the user does not understand the intention of the
action correctly. We measured brain activation using electroencephalography
(EEG)-functional near-infrared spectroscopy (fNIRS) bimodal measurement
while 16 healthy participants observed three action tasks: drinking, moving a
cup, and action with unclear intention. Complex brain networks were con-
structed for EEG and fNIRS data separately, and four network measures were
chosen as features for classification. The obtained results revealed that the
classification of three action observation tasks achieved accuracy of 72.3% using
EEG-fNIRS confusion features, which was higher than that using fNIRS fea-
tures (52.7%) or EEG features (68.6%) alone. Thus, the current findings sug-
gested that our proposed method could provide a promising direction for brain-
machine interface systems design.

Keywords: Brain-machine interface � Complex brain networks �
Electroencephalography � Functional near-infrared spectroscopy � Action
observation

1 Introduction

Brain-machine interfaces (BMIs), designed to provide direct functional interfaces
between brains and artificial devices, have received increasing attention in the past
several decades [1]. BMI systems are mainly composed of the following three parts:
signal acquisition, feature extraction and device control. Moreover, many systems also
incorporate feedback mechanisms for error correction. Users can learn about the exe-
cution of the command through auditory [2] or visual [3] feedback, and send
instructions when misoperation is detected. For BMI systems with a relatively low
information transfer rate (ITR), however, it may take several or more seconds to send a
single command. During this process, the misoperation of the device is likely to cause
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accidents. To be effective, error correction must be automatic or require minimal user
effort [4], and a more effective human-machine interaction mode could have useful
applications.

One potentially promising solution is to construct a machine that is capable of
decoding the user’s action observation, and to stop immediately if it detects that the
user did not correctly understand the intention of the action. For example, in a daily
care situation, if a robot has the intention to feed a user, a user may not notice the
action, or might misunderstand the intention of the action. At this time, the robot could
detect a dangerous action by decoding the user’s action observation activity, and cease
the action immediately. Thus, it is important to enable BMIs to decode the user’s brain
activity during action observation. However, few studies have examined this issue.

Many neuroimaging methods have been used in BMI system design, including
electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS).
Because of its high temporal resolution and relatively low cost, EEG is currently the
most popular neuroimaging method in BMI system design. However, EEG has several
disadvantages, such as susceptibility to electromagnetic and motion interference, which
makes it unsuitable for use in daily life. Unlike direct measurement of electrical
potentials generated by cortical postsynaptic currents, fNIRS measures changes in the
oxygenation correlates of neural activity and possesses several advantages, such as
relatively low sensitivity to participant motion and ease of administration [5]. However,
this method also has limitations, including low temporal resolution. Because EEG and
fNIRS each have specific shortcomings, combining EEG and fNIRS measurement can
provide an approach for overcoming the limitations of each method. A number of
previous studies have used simultaneous recording of EEG and fNIRS to design
bimodal BMIs [6, 7].

In the current study, we used combined EEG-fNIRS bimodal measurement to
record neural activity during action observation. Simultaneously recorded EEG and
fNIRS signals were then used to construct complex brain networks for actions with
different potential intentions: drinking, moving a cup, and actions with unclear inten-
tions. We sought to use complex brain networks to learn the spatio-temporal patterns
for brain activities generated during action observation, and to extract useful features
for intention classification. The main contributions of the current study can be sum-
marized as follows:

1. A new method of human-machine interaction is proposed, which can greatly reduce
the serious consequences of not correcting misoperation in time, and can improve
the robust qualities of the BMI system.

2. Complex brain networks are used to decode the brain activities generated during
action observation, and the nodal characteristics of different networks are discussed
in detail.

3. The classification performance of EEG, fNIRS and EEG-fNIRS bimodal signals are
compared. Based on this comparison, it can be seen that using EEG-fNIRS bimodal
data was able to improve the performance of intention classification.
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The remainder of this paper is organized as follows: Sect. 2 introduces the
experimental setup, complex brain network construction, feature extraction, and feature
classification. Section 3 presents the results of our analysis of action observation using
a complex brain network. Finally, Sect. 4 discusses the conclusions that can be drawn
from these findings.

2 Materials and Methods

2.1 Participants

Sixteen healthy participants (10 males and six females, mean age: 24.1 years) were
recruited to participate in this study. All participants had normal or corrected-to-normal
vision and provided informed consent. All participants provided written informed
consent before enrolment in the study, which was approved by The Ethics Committee
of the Affiliated Zhongda Hospital, Southeast University (2016ZDSYLL002.0 and
2016ZDSYLL002-Y01). Each of the participants received monetary compensation of
200 yuan after the experiment.

2.2 Experimental Procedure

Before the experiment, all participants were informed that pictures with three different
kinds of actions (see Fig. 1) would be displayed randomly on the computer monitor.
These actions and their potential intentions were as follows: grasping the handle of the
cup with the intention of drinking (Sd), grasping the rim of the cup with the intention of
moving it (Sm) and touching the rim of the cup with an unclear intention (Su). To avoid
the influence of cup color, we used seven differently colored cups. Thus, there were 21
different pictures (three actions � seven colors) in the image set.

The experiment consisted of four sessions and each session contained 21 trials.
Each trial started with a pre-rest period in which a fixation cross was presented for 6 s
on the screen. Subsequently, the cross on the screen was replaced by a cup as a cue to
indicate that the observation task was about to begin and lasted 0.5 s. During the
observation period, the picture was displayed on the screen for 3.5 s and subjects were
asked to interpret the potential intentions of the action in the picture. Finally, there was
a post-rest period in which subjects could rest for 6 s. The experimental paradigm is
shown in Fig. 2.

Fig. 1. Three kinds of hand-cup interaction stimuli corresponding to different potential
intentions: (a) Sd, (b) Sm and (c) Su.
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Before the experiment, a training session was conducted in which participants were
instructed to familiarize themselves with each action and its potential meaning, within
3.2 min. After the session, participants were debriefed to ensure they understood the
experimental instructions and correctly understood the action intentions shown. During
EEG-fNIRS measurement, participants received clear instructions to carefully observe
the three different kinds of hand-object interaction stimuli, and to attempt to understand
the intention behind the stimuli.

2.3 Data Acquisition

During the experiment, 64-channel EEG and 48-channel fNIRS bimodal signals were
simultaneously recorded. The EEG data were measured using a Synamps2 EEG system
(Neuroscan, USA) at a sampling rate of 1000 Hz. All electrodes were placed according
to the international 10–20 system and the impedance of the electrodes was kept below
5 kX. Electrooculogram (EOG) signals were also be recorded for later removal of eye
movement and blink artifacts. fNIRS data were recorded using a LABNIRS system
(Shimadzu CO., LTD., Kyoto, Japan). The observation of three wavelengths (780, 805,
and 830 nm) of continuous near infrared light was recorded at a sampling rate of
37.04 Hz and transformed into concentration changes of HbO, HbR and HbT using the
modified Beer-Lambert Law. The optodes were positioned over the 64-channel EEG
cap (Neuroscan, USA) and the optodes and the electrodes were placed at intervals with
a distance between the emitters and detectors of approximately 3 cm. The channel
configuration for EEG (a) and fNIRS (b) is shown in Fig. 3.

Fig. 2. Experimental procedure for action observation

Fig. 3. Channel configuration for (a) EEG and (b) fNIRS.
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2.4 Data Preprocessing

The EEG signals were band-pass filtered from 1 to 30 Hz using a finite impulse
response (FIR) filter to remove some low frequency artifacts, such as eye blinks, eye
movements, heart beat and breathing. In addition, an independent component analysis
(ICA) method based on EEG and EOG data was performed to remove eye movement
and blink artifacts. The fNIRS signals were also band pass filtered between 0.01 and
0.1 Hz. The baseline correction was performed for each trial by subtracting the mean
value of the 1 s of data obtained before the trial.

2.5 Complex Brain Network Construction

Complex network modeling is based on graph theory, which uses a collection of nodes
(vertices) and links (edges) between pairs of nodes to describe important properties of
complex systems. As a large and complex system, the human brain shares a number of
common features with networks from other biological and physical systems, and can
thus be characterized by a complex network model [8]. Using complex network models
to analyze the brain’s structural and functional systems is referred to as a complex brain
network method [9]. When using EEG-fNIRS bimodal measurement, the network nodes
can be defined as EEG electrodes, or as fNIRS channels. Links usually represent various
connections, for instance, anatomical connections, functional connections and effective
connections. Because action observation is a dynamic and spatiotemporal process
[10, 11], it is suitable to use functional connections to represent the magnitudes of
temporal correlations in activity between pairs of electrodes or channels. In the current
study, we constructed complex brain networks for EEG and fNIRS respectively.

The construction of complex brain networks consists of four major procedures:
(a) defining the network nodes; (b) estimating the link between two nodes and gen-
erating a connectivity (adjacency) matrix; (c) binarizing the connectivity matrix;
(d) choosing measures of the complex brain network. The details of building the
complex brain networks are as follows:

(a) Defining the complex brain network nodes. In the current study, we used EEG-
fNIRS bimodal measurement and constructed a network for each measurement
method. Therefore, the nodes could be defined as the electrodes or channels, and
the number of nodes in EEG network and fNIRS network was set to 62 (except for
M1 and M2 electrodes) and 48, respectively.

(b) Estimating the link between two nodes and generate connectivity (adjacency)
matrix. Here, we used Pearson’s correlation coefficients to represent the temporal
correlations between a pair of nodes, which can be computed as follows:

rij ¼
PK

k¼1 ðxiðkÞ � xiÞðxjðkÞ � xjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1 ðxiðkÞ � xiÞ2

PK
k¼1 ðxjðkÞ � xjÞ2

q ð1Þ

where xi denotes the time series measured by the ith electrodes/channels, and xi is
its mean value. Rows and columns in the connectivity matrix denote the nodes,
and each element in the matrix is the corresponding link between two nodes.
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(c) Binarizing the connectivity matrix. First, the connectivity matrix was converted
into Fisher’s z maps using Fisher’s r-to-z transformation to improve normality:

Z ¼ 1
2
lnð1þ r

1� r
Þ ð2Þ

We then applied a threshold to each element in the transformed connectivity
matrix to form a binary connectivity matrix.

(d) Choosing measures of the complex brain network. As a graph, the topology of
complex brain network can be quantitatively described using a variety of mea-
sures. In the current study, we chose the four most commonly used measures,
which were (1) degree, (2) clustering coefficient, (3) local efficiency and (4) be-
tweenness centrality:

1. Degree. Degree is the most fundamental measure of complex brain networks. The
degree of node i is equal to the number of all links connected to that node:

ki ¼
X

j2N
aij ð3Þ

2. Clustering coefficient. The clustering coefficient of an individual node is equivalent
to the fraction of triangles around it. In functional networks, a high clustering
coefficient implies functional segregation. The clustering coefficient of a node i is
defined as [12]:

Ci ¼ 2ti
kiðki � 1Þ ð4Þ

where ki and ti denote the degree and the number of triangles of node i respectively.
The number of triangles can be calculated as follows:

ti ¼ 1
2

X

j;h2N
aijaihajh ð5Þ

3. Nodal local efficiency. The local efficiency of node i measures the extent of
information transmission among the neighbors of the node, which can be calculated
as follows [13]:

Eloc;i ¼
P

j;h2N;j 6¼i aijaih½djhðNiÞ��1

kiðki � 1Þ ð6Þ

where djhðNiÞ is the length of the shortest path between node j and h, that contains
only neighbors of i.
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4. Betweenness centrality. The betweenness centrality of node i is defined as the
number of all shortest paths in the network that pass through it [14]:

bi ¼ 1
ðn� 1Þðn� 2Þ

X

h 6¼j;h 6¼i;j6¼i

qðiÞhj
qhj

ð7Þ

where qhj is the number of shortest paths between h and j, and qðiÞhj is the number of
shortest paths between h and j that pass through i.

2.6 Feature Selection and Classification

As mentioned in Sect. 2.6, we chose four kind of measures to quantitatively describe
each node in the network and calculated these nodal features for the EEG and fNIRS
networks separately, and the process results in 440 features after bimodal feature
fusion. However, redundant features not only waste computing resources but also
impact the classifier performance. In the current study, the ReliefF algorithm proposed
in a previous study [15] was used to choose a small subset of features, which is
necessary and sufficient for describing the target. Compared with the Relief algorithm,
ReliefF can deal with multiclass problems and is more robust. As a feature estimator,
the ReliefF algorithm can estimate the quality of the feature according to how well their
values distinguish between instances that are near to each other. ReliefF randomly
selects an instance Ri. We searched its k ðk ¼ 10Þ nearest neighbors from the same
class and different classes and named their nearest hits Hj and nearest misses Mj. The
initial weight of feature A is set to zero, then updated iteratively, as follows [16]:

for i 2 f1. . .mg do
WðAÞ ¼ WðAÞ �Pk

j¼1
diff ðA;Ri;HjÞ=ðm� kÞ

þ P

C 6¼classðRiÞ
½ PðCÞ
1�PðclassðRiÞÞ

Pk

j¼1
diff ðA;Ri;MjðCÞÞ�=ðm� kÞ

end for

ð8Þ

where m is the number of instances in each class, diff ðA; I1; I2Þ denotes the difference
between the values of the feature A for instances I1 and I2, and P denotes the prior
probability of the class. All of the calculated feature weights will be sorted and only the
features with weights greater than the threshold will be retained, leading to a relatively
small subset of features. We used LIBSVM [17] to classify those features, and the
classification accuracy was obtained using the averaged accuracies of 10 times 10-fold
cross-validation.
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3 Results and Discussion

In the current study, complex brain networks were used to decode the observation of
three kinds of actions using simultaneously recording EEG-fNIRS data. Figure 4
shows the complex brain networks of three different actions constructed from EEG and
fNIRS data for subject 9, separately. The nodes of the complex brain networks rep-
resent the EEG electrodes or fNIRS channels, while the edges of the networks represent
functional connections. The resulting complex brain networks contain the spatio-
temporal information generated in action observation and therefore, they can be used as
spatio-temporal patterns for different action observation.

Hubs are nodes with high degree or centrality, which plays an important role in the
complex network [9]. In this study, we employed normalized betweenness centrality
bnorm;i ¼ bi=bave to identify hubs of different networks, where bave denotes the mean
value of betweenness centrality for all nodes. The calculated bnorm;i were averaged
across all subjects and those nodes with high normalized betweenness centrality
(Bnorm;i [ 2) were selected as functional hubs of a network. From Fig. 5, we can
observe that there existed distinct differences of the functional hubs distribution for
different complex brain networks.

Schippers and Keysers have proved that there was a flow of information within
mirror neuron systems (MNS) during gesture observation, which goes from visual
cortex ! temporal cortex ! parietal cortex ! premotor cortex [18]. Functional hubs
in the corresponding cortex are marked with dashed frames in Fig. 5. The distribution
of EEG functional hubs within MNS for complex networks composed of different
action observation are roughly the same, which demonstrates that the complex brain
networks can reflect the feed-forward model of MNS during action observation. As
shown in Fig. 1, both the action of drinking (Sd) and moving the cup (Sm) involve the
grasping movement, while the action with unclear intention is just touching the rim of
the cup. Previous study demonstrated that during grasping gesture observation,

Fig. 4. Complex brain networks constructed from EEG and fNIRS data for S9.

566 Y. Jiang et al.



significantly greater activation can be observed not only within above-mentioned MNS
but also in left inferior frontal gyrus (IFG) [19]. From Fig. 5 we can observe that both
Sd and Sm networks possessed the F7 hub, which is located in IFG, while it was absent
in Su network. Moreover, Su network has another functional hub FPz, suggest the
involvement of dorsolateral prefrontal cortex (DLPFC) in manipulating memory and
high-level inference. The hubs calculated using fNIRS data are mostly distributed in
motor cortex. The distribution of hubs coincides with the mechanism of action
observation proves the feasibility of complex brain networks.

Four kinds of network measures were selected as features for further analysis. To
build robust models, we used the ReliefF algorithm for feature selection before clas-
sification. In the current study, we not only used EEG or fNIRS features for classifi-
cation, but also used EEG-fNIRS bimodal fusion features for classification. Figure 6
shows the average classification accuracies of fNIRS, EEG and fNIRS-EEG bimodal
data, which were 52.7% (SD = 7.9%), 68.6% (SD = 6.8%) and 72.7% (SD = 4.4%),
respectively. The one-way analysis of variance (ANOVA) results demonstrated that
there was a statistically significant difference between these three methods
(F[2, 45] = 39.25, P < .001). Post-hoc paired t-tests revealed that the accuracies cal-
culated from EEG and EEG-fNIRS bimodal data were significantly higher than those
calculated from fNIRS data (P < .001). Although the t-test failed to reveal a significant
difference between classification accuracies calculated from EEG and EEG-fNIRS
bimodal data (P = 0.17), the mean accuracy of EEG-fNIRS bimodal data was
approximately 4% higher.

Compared with the classification accuracies calculated from EEG features, the
accuracies of fNIRS features are relatively low. However, for most participants, the use
of EEG-fNIRS confusion features can achieve higher classification accuracy. Particu-
larly for participant No. 16, the classification accuracy of fNIRS features was only

Fig. 5. Distribution of functional hubs for different complex brain networks. The corresponding
cortex is marked with dashed frames.
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38.9%, whereas accuracy of 72.3% was achieved when using confusion features, which
was 8.6% higher than that using EEG features. EEG and fNIRS are two different
functional brain activity measurements, with their own advantages and disadvantages.
A previous study [7] reported that using simultaneous recording of EEG-fNIRS data
could significantly improve the classification performance. In the current study, we
constructed complex brain network models for EEG and fNIRS data separately and
fused the calculated features at the feature level. The results demonstrated that using
EEG-fNIRS confusion features was able to improve model robustness, and effectively
reduce the misclassification.

4 Conclusion

In the current study, complex brain networks were used to decode simultaneously
recorded EEG-fNIRS signals during action observation. The results revealed that a
classification accuracy of 72.3% was achieved using EEG-fNIRS bimodal data, which
was higher than that obtained using fNIRS data (52.7%) or EEG data (68.6%) alone. In
addition, the results demonstrated the feasibility of incorporating action observation
decoding into BMI system design. Detecting misoperation of a device using action
observation decoding and responding to an action with unclear intention properly can
improve the robustness of a BMI system. Although the current classification perfor-
mance was not ideal, it could be improved using other feature extraction methods and
novel machine learning algorithms. Future studies should attempt to use dynamic graph
convolution neural networks (DGCNN) [20] for classification. In conclusion, our
proposed method provides a promising direction for BMI systems design.
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Fig. 6. Averaged classification accuracies by complex brain networks constructed from EEG,
fNIRS and EEG-fNIRS bimodal data (★★★ p\0:001).
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Abstract. In this paper, we design and implement a procedure to cap-
ture and extract regional connectivity patterns from brain connectomics.
Moreover, we assess the viability of such patterns as predictors for both
childhood and adult autism. Finally, we investigate which regions and
connections are significant for characterizing and predicting this psy-
chiatric pathology. We use two publicly-available neuroimaging datasets
and systematically train 90 extreme gradient boosting trees classifiers
(XGBoost) for each set, each classifier receiving connectivity patterns
extracted for one of the 90 regions of interest that form the automated
anatomical labeling (AAL) atlas. Our most predictive regional connectiv-
ity pattern features achieved an accuracy of 78.95% (precision = 78.98%,
recall = 78.75%) for the adult population and 75.01% accuracy for the
pediatric dataset (precision = 75.00%, recall = 75.09 %) for the pediatric
population. These classification accuracies are higher than those reported
in prior studies that used the same datasets. Altogether, our results indi-
cate that local connectivity around the lingual gyrus can predict both
adult and childhood autism with relatively high accuracy.

Keywords: Autism · Brain connectivity · Classification · eXtreme
Gradient Boosting · Functional magnetic resonance imaging

1 Introduction

Autism spectrum disorder (ASD) is a heterogeneous, persistent neurodevelop-
mental disorder with a range of symptom expression profiles, including deficits in
communication and social interaction, along with repetitive patterns of behavior
and interests. A growing body of literature suggests that persons with autism
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Table 1. Datasets

Dataset ASD CONTROL Age(μ±σ) Total

M/F Age M/F Age

CAL 15/4 17.5–45.1 15/4 17–56.2 28.15 ± 0.41 N = 38

STA 16/4 7.5–12.9 16/4 7.8–12.4 9.9 ± 1.5 N = 40

M = male, F = female, μ = mean, σ = standard deviation.

exhibit altered functional brain connectivity, as well as altered anatomical con-
nectivity, lending more credence to the dysconnectivity theory of this pathol-
ogy [7]. A more in-depth investigation of the patterns of dysconnectivity might
reveal clinically relevant diagnostic predictors or improve our understanding of
subtypes of the spectrum, leading to new or improved detection approaches.

Recent research using pattern recognition and machine learning methods
applied to whole-brain neuroimaging data has proved effective at diagnosing
autism based on brain features computed from complex network methods. Graph
theoretical approaches make it possible to extract network-based features for
single-subject classification at different levels of granularity. With the develop-
ment of machine learning technologies, alterations in network connectivity have
been extensively leveraged for building predictive models of brain disorders. Cur-
rently, the majority of brain disorder classification studies made use of nodal
pair-wise correlations as features that were fed to machine learning classifiers
such as SVMs, discriminant analysis classifiers, and neural networks [7].

In this paper, resting-state brain networks are modeled as undirected,
weighted graphs. Unlike previous works that focussed on global connectivity
patterns, we extract and analyze regional connectivity patterns, and highlight
how they differ between persons living with autism and healthy individuals. We
examine the significance of autism-related variations in regional connectivity for
all the brain regions described in the Automated Anatomical Labeling (AAL)
atlas. Further, we address the classification problem by training gradient boost-
ing trees classifiers with regional features. To the best of our knowledge, no
study has systematically analyzed the whole range of regional connectivity for
classification purposes. Since functional connectivity varies significantly between
children and adults, we illustrate our approach on two resting-state functional
magnetic resonance imaging (Rs-fMRI) datasets and show that local connectiv-
ity features can effectively diagnose both children and adults with autism.

2 Materials and Methods

2.1 Experimental Datasets and Preprocessing

Rs-fMRI scans in the current study were collected at the California Institute
of Technology (CAL) and Stanford University (STA). Their corresponding pre-
processed regional time-series were downloaded from the Autism Brain Imaging
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Data Exchange (ABIDE) Preprocessed Connectomes Project [3]. Table 1 pro-
vides demographic information about the enrolled participants. All data con-
tained in the ABIDE repository were previously anonymized, and private health
information was protected according to the Health Insurance Portability and
Accountability Act (HIPAA). Detailed information about imaging acquisition
parameters, informed consent, and site-specific protocols are available on the
consortium’s website1. Selected data were already preprocessed according to
the DPARSF pipeline [10] and warped into the Anatomical Automatic Labeling
(AAL) atlas; the mean time-series for 90 regions of interest (ROI) were extracted
for each subject.

2.2 Brain Network Construction

We modeled each brain imaging data as a network or undirected, weighted
graph G = (V,E), where V = {v1, v2, ..., vn} is the set of 90 regions of inter-
est defined according to the Anatomical Automatic Labeling (AAL) atlas, and
E = {eij}ni,j=1 with eij = {vi, vj , wi,j} ∈ V × V × R, a collection of connections
among ROIs, with wi,j denoting Pearson’s correlation coefficient that measures
the strength of association between any possible pair of regional mean time-series
vi and vj .
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Fig. 1. An example schematic of our regional connectivity pattern extraction proce-
dure. This figure illustrates how regional connectivity patterns were extracted based
on Katz similarity to the reference ROI labeled “1”. Left column: Toy graphs repre-
senting all subjects labeled “subject A”, “subject B”, ..., “subject Z”, having the same
set of ROIs but with different regional connectivity circuitry. Green and red colors
are assigned to close and distant connections of the reference ROI, respectively. Middle
column: binary feature vectors generated according to ROI’s assignment to the long- or
short-range classes of the reference ROI. Right column: feature matrix of the reference
ROI, formed by aggregating the corresponding feature vectors across subjects. (Color
figure online)

1 http://fcon 1000.projects.nitrc.org/indi/abide/.
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2.3 Regional Connectivity Features Estimation

Regional connectivity features were extracted for each region of interest (ROI)
and diagnostic group as follows. Based on topological similarity with respect to
a given reference ROI vR, nodes in each network were grouped in two classes:
the class of short-range connections, CR

L , and the class of distant or long-range
connections CR

D as illustrated in Fig. 1. More formally, given any dyadic similar-
ity metric sim(., .) and a threshold value τ ∈ ]0, 1[ , CR

L = {vl | sim(vR, vl) > τ} ,
the set of ROIs that are structurally close to the reference node vR, and
CD

L = {vl | sim(vR, vl) ≤ τ} , the set of nodes that are distant to the reference
node. Then, for each ROI and network, a 90 binary-valued feature vector was
generated corresponding to whether for a given reference ROI, all other ROIs
were assigned to the same connectivity group. ROIs were marked as either par-
ticipating (1) and not participating (0) in the reference ROI’s class of short-range
connections. Finally, for each ROI, feature vectors were aggregated to include
entries from all subjects in the same diagnostic group and form the regional con-
nectivity matrix (feature matrix). This procedure was applied to each dataset
and diagnostic group separately and yielded 90× 2 feature matrices correspond-
ing to each ROI and clinical group. The assessment of regional connectivity
differences between healthy and pathological participants using statistical tests,
as well as classification, were performed using feature matrices extracted for each
ROI. The nodal similarity between each pair of nodes was computed using Katz’s
metric, which is based on network paths. While a variety of metrics could be
employed for this purpose, the use of Katz index was motivated by a recent study
which found Katz index highly correlates with the underlying neural activity of
the brain at rest [4]. In essence, this metric plausibly captures how brain regions
interact at rest, especially when they are not connected with direct links. Katz
metric is defined as:

simKatz(vi, vj) =
∞∑

l=0

βl
∥∥σl(vi, vj)

∥∥ , (1)

where β � 1 is a computing parameter set to 0.001 in our experiments, ‖A‖ the
cardinal of set A, and σl(vi, vj) the set of all paths of length l between vi and
vj . The similarity threshold τ was set to 0.5.

2.4 Single Subject Classification

XGBoost (eXtreme Gradient Boosting) model was adopted for binary classifica-
tion [2]. XGBoost is an implementation of the gradient boosting trees algorithm
where gradient descent is used to minimize the loss. Briefly, a binary classifier
tries to find a relationship between training inputs, xi ∈ R

m, and their corre-
sponding label, yi = {−1,+1} (e.g. healthy controls and ASD), by estimating a
classification function f(xi) : Rm → R, where i is a training sample and m is the
dimensionality of x. For XGBoost model, assuming that the model is made of K
trees, we have: ŷi =

∑K
k=1 fk(xi), where fk belongs to the set of regression trees.
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In order to additively train our model, we optimized the following L2-regularized
objective:

ξ(xi,yi) =
n∑

i=1

l(yi, ŷ
(k)
i ) +

K∑

k=1

Ω(fk), (2)

where l denotes the binomial logistic loss function 1
(1+e−t) and Ω(f) = γK +

1
2λ

∑K
j=1 θ2j is the regularization term which helps avoiding overfitting. In the

regularization term, θ denotes the vector of scores on tree leaves, γ and λ are
two regularization hyperparameters.

The Scikit-learn package was implemented to perform classification, and the
hyperparameters were left to their default values [6]. We performed 90 different
classification experiments, each classifier being fed with connectivity features
extracted based on similarity with respect to a specific region. All the classi-
fiers were trained using the same hyperparameters. To evaluate the performance
of each classifier, we applied the leave-one-out cross-validation (LOOCV) strat-
egy, and classification results are reported in terms of accuracy, precision, and
recall. A statistical permutation test was used to assess whether the estimated
accuracies outperformed chance.

Fig. 2. Normalized mutual information (NMI) plots. NMI was computed between
regional average connectivity sets derived from homologous reference ROIs in the two
clinical groups (ASD and controls).

3 Results and Discussion

3.1 Regional Connectivity Differences

Group Level Analyses. To examine group-level regional connectivity differ-
ences between ASD subjects and healthy controls, group-level mean regional con-
nectivity matrices were generated for each ROI. In addition, normalized mutual
information (NMI) was computed between the diagnostic groups in each dataset.
Figure 2 shows that regional connectivity patterns are well-preserved for many
brain regions in both children and adult’s autism (NMI ≈ 1.) However, several
ROIs exhibit less similar connectivity between the two diagnostic populations.
Also, we note that for many regions, NMI was higher in the pediatric population,
implying that regional connectivity is more atypical in the adult population.
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Table 2. Significantly altered reference regions in autism

Label Regions Hemisphere MNI coordinates Pvalue

Adult dataset (CAL)

7 Middle frontal gyrus Left [−33.43, 32.73, 35.46] 0.009**

11 Inferior frontal gyrus, opercular part Left [−48.43, 12.73, 19.02] 0.001**

20 Supplementary motor area Right [8.62, 0.17, 61.85] 0.001**

23 Superior frontal gyrus, medial Left [−4.8, 49.17, 30.89] 0.009**

27 Gyrus rectus Left [−5.08, 37.07, −18.14] 0.001**

30 Insula Right [39.02, 6.25, 2.08] 0.009**

39 Parahippocampal gyrus Left [−21.17, −15.95, −20.7] 0.001**

43 Calcarine fissure and surrounding cortex Left [−7.14, −78.67, 6.44] 0.001**

47 Lingual gyrus Left [−14.62, −67.56, −4.63] 0.001**

50 Superior occipital gyrus Right [24.29, −80.85, 30.59] 0.001**

52 Middle occipital gyrus Right [37.39, −79.7, 19.42] 0.001**

54 Inferior occipital gyrus Right [38.16, −81.99, −7.61] 0.001**

66 Angular gyrus Left [45.51, −59.98, 38.63] 0.001**

70 Paracentral lobule Right [7.48, −31.59, 68.09] 0.001**

85 Middle temporal gyrus Left [−55.52, −33.8, −2.2] 0.018*

Children dataset (STA)

1 Precental gyrus Left [−38.65, −5.68, 50.94] 0.018*

4 Superior frontal gyrus, dorsolateral Right [21.9, 31.12, 43.82] 0.009**

11 Inferior frontal gyrus, opercular part Left [−48.43, 12.73, 19.02] 0.001**

20 Supplementary motor area Right [8.62, 0.17, 61.85] 0.018**

24 Superior frontal gyrus, medial Right [9.1, 50.84, 30.22] 0.001**

32 Anterior cingulate and paracingulate gyri Right [8.46, 37.01, 15.84] 0.009**

37 Hippocampus Left [−25.03, −20.74, −10.13] 0.036*

48 Lingual gyrus Right [16.29, −66.93, −3.87] 0.001**

51 Middle occipital gyrus Left [−32.39, −80.73, 16.11] 0.027*

72 Caudate nucleus Right [14.84, 12.07, 9.42] 0.001**

78 Thalamus Right [13, −17.55, 8.09] 0.001**

Subject Level Analyses. While normalized mutual information plots allow
for measuring the degree of disagreement between regional connectivity patterns,
they do not indicate if the difference is significant. To this end, we used an app-
roach proposed by [1] to test for regional connectivity differences between the two
clinical populations. This approach relies on the idea that if the clinical group
irrefutably justifies the discrepancy in connectivity patterns of a specific ROI,
then the mean NMI between all possible pairs of participants within a diagnos-
tic group should be higher than the mean NMI of pairs of participants between
randomized groups. The underlying distribution of group NMI being unknown,
a null-distribution was generated through a permutation method (10,000 permu-
tations). Thus, a set of 90 p-values was generated corresponding to whether each
regional connectivity patterns were more similar for subjects in the same clinical
group than in shuffled groups. The p-values were subsequently FDR-corrected
for multiple comparisons (p < 0.05). As shown in Table 2, the adult population
(CAL) displayed nineteen regions with significant alterations in connectivity,
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and the pediatric population (STA) twenty. However, only two identical brain
regions, the superior frontal gyrus, and the supplementary motor area were found
atypical in both demographic groups.

Table 3. Classification performance of significantly discriminating regional connectiv-
ity features

Label Reference regions Accuracy (%) Precision (%) Recall (%) P-value

Adult’s dataset (CAL)

12 Inferior frontal gyrus, opercular part 72.05 71.59 72 0.010*

15 Inferior frontal gyrus, orbital part 71.05 71.01 71.08 0.020*

36 Posterior cingulate gyrus 76.32 76.48 76.07 0.010*

47 Lingual gyrus 78.95 78.98 78.75 0.020*

66 Angular gyrus 68.42 68.3 68.52 0.048*

70 Paracentral lobule 73.68 73.77 73.33 0.020*

Children’s dataset (STA)

11 Inferior frontal gyrus, opercular part 75.01 75.00 75.09 0.009**

20 Supplementary motor area 73.09 73.13 72.98 0.019*

28 Gyrus rectus 63.89 63.17 63.71 0.047*

47 Lingual gyrus 70.65 70.26 70.33 0.039*

3.2 Identifying ASD Patients

The results showing the discriminative reference regions are summarized in
Table 3. The adult population displayed six significantly discriminative refer-
ence regions, while the pediatric population showed only four. As can be seen,
using regional long- versus short-range connectivity patterns as features yielded
a peak accuracy of 78.95% for the adult dataset (reference ROI: Lingual gyrus,
78.98% precision, 78.75% recall and p-value = 0.020, permutation test with 100
repetitions) and a peak accuracy of 75.01% for the pediatric dataset (reference
ROI: inferior frontal gyrus, opercular part, 75.00% precision, 75.09% recall, and
p-value = 0.009, permutation test with 100 repetitions). To the best of our
knowledge, these are the highest classification accuracies reported for these two
datasets using a LOOCV evaluation strategy. The peak accuracy reported for
CAL in [5] using fine-grained correlations as features and a LOOCV strategy was
as high as 50%. Also, the highest accuracy obtained by [8] for STA using 303
regional morphological features and 400 inter-regional functional features with a
support vector classifier was about 69%. Although we did not seek to reproduce
their results, the baselines used in these papers are the same as ours.

3.3 Deriving Significant Neural Patterns in ASD

Additional follow-up analyses were performed for the classifiers that yielded
the highest classification accuracy in order to identify connections that were
involved in the construction of decision trees. These connections are those that
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effectively contributed to the identification of autistic patients. We extended
our permutation test to evaluate the predictive power of each connection in the
connectivity sets. We re-ran the classification framework 100 times and computed
the average over 100 runs of the total number of times a specific connection was
involved in the decision process of boosted trees.

The most discriminative connections can be visualized in Fig. 3. In these
Figures, significantly discriminative connectivity patterns between patients with
ASD and healthy individuals involve only a small number of connections that

Reference ROI: Inf.front.gyrus, op.part
Accuracy: 72.05%. P-value: 0.010*

Reference ROI: Inf.front.gyrus, orb.part
Accuracy: 71.05%. P-value: 0.020*

Reference ROI: Poste. cing.gyrus
Accuracy: 76.32%. P-value: 0.010*

Reference ROI: Lingual gyrus
Accuracy: 78.95%. P-value: 0.020*

Reference ROI: Angular gyrus
Accuracy: 68.42%. P-value: 0.048*

Reference ROI: Paracentral lobule
Accuracy: 73.68%. P-value: 0.020*

A

Reference ROI: Inf.front.gyrus, op.part
Accuracy: 75.01%. P-value: 0.009**

Reference ROI: Suppl. motor area
Accuracy: 73.09%. P-value: 0.019*

Reference ROI: Gyrus rectus
Accuracy: 63.89%. P-value: 0.047*

Reference ROI: Lingual gyrus
Accuracy: 70.65%. P-value: 0.039*

B

Fig. 3. Visualizing significantly discriminative reference ROIs and their connections
for the adult cohort (A) and the pediatric cohort (B). The size of the reference nodes is
increased only for distinction purpose. The width of each connection is proportional to
the total number of times it contributed to the discrimination process. Visualizations
were made possible using BrainNet Viewer [9].
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yielded high classification accuracies. The most discriminative reference ROIs
differ between children and adults, except for the lingual gyrus. Regional con-
nections involving the lingual gyrus proved to be highly discriminative for both
adults and children datasets, but not with an identical set of connections.
Taken together, significantly altered regions and highly discriminative reference
regions found in this study are mainly in line with what has been previously
reported [5,8].

4 Conclusion

In summary, we proposed a classification framework for identifying children and
adults with autism based on the configuration of regional connectivity of the
brain at rest. Our pattern extraction method adopted the Katz similarity metric
to categorize regional connectivity into local and distant connections. A gradi-
ent boosting algorithm (XGBoost) was used to perform classification. Results
suggest that our machine learning framework can successfully classify both chil-
dren and adults with autism. Our most predictive regional connectivity pattern
sets achieved an accuracy of 78.95% (precision = 78.98%, recall = 78.75%) for
the adult population and 75.01% accuracy for the pediatric dataset (precision
= 75.00%, recall = 75.09 %) for the pediatric population. Briefly, this study has
demonstrated that by capturing local connectivity patterns around specific brain
regions, one can reliably discriminate autistic patients and healthy individual at
the subject level. These results are especially encouraging because connectivity
patterns are increasingly being regarded as potential viable biomarkers of this
neurological pathology.
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Abstract. Deep Neural Networks (DNNs) are very powerful and suc-
cessful but suffer from high computation and memory cost. As a useful
attempt, binary neural networks represent weights and activations with
binary values, which can significantly reduce resource consumption. How-
ever, the simultaneous binarization introduces the coupling effect, aggra-
vating the difficulty of training. In this paper, we develop a novel frame-
work named TP-ADMM that decouples the binarization process into
two iteratively optimized stages. Firstly, we propose an improved tar-
get propagation method to optimize the network with binary activations
in a more stable format. Secondly, we apply the alternating direction
method (ADMM) with a varying penalty to get the weights binarized,
making weights binarization a discretely constrained optimization prob-
lem. Experiments on three public datasets for image classification show
that the proposed method outperforms the existing methods.

Keywords: Binary neural network · ADMM · Target propagation

1 Introduction

Recently, Deep Neural Networks (DNNs) have achieved state-of-the-art perfor-
mance in various tasks such as speech recognition, computer vision, and natural
language processing. However, the complexity of DNN increases dramatically,
which hinders its deployment on embedded devices. To alleviate this problem, a
number of approaches have been proposed [1,2], such as network quantization,
weight pruning, low-rank decomposition, compact structure design, and knowl-
edge distillation. Among these methods, binary neural networks have received
great attention from both the research community and the industry. Binarizing
weights and activations together, the computation will be replaced by XNOR
and bitcount operations, and the network can get a 58× speedup in theory [3–5].

Unfortunately, binarizing weights and activations simultaneously incurs
severe accuracy drop for large-scale classification tasks. The binarization of
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weights only leads to marginal accuracy loss. However, the binarization of acti-
vations degrades the performance significantly, which may be caused by the
following two reasons: (1) The features are more sensitive to binarization com-
paring to weights and more bits are needed for the representation. Zhou et
al. increased the bit-width of activations and can achieve obvious performance
improvement than binary activations [6]. (2) The continuous approximations
of the non-differentiable operators in backpropagation cause gradient mismatch,
which leads to sub-optimal solutions [7]. Cai et al. tried to minimize the gradient
mismatch of quantization networks with variants of ReLU activation [8]. In addi-
tion to the difficulty of binarizing activations, the simultaneous binarization of
weights and activations introduces the coupling effect, which adds the optimiza-
tion difficulty. Wang et al. decomposed the training of quantization networks
into two steps, which can get a better result than simultaneous quantization [9].
Nevertheless, relevant efforts for binary neural networks are still scarce.

To alleviate the coupling effect of simultaneous binarization, we decompose
the training of binary neural networks into two stages: (1) optimizing a network
with binary activations; (2) binarizing the weights based on the network from the
first stage. Inspired by target propagation that can be used to train the network
with discrete outputs [10,11], we improve the target propagation method [11] to
obtain a network with binary activations. With activations binarized, in order
to binarize the weights further, we adopt a penalty varying alternating direction
method of multipliers (ADMM). ADMM can convert the binarization of weights
to a discretely constrained optimization problem [12,13], and the varying penalty
parameter can reduce the dependence on the initial setting.

2 The Proposed Method

2.1 Target Propagation Based Activation Binarization

In the first stage, we utilize target propagation to obtain a network with binary
activations. Consider an N -layer network and the i-th layer has ni activa-
tion units. Let Zi(zi1, ..., zini

), Hi(hi1, ..., hini
), and Ti(ti1, ..., tini

) denote pre-
activations, binary activations, and targets of the i-th layer, respectively. The
pre-activation unit zij is binarized to -1 or 1 by a sign function. In target prop-
agation, each activation unit hij is assigned with a binary target tij , and then
the layer weights can be optimized based on the given targets as shown in Fig. 1.
The key to target propagation is how to define the layer loss and how to set
targets for each layer.

The binary targets based optimization can be considered as a binary classi-
fication problem, which can be optimized using hinge loss intuitively. However,
hinge loss is sensitive to noisy data and outliers that cannot be used in this
problem directly. As in [11], we adopt soft hinge loss as the layer loss, which can
alleviate the effect of noisy data and outliers.

For targets setting, a natural method is to choose targets that can reduce
layer loss. Only having two opposite values, the targets can be set by a heuristic
method, which is based on the direction information of the derivatives [11].
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Fig. 1. Illustration of target propagation. The loss function of the last layer is cross
entropy loss, and the targets of the last layer are set to the labels.

Nevertheless, this direction based method is sensitive to small derivatives. To
reduce the permutation caused by small derivatives, we improve the targets
setting method proposed in [11]. The targets can be set as:

tij =

{
sign(− ∂

∂hij
Li+1(Zi+1, Ti+1)), when

∣∣∣ ∂
∂hij

Li+1

∣∣∣ ≥ ei,

sign(zij), others,
(1)

where Li+1 is the loss of layer i + 1, and ei denotes a threshold of the i-th layer.
For the activation units whose derivatives are greater than the threshold, the
targets are set to be consistent with the negative sign of the partial derivatives
of the next layer’s loss. This scheme is simple but effective, as the negative gradi-
ent usually indicates the optimization direction. For the activation units whose
derivatives are smaller than the threshold, the targets are set to be consistent
with the activations. The mismatch between the sign of small derivatives and
binary activations leads to opposite targets, degrading the stability of training. A
threshold is introduced to ignore the perturbation from small derivatives, which
can improve the robustness of target propagation.

2.2 Penalty Varying ADMM Based Weight Binarization

Based on the activation-binarized network from the first stage, we employ
ADMM to binarize the weights further. Let f(W ) denote the loss function of
the activation-binarized network, where W = {W1,W2, ...,WN}, and Wi denotes
the full-precision weights of the i-th layer. Let mi denote the number of output
channels in the i-th layer. The weights are binarized channel-wisely, and the
problem can be defined as:

min
W

f(W ) s.t. Wij ∈ Cij = {−αij , αij}, i = 1, ..., N, j = 1, ...,mi, (2)

where Wij represents the weights of i-th layer and j-th channel, and αij is a
scaling factor. Defining g(·) as an indicator function of the set C, the augmented
Lagrange can be formulated as:
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Lρ = f(W ) +
N∑

i=1

g(Zi) +
N∑

i=1

ρ

2
‖Wi − Zi + Ui‖2 , (3)

where Zi denotes the auxiliary variables, Ui denotes the dual variables, and ρ
denotes the penalty parameter. The ADMM algorithm proceeds by repeating,
for k = 0, 1,. . . , the following steps [12]:

W k+1 := arg min
W

(f(W ) +
N∑

i=1

ρk

2

∥∥Wi − Zk
i + Uk

i

∥∥2
) (4)

Zk+1 := arg min
Z

(
N∑

i=1

∥∥W k+1
i − Zk

i + Uk
i

∥∥2
) (5)

Uk+1
i := Uk

i + W k+1
i − Zk+1

i , (6)

which is proximal step, binarization projection step, and dual update,
respectively.

To accomplish the binarization of weights, we need to optimize Eqs. (4) and
(5). In Eq. (4), the first term is the loss function of the first stage, and the
second term can be considered as a special regularizer. In fact, these two terms
cannot be sufficiently optimized by stochastic gradient descent. Since the penalty
parameter ρ is sensitive to initialization, the first term is difficult to optimize
under a large penalty, and a small penalty will slow down the convergence. To
overcome this challenge, an increasing penalty is introduced in ADMM, which
can reduce the dependence on the initial setting. In the early iterations, the
activation-binarized network converges rapidly, and the distance between full-
precision weights and binary weights is very large. With the increase of the
penalty parameter, the effect of the regularization term is enhanced, and the
distance is optimized.

As in Eq. (5), the full-precision weights can be binarized using the Euclidean
projection. The binarizaiton of weights in i-th layer and j-th channel can be
formulated as:

Bij = sign(W k+1
ij + Uk

ij) (7)

αij =
1

c × h × w

∥∥W k+1
ij + Uk

ij

∥∥
1
, (8)

where Bij ∈ {−1, 1}c×h×w, and c, h, w denote input channels, kernel height,
and kernel width, respectively.

Finally, we update the dual variables according to Eq. (6). As we adopt a
varying penalty parameter, the dual variables Uk+1 should be rescaled after
updating ρk+1. This concludes one epoch of the ADMM algorithm. The regular-
ization term in Eq. (4) varies with the training, and this ADMM based method
can be considered as a special regularization method to achieve binarization.

The training of binary neural networks is decoupled into two stages as the
above sections. By optimizing the activation-binarized network from the first
stage under the ADMM framework iteratively, we can obtain an enhanced binary
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neural network. This two-stage optimization framework is named as TP-ADMM,
and the detailed procedure is demonstrated in Algorithm 1.

Algorithm 1. TP-ADMM for training binary neural networks.
Input: An initialized network with binary activations.

1: ADMM LOOP:
2: for epoch = 1 to K do
3: Step 1: Proximal step
4: TP LOOP: Train the activation-binarized network
5: for iter = 1 to M do
6: Forward propagation:
7: Compute pre-activations Z and binary activations H.
8: Backward propagation:
9: Compute binary targets Ti and the layer loss.

10: Compute the gradients of Wi based on the layer loss.
11: Update the learning rate η.
12: end for
13: Step 2: Binarization projection: Update Zk+1 by Eq. (7) and Eq. (8).
14: Step 3: Dual update: Update Uk+1 by Eq. (6).
15: Update the penalty parameter ρk+1 and rescale Uk+1.
16: end for

3 Experiments

In this section, we compare our method with the following methods: (1) BNN
[4]; (2) XNOR-Network (XNOR) [5]; (3) ADMM on three commonly used public
datasets. Besides, we extend the bit-width of weights or activations and conduct
some additional experiments.

3.1 Datasets and Experiments Setting

CIFAR10. It contains 32 × 32 color images from ten object classes, 50000
images for training, and 10000 images for testing. We adopt a 8-layer model as
in [11] to validate the effectiveness of our approach: “(48C5) - MP2 - (2× 64C3)
- MP2 - (3 × 128C3) - (512C3) - 10”, where C5 is a 5 × 5 convolution layer and
MP2 is a 2 × 2 max-pooling layer.

CIFAR100. It contains 32 × 32 color images from 100 object classes, 50000
images for training, and 10000 images for testing. We use a VGG-like architec-
ture as in [14]: “(2 × 128C3) - MP2 - (2 × 256C3) - MP2 - (2 × 512C3) - MP2 -
(2 × 1024FC) - 100”.



A Two-Stage Framework for Training Binary Neural Network 585

SVHN. It contains 32 × 32 color images from ten digit classes. We use 604388
images for training, and the remaining 26032 for testing. The model we use is
the same with [4]: “(2 × 64C3) - MP2 - (2 × 128C3) - MP2 - (2 × 256C3) - MP2
(2 × 1024FC) - 100”.

Experiments Setting. ADAM is used as the optimizer. The initial learn-
ing rate is set to 0.001, 0.002, and 0.002 on CIFAR10, CIFAR100, and SVHN,
respectively. In target proportion, a threshold is proposed to improve the stabil-
ity. The activation units are sorted based on the magnitude of the gradients, and
the threshold is set by a given proportion. We gradually increase the proportion
to evaluate the impact of the threshold. As shown in Fig. 2, when the proportion
is set to 6%, the performance outperforms the original model by 0.4%, so the
proportion is set to 6% in the following experiments. In ADMM, the step size of
penalty parameter ρ is set to 2 × 10−6.

Fig. 2. The impact of the threshold. Experiments are implemented on CIFAR10 with
only activations binarized.

3.2 Experimental Results

Experiments on Binary Neural Network. The training process of TP-
ADMM is presented in Fig. 3. The L2 distance is used to measure the model
difference between the two stages. As we can see, the accuracy of the binary
neural network approaches the network from the first stage fast in the early
iterations. With more epochs and heavier penalty, these two networks converge
to the same accuracy finally. At the start of training, the regularization term in
Eq. (4) has little effect on the activation-binarized network. The network con-
verges rapidly, making the binary neural network difficult to follow. With the
enhancement of the regularization term, the weights of the two stages approach
to each other, and we can get an optimized binary neural network in the end.

We compare the full-precision network (FP), BNN, XNOR-Net, and ADMM
with the proposed TP-ADMM. As shown in Table 1, training binary neural
networks under the ADMM framework outperforms the existing binarization
approaches. Combining target propagation with ADMM further, we can achieve
the best performance on the three datasets. On CIFAR10 and CIFAR100, TP-
ADMM outperforms BNN and XNOR by a significant margin with 1% accuracy
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Fig. 3. The training curve on CIFAR10, CIFAR100, and SVHN (left to right). The red
line represents the accuracy of the activation-binarized network, the blue line represents
the accuracy of binary neural network, and the yellow line represents the average L2
distance between full-precision weights and binary weights. (Color figure online)

improvement. On SVHN, the accuracy of TP-ADMM also exceeds BNN and
XNOR by a small margin.

Table 1. The results for binary neural networks.

Network CIFAR10 CIFAR100 SVHN

FP 91.20% 60.94% 97.40%

BNN 84.45% 56.80% 96.49%

XNOR 84.81% 56.69% 96.52%

ADMM 85.71% 57.01% 96.52%

Ours 85.85% 57.74% 96.58%

Experiments on Ternary Weights. To improve the representation ability of
binary weights, we represent the weights with {−α, 0, α} as in Ternary Weight
Network (TWN) [15] for further experiments. The additional zero value does
not add computation consumption. The results are presented in Table 2. As we
can see, TP-ADMM outperforms TWN on the three datasets. However, the
performance only improves slightly comparing to binary weights.

Table 2. The results for ternary weights and binary activations.

Network CIFAR10 CIFAR100 SVHN

FP 91.20% 60.94% 97.40%

TWN 85.80% 57.10% 96.55%

Ours 86.07% 57.96% 96.60%
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Experiments on 2-Bit Activations. We extend the bit-width of activations
to 2-bit for more experiments. Target propagation for multi-bit activations is
processed as in [11]. As shown in Table 3, the performance improves apparently
than binary neural networks. On CIFAR10, TP-ADMM outperforms XNOR2

by 1.69%. On SVHN, the accuracy of TP-ADMM nearly approaches the full-
precision network. Moreover, the proposed method even outperforms the full-
precision network on CIFAR100, indicating the effectiveness of TP-ADMM.
According to the experiments, activations are more sensitive to binarization and
should be paid with more attention.

Table 3. The results for binary weights and 2-bit activations. XNOR2 refers to replac-
ing the activation of XNOR with 2-bit.

Network CIFAR10 CIFAR100 SVHN

FP 91.20% 60.94% 97.40%

XNOR2 87.75% 57.94% 97.14%

Ours 89.44% 61.03 % 97.34%

4 Conclusion

In this paper, we present a two-stage framework named TP-ADMM to optimize
the training of binary neural networks. An improved target propagation method
and a penalty varying ADMM are jointly employed to achieve the two-stage
binarization, which can alleviate the coupling effect of simultaneous binarization,
making the binarization process more stable. Experiments on image classification
demonstrate the effectiveness of the proposed method. In addition, the proposed
method can be easily applied to train quantization networks with more bits.
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7. Bengio, Y., Léonard, N., et al.: Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint. arXiv:1308.3432
(2013)

8. Cai, Z., He, X., Sun, J., et al.: Deep learning with low precision by half-wave
Gaussian quantization. In: IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5406–5414 (2017)

9. Wang, P., Hu, Q., Zhang, Y., et al.: Two-step quantization for low-bit neural
networks. In: CVPR, pp. 4376–4384 (2018)

10. Lee, D.-H., Zhang, S., Fischer, A., Bengio, Y.: Difference target propagation. In:
Appice, A., Rodrigues, P.P., Santos Costa, V., Soares, C., Gama, J., Jorge, A.
(eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9284, pp. 498–515. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23528-8 31

11. Friesen, A.L., Domingos, P.: Deep learning as a mixed convex-combinatorial opti-
mization problem. In: International Conference on Learning Representations (2018)

12. Boyd, S., Parikh, N., Chu, E.: Distributed optimization and statistical learning via
the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1),
1–122 (2011)

13. Leng, C., Li, H., Zhu, S.: Extremely low bit neural network: squeeze the last bit
out with ADMM. In: AAAI Conference on Artificial Intelligence (2018)

14. Hou, L., Yao, Q., Kwok, J.T.: Loss-aware weight quantization of deep networks.
In: International Conference on Learning Representations (2018)

15. Li, F., Zhang, B., Liu, B.: Ternary weight networks. arXiv preprint.
arXiv:1605.04711 (2016)

https://doi.org/10.1007/978-3-319-46493-0_32
http://arxiv.org/abs/1606.06160
http://arxiv.org/abs/1308.3432
https://doi.org/10.1007/978-3-319-23528-8_31
http://arxiv.org/abs/1605.04711


Fast and Accurate Lung Tumor Spotting
and Segmentation for Boundary Delineation
on CT Slices in a Coarse-to-Fine Framework

Shuchao Pang1, Anan Du2, Xiaoli He3, Jorge Díez4,
and Mehmet A. Orgun1(&)

1 Department of Computing, Macquarie University, Sydney, Australia
pangshuchao1212@sina.com, mehmet.orgun@mq.edu.au

2 School of Electrical and Data Engineering,
University of Technology, Sydney, Australia

duanan2008@163.com
3 Department of Internal Medicine, Qingdao Huikang Hospital, Qingdao, China

dochexiaoli@126.com
4 Artificial Intelligence Center, University of Oviedo at Gijon, Gijon, Spain

jdiez@uniovi.es

Abstract. Label noise and class imbalance are two of the critical challenges
when training image-based deep neural networks, especially in the biomedical
image processing domain. Our work focuses on how to address the two chal-
lenges effectively and accurately in the task of lesion segmentation from
biomedical/medical images. To address the pixel-level label noise problem, we
propose an advanced transfer training and learning approach with a detailed
DICOM pre-processing method. To address the tumor/non-tumor class imbal-
ance problem, we exploit a self-adaptive fully convolutional neural network
with an automated weight distribution mechanism to spot the Radiomics lung
tumor regions accurately. Furthermore, an improved conditional random field
method is employed to obtain sophisticated lung tumor contour delineation and
segmentation. Finally, our approach has been evaluated using several well-
known evaluation metrics on the Lung Tumor segmentation dataset used in the
2018 IEEE VIP-CUP Challenge. Experimental results show that our weakly
supervised learning algorithm outperforms other deep models and state-of-the-
art approaches.

Keywords: Boundary delineation � Lung tumor segmentation � Fully
convolutional neural networks

1 Introduction

With the improvement of clinical diagnostic equipment in terms of their capability,
quality and availability in hospitals, biomedical/medical image data analysis has
attracted much attention. The Volume, Variety, and Velocity (3V) of these images
make it impractical and infeasible for clinicians to analyze them manually without
making subjective errors [1]. Among different imaging devices, computed tomography
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is the most popular imaging modality because of its high resolution, imaging sensi-
tivity, and isotropic acquisition, e.g., locating the lung and its lesions. Moreover, with
the successful application of imaging technology in clinical medicine, automated image
segmentation has been playing an increasingly important role. The accuracy of lesion
region segmentation can be improved further by the consideration of Radiomics feature
extraction and its detailed qualification with the ultimate goal of developing predictive
models for precise prognosis in clinical medicine [2]. However, due to the variability
and diversity during medical imaging processing and the existence of noisy-labelled
datasets as well as tumor/non-tumor class imbalance in images, it is very hard to train a
discriminative model for a specific lesion spotting and segmentation task with accurate
contour delineation. In particular, in real-world applications, many popular methods
often fail to perform well or even completely fail on raw datasets. Because it is really
difficult and time-consuming to obtain pure data sets and labels in many image pro-
cessing applications, so we have to directly use the available raw dataset.

In this paper, we focus on how to overcome the two critical challenges of (i) noisy
pixel-level labels and (ii) tumor/non-tumor class imbalance when training a robust pixel-
level deep model for biomedical/medical lesion spotting and segmentation with sophis-
ticated gross tumor contour delineation. Figure 1 highlights the diversity of, and chal-
lenges that arise from, the lung computed tomography (CT) dataset used in this work.

The main contributions of our work can be summarized as follows: We first pro-
pose a novel framework to simultaneously address noisy labels and class imbalance of
raw datasets for accurate biomedical/medical image lesion segmentation and boundary
delineation in real applications. We design an algorithm for reading from raw DICOM
meta files as a preprocessing step for training deep neural networks. Then, a fully
convolutional neural network is proposed to address pixel-level noisy labels using

Fig. 1. Some Lung CT slices from the public NSCLC-Radiomics dataset. Note that the first row
indicates the diversity of the dataset and the rest of the figure shows the obvious noisy pixel-level
label problems and small tumor regions, where the lesion region in each lung CT slice is
magnified in contrast with its rough manual ground truth and our segmentation result.
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transfer learning. Furthermore, we develop a self-adapting weight allocation mecha-
nism for addressing severe tumor/non-tumor imbalance problems to establish a dif-
ferentiable cost function for spotting tumors. Finally, an improved conditional random
field is used for accurate CT lung tumor segmentation and contour delineation.

Experimental results show that our weakly supervised learning framework outper-
forms some of the other deep models and state-of-the-art approaches in lesion spotting
and boundary delineation from biomedical/medical images, based on several well-
known evaluation criteria. Moreover, with fast processing time, our average dice
coefficient result is higher than those of the winners of 2018 IEEE VIP-CUP Challenge
by a large margin.

2 Related Work

The current biomedical/medical image segmentation methods can be grouped under
two categories: the co-segmentation methods and the deep learning methods.

Co-segmentation Methods. Co-segmentation methods involve combining two seg-
mentation methods or using two or more types of biomedical/medical image modali-
ties. Many studies [3] have indicated that the co-segmentation method by combining
different segmentation methods is treated as an energy minimization problem to
delineate the gross tumor contours. Besides, due to the superior contrast of positron
emission tomography (PET) images and high spatial resolution of CT images, more
recent methods [4] in the field of clinic and lesion segmentation prefer to integrate PET
and CT images.

Deep Learning Methods. In the past few years, deep learning has already swept
through most research fields of computer vision and has achieved better results than
traditional methods, and biomedical/medical image segmentation is no exception [5].
The existing methods [6, 7] strive to obtain more precise and comprehensive tumor
features by taking the advantage of deep learning in its superior ability of hierarchical
feature representation.

3 The Proposed Method

3.1 Problem Setup and Preprocessing

Suppose that there is a testing CT slice image (I) with a lung tumor from any 3D CT
scans of a patient and the size of the image is 512� 512 pixels. We denote each pixel
in image I as vi; i ¼ 1; 2; . . .;N, where N is the total number of pixels in I. And the set
of possible labels for each pixel can be represented as L ¼ 0; 1; . . .; tf g. Besides, for
each pixel vi, we define a variable lvi 2 L that indicates the assigned label. The prob-
ability of a pixel vi belonging to label k in the given CT slice image I is formalized as
Pðlvi ¼ kjIÞ and it is calculated by our proposed fully convolutional neural networks
(FCNNs). In this gross tumor segmentation task, we take the set L ¼ 0; 1f g to denote
the labels: 0 means non-tumor and 1 means tumor. In the training stage, our work is to
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train a deep neural network ; X; hð Þ, where ; �ð Þ is the learned network on each training
image X and h indicates all network parameters, with the NSCLC-Radiomics dataset
from 2018 IEEE VIP-CUP Challenge to compute the predicted probability maps
Pðlvi jIÞ for any testing image I. In order to predict the result for each testing image, we
use all the training data pairs Xq; Yq

� �
; q ¼ 1; 2; . . .;Q for supervised training the neural

network model ; X; hð Þ looking for the best network parameters h�. Note that Xq; Yq
� �

is the qth training image and its label, and Q is the total number of the images in the
training dataset. In this way, Pðlvi jIÞ is equivalent to ; I; h�ð Þ. To compute it, let
C Ŷ ; Y
� �

be the loss function to minimize during the training phase, where Ŷ ¼ ; X; hð Þ
and Y is the label of each training image X. Now, the optimal parameter h� for gross
tumor segmentation can be calculated with the following formula:

h� ¼ argmin
h

Xm

s¼1
C Ŷs; Ys
� � ¼ argmin

h

Xm

s¼1
C ; Xs; hð Þ; Ysð Þ; ð1Þ

where m � Q stands for the number of images in a mini-batch. Then, the predicted
pixel probability result Pðlvi jI; h�Þ for each gross tumor slice can be further refined by
using our improved dense conditional random fields as maximum a posteriori
inference.

In addition, this subsection also shortly introduces the preprocessing steps from
reading RTSTRUCT annotations through an extra DICOM metafile in clinics to
transforming the original DICOM images in CT volumes as the inputs for deep neural
networks (the workflow can be found in Fig. 2 ①). After this procedure, the whole
NSCLC-Radiomics dataset [11] from 422 patients are further grouped into missing file
cases with 104 patients, irrelevant labelling cases with 30 patients checked by our
physician and roughly usable cases (in spite of some noisy labels in each slice) with
288 patients.

3.2 The Whole Architecture

Adaptive Fully Convolutional Neural Networks. As shown in the step ② of Fig. 2,
a whole fully convolutional neural network model is illustrated with different stacked
layers, which mainly comprises two key modules, one of which is the encoder part
which aims to capture spatial and context information of tumors and non-tumors, while
the other is the decoder model that is used to recover the details and localize the
position of tumors and non-tumors.

To address the noisy pixel-level label problem from the provided NSCLC-
Radiomics dataset, we adopt a transfer learning strategy among different but interre-
lated biomedical image segmentation datasets for alleviating noisy pixel-level label
interruption. In particular, we resort to the Neuronal Structure Segmentation Dataset in
Electron Microscopic Stacks at 2015 ISBI Challenge [9], which has an accurate neu-
ronal structure segmentation gold standard in spite of only 30 training images.

When we train any classification network, the class imbalance could make the
network recognize the classes with the vast majority of examples and ignore the rarely
seen classes. To solve the severe tumor/non-tumor class imbalance problem from the
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dataset when training the deep model, we improve the binary loss function with a self-
adapting weights allocation mechanism for these two categories in each mini-batch:

Lossmini�batch ¼
Xm

s¼1
C Ŷs; Ys
� � ¼

Xm

s¼1
C ; Xs; hð Þ; Ysð Þ

¼ � 1
m � N

Xm

S¼1

XN

i¼1
xclass

tumourYs;vi logŶs;vi þxclass
non�tumourð1� Ys;viÞlog 1� Ŷs;vi

� �� �
;

ð2Þ

where the weighting factors for tumor xclass
tumour and non-tumor xclass

non�tumour are defined in
the following formulas respectively:

xclass
tumour ¼ 1:0=

PN
i¼1 Ys;vi ¼ 1

� ��
1
2 1:0=

PN
i¼1 Ys;vi ¼ 1

� �þ 1:0=
PN

i¼1 Ys;vi ¼ 0
� �� �

;

ð3Þ

xclass
non�tumour ¼ 1:0=

PN
i¼1 Ys;vi ¼ 0

� ��
1
2 1:0=

PN
i¼1 Ys;vi ¼ 1

� �þ 1:0=
PN

i¼1 Ys;vi ¼ 0
� �� �

:

ð4Þ
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Fig. 2. Overview of the proposed gross tumor spotting and segmentation pipeline for Radiomics
Lung CT images from different patients on NSCLC-Radiomics dataset.
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Please note that the two weighting factors could be different for each training image
pair Xs; Ysð Þ in the mini-batch, which are automatically computed according to the size
of the tumor in each CT image, so called self-adapting weights allocation mechanism
for coping with serious tumor/non-tumor imbalance problem. Then, we use Adam, a
variant of the stochastic gradient descent algorithm, to optimize the above loss function
and update the parameters h. By minimizing Eq. (2), the parameters h� can be finally
computed after training the fully convolutional neural network with 100 epochs.

Improved Dense Conditional Random Fields. The main highlight of this step is that
we ameliorate the traditional conditional random fields for non-RGB images by adding
pair-wise Gaussian potential into old pair-wise potential. The new potential can
penalize small pieces of segmentation results that are spatially isolated in the original
output results produced by the traditional conditional random fields [10], which can be
clearly observed in part ③ of Fig. 2. Here, we adopt the graph model G ¼ V ;Eð Þ to
represent a CT lung slice image, where V ¼ vif g; i ¼ 1; 2; . . .;N and E ¼ ei;j

� �
; i;

j ¼ 1; 2; . . .;N; i\j. For the whole pipeline of step three, the improved dense condi-
tional random fields includes two critical components, which are unary potential and
pair-wise potential. For each testing image I, the objective function of our improved
dense conditional random fields is defined as follows:

Energy lVð Þ ¼
X

V
uu lvið Þþ

X
E
up lvi ; lvj
� �

; ð5Þ

where the first term uu lvið Þ denotes unary potential and it can be equal to the proba-
bilistic output of our trained deep gross tumor spotting model with Pðlvi jI; h�Þ. And the
second term up lvi ; lvj

� �
is the pair-wise potential, where we define the bilateral potential

and Gaussian potential inside with the following Eq. (6). Here, l lvi ; lvj
� �

is given with
the Potts function that evaluates the label compatibility, and pv and Iv denote pixel
position and intensity content information respectively. Besides, dbil and dgau separately
stand for the proportion of each kind of pair-wise potential with different effective
range a; b; c.

up lvi ; lvj
� � ¼ l lvi ; lvj

� �
dbil exp � pvi � pvj

		 		2
2a2

� Ivi � Ivj
		 		2

2b2

 !
þ dgauexp � pvi � pvj

		 		2
2c2

 !" #
:

ð6Þ

Finally, to gain more precise gross tumor boundaries with Pðlvi jIÞ, the best label
result l�v can be computed by the following formula with the efficient approximation
inference approach proposed in [10]:

l�v ¼ argminlv2LEnergy lvð Þ: ð7Þ
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4 Experimental Evaluation

Datasets and Evaluation Metrics. As in [9], we also use different data augmentation
techniques on the Neuronal Structure Segmentation Dataset for transfer learning, and
NSCLC-Radiomics dataset [11] is randomly split into training, validation and test sets
with the proportion of 7:1:2 for lung tumor spotting and segmentation. In the evalu-
ation of our framework, several public and widely used image semantic segmentation
evaluation metrics are utilized in our experiments, including Dice Coefficient, Haus-
dorff Distance, Jaccard Index, Precision, Sensitivity (Recall), Specificity and F1.

Experimental Results and Analysis. Our coarse-to-fine algorithm with three steps
can achieve significant lung tumor spotting and segmentation results. In terms of
qualitative analysis shown in Fig. 1, the second and third rows help check the per-
formance on different sizes of gross tumor areas and we can also observe that the
obtained boundaries of lesions are described in more detail and clearer than the given
roughly manual ground truth. Furthermore, our algorithm not only accurately spots the
position of tumors, but also carefully discriminates between tumors and non-tumors
pixel by pixel.

In addition, the results in Fig. 1 also reveal the manual annotation errors in the
provided dataset by a radiation oncologist [11]. Furthermore, in order to evaluate
boundary location performance of our segmentation method with high quality, a clear
tumor contour delineation is shown in Fig. 3 with several local enlargement patches.

We have also evaluated our model over the test set by removing the cases with
obvious and unrealistic raw data errors by our physician. The results in Table 1 show
that our method achieves a significant performance for lung tumor spotting and seg-
mentation in CT slices, and it is especially competitive compared to other typical
segmentation models and methods. Except the original U-Net without any prediction
for tumors, we compare our method with SegNet and the latter can obtain a better
recall. However, its precision is really worse than that of ours, which means SegNet
classifies lots of non-tumor pixels as tumor regions. In particular, it might take more
misclassified results under the situation of many noisy ground truths. Next, we improve
the U-Net method with our techniques proposed in this paper and we can find it can
roughly predict tumor regions better than before. Besides, we have also compared our
improved conditional random fields with its naive model, and observed that our
framework can obtain a 92.47% precision compared to traditional CRFs’ 81.55%.
Furthermore, by comparison, our approach can even achieve a much better average
dice coefficient on the test set with 0.7767 than the reported results of 2018 VIP Cup
(Winner: Team Markovian of 0.594 and Runner up: Team NTU_MiRA of 0.521) [12].
In our approach, the average processing time for a CT slice is 468 ms, including
spotting time with 79 ms and segmentation time with 389 ms, which is rather fast for
practical applications.
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5 Conclusions

In this work, we have proposed a novel framework to leverage the integration benefits
of the co-segmentation model and powerful discriminative capability of the deep
learning method to localize the gross tumor boundaries in medical images precisely and
automatically. Most importantly, we propose a unified framework to successfully
overcome these two critical bottlenecks in training a deep model for pixel-level medical
image segmentation tasks: (i) noisy pixel-level labels and (ii) tumor/non-tumor class
imbalance problems. Finally, by designing a coarse-to-fine model via weakly super-
vised learning, the proposed Radiomics gross tumor segmentation approach can
achieve more precise contour delineation and segmentation than those state of the art
methods. Moreover, our proposed approach has fast response times for assisting a more
accurate clinical diagnosis and a good radiation therapy treatment planning.

Table 1. Segmentation results on all the test data with different evaluation criteria. Note that the
numbers in bold face indicate the best result under different criteria for the whole test set.

Methods\ Metrics DICE HD JAC Precision Sensitivity Specificity F1

SegNet [13] 0.7518 50.935 0.6260 0.6666 0.9256 0.9958 0.7750
U-Net [8] -w.-Our-
Tech.

0.6209 346.71 0.4662 0.5367 0.7869 0.9947 0.6382

Ours-w.-OldCRF [10] 0.5313 48.436 0.3953 0.8155 0.4425 0.9991 0.5737
Ours 0.7767 15.492 0.6493 0.9247 0.6951 0.9995 0.7936

Fig. 3. Comparison of our proposed automatic delineation result (green) and the manual ground
truth (red) in details. (Color figure online)
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Abstract. Nowadays, medical image segmentation plays an important role in
computer-aided medical diagnosis. To realize effective segmentation, Attention
Mechanism (AM) is widely adopted. It can be trained to automatically highlight
salient features and integrated into convolution neural networks conveniently.
However, many researchers choose the attention mechanism without sufficient
theoretical interpretability. They ignore the differences and dominant charac-
teristics between various datasets, which causes the failure to select the most
appropriate one. In this paper, we explore the implementation and discrimination
of four specific attention mechanisms. To evaluate their performances, we
incorporate these mechanisms within the U-Net and make a comparison on three
medical image datasets. The experimental results show that all these attention
mechanisms can improve the value of Mean IoU. More significantly, we find the
best AM for each type of dataset and analyze the reasons for different perfor-
mances from underlying mathematical principles.

Keywords: Deep learning � Attention mechanism � Medical image
segmentation

1 Introduction

Automated medical image segmentation aims to segment special parts, which is a key
issue in determining if it can provide reliable basis for diagnosis. Medical image
segmentation is difficult for images are too complex and lack simple linear features.

Recently, methods based on deep learning [5, 6] has made remarkable achieve-
ments. Fully Convolutional Networks (FCNs) [1] and the U-Net [2] are two typical
architectures. However, they rely on multi-stage cascaded CNNs, which leads to
redundancy of model parameters and repeated extraction of low-level features. To
solve it, attention mechanisms are proposed. Generally, random selection of AM
cannot receive the best results. Therefore, we do plenty of experiments to prove it and
made a discussion on the differences between different attention mechanisms.

In this paper, we choose U-Net as the base model and compare the results when it is
added with different AMs. The experimental data are several medical image sets,
including segmentations of nuclear and lesions. Totally, there are four types of AMs been
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adopted: Position Attention Module (PAM), Channel Attention Module (CAM) [3],
Region Attention Block (RAB) and Channel Attention Block (CAB) [4].

Generally speaking, our main contributions can be summarized as follows:

• We propose four AMs and five fusions of them with U-Net to do experiments on
three different medical datasets.

• We achieve great improvement in Mean IoU after adding attention mechanisms to
the original networks. This obviously proves the superiority of AMs.

• We discuss the results of the experiments and find that the same attention module
has different promotion for different datasets. That is to say, there will be a most
suitable module for each dataset according to its specific characteristics.

2 Related Work

2.1 Semantic Segmentation

Several networks [10, 11, 13–15] based on FCNs achieved improvement. As to
medical images, U-Net shows great advantages. Wang et al. [20] proposed a wound
image analysis system, which adopts the U-Net to segment the wound image and SVM
classifier to classify. Milletari et al. [17] obtained V-Net by the deformation of U-Net,
which uses the dice coefficient loss function instead of the cross-entropy loss function.

2.2 Attention Mechanism

AM learns a weight distribution of image features and apply it to the original features,
which provides different effects of features. AM can be divided into soft attention [12]
and hard attention [21]. The former one is to retain all components for weighting, and
the latter is to select partial components by some strategy. AM can be weighted on the
original image [21], the spatial scale, the channel scale [4] and combinations [7, 12, 22].

Therefore, AMs are applied in several tasks, including image captioning, seg-
mentation [16] and object recognition [21]. Wang et al. [9] enhanced the receptive field
of the underlying features and increased the depth of the network in disguise through
the attention map. Chen et al. [8] constructed the attention model by two convolutional
layers to automatically learn the weight of different scales and carry out the fusion.

3 Methods

3.1 Overview Framework

The main framework of our algorithm is shown in Fig. 1. The U-Net is the base model,
for its superiority in medical image segmentation. We add different AMs to the U-Net:
CAB, RAB, PAM and CAM. Besides, we also make five fusions. The positions of
these AMs are a bit different. As is shown in Fig. 1, the yellow circle is where the
PAM, CAM display, while the other four orange circles represent the insertion of CAB,
RAB.
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3.2 Attention Modules

As the name suggests, CAB and CAM are related to channels while RAB and PAM
depend on positions. Besides, CAB and RAB are similar, for both of their weight
distributions represent the influence on the final results. Meanwhile, PAM and CAM
belong to self-attention and focus on the similarity. The more similar the semantic
information of each position to the specified position, the greater the weight value is in
PAM.

Channel Attention Block (CAB). Some channels are more significant, so CAB is
proposed to make each channel have a corresponding weight. It is composed of spatial
squeeze and channel excitation block, as is illustrated in Fig. 2(A). The first step is to
squeeze the spatial information by a global average pooling layer, which transforms the
size from C � H �W to C � 1 � 1. We set A ¼ a1; a2; . . .; ac½ � (ai 2 RH�W ) as the
original input maps, b ¼ b1; b2; . . .; bc½ � (bi 2 R) as the results of squeezing:

bk ¼ 1
H�W

PH
i¼1

PW
j¼1

ak i; jð Þ ð1Þ

Then it is linked with two fully-connected (fc) layers. W1 reduces the dimension
and W2 increases it. Thus, the feature map is transformed to s ¼ W2 d W1bð Þð Þ.
Compared with only one fc layer, this has more nonlinearity. Then, a sigmoid layer r is
proposed:

eR1 ¼ Fse Að Þ ¼ r s1ð Þa1; r s2ð Þa2; . . .; r scð Þac½ � ð2Þ

In the formula (2) above, the value of r sið Þ represents the weight of the ith

map. Finally, we multiply the original map A by eR1 to obtain the result map R1.

Fig. 1. A detailed framework of our method. The base network is the U-Net. The yellow circle
is where PAM and CAM placed, while the four orange circles are for CAB and RAB. (Color
figure online)
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Region Attention Block (RAB). It focuses on spatial information. The size of the map
is C and i; jð Þ means the location of the pixel. The channel is compressed by a con-
volution kernel K K 2 R1�1�C�1ð Þ. We set the intermediate results as b ¼ K � A b 2ð
RH�WÞ, � means convolution operation. Then we employ a sigmoid activation r:

eR2 ¼ Fra Að Þ ¼ r b1;1
� �

a1;1; r b1;2
� �

a1;2; . . .; r bH;W
� �

aH;W
� � ð3Þ

Where bi;j means the weight of spatial position i; jð Þ for all channels. The larger the
value of bi;j is, the greater the correlation between this position and the result.

Position Attention Module (PAM). PAM is adopted to obtain the similarity of pixels
in different positions. For a specific location feature, it is combined of features of all
pixels and their weights are determined by the degree of similarity. Similar features at
different locations can promote each other’s improvement.

As is shown in Fig. 2(C), we consider A as the input local feature. It experiences a
convolutional layer and is reshaped into B;Cf g 2 RðC=8Þ�N , D 2 RC�N N ¼ H �Wð Þ.
Then we obtain the spatial attention map E E 2 RN�Nð Þ by a softmax layer:

ej;i ¼ exp Bi � Cj
� �

=
PN
i
exp Bi � Cj

� �
, where ej;i represents the weight of how the ith

position works on the jth position. Besides, we obtain the map with original size by
reshaping the multiplication between D and E. It is multiplied by a and added to the
input map:

Fj ¼ a � ðPN
i
ej;i � DiÞþAj ð4Þ

Fig. 2. Detailed network of four types of attention mechanisms.
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Where F F 2 RC�H�Wð Þ means the final map. After several epochs of training, the
value of parameter a will raise to a suitable point so that the features of other positions
can influence each position effectively.

Channel Attention Module (CAM). CAM is similar to the PAM, which aims to
discover the relationship between the semantic responses of different channels. We also
set A as the input feature and reshape it into B;C;Df g 2 RC�N . Then a matrix mul-
tiplication is performed between the transpose of B and C. The channel attention map

E E 2 RC�Cð Þ is obtained: ej;i ¼ exp Ci � Bj
� �

=
PC
i
exp Ci � Bj

� �
, where ej;i shows how

the ith channel impacts on the jth channel. Then the channel attention map is multiplied
by D and shaped to the original size RC�H�W . The Eq. (5) implies that the result map
consists of a weighted sum of features from all channels and original maps.

The parameter b will be trained to improve as well.

Fj ¼ b � PC
i
ej;i � Di

� �
þAj ð5Þ

4 Experiments

4.1 Datasets

The first dataset [18] is from MoNuSeg 2018. It contains 30 images and about 22000
nuclear boundary annotations. The second dataset CVC-ClinicDB [19] is extracted
from colonoscopy videos. It consists of 612 still images from 29 different sequences.
The third dataset is made by ourselves. We cooperated with Shanghai International
Peace Maternity and Child Health Hospital (IPMCH) and they provided a total of 168
cervical cancer sections in 2014–2016. This dataset is composed of 47 images.

4.2 Results and Analysis

The choice of combination is based on the similarity or consistency, which has been
stated in the beginning of Sect. 3.2.

For the first dataset, it reaches the optimal result of 75.7% in Mean IoU when four
AMs are all adopted, which brings 3.0% improvement. Employing CAB, RAB or their
fusion improve the results slightly. But it can be raised by over two percent when added
with PAM, CAM or their fusion. This gap is caused by the characteristics of the
dataset. Each image is composed of large amounts of nuclei. They are distributed in
various positions and have similar features. Consequently, the correlation among
positions or channels is more important. Thus, PAM and CAM are superior to CAB
and RAB.
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As to the second dataset, it is completely different from the first one. Mostly, there
exists only one lesion area to be segmented. The correlation or similarity between different
positions become less important than channels. Figure 3 proves the differences. The
network with PAM generates more redundant information compared with CAM.
Meanwhile, the result of CAB is closer to the ground truth thanRAB. In aword, themodel
added by PAM or RAB performs worse than CAM or CAB. As is displayed in Table 1,
CAB reaches 72.3% in Mean IoU, which is about 2 points better than RAB. Thence, this
dataset achieves the best value 73.9% when added with both CAB and CAM.

Finally, the third dataset also achieves the best performance with four AMs added.
However, it only improves 1.6%. The difference between these attention mechanisms is
tiny as well. We consider the reason is that the labeling of this dataset is lack of
accuracy compared with others, for it is accomplished by our own comprehension.

4.3 Visualization of Attention Gates

We select one image in each dataset as examples to visualize the attention mechanisms.
The results are all illustrated in Fig. 4. The second column is the attention map of RAB,

Table 1. Performance of several attention mechanisms on three datasets.

Base model CAB RAB PAM CAM Mean IoU
Dataset1 Dataset2 Dataset3

U-Net 0.727 0.692 0.712
U-Net √ 0.735 0.723 0.718
U-Net √ 0.731 0.706 0.721
U-Net √ √ 0.736 0.711 0.723
U-Net √ 0.750 0.721 0.723
U-Net √ 0.748 0.730 0.721
U-Net √ √ 0.751 0.726 0.723
U-Net √ √ 0.754 0.739 0.726
U-Net √ √ 0.743 0.729 0.724
U-Net √ √ √ √ 0.757 0.719 0.728

Fig. 3. Visualized results of PAM, CAM, RAB, CAB and the best result on an image chosen
from the second dataset CVC-ClinicDB.
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which represents the colorful square in Fig. 2(B). When added with RAB, we choose
the last one to be nearest to the results so the size is 1� H

2 � W
2 . It is then resized to the

same size as the input image and added to the original one. We utilize a pseudo-color
mapping on the map so that the larger the weight, the closer it is to red. Thus, the
contours of the segmented regions are all close to red in Fig. 4. The third column is the
maps of CAB and the size is 32� 1� 1. Therefore, we transform the weight of each
channel into a strip, in which the more it is close to blue, the less important the channel
is. The last two columns demonstrate the results of RAB and the ground truth. It can be
seen that the results are consistent with the reddish parts or contours in the RAB map.

5 Conclusion

In this paper, we have added several AMs into the U-Net for medical image seg-
mentation. Specially, we introduced detailed algorithms and discriminations of four
AMs: CAB, RAB, PAM, CAM. The experimental results illustrate that all of these
AMs can make great improvement in Mean IoU. However, the choice of AM can be
reasonable based on dominant or recessive features of specific datasets. For instance,
when the image contains fewer lesion areas, the function of location mechanisms
(PAM, RAB) perform worse than that of channel (CAM, CAB). Conversely, when
there exist many lesions to be segmented, it is more meaningful to concentrate on the
similarity between locations or channels (PAM, CAM).
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Fig. 4. Visualizations of region attention block and channel attention block (Color figure
online).
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Abstract. Huntington’s disease (HD) is an inherited neurodegenerative disorder
causing problems with mobility, cognition and mood. Gait abnormality is a
potential diagnostic sign as it can occur even in the early stages of HD. We
developed a machine learning method for detecting HD with gait dynamics as the
model features. Concretely, standard deviation (SD) and interquartile range
(IQR) were calculated for 6 gait time series sequences as 12 candidate features. An
exhaustive feature and hyperparameter selector was then applied to optimize the
features and hyperparameter subsets for 5 different machine learning models.
Classification outcomeswere determined by nested leave-one-out cross-validation
(nested LOOCV) method. Support Vector Machines (SVM) achieved the highest
accuracy (97.14%) without overfitting bias assumptions. Our result showed that
the machine learning based method with gait dynamics features can be a com-
plementary tool for HD diagnosis.

Keywords: Huntington’s disease � Machine learning � Nested LOOCV

1 Introduction

Huntington’s disease (HD) is an autosomal dominant neurodegenerative condition
named after George Huntington, who described the disease as hereditary chorea in
1872 [1]. It is a neurodegenerative brain condition with a distinct clinical phenotype
and diagnosis of HD is complicated [2, 3].

Gait analysis may be a means of identifying signs, estimating severity and moni-
toring progression of HD. People with HD gradually lose motor function as the disease
progresses, leading to gait abnormalities even in the early stages of disease [4]. Walker
[2] and Grimbergen et al. [5] found differences in gait between HD patients and a
healthy control group. In recent related studies, many different automatic computer-
aided methods have been used to differentiate between HD patients and healthy control
group using gait variables, including time series stride, swing and stance interval [6–10].
Based on these parameters, Daliri [6] used Support Vector Machine (SVM) with dif-
ferent kernels for HD diagnosis. Similarly, Zeng and Wang [7] used a radial basis
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function neural network for HD diagnosis using time series stride-to-stride interval
features. In addition, a meta-classifier for HD and other neurodegenerative gait pattern
recognition was established by Sánchez-Delacruz et al. [8]. Aziz and Arif [9] transferred
the stride time series into a specific symbol sequence and then applied threshold-
dependent symbolic entropy in their analysis of gait differences between HD patients
and healthy control groups. Klomsae et al. [10] converted left-foot stride interval into
symbols sequence and then built a gait classification model with String Grammar
Unsupervised Possibilistic Fuzzy C-Medians.

There are serval gaps in existing methods that need to be addressed. Firstly some
machine-learning studies used low computational time feature selection strategies,
which may have sacrificed model performance [6–8]. Secondly, the studies evaluated
models in a biased way. Those studies used the k-fold cross-validation method to select
either hyperparameters or features for models with the whole dataset [6–10], and used
the best performance in the selection process to denote the model assessment. How-
ever, the models were developed and adjusted within the same dataset and should be
evaluated with external data. Thirdly, the studies ignored features such as interquartile
range (IQR) which can capture the difference in variance of healthy controls and HD
subjects [11].

To fill in those gaps, we proposed a novel machine learning-based framework to
differentiate HD subjects from healthy controls using stride-to-stride information. The
framework integrates 3 steps including (1) unused features derivation, (2) exhaustive
feature selection and hyperparameter tuning, and (3) nested cross-validation evaluation
to maximize the reliability and validity of classification results. The remainder of this
paper is organized as follows: Sect. 2, overview of common classification models and
feature extraction process; Sect. 3, results; Sect. 4, discussion; and Sect. 5, conclusion.

2 Method

The focus of this study was to build a reliable machine learning model for differenti-
ating Huntington’s disease subjects from healthy controls. The steps of our analysis
were summarized in Fig. 1 and presented in the following sections.

2.1 Data Acquisition

Data sets for analysis and classification were taken from gait time series in a neu-
rodegenerative database: http://www.physionet.org/physiobank/database/gaitndd. The
database contains gait dynamics data of both healthy people and HD patients, and it
was collected by a walking experiment [12]. The data set contained gait records of 16
healthy controls and 20 HD patients. We only included 16 healthy controls and 19 HD

Fig. 1. An integrative framework to create a classification system for HD
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patients in the analysis. Data from one HD subject was excluded because all rows have
same number, suggesting that this data was erroneous.

2.2 Normalization

Data normalization may improve pattern recognition and reduce computational time
[13]. In the analysis, z-score normalization was implemented before feature selection
and model evaluation steps [14].

2.3 Feature Extraction

We derived two types of features from the stride, swing and stance interval data to
evaluate gait variability: standard deviation (SD) and interquartile range (IQR). These
Features were summarized in Table 1.

2.4 Feature Selection and Hyperparameter Tuning

An exhaustive selector for feature and hyperparameter was used to determine the best
feature subsets from Table 1 as well as the best hyperparameters for the classifiers. The
method was run over ten-fold cross-validation (ten-fold CV) for different commonly
used machine learning classifiers including Support Vector Machine (SVM), Naïve
Bayes (NB), Decision Tree (DT), Random Forest (RF) and Logistics Regression (LR).

2.5 Model Evaluation and Generation

Following feature selection, we determined the best performing classifier for our
model, using the best performance in feature selection process of each algorithm in
Sect. 2.4.

However, potential overfitting bias could occur from cross-validation in the same
data set for both feature selection and model evaluation [15]. To control for the
overfitting selection bias, we used the nested leave-one-out cross-validation (nested
LOOCV) method (shown in Fig. 2) to divide the original data into training (n – 2
samples), validation (1 sample) and testing (1 sample) subsets n * n – 1 times (where n
is the sample size of the original dataset) [7]. Feature selection was applied in the inner

Table 1. SD and IQR features derived from data

Sequence Feature type
Standard deviation Interquartile range

Left stride interval LSTRSD LSTRIQR
Right stride interval RSTRSD RSTRIQR
Left swing interval LSWISD LSWIIQR
Right swing interval RSWISD RSWIIQR
Left stance interval LSTASD LSTAIQR
Right stance interval RSTASD RSTAIQR
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loop with training and validation sets. The best feature subset was then passed to the
outer loop to assess model performance with the testing subset.

3 Result

3.1 The Classification Models

The best subset and performance of each classifier (Sect. 2.4) are presented in Table 2.
The SVM method achieved 97.14% accuracy and 96.77% F1 score with a feature
subset in size 3 obtained from the previous exhaustive feature selection method
(RSTRIQR, LSWIIQR, RSWIIQR). The Decision Tree algorithm had a slightly lower
average accuracy of 91.43%, and 91.43% F1 score with a feature subset in size 4
(RSTRSD, RSWISD, RSTASD, LSWIIQR). The Naïve Bayes algorithm also achieved
a 91.43% average accuracy, and 91.43% F1 score with a feature subset in size 2
(RSTRSD, RSWISD). The Random Forest achieved the same accuracy and F1 score as
DT and NB with a feature subset in size 3 (LSTRSD, RSWISD, LSWIIQR). The
Logistics Regression, however, achieved the lowest accuracy and f1 score (both
85.71%) with a feature subset in size 2 (RSTRSD and RSTASD).

Fig. 2. Process of nested LOOCV

Table 2. Evaluation of the models by ten-fold CV with the highest performed feature subset

Classifier Average
accuracy

F1
score

Feature subset Subset
size

SVM with polynomial
kernel (degree = 3)

97.14% 96.77% RSTRIQR, LSWIIQR,
RSWIIQR

3

Decision Tree
(max_depth = 10)

91.43% 91.43% RSTRSD, RSWISD,
RSTASD, LSWIIQR

4

Naïve Bayes 91.43% 91.43% RSTRSD, RSWISD 2
Random Forest
(n_estimators = 110)

91.43% 91.43% LSTRSD, RSWISD,
LSWIIQR

3

Logistics Regression
(penalty: l1)

85.71% 85.71% RSTRSD, RSTASD 2
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3.2 Nested Cross Validation Evaluation

The average accuracies of outer cross-validation loops were used to identify the
unbiased performances of models (Table 3). The accuracy of SVM and Logistics
Regression remained 97.14% and 85.71% respectively, but the accuracies of Decision
Tree, Naïve Bayes and Random Forest classifier decreased to 77.14%, 85.72% and
82.85% respectively.

3.3 Comparison with Other Methods

We also compared our model performance with other existing methods (Table 4). Our
proposed method achieved an accuracy of 97.14%, while accuracies of existing
methods ranged from 83.33% to 100%.

Table 3. Average accuracy in outer loop of nested LOOCV

Classifier Average accuracy
10-fold CV

Average accuracy
(LOOCV)

SVM with polynomial kernel
(degree = 3)

97.14% 97.14%

Decision Tree (max_depth = 10) 91.43% 77.14%
Naïve Bayes 91.43% 85.72%
Random Forest (n_estimators = 110) 91.43% 82.85%
Logistics Regression (penalty: l1) 85.71% 85.71%

Table 4. Comparison of our model and existing the methods

Model Classification
accuracy

Reference

Our model 97.14%
Symbolic entropy 95% [9]
Radial basis function (RBF) neural networks
(All-training-all-testing)

100% [7]

Radial basis function (RBF) neural networks
(Leave-one-out)

83.33% [7]

Radial basis function (RBF) support vector machines 90.23% [6]
String grammar unsupervised possibilistic fuzzy
C-Medians

97.22% [10]

Meta-classifier 88.67% [8]
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4 Discussion

4.1 Summary

Our results revealed that all classifiers based on a features subset, obtained from feature
selection procedures, achieved ranging from 85% to 97% accuracy. However, the CV
error estimate for the classifiers with the optimal parameters was substantially biased
(biased error can possibly achieve 20%), especially for a dataset where its overall size
is small [15]. Therefore, a nested LOOCV was implemented to reduce possible
overfitting biases caused by CV in feature selection and model assessment using the
same data. The nested LOOCV procedure reduces bias and provides a true error
estimate, as the testing data was not used in the feature selection process [16]. As
expected, performances of different classifiers stayed the same or dropped. SVM, the
best classifier identified by the ten-fold CV method, maintained its accuracy (97.14%)
in nested LOOCV evaluation. Our strategy demonstrates that gait analysis may com-
plement clinical, neuropsychological and genetic assessments in the differentiation
between persons with HD and healthy individuals.

4.2 Comparison with Other Methods

Our method performed slightly worse than those of previous investigators [7, 10].
However, the evaluated accuracy of the model developed by Zeng and Wang [7] was
determined using training data; and the performance of the model developed by
Klomsae et al. [10] was evaluated by data used in hyperparameter selection. These
models had a risk of overfitting bias. In contrast, our models were validated using a
testing subset that had not been used in feature and model-selection processes, reducing
the potential for overfitting bias.

4.3 Feature Selection and Selected Features

Feature selection as explained in [17, 18] is an important step in building a classifier for
HD based on gait variables [19] and may avoid overfitting and redundant variables.
Our study used wrapper strategy as a method of feature selection. As the number of
features in our analysis was only 12, an exhaustive search could be implemented [20].
The exhaustive searching method naïvely tried all combinations of features to obtain
the best model. As shown in the result part, all the sizes of the best feature subsets for
different algorithms were no more than 4, which indicated that only a small part of gait
dynamic variance features can denote the whole part of gait features for each classi-
fication algorithm. Additionally, the features used in the best classifier (SVM) are all
IQR, indicating that IQR also can possibly be an indicator for detecting the gait
dynamics difference between health people and HD patient.
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4.4 Limitation and Further Development

One of the limitations in our finding was a small sample size, as the total number of HD
and healthy subjects was only 35. A larger sample size is required for confirmation of
our proposed method in HD classification.

In addition, we only used statistics stride-to-stride information as features in our
study. However, many other techniques may also derive features useful for gait clas-
sification in HD. For example, Fourier Analysis [21] and Symbolic Aggregate
Approximation (SAX) algorithm [22] can also be considered. They are used to
transform time domain signal into other components. In the manner, we can have a
different analysis scenario for the dataset currently used in the paper.

Lastly, the reason, why the accuracy gap between CV and nested LOOCV are
different from each classifier, is still not clear. As shown in the result, the accuracy of
SVM and LR stayed at the same level in both CV and nested LOOCV evaluation,
while the accuracies of DT, NB, and RF classifier had different drops from CV to
nested LOOCV. Further studies can be explored to investigate the cause of those results
by analyzing the mechanism of each classifier.

5 Conclusion

In this paper, a novel classification stepwise framework was introduced. In particular,
the statistic variables (STD and IQR) were extracted from gait time series data as
candidate features. The exhaustive wrapper feature selection method was then imple-
mented to find the best feature subset for 5 common machine learning algorithms.
Finally, ten-fold CV and nested LOOCV were used to evaluate those 5 models. We
found that the best model was SVM with 3 features which achieved 97.14% accuracy
in the nested LOOCV result. From the indirect comparison, our results demonstrated
that our proposed algorithm performs better than the existing algorithms on average. It
can achieve very high accuracy without selection bias. External validity can be further
tested by collecting new sample data.
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Abstract. Macular edema is the most important cause of visual impair-
ment in the center of human eyes, which causes a lot of life problems for a
large number of patients. Optical coherence tomography is a very impor-
tant medical imaging material in the diagnosis and treatment of mac-
ular diseases. Firstly, on the basis of Faster R-CNN, this paper adjusts
the processing strategy of the model by modifying the tag generation
method to detect the lesions area of OCT images of fundus lesions.
Then, using the U-Net basic model, the task of semantics segmentation of
OCT images of fundus lesions is accomplished by fusing multi-attention
modules in the decoding stage. Good results have been achieved in the
OCT medical image dataset of the largest fundus lesions, which can help
doctors quickly identify and locate the lesions areas in the image, and
quantify the severity of specific fundus edema.

Keywords: Retinal macular edema · OCT images · Faster R-CNN ·
U-Net

1 Introduction

The general office of the State Council issued the opinions on promoting the
development of “Internet + medical health”. It pointed out that we should attach
great importance to the development of “Internet + medical health”. Fundus
macular disease, as a disease with high blindness rate and difficult to reverse,
has attracted wide attention in the medical field. In the aspect of target detec-
tion of medical images, Kim et al. [1] constructed an automatic noise reduction
encoder on lung CT images, and characterized the potential non-linear correla-
tion between morphological features. More than 3500 nodule images were studied
by unsupervised method, and more than 90% of the high accuracy was obtained.
In medical image segmentation, Venhuizen et al. [2] used U-Net model to segment
age-related macular lesions. The systematic prediction error of macular thickness
was 14.0 ± 22.1µm. By analyzing the structural changes of retinal vessels, we
can directly or indirectly observe various diseases such as ophthalmic diseases,
cardiovascular diseases, etc. Zhou [3] uses neural networks to extract vascular
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features, adds a set of filters to the micro-vessels, and uses dense conditional
random fields to segment the blood vessels to assist medical personnel in observ-
ing the fundus blood vessels. Zhang Kang’s research group [4] of Guangzhou
Medical University Affiliated Medical Center used image recognition technology
and applied it to more than 200,000 OCT images of retina acquired clinically.
It applied the learned model to the diagnosis of children’s pneumonia by using
transfer learning technology, and achieved good results.

In the task of lesion area recognition and detection, based on the model Faster
R-CNN of conventional target detection, the basic algorithm is reformed, and the
steps of conventional target detection are reformed by different tag generation
methods in this paper, so as to get a more suitable algorithm for this problem.

In the image segmentation task of fundus diseases, this paper designs and
experiments several lesions segmentation models, using experimental data and
visualization effect to verify the effectiveness of the segmentation task.

The main work of this paper includes: Sect. 2 introduces the OCT medical
image dataset, Sect. 3 introduces the detection of ocular fundus OCT image
lesions area, Sect. 4 introduces the segmentation of ocular fundus lesions image,
Sect. 5 is a summary.

2 OCT Medical Image Dataset

In this paper, the largest OCT medical image dataset of fundus lesions in China
is used. The dataset includes 100 OCT volumetric data, 128 OCT images of
512 * 1024 in size per volume data, of which 70 are trained and 15 are validated.
The medical image samples in the dataset include three conditions: retinal edema
(REA), pigmented epithelial detachment (PED) and subretinal fluid (SRF). In
the lesions marking map, the black corresponds to the background; the white is
the REA lesions area, the light grey is the SRF lesions area, and the dark grey
is the PED lesions area. The samples in each category of the dataset are shown
in Fig. 1.

Fig. 1. The samples in each category of the dataset
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3 Detection of Lesions Area

In order to help doctors quickly identify and locate the lesions area in the image,
this paper adjusts the generation of the initial candidate boxes on the basis of
Faster R-CNN, and adds the non-lesions samples to the training to detect the
lesions area.

3.1 Generation and Mapping of Candidate Boxes

Faster R-CNN [5,6] firstly inputs images into CNN network for feature extrac-
tion, and the extracted features are shared in the whole network. Then RPN is
used to generate candidate boxes of various sizes for each pixel. These candidate
areas are put into two layers of network at the same time for border regression
and classification. Finally, the two layers of branch network are aggregated to
achieve the preliminary filtering of candidate boxes.

Table 1. Statistical analysis of the size and length-width ratio of the lesions area in
dataset subsets.

y/x = 0.5 y/x = 1 y/x = 2

(100, 255) 0 0 36

(255, 400) 0 24 35

(400, 625) 13 123 6

(625, 900) 35 172 1

(900, 1225) 33 150 13

(1225, 1600) 25 98 12

>1600 4 20 0

The lesions area of fundus in the dataset used in this paper has a certain
range of changes, so RPN network needs to be reformed. Firstly, 800 samples
were randomly selected from the training set, and the size and length-width ratio
of the lesions area were analyzed, the results are shown in Table 1. Among them,
the horizontal header represents the closer value of the length-width ratio of the
lesions area in each sample, and the vertical header represents the area range
of the lesions area calculated by every ten pixels in the sample. Among them,
the horizontal header represents the closer value of the length-width ratio of the
lesions area in each sample, and the vertical header represents the area range of
the lesions area calculated by every ten pixels in the sample.

From the analysis of the subset of dataset in this paper, we can find that
when the area is smaller (less than 400), the higher probability of the length-
width ratio of samples is close to 2; when the area is larger (between 400 and
1225), the higher probability of the length-width ratio of samples is close to 1;
In the case of larger area, the ratio of length-width is more likely to be 0.5 and
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1. In order to match the size of the lesions area in the dataset, the window size
generated by the initial candidate boxes of this model is set as Table 2.

According to the previous statistical analysis of the size range of the lesions
area in the dataset, it can be found that the lesions area whose length-width ratio
is close to 1 accounts for the largest proportion. Therefore, in the RoIPooling
stage, the candidate boxes is pooled into 16 * 16.

3.2 Joint Training of Classification and Border Regression

Classification refers to putting a series of fixed-size feature maps obtained from
the previous processing into a fully connected network to determine which cat-
egory the candidate box belongs to and outputs probability vectors. Border
Regression is a more refined adjustment of the target detection frame. As shown
in Formula 1, the total loss of the model consists of three parts, namely, the loss
of candidate box classification, the loss of fine-tuning regression and the loss of
weight regularization.

L = Lclassification + Lregression + Lregularization (1)

Table 2. Window size generated by initial candidate box.

Initial candidate box window Window size

Window1 (280, 140)

Window2 (180, 360)

Window3 (250, 250)

Window4 (360, 180)

Window5 (250, 500)

Window6 (350, 350)

Window7 (500, 250)

Window8 (140, 280)

Window9 (300, 600)

3.3 Experimental Settings

The Faster R-CNN model adopted in this paper is based on PyTorch platform. In
the training stage, the 10 fold cross-validation is adopted. The optimizer chooses
SGD, the learning rate lr is 4e−3, and the batch size is 2.
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3.4 Metrics

For a certain category, the target box of an image output prediction is marked
as y predict, and the corresponding real target box is marked as y true, which is
measured by the overlapping ratio of y predict and y true, namely, the ratio of
the intersection and union (IoU) of the predicted value area and the label area.
For all samples in a certain category of data set, the accuracy of prediction is
judged. Artificially setting a threshold of positioning accuracy, such as PASCAL
VOC2007 is usually set to 0.5. When the IoU of the predicted target frame in this
sample is larger than the threshold value, it is considered that the prediction is
correct on this entity of the image, that is, True Positive (TP), otherwise is False
Positive (FP), and the target of missing detection is recorded as False Negative
(FN). The formulas for calculating the accuracy and recall rates are as follows:

After several recall and recision values are obtained, PR curves are drawn
and the area enclosed by the curves is calculated. For each recall value, the
maximum value of Precision is selected when the recall value is greater than or
equal to the recall value, and these Precision values are averaged as the area
under the PR curve.

Fig. 2. Comparison of the predicted lesions areas before and after the improvement

3.5 Experimental Results

The accuracy of detection of ocular fundus lesions area is 79.79% by putting
the dataset of OCT images into the model. For normal images without lesions, a
“no disease” label with an area of zero was designed, and the prediction accuracy
of the model reached 93.64%. Figure 2 is a comparison of the predicted lesions
areas before and after the improvement. After adding the training of non-lesions
samples, the model greatly improves the ability to distinguish the normal and
lesions parts of the fault zone and the classification and location of the detection
frame are more accurate.
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4 Image Segmentation of Fundus Edema Lesions in OCT

The effective information in OCT image samples of fundus lesions occupies a
relatively small proportion in the complete image, Large area background images
may increase noise. Therefore, In this paper, we proposed to use lesions area
detection to reduce the input image, and add the self-attention mechanism of
visual spatial scale and channel scale on the basis of u-net [7,8] to complete the
task of OCT image semantic segmentation of fundus lesions.

4.1 Integration of Multi-attention Module and Full Convolution
Network

The two types of self-attention are fused into multi-attention modules, and then
merged with the model architecture of u-net in the following two ways:

I. Place the multi-attention module in the coding phase. As shown in Fig. 3.
In the process of down sampling, each hidden layer contains two convolution
operations. Multi-attention module is added between the two convolution
operations, and the image is gradually screened according to its importance
in the process of feature extraction.

II. Put the multi-attention module in the decoding process. As shown in Fig. 4,
the model keeps the feature map of samples from deep to shallow levels.
In decoding, the mapping obtained from the deconvolution of the smaller
feature map of a deeper level is constantly fused with the feature map of the
symmetric level to add the shallow information.

4.2 Experimental Settings

Based on the u-net depth model, the following experiments are designed:

I. The detection of fundus lesions based on the Faster R-CNN is used as a pre-
order network, possible lesion detection boxes are marked out for the image,
then the original image and its corresponding real label map are cut and put
into the u-net network to generate corresponding predictions.

II. Add multi-attention module to u-net network and try to fuse the module in
different ways in the coding stage and decoding stage respectively.

Fig. 3. Fusion of multi-attention module and U-Net in the coding phase
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Fig. 4. Fusion of multi-attention module and U-Net in the decoding phase

4.3 Metrics

The commonly used evaluation index for this task is the overlap ratio, which is
the ratio of predicted intersection to true area.

4.4 Experimental Results

The experimental results of this paper are shown in Table 3. Model 1 repre-
sents the original data and u-net network. Model 2 represents the regional box
generated after detection of the lesion area to cut data and put it into u-net
network for training results. Model 3 shows that the original data and u-net are
integrated with multi-attention modules in the coding stage for training. Model
4 shows that the original data and u-net are combined with multi-attention
module in decoding phase to train. In this paper, the segmentation accuracy of
REA lesions, PED lesions and SRF lesions are calculated by these four models
respectively, and the average accuracy is further obtained, based on which the
following analysis is made:

Table 3. The experimental results of four models constructed on the data set of this
paper.

IoU REA IoU PED IoU SRF Avg IoU

Model 1 92.12% 92.83% 75.60% 86.85%

Model 2 89.48% 87.85% 84.66% 84.72%

Model 3 89.79% 93.86% 71.94% 85.20%

Model 4 92.73% 92.83% 75.60% 86.85%

I. The segmentation effect of lesions with more data is significantly better: The
effect on REA and PED is good, but the accuracy on SRF lesions is lower.

II. After using the detection results of the lesion area to cut data and greatly
reduce the sample size, the segmentation accuracy of SRF is significantly
improved, and the effect of integrating multi-attention module in decoding
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process is significantly better than that in encoding. In order to prove the
effectiveness of self-attention mechanism in visual spatial scale and channel
scale, ablation experiments were conducted for each self-attention module
in model 4, and the experimental results are shown in Fig. 5. Blue is the
experimental result of original model 4. Orange shows the experimental effect
of multi-attention module in the case that self-attention of channel scale is
removed and that of visual spatial scale is retained only. Gray represents
the case where the channel scale is removed from attention. It can be seen
that the combination of the two self-attention mechanisms in this paper
can improve the segmentation experiment. At the same time, the addition
of visual spatial scale self-attention makes the segmentation effect of each
lesion category more balanced.

5 Summary

In this paper, for OCT images of ocular fundus macular edema, firstly, On the
basis of Faster R-CNN, the initial filtering strategy of model training is changed
by modifying the tag generation method to detect the lesion area and assist
doctors to quickly identify and locate the lesion area in the image. Then, in the
U-Net decoding stage, multi-attention mechanism is fused to segment the fundus
lesion image, which facilitates doctors to quantify the severity of specific fundus
edema.

Fig. 5. Effectiveness comparison of self-attention module on model 4 (Color figure
online)
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Abstract. We analyse a large drug prescription dataset and test the hypothesis
that drug prescription data can be used to predict further complications in older
patients newly diagnosed with type 2 diabetes mellitus. More specifically, we
focus on mortality and polypharmacy prediction. We also examine the balance
between interpretability and predictive performance for both prediction tasks,
and compare performance of interpretable models with models generated with
automated methods. Our results show good predictive performance in the
polypharmacy prediction task with AUC of 0.859 (95% CI: 0.857–0.861). On
the other hand, we were only able to achieve the average predictive performance
for mortality prediction task with AUC of 0.754 (0.747–0.761). It was also
shown that adding additional drug related features increased the performance
only in the polypharmacy prediction task, while additional information on
prescribed drugs did not influence the performance in the mortality prediction.
Despite the limited success in mortality prediction, this study demonstrates the
added value of the systematic collection and use of Electronic Health Record
(EHR) data in solving the problem of polypharmacy related complications in
older age.

Keywords: Mortality prediction � Polypharmacy prediction � Diabetes � Drug
prescription � Interpretability � Automated machine learning � Logistic
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1 Introduction

Drug prescription data contains valuable information about the patient’s medical his-
tory and offers potentially rich source for predictive modelling. Therefore, the aim of
this paper is to evaluate predictive power for the following two important use cases:
mortality prediction and polypharmacy prediction, both for patients with chronic type 2
diabetes (T2D). It has been previously shown that T2D patients die earlier than patients
without T2D and that T2D is a leading underlying or contributing cause of death in
high-income countries [1, 2]. Therefore, we explore possibility to use drug prescription
records for mortality prediction in older T2D patients. Mortality prediction is an active
research field with several proposed methods [3].

Multimorbidity is becoming increasingly common, especially in older population
[4]. Polypharmacy is defined as concurrent use of multiple medications by one indi-
vidual and is becoming another major health concern and is tightly related to multi-
morbidity. World Health Organisation (WHO) estimates that more than half of all
medicines are prescribed, or sold inappropriately, and that half of all patients fail to
take them correctly. In the older population, the number of concurrent health conditions
is directly related to a number of medications prescribed, eventually resulting in
polypharmacy [5, 6]. Most of previous research has focused on potential negative
consequences of polypharmacy, e.g., nonadherence, interactions, and adverse drug
reactions [7]. In this study, we focused on medications taken in the last three months in
older patients with newly diagnosed chronic T2D patients. Compared to our previous
work on polypharmacy prediction [8], we use additional drug features, and experiment
with automated ML methods as described later.

Although, systematic collection of healthcare data in hospital information systems
creates opportunities for more powerful and accurate models, such predictive mod-
elling often results in models that are difficult to interpret by domain experts and
healthcare professionals, which hinders their decision making process [9]. Therefore,
one of the main goals of the paper is also to examine the balance between inter-
pretability and predictive performance in regularized Logistic Regression (LR) based
predictive models. It has been argued that LR performs better or same as more complex
Machine Learning (ML) models on clinical datasets [10].

To compare performance of our interpretable models with other, more complex
models, we performed additional experiments using automated approach. Following
the drive towards automation of predictive systems building, our recent work has
resulted in various fundamental contributions to this area with some open source tools
[11] which, in principle, allow automatic composition, optimisation and adaptation of
multi- component predictive systems. The emergence of successful automated models,
and the release of various, open-source state-of-the-art tools, has recently led to the
establishment of a new field – automated machine learning (AutoML), which overlaps
with terms such as One Button Data Mining [12]. The aim of the additional experi-
ments was also to measure readiness of AutoML this in critical domain. AutoML
should be considered as one of the key options and an opportunity for scaling up this
kind of ML model development and deployment in the future.
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2 Methods

2.1 Data, and Definition of Polypharmacy and Chronic Disease

In this study, drug prescription records collected by the National Institute of Public
Health of Slovenia from 2008 to 2016 were used. Approximately 95 million records
were obtained covering more than 750 thousand unique patients. The data contained 14
fields including patient information (e.g., patient id, patient gender, patient’s geo-
graphical information), information about the prescribed medication, and the patient’s
doctor information. The data was collected centrally by the National Institute of Public
Health and contains complete data for every patient. All records were properly anon-
ymised by inclusion of randomly generated patient identifiers, lower fidelity of the date
of prescription, and discretised dates of birth for all patients. The data was also linked
to a death register which contained date of death for those patients who died.

Anatomical Therapeutic Chemical Classification System (ATC) codes which pro-
vided information about the prescribed drugs in 5 different detail levels. The first level
indicates the main anatomical group, the second level indicates the main anatomical
group, the third level indicates the therapeutic/pharmacological subgroup, the fourth
level indicates chemical/therapeutic/pharmacological subgroup, and the final, fifth level
indicates subgroup for chemical substance. In this study all five levels of ATC codes
were provided and patients with at least one A10 L2 prescribed medication were
selected (A10 is the code for drugs used to treat T2D patients).

The data was processed to filter patients based on age, presence of polypharmacy and
chronic condition (as described in Subsect. 2.2). The final dataset contained 10,767
instances and 487 features consisting of class attribute (i.e., polypharmacy or mortality),
age, gender, and L5 and L2ATC codes. Table 1 summarizes number of positive/negative
cases, average age (with 95% confidence interval), and number of females and males for
both prediction tasks. The mortality prediction dataset contained only 584 positive cases,
which represents only 5.4% of all instances. A patient was marked as positive when its
death was recorded in the year following the prediction time point (PTP).

From the data, we removed entries with no ATC codes, since these were probably
prescriptions for, e.g., medical appliances or were simply errors. Next, we selected only
prescriptions for patients with at least one prescription for T2D. Finally, we selected
only patients that are born before 1960. For AutoML experiments we also manually

Table 1. Summary table for both prediction tasks.

Feature Polypharmacy Mortality
Pos (n = 3,993) Neg (n = 6,774) Pos (n = 584) Neg (n = 10,183)

Age (years)
[95% CI]

68.56
[68.30–68.84]

66.02
[65.85–66.20]

74.57
[73.82–75.30]

66.53
[66.39–66.68]

Female [n (%)] 1,945 (49%) 2,857 (42%) 227 (39%) 4,575 (45%)
Male [n (%)] 2,048 (51%) 3,917 (58%) 357 (61%) 5,608 (55%)
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split the data into 10 training/testing stratified folds. These datasets were used for
training and testing the AutoML models as described in Sect. 2.3.

Next, we identified patients with: (i) polypharmacy, and (ii) newly diagnosed
chronic T2D condition. WHO defines polypharmacy as the use of too many medicines
per patient. Five concurrent medications are mentioned most often [13], however,
polypharmacy has also been defined as, e.g., the use of three or six [14] concurrent
drugs. In addition, according to WHO, chronic diseases are not passed from person to
person and they are of long duration and generally slow progression. The latter is not
clearly defined, however, authors often characterize chronic disease as a condition that
is expected to last or lasts at least 12 months or more [15].

We defined polypharmacy as a concurrent use of at least five medications, and a
chronic disease as a condition for which a patient had been taking T2D medications for
at least a year every 3 months. Concurrent use was defined as all medications that were
prescribed in three consecutive months, for example, January, February, March.

Figure 1 illustrates four different possible chronic disease/polypharmacy scenarios.
Each line presents a patient’s medical history for one year. All data is partitioned into
time periods of three consecutive months. Each three-month interval is used to:
(i) define the number of concurrent use of medications, and (ii) check for T2D med-
ications. For example, the first line on the left presents a non-chronic T2D patient, since
the patient did not receive any T2D medication in July, August and September, while
the second line on the left presents a chronic patient. Similarly, the two lines on the
right present a patient: with detected (top line) and no polypharmacy (bottom line).

Both definitions (i.e., polypharmacy and chronic disease) were then used to filter
data for training subset and to define the positive polypharmacy cases. Specifically, in
the training data only non chronic patients with no polypharmacy before the PTP, who
became chronic after the PTP, were kept. All patients that had polypharmacy detected
in the year following the PTP were labelled as positive cases.

2.2 Logistic Regression Model (LASSO)

As one of our goals was to build interpretable models to increase usability, we
restricted model building to regularized linear models, where it is possible to control
the model complexity (dimensionality) to some extent. The latter also helps in avoiding

Fig. 1. Illustration of 4 different patient scenarios.
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overfitting, a problem in ML where models do not generalise well. The generalized
linear model via penalized maximum likelihood LASSO regularization was used as
defined by Friedman et al. [16]:

minb0;b
1
N

XN

i¼1
wil yi; b0 þ bTxi

� �þ k xik k1; ð1Þ

where i represents observations and its negative log-likelihood contribution is noted as
l y; nð Þ with wi representing weights and tuning (shrinkage) parameter k controlling the
overall strength of the penalty.

We further controlled the complexity of the model with the Maximal number of
dimensions (MND) parameter with values from 10 to 100 in steps of 10. Number of
selected features is controlled by stopping the k parameter tuning before the number of
selected features exceeds MND. Each experiment was repeated 100 times.

To validate our models, we focused on their predictive performance measured by
Area Under ROC Curve (AUC) and Area Under the Precision Recall Curve (AUPRC).
The latter can often be more informative than AUC, especially for unbalanced datasets
[17], which was the case for the mortality prediction in this work. In addition to AUC
and AUPRC, we also report final numbers of selected features for both prediction tasks.

2.3 Auto ML Models

The AutoWeka tool [11] was used to prepare AutoML experiments. Due to the nature
of our dataset (i.e., sparse, high dimensional and unbalanced dataset), we experimented
with the following filters and models enabled in AutoWeka: attribute selection filters,
balancing filters, Naïve Bayes (NB), Support Vector Machines (SVM), and Random
Forest (RF). Bayesian optimisation, specifically Sequential Model Algorithm Config-
uration (SMAC) [18] was used to optimise models towards the highest AUC. SMAC
method support continuous, categorical and conditional attributes (i.e. attributes whose
presence in the optimisation problem depend on the values of other attributes – e.g.
Gaussian kernel width parameter in SVM is only present if SVM is using Gaussian
kernels.) We repeated the AutoML experiments 10 times, where 10 training datasets
were used for training and 10 testing datasets were used for testing purposes. Note that
AutoWeka also performs inner 10-fold cross validation for each model trained. We
limited the training time a model to 10 min, while overall time limit was 2 h.

3 Results

Figure 2 shows AUC and AUPRC results for mortality and polypharmacy prediction
for different number of selected features. The results are presented as violin plots,
representing a combination of box plots and density plots, where different MND values
are presented on the horizontal axis (NDR presents a model with default LASSO
regularization parameters - i.e. no restriction of dimensionality). The main advantage of
violin plots over simple box plots is that violin plots show the distribution shape of the
data. Table 2 summarises final number of selected features for both prediction tasks for
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different MNDs. Please note, that the number of all selected variables in an experiment
can be higher than the experiment’s MND parameter, since we repeat each experiment
100 times and its selected variables do not necessarily always overlap.

Almost all of our AutoML experiments resulted in a Naïve Bayes model as a model
with highest AUC performance. The only exception was one experiment which
resulted in a RandomForest model on a polypharmacy dataset, however, the perfor-
mance was lower to NB models in other folds. Interestingly, although AutoML opti-
misation methods searched through space using also filters (e.g., balancing filter), no
filter has been selected in final models. In Table 3 we present AUC and AUPRC results
for each training/test split, as well as their mean, maximum and minimum values.

A 

B

Fig. 2. AUC (left) and AUPRC (right) results for mortality (A) and polypharmacy (B) prediction
with 100 iterations and different MND values.

Table 2. Number of selected features for both tasks (95% CI)

MND Mortality Polypharmacy

10 1.880 (1.694–2.066) 6.640 (6.320–6.960)
20 13.040 (12.480–13.600) 14.020 (13.782–14.258)
30 19.230 (18.606–19.854) 19.550 (19.111–19.989)
40 29.220 (28.630–29.810) 25.580 (25.027–26.133)
50 36.400 (35.771–37.029) 31.520 (30.882–32.158)
60 42.420 (41.717–43.123) 38.100 (37.387–38.813)
70 47.940 (47.023–48.857) 45.620 (44.851–46.389)
80 51.900 (50.608–53.192) 53.600 (52.317–54.883)

(continued)
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4 Discussion and Conclusion

We showed that it is possible to use prescription data to build models for polypharmacy
and mortality prediction, and that it is feasible to find a balance between performance
and interpretability. With LR and polypharmacy, we achieved the highest AUC and
AUPRC values on the model with no dimension reduction. The values were 0.859
(95% CI: 0.857–0.861) and 0.729 (0.725–0.733) for AUC and AUPRC, respectively.
Although the performance decreased with lower MND values, the difference was not
significant, especially when MND increased to >=50. One can observe stabilisation of
both performance metrics after the MND is increased from 10 to 20. Table 2 showed a
large reduction in the complexity of the model with 31.520 (95% CI: 30.882–32.158)
and 183.770 (176.265–191.275) selected features for MND = 50 and NDR
respectively.

In the mortality prediction task, using LR, the maximum AUC was 0.754 (0.747–
0.761), while AUPRC was 0.221 (0.211–0.231). The former was achieved with the
NDR model, while the latter presents the result for the MND = 20 model. AUPRC is

Table 3. AUC and AUPRC results for the AutoML experiments.

Mortality Polypharmacy
Fold AUC AUPRC AUC AUPRC

1 0.759 0.233 0.875 0.773
2 0.678 0.104 0.860 0.738
3 0.690 0.186 0.859 0.859
4 0.711 0.212 0.876 0.788
5 0.779 0.233 0.863 0.733
6 0.735 0.168 0.870 0.754
7 0.745 0.276 0.863 0.735
8 0.712 0.124 0.874 0.761
9 0.778 0.220 0.866 0.755
10 0.740 0.222 0.862 0.775
Max/Min 0.779/0.678 0.276/0.104 0.876/0.859 0.859/0.733
Mean 0.733 0.198 0.867 0.767

Table 2. (continued)

MND Mortality Polypharmacy

90 56.910 (55.322–58.498) 59.770 (58.819–60.721)
100 56.980 (54.857–59.103) 67.300 (66.390–68.210)
NDR 58.540 (55.529–61.551) 183.770 (176.265–191.275)
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often more informative for skewed datasets and it is interesting to see that the highest
AUPRC value was a result of a low dimensional model. Low AUPRC in general
indicates that predicting mortality from drug prescription data represents a bigger
challenge than predicting polypharmacy. Such conclusion can also be visually seen in
not changing distribution plots with regard to MND, (complex models did not improve
the model significantly). Figure 2 and Table 2 showed that adding drug related features
increased the performance in the polypharmacy prediction task, while additional
information on prescribed drugs did not influence the performance in the mortality
prediction.

AutoML experiments showed comparable performance to those experiments with
LR. The most successful model was NB. The reason for this might be high dimen-
sionality of our data and the fact that NB often performs well on binary features such as
ours. For mortality prediction, mean values for AUC and AUPRC were 0.733 and
0.198, respectively. These values are lower than those achieved with LR, which
confirms our findings that mortality prediction using only prescription data is a chal-
lenging task. On the other hand, polypharmacy prediction resulted in mean AUC and
AUPRC of 0.867 and 0.767, respectively. These results are higher than those achieved
with the LR model, which indicates that there might be more room to improve results.

Even though our study showed a limited success in mortality prediction, we
demonstrate the added value of the systematic collection and use of EHR data in
solving the problem of polypharmacy related complications in older population. The
fact that the data contained only months and years for prescription or death, influenced
our definitions for concurrent use of drugs, polypharmacy and chronic disease. Since
the day is removed from the data due to anonymisation purposes, it is impossible to
address this issue. In the future, we plan to use additional data sources, investigate
reasons for low performance of mortality prediction, and perform a deeper analysis of
the most important features in our models. We also plan to experiment with AutoML in
details.
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Abstract. To follow-up Parkinson’s disease (PD) progress, clinical gait
analysis is performed with the precise measuring equipments (e.g. IMU,
electric walkway, etc.). However, the existing gait analysis methods have
a limitation such that patients must visit a certain space in hospital for
the checkup. For clinical gait analysis in and out of hospital, we propose
a baseline model of ‘deepvision’ system, which can estimate 15 clinical
gait parameters measured from electric walkway named GAITRite. We
constructed 3D convolution layers which have skip connections to grasp
spatio-temporal characteristics of the walking behavior with an effec-
tive manner. Afterwards, we validated the method with scripted walk-
ing videos, and achieved the following results: error range of temporal
and spatial parameters as 32–71ms, 1.6–6.7 cm respectively, and error
for cadence, velocity and functional ambulation profile as 7.0 steps/min,
4.1 cm/min, and 4.9 points respectively.

Keywords: Parkinson’s disease · Contactless visual monitoring ·
Clinical gait analysis

1 Introduction

Parkinson’s disease (PD) is a long-term degenerative disorder of the central ner-
vous system that mainly affects the motor system. Early in the disease, the
most obvious symptoms are shaking, rigidity, slowness of movement, and diffi-
culty with walking. To follow-up the disease progress before and after a therapy
intervention, accurate assessment procedure for gait parameters is performed.
The procedure includes measuring the acceleration and angular velocities with
wearable sensors [1,9], or force platforms [14], or motion capture systems [2,5].
In determining temporal gait parameters, detecting each time of initial foot
contact (IC) and final foot contact (FC) timing is required, called gait events.
[7,11,12,14] tried to detect IC/FC timings from a single/dual IMU positioned

c© Springer Nature Switzerland AG 2019
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on the lower trunk, and have proposed for both normal and clinical gait anal-
ysis usages. [9] tried to estimate stride/step/stance time based on IC/FC tim-
ing obtained from IMUs, and validated free walking performance for each case
attached to the shank and waist. As most of the existing systems require spe-
cial equipment (e.g. IMU, GAITRite, etc.), patients must visit the hospital for
checkup, and the medical process becomes inefficient and complicated.

As a preliminary study for developing ‘contactless’ deep vision clinical sys-
tem, we insist that our main contribution is to validated baseline model of vision-
based gait analyzer with normal scripted walking. In this paper, person detection
is performed with YOLO v3 [6]. And we introduce an algorithm for localizing
patient area in gait video, which is based on tracing patterns of each detected
person. Features characterizing the motion of the patients are obtained from
pre-trained C3DNet [10] which were trained on Sports-1M dataset [4]. Architec-
ture of proposed regression model has residual blocks, containing skip connec-
tions in it, inflated 2D→3D, to interpret dynamic characteristics in both space
and time effectively. To train the actual regression model, we used data includ-
ing walking videos and corresponding parameters collected from medical gait
checkup, and permission to use data was given from Institutional Review Board
(IRB) of Kyungpook National University Hospital. We achieved the following
results: error range of temporal and spatial parameters as 32–71 ms, 1.6-6.7 cm
respectively, and error for cadence, velocity and functional ambulation profile as
7.0 steps/min, 4.1 cm/min, and 4.9 points respectively.

Fig. 1. Overview of data acquisition environment and pipelines for end-to-end deep
learning system to estimate gait parameters.

2 Methods

Overview. Figure 1 shows the overview of our system. We conducted data col-
lection for 640 patients, who were asked to walk straight for 5 m across a pressure
electronic walkway. Gait force data is sampled from the walkway at 120 Hz and
analyzed by GAITRite system, which is well-known gold standard gait analyzer,
which provides the 50 gait parameters for clinicians to identify anomalies in gait
patterns. Among the 50 parameters, 15 gait parameters, which are essential for
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medical diagnosis, were selected. Simultaneously, gait video is recorded using a
single RGB camera while facing the patient, which has resolution of 640 × 480
and 24 FPS spec. In order to verify the performance of a normal scripted straight
walking, we recorded video of 4 times gait trials at most per each person for 640
subjects in various disease groups including PD. Totally, 1563 video samples
were used in this work. Descriptive statistics for entire parameters are shown
in Table 1. All parameters in temporal/spatial group have left and right footage
values each. Because each left/right pair has nearly similar statistical character-
istics, averaged values are included in the table.

Brief descriptions of each gait parameter are as follows: ‘Cycle Time’ is
elapsed time between the first contacts of two consecutive footfalls of the same
foot. ‘Stance Time’ is the time elapsed between the First Contact and the Last
Contact of two consecutive footfalls on the same foot. ‘Double Supp. Time’ is the
time elapsed while both feet are on the floor. ‘Swing Time’ is the time elapsed
between the last contact of the current footfall to the first Contact of the next
footfall on the same foot. ‘Stride Length’ is distance on the line of progression
between the heel points of two consecutive footprints of the same foot. ‘HH Base
Support’ is the vertical distance from heel center of one footprint to the line of
progression formed by two footprints of the opposite foot. ‘Cadence’ is the num-
ber of steps per minute. ‘Velocity’ is obtained after dividing the distance traveled
by the ambulation time. ‘Functional Amb. Profile’ is a rating score which reflects
functional aspects of gait and represents a quantification of patients’ gait, and
calculated by subtracting points from a maximum score of 100 for a self-selected
velocity gait trial.

Table 1. Mean and SD values of gait parameters

Params group Params name μ ± σ

Temporal Cycle Time (sec) 1.16 ± 0.25

Stance Time (sec) 0.77 ± 0.23

Double Supp. Time (sec) 0.38 ± 0.21

Swing Time (sec) 0.39 ± 0.062

Spatial Stride Length (cm) 81.08 ± 26.13

HH Base Support (cm) 11.65 ± 3.61

Etc. Cadence (steps/min) 106.02 ± 15.57

Velocity (cm/min) 71.67 ± 26.61

Functional Amb. Profile 77.24 ± 16.57

2.1 Preprocessing

Patient Localization. To analyze the gait patterns of patient, our vision sys-
tem need to mainly focus on a patient under the checkup. Most of our collected
gait video consists of single patient’s scripted straight walking, but some cases
one or more persons are appearing in the video frame because of difficulty in
walking of patients, which makes it hard to focus on a patient. To remedy this,
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we conducted patient localization, which contains the process of finding where
the persons are in the video frame and determination of who is a patient. For
localization of spatial areas where patient is walking, deep learning based object
detector YOLO v3 [6], a state-of-the-art real-time object detection system which
can processes each frame at 30 FPS, is used. YOLO can find locations of human
in the form of bounding box (bbox), but it is hard to determine which bbox
contains patient among all the other bboxes, as YOLO does not have a track-
ing algorithm for specific person, general person tracking is possible instead.
An example view from our camera is shown in Fig. 2. Most of our video data
contains scripted walking, and we found that bbox of patient (label = 1) has
much larger deviation in the y-axis with respect to x-axis, compared with the
other (label = 0). Based on this characteristic, we applied a tracking algorithm
as shown below:

Step 1: Compute spatio-temporal intersection over union (STIOU) for all bboxes
at time t − 1. STIOU between i-th bbox at time t and j-th bbox at time t − 1,
i.e. STIOU(bit, b

j
t−1), is defined as in Eq. 1. M,N denotes entire number of bbox

at time t, t − 1 respectively.

STIOU(bit, b
j
t−1) =

intersect(bit, b
j
t−1)

union(bit, b
j
t−1)

, i ∈ 1...M, j ∈ 1...N (1)

Step 2: Get maximum value of STIOU for all bjt−1, and it is defined as effective
STIOU value,

STIOUeff (bit, b
j...N
t−1 ) = max

bjt−1,j∈1...N
(STIOU(bit, b

j
t−1)) (2)

Step 3: If effective STIOU exceeds any threshold value, the current bbox bit
gets tracking label from the previous bbox which has maximum value of STIOU
denoted as bjmax

t−1 . Otherwise, a new label is assigned to the current bbox bit.
The threshold value for branching of labeling assignment policy is determined
empirically. In our case, thresh = 0.1 was best.

labelbit =

{
labelbjmax

t−1
, if STIOUeff (bit, b

j...N
t−1 ) > thresh.

labelnew, otherwise.
(3)

Step 4: Each label has array for analyzing its bbox traces. The bbox position of
bit is appended into array of the corresponding label. And step 1–4 is repeated
for all bboxes for all video frames.

Step 5: Select a bbox that has maximum of δy/δx. And crop each video frame
with the bbox coordinates. δx and δy denotes displacement for x- and y-axis
positions for entire walking time respectively.
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Fig. 2. Example of patient tracking results. At bottom left of each bbox, tracking label
is displayed, and each bbox is distinguished by its color.

Input Data. To receive a series of features capturing spatio-temporal infor-
mation from the video frames, a sequence of features is given as an input for
the proposed model: ft = F (vt : vt + δ) where δ is the time resolution of each
feature ft. In this paper, F extracts C3D features where δ = 16 frames. The
output of F is a tensor of size D×N × 4 × 4 where D = 512 dimensional features
and N = T/δ discretizes the video frames and we set the maximum length of
the sequence as 20, to consider 320(= 20 ∗ 16) frames. In upper path of Fig. 1
shows pipeline of video data processing. Each cubic in the figure represents a
video clip, and it is fed to pretrained C3DNet to capture well-organized spatio-
temporal characteristics. To see the features intuitively, we visualized an example
of conv5 layer activation maps in Fig. 1. We can see that the activated area are
mainly located near the lower body, so it might be nice feature in interpreting
the gait.

Target Data. Since all of target gait parameters have different scale and units,
standardization is required. To make distributions of all gait parameters similar
in statistical properties, quantile transformation which can force the data to
follow normal distribution, is applied. Quantile transformation help to spread
out the most frequent values, and reduces the impact of outliers.

2.2 Proposed Model

Residual Block. Residual networks (ResNet) was introduced by [3] to con-
struct extremely deep nets. Authors of ResNet insist that identity skip con-
nections can resolve the vanishing gradient problem by preserving gradient flow
throughout the entire depth of deep networks. However, [13] showed that ResNet
enables deep networks training by leveraging only the short paths. They mea-
sured how much gradient contributed the paths of different lengths in a ResNet.
They proved it in their experiment by measuring changes in gradient magnitude
at input with respect to various length of paths. Also, they showed only the
short paths are needed during training: the longer paths is, the smaller contri-
bution on gradients is. Finally, they concluded the paths through ResNet that
contribute gradient during training are shorter than expected. In this paper,
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to capture spatio-temporal features from the sequence of ‘conv5’ layer output,
proposed model has residual blocks inflatted 2D→3D. Also, in ResNet structure,
the output of the previous layer contains multiple scales of receptive field. We
can expect that, as the network gets deeper, an ensemble effect that will allow us
to consider multiple scales. However, based on the fact that the longer the path
is the less effect on the gradient at input layer, thus we implemented a shallow
3D ResNet as shown in Fig. 3.

Fig. 3. Proposed model for gait parameter regression.

Regression Model. The proposed regression model has 3D ConvNet-MLP
structure: In 3D ConvNet, we expect the networks to learn to represent spatio-
temporal relations between each features from pre-trained C3DNet for nice
regression results in MLP. Highly inspired by [13], we constructed shallow net-
works with only 16 residual blocks as shown in Fig. 3. Each green box contains
4 residual blocks in it. BN and ReLU layer has been omitted for simplicity:
each CONV in the figure has placement of CONV-BN-ReLU. Exceptionally, last
CONV in each residual block located in front of addition has placement of Conv-
BN. After addition with X from skip connection, ReLU is applied. Between each
group of residual block, we max-pooled outputs from previous layer along time
axis. After 4 iterations of same operations, we finally flatten features to a vector
of C ∗1∗4∗4 dimension. And we apply dropout and feed into MLP(i.e. fully con-
nected layer), without applying any activation function, and each output node
is trained to do regression for each gait parameters.

Training and Evaluation. We split the dataset 80% for train 20% for test.
And we conduct 5-fold cross validation(CV), splitting train dataset 80% for
train 20% for validation at every fold iteration. Mean squared error (MSE)
is used as cost function. And during cross validation, we conduct random
hyperparameter searching for 6 kinds of hyperparameters listed in Table 1.
Every hyperprameters is sampled from normal distribution with reasonable
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ranges for each, and 20 times of sampling is performed for each CV iteration.
We train the model with SGD optimizer and Cyclical learning rates scheduling
[8] during 50 epochs. To prevent over-fitting, we applied early-stop technique
with 5 epochs of patience. Based on R2 score (or coefficient of determination)
best model is selected. We implemented our model with PyTorch, and to accel-
erate training speed, we used Dask frameworks supporting parallelization in dis-
tributed computing. We used 4 NVIDIA TITAN V GPUs, to conduct parallelized
hyperparameter searching. Finally, we achieved following best hyperparameters:
batch size=4, base lr=0.00639, lr damping=0.762, drop rate=0.22,
output residual=250, weightdecay rate=0.0063.

3 Results and Discussions

For evaluation, we measure the performances with widely used matrices in regres-
sion tasks: Mean Absolute Error (MAE) and R-squared regression score (R2).
Evaluation results are shown in Table 2. We conducted six times of training-
testing sessions to evaluate performance. The evaluation was conducted for test
dataset with 313 samples, and each mean and SD of error was estimated for
entire experiments. R2 provides a measure of how well target values can be pre-
dicted by the regression model, based on the proportion of total variation of data
explained by the model.

Table 2. Evaluation results of gait parameters with best model.

Params group Params name MAE R2

Temporal Cycle Time (sec) 0.071 ± 0.0011 0.47 ± 0.019

Stance Time (sec) 0.048 ± 0.0015 0.61 ± 0.024

Double Supp. Time (sec) 0.033 ± 0.0011 0.74 ± 0.018

Swing Time (sec) 0.032 ± 0.00052 0.31 ± 0.014

Spatial Stride Length (cm) 6.7 ± 0.22 0.84 ± 0.0049

HH Base Support (cm) 1.6 ± 0.11 0.57 ± 0.038

Etc. Cadence (steps/min) 7.0 ± 0.091 0.45 ± 0.023

Velocity (cm/min) 4.1 ± 0.046 0.92 ± 0.0028

Functional Amb. Profile 4.9 ± 0.11 0.73 ± 0.032

Since YOLO-based human detection method is applied to find a patient at
the stage of preprocessing, if some of video frames are not detected by YOLO
then it may embarrass our model in predicting the gait parameters. Especially in
case of temporal parameters group, only small amount of video frames are used
to extract their values, thus any omitted frames could have enormous influence
on temporal parameter. We evaluated detection error rate of YOLO as 1.57 ±
2.75%. In the worst detection error as 4.32%, 0.327 s error in temporal parameters
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is expected because an average gait travel time is 7.58 s. It is big enough to
make temporal parameters worse than the other groups (see temporal parameters
group’s values in Table 1).

To show fitness of proposed model intuitively, we draw scatter plots of pre-
dicted values versus true values in Fig. 4. Each green dot denotes pair of [true,
pred], and dotted red line denotes all points satisfying “true == pred”. From
the figure, we conclude that our regression model can follow the overall tendency
of spatio-temporal gait parameters pretty well.

Fig. 4. Scatter plots of predicted values versus true values.

4 Conclusion and Future Works

The aim of this work was to develop a baseline of vision-based gait analyzer for
‘contactless’ deep vision clinical system. Our main contribution of this work is to
build a visual framework, and verify the possibility of this approach by validating
performances. Our model achieves an accuracy in the rage of 3%–7.1% and R2 in
the range of 0.31–0.92. In order to enhance the model accuracy, more accurate
patient localization and key frame extraction methods will be considered to
reduce the missing video frames including patients as a preprocessing stage.

Since our main objective is to assist clinical diagnosis of PD, the predictability
of gait analyzer is of course important, but capability of distinguishing between
normal group and disease group is also important in clinical point of view. In
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order words, it may have clinical meaning in diagnosis assistance, if our system
can extract significant different parameters in gait analysis between the two
groups. Therefore, the distinguishing ability should be also investigated between
different groups of subjects based on clinical point of view in near future. We
hope our system can help not only the diagnosis assistance for PD but also
anomalies detection in everyday gait video.
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Abstract. In this paper, we present an approach based on convolutional
neural networks (CNNs) for facial expression recognition in a difficult
setting with severe occlusions. More specifically, our task is to recognize
the facial expression of a person wearing a virtual reality (VR) headset
which essentially occludes the upper part of the face. In order to accu-
rately train neural networks for this setting, in which faces are severely
occluded, we modify the training examples by intentionally occluding
the upper half of the face. This forces the neural networks to focus on
the lower part of the face and to obtain better accuracy rates than mod-
els trained on the entire faces. Our empirical results on two benchmark
data sets, FER+ and AffectNet, show that our CNN models’ predictions
on lower-half faces are up to 13% higher than the baseline CNN models
trained on entire faces, proving their suitability for the VR setting. Fur-
thermore, our models’ predictions on lower-half faces are no more than
10% under the baseline models’ predictions on full faces, proving that
there are enough clues in the lower part of the face to accurately predict
facial expressions.

Keywords: Facial expression recognition · Convolutional neural
networks · Severe face occlusion · Virtual reality headset

1 Introduction

Facial expression recognition from images is an actively studied problem in
computer vision, having a broad range of applications including human behav-
ior understanding, detection of mental disorders, human-computer interaction,
among others. Our particular application is to recognize the facial expressions
of a person wearing a virtual reality (VR) headset and use the recognition result
in order to provide feedback to the VR system, which can automatically change
the VR experience according to the user’s emotions.

Research supported by Novustech Services through Project 115788 (Innovative Plat-
form based on Virtual and Augmented Reality for Phobia Treatment) funded under
the POC-46-2-2 by the European Union through FEDR.

c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, CCIS 1142, pp. 645–653, 2019.
https://doi.org/10.1007/978-3-030-36808-1_70

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36808-1_70&domain=pdf
https://doi.org/10.1007/978-3-030-36808-1_70


646 M.-I. Georgescu and R. T. Ionescu

Fig. 1. Images (of people wearing VR headsets) with corresponding Grad-CAM [28]
explanation masks and labels from a VGG-face model trained on lower-half images.

In the past few years, most works [2,6,8,11,13,16,18–21,23,25,31,34–36]
have focused on building and training deep neural networks in order to
achieve state-of-the-art results. Engineered models based on handcrafted fea-
tures [1,14,29,30] have drawn very little attention, since such models usually
yield less accurate results compared to deep learning models. As most recent
works, we adopt deep convolutional neural networks (CNNs) due to their capa-
bility of attaining state-of-the-art results in facial expression recognition. How-
ever, we have to train the neural networks for a very difficult setting, in which
the person to be analyzed wears a VR headset. The currently available VR head-
sets essentially occlude the upper part of the face, posing significant problems
for a standard (not adapted) facial expression recognition system. Our goal is to
adapt the facial expression recognition system for this specific setting. To achieve
this goal, we train two CNN models, VGG-f [3] and VGG-face [26], on modified
training images in which the upper half of the face is completely occluded. This
forces the neural networks to find discriminative clues in the lower half of the
face, as shown in Fig. 1.

We perform experiments showing that our models (trained with occluded
faces) obtain better accuracy rates than models trained on the entire faces,
when the test set contains occluded faces. The experiments are conducted on
two benchmark data sets, FER+ [2] and AffectNet [24]. Our empirical results
show that our CNN models’ trained on lower-half faces are up to 13% higher
than the baseline CNN models trained on entire faces, when the test set includes
images of lower-half faces. Furthermore, our models trained and tested on lower-
half faces are about 10% (or even less) under the baseline models, when the
baseline models are tested on full faces, thus proving that there are enough clues
in the lower part of the face to accurately predict facial expressions. Overall, our
empirical results indicate that learning and inferring facial expressions solely
on the lower half of the face is a viable option for recognizing facial expression
of persons wearing VR headsets. We thus conclude that our final goal, that of
providing feedback to the VR system in order to automatically change the VR
experience based on the user’s emotions, is achievable.

We organize the rest of this paper as follows. We discuss related work in
Sect. 2. We present the convolutional neural networks in Sect. 3. We describe the
empirical results in Sect. 4. Finally, we draw our conclusions in Sect. 5.
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2 Related Art

The early works on facial expression recognition are mostly based on handcrafted
features [32]. After the success of AlexNet [17] in the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [27], deep learning has been widely adopted in
the computer vision community. Perhaps some of the first works to propose deep
learning approaches for facial expression recognition were presented at the 2013
Facial Expression Recognition (FER) Challenge [9]. Interestingly, the top scoring
system in the 2013 FER Challenge is a deep convolutional neural network [31],
while the best handcrafted model ranked only in the fourth place [14]. With only
a few exceptions [1,29,30], most of the recent works on facial expression recogni-
tion are based ondeep learning [2,6–8,11,13,16,18–21,23,25,34–36]. Some of these
recent works [13,16,18,34,35] proposed to train an ensemble of convolutional neu-
ral networks for improved performance, while others [4,15] combined deep features
with handcrafted features such as SIFT [22] or Histograms of Oriented Gradients
(HOG) [5]. Works that combine deep and handcrafted features usually employ a
single CNN model and various handcrafted features, e.g. Connie et al. [4] employed
SIFTanddense SIFT,whileKaya et al. [15] employedSIFT,HOGandLocalGabor
Binary Patterns (LGBP). While most works studied facial expression recognition
from static images as we do here, some works approached facial expression recog-
nition in video [11,15].

Different from these mainstream works [2,4,6,8,11,13–16,18,19,21,23,25,29,
30,34–36], we focus on recognizing facial expressions of occluded faces. More
closely related to our work, Li et al. [20] proposed an end-to-end trainable Patch-
Gated CNN that can automatically perceive occluded region of the face, making
the recognition based on the visible regions. To find the visible regions of the face,
their model decomposes an intermediate feature map into several patches accord-
ing to the positions of related facial landmarks. Each patch is then reweighted
by its importance, which is determined from the patch itself. Different from
Li et al. [20], we consider a more difficult setting in which half of the face is
occluded.

To our knowledge, the only work that studies facial expression recognition
for people wearing VR headsets is that of Hickson et al. [12]. In their work,
Hickson et al. [12] presented an algorithm that automatically infers expressions
from images of the user’s eyes captured from an infrared gaze-tracking camera
mounted inside the VR headset, while the user is engaged in a VR experience.
While their approach is applicable to VR headsets that have an infrared camera
mounted inside, our approach, which uses an external camera, is cheaper and
applicable to all VR headsets, thus being more generic.

3 Method

In this work, we choose two pre-trained CNN models, namely VGG-f [3] and
VGG-face [26]. We proceed by fine-tuning the networks in two stages. In the
first stage (see details in Sect. 3.1), we fine-tune the CNN models on images with
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full faces. In the second stage (see details in Sect. 3.2), we further fine-tune the
models on images in which the upper half of the face is occluded. All models
are trained using data augmentation, which is based on including horizontally
flipped images. To prevent overfitting, we employ Dense-Spare-Dense (DSD)
training [10] to train our CNN models. The training starts with a dense phase,
in which the network is trained as usual. When switching to the sparse phase,
the weights that have lower absolute values are replaced by zeros after every
epoch. A sparsity threshold is used to determine the percentage of weights that
are replaced by zeros. The DSD learning process, typically ends with a dense
phase. It is important to note that DSD can be applied several times in order
to achieve the desired performance. We next describe in detail each of the three
training stages.

3.1 Training on Non-occluded Faces

VGG-face. VGG-face [26] is a deep neural network that is pre-trained on a
closely related task, namely face recognition. The architecture is composed of 16
layers. We keep its 13 convolutional (conv) layers, replacing the fully-connected
(fc) layers with a single max-pooling layer for faster inference. We also replace the
softmax layer of 1000 units with a softmax layer of 8 units, since FER+ [2] and
AffectNet [24] contain 8 classes of emotion. We randomly initialize the weights
in the softmax layer, using a Gaussian distribution with zero mean and 0.1
standard deviation. We add 6 dropout layers after each conv layer, starting from
the fourth convolutional block. The first dropout layer has a dropout rate of 0.3.
For each subsequent dropout layer, the dropout rate increases by 0.05. Thus, the
last dropout layer has a dropout rate of 0.55. We set the learning rate to 10−4

and we decrease it by a factor of 10 when the validation error stagnates for more
than 10 epochs. In order to train VGG-face, we use stochastic gradient descent
using mini-batches of 64 images and set the momentum rate to 0.9. We fine-tune
VGG-face using DSD training [10] for a total of 50 epochs. For DSD training, we
set the sparsity rate to 0.2 for the second conv layer, increasing the rate up to
0.7 with each additional conv layer. We refrain from pruning the weights of the
first conv layer. Since VGG-face is pre-trained on a closely related task (face
recognition), it converges in only 50 epochs.

VGG-f. We also fine-tune the VGG-f [3] network with 8 layers, which is pre-
trained on the ILSVRC benchmark [27]. As for VGG-face, we keep the conv
layers of VGG-f, replacing the fc layers with a single max-pooling layer. We also
replace the softmax layer of 1000 units with a softmax layer of 8 units. We add 3
dropout layers after each conv layer, starting from the third convolutional layer.
In each dropout layer, we set the dropout rate to 0.2. We set the learning rate
to 10−3 and we decrease it by a factor of 10 when the validation error stagnates
for more than 10 epochs. At the end of the training process, the learning rate
drops to 10−5. In order to train VGG-f, we use stochastic gradient descent using
mini-batches of 512 images and set the momentum rate to 0.9. As for VGG-face,
we use the DSD training method to fine-tune the VGG-f model. However, we
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refrain from pruning the weights of the first conv layer during the sparse phases.
We set the sparsity rate to 0.2 for the second conv layer, increasing the rate
up to 0.5 with each additional conv layer. We train this network for a total
of 800 epochs. Since VGG-f is pre-trained on a distantly related task (object
recognition), it converges in a higher number of epochs than VGG-face.

3.2 Training on Occluded Faces

VGG-face. We fine-tune VGG-face on images containing only occluded faces,
using, in large part, the same parameter choices as in the first training stage.
The architecture is the same as in the first training stage. We hereby present
only the different parameter choices. We applied DSD training for 40 epochs,
starting with a learning rate of 10−3, decreasing it by a factor of 10 each time
the validation error stagnated for more than 10 epochs. At the end of the training
process, the learning rate drops to 10−4.

VGG-f. In a similar fashion, we fine-tune VGG-f on images containing only
occluded faces, preserving the architecture and most of the parameter choices.
We next describe the differences from the first training stage. We applied DSD
training for 80 epochs using a learning rate of 10−3. This time we did not have
to decrease the learning rate during training, as the validation error drops after
every epoch.

4 Experiments

4.1 Data Sets

FER+. The FER+ data set [2] is a curated version of FER 2013 [9] in which
some of the original images are relabeled, while other images, e.g. not containing
faces, are completely removed. Barsoum et al. [2] add contempt as the eighth
class of emotion along with the other 7 classes: anger, disgust, fear, happiness,
neutral, sadness, surprise. The FER+ data set contains 25045 training images,
3191 validation images and another 3137 test images. All images are of 48 × 48
pixels in size.

AffectNet. The AffectNet [24] data set contains 287651 training images and
4000 validation images, which are manually annotated. Since the test set is not
publicly available, researchers [24,36] evaluate their approaches on the validation
set containing 500 images for each of the 8 emotion classes.

4.2 Implementation Details

The input images in both data sets are scaled to 224 × 224 pixels. We use the
MatConvNet [33] library to train the CNN models. Each CNN architecture is
trained on the joint AffectNet and FER+ training sets. On AffectNet, we adopt
the down-sampling setting proposed in [24], which solves, to some extent, the
imbalanced nature of the facial expression recognition task. As Mollahosseini
et al. [24], we select at most 15000 samples from each class for training. This
leaves us with a training set of 88021 images.
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4.3 Results

In Table 1, we present the empirical results conducted on AffectNet [24] and
FER+ [2] using either VGG-f or VGG-face. The models are trained and tested
on various combinations of full or occluded images. We include a bag-of-visual-
words baseline [14] and two state-of-the-art CNN models (trained on full faces),
VGG-13 [2] and AlexNet [24], for reference. First, we note that our models, VGG-
f and VGG-face, attain results that are on par with the state-of-the-art CNNs,
when full faces are used for training and testing. However, the CNN models
trained on full faces give poor results when lower-half faces are used for testing.
These results indicate that the CNN models (trained on full faces, as usual) are
not particularly designed to handle severe facial occlusions, justifying our idea
of fine-tuning the models on images containing such severe occlusions. Indeed,
we observe significant accuracy improvements when VGG-f and VGG-face are
fine-tuned on occluded images. For instance, the fine-tuning of VGG-face on
lower-half images (occluded upper half) brings an improvement of 11.53% (from
37.70% to 49.23%) on AffectNet and an improvement of 13.39% (from 68.89%
to 82.28%) on FER+. Interesting, our final models trained and tested on lower-
half faces attain results that are not very far from the CNN models trained
and tested on full faces. For example, our VGG-face model is 8.77% under the
state-of-the-art AlexNet [24] on AffectNet, and 2.71% under the state-of-the-art
VGG-13 [2] on FER+. Despite being tested on lower-half images, both VGG-f
and VGG-face surpass the bag-of-visual-words model [14], which is tested on
full images. We thus conclude that our CNN models can provide reliable results,
despite being tested on faces that are severely occluded.

Table 1. Accuracy rates of various VGG-f and VGG-face models on AffectNet [24]
and FER+ [2], using full faces or lower-half faces (occluded upper half) for training
and testing. A bag-of-visual-words model [14] and two state-of-the-art CNN models
(trained on full faces), VGG-13 [2] and AlexNet [24], are also included for reference.

Model Train set Test set AffectNet FER+

Bag-of-visual-words [14] full faces full faces 48.30% 80.65%

VGG-13 [2] full faces full faces - 84.99%

AlexNet [24] full faces full faces 58.00% -

VGG-f full faces full faces 57.37% 85.05%

VGG-face full faces full faces 59.03% 84.79%

VGG-f full faces lower-half faces 41.58% 70.00%

VGG-face full faces lower-half faces 37.70% 68.89%

VGG-f lower-half faces lower-half faces 47.58% 78.23%

VGG-face lower-half faces lower-half faces 49.23% 82.28%



Recognizing Facial Expressions of Occluded Faces Using Neural Networks 651

5 Conclusion

In this paper, we proposed a learning approach based on fine-tuning CNN models
in order to recognize facial expressions of severely occluded faces. The empirical
results indicate that our learning framework can bring significant performance
gains, leading to models that provide reliable results in practice, even surpassing
a bag-of-visual-words baseline [14] tested on images with fully visible faces.
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Abstract. Psychological studies on recognition of facial expression
reported that local parts of a face image such as eyes or mouth are impor-
tant to detect the facial expression. On the other hand, artificial neural
network technology has progressed greatly in facial recognition. However,
the neural mechanism behind the recognition remains to be unknown.
The purpose of this study is to extract important features from the neu-
ral network model after learning emotions from facial expression and to
clarify which face parts are key to detect emotional expression. First,
we trained a 2-layered neural network model with backpropagation for
recognition of 7 kinds of emotional faces. Then, we found more weighted
input pixels for the recognition by tracing and accumulating the synaptic
weights linearly from the output layer toward the hidden layer. By this
method, we extracted the 6 face-image filters for each emotional expres-
sion. Using the face-image filters divided into 10 parts, we designed a
new analytical method to evaluate which facial part or parts are impor-
tant for the discrimination of emotional expression. From this analysis,
it can be concluded that key parts are very different for each emotion.
For example, nose and mouth are effective for happy smile while strained
cheek for sad face.

Keywords: Neural network model · Facial expression · Emotions ·
Backpropagation

1 Introduction

How do we read other’s emotion from the face? A behavioral experiment to
answer emotions using masked facial images, which divided into 3 regions (each
eye, nose and cheek, and mouth) reported that the mouth and eye regions showed
highest correct rate and shortest reaction time after the onset of a face image in
reporting its effect [1]. Another eye-tracking experiment using facial images to
detect their emotion showed longer duration that staying subject’s eye gaze at
eyes and mouth regions [2]. So far the facial expression from the eyes and mouth
region has been thought to or interpreted to affect strongly the emotional dis-
crimination. Whereas, the influence from the other regions such as nose, cheek,
c© Springer Nature Switzerland AG 2019
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and jaw has not been paid attention. It remains unclear whether detection of
facial expressions would be based on a part of face image or information on
integrated parts. On the other hand, artificial neural network technology has
made great process in facial recognition [3–5]. Whereas these studies aimed at
higher recognition accuracy, they have been less interested in the reason why
the learned neural model answered correctly. The neural network which have
learned emotional expressions from human facial images may give us signifi-
cant hints about the information processing in the brain. In fact, it is a crucial
problem to clarify the reason for the model’s output and to extract the learned
knowledge in neural network models, and some techniques to visualize important
features for discrimination have been proposed [6,7]. In this study, we adopted
a simpler method among them because we focus on evaluation of what the fea-
tures are rather than the method. Thus, the purpose of this study is to clarify
the important parts of a face for discrimination of each emotion by extracting
and analyzing the stimulus patterns required for the discrimination. First, we
trained a 2-layered neural network model by backpropagation to distinguish 6
kinds of basic emotions [8] (Happiness, Sadness, Surprise, Anger, Disgust, and
Fear) and Neutral from facial images. Then, we found more weighted input pixels
for the recognition through tracing and accumulating the synaptic weights lin-
early from the output layer toward the hidden layer. Consequently, we extracted
the 6 face-image filters for each emotional expression.

2 Methods

2.1 A Neural Network Model

The neural network model we used has 2 layers, a hidden layer and an output
layer [9] (Fig. 1). The synaptic weights between layers are fully connected. The
number of inputs is 28 × 28 = 784 which corresponds to the pixels of input
images, and number of neurons in the hidden layer is 50. The output layer has
7 neurons corresponding to 6 emotions plus the neutral. The output xj of the
j-th neuron in hidden layer is calculated as follows:

xj = f(
784∑

i=1

wjiIi − θj), (1)

where Ii is an i-th input, wji is a connected weight from i-th input value to j-th
neuron in the hidden layer, θj is a threshold, and f is the ReLU function. The
input value is a pixel value of a facial image normalized to the range 0–1. Each
initial value of synaptic weight follows a Gaussian distribution N(0, 0.01). And,
the output yk of the k-th neuron in the output layer is represented as follows:

yk =
50∑

j=1

Wkjxj − θk, (2)
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where Wkj is a connection weight from j-th neuron in hidden layer to k-th neuron
in the output layer, and θk is a threshold. After these calculations, this network
chooses the index k that maximizes to g(yk) as an answer. g is the softmax
function as follows:

g(yk) =
exp yk∑6
i=0 exp yi

. (3)

Learning of connection weights is performed by the backpropagation algorithm to
minimize the energy function E as follows through the gradient decent method.

E = −
6∑

k=0

tk log g(yk), (4)

where tk is the one-hot label, in which tk = 1 if k is the answer and tk = 0
otherwise. The learning rate is set to be 0.01. For 1 epoch training period,
a mini-batch learning using 50 images randomly selected from training data
was executed. Totally 30,000 epochs were performed. During the learning, we
evaluated the average accuracy of emotional discrimination using test images
every 1,000 epochs.

Fig. 1. Structure of the neural network model.

2.2 Analytical Methods

First, we show the method to calculate the input patterns which strongly affect
the discrimination of facial emotion from the connection weights after learning.
Assuming that y , a 7-dimentional vertical vector, represents the result whose
answer is set to 1 and the others are 0, we assign proportionally the synaptic
weights toward the inputs as follows:

x = W Ty , (5)

I = wTx , (6)
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where WT is the 50 × 7 transposed weight matrix (Wkj), wT is the 784 × 50
transposed weight matrix (wji). x is a 50-dimentional vertical vector, and I is a
784-dimentional vertical vector. I is calculated for each emotion. I is considered
to contain elements that play an important role in determining the emotion
from input images. To extract important elements from I , we created filters
consisting of parts where the element value in I is larger than the threshold
value ξ. ξ is set for each emotion as follows: Happiness: 5, Sadness: 3, Surprise:
1, Anger: 5, Disgust: 1, and Fear: 1. Using the face images which are masked
by the filter for each emotion face, we checked whether the model discriminated
the inputs correctly. In addition, in order to examine the influence of each facial
region on judging facial expressions, the masking images are spatially divided
into 10 regions (both eyebrows, eyes, both cheeks, nose, mouth, and jaws on
both sides), and they are input to the learned model. Specifically, we selected
1 part or combination of 2 parts and more parts of the divided masked images,
and other areas are filled in black.

2.3 Face Images

We used Picture of Facial Affect (POFA) [10] image database and ATR Facial
Expression Image Database (DB99) [11]. POFA is a black-and-white image
database with a total of 110 images: full faces of 6 males and 8 females, with emo-
tional expressions. DB99 is a color image database with a total of 629 images: full
faces of 6 males and 4 females, with emotional expressions. Among DB99 images,
39 images other than 7 expressions were included, and 590 images were used. The
total 700 images are evaluated by emotional impression into 6 basic emotions
plus neutral ones through a psychological procedure. We labeled each image as
the emotion with the highest evaluation, and we used them as teaching signals
for the learning of the model. Face images were normalized and compressed to
28 × 28 pixels size, with adjusted brightness. Finally, 700 image datasets are
randomly divided into 70 for testing (each 10 for 7 kinds of emotions) and 630
for training. The number of each expression in the database are as follows: (0)
Neutral 78, (1) Happiness 187, (2) Sadness 102, (3) Surprise 45, (4) Anger 192,
(5) Disgust 47, and (6) Fear 49.

3 Results

3.1 Learning of Emotion in Faces

The accuracy rate for the training images increased to nearly 100% after 20,000
epochs, while the rate for the test images was saturated at 70–80% (Fig. 2). Since
the accuracy rate depends on the randomly selected images and initial values, we
executed 10 trials assuming that 30,000 epochs training for 1 trial. The results
are shown in Table 1.
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Fig. 2. Learning process of facial emotions. The solid line indicates accuracy for the
training set, and the dashed line indicates accuracy for 70 test images.

Table 1. Average correct rate for discrimination of emotional face.

Emotion Neutral Happiness Sadness Surprise Anger Disgust Fear Training Test

Correct rate 0.84 0.96 0.77 0.78 0.83 0.44 0.62 1.00 0.75

3.2 Important Features for Detection of Facial Emotion

Figure 3 shows the value of the calculated of I for each facial emotion (Sect. 2.2)
with heatmaps as follows: 1. Happiness, 2. Sadness, 3. Surprise, 4. Anger, 5.
Disgust, 6. Fear. The region with large value strongly influences the discrimi-
nation of emotion. Because the regions with larger values were distributed in
the images, the discriminations did not depend on a specific face part like a
mouth or eyes. When the face images masked by the filters were input, correct
answers were output. It confirmed that the filter plays an important role for
the discrimination. In Fig. 3, the correspondence between these filters and face
images is entirely vague, though they seem to reflect facial parts such as eyes and
mouth. In Sect. 3.3, we examine the effects that face parts have on the emotional
discrimination.

3.3 Key Facial Parts for Emotional Detection

The filters were divided into 10 parts, numbered from 0 to 9 (Fig. 4). Each
region includes facial parts as follows: 0, 1: both eyebrows, 2, 3: both eyes, 4, 6:
both cheeks, 5: nose, 8: mouth, 7, 9: both sides of jaw. First, either 1 filter or
a combination of partial filters was selected from the 10 filters, and face images
which were masked by the filters were input to the learned model. Then, we
calculated the rate of correct outputs including the target partial filter for each
emotion (Table 2). In the case of one part, face images masked with the target
filter were input to the learned model. In the case of a combination of 2 parts, face
images masked with a target filter plus another one were input and evaluated.
Similar procedures were applied to the combination more than 2. Since the
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Fig. 3. Important filters for emotional discrimination in the neural network model.

correct rate tends to increase as the combination increase, the results with higher
rates were omitted from Table 2. For example for Happiness, the correct rate was
relatively high if the input combination includes #5, for example (1, 5), (2, 5),
and (3, 5). Thus, #5 part is considered to be important for the detection of happy
emotion. Happiness expression was correctly answered 100% in response to #5,
#8, and #9 partial parts regardless of single or combination. It means that facial
parts around a nose and a mouth are very effective to the discrimination of a
happy face. This may be partially because the bright part of nasal bridge becomes
wider when we smile. Also mouth region reflects the contour of the lower lip and
teeth in the smiling face. For Sadness expression, #4 filter was relatively strong.
This may reflect a spacial shape of a cheek in the sad expression. For Surprise
expression, #2 and #5 were found to be effective facial parts. It is considered
to reflect widely opened eyes which are characteristic to the surprise expression.
Additionally, the wide outline of nose seems to be reflected. For Anger expression,
the effective filters are special compared with others because any partial filter
led the model to the correct answer. This implies that individual part includes
cues for anger emotion. For example, the right eyebrow (#0) seemed to reflect
the wrinkles in the middle forehead and its direction. For Disgust expression, the
nose (#5) and the right side jaw (#7) showed higher rates. The upper part of
the nose is thought to reflect wrinkles on the nose showing disgust. This result
matches the hypothesis that disgust reminds a human the bad primitive memory
of a smell such as rotten food [12]. For Fear expression, both sides of jaw (#7
and #9) have a large influence. It may reflect the contour of the opened mouth.
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Fig. 4. Key filters F divided into 10 parts.

Table 2. Correct discrimination rates with some filter(s) including the target filter for
each emotion using one or some combination area as input.

Happiness
Number of Target Filter
Combination 0 1 2 3 4 5 6 7 8 9

1 Part 0.00 0.85 0.00 0.00 0.00 1.00 0.00 0.00 1.00 1.00
2 Parts 0.98 1.00 0.78 0.78 0.99 1.00 0.76 0.98 1.00 1.00
3 Parts 1.00 1.00 0.99 0.99 1.00 1.00 0.99 1.00 1.00 1.00

Sadness
Number of Target Filter
Combination 0 1 2 3 4 5 6 7 8 9

1 Part 0.00 0.85 0.00 0.05 1.00 0.00 0.00 0.05 0.50 0.00
2 Parts 0.56 0.96 0.68 1.00 1.00 0.71 0.48 0.99 0.94 0.64
3 Parts 0.90 0.99 0.97 1.00 1.00 0.94 0.88 1.00 0.99 0.94

Surprise
Number of Target Filter
Combination 0 1 2 3 4 5 6 7 8 9

1 Part 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 Parts 0.00 0.08 0.13 0.01 0.00 0.13 0.00 0.00 0.00 0.01
3 Parts 0.26 0.39 0.46 0.26 0.10 0.44 0.05 0.17 0.08 0.29
4 Parts 0.57 0.66 0.65 0.61 0.35 0.65 0.28 0.47 0.33 0.51
5 Parts 0.76 0.80 0.75 0.84 0.61 0.80 0.54 0.72 0.59 0.66
6 Parts 0.88 0.89 0.84 0.95 0.80 0.88 0.75 0.86 0.79 0.80
7 Parts 0.96 0.96 0.94 0.99 0.93 0.96 0.92 0.95 0.92 0.92

Anger
Number of Target Filter
Combination 0 1 2 3 4 5 6 7 8 9

1 Part 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00
2 Parts 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Disgust
Number of Target Filter
Combination 0 1 2 3 4 5 6 7 8 9

1 Part 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.90 0.00 0.00
2 Parts 0.01 0.28 0.24 0.23 0.27 0.73 0.23 0.86 0.10 0.41
3 Parts 0.26 0.49 0.46 0.62 0.56 0.84 0.55 0.88 0.36 0.76
4 Parts 0.48 0.63 0.69 0.82 0.72 0.90 0.75 0.90 0.60 0.86
5 Parts 0.65 0.73 0.76 0.86 0.80 0.93 0.82 0.92 0.70 0.89
6 Parts 0.82 0.84 0.87 0.92 0.88 0.96 0.89 0.96 0.83 0.94

Fear
Number of Target Filter
Combination 0 1 2 3 4 5 6 7 8 9

1 Part 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 Parts 0.00 0.00 0.00 0.26 0.14 0.11 0.11 0.49 0.16 0.35
3 Parts 0.43 0.29 0.27 0.56 0.71 0.44 0.51 0.84 0.70 0.77
4 Parts 0.70 0.60 0.55 0.74 0.83 0.64 0.70 0.96 0.84 0.90
5 Parts 0.84 0.78 0.75 0.86 0.91 0.79 0.82 0.98 0.92 0.94
6 Parts 0.94 0.92 0.92 0.94 0.97 0.92 0.93 0.99 0.97 0.97

4 Conclusion

First, we extracted discrimination filters for 6 kinds of emotional expressions in
human faces from the 2-layered neural network model after learning face images
through backpropagation. Then, we examined which facial part of each filter
is more effective for the discrimination using the modified face images masked
by combinations of the partial filters. This is our proposed analytical method.
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Consequently, important face expressions for the emotional discrimination are
quite different as follows: nose and mouth for smile in happiness, cheek for ten-
sion in sadness, eyes and nose for surprise, all for anger, nose and jaw for disgust
expression, and contour of mouth for fear. These suggest that the model dis-
criminated the emotion using some characteristics specific for each expression.

It has been shown that we can find essential features of face parts for dis-
crimination of each emotional expression using a neural network model with the
proposed method. However, these are superficial features that can be mapped
on a face. A more difficult problem, how to extract the more abstract emotional
information from the higher hidden layers, remains to be solved in the future.
In addition, whether our brain utilizes these features should be examined by
psychological experiments.
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Abstract. Multi-modal sentiment and emotion analysis have been an
emerging and prominent field nowadays at the intersection of natural lan-
guage processing, deep learning, machine learning, computer vision, and
speech processing. Sentiment and emotion prediction model finds the atti-
tude of a speaker or writer towards any discussion, debate, event, docu-
ment or topic. It can be expressed in different ways like the words spo-
ken, energy and tone while delivering words, accompanying facial expres-
sions, gestures, etc. Moreover related and similar tasks generally depend
on each other and are predicted better if solved through a joint framework.
In this paper, we present a multi-task gated contextual cross-modal atten-
tion framework which considers all the three modalities (viz. text, acoustic
and visual) and multiple utterances for sentiment and emotion prediction
together. We evaluate our proposed approach on CMU-MOSEI dataset
for sentiment and emotion prediction. Evaluation results depict that our
proposed approach extracts co-relation among the three modalities and
attains an improvement over the previous state-of-the-art models.

1 Introduction

Microblogging websites and social media platforms like Twitter, YouTube, etc.
have evolved and shown a stupendous growth to become a source of varied kinds
of information (like images, audios and videos). People post real-time messages
on these platforms about their opinions on different topics, products, discussions,
etc. They use these social media platforms as an open and comfortable environ-
ment to express and discuss current issues or to raise their voice to complain
about the products they use in day-to-day life and various organizations utilize
the users’ inputs as feedbacks.

Thus, multi-modal analysis has been an emerging field of study. The main
motivation of using multi-modalities in sentiment and emotion prediction lies
in the fact that videos are quite a rich source of information as we can have
all the three modalities (viz. visual, acoustic and text) from a video. The key

First two authors have equal contributions.
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challenge in the multi-utterance multi-modality framework is to utilize and fuse
the relevant information for the prediction.

Sentiment [1–3] and emotion [4,5,7] are closely related and depend on each
other in a way that we can classify ‘sad ’, ‘fear ’, ‘anger ’ and ‘disgust ’ emotions
to have ‘negative’ sentiment, whereas ‘surprise’ and ‘happy ’ to reflect ‘positive’
sentiment. Therefore, motivated by these advantages of multitasking, we present
an effective approach that jointly predicts the expressed emotions and sentiment
in a video. Multi-task learning (MTL) paradigm provides advantages over the
single-task learning (STL) paradigm as they can leverage the relatedness of each
task in a joint framework and helps to achieve the generalization across the
multiple tasks.

Further, we employ a gated architecture (i.e. Gated Multi-modal Unit
(GMU)) to refine an input representation w.r.t. all the other participating inputs
i.e. it evaluates the importance of an individual modality based on its role in final
prediction. We apply this GMU module at both the raw inputs and generalized
attentive representations. The GMU at raw inputs helps the model to filter out
any noise in the data for effective learning i.e. based on the role of a modality
in final prediction, it is either suppressed or passed. On the other hand, GMU
at the generalized attentive representations aims to extract the importance of
various attentive modalities in accordance with a specific task (i.e. sentiment
and emotion in our case).

Our model is different in the sense that it predicts both sentiment and emo-
tions through a single model and applies gated attention over multi-modalities
present and contextual utterances present in only one step.

The main contributions of this paper are: (a) we propose a multi-task
framework to leverage the inter-dependence of two related tasks (i.e. sentiment
and emotion); (b) we introduce a contextual cross-modal attention mechanism
to assign weights to the contributing contextual utterances and/or to different
modalities simultaneously ; (c) we apply GMU module to refine the input repre-
sentations as well as attention outputs for the specific tasks (i.e. the refinement
for sentiment is performed independent from emotion and hence different atten-
tion outputs are selected for sentiment and emotion predictions) (Fig. 1).

2 Proposed Methodology

In this section, we describe our proposed methodology where we aim to leverage
the multi-modal and contextual information for solving multiple tasks (i.e. sen-
timent and emotion) together. Utterances (i.e. an uninterrupted chain of spoken
languages) of a video are time-dependent (i.e. they must be serially connected in
time). Emotion and sentiment of an utterance are generally dependent on the
other neighboring utterances (i.e. its contextual utterances) and more impor-
tantly all the modalities of contextual utterances may not contribute equally
for final prediction. Therefore to model these relationships, we propose an RNN
(Recurrent Neural Network) based multi-modal multi-utterance gated attention
framework. The proposed model takes multi-modal (text, visual and acoustic)
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Fig. 1. Overall Architecture of the proposed Multi-task Gated Contextual Cross-
Modal Attention framework

information for a sequence of utterances of a video and process them through
three separate bi-directional Gated Recurrent Units (GRUs) for capturing the
contextual information. Subsequently, we extract the relationships among the
contextual modalities through an attention framework. The objective is to learn
the joint-association among the utterances and their modality information and
to emphasize the contributing features by putting more attention to the con-
textual utterances. The contextual cross-modal attention framework learns the
importance of one modality (e.g. ‘acoustic’) w.r.t. the other modality (e.g. ‘text ’
or ‘visual ’) for all the utterances in a video. We term this ‘text-aware acoustic’
(AT ) or ‘visual-aware acoustic’ (AV ) attentive representations and so on. Sim-
ilarly, we compute attention for all the combinations of text, acoustic & visual
modalities (i.e. AT , TA, AV , VA, VT & TV ). Finally, we concatenate all these
contextual cross-modal attentive representations along with the residual con-
nections of text, acoustic & visual representations for the final prediction. We
append residual connection representations to boost the gradient flow to the
lower layers.

Our multi-task framework shares the concatenated representation up to the
attention layer, therefore, they help each other in better predictions. The shared
representation will receive gradients of errors from both the branches (sentiment
& emotion) and accordingly adjust the weights of the model. Thus, the shared
representations will not be biased to any particular task, and it will assist the
model to achieve generalization for multiple tasks.

Since the concatenated representations (AT , TA, AV , VA, VT & TV ) aim
to achieve the generalization, not all these attentive representations are equally



Multi-task Gated Framework for Sentiment and Emotion Analysis 665

important to both sentiment and emotion. In other words, some of these rep-
resentations might be more significant than others for sentiment classification,
whereas the same might be less important for emotion prediction. For example,
if we have to classify a video having 6 utterances then our model decides that to
classify ‘u1’ utterance, textual features of ‘u4’ and ‘u6’, acoustic features of ‘u2’
and visual features of ‘u4’ are important for sentiment classification, whereas
textual features of ‘u2’, ‘u4’ and ‘u6’, acoustic features of ‘u6’ and visual fea-
tures of ‘u2’ and ‘u4’ are important for emotion detection. Hence, only selected
modalities are sent for final prediction. Therefore, for final prediction, we intro-
duce a gated multi-modal unit (GMU) to assign weights to these representations
according to their importance for the respective tasks.

Contextual Cross-Modal Attention Framework (CCMA): In our pro-
posed attention framework, we calculate the cross-modality attention scores for
each utterance in a video. As outputs of Bi-GRU already contain contextual
information of utterances for each modality separately, we, at first, compute a
matching matrix Mx ∈ R

u×u to capture the cross-modality information. So for
the text-aware acoustic (AT ), we calculate MAT

= A.T
′
. In the next step, we

compute probability distribution score (Px ∈ R
u×u) over each utterance of the

matrix Mx using a Softmax function. Probability distribution scores calculated
here are the weights (or attention scores) for the contextual utterances. Then, we
apply soft attention for computing cross-modality aware representation i.e. Sx.
Finally, a multiplicative gating mechanism [8] (Gx) is introduced to attend the
important components of cross-modalities and utterances. Similarly, we compute
cross-modal attentions for all the combinations (i.e. AT , TA, AV , VA, VT & TV ).

GMU (Gated Multi-modal Unit): The module, called Gated Multi-modal
Unit (GMU) [8] is shown below. It works like the flow control in recurrent archi-
tectures like Long Short Term Memory (LSTM) and GRU. Traditionally, the
GMU module is used to find a representation of input modality based on the
combination of all other modalities. Each input representation (Xi), correspond-
ing to a modality ‘i’, is passed through an activation function (i.e. tanh) to encode
the input representation. Further, the encoded representation is filtered through
a gating mechanism computed on all the available input sources. The gating
mechanism is controlled through a sigmoid (σ). This essentially computes the
significance of an input source with respect to other available sources of informa-
tion. For N sources of information, equations for computing GMU for ith source
(Xi) is as follows:

hi = tanh(Wi.Xi)
X = concat(X1, ., Xi, ., XN )
αi = σ(W.X)
Xi = hi ∗ αi
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3 Experimental Results and Analysis

Dataset: We use the benchmark dataset of sentiment and emotion analysis,
namely CMU Multi-modal Opinion Sentiment and Emotion Intensity (CMU-
MOSEI) [9] to evaluate our proposed approach. This dataset consists of 3,229
videos spanning over 23,000 utterances. The training, validation, and test set
consist of 16216, 1835 and 4625 utterances, respectively. Each utterance has a
degree of emotion (i.e. emotion intensity) for all the six emotion classes i.e.
anger, disgust, fear, happy, sad and surprise which depicts the intensity of each
emotion. All non-zero intensity values of an utterance are considered as its emo-
tion labels, representing multi-labels of an utterance. If an utterance has no
emotion label, then it is considered as of ‘No class’. In contrast, the sentiment
values for each utterance are disjoint i.e. value < 0 represents negative sentiment
and value ≥ 0 represents positive sentiment.

We use CMU-Multi-Modal data SDK1 for downloading and for extracting the
features. In MOSEI dataset, word-level features were given where textual features
were extracted using GloVe Embeddings, acoustic features were extracted using
CovaRep and visual features were extracted using Facets. We compute word-
level average of these features to obtain the utterance level features. For each
word, the dimension of the feature vector is 300 for text, 74 for acoustic and 35
for visual.

Experiments: We use the Python-based Keras library for its implementation.
For evaluation, we compute F1-Score and accuracy values to measure the per-
formance of sentiment classification. For emotion prediction, we use F1-Score
and weighted-accuracy [10]. We choose weighted accuracy as a metric because
samples are unbalanced across various emotions.

We use grid search to find the optimal hyper-parameters for our experi-
ment. For consistency, we use same hyper-parameters for training all the models
(model1, model2 and model3). We use three Bi-GRUs with 300 neurons, one for
each modality (i.e. text, visual and acoustic). We set dropout to 0.3 and epochs
to 50. We use ReLu as an activation and Adam as an optimizer. We use softmax
for sentiment classification and sigmoid for emotion prediction and binary cross-
entropy as the loss function. As the dataset is suited for multi-label classification
(i.e. more than one emotions possible), we choose a threshold value and consider
all the emotions as present whose respective values are above that threshold
value. We cross-validate and optimize both the evaluation metrics i.e. weighted
accuracy and F1- score and set the threshold as 0.3 and 0.2, respectively.

We experiment our proposed model with all uni-modal, bi-modal and tri-
modal input combinations, and their results are shown in Table 1. For compari-
son, we experiment and report the results of both multi-task (MTL) and single-
task (STL) learning framework in Table 1. In Single task framework (STL), two
models are built for sentiment and emotion analysis i.e. sentiment class is pre-
dicted by learning the model on sentiment labels only and similarly disjoint
framework is learned for emotion prediction. But in contrast to this, we also
1 https://github.com/A2Zadeh/CMU-MultimodalDataSDK.

https://github.com/A2Zadeh/CMU-MultimodalDataSDK
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Table 1. Single-task learning (STL) and Multi-task learning (MTL) frameworks for
the proposed approach. W-Acc: Weighted-Accuracy.

Tasks F1-Scores Acc (Sent) & W-Acc (Emo)

T A V TV TA AV TAV T A V TV TA AV TAV

Sent STL 76.26 70.18 63.53 77.16 77.24 74.58 77.82 79.28 70.94 74.77 79.10 79.57 73.83 79.66

MTL 76.38 71.09 73.96 77.25 77.44 74.99 78.30 79.86 77.73 75.52 79.89 79.97 77.96 80.15

Emo STL 77.76 75.78 76.47 78.17 78.10 73.49 78.79 60.98 57.36 57.94 62.43 61.54 53.68 62.80

MTL 77.88 76.26 76.48 78.38 78.21 77.05 79.06 61.19 57.75 58.19 62.53 61.98 59.87 63.16

Table 2. Comparison of our proposed multi-task framework with state of the are
systems. �Values are taken from [9]

perform multi-task (MTL) framework where a joint-model is learned for both
sentiment and emotion i.e. both sentiment and emotion help each other in learn-
ing in a better way and hence giving better predictions than STL.

Moreover, better results are obtained while we consider tri-modal input fea-
tures i.e. all three modalities (i.e. textual, visual and acoustics).

Comparative Analysis: We compare the results obtained from our proposed
model against the various other existing models [1,4,7,9,11–13] which also use
the same dataset. For each case, we report the results of the top three existing
systems (as reported in [9]) and the comparative analysis is shown in Table 2. Our
proposed multi-modal multi-task contextual framework reports the best F1-score
of 79.06% and weighted accuracy of 63.16% for emotion classification as com-
pared to F1-score of 76.3% and weighted accuracy of 62.3% of the state-of-the-
art system. Similarly, for sentiment classification, our proposed model obtains an
F1-score of 78.30% and accuracy of 80.15%, whereas the state-of-the-art system
obtains the F1-score of 77% and accuracy of 76.9%. Hence, these results show
significant performance improvement over the state-of-the-art model. We also
perform statistical significance test (paired T-test) on the obtained results and
observe that performance improvement in the proposed model over the state-of-
the-art is significant with 95% confidence (i.e. p-value < 0.05).
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Table 3. Comparison with MTL and STL frameworks. Few error cases where MTL
framework performs better than STL

Utterances Sentiment Emotion

Actual STL MTL Actual STL MTL

1. This information had been

brought to me so i filed a case

Pos Neg Pos Hp, Sr An, Dg, Hp, Sd Hp, Sd, Sr

2. When the judge asked so are

you suggesting dr shiva

Pos Neg Pos No Class An, Dg, Hp, Sd Sd

3. Stars because i have the

previous two

Pos Neg Pos An, Hp Dg, Sd Hp

4. Remembered seeing the

previews for it speaker

Neg Pos Neg An, Dg, Sd An, Dg, Hp, Sd, Sr An, Sd, Dg

STL vs. MTL Error Analysis: We compare STL and MTL frameworks as
shown in Table 3. We have shown a few cases to show where and how multi-task
helps for better prediction over the single-task framework. For example, the first
utterance has gold sentiment label as positive which was misclassified by STL as
negative. Similarly, in emotion predictions, gold labels are happy and surprise,
whereas STL predicts anger, disgust, happy and sad, but MTL predicts happy,
sad and surprise. Precision and recall for STL are (1/4) and (1/2), respectively,
whereas, we observe improved precision (2/3) & recall (2/2) for MTL. In the
second utterance, MTL predicts the correct label for sentiment class i.e. positive
and in gold emotion label, no class is present for that given utterance. So MTL
predicts the presence of only one class i.e. sad and STL misclassifies its sentiment
and emotion labels both. Similarly, for utterance 3, precision and recall for STL
are (0/2) and (0/2), respectively whereas precision and recall for MTL are (1)
and (1/2), respectively. In 4th utterance, correct emotion labels i.e. anger, disgust
and sad for MTL framework help in predicting the correct sentiment label i.e.
negative. Hence these examples show inter-dependence of two related tasks i.e.
sentiment and emotion and also show how MTL framework predicts better than
the STL framework.

4 Conclusion

In this paper, we have proposed an RNN based multi-task framework that aims
to reveal and utilize the inter-dependence of two related tasks i.e. sentiment
and emotion. Our proposed approach learns a joint-representation for both the
tasks but selects a different combination of modalities for sentiment and emotion
using the GMU model at attention. We evaluate our proposed approach on the
recently released benchmark dataset on CMU-MOSEI i.e. the largest available
dataset for multi-modal sentiment and emotion analysis having multi-label data.
Experimental results suggest that sentiment and emotion help each other for
better predictions when learned in a joint framework. In the future, we would
like to explore the other dimensions of our multi-task framework.
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Abstract. In this paper, we aim to investigate the similarities and dif-
ferences of multimodal signals between Chinese and French on three
emotions recognition task using deep learning. We use videos includ-
ing positive, neutral and negative emotions as stimuli material. Both
Chinese and French subjects wear electrode caps and eye tracking glass
while doing experiments to collect electroencephalography (EEG) and
eye movement data. To deal with the problem of lacking data for train-
ing deep neural networks, conditional Wasserstein generative adversarial
network is adopted to generate EEG and eye movement data. The EEG
and eye movement features are fused by using Deep Canonical Correla-
tion Analysis to analyze the relationship between EEG and eye move-
ment data. Our experimental results show that French has higher classi-
fication accuracy on beta frequency band while Chinese performs better
on gamma frequency band. In addition, EEG signals and eye movement
data of French participants have complementary characteristics in dis-
criminating positive and negative emotions.

Keywords: Emotion recognition · EEG · Eye movement · Deep
learning · Cross-culture · Chinese · French

1 Introduction

Facial expressions, speech and non-verbal vocalizations are often used as input
to recognize different emotions. Recent research found that facial expressions of
emotion are not culturally universal [1]. People from different cultures can reach
an agreement on the most intense emotion in judging facial expressions. However,
culture differences are found when people judge the absolute level of emotional
intensity [2]. Differences of non-verbal emotion cognition between western culture
and remote tribe were also studied [3]. Cross-cultural similarities and differences
c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, CCIS 1142, pp. 670–680, 2019.
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appear in music mood perception as well. Research and the experimental results
showed that listeners from different cultural backgrounds behaved differently
in their selection of mood clusters and agreement ratio in each mood cluster.
The similar result was found in Shuar hunter-horticulturalists from Amazonian
Ecuador and American native English speakers [4]. However, it is widely agreed
that cross-cultural agreement levels are lower than intra-cultural one [5,6].

With the quick development of brain-computer interface (BCI), many
researches start to use neural signals to study the relationship between emotion
and brain activities. EEG signals are proved to be effective in the field of emotion
recognition. Recent researches indicated that there exists a stable neural pattern
of EEG signals for positive, neutral and negative emotions [7]. Researchers also
used EEG to investigate the differences of neural patterns between Chinese and
Germans [8]. Combining EEG modality with other modalities provided an effi-
cient way to recognize human emotions [9].

Eye movements have been widely used in studying attention, perceptions
and emotion. Eye tracking data allow researchers to find users’ areas of interest,
attention track and subconscious behaviors. Therefore, more and more studies
start to focus on the relationship between emotion and the movements of eyes.
It was proved that higher trait emotional intelligence was associated with more
attention to positive emotional stimuli [10]. The increase of gaze to eye region
in children with autism spectrum disorders led to higher emotion recognition
accuracy [11]. Furthermore, the characteristics of eye movements and EEG are
complementary to emotion recognition [12]. Using modality fusion methods can
significantly enhance the accuracy on emotion recognition task [13].

In this paper, we focus on investigating the similarities and differences of EEG
and eye movement signals between Chinese and French on emotion recognition
task using deep learning. The task is to classify positive, neutral and negative
emotions. We evaluate the performance of emotion classification with different
features and different frequency bands. Functional brain connectivity patterns
are adopted to visualize the similarities and differences between Chinese and
French. Since the complementary characteristics of EEG and eye movements
in Chinese subjects have already been proven [12], we focus on the results for
French participants. Multi-modality fusion algorithm is also used to reveal the
relationship between EEG signals and eye movement data.

2 Methods

2.1 Functional Brain Connectivity Patterns

Functional brain connectivity patterns are used to visualize the neural patterns
of Chinese and French participants instead of focusing on single-channel analysis
[14]. Each EEG channel represents one node and the connections between pairs
of channels are the links. To construct the functional brain network, we use spec-
tral coherence to calculate the connectivity indices between two EEG channels
under different frequency bands. Thus, one connectivity matrix can represent
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one sample’s brain network. Then we use critical subnetwork selection to choose
the emotion-related subnetworks.

Critical subnetwork selection can be divided into several steps. Firstly, we
calculate the average matrices for each emotion. The brain connectivity matrix
of subjects under the same culture background are used to calculate the mean
connectivity matrix. Secondly, we sort each mean connectivity matrix based
on the absolute value of the connection weights. Since some weak connections
between electrodes are not relevant to emotion and they may obscure the profile
for the network topology, we discard the connections based on a proportional
threshold. The connectivity matrices of positive, neutral and negative emotions
are processed respectively. The intersection of connections under three emotions
is considered to be less relevant to the specific emotion. Hence, these connections
are removed from brain connectivity matrix in the visualization. The choice of
threshold is based on the performance of classification. The topological feature
strength is extracted from three critical subnetworks of each subject with dif-
ferent thresholds and then fed into a classifier. The threshold who can obtain
the highest accuracy is considered to have remained the most emotion-related
connections.

2.2 Augmentation of EEG and Eye Movement Data

To overcome the problem of lacking training data for deep neural network, we use
Conditional Wasserstein Generative Adversarial Network (CWGAN) to generate
both EEG and eye movement data [15]. CWGAN consists of two components.
The generator G produces realistic-like data Xg by giving real data distribution
Xr and generated data distribution Xg. The objective of generator is to confuse
discriminator D which tries to distinguish whether a sample comes from Xr or
Xg. The target is to solve the minimax problem during the adversarial training
procedure. The formula is defined as:

min
θG

max
θD

L(Xr,Xg) = Exr∼Xr
[log(D(xr))]

+ Exg∼Xg
[log(1 − D(xg))]

(1)

where θg and θd represent the parameters of the generator and discriminator,
respectively.

In CWGAN, the Earth-Mover distance (EMD, also known as Wasserstein-1
distance) is used to replace Jensen-Shannon divergence to calculate the distance
between probability distribution of real data and generated data. Compared
with Jensen-Shannon divergence, EMD is continuous and differentiable almost
everywhere, which ensures the convergence of GAN and avoids the problem of
mode collapse. To make training procedure more stable and convergence faster,
a gradient penalty is added instead of using weight clipping [16].

In order to generate samples for multiple classes, label information is used.
An auxiliary label Yr is fed into both generator and discriminator. In the gener-
ator, Xz is concatenated with Yr. In discriminator, Xr and Xg are concatenated
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with Yr to construct a hidden representation. The final objective function is
defined as:

min
θG

max
θD

L(Xr,Xg, Yr) =

Exr∼Xr,yr∼Yr
[D(xr|yr)] − Exg∼Xg,yr∼Yr

[D(xg|yr)]

− λEx̂∼X̂,yr∼Yr
[||∇x̂|yr

D(x̂|yr)||2 − 1)2]

(2)

where λ is a hyperparameter controlling the trade-off between the original objec-
tive and gradient penalty, and x̂ is defined as:

x̂ = αxr + (1 − α)xg, α ∼ U [0, 1], xr ∼ Xr, xg ∼ Xg (3)

The loss of discriminator is the maximum term, and the loss of generator is
the minimum term. They are optimized simultaneously. The discriminator loss
is updated for critic times in each adversarial training iteration.

2.3 Multi-modality Fusion Approach

To analyze the characteristics of eye movements and EEG data, Deep Canonical
Correlation Analysis (DCCA) is used [13]. For each modality, a neural network
is constructed to realize nonlinear feature transformation which aims to repre-
sent original modality features in another feature space supposed to be related
with emotion. The layer sizes for both modalities are the same. Then Canonical
Correlation Analysis (CCA) is used to calculate the correlation between trans-
formed features of two modalities. The back-propagation algorithm is adopted
to update parameters of network in order to get higher correlation in CCA layer.
The extracted features are fused by using the formula defined as follows:

Ffusion = αM1 + βM2 (4)

where M1 and M2 represent the extracted features for each modality, respec-
tively, and α and β are the parameters to control the weight of each modality.
Since we consider that EEG and eye movement features have an equivalent
importance here, we choose α = β = 0.5.

3 Experiment Setup

3.1 The SEED Dataset

The SEED1 dataset is a public dataset for emotion recognition. Fifteen Chi-
nese healthy subjects participated in the experiments to watch 15 Chinese film
clips. Each subject was invited to participate in 3 sessions of experiments. The
stimuli material contains positive, neutral and negative emotions. During the
experiment, subjects were demanded to watch film clips attentively. 62-channel
EEG signals based on international 10–20 system and eye movement signals were
recorded at the same time.
1 http://bcmi.sjtu.edu.cn/∼seed/index.html.

http://bcmi.sjtu.edu.cn/~seed/index.html
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3.2 Experiment for French Participants

To compare the results of Chinese with those of French, we have to keep con-
sistency in experiment design and data collection. Thus, we choose film clips
as stimuli material as well. Since French participants may not understand the
expressions of emotion in Chinese films, film clips used in the experiments for
French subjects are chosen from a large database of emotion-eliciting films devel-
oped by Schaefer et al. [17]. All the film excerpts were nominated by 50 experts
and evaluated by 364 Belgian French-speaking undergraduates. We add film clips
with highest Positive And Negative Affect Schedule (PANAS) into our stimuli
material. Due to the lack of neutral excerpts, extra neutral excerpts are chosen
from calm landscape films, which are consistent with SEED dataset. Finally, 21
film excerpts are chosen.

Six healthy subjects aged from 22 to 41 participated in the experiments. All
of the subjects come from France and their native language is French. Since all
the subjects are exchange students and professors on the campus, the number of
subjects are limited. Each participant was required to perform the experiments
for two sessions. During experiment, participants were asked to immerse in the
film clips. 62-channel EEG signals based on international 10–20 system and eye
movement signals were recorded simultaneously.

3.3 Feature Extraction and Classification

To keep balance between the number of Chinese subjects and French subjects, we
randomly choose 6 subjects from the SEED dataset. In order to keep consistency
with the number of sessions each French subject participated, two sessions of a
Chinese subject are chosen. We apply the same data preprocessing and feature
extraction methods on Chinese and French subjects.

The EEG data are downsampled to 200 Hz and transformed by a Short-
Term Fourier Transform (STFT) with an 1-s Hamming window. By using a
band-pass filter from 1 to 50 Hz, it allows us to filter out a large part of artifacts.
Power Spectral Density (PSD), Differential Entropy (DE), Rational Asymmetry
(RASM), Differential Asymmetry (DASM), Asymmetry (ASM) and Differential
Causality (DCAU) features are extracted from five frequency bands: δ: 1–3 Hz,
θ: 4–7 Hz, α: 8–13 Hz, β: 14–30 Hz, and γ: 31–50 Hz. The data recorded from
the same film excerpt are labeled as the same label. The features extracted from
EEG usually contain noises which cannot be thoroughly filtered. Therefore, we
use linear dynamic system (LDS) approach to filter out the unrelated features
for emotion recognition.

As the eye movement data contain different parameters, every eye movement
parameter is processed separately. We adopt the same extracted features of eye
movement in the work of Lu et al. [12] since these features were proven to
be effective in emotion recognition. We also apply LDS to filter out unrelated
features for eye movement data. The total number of dimension of eye movement
features is 33. The details of eye movement features are presented in Table 1.

We use an SVM with linear kernel as a classifier. All the results are obtained
by a 5-fold cross validation. The parameter c is searched from 2−10 to 29.
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Table 1. Details of extracted features from Eye Movement

Eye movement parameters Extracted features

Pupil diameter (X and Y) Mean, standard deviation and DE in four bands:
0–0.2 Hz, 0.2–0.4 Hz, 0.4–0.6 Hz, 0.6–1 Hz

Dispersion (X and Y) Mean, standard deviation

Fixation duration (ms) Mean, standard deviation

Blink duration (ms) Mean, standard deviation

Saccade Mean, standard deviation of saccade duration
(ms) and saccade amplitude (◦)

Event statistics Blink frequency, fixation frequency, fixation
duration maximum, fixation dispersion total,
fixation dispersion maximum, saccade frequency,
saccade duration average, saccade amplitude
average, saccade latency average

4 Experiment Results

4.1 Comparison on Features

In this part, we compare the performance of emotion classification on different
features. Figure 1(a) shows the classification accuracy for Chinese and French
subjects.

We can see that the mean accuracy of Chinese reaches 72.93%, which is much
higher than the mean accuracy of French (47.39%). The gap of accuracy between
Chinese and French shows that the emotions of Chinese have been stimulated
effectively while the emotions of French are relatively difficult to stimulate. The
unfamiliar environment may make French subjects feel difficult to relax and
immerse in the films. The standard deviation (SD) of Chinese (5.98) is close
to the SD of French (6.08), indicating that the individual differences exist on
both datasets. We also use two-way analysis of variance to study the statistical
significance of nation and features. The p-values for the nation (0.0000), the
features (0.0000), and the interaction between nation and features (0.3695) indi-
cates that the nation and features affect the accuracy, but there is no evidence
of an interaction effect of the two.

Among different features, DE feature achieves the highest classification accu-
racy on both datasets, 79.37% with Chinese subjects and 49.65% with French
subjects. DE feature gets the lowest SD on Chinese dataset which means DE
feature is a relatively stable feature for emotion recognition for Chinese subjects.

4.2 Comparison on Frequency Bands

We also compare the classification accuracy on five non-overlapping frequency
bands. The results are shown in Fig. 1(b). The mean accuracy of Chinese sub-
jects achieves 72.92% (SD = 7.23) and that of French is 47.38% (SD = 7.52).
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(a) On different features (b) On different frequency bands

Fig. 1. Classification accuracies on different features and bands

By using two-way analysis of variance, the p-values for the nation (0.0000), the
frequency bands (0.0000), and the interaction between nation and frequency
bands (0.2887) indicates that the nation and the frequency bands affect the
accuracy, but there’s no interaction between nation and the frequency bands. For
Chinese, the performance on higher frequency bands, such as beta and gamma,
is better than that of lower frequency bands. The finding is consistent with
the existing work [18]. Total frequency band, which means to concatenate all
frequency bands together, gets the highest accuracy (83.77%) with regards to
Chinese subjects. For French, we find that on beta frequency band the best result
(51.89%) is obtained. Unlike Chinese subjects, gamma frequency band has a rel-
atively poor for French subjects performance (47.86%) compared with that of
Chinese subjects (80.98%).

4.3 Functional Brain Connectivity Patterns

Figure 2 shows the functional brain connectivity patterns of Chinese and French
with three emotions in five frequency bands. There are more connections of Chi-
nese than those of French. It is because that French has a larger number of
intersections shared by three emotions, which have been removed from visual-
ization. Here, we choose 0.2 as threshold, which means 20% of total connections
have been discarded. We get the highest mean accuracy for Chinese (71.24%)
and French (44.25%) when threshold equals to 0.2.

For both Chinese and French, we can observe higher coherence connectivity
of frontal lobes in positive emotion on alpha, beta and gamma frequency bands.
The connectivity patterns on neutral and negative emotions are relatively simi-
lar on beta and gamma frequency bands. For Chinese, we find higher coherence
connectivity on temporal and occipital lobes. For French, the higher coherence
is found especially on left hemisphere. Watching positive film excerpts, the tem-
poral and occipital sites of Chinese subjects show higher coherence while French
subjects show higher coherence at frontal and temporal sites. Watching neu-
tral film excerpts, higher coherence connectivities are located at frontal sites for
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Chinese but at occipital sites for French. For both Chinese and French, higher
coherence is found on lower frequency bands. However, unlike Chinese subjects,
who have a relatively symmetry distribution of connectivities, French are rela-
tively asymmetry and higher coherence connectivities appear in left hemisphere.

Fig. 2. The functional brain connectivity patterns for three emotions in five frequency
bands with coherence as the connectivity index. The text on each node means the name
of electrode. The nodes from top to bottom represent EEG channels from the frontal,
temporal, parietal to the occipital lobes. Here, the maps from first row of each emotion
represent the results of Chinese and those from second row represent the results of
French.
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4.4 Multi-modality Fusion

Considering the lower sample rate of eye tracking glass, an STFT with a 4-
second non-overlapping window is used to compute both EEG and eye movement
features. Because of lack of data, we use CWGAN as data augmentation method.
Since DE feature has the best performance, we use DE on total frequency band
as input to the network. When it comes to eye movement data, all features have
been concatenated to input into the network. Both EEG and eye movements
data have been generated.

Both networks for generator and discriminator have 4 layers. We use grid
search to find the optimized number of nodes for each layer. As a result, the
hidden layers of the generator and discriminator networks have 512 nodes for
EEG data and 64 nodes for eye movement data, respectively. ReLU (Rectified
Linear Unit) is used for all hidden layers. The networks are optimized by Adam
optimizer. We choose learning rate as 10−3. The critic value is set to 5 and λ is
set to 10. The generated data are sampled from a uniform distribution U [−1, 1].
During the training, the discriminator loss quickly converges to a value close to
0, which indicates that the distribution of real data and generated data are very
similar. Therefore, the generated DE data and eye movement data have high
quality.

Table 2. Performance of Data Augmentation

0× dataset 1× dataset 2× dataset 3× dataset 4× dataset

EEG 0.4997 0.5160 0.5155 0.5206 0.5202

Eye 0.6381 0.6603 0.6448 0.6595 0.6504

Table 2 shows the performance of data augmentation. The generated data are
appended to each 5-fold training data and an SVM with linear kernel is used.
There are augmentations of classification accuracy to different extent depending
on the number of generated data appended to the original dataset. Since triple
generated data appended to the real dataset has the highest mean accuracy, we
use the dataset including triple generated data and real data as EEG and eye
movement dataset in the following part of this paper. The generated data are
only used in training set.

DCCA is used to figure out whether the characteristics of eye movements are
complementary with EEG. Each modality is constructed by three full connected
layers. We use random search between 50 and 200 to find the optimal number
of layer nodes. The learning rate is set to 10−3. Batch size is set to 100 and
regulation parameter is set to 10−7. We choose the output dimension of features
for each modality as 20.

The mean accuracy by using EEG data only is 55.35% and the mean accu-
racy by using eye movements only is 60.98%. When we combine two modalities
and project them into another feature space with lower dimension, we get an
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augmentation of classification accuracy to 64.22%. Figure 3 shows the confusion
matrices of classification results. From Fig. 3, we have found that eye movement
and EEG modalities have complementary characteristics. By using EEG fea-
tures solely, it’s very likely to confuse negative emotion with other two emotions
while using eye movements alone shows a better performance. When it comes to
discriminate positive emotions, using EEG features solely shows a better perfor-
mance. After combining two modalities, we find that the negative emotion can
be recognized with higher accuracy (64.71%).

(a) EEG features (b) eye movements (c) Two-modality

Fig. 3. The confusion matrices of classification results by using different features.

5 Conclusions and Future Work

In this paper, we have compared the neural patterns between Chinese and French
on a task of recognizing three emotions (positive, neutral and negative). We have
found that French has higher mean accuracy on beta frequency band while Chi-
nese tends to perform better on gamma frequency band. The functional brain
connectivity patterns indicate the coexistence of similarities and differences of
neural patterns between Chinese and French subjects. The results of classifica-
tion by using DCCA reveal that EEG and eye movement data of French subjects
are complementary in discriminating positive and negative emotions.

As future work, we will recruit more number of subjects to participate in the
experiments and use different multi-modality fusion methods to investigate the
relationship between EEG signals and eye movement data.
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Abstract. Learning efficient deep representations from spectrogram for
speech emotion recognition still represents a significant challenge. Most
existing spectrogram feature extraction methods empowered by deep
learning have demonstrated great success, but the respective chang-
ing information of time and frequency exhibited by the spectrogram is
ignored. In this paper, a speech emotion recognition method integrating
self-attention is proposed by considering the interactive and respective
changing information of time and frequency. To learn the deep represen-
tations from spectrogram, a time-frequency convolutional neural network
(TFCNN) is proposed at first. After that, a Multi-head Self-attention
layer inspired by Transformer proposed by Google is introduced to fuse
deep representations more efficiently. Finally, extreme learning machine
(ELM) and bidirectional long short term memory (BLSTM) models are
adopted as emotion classifiers. Experiments conducted on IEMOCAP
dataset demonstrate the effectiveness of our proposed methods showing
better visual illustrations and classification results.

Keywords: Speech emotion recognition · Time-frequency ·
Self-attention

1 Introduction

As the fundamental research of emotion artificial intelligence, speech emotion
recognition (SER) has become an active research area [1]. The SER systems
consist of two stages, one is feature extraction and the other is classification.
Finding effective emotional features representation in feature extraction stage is
the key to the success of SER systems [2–4].

The SER methods can be categorized as traditional methods and deep
learning methods. In traditional methods, segment features, such as Mel-
Frequency Cepstral Coefficients (MFCC) [5], Linear Prediction Cepstral Coeffi-
cients (LPCC), prosodic features and the statistics of segment features, perform
c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, CCIS 1142, pp. 681–689, 2019.
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well in Automatic Speech Recognition (ASR) tasks, but may not be suitable for
SER tasks to get satisfactory performance.

In recent years, deep learning methods have gained outstanding performances
in vision and speech recognition. Deep neural networks (DNNs) can extract
emotion related features from a large amount of data, which make deep learning
based SERs achieve competitive results. The high-level features learned by DNN
can overcome the pre-defined limitations of hand-crafted features used in tradi-
tional methods. Han et al. [6] proposed a model based on DNN to obtain the
emotion state probability distribution, and the extreme learning machine (ELM)
was used as the classifier; Satt et al. [7] proposed the famous model which uses
CNN to learn emotional features directly from spectrogram, and followed by
a BLSTM to learn the contextual information; Guo et al. [8] improved Satt’s
model, employing ELM instead of the complicated structure BLSTM, and got
an outstanding result. The models mentioned above have been regarded as the
state-of-the-art (SOA) models in the field of speech emotion recognition. Among
them CNN shows more powerful performance in representation learning and the
usage is also the same as image processing. The traditional CNN only considers
the interactive information in the receptive field. However, the respective chang-
ing information of time and frequency is also highly related to speech emotions.

Attention mechanism was first used in machine translation to solve the bot-
tleneck of information loss [9]. This attention model and its variants were quickly
introduced to various research fields such as computer vision, neutral language
processing (NLP) [10] and automatic speech recognition (ASR). Attention mech-
anism was also introduced in SER, Li et al. [11] used the second-order attention
as a pooling layer instead of max-pooling and average-pooling layer; Gorrostieta
et al. [12] added attention mechanism to emphasize salient regions of the audio
clip. The success achieved in those research fields demonstrated the effectiveness
of attention mechanism. Among those attention models used in various research
fields, the most successful one was Transformer [13] proposed by Google.

To study both interactive and respective changing information between time
and frequency in spectrogram, we propose a time-frequency deep representa-
tion learning method which could be called Time-Frequency CNN (TFCNN) for
SER with self-attention as shown in Fig. 1. Firstly, three groups of filters with
different shapes are designed to extract three kinds of representations, including
time, frequency interactive and respective changing information from spectro-
gram directly. Secondly, the extracted three information representations are fed
to properly designed CNNs to learn deep representations, respectively. Then,
the three deep representations are further concatenated into a fusion representa-
tion. Thirdly, inspired by Transformer, Multi-head Self-attention is introduced
to explore relations between three deep representations to learn a more efficiently
fusion representation. Finally, the new fusion representation is sent to a classifier
to get the classification result.
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Fig. 1. Time-Frequency CNN (TFCNN) integrating self-attention.

2 Time-Frequency CNN (TFCNN) Integrating
Self-attention

2.1 Time-Frequency CNN (TFCNN)

To study the interactive and respective changing information of time and fre-
quency from spectrogram, a TFCNN representation learning module Module1
is proposed as shown in Fig. 1. At first, three groups of specially designed fil-
ters are introduced, the first one is along the time dimension of spectrogram
to capture time changing information Rt and frequency dimension is set to 1;
the second one is along the frequency dimension of spectrogram to capture fre-
quency information Rf and time dimension is set to 1. These two groups are
designed for minimizing the interaction of time and frequency to get only one
kind of information. The third group is the traditional rectangle filter to learn
the interactive representation Ri. Secondly, the time changing representation Rt,
frequency changing representation Rf and the interactive representation Ri are
fed to three CNNs to learn deep time changing representation R′

t, deep frequency
changing representation R′

f and deep interactive representation R′
i. Thirdly, we

concatenate R′
t, R′

f and R′
i to get the fusion representation RF . Considering

the difference of three kinds of representations, three CNNs are designed to fit
their own characteristics. The respective changing representations of time and
frequency are concatenated at deep level rather than after first layer [11] which
treats time and frequency representation equally. Researching on deep inter-
active and respective changing representations carefully, there still exists two
problems. One is the lack of adaptive adjustment of linear connection between
the three deep representations. The other is ignoring the inner relation in fusion
representation. To address this two problems, we introduce the solution in the
following part.
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2.2 Multi-head Self-attention

The Transformer [13] has a complex architecture using stacked self-attention and
point-wise, fully connected layers for both the encoder and decoder. However, its
structure also makes the model lose its ability to capture local features. In order
to solve these problems, we introduce the structure of Multi-head Self-attention
from Transformer.

The attention function below can be described as mapping a query (Q) and
a set of key-value (K − V ) pairs to an output. dk is the dimension of key. it is
beneficial to linearly project the queries, keys and values h times with different
learned linear projections which do not share the parameters. The h results are
concatenated and once projected, resulting in the final values.

A (Q,K, V ) = softmax

(
QKT

√
dk

)
V ,Mh (Q,K, V ) = W (A1 ⊕ ... ⊕ Ah) (1)

Where the Ai means ith attention, ⊕ means concatenation and W means
parameter matrices.

When Q == K == V == X, the mechanism is called as self-attention. X
represents the input of the fusion representation RF . The fusion representation
RF will be computed to a new representation R′

F by Multi-head Self attention
which is Module2 proposed as shown in Fig. 1.

R′
F = Mh (RF ) (2)

This Multi-head Self-attention is introduced to enhance adaptation and learn the
inner relations in fusion representation. The following experiments also prove the
effectiveness of the new fusion representation R′

F .

2.3 Classification

In this paper, we choose three state of the art (SOA) models [6–8] as the bench-
marks. In order to compare the classification results with them fairly and verify
the effectiveness of the new representation R′

F for SER, we use two classifiers,
namely ELM and BLSTM which are as the one used in the SOA models.

3 Experiments

3.1 Experimental Setup

Dataset: Interactive Emotional Dyadic Motion Capture database (IEMOCAP)
[14] is a well-known database which contains about 12 h audiovisual data per-
formed by 10 skilled actors. We only use the audio data. The 5531 utterances
are as Atypical Affect Challenge selected from IEMOCAP. It consists of four
emotion categories: Neutrality, Anger, Sadness and Happiness. According to the
recording scenarios, the data can be divided into improvised speech section and
scripted speech section. The scripted section may lead to a bad influence on the
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results [15]. However, considering the richness of scenarios and robustness of the
model, all improvised and scripted sections in 5531 utterances are used.

Preprocessing: Each speech signal of the 5,531 utterances in dataset is sampled
at 16 HKz. The length of each segment is thus an open problem. Fortunately,
some researchers have found that more than 250 ms speech segment can contain
efficient and effective emotional information [16]. The utterance is converted
into frames using a 25-ms window with an overlapping of 15-ms. The size of
each segment is set to 25 frames. The time of each segment is 265 ms. The input
spectrogram has the following time × frequency : 32 × 129.

Experimental Setup: In this paper, we focus our attention on performance
of TFCNN and Multi-head Self-attention to validate the effectiveness of our
proposed method. Therefore, we select three SOA models, DNN+ELM [6],
CNN+ELM [8] and CNN+BLSTM [7] as the benchmarks. We also design two
groups of ablation studies with different classifiers.

Benchmarks: We choose three SOA models as the benchmark algorithms.
These experiments are designed to evaluate the effectiveness of proposed TFCNN
followed by ELM and BLSTM as classifiers.

(1) DNN+ELM [6]: This experiment is design to show the performance of DNN.
Input of DNN is a vector of low-level descriptors (384 dimensions LLDs)
which are extracted by openSMILE tools.

(2) CNN+ELM [8]: This experiment is set to evaluate the performance of CNN.
The input is spectrogram mentioned above. The structure of CNN contains
three convolutional layers and two max-pooling layers.

(3) CNN+BLSTM [7]: This structure of CNN is same as in experiment (2) and
the classifier is BLSTM. The BLSTM has two hidden layers each with 64
units.
Ablation studies: We design two groups ablation studies to evaluate the
effectiveness of TFCNN and Multi-head Self-attention with two different
classifiers.

(4) TFCNN+BLSTM : This experiment is design to evaluate our proposed
TFCNN representation learning method comparing with experiment (3) with
the same classifier BLSTM. The proposed TFCNN consists of two parts as
shown in Fig. 1. The first part time representation: the first convolutional
layer has 32 filters with size of 8 × 1 to catch time changing representation
followed a max-pooling with size of 2 × 1; The first part frequency represen-
tation: the first convolutional layer has 32 filters with size of 1 × 8 to catch
frequency changing representation followed a max-pooling with size of 1×2.
The second part is interactive representation: the structure of CNN is same
as in experiment (3).

(5) TFCNN att+BLSTM : This experiment is design to evaluate the effectiveness
of Multi-head Self-attention comparing with experiment (4). The structure
of TFCNN is same as in experiment (4) and with a 16-head Self-attention.

(6) TFCNN+ELM : This experiment is design to evaluate the effectiveness of
proposed TFCNN comparing with experiment (2). The structure of TFCNN



686 J. Liu et al.

is same as in experiment (4) and the classifier is ELM which is same as in
experiment (2).

(7) TFCNN att+ELM : This experiment is design to evaluate the effectiveness
of Multi-head Self-attention comparing with experiment (6). The structure
of TFCNN is same as in experiment (6) with a 16-head Self-attention.

3.2 Experiments Results

We design two groups of comparative experiments to validate the effectiveness of
our proposed method. The first group uses visualization analysis and the second
group uses emotional classification results.

Visualization Analysis: Four deep representations are considered, respectively
the output of DNN in experiment (1), output of CNN in experiment (2), output
of TFCNN in experiment (4) and output of TFCNN att in experiment (5). The
t-Distributed Stochastic Neighbor Embedding (t-SNE) [17] is introduced to visu-
alize the four deep representations in Fig. 3. Compared with Fig. 2(a), the points
which represent Anger and Sadness in Fig. 2(b) can be distinguished more easily.
The points which represent Neutrality and Happiness have similar performance.
Compared with Fig. 2(b), all the four emotion points have better distinguish-
ment which means the deep representations extracted by TFCNN have better
performance. Compared with Fig. 2(c), the points which represent Neutrality,
Anger and Sadness in Fig. 2(d) can be distinguished more easily, but the Hap-
piness points spread across the other three emotion points. The performance of
visualization analysis shows that the attention leads to some side effects. We will
discuss this phenomenon in the following part.

(a) (b) (c) (d)

Fig. 2. The t-SNE visualization of four deep representations. (a): DNN, (b): CNN, (c):
TFCNN, (d): TFCNN att. 0: Neutrality, 1: Anger, 2: Sadness, 3: Happiness

Classification Results: In order to quantitatively evaluate the performance
of the proposed model, the classification results are provided in Table 1. Com-
pared with the DNN+ELM, the CNN+ELM shows a better accuracy; Com-
pared with the SOA model CNN+BLSTM, the improvements of the proposed
TFCNN+BLSTM and TFCNN att+BLSTM are 3.16% and 5.33%; Compared
with the SOA CNN+ELM, the improvements of the proposed TFCNN+ELM
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Table 1. The classification accuracy

Model Accuracy(%)

Benchmarks DNN+ELM [6] 62.66

CNN+ELM [8] 66.09

CNN+BLSTM [7] 60.49

Ablation studies TFCNN+BLSTM 63.65

TFCNN att+BLSTM 65.82

TFCNN+ELM 67.27

TFCNN att+ELM 68.99

and TFCNN att+ELM are 1.18% and 2.90%. The comparisons in Table 1 demon-
strate the effectiveness of the proposed TFCNN integrating Self-attention.

Observing comparisons above carefully, we find that not only the feature
extraction networks influence the classification accuracy, but also the classi-
fiers and the Multi-head Self-attention have certain impacts on the classification
results. To further explore this question, four confusion matrices which represent
TFCNN+BLSTM, TFCNN att+BLSTM, TFCNN+ELM, TFCNN att+ELM
corresponding to Table 1 are shown in Fig. 3. In comparisons between Fig. 3(a)
with (c), Fig. 3(b) with (d), ELM is more sensitive to Neutrality and Anger,
and BLSTM is more sensitive to Happiness. But accuracy of Happiness in both
classifiers gets worse when attention mechanism is added through comparing
Fig. 3(a) with (b), Fig. 3(c) with (d). The results verify the phenomenon we find
in visualization analysis. However, error rates of Neutrality, Anger and Sadness
get lower, especially these three emotions classified into Happiness. The mea-
surements present in Fig. 3 and Table 1 demonstrate the attention mechanism’s
ability to improve overall accuracy, although it is not sensitive to specific one
emotion.
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Fig. 3. The confusion matrices of four classification results. (a): TFCNN+BLSTM,
(b): TFCNN att+BLSTM, (c): TFCNN+ELM, (d): TFCNN att+ELM.
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4 Conclusions

In this paper, we studied the interactive and respective changing information of
time and frequency from spectrogram and proposed a time-frequency deep rep-
resentation learning method integrating self-attention for SER. The effectiveness
of the proposed method has been verified under both representation visualiza-
tion and classification results on IEMOCAP. Compared with SOA models, the
classification accuracies achieve 65.82% and 68.99% with absolute increments
about 5.3% and 3.0%. The proposed model shows high sensitivity to all four
emotions, highlighting great potential for the fusion of traditional methods and
deep learning methods. In the future, we plan to investigate the performance of
the proposed model on different databases. Furthermore, multi-task deep rep-
resentation learning method will also be studied to improve the performance of
SER task.
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Abstract. In this paper, a novel multichannel EEG emotion recogni-
tion method based on sparse graphic attention long short-term memory
(SGA-LSTM) is proposed. The basic idea of SGA-LSTM is to adopt
graph structure modeling EEG signals to enhance the discriminative abil-
ity of EEG channels carrying more emotion information while alleviate
the importance of the EEG channels carrying less emotion information.
To this end, we employ two graphic branches. One branch generates
global features reflecting the intrinsic relationship between EEG channels
and the other generates an attention vector guiding the global features to
focus on specific EEG channels. Researches on brain emotion show that
different brain regions may be related to different brain functions and
the contribution of each EEG channel to one specific brain function are
possibly sparse such that �1-norm penalty is applied. Extensive exper-
iments are conducted on our dry electrodes EEG database and MPED
database. The experimental results show that the proposed method is
superior to the state-of-the-art methods.

Keywords: EEG emotion recognition · SGA-LSTM · Graph
convolution · Attention mechanism · Sparse constraint

1 Introduction

EEG emotion recognition has drawn an increasing attention recently due to its
potential applications to human-machine interaction. Generally, EEG emotion
recognition contains two parts: feature extraction and recognition methods.

Basically, EEG feature can be divided into three categories, i.e., time domain
(Hjorth, HOC), frequency domain(PSD) and time-frequency domain(STFT,
HHS) [6]. Before the EEG feature extraction, EEG signals are usually decom-
posed into several frequency bands, e.g., δ (1–3 Hz), θ (4–7 Hz), α (8–13 Hz), β
(14–30 Hz) and γ (30–50 Hz) [20]. To cope with EEG emotion recognition, deep
learning methods, especially long short-term memory (LSTM) [5], had shown to
be powerful and had been widely adopted in recently years [7,15]. In [7], Li et
al. proposed the method of combining both CNN and LSTM for EEG emotion
recognition. In [15], Tang et al. proposed a bimodal-LSTM model for EEG emo-
tion recognition. Recently, Song et al. [14] provide a novel DGCNN method to
c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, CCIS 1142, pp. 690–697, 2019.
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explore the relationship between EEG channels and brain functions and achieve
a good performance on EEG emotion recognition.

Neuroscience research has proved that human emotion is closely related to
some brain subregions [9]. For EEG signals, not all channels are helpful to rec-
ognize emotion states. Although there have been many algorithms designed for
channel selection, the relationships between EEG channels are rarely considered
due to the imperceptible neuromechanism, which are significant for EEG emo-
tion recognition. Based on the above considerations, motivated by [14] and [7,15],
we propose to combine graphic model and LSTM [5] to deal with EEG emotion
recognition. Additionally, inspired by [17], we provide a graph-based attention
structure to produce an attention vector to select EEG channels for extracting
more discriminative features. Moreover, we suppose the contribution of different
EEG channels may be possibly sparse according to [2]. So �1-norm penalty of
the attention vector is proposed to adopt on loss function, so as to obtain sparse
weight parameters for measuring the contributions of different EEG channels.
Take into account the above considerations, we propose a novel sparse graphic
attention long short-term memory method (SGA-LSTM).

To evaluate the proposed method, extensive experiments are conducted on
our DEED database and MPED database [13]. The experimental results demon-
strate that SGA-LSTM is superior to state-of-the-art methods.

2 Proposed Approach

SGA-LSTM consists of a graph attention structure and LSTM, as illustrated
in Fig. 1. The graph attention structure containing trunk branch and attention
branch, is applied for extracting discriminative features. LSTM is adopted for
modeling the spatial information in EEG channels to futher improve the perfor-
mance.

2.1 Graph Attention Structure

Graph attention structure consists of two branches, i.e. trunk branch and atten-
tion branch, which are both based on graph convolution layers. The trunk branch
is employed to extract global features. The attention branch is adopted to select
useful channels.

Graph Convolution Layer: Let G = {V,A} denote a directed and weighted
graph, where V is a vertex set of N EEG channels, A ∈ RN×N is the adjacency
matrix of G with entries aij ≥ 0 denoting the degree of relation from channel vi
to vj . For graph filtering, let g(A) be a filtering function, signal x̃ filtered from x
by g(A) can be expressed as: x̃ = g(A)x, where x ∈ RN×B is the EEG feature,
and B is the number of feature bands. To capture the multi-hop information, we
present K-order polynomial filter, which has following form: [3],

x̃ = g(A)x =
K−1∑

k=0

θkϕk(A)x (1)
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where θk is polynomial coefficients, ϕk(A) = Ak is the K-hop filtering, and x̃ has
the size of N×(B∗K). Generally, A can be normalized by Anorm = D− 1

2 AD− 1
2 ,

where D ∈ RN×N is a diagonal matrix with entries dii =
∑

j aij .

Fig. 1. The framework of SGA-LSTM method.

After graph filtering, a matrix W ∈ R(B∗K)×O is used for dimension trans-
formation, where O is the expected output size.

Graph Attention: The trunk branch adopts two graph convolution layers with
output size of N × 32 and N × 64 respectively. Let fGCN (X,A1) denote the
output of the trunk branch, it can be calculated as following:

fGCN (X,A1) = Φ(Φ(X,A1),A1) (2)

where A1 denotes the adjacency matrix used in the trunk branch, Φ(·) denotes
the graph convolution procedure formulated by Eq. (1). Relu [11] is adopted after
each graph convolution layer, to increase the nonlinearity and make the output
of graph convolution layers non-negative.

The attention branch adopts one graph convolution layer to generate an
attention vector T ∈ RN×1, which is formulated as following:

T = Φ(X,A2) = [τ1, · · · , τn]T (3)

where A2 denotes the adjacency matrix used in the attention branch, and τi indi-
cates the contribution of the i-th channel in the emotion recognition. Moreover,
softmax is adopted on T to generate a normalized attention vector T̃.

We obtain the output of graph attention structure by weighting the graph
convolution results of each EEG channel with the corresponding weight param-
eters in attention vector. To this end, we expand T̃ to a diagonal matrix
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diag(T̃) ∈ RN×N . Let fGA denote the output of the graph attention, the
weighted procedure can be formulated as following:

fGA = diag(T̃) · fGCN (X,A1) (4)

2.2 Spatial LSTM

The use of LSTM in the SGA-LSTM framework aims to capture the additional
emotional features produced by the spatial topographic distribution of the EEG
channels. Hence, we take the output of graph attention, i.e., fGA = [fT

a1, . . . , f
T
an]

as the input of LSTM.
Let it, gt, ct and ot denote input gate, forget gate, cell activation and output

gate, respectively, of LSTM. Then, they can be iteratively calculated via the
following formulations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

it = σ(Wxifat + Whiht−1 + Wcict−1 + bi),
gt = σ(Wxgfat + Whght−1 + Wcgct−1 + bg),
ct = gtct−1 + it tanh(Wxcfat + Whcht−1 + bc),
ot = σ(Wxofat + Whoht−1 + Wcoct + bo),
ht = ot tanh(ct),

(5)

where σ denotes the logistic sigmoid function, ht is the hidden vector, Wxi, Whi,
Wci, Wxg, Whg, Wcg, Wxc, Whc, Wxo, Who and Wco are model parameters. The
hidden layer H = [h1, . . . , hn] is served as the input of the fully connected layer.

2.3 Optimization of SGA-LSTM

The loss function of SGA-LSTM is formulated as the following one:

Loss = Ψ(I, Ip) + λ‖Θ‖2, (6)

where Ψ(I, Ip) denotes cross entropy of predicted label Ip with ground truth
label I, Θ denotes all trainable parameters, and λ is a trade-off parameter.

To obtain sparse weight parameters for measuring the contributions of differ-
ent EEG channels, we impose a �1-norm penalty [12] of T onto the loss function
of (6), resulting in the following regularized loss function:

Loss = Ψ(I, Ip) + λ‖Θ‖2 + μ‖T‖1, (7)

where μ is another trade-off parameter.
To learn the optimal parameters Θ, back propagation (BP) is adopted to

update the network parameters. To this end, the partial derivatives of the loss
function with respect to A1 and T are calculated respectively, i.e. ∂Loss/∂A1

and ∂Loss/∂T. After calculating the partial derivatives of the loss function with
respect to A1 and T, we can update them by using the following rules:

A1 = (1 − η)A1 + η
∂Loss

∂A1
, T = (1 − η)T + η

∂Loss

∂T
,

where η denotes the learning rate.
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3 Experiments and Results

In this part, we will give a brief introduction on DEED and MPED database,
the implement details and the experimental results.

3.1 Database

DEED: We build an emotional EEG database at the Southeast University by
using dry electrodes (DEED) to evaluate our proposed method. DEED contains
15 subjects with 7 males and 8 females aging from 22 to 29 years old. We collect
15 trails of EEG data for each subject, which contains three emotional states
averagely, i.e, positive, neutral and negative emotion.

MPED: MPED [13] contains 23 subjects with 10 males and 13 females aging
from 18 to 24 years old. For each subject, 28 trails data containing seven emo-
tional states averagely, i.e., joy, funny, anger, disgust, fear, sadness and neutral-
ity, are collected. In our experiments, we only use the EEG data to evaluate our
method, obeying the protocols proposed in [13] strictly.

3.2 Implement Details

The raw EEG feature is decomposed into five frequency bands using the method
proposed in [20]. EEG features are extracted according to each frequency band.
Then five frequency bands of each kind of features are concatenated for model
evaluation. For DEED, Hjorth, HOC, PSD, STFT and HHS features are cho-
sen for both subject-dependent and subject-independent experiments. While for
MPED, only subject-dependent experiments using STFT feature are conducted,
for being consistent with former studies. In our experiments, the number of EEG
channels N is set to 18 for DEED and 62 for MPED. For the model part, the
order of graph convolution K is set to 3, the hidden layers of LSTM is set to
64. For the trade-off parameter of the attention vector in loss function, i.e., μ, is
searched in range of [1e−4, 5].

3.3 Experiments

Subject-Dependent Experiments on DEED: We adopt five-folder cross-
validation experimental strategy in this experiment. Experiments on state-of-
the-art methods like SVM [1], CCA [16], GSCCA [8] and DGCNN [14] are
conducted for comparison purpose. In addition, experiments using LSTM and
G-LSTM (a simplified SGA-LSTM by removing the attention branch) are also
conducted for ablation study.

From Table 1, we can see the following points. Among these EEG features,
time domain features (i.e. Hjorth and HOC) perform better while frequency
domain feature (i.e. PSD) achieves the least accuracies, which indicates fre-
quency feature is inferior to other features. Besides, the LSTM-based meth-
ods achieve much higher accuracies than the others in most cases. This is very
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Table 1. The results on DEED for subject-dependent experiments. G-LSTM means
removing the attention branch from the SGA-LSTM method.

Method Hjorth

ACC/STD(%)

HOC

ACC/STD(%)

PSD

ACC/STD(%)

STFT

ACC/STD(%)

HHS

ACC/STD(%)

SVM 79.14/19.18 80.36/20.37 48.73/11.01 66.42/18.22 67.42/16.80

CCA 82.16/19.04 59.90/22.36 46.33/09.50 73.27/18.81 72.58/15.92

GSCCA 55.57/16.50 44.72/18.52 38.38/08.33 52.36/14.57 52.05/12.41

DGCNN 77.17/16.31 43.71/13.77 54.96/10.81 81.79/15.32 84.25/15.54

LSTM 86.90/10.40 86.50/12.68 54.27/09.69 84.44/12.04 83.58/11.19

G-LSTM 89.21/09.59 89.28/11.29 55.78/09.22 85.47/12.02 86.95/11.66

SGA-LSTM 90.19/08.91 90.38/10.70 56.35/09.98 86.91/11.22 88.01/10.24

likely because LSTM is advantageous to capture the additional discriminative
information from the spatial relationships among the various EEG channels.
Moreover, among the LSTM-based methods, G-LSTM performs better than
LSTM, indicating the superiority of catching the intrinsic connections between
EEG channels by graphic structure. SGA-LSTM achieves higher accuracies than
G-LSTM, which demonstrates the use of attention branch is useful to improve
the performance, indicating the rationality of our method. Additionally, the stan-
dard deviation is high in these experiments, which owing to the great difference
between individuals.

Subject-Independent Experiments on DEED: We adopt leave-one-
subject-out (LOSO) strategy in this experiment. Experiments using SA [4], TKL
[10], DGCNN [14], LSTM, G-LSTM and SGA-LSTM have been conducted.

Table 2. The results on DEED for subject-independent experiments.

Method Hjorth

ACC/STD(%)

HOC

ACC/STD(%)

PSD

ACC/STD(%)

STFT

ACC/STD(%)

HHS

ACC/STD(%)

SA 59.70/07.22 58.56/06.73 47.08/03.27 63.80/11.31 67.38/10.08

TKL 57.70/13.89 54.37/08.97 45.66/03.06 61.42/10.31 63.13/10.22

DGCNN 55.61/10.79 49.60/14.56 45.88/05.92 60.83/11.07 54.58/10.92

LSTM 61.58/14.19 61.14/11.9 47.23/05.21 69.53/08.00 66.35/09.26

G-LSTM 62.80/10.26 62.17/12.10 47.90/05.39 70.46/08.30 68.10/08.54

SGA-LSTM 63.93/11.57 63.40/11.28 48.00/05.37 72.14/07.05 70.65/10.95

From Table 2, we can observe the following points. Among these EEG features,
time-frequency domain features (i.e. STFT and HHS) perform better, which is
different from that in subject-dependent experiments. This may owing to that
emotion changes quite different for different subjects, thus time domain features
can’t capture the generalitywell for subject-dependent experiments.Moreover, the
LSTM-based methods perform better than the other methods. And SGA-LSTM
method still achieves the highest accuracies among these methods.
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Subject-Dependent Experiments on MPED: In this experiment, we obey
the protocol proposed in [13]. Since data of each categories are imbalanced for
protocol two, f1 score is calculated for evaluation. Experiments on SVM [1], DBN
[19], STRNN [18], DGCNN [14], A-LSTM [13], LSTM, G-LSTM and SGA-LSTM
are conducted with these three protocols.

Table 3. The results on MPED for subject-dependent experiments.

Method Protocol one
ACC/STD(%)

Protocol two
ACC/F1(%)

Protocol three
ACC/STD(%)

SVM 59.86/16.29 57.06/24.43 31.14/08.06

DBN 65.83/13.20 65.95/59.19 29.26/09.19

STRNN 65.38/13.20 66.84/60.57 35.64/09.57

DGCNN 71.13/15.77 68.02/61.11 36.92/12.78

A-LSTM 72.93/13.19 71.57/67.74 38.74/07.75

LSTM 72.09/14.94 71.92/65.12 38.55/08.43

G-LSTM 73.79/12.71 72.20/66.64 39.33/11.41

SGA-LSTM 74.74/12.46 73.00/67.48 40.69/11.12

Table 3 shows the results, we can observe that, among the three protocols,
the LSTM-based methods achieve higher accuracies than the other methods.
Besides, G-LSTM performs better than LSTM, and SGA-LSTM achieves the
highest accuracies, which is consistent with the performance in experiments on
DEED.

4 Conclusion and Discussion

In this study, a novel method SGA-LSTM was proposed for EEG emotion recog-
nition. Extensive experiments had been conducted on both DEED and MPED
database with five kinds EEG features for evaluation. The experimental results
had demonstrated that SGA-LSTM method achieved the highest recognition
accuracies among these methods, which are very likely due to the fact of using
attention mechanism in building the learning network. The �1-norm in the loss
function helps to generate a sparse attention vector to enhance the discriminative
ability of EEG channels carrying more emotion information.
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Abstract. Stress is a major problem that infiltrates our society in
countless ways. We cannot eliminate stress, but can recognize stress and
manage it. Automatically recognizing stress through facial expressions
has been extensively studied in the past decades. Recent research indi-
cates that certain architectures can reach state-of-the-art accuracy in
stress recognition. However, they recognise facial stress in view of static
expressions, while only a few papers identify the fundamental limitations
of static facial expression. This paper adapts ANUStressDB database in
dynamic and develops a Temporal Convolutional Network to recognize
continuous facial stress problem. We further apply Bimodal Distribution
Removal to improve our result. The experimental results show that our
system achieves 67.56% classification accuracy.

Keywords: Stress recognition · Temporal convolutional networks ·
Bimodal Distribution Removal

1 Introduction

Stress is defined as a state of mental or emotional strain. It is important to
recognize stress so that it can be effectively managed. Automatically recognizing
human’s emotions through facial expressions (a.k.a. facial expression recognition
or FER) has emerged as a key problem of human-computer interaction and
psycho-physiology analysis [2]. We used ANUStressDB [10] to identify facial
stress. In this problem, stress is identified based upon the signals acquired in
real time from contact-less sensors such as RGB and thermal modalities. Given
a time sequence signals, the goal is to simultaneously segment every emotion in
time and classify each constituent segment as stress or not.

Deep learning practitioners commonly regard recurrent architecture as the
default starting point for sequence modelling tasks [8]. In past decades Long
Short-Term Memory (LSTM) [9] and Gated Recurrent Unit (GRU) [5] occupy
time sequence problems. However, they take too long to process, because they
read and interpret the time sequence one frame at a time, the neural network
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must wait to process the next frame until the current frame processing is com-
pleted. This means that RNNs cannot take advantage of massive parallel pro-
cessing (MPP) [17] in the same way the CNNs can. Temporal Convolutional Net
(TCN) [3] solve this problem.

By mid-2017, Bai et al. published a new architecture called TCN, which dis-
tills the best practices in convolutional (e.g. Causal Convolutions, Dilated Con-
volutions) network design into a simple architecture. It outperforms canonical
recurrent networks such as LSTMs across a diverse range of sequence modeling
tasks. Our task is thus to evaluate the performance on real time facial stress
recognition problem using TCN.

Stress varies among individuals. Some people are naturally more sensitive
and reactive to stress. Different kinds of stress have different symptoms and
physiological signs [18]. It is a subjective topic, data could be fuzzy and vague,
leading outliers in database. A number of methods for cleaning up noisy data
has been proposed, such as Least Median Squares (LMS) by Rousseeuw [16] and
Least Trimmed Squares (LTS) by Alfons [1]. These methods perform well on
synthetic noisy data, but not well on real world data. Since our data is collected
in real world, a more reliable method is required. Bimodal Distribution Removal
(BDR) by Slade et al. [20] is a well-known outliers removal method, proved to
perform well on both added artificial outliers and real noisy data [20].

Our contributions can be summarized below:

– We propose a convolutional based technique to automatically recognize tem-
poral dynamic facial stress problem.

– We analyze the feasibility of BDR technique on the basis of ANUStressDB,
which contains added artificial outlier and real world noisy data.

– We identify the fundamental limitations of static processing characteristics of
stress recognition problem in previous work and propose to exploit continuity
of stress to address these limitations.

2 The Proposed System

The proposed system is shown in Fig. 1. It involves four procedures. (1) prepare
ANUStressDB data; (2) apply techniques like data augmentation, dimensionality
reduction and data scaling to help manage the data; (3) train the model; (4)
apply BDR on pretrained model for further improvement. A halting condition
is provided to decide termination.

2.1 Data Preparation and Preprocessing

In this paper, we use ANUStressDB as benchmark dataset to evaluate our model.
The dataset involves 24 participants. Instructors played a film with a collection
of negative and positive clips as stress stimulator. The clips are separated by
displaying few seconds blank screen in between the clips to neutralize the par-
ticipants’ emotion before playing the next clip. Two cameras are working at 30
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frames per second to capture thermal and RGB modalities. Then, facial features
are extracted by using Linear Spectral Clustering (LSC) [11] and Local Binary
Patterns (LBP) [14], respectively. As a result, we extract 36 features for each
frame. In the ground truth data, we assign the patterns in the time series as
stressed or not when the label of the clip is stressed or not.

Fig. 1. Illustration of the proposed system.

Data Augmentation. We have 24 participants and 12 clips, results in 288
time series, whereas too small to train a deep learning neural network. Hence,
data augmentation is applied. We split time series into fixed length sub time
series. As a trade off, sub time series may lose some information on the origin
time series. To balance the quality and quantity, length is set to 10. We round
length to encounter aliquant time series. Although we carefully select the time
series length, we still suffer from noise. For example, a 17 s time series would be
split into 0–10, 7–17 sub time series. If there is no emotional disclosure in the
first 10 s, 0–10 will be an artificial noisy data. Whereas, BDR in Sect. 2.3 can
solve this implicit problem.

Dimensionality Reduction. As discussed in Sect. 2.1, a 10 s time series
involves 300 × 36 features. Training model on high-dimensional data greatly
increases the number of weights, making the training infeasible [21]. We reduce
the data in two approaches. First, in time series dimension, we observe that the
difference between each frame is small. Therefore, we take the average value of
30 frames (1 s) as one time sequence. Second, we reduce feature dimension by
feature selection. We remove irrelevant features. By observation some features
are slightly different. Therefore, we remove one of these features so we’re left with
only features with distinct values. Thus, each time series reduces to 10 × 16.

Data Scaling. Standardization [6] (i.e., rescaling with 0 mean and unit vari-
ance) that changes the values of numeric columns in dataset to a common scale
([−1,1]) is applied to improve neural network stability and training efficiency.
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2.2 Temporal Convolutional Networks

This architecture is informed by convolutional architecture for sequential data
(e.g., WaveNet [13]), but is deliberately kept simple. It combines the best prac-
tices of modern convolutional architectures, such as Dilated Causal Convolutions,
Residual Connections. There are two major characteristics of TCN. (1) the con-
volutions in the architecture are causal, meaning that there is no information
leakage from future to past; (2) the architecture can take a sequence of any
length and map it to an output sequence of the same length, just as with an
RNN.

2.3 Bimodal Distribution Removal

The outliers in training set will have larger errors relative to the rest of the
training set. First, we calculate the errors of each training pattern by using cross
entropy. Then, calculate the mean of errors (Δts). We define the error greater
than Δts as high error peak and calculate the mean and standard deviation
of errors of high error peak (Δss) (σss). Since Δss will be heavily influenced
by outliers, it will be relatively high. It is possible to decide which patterns to
permanently remove from the set. If the error follows the pattern:

error ≥ Δss + ασss (1)

α is to control how many outliers need to be removed. Since our dataset is not
large enough, we decide to set the removal factor a to 1, so the least outliers are
removed. To avoid removing all the data, a halting condition is set by variance
υts and the size of the remaining set. Low variance means the network is well
trained and small size of training set means the network could easily overfit.

Dilated Causal Convolutions. As mentioned, the TCN is based on two prin-
ciples. One is the convolutions in the architecture are causal. To accomplish this
point, the TCN uses causal convolutions. Causal simply means a filter at time
step t can only see inputs that are no later than t. However, a major problem
of this design is when the history is long. This is because, a causal convolution
needs to look back at history with size linear to the time. For example, to pre-
dict output at time 1000, network needs to look back 1000 previous inputs. It
requires an extremely deep network, which is inefficient and infeasible.

In the previous work WaveNet by Oord et al. [13], they employ dilated con-
volutions to allow the receptive field to increase exponentially [22]. Receptive
field is the implicit area captured on the initial input by each input to the next
layer. In TCN, it makes use of dilated convolution which is just a convolution
applied to input with defined gaps. The kernel size k is to filter and the dilation
factor d is to control the gaps. In common, dilation factor grows exponentially
(i.e., d = 2i at depth i). This ensures that filter can hit each input within the
effective history, while also allowing for an extremely large effective history using
deep networks [3]. Takes the advantages of both techniques, the integration of
causal and dilated is able to conquer long history problem.
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Table 1. Performance on different models

Training (%) Validation (%) Testing (%)

Epoch 300 73.95 59.56 60.98

Epoch 500 81.21 55.73 57.92

Early Stop 69.06 64.30 67.56

Early Stop + BDR 84.61 54.71 53.45

Sharma (GA-SVM) [19] - - 86

Irani (SVM) [10] - - 89

Prasetio (CNN) [15] - - 95.9

Table 2. Optimal hyperparameter settings of TCN and BDR

TCN BDR

Input features 16 Further train epochs 50

Sequence length 10 α 1

Kernel size k 7 Variance υts 0.01

Hidden neurons [10,10] Min train size 1000

Learning rate 1e−4

Fully Connection. To achieve another principle of TCN, we use a fully convo-
lutional network (FCN) established by Long et al. [12]. Fully connection layers
is added after the output of the TCN to address binary classification problem.
Determining a certain number of hidden layers and neurons is crucial and dif-
ficult in the research community. For our problem, we perform several trials on
different numbers of hidden layers and neurons, finding that the best perfor-
mance appears when there are no hidden layers after the TCN layers. Thus, we
apply one fully connected layer at the end. An illustration is provided in Fig. 1.

3 Experiments

In this section, we begin by discussing our hyperparameter settings. Then, we
evaluate and analyze on the result of the system in detail. Finally, we discuss
the comparison between our model and previous works. A synopsis of the result
is shown in Table 1.

Hyperparameter Settings. Table 2 lists the hyperparameters we used when
applying the TCN. The most crucial factor for the TCN is k . They determine
whether the receptive field is large enough to capture the sufficient context to
predict. As previous work suggested, larger kernel size k helps network to con-
verge faster. By several trials, k = 7 performs best.
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As discussed in Sect. 2.3, thresholds on variance υts and size of training
dataset are defined in Table 2. Early Stop [4] is applied to prevent overtrain-
ing. The stopping point depends on either validation accuracy or validation loss.
We decide to use validation accuracy as the driving metric since it is the most
vital factor in our problem. Since accuracy oscillates, we set patience value to
30 to determine whether it reaches the end or just floating. All threshold values
are carefully selected through manually check.

Fig. 2. (a) is the histogram of normalized error distribution at early stop checkpoint.
(b) is the diagram of normalized error distribution of each patterns, green scatter point
represents as each error. The line represents as the BDR line where the pattern above
the line considered as outlier and will be removed. (Color figure online)

Model Analysis and Discussion. As we can see, the testing accuracy at
early stop is 6.58% and 9.64% higher than training model at 300 epochs and
500 epochs. Therefore, early stop is an effective technique to use. We assume the
model using this technique as the pretrained network.

As mentioned in Sect. 2.3, BDR can clean up noisy data. Hence it may help
improve our network. To test the usefulness of BDR, we implement BDR on
pretrained network. As we observe in Table 1, BDR boosts 15.55% on training
accuracy. Contrastly, validation accuracy and testing accuracy decreases 9.59%,
14.11% respectively. It is possibly overfit. There are two reasons for this prob-
lem. In Fig. 2(a), we can observe that the errors distribution after pretraining
is not bimodal distribution. Thus, the algorithm to calculate high error peak
is not accurate and precise any more. Another reason might be outliers can be
legitimate data, representing an accurate observation of a rare case. Removal
decreases generalization ability in neural network. Thus, BDR is not an effective
approach for our model.

Comparison with Previous Works. We further compare our best result
67.56% appears at Early Stop, with the previous works by Sharma et al. [19],
Irani et al. [10] and Prasetio et al. [15]. From Table 1 we can see that previous
works outperform our model. Next, we discuss possible reasons for the difference.
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First, instead of using deep learning, Sharma and Irani use SVM as classifier.
SVMs are originally designed for binary classification. On the basis of our prob-
lem, SVM has dominant position. Also, our dataset contains a small amount of
training data. SVMs have advantages to predict in less training data. In such a
case, SVM might be better than our model.

Apart from the benefits of using SVM, the model architecture is different.
As proposed in Sharma work, they use GA [7] for feature selection. On the con-
trary, we use feature selection in statistical way (removing features if the values
of this feature are slightly different). A dropped feature in statistical approach
can drastically change the result as the slightly different values might transform
and magnify to a major factor and drives the classification. Thus, manual obser-
vation might not be a scientific algorithm for feature selection. In contrast, GA is
a proven advanced algorithm for feature selection which is more appropriate. As
proposed in Irani work, they use fusion model which uses three separate SVMs,
one for RGB, one for thermal and the last one learning from the combination.
The complexity of RGB and thermal modalities might be different. Thus, apply-
ing modality in different model structures and hyperparameters might leads to
better result. Hence, their approach is better than us. As proposed in Prase-
tio work, they take advantages of Sharma and Irani essence. Rather than using
GA to reduce dimension as proposed in Sharma’s work, they use feature extrac-
tion. Rather than fusing RGB and thermal modalities, they fuse Eye, Nose and
Mouth, which is the intuition of Irani’s work. In conclusion, the previous model
architecture is more effective.

However, there is a fundamental limitation on training input in the previous
works. Instead of time series data, they use frame data. Each frame considers as
a pattern and labels as stress or not. Then randomly select some patterns into
training set. However, as observation, many patterns in sequence have minimal
differences, especially in one film. It is highly possible that the patterns in the
testing set are mostly the same in the training set. For example, assume two
patterns A and B are in sequence. The difference between them is slight. After
shuffling, A is divided into training set and B into testing set. This causes a
crucial problem. As long as the network can classify A, it can classify B. In
other word, network can simply memorize patterns, not learn, and still performs
well.

4 Conclusion

In this paper, we proposed a Temporal Convolutional Network (TCN), whose
core is a dilated and causal convolution method for facial expression recogni-
tion. Rather than using the canonical recurrent neural networks such as LSTMs
and GRUs, we have presented convolutional neural network which can also be
used in a way of solving sequence modeling tasks. The type of input data has
a tremendous impact on the results. Our experiments on ANUStessDB confirm
this claim, showing that the results by using static input outperform that by
dynamic input. We intend to extend our work by applying Bimodal Distribution
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Removal (BDR) method to remove noise in artificial and real-world data. Con-
trastly, BDR worsens our neural network. The improvement on outlier removal
suggests our proposed system has the potential to improve the performance of
other methods, which will be investigated in future work.
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Abstract. When developing multi-layer neural networks (MLNNs), determin-
ing an appropriate size can be computationally intensive. Cascade Correlation
algorithms such as CasPer attempt to address this, however, associated research
often uses artificially constructed data. Additionally, few papers compare the
effectiveness with standard MLNNs. This paper takes the ANUstressDB data-
base and applies a genetic algorithm autoencoder to reduce the number of
features. The efficiency and accuracy of CasPer on this dataset is then compared
to CasCor, MLNN, KNN, and SVM. Results indicate the training time for
CasPer was much lower than the MLNNs at a small cost to prediction accuracy.
CasPer also had similar training efficiency to simple algorithms such as SVM,
yet had a higher predictive ability. This indicates CasPer would be a good choice
for difficult problems that require small training times. Furthermore, the cas-
cading feature of the network makes it better at fitting to unknown problems,
while remaining almost as accurate as standard MLNNs.

Keywords: CasCor � CasPer � Neural networks � KNN � SVM � Real world
data set � Classification � Autoencoder � Genetic algorithm � Evolutionary
algorithm

1 Introduction

A common feature of neural networks is the layering of interconnected nodes. How-
ever, if a network is too small or large, it will have poor predictive capabilities [1].
Furthermore, typical neural network training algorithms such as back-propagation are
slow due to the moving target problem. This states that the constant changing of all
weights in the network make it difficult for individual nodes to learn [2]. One solution,
termed Cascade Correlation (CasCor) [2], is to dynamically increase the number of
hidden units and layers until an arbitrary accuracy is reached. This algorithm was
further improved upon to develop the CasPer algorithm, which uses the Progres-
sive RPROP algorithm to train the entire network [3, 4].

While CasPer and CasCor are successful in complex artificial problems [2, 3], few
studies have evaluated their performance on non-artificial datasets. Furthermore, there
is little research that compares the performance of Casper and CasCor with multi-layer
neural networks (MLNN). Therefore, this paper aims to determine the efficiency
and effectiveness of CasPer against CasCor and MLNNs in the training and testing
phases. This paper adds two additional benchmarks of simple yet successful algorithms
– K-Nearest Neighbours (KNNs) and Support Vector Machines (SVMs).
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The dataset that was studied in this paper was the ANUstressDB database [6]. This
database consists of time series data of 34 scalp electrode recordings from 24 partic-
ipants. Subjects were shown 12 video clips that were separated by five seconds of blank
screen to neutralise the participants’ emotion. Each video was either attributed as being
stressful or non-stressful, with the purpose of this paper being to predict these labels
based on the electrode recordings. This dataset was used as it isn’t artificially created
like other CasPer and CasCor datasets, making it a realistic measure of effectiveness.
Furthermore, there is a lot of variation in this kind of data, as it has been argued that
individuals will react differently to the stimulus [6]. Therefore, the applied models will
be required to sort through the nuance in the data, meaning the problem should be
relatively difficult.

One potential caveat in using this data is that the different parts of the brain are
responsible for different functions. This means that any machine-learning algorithm
could potentially get a high accuracy by just reading off a single electrode. To remove
this independence and therefore increase the complexity of the problem, the data in this
paper was compressed using an autoencoder. However, since autoencoders utilise
backpropagation in their training, they are prone to getting stuck in local minimums [7].
Therefore, this paper uses a genetic algorithm to select weight combinations that result
in a more linearly separable data.

2 Method

2.1 Pre-processing Dataset

Each Model was tested on a pre-processed version of the aforementioned dataset.
Participant responses were collected at the middle frame of each video, and were
compressed using a genetic algorithm autoencoder. The autoencoder itself was set up in
three layers with tanh activation functions, where the first and last layers both had 34
features and the middle (output) layer contained six. The weight and bias pairs in the
network were sampled from a population of 50 candidates, and were trained for 100
epochs using mean squared error loss. Fitness of these candidates was determined by
how accurately logistic regression could predict the labels. This results in the favouring
of encoders that produce more linearly separable data. The top five candidates were
placed in the next iteration, and were used as the mean of five multivariate normal
distribution to sample the remaining 45 candidates. This population was then re-
evaluated 30 times before the best candidate was chosen.

2.2 Implemented Models

Cascade Correlation (CasCor). CasCor is a Cascade Network algorithm that starts
by connecting all inputs to a single output layer. Each iteration, a single hidden unit is
trained and then inserted into the network, with all of its input weights being fixed.
These new nodes are connected to all inputs and all previous hidden nodes, with the
output node adjusting to accommodate the added node as part of its inputs. The CasCor
architecture after adding two hidden nodes can be seen in Fig. 1 [2].
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The implementation of CasCor in this paper trains a pool of neurons as suggested in
the original paper [2], only adding the best one to the network. The Adam optimiser
was used to train each candidate unit along with the output. Tanh activation functions
were used for hidden nodes, while a sigmoid function was used for the output.

Cascade Correlation with Progressive RPROP (CasPer). CasPer is a Cascade
Network Algorithm that is heavily based off CasCor. However, rather than freezing
weights, they are separated into three regions with different learning rates. These rates
are set such that new nodes will quickly minimise the network error, while changes in
older nodes or the new node’s output occur much more slowly. As a result, inputs to
the new node are given a learning rate L1, the output is given rate L2, and all remaining
weights are given rate L3, such that L1 � L2 > L3. The CasPer architecture and
location of the weights can be seen in Fig. 2 [3].

The implementation of CasPer in this paper followed the implementation suggested
in the original paper [3]. A loss threshold parameter was added as an early exit feature
to improve overall convergence properties [3]. The model initialised each weight to be
within the range −0.7 to 0.7 and used the recommended RPROP values of gþ ¼ 1:2,
g� ¼ 0:5, Dmax ¼ 50, Dmin ¼ 1� 10�6, and D0 ¼ 0:2. Tanh activation functions were
used for hidden nodes, while a sigmoid function was used to normalise the output
between 0 and 1, with values over 0.5 being taken as the class ‘Stressed’.

Multi-Layer Neural Network (MLNN). The implementation MLNNs used in this
paper again used the Adam optimiser as well as tanh activation functions for each
hidden layer and a sigmoid function for the output.

K-Nearest Neighbour (KNN). KNN classifies targets by selecting the mode of the K
data points that are closest (according to Euclidean distance) to the target [11]. This
paper used the version of KNN provided in the scikit-learn python library.

Fig. 1. The CasCor Architecture after two
hidden units are added. Vertical lines indicate
the sum of inputs.

Fig. 2. The CasPer Architecture after a single
hidden node is added. Vertical lines indicate the
sum of inputs
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Support Vector Machine (SVM). SVMs work by mapping the input space on to a
higher dimensional space that is easier to classify. The algorithm will then choose a
decision boundary that maximises the distance of the points on either side. Classes are
assigned based on the side of the boundary that the target appears [8]. This paper used
the version of SVM from in the scikit-learn python library.

2.3 Parameter Selection

To ensure the models correctly fit the dataset, a mixture of Grid Search and Cross
Validation was used. Different values were chosen for each hyperparameter, and every
combination of these was tested for each model using 5-fold Cross Validation. This
allows both thorough cross validation and efficient calculation of the average accuracy.
Each cross validation was performed 5 times to prevent models from being more
accurate as a result of the initial random weights. The average of this data was saved,
and the hyperparameters that resulted in the highest average score over the five trials
were used for generating the results. All network models used a Mean Squared Error
loss function. The results from Grid Search can be seen in Table 1.

Table 1. Results of Grid Search for each model. “(Default)” indicates that the value of the
hyperparameter was not run through grid search, and the default model value was used

Model hyperparameter Value

CasPer

Max epochs 1000 (Default)
P 5 (Default)
Loss threshold 0.01 (Default)

Layers 8
(L1, L2, L3) (0.2, 0.005, 0.001)

CasCor
Epochs 100 (Default)
Learning rate 0.02 (Default)

Train pool size 8 (Default)
Layers 10

3LNN
Epochs 1000 (Default)
Learning rate 0.02 (Default)

(l1, l2) (8, 8)
4LNN
Epochs 1000 (Default)

Learning rate 0.02 (Default)
(l1, l2, l3) (8, 8, 16)

KNN
Number of neighbours 3
SVM

Gamma “Auto”
C 1

Degree 3
Kernel Sigmoid
Shrinking False
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2.4 Result Gathering

Results were gathered by randomly shuffling all participants’ responses and using 4/5
of the data for training, with the remainder used for testing. The 4:1 ratio ensures an
ample selection of both train and test data. The same data split was used for each model
to ensure any trends in the data (class imbalance, etc.) are learned by all models. This
was to prevent one model from getting worse data than the rest. The accuracy on the
train and test set was then recorded alongside the time taken, and the data was re-
shuffled. This was repeated 500 times to reduce the likelihood of outliers occurring,
with mean and standard deviation for all results being recorded.

3 Results and Discussion

The results of the testing accuracy indicate a lack of ability for any model to reliably
predict the data. This was even the case for SVM, which was proven to be successful in
a large number of cases with the exception of imbalanced classes [9]. Since we can
verify the classes were not imbalanced, the optimal decision function of the data may
be too complex or random for basic machine learning algorithms. We can also see that
the accuracy from 3LNN and 4LNN on the training set was much higher than on the
test set, which typically indicates overfitting. However, model parameters were selected
using Grid Search, meaning other models with fewer nodes were tested. This indicates
that it is unlikely a reduction in the number of hidden nodes would have generated
better results. Therefore, the dataset itself may simply have too much noise, making it
difficult to learn an appropriate decision function (Figs. 3 and 4).
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This idea is further supported given the best-performing model was KNN, which
relies on spatial similarities rather than data separability. One possible reason for this
issue is the use of logistic regression in the autoencoder’s genetic algorithm. The
autoencoder likely chose a less accurate representation of the original dataset in order to
maximise the linear separability for logistic regression. This idea is further supported
by the poor performance of SVM, which again is successful in a large number of cases.

Regarding timing, the results show that CasCor takes the longest time to train,
which is due to the training of a pool of 8 candidate nodes. Therefore, we can
approximate how long it would take if it was training a single node by finding the
average time taken per node (Approximate since there is a slight overhead that is
unaccounted for due to caching). This was represented in the graph as the label
CasCor/Node. After doing this, we can see that 3LNN and 4LNN taken the longest
time to train, followed closely by the averaged CasCor. CasPer, KNN, and SVM are
significantly faster than the other models, with all being at least six times faster than the
next fastest model. When testing, KNN takes the most time, as it has to calculate the
Euclidean distance between all the training nodes. SVM is the second slowest, pre-
dicting nearly 2.5 times slower than the next fastest model. This is then followed by
CasCor and CasPer, with 3LNN and 4LNN being the most efficient at predicting. This
is likely due to the fact that CasPer and CasCor had eight and ten nodes respectively, as
the MLNN models had fewer iterations to compute (Figs. 5 and 6).
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4 Conclusion and Future Work

This paper compares the use of CasPer with several other machine learning models
with similar capabilities. To properly determine their effectiveness, these models were
tested against a complex real-world dataset for stress prediction. Despite the lack of
trainable data, this paper showed CasPer performs slightly worse than MLNNs, while
being significantly less likely to overfit. CasPer was also significantly faster to train
than MLNNs, while only being slightly slower when predicting. Given CasPer grows
to match the size of the network, there is less finetuning required to set it up. This
makes it useful when the problem space is unknown, as it combines the variability of
models such as KNN with the accuracy of neural networks. Additionally, CasPer is
able to exceed the accuracy of techniques such as SVM, while removing the large
overhead associated with prediction on these models. CasPer is also similar in overall
performance to CasCor, but has significantly reducing training time by avoiding the
need to train multiple nodes at once. KNN was found to produce the best accuracy on
the used dataset, however, this was likely a result of the noise introduced into the
dataset. None of the MLNNs could learn the decision function despite the fact that they
are universal approximators [5].

The results from this paper could be improved by modifying the pre-processing
procedures used on the data as well as the raw data itself. This would allow the
accuracy of each model to be fully taken into account. One approach would be to use
the original ANUstressDB dataset that includes the participants’ facial recordings. By
using a convolutional neural network on this data an accuracy of 89% can be achieved
[6]. Alternatively, the current pre-processing techniques could be improved by using all
the time series data in the dataset, rather than just the middle frame. Furthermore, in the
autoencoder genetic algorithm, the use of linear separability for the fitness function
may have raised issues as previously discussed. Therefore, the results could be
improved by either using a non-linear separation model such as SVC, or by removing
the genetic component entirely and relying solely on the autoencoder to determine an
acceptable feature mapping.

There have also been several suggestions for improvements to CasPer. These
include training on a pool of neurons as CasCor does [4], or introducing new nodes in
the same layer until a certain threshold is reached [10]. Therefore, the work in this
paper could be extended by testing the efficiency and effectiveness of these new
techniques with the approach used in this paper.
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Abstract. In the paper, fuzzy recommender systems are proposed based
on the novel method for nominal attribute coding. Several flexibility
parameters - subjects to learning - are incorporated to their construc-
tion, allowing systems to better represent patterns encoded in data. The
learning process does not affect the initial interpretable form of fuzzy
recommenders rules. Using the Akaike Information Criterion allows eval-
uating the trade-off between a number of rules and interpretability which
is crucial to provide proper explanations for users.

Keywords: Recommender system · Explainable AI · Akaike
information criterion

1 Introduction

In the past decade, recommender systems (also called recommendation systems
or recommenders) have been successfully applied in many areas of our daily
life, including books or movies recommendations, tourism services, and financial
investments; see e.g. [1,8,12,13,15].

In this paper, we propose a novel explainable fuzzy recommender. The
explainability is assured by generating a moderate number of interpretable fuzzy
IF-THEN rules. A new method, well justified by mathematical statistics, for
transforming nominal values of data into a numerical form is presented.

The paper is organized as follows. In Sect. 2, a new method for nominal
attributes coding is proposed. Section 3 presents four explainable fuzzy recom-
mender systems. In Sect. 4, we show exemplary simulation results illustrating
the performance of the proposed recommender, by use of the MovieLens 10M
benchmark [4]. Section 5 outlines conclusions and directions of future research.
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2 Nominal Attributes Coding for Recommender Systems

Let us consider a database, S = {o1, . . . ,oM}, of M objects, oj , j = 1, . . . ,M ,
characterized by n attributes A1,j , . . . , An,j , and dj that is the decision attribute.
Hence, every object is expressed as follows: oj = (A1,j , . . . , An,j , dj).

Values of Ai,j , for i = 1, . . . , n and j = 1, . . . ,M , can be numerical or nominal,
from set Vi = {vi,1, . . . , vi,Ki

}, for i-th attribute. It should be noted that the
attribute values of particular objects, oj , can be a subset of Vi.

Let us assume that i-th attribute of object oj , for i = 1, . . . , n and
j = 1, . . . ,M , has nominal values. In the first step of the proposed method, we
apply Ki-dimensional one-hot vector Xi,j = [xi,j,1, . . . , xi,j,Ki

]T where xi,j,h = 1
if vi,h is a value of attribute Ai,j , and 0 otherwise, for h = 1, . . . , Ki.

Let us consider the movie data, where i-th attribute of object oj is genre, and
Vi = {comedy, drama, fiction, action}. Hence, for example, Xi,j = [0, 1, 0, 0]T if
Ai,j = {drama} but Xi,j = [1, 0, 0, 1]T if Ai,j = {comedy, action}.

With regard to the movie data, values of dj , for j = 1, . . . ,M , can be, for
example, natural numbers from set {1, . . . , 5}, expressing ratings of the movies.
Alternatively, the rating values can be taken from {−1, 1}, representing negative
and positive rates, respectively.

In the next step, transforming the nominal attributes into numerical ones,
we propose to apply the Pearson’s correlation coefficients between appropriate
one-hot vector Xi,j , corresponding to i-th attribute of randomly chosen object
oj , and the ratings (decision attribute), dj , for j = 1, . . . , M and i = 1, . . . , n.

Thus, with the assumption of the random variables, the Pearson’s correlation
coefficients, for Xi,j and dj , are determined, for j = 1, . . . ,M , i = 1, . . . , n, and
h = 1, . . . ,Ki, as follows:

ρi,j,h =
Cov (xi,j,h, dj)√

V ar (xi,j,h) V ar (dj)
. (1)

Then, the correlation coefficients ρi,j,h, for i = 1, . . . , n, j = 1, . . . , M , and
h = 1, . . . ,Ki, are estimated, based on dataset S, by use of the unbiased estima-
tors of the covariance and variances:

Ĉov (xi,j,h, d) =
1

M − 1

∑M

j=1
(xi,j,h − xi,h)

(
dj − d

)
, (2)

V̂ ar (xi,j,h) =
1

M − 1

∑M

j=1
(xi,j,h − xi,h)2 ; (3)

V̂ ar(d) =
1

M − 1

∑M

j=1

(
dj − d

)2
; (4)

where
xi,h =

1
M

∑M

j=1
xi,j,h; d =

1
M

∑M

j=1
dj . (5)

The estimators of correlation coefficients, ρ̂i,j,h, obtained by replacing the
covariance and variances in (1) by their estimates (2), (3) and (4), respectively,
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can be used in order to transform particular values of i-th attribute of object oj

to corresponding numerical values ai,j , for i = 1, . . . , n, and j = 1, . . . ,M .
Thus, the proposed procedure is composed of two steps. At first, the values

of Ai,j are expressed as the one-hot vector, Xi,j =
[
xi,j,1, . . . , xi,j,Nj

]T . Then,
applying the estimators of correlation coefficient, ρ̂i,j,h, numerical values, ai,j ,
are obtained from vector Xi,j , in the following way:

ai,j =
∑Ki

h=1 xi,j,h xi,h ρ̂i,j,h
∑Ki

h=1 xi,j,h xi,h

. (6)

for i = 1, . . . , n, j = 1, . . . ,M , and h = 1, . . . , Ki, where xi,h is given by (5).
This means that instead of oj = (A1,j , . . . , An,j , dj), the object is described

as oj = (a1,j , . . . , an,j , dj), for i = 1, . . . , n, and j = 1, . . . , M .
The numerical values, ai,j , determined according to formula (6), are applied

in the recommender systems presented in Sect. 3.

3 Description of the Proposed Recommender Systems

In this paper, we propose four recommenders, marked as WM, WM+W, WM+D
and WM+W+D, based on the Wang-Mendel method for fuzzy rule gener-
ation [14]. Each recommender works as a fuzzy system with n inputs and
one output. Let x1, x2, . . . , xn and y be linguistic variables corresponding to
input and output variables, respectively, of the fuzzy system. The input vector
x = [x1, x2, . . . , xn]T in the space X = X1 ×X2 ×· · ·×Xn, as well as y ∈ Y , can
take crisp values, denoted as x = [x1, x2, . . . , xn]T and y, respectively. In this
case, each universe of discourse can be the space of real numbers. The nominal
attributes coding is described in Sect. 2. The crisp values x can be obtained from
nominal values by use of formula (6); for j = 1, . . . ,M , we consider data pairs
(xj , yj) where xj = [a1,j , a2,j , . . . , an,j ]T and yj = dj .

Applying the Wang-Mendel method, we get N fuzzy IF-THEN rules, Rj , of
the following form:

IF x1 is Aj
1 AND x2 is Aj

2 AND . . . AND xn is Aj
n THEN y is Bj (7)

where x1, x2, . . . , xn, y are linguistic variables, Aj
i , Bj , for i = 1, . . . , n, and

j = 1, . . . , N , are fuzzy sets – fuzzy (linguistic) values – defined in the universe
of discourse (space X) and Y , by membership functions, e.g. of Gaussian shape.

The maximal number of the rules depends on the number of the fuzzy regions
determined by the fuzzy sets Aj

i , Bj , and is equal or less than the number of the
fuzzy regions in space X × Y . Moreover, for M data pairs (objects), the Wang-
Mendel algorithm produces the rule base Rj , of the form (7), for j = 1, . . . , N ,
where N ≤ M .

In the process of generating the rules, the antecedent matching degree, also
called the degree of rule activation (or the rule firing level), expressed as:

τj = T
{

μAj
1
(x̄1), μAj

2
(x̄2), . . . , μAj

n
(x̄n)

}
, (8)
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for j = 1, 2, . . . , N , is used, with μBj (yj) being included in this t-norm as addi-
tional argument of T ; for details see [14], as well as [10] and [11].

The Mamdani type of a fuzzy system with inference based on the N fuzzy
IF-THEN rules, generated by the Wang-Mendel method, can be described by
the following mathematical models:

y =

∑N
j=1 yjτj

∑N
j=1 τj

or y =

∑N
j=1 wjy

jτj
∑N

j=1 wjτj
, (9)

denoted as WM and WM+W, respectively, where yj , for j = 1, 2, . . . , N , is a
point in which membership function μBj (y) takes the maximal value, and τj
is given by (8). The latter (WM+W), studied in this paper, differs from the
former (WM) that is a classical approach, by introducing to antecedents of rules
(7) their importance weights (see e.g. [5]).

The WM and WM+W systems refer to the case where the algebraic t-norm,
T (x, y) = xy, most often used, is applied; see e.g. [10].

Apart from the WM and WM+W, we propose another method for tuning
the fuzzy system, based on the parameterized triangular norms. Thus, we use
the parametric Dombi t-norm, which in the simplest case is defined as follows:

T (x, y) =

⎧
⎪⎨

⎪⎩

0 if x = 0 or y = 0,
(

1 +
((

1−x
x

)q +
(

1−y
y

)q)1/q
)−1

otherwise,
(10)

where q is the Dombi t-norm parameter, and q > 0; see e.g. [11].
In the systems based on the Dombi t-norm, called WM+D and WMD+W+D,

respectively, in this paper, it is assumed that each rule has its own qj parameter,
for j = 1, 2, . . . , N .

Of course, a proper selection of such parameters can improve the performance
of the fuzzy system. We employ evolutionary strategies (ES), as an optimization
method, (see e.g. [11]), in order to optimize the system parameters.

We also implement a simple mechanism for further reduction of the fuzzy
rules, by removal the least beneficial ones that increase the system error - Root
Mean Square Error (RMSE); for every variant of the systems. It should be noted
that in the literature there are several other methods for reduction, designing
and visualization of systems given by (9), see e.g. [7,9].

Adding parameters to the fuzzy system increases their degree of freedom
but at the same time their complexity. Therefore, it is important to check how
much the increase in the number of parameters improves system performance.
In our case, it is worth checking whether the additional rule reduction allows
significantly improving system performance. To evaluate the solutions, from this
point of view, we apply the Akaike information criterion (AIC), expressed as
follows [3]: AIC = M ln Q + 2p, where M is a number of items in a dataset
(in our case, M objects in the database, S; see Sect. 2), Q denotes the system
error (the RMSE), and p is a number of parameters - that in the systems under
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consideration includes weights and the Dombi t-norm parameters for every rule;
see (9) and (10), respectively.

4 Illustrations of the Systems Performance

The MovieLens 10M dataset [4] has been used in order to illustrate the perfor-
mance of the proposed systems. Six attributes of the movies have been consid-
ered: genre, year, keywords, as well as country, actors, directors. As a matter of
fact, we compare the performance of the systems with three inputs (correspond-
ing to the first tree attributes), and the systems with six inputs (all attributes).
In addition, the user rate of the movies, included in this database, have been
applied as the decision attribute that refers to the output of the systems. From
this dataset, 200 users that rated more than 30 movies have been selected. Values
of the genre, country, actors, directors have been coded according to Eq. (6).

For optimization of the weights and Dombi parameters, the evolutionary
strategy (μ + λ) has been applied, with the following parameters: (a) popula-
tion size: 100, (b) number of iterations: 200, (c) crossover probability: 0.9, (d)
mutation probability: 0.3, (e) mutation range: 0.2.

For the system evaluation, k-fold cross-validation (k = 5) has been employed,
with 80% of the data samples used for learning and 20% for testing.

Simulation results concerning the RMSE (system error), for all users, are
presented in Table 1, for each system. As mentioned above, two versions of the
recommenders are distinguished: with 3 and 6 inputs (3 and 6 attributes of
the movies, respectively). Values of the RMSE are determined for learning and
testing data. Comparison of the performance of these systems is illustrated in
Fig. 1. We observe how the RMSE (denoted as rmse) depends on the percentage
of rules reduced.

Table 1. Average RMSE for all users; It is obvious that the average RMSE error of the
recommendation systems with 6 inputs (corresponding to 6 attributes of the movies)
has lower values than the RMSE of the systems with 3 inputs (only 3 attributes con-
sidered): there more attributes characterize the movies there better recommendations
(better performance of the recommender).

System Three inputs Six inputs

Learning Testing Learning Testing

WM 0.431 0.601 0.224 0.385

WM+W 0.329 0.562 0.167 0.361

WM+D 0.312 0.563 0.158 0.364

WM+W+D 0.312 0.562 0.152 0.359

Figure 2 portrays isocriterial lines that represent constant values of the Akaike
criterion, with different values of the system error, Q, and the number of
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Fig. 1. Simulation results illustrating the impact of the reduction of fuzzy rules.

parameters, p, for the systems under consideration. We see that the opti-
mal number of parameters should be low, for all considered systems (8–16 for
3-inputs and 12–24 for 6-inputs).

p

Q
 (r

m
se

)
0.

55
0.

25

4 80

3 inputs

p

Q
 (r

m
se

)
0.

50
0.

10

4 80

6 inputs

WM+W WM+D WM+W+D

Fig. 2. Isocriterial lines representing the Akaike criterion for the recommender systems.

Examples of fuzzy rules obtained for the fuzzy systems applied as the rec-
ommenders are shown in Table 2. In addition, values of the importance weights
and the t-norm parameters, for particular rules, are presented. In this case, the
recommender system with 6 inputs (6 attributes) is considered.
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Table 2. An example of fuzzy rules in the recommender system, e.g. the first rule
should be formulated as follows: IF x1 is Medium AND x2 is Very High AND x3 is
Very Low AND x4 is Very Low AND x5 is Medium AND x6 is Medium THEN y is
Medium.

x1 - genre preference x2 - year

x3 - keywords preference x4 - country preference

x5 - actors preference x6 - directors preference

y - user rate

VL L M H VH

VL L M H VH

VL L M H VH

VL L M H VH

VL L M H VH

VL L M H VH

VL L M H VH

VL - Very Low, L - Low, M - Medium, H - High, VH - Very High
IF THEN wj pj

x1 x2 x3 x4 x5 x6 y = =
M VH VL VL M M M 0.196 0.895
H VH H L M M M 0.625 0.575
M VH M L M L H 0.078 0.557
H H L L L VL VL 0.339 0.855
M H M L VL L VL 0.393 0.576
M M M L M M M 0.267 1.149
H L VH M VH M VH 0.515 0.750
M M L L VL M VL 0.979 0.689
M VH H L L M M 0.738 0.581
M L H VH H H H 0.633 1.806
H M M M L M M 0.140 1.565
H VH VH L VH VH VH 0.903 0.617

5 Conclusions

Explainability of the recommenders is realized by fuzzy IF-THEN rules with
fuzzy sets that are semantically interpretable by the linguistic labels, e.g. Low,
Medium, with regard to particular attributes of recommended objects (Table 2).

The recommendation system, proposed in this paper, is a flexible fuzzy rec-
ommender. The flexibility is realized by incorporating various parameters into
its construction and optimizing by use of the Akaike criterion. The AIC allows
finding the best trade-off between a number of rules and interpretability.

Figure 1 shows that applying both the rule importance weights and the Dombi
t-norm parameters allows obtaining better results on testing datasets (for 3-input
systems and 50% reduction of fuzzy rules), and an additional reduction of fuzzy
rules improves the performance of the recommendation systems.

In future research, we plan to adopt several other rule-based methods (see
e.g. [2,6]) for designing explainable recommender systems.
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Abstract. The Minimum Vertex Cover (MVC) problem is a prominent
NP-hard combinatorial optimization problem, which is of great signifi-
cance in both theory and application. Evolutionary algorithms and local
search algorithms have proved to be two important methods to solve this
problem. However, the combination of these two methods does not per-
form well. In order to acquire an effective hybrid evolutionary algorithm,
two new control strategies are proposed, which are taboo of solution-
distance and intensive competition of individuals. A hybrid evolution-
ary algorithm for the MVC problem, referred to HETC, is proposed in
this paper using these two strategies. The effectiveness of the proposed
scheme is validated by conducting deep simulations. The results obtained
by the proposed scheme are compared with results obtained by EWSL,
the state-of-the-art algorithm, and NuMVC.

Keywords: Evolutionary algorithms · Estimation of Distribution
Algorithms · Local search · Guiding strategy · Minimum Vertex Cover
(MVC)

1 Introduction

A vertex cover of an undirected graph G = (V,E) is a subset S ⊆ V such that
each edge in E is incident to at least one vertex in S. The Minimum Vertex
Cover (MVC) problem is to find the minimum sized vertex cover. The MVC
problem is a classical and typical example of combinatorial optimization prob-
lems and of great importance with many real-world applications, such as net-
work security, industrial machine assignment, and so on. The MVC problem is
also a well-known NP-complete problem of combinatorial optimization, which
is included in the famous Karp’s 21 NP-complete problems [11], i.e., there is
no polynomial-time algorithm for approximating the MVC within any factor
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smaller than 1.3606 [8] unless P = NP , but generally, we believe that P �= NP .
Effective algorithms including EA/G [18], ULSA [17], and MIMIC [4] have been
proposed to solve this kind of problems. Moreover, evolutionary algorithms and
local search are considered as two important methods for these questions. Local
search is a meta-heuristic strategy for solving computationally hard optimiza-
tion problems. A local search algorithm starts from a candidate solution and
then iteratively moves to a neighbor solution. It means to search within some
local area instead of the whole area, and it aims to decrease the time to search
in unpromising area. There are a lot of efficient algorithms using this thinking,
such as NuMVC [6]. Furthermore, evolutionary algorithms (EAs) simulating the
evolution of the nature work with a group of solutions and combine them to gen-
erate new solutions (offsprings), and the traditional genetic algorithms (GAs) are
the most representative evolutionary algorithms. Many researchers devote them-
selves to GAs, and the strengths and weaknesses of simple GAs have been studied
theoretically [9]. There are also some improved methods to guide the offspring by
using heuristic strategies, such as Estimation of Distribution Algorithms (EDAs)
[12].

From the aspect of algorithm optimization, some researchers intend to take
both the advantages of EDAs and local search, but the results are not promising
[18]. To get an effective algorithm, we propose a hybrid algorithm combining
the two methods to solve the MVC problem. In this paper, we mix EDAs, an
evolutionary algorithm, and NuMVC, a local search algorithm to form the new
algorithm, noted as hybrid evolutionary algorithm with novel taboo and com-
petition (HETC). Our algorithm applies two novel control strategies, taboo of
solution-distance and intensive competition among individuals. In basic local
search, its main shortcoming is that it is easy to fall into local optimal solution,
but EDAs working with a group of individuals could ensure the diversity and
release this question. However, there is a great possibility that different individ-
uals search around the same area. That would be a waste of time if this situation
happens, so we take the strategy of taboo of solution-distance to avoid this. As
for the second strategy, by dropping the bad ones during the evolution and giving
the left ones more time to do local search, the strength of the better individuals
bursts out. In other words, individuals would compete with each other on the
aspect of computing time in every epoch. In this paper, we carry out some exper-
imental analyses about the two control strategies in HETC. The results indicate
that HETC has shown superior performance on the MVC problem, compared
with other excellent algorithms, such as EWSL [5], and NuMVC. We believe the
new strategies would be useful for others who research this question later.

2 Two New Control Strategies

2.1 Taboo of Solution-Distance

Some local search algorithms such as NuMVC apply the tabu search for the
vertex to avoid unnecessary exchange, but in our algorithm, given the genetic
algorithms, point-tabu-search is not enough. When combining EDAs and the
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NuMVC, a group of individuals, gen[population], are working, generating and
going on local search. In our strategy, a queue, TabuSolPer, with the maximum
size of TabuSolListSize, consisting of the labels of the individuals that the
solutions found recently belong to is maintained, and when we get a better
solution, betterlabel the label of the individual getting it, would be added to
TabuSolPer. If betterlabel is in TabuSolPer, it will be updated and avoided to
be dropped next time dropping is needed. When the queue is so long that its size
is over the given maximum size, the FIFO strategy will be used and the oldest
one added will be dropped.

If a candidate solution is around the best solutions the individuals in the
TabuSolPer have found, it is considered as an illegal one, and we use the function
AroundTabu to check whether a candidate solution is illegal. In this function, a
parameter θ is the reference standard. If dis(X,Y ) is less than θ, we think that
they are near to each other. Instead of setting a constant to θ, it is calculated
by the following formula.

size = TabuSolPer.size (1)

θ = ρ

size−1∑

i=1

dis(genTabuSolPerlast
.best, genTabuSolPeri

.best)

size − 1
(2)

ρ ∈ (0, 1) is a parameter to control the formula. θ
ρ reflects the average dis-

tance between the old taboo solutions and the best solutions found recently,
and it could better represent the normal distance of two candidate solutions of
this graph. The value get from this formula would be more reasonable to judge
whether two vertex covers is in the same area.

2.2 Intensive Competition of Individuals

This strategy is proposed to solve the following dilemma: on the one hand, if
the time for local search is set too much, the frequency of mutation will be very
limited, which slows down the evolution process; on the other hand, if local search
doesn’t get enough time, a single individual is hard to get a better solution due
to its limited searching time, which also hinders the generation to get a better
solution.

In HETC, better individuals refer to those with smaller size of solutions.
HETC calculates the importance of each individual and decreases the popula-
tion after several generations. The competition among individuals is mainly for
surviving and time. Only the winners could be left and given the chance to take
part in the later competition, and then be given more time. The worst individ-
ual would be dropped termly. When the size of the group, population, is less
than a given threshold γ, the time for local search for each individual will begin
increasing. In fact, when population reaching the threshold γ, each generation
will be given the same total time for all individuals. As the population decreases,
the time each one gets to do local search is more, but only those who win in
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the competition could get into this stage, and the final one left will be given as
much time as possible to allow it finish it local search.

3 HETC

In this section, we present the HETC algorithm, which utilizes the strategies of
taboo of solution-distance and intensive competition of individuals.

Firstly, to adapt to the strategy of taboo of solution-distance, we need to
modify the two basic methods: EDAs and NuMVC. The changes is shown in
the following two functions, Function GuideAlgorithms(gen, p), and Function
LS(gen). In Function GuideAlgorithms, the group is sorted according to its
own best size and then let the better half of the individuals be the template for
the rest individuals. Besides, the process of generating a new candidate solution
according to the template and the possibility information, will continue going
unless the new candidate solution is legal. In Function LS(gen), when we get
a new vertex cover that is not worse than the current best found solution, we
would add its label to the TabuSolPer. We try to update the queue by this to
avoid the old solutions influence the search all the time, and when we get a new
candidate solution, we would check if it breaks into the forbidden zone to stop
the invalid search timely.

Class Individual is the structure used to represent the individuals of pop-
ulation. It consists of the basic information of a candidate solution and the
attribute id is the identification of it. Its attribute best is the best solution it
has found most recently and attribute cur is the candidate solution it gets most
recently, and attribute delv is the selected vertex with the maximal value. cBest
refers to the best solution found of the whole.
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To realize the strategy of intensive competition of individuals, population,
the size of the living individuals, is changed in the algorithm HETC, which is also
the kernel of HETC. In this function, the bad individuals is dropped gradually.
The attribute flag of the class Individual indicates whether it has the right
to calculate the influential factor, and BestIndividual refers to the label of the
individual that owns the best solution.

Algorithm 1. HETC
initiate all the individuals gen[]
step = 0
repeat

step = step + 1
initiate all sumpi = 0
for i = 1 to population do

if i != BestIndividual then
set geni.f lag = 0 to allow geni calculate its influential factor

end if
end for
for i = 1 to |vnum| do

LS(geni)
end for
if population!=1 then

sort gen[] according to the current best solution in increasing order
if step mod α == 0 then

population = population − 1
delete the last individual from array gen
CutoffT ime = calc(population)

end if
end if

until population == 1

The variable sumpi, indicating the weight of the vertex i, is used to guide the
evolution. We get the possibility vector p[], which is needed in the function Guide,
through the variable vector sump[]. To increase the stability of the algorithm, we
adopt the widely used Population-Based Incremental Learning algorithm (PBIL)
[1], as shown in the following formula, where totp is the sum of the influential
factor calculated already.

pi = (1 − λ)pi + λ
sumpi

totp

Different from other EDAs, when one individual finds its own better solution,
HETC calculates its influential factor according to the quality of its solution
and adds the value to sumpi. However, when the time goes, HETC, like other
algorithms, will slow down its pace to update the best solution. If the frequency
of updating the best individual is not controlled, the best individual will count
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for guidance all the time. Therefore, to avoid some individual updating sumpi

too much, the frequency to update for those individuals whose solution size is
the same as global best solution is set as once a generation. In particular, the
best individual calculates its influential factor only once until other individuals
find better solution. We use the attribute flag to control the calculation of
influential factor. In HETC, function calc calculates the fitness of a new solution
and accumulating the fitness to sumpi. It executes each time an individual geni

updates its own best solution.

4 Simulations

Our algorithm is implemented in C++, compiled by the g++ compiler. All
simulations executed on an Intel 1.6 GHz× 4 machine with 3.6 GB RAM under
LINUX. In order to make comparison impartially, hardware differences are taken
into consideration. The instances chosen in our simulations come from the famous
BHOSLIB benchmark.

To show the effectiveness of intensive competition, we take the algorithm
without it into consideration. That is the naive combination of EDAs and
NuMVC, without considering the two control strategies proposed previously.
Firstly, we find that if time is spent on insufficient local search, after the local
search operator, the improvement of local search for each would be very small.
So, the cutoff time for each individual to do local search is set as 0.01 s. We can
obtain one generation within one second. As the whole program is primarily con-
trolled by EDAs, we call this method as EDAs-oriented control (EDAOC), and
the performance is unpleasing. For example, in instance frb56-25-1, EDAOC can
only find 1346 or worse in 3 h while other methods usually find the best solution
1344 within 1 h. Then, in another test, the cutoff time is set as 1 s. Since the
whole program is nearly controlled by local search, we call this method as local-
search-oriented control (LSOC). Besides, other cutoff time, such as 0.05 s, and
0.2 s has also been tried. However, the results are all unpleasing. Table 1 shows
the performance of naive combination of EDAs and local search with different
cutoff time. The computational results shown in all tables include the following
information: avg - the average size of the vertex cover found in ten runs; time -
the run-time (in seconds) to find best solution. k - the minimum known vertex
cover size.

As shown in Table 1, naive combination of EDAs and local search with cutoff
time of 1 s does the best among the tested cutoff time. On the one hand, more
cutoff time improves the performance of the simple combination of EDAs and
local search. Besides, Lin-Kernighan method shows that the structure of any two
local optimal solutions contains nearly 85% similar part on average [13]. So, it
will be hard to find a solution with fresh new structure if time for local search is
limited too much. On the other hand, if we continue to enlarge the cutoff time,
the algorithm would be almost the same as running local search respectively,
and it cann’t outperform the original local search.



A HETC Algorithm for MVC 731

Table 1. Comparison among different cutoff time of naive combination of EDAs and
local search

Graph 0.01 s 0.2 s 1 s

Instance k∗ avg CPU(s) avg CPU(s) avg CPU(s)

frb50-23-1 1100 1101.7 n/a 1100 429.6 1100 996.0

frb53-24-1 1219 1221 n/a 1220 n/a 1219.8 5312.6

frb56-25-1 1344 1346.2 n/a 1345.9 n/a 1344.5 2599.3

frb59-26-1 1475 1476.8 n/a 1476.7 n/a 1475.5 6970.7

frb100-40 3900 3906.2 n/a 3906.5 n/a 3906.3 n/a

Table 2. Comparison among naive combination of EDAs & local search, EWLS,
NuMVC and BIOC

Graph Combination of EDAs
& local search (1 s)

EWLS NuMVC HETC

Instance k∗ avg CPU(s) avg CPU(s) avg CPU(s) avg CPU(s)

frb50-23-1 1100 1100 996.0 1100 790.7 1100 429.6 1100 211.6

frb53-24-1 1219 1219.8 5312.6 1219.4 3339.0 1219.6 2437.2 1219 3015.1

frb56-25-1 1344 1344.5 2599.3 1344.8 9175.4 1344 1657.2 1344 1179.1

frb59-26-1 1475 1475.5 6970.7 1475.6 5507.0 1475.6 4117.9 1475.2 2371.2

frb100-40 3900 3906.3 n/a 3903.8 1610.3 3903.6 5258.1 3903.4 2425.9

We test another excellent MVC solver called EWLS as comparison [5]. Table 2
shows the results. EWSL is the abbreviation for edge weight local search. EWLS
established a new record for a challenging instance frb100-40 in 2010. We also
add one of the original method, NuMVC, and the naive combination of the two
methods as comparison. From Table 2, we can see that HETC outperforms naive
combination of EDAs and NuMVC in all instances. The naive combination of
EDAs and NuMVC usually finds two or more nodes larger than the best solution.
HETC also shows improvement, both in consuming time and size of solution,
comparing to NuMVC. In frb59-26-1, the average time of NuMVC to find the
best solution is 4118 s, and EWLS uses 9175 s on average, while HETC consumes
merely 2371 s on average. HETC can find the best solution 1219 for frb53-24-1
in all runs, while the success rate for EWLS is 60%, and for NuMVC it is 40%.

5 Conclusions

In this paper, we analyzed the reasons why naive combination of EDAs and local
search is unpromising, and then proposed our new algorithm called HETC to
make EDAs cooperate with local search more effectively. HETC achieves two
new control strategies, taboo of solution-distance and intensive competition of
individuals. Taboo of solution-distance effectively avoids different individuals
searching around the same area, and promising the diversity and improves the
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effectiveness. Intensive competition of individuals solves the dilemma meet in
deciding the time for local search. HETC is used to solve MVC problems with
large size, and it shows a great increase in performance comparing with the
original local search method used in the paper. HETC also shows excellent per-
formance in graph with large size and better stability in different graphs. In the
future, we intend to implement HETC to other local search solvers and put it
into practice.
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Abstract. Carpool Service Problem (CSP), which aims at providing the
ridesharing plans in order to alleviate traffic congestion, has attracted high
attention in the past years. A considerable amount of efforts have been devoted
to solving CSP with low vehicle capacity and small travel demand, e.g.,
ridesharing by private cars. However, there are few studies involving CSP with
high vehicle capacity, e.g., ridesharing by buses or microbuses. In view of the
special high capacity characteristic, this paper proposes an ant colony system
(ACS) with novel heuristic information and pheromone calculation strategies
(HC-ACS). First, we redesign the heuristic information of each edge, both the
length of the specific edge and the estimation of the total travel are considered.
Second, a summation rule is applied to the usage of pheromone to maintain the
searching diversity. Our experiments on datasets with different spatial distri-
bution show that the proposed HC-ACS is promising in the environment with
relatively high seating capacity.

Keywords: Ant colony algorithm � Carpool service problem � Ridesharing

1 Introduction

In the past few years, the growth of population and economy increased the number of
vehicles in cities, leading to serious traffic problems [1]. Since ridesharing can help not
only lower the citizens’ travel expenses but also alleviate the problem of congestion,
considerable amounts of research efforts has been made to tackle the carpool service
problem (CSP), which is an NP-hard problem [2]. Two important themes have emerged
from the studies discussed so far: one is the optimization of the carpool system, the
other is the optimization of the algorithm for matching between passengers and drivers.
Huang et al. set up an intelligent carpool system to provide carpooling service for
passengers via a smart portable device [2]. Similarly, QADIR et al. proposed a highest
aggregated score vehicular recommendation framework, which is based on five
parameters including average time delay, vehicle’s capacity, fare reduction, driving
distance and profit increment [3]. In spite of the optimization of the carpool system,
more researchers concentrate on making full use of resources in CSP. Based on the
assumption that some passengers get off and new passengers get on during the journey
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of the bus, Duan et al. removed the static constraints and assigned passengers more
than the vehicle’s capacity. Moreover, a multi-round matching based greedy algorithm
and geometry partition strategy is adopted to improve the performance of the algorithm
[4]. However, it is worthwhile mentioned that the current studies concentrate more on
CSP in an environment with low seating capacity. For example, the sum of the seat
demand of each passenger assigned to a driver or the seating capacity of each driver
provided to passengers is mainly in the interval from one to four. The study of the CSP
with high seating capacity should be further investigated.

Inspired by the foraging behavior of ant colony, ACS, a variant of ant colony
optimization (ACO), is a meta-heuristic searching algorithm which has been widely
used in solving combinational optimization problems (COPs) [5–7]. Compared with
other evolutionary algorithms such as genetic algorithm (GA) [2] and particle swarm
optimization (PSO) [3, 8], the application of ACS in solving CSP remains to be
explored.

In this paper, we redesigned the heuristic information and pheromone calculation
rule of the original ACS, making it suitable for CSP in the context of high seating
capacity. We compared the proposed HC-ACS with four algorithms including binary
particle swarm optimization (BPSO) [9], GA [10], hill climbing algorithm [11], and
simulated annealing algorithm [12]. Experimental results show that HC-ACS has better
performance on solving CSP with high seating capacity.

The remainder of this paper is organized as follows. Section 2 formulates the
mathematical model for the carpool service problem (CSP). Section 3 describes the
proposed heuristic information and pheromone calculation rule. Section 4 carries out a
series of experiments to verify the effectiveness of the proposed strategies. Conclusions
are presented in Sect. 5.

2 Mathematical Formulation

As a COP, CSP considers both the driver-passenger assignments and their internal path
planning [13]. Although the existing studies concentrate on CSP with low capacity, it is
a fact that the internal path planning is of little importance, because many algorithms
can solve it with low time complexity such as bellman optimality [14]. Given a specific
context that the maximum capacity available for passengers is relatively larger, the
internal path planning becomes much more important because of dimension explosion.
In this paper, we aim at redesigning the details of original ACS, making it more
suitable to solve the internal path planning problem for large capacity.

2.1 CSP Model

In this paper, we only consider the situation of CSP without time window. There are
two important definitions including the task definition identified by passengers and the
driver definition identified by drivers [15]. A tuple \w; u; s; d; p[ is used to define
the requirement of a passenger, namely a task t. It should be mentioned that a driver
will be assigned to a task once the task is created. The terms w, u, s, d and p refer to
driver, passenger, starting location, destination location, and path, respectively.
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Another tuple \s; T;P[ is used to define the order information of a driver. Con-
cretely, s is the location of driver, T is the task sets completed by the driver, and P is the
path set of the driver. For the CSP with high seating capacity discussed in this paper,
we extend the capacity of each vehicle to 30, which corresponds to buses or
microbuses.

2.2 Objective Function

In our study, the objective function can be stated mathematically as follow:

minf ¼m � cd
þ

Xm

i¼1
ð
Xp�1

j¼1
Lsijsijþ 1

Þ � xd

þ
Xm

i¼1
ð
Xp�1

j¼1
Lsijsijþ 1

Þ � xf þ
Xm

i¼1
civ

ð1Þ

where m and p represent the number of drivers and the maximum number of locations,
respectively. Lxy represents the length of routes between two neighboring locations
x and y. xd and xf represent the fixed cost per kilometer of driver and fuel. cd and cv
represent the fixed cost per driver and per vehicle. The objective of HC-ACS is to
minimize the total cost of CSP when given the information of drivers and passengers.

2.3 Constraints

It should be mentioned that there are still lots of constraints for the CSP in the real
world, including the maximum passenger capacity constraint, the maximum mileage of
vehicle constraint and the unique driver-passenger matching constraint. The details of
the above three constraints are list as follows. In the maximum passenger capacity
constraint, the total passenger number in each vehicle should not exceed the maximum
passenger capacity, which is set to be 30 as mentioned above. In the maximum mileage
of vehicle constraint, the total mileage of each vehicle should not exceed the maximum
mileage, which is set to be 50 km in this paper. In the unique driver-passenger
matching constraint, each passenger should only be assigned to one specific driver, but
each driver can complete more than one tasks.

3 The Proposed HC-ACS

3.1 Heuristic Information with Prediction Strategy

With the increase of maximum capacity of each vehicle, the internal path planning
becomes much more complicated. When the vehicle makes a decision about the next
visiting location, the result brought by the decision needs a prediction. In the original
ACS, the heuristic information of an edge is the reciprocal of its length. However,
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in the CSP with a high seating capacity, we should focus on the total length of the
route. The heuristic information of an edge is calculated by:

gij ¼
A

Lij þ
P

h2Ni
Ljh þ

P
k2Mi

Lki
ð2Þ

where gij denotes the heuristic information between location i and location j. Ni and Mi

denote the set of unvisited locations and the set of visited locations respectively. A is a
constant, which is used adjust the magnitude of heuristic information. We can observe
that the probability of a remote location being chosen will be relatively small. Based on
this heuristic information, the ant will prone to construct a route in areas with high
travel demand.

3.2 Pheromone with Summation Rule

In the vehicle routing problem especially with a large-scale network, the pheromone on
each edge is easy to evaporate because of the sparse distribution of ants. Due to the
evaporation phenomenon, the ant colony will lose searching diversity quickly, making
it prone to repeat the former routes and liable to trap into local optima. To address these
issues, we applied the summation rule [16] to decrease the negative effect. The sum-
mation rule of pheromone can extend the spatio-temporal influence of pheromone,
ensuring the high concentrations of pheromone continues to be a great impetus to the
latter path selection. The possibility of visiting location j when the vehicle is at location
i, namely pij, is shown in (4), where c is a coefficient which determines the influence
intensity of the pheromone at the former location. Based on the special pheromone
calculating rule, the state transition rule is defined as follows.

j ¼ argmaxj2JkðiÞ ½sði; jÞ�; ½gði; jÞ�b
n o

; q� q0
S; otherwise

( )
ð3Þ

pkði; jÞ ¼

Pi

k¼1

ci�kskj

� �a

gij½ �b

P
h2Ni

ð
Pi

k¼1

ci�kskh

� �a

gih½ �bÞ
; j 2 JkðiÞ

0; otherwise

8>>>><
>>>>:

9>>>>=
>>>>;

ð4Þ

Before making node selection, a random number q is produced to compare with
parameter q0. The ant will select the next point to visit, namely exploitation, only if
q� q0. As in (3). Otherwise, the ant will make roulette selection based on heuristic
information and pheromone information, the detail of which is shown in (4).

3.3 Pheromone Management

Pheromone Initialization. The initial pheromone should be delicately designedbecause
it can directly affect the searching capacity in the initial state. Plenty of experiments
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have been used to investigate the appropriate setting of initial pheromone [17]. The initial
pheromone has been proven to be related to the characteristic of the network such as length
in route scheduling problems. As a result, the initial pheromone in solving CSP is defined
as follow,

s0 ¼
X
o2O

X
d2D

1=ðnodCg
odÞ ð5Þ

where Cg
od is the length of the path between the starting bus location o and the ending

bus location d constructed by the greedy algorithm. This path should contain all the
locations of passengers at least on time. nod is the number of nodes along the path
between the starting point o and the ending point d. It should be highlighted that the
maximum number of locations that one vehicle can visit is fixed to be 20.

Local Pheromone Update. The local pheromone updating rule in ACS is used to
promote colony exploration. The local pheromone updating rule for solving CSP in this
paper is defined as follow,

sði; jÞ ¼ ð1� nÞ � sði; jÞþ n � s0 ð6Þ

where s(i,j) denotes the amount of pheromone along the edge i; jð Þ, s0 denotes the
initial pheromone. The parameter n denotes the local pheromone volatilization rate,
where 0\n\1. The local pheromone updating rule will decrease the amount of
pheromone of the historical edges, which encourages the latter ants to explore the
unvisited edges.

Global Pheromone Update. The global pheromone updating rule in ACS is used to
reallocate the pheromone at the global level. For solving CSP with high seating
capacity in this paper, the global pheromone updating rule in HC-ACS is defined as
follows,

sði; jÞ ¼ ð1� qÞ � sði; jÞ
þDbði; jÞ

ð7Þ

Dbði; jÞ ¼ ðTbÞ�1; ði; jÞ on the route Rb

0; otherwise

� �
ð8Þ

where q is the evaporation rate of pheromone on the edge. The global pheromone
updating rule only happens on the best path. Tb and Db are the consumption of ant
colony with the best solution so far and the amount of pheromone released by that ant
colony, respectively. When the global updating rule works, the shorter path will be
assigned with more pheromone, which will attract more ants in the next generation.
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4 Experiments

In this section, contrast experiments between the proposed HC-ACS and four compared
algorithms are carried out to verify the effectiveness of the heuristic information with
prediction strategy and pheromone with summation rule in HC-ACS. The proposed
HC-ACS and the compared algorithms are implemented in C ++, run on a PC with a
Pentium Dual CPU i7 and 4.00 GB RAM. All the experiments are repeated 30 times
for each test case for the statistical credibility of data.

4.1 Test Benchmarks

In general, there are three moving configurations in metropolises, including inward
radiating movement (CI) configuration, lateral drifting movement (CL) configuration
and outward radiating movement (CO) configuration. Two different instances are
generated for each kind of dataset respectively in this paper.

4.2 Compared Algorithms

We compare the HC-ACS with four compared algorithm including binary particle
swarm optimization (BPSO), GA, hill climbing algorithm and simulated annealing
algorithm.

The compared algorithms can be divided into two parts: heuristic method including
hill climbing algorithm, simulated annealing algorithm, and meta-heuristic method
including BPSO, GA. Firstly brought to extend particle swarm optimization (PSO) to
solve discrete problems, binary particle swarm optimization (BPSO) has been widely
adopted to solve the combinational problems (COP) [9]. Meanwhile, GA, an algorithm
based on chromosome crossover and chromosome mutation, is also an effective

Table 1. Comprehensive result of HC-ACS and BPSO, Hill Climbing Algorithm, Genetic
Algorithm, Simulated Annealing Algorithm.

Dataset HC-ACS BPSO GA HC SA

CI-1 Mean 22178.8 28850.2 25912.8 26444.6 26692.6
Std. 219.7 524.1 139.0 304.7 277.5

CI-2 Mean 24654.4 25628.4 26253.3 27057.6 27007.7
Std. 160.4 432.9 153.3 336.9 422.4

CL-1 Mean 22035.6 22115.4 25883.0 26907.6 26861.5
Std. 328.5 885.7 101.12 400.0 563.3

CL-2 Mean 22951.6 24661.4 26180.0 27034.3 27408.0
Std. 196.1 508.7 40.2 345.4 547.4

CO-1 Mean 24661.4 26084.8 25744.5 26720.6 26501.7
Std. 148.4 1492.9 32.12 489.3 400.8

CO-2 Mean 25789.0 31687.2 25774.5 26782.6 26514.6
Std. 107.4 768.8 70.8 308.1 399.6
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approach for solving COP [18]. Hill Climbing algorithm is a kind of local searching
method. In order to improve its global searching capacity, we adopt a regular restart
strategy in this paper. Simulated annealing is a simple but efficient global optimization
algorithm, which makes uphill moves with a certain probability.

4.3 Results

The experimental results including the mean value and the standard deviation are
shown in Table 1. The mean value illustrates the performance of a specific algorithm,
and standard deviation represents the stability of a specific algorithm. It can be seen
that HC-ACS performs better than BPSO on all instances, and HC-ACS performs
better than GA on 5 out of 6 instances. Based on these results, we concluded that HC-
ACS performs better than BPSO and GA in the context of high seating capacity. What
is more, HC-ACS performs better than hill climbing algorithm and simulated annealing
algorithm on all instances. Similarly, we can conclude that HC-ACS performs better
than hill climbing algorithm and simulated annealing algorithm. Moreover, the results
obtained from Table 1 reveals that HC-ACO can qualified for solving the CSP under
different moving configurations including CI, CL and CO.

5 Conclusion

This paper proposes an HC-ACS for solving CSP in the environment with high seating
capacity. While the seating capacity per vehicle increases, the scheduling for internal
routing planning will become much more important. For this reason, the delicate
redesign of heuristic information calculation rule and pheromone usage rule guarantee
effective guidance and the global searching ability when ACS is applied to solve CSP
with high seating capacity. In this paper, we apply HC-ACS to solve CSP without time
window constraints. In the future, it is interesting to apply distributed and parallel ACO
algorithms [19–22] to solve large-scale CSPs.
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Abstract. Artificial bee colony (ABC) algorithm is a swarm intelligence based
optimization technique, which has attracted wide attention from different
research fields. In the basic ABC, however, the same solution search equation is
used in both of the employed bee phase and onlooker bee phase, which performs
well in exploration but poorly in exploitation. To address this concerning defect,
in this paper, we propose an improved ABC variant by designing a mechanism
of utilizing directional information. In this mechanism, we first construct a pool
of differential vectors in the employed bee phase, and then utilize a differential
vector randomly selected from the pool as directional information to guide
search in the onlooker bee phase. Furthermore, we propose two novel solution
search equations based on the current best solution and some good solutions
with the aim of balancing exploration and exploitation. Experiments are con-
ducted on a set of 22 well-known benchmark functions, and the results
demonstrate that our proposed approach shows promising performance.

Keywords: Artificial bee colony � Directional information � Solution search
equation � Exploration and exploitation

1 Introduction

To solve complicated optimization problems, many evolutionary optimization tech-
niques have been developed in recent decades, such as the genetic algorithm (GA) [1],
particle swarm optimization (PSO) [2], differential evolution algorithm (DE) [3] and
artificial bee colony algorithm (ABC) [4]. Among these techniques, ABC is a relatively
new one which simulates the intelligent foraging behavior of the honey bee colony. In
comparison with other optimization techniques, ABC has some advantages, such as
fewer control parameters and simpler structure. Although ABC has shown good per-
formance, it still has a deficiency concerning its solution search equation which is good
at exploration but poor at exploitation.

To overcome this deficiency, numerous improved ABC variants have been proposed.
For example, motivated by PSO, Zhu et al. [5] proposed a gbest-guided ABC (GABC)
algorithm in which the global best solution is integrated into the solution search equation
to improve exploitation. Gao et al. [6] presented a novel solution search equation like the
crossover operation of GA in their proposed CABC algorithm, which has no bias to any
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search direction. Zhou et al. [7] designed a Gaussian bare-bones ABC (GBABC) which
utilizes the global best solution as well, and the reported experimental results showed that
GBABC can offer higher solution quality. Recently, Cui et al. [8] introduced a depth-first
search framework and elite-guided solution search equation (DFSABC_elite) by using
some good solutions to balance exploration and exploitation.

From the above representative ABC variants, it is not difficult to observe that the
global best solution or some good solutions are usually used in the modified solution
search equation. While these solutions can effectively improve exploitation, if they are
improperly used, it is possible to cause a problem that the algorithm becomes too
greedy. To solve this issue, we propose a mechanism of utilizing directional infor-
mation in which a pool of differential vectors is constructed. In the employed bee
phase, a differential vector can be obtained when a food source is improved, which
aims to preserve the beneficial information among different good solutions. Then in the
onlooker bee phase, one differential vector is randomly selected from the pool to be
used to guide search. The mechanism of utilizing directional information is helpful to
properly use some good solutions without sacrificing diversity. It is necessary to point
out that this proposed mechanism is inspired by the concept of directional mutation
operator for DE (DMDE) [9]. Furthermore, we designed two new solution search
equations based on the current best solution and some good solutions with the aim of
balancing exploration and exploitation. In the experiments, 22 well-known benchmark
functions and five relatively new ABC variants are used. The comparative results
indicate that our approach offers promising performance.

2 Basic ABC Algorithm

The ABC algorithm is inspired by the intelligent foraging behavior of bee colony. Its
search process is divided into three phases: employed bee phase, onlooker bee phase
and scout bee phase. Generally, ABC begins with an initial population of SN food
sources which are randomly generated according to the Eq. (1).

xi; j ¼ xLj þ randj � ðxUj � xLj Þ ð1Þ

where Xi ¼ xi;1; xi;2; � � � ; xi;D
� �

represents the ith food source, i 2 f1; 2; � � � ; SNg,
j 2 f1; 2; � � � ;Dg, and D denotes the problem dimension size. Note that a food source
corresponds to a candidate solution of the problem. xLj and xUj are the lower and upper
bounds for the jth dimension, respectively. The three phases are described as follows.

(1) Employed bee phase

In this phase, each employed bee generates a new food source Vi by the Eq. (2). If
the fitness value of Vi is better than its parent Xi, then Xi is replaced by Vi.

vi; j ¼ xi; j þUi:j � ðxi; j � xk; jÞ ð2Þ
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where Xk is a randomly selected food source and has to be different from Xi. j 2
f1; 2; � � � ;Dg is a randomly selected dimension, and Ui:j is a uniformly distributed
random number within the range [−1, 1].

(2) Onlooker bee phase

After all of the employed bees finish their work, they will share information about
nectar with the onlooker bees. Then the onlooker bees will continue to search for new
food sources with the same solution search equation listed in the Eq. (2). However,
being different from the search patter of the employed bees, the onlooker bees select the
existing food source based on the probability which is calculated by the Eq. (3), and
f iti denotes the fitness value of the ith food source.

pi ¼ f iti
PSN

j¼1 f itj
ð3Þ

(3) Scout bee phase

If a food source cannot be improved for at least consecutively limit times, it will be
considered to be exhausted and requires to be reset. In this case, the Eq. (1) is used to
reset the food source.

3 The Proposed Method

3.1 The Mechanism of Utilizing Directional Information

In the basic ABC, its solution search equation performs well in exploration but poorly
in exploitation. Although many modified solution search equations utilizing good
solutions have shown better performance, it may cause the problem of making the
algorithm become too greedy. To overcome this issue, we propose a mechanism of
utilizing directional information, which attempts to properly utilize good solutions
without sacrificing diversity. This mechanism is inspired by the concept of directional
mutation operator for DE (DMDE) [9]. In DMDE, if a child individual is better than its
parent individual, then the difference vector between these two individuals are con-
sidered as directional information which will be utilized in the mutation operator for
guiding search. Motivated by the DMDE, we propose a mechanism of utilizing
directional information from DE to ABC, in which two steps are included.

First, in the employed bee phase, we will check the quality of new food sources, if Vi

is better than its parent food source Xi, then we will continue check whether Vi is better
than the current best food source Xbest. If Vi is indeed better than Xbest, we consider that
the difference vector Vi � Xi represents a promising search direction, and it is worth
preserving this difference vector. As a result, we construct a pool to contain all of these
difference vectors. Let d denotes the pool, and it can be formally represented as
d ¼ fk1; k2; . . . kNg, where ki is the ith difference vector and N is the pool size which
meets the condition: 0�N� SN. Note that being different from other evolutionary
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algorithms, such as the DE algorithm, only one dimension of a parent food source is
updated to generate a new food source in the basic ABC, and it implies that in fact the
difference vector is a scalar in this case. In addition, the pool is reset at every generation
and it may be empty when all of the new food sources are worse than Xbest.

Second, in the onlooker bee phase, the directional information is utilized to guide
search. If the pool of difference vector is not empty, we will randomly select one
difference vector from the pool and then incorporate it into the solution search equation.
To maximize the performance of the directional information, the following new
solution search equation is defined.

ve; j ¼ xbest; j þUe:j � ki ð4Þ

where Ve is the new food source for the corresponding parent food source Xe, Xe is an
elite food source. Note that the top 10%∙SN food sources are regarded as elite food
sources. Xbest is the current best food source, Ue:j is a uniformly distributed random
number within [−1, 1], and ki is a randomly selected difference vector. If the pool is
empty, however, another new solution search equation listed in the following Eq. (8)
will be used for the onlooker bees. In addition, the roulette selection mechanism is
removed for the onlooker bees.

3.2 Two New Solution Search Equations

As pointed out by many other researchers, the original solution search equation does
well in exploration but badly in exploitation, and this may result in slow convergence
speed for ABC. To solve this issue, being inspired by the ABC_elite algorithm [8], we
further design a new solution search equation for the employed bees and onlooker bees,
respectively. In the ABC_elite, two modified solution search equations are designed as
follows.

vi; j ¼ xe; j þUi:j � xe; j � xk; j
� � ð5Þ

ve; j ¼ 1
2
� ðxe; jþ xbest; jÞþUe:j � xbest; j � xk; j

� � ð6Þ

where Xe is an elite food source selected from the top 10%∙SN food sources, Xk is a
randomly selected food source and has to be different from Xi. The Eq. (5) is used for
the employed bees, while the Eq. (6) is for the onlooker bees. Although these two
equations have shown good performance, it can be observed that the base vectors in
these two equations only include the current best food sources or some elite food
source, and this may bias the search direction only towards them and easily trigger the
premature problem.

To avoid this issue of ABC_elite, we design two new solution search equations
listed in the following Eqs. (7) and (8).
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vi; j ¼ 1
2
� ðxbest; j þ xk; jÞþUi:j � xe; j � xk; j

� � ð7Þ

ve; j ¼ 1
2
� ðxbest; j þ xk; jÞþUi:j � xe; j � xk; j

� � ð8Þ

The Eq. (7) is designed for the employed bees, while the Eq. (8) is used for the
onlooker bees. In comparison with the Eq. (5), the base vector in the Eq. (7) includes a
randomly selected food source, which is helpful to enhance diversity. Compared with
the Eq. (6), although the base vector in the Eq. (8) changes Xe to Xbest, the difference
vector replaces Xbest with Xe, and it is beneficial to add more perturbation.

3.3 The Pseudocode of Our Approach

To better clarify our approach, abbreviated as DIABC, the pseudocode is described in
the Algorithm 1. In there, FEs denotes the used number of fitness function evaluations,
and MaxFEs is the maximum number of fitness function evaluations.

Algorithm 1. The pseudocode of DIABC
1: Randomly generate SN food sources as an initial population according to the Eq. (1)
2: while do
3: Initialize a pool to preserve the difference vectors
4: for i=1 to SN do //The employed bee phase
5: Generate a new food source according to the Eq. (7)
6: Evaluate and set 
7: if do
8: if do
9: Insert the difference vector into the pool
10: end if
11: Replace with 
12: else
13:
14: end if
15: end for
16: for i=1 to SN do //The onlooker bee phase
17: if the pool is empty do
18: Generate a new food source according to the Eq. (8)
19: else
20: Generate a new food source according to the Eq. (4)
21: Evaluate and set 
22: if do
23: Replace with 
24: else
25:
26: end if
27: end for
28: if do //The scout bee phase
29: Reset according to the Eq. (1)
30: end if
31: end while
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4 Experiments and Discussion

To verify the performance of our approach, 22 well-known benchmark functions are
used, and they are widely used in other literatures as well. Among these functions, the
first 11 ones are unimodal types and the remaining ones are multimodal types. The
global optimum of all of these functions are zero. Due to the limited paper space, the
definitions about these functions can refer to [7] and [12]. In the experiments, five well-
established ABC variants are compared with our approach, they are: CABC [6],
GBABC [7], ILABC [11], MGPABC [10], DFSABC_elite [8].

To make a fair comparison, the specific parameters of these five ABC variants are
kept the same with their original literatures. For the proposed DIABC, the elite food
sources are set to the top 10%∙SN food sources, and limit is set to SN∙D. For the other
common parameters, they are set as follows: SN = 50, D = 30 or 50, and
MaxFEs = 5000∙D. Furthermore, the paired Wilcoxon signed-rank test with a = 0.05
is used to compare the statistically significant difference of two algorithms. The signs
“+”, “=”, and “−” indicate DIABC is significantly better than, equals to, and worse than

Table 1. The comparison results of DIABC with other five ABC variants for D = 30

Function CABC GBABC ILABC MPGABC DFSABC_elite DIABC

F1 3.00E-50 + 1.33E-33 + 5.60E-56 + 8.07E-53 + 2.67E-83 + 4.23E-90
F2 1.41E-26 + 3.11E-21 + 1.23E-29 + 6.83E-29 + 5.03E-43 + 1.26E-46
F3 1.15E+04 + 1.77E+03 + 8.15E+03 + 5.05E+03 = 4.14E+03 - 5.53E+03
F4 2.05E+00 + 2.04E-01 + 6.27E-01 + 1.15E+00 + 8.78E-02 - 5.74E-02
F5 1.63E-01 = 7.36E+00 + 2.90E-02 - 3.17E+00 = 4.85E-01 = 4.66E-01
F6 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00
F7 1.63E-02 + 1.54E-02 + 1.53E-02 + 2.46E-02 + 1.26E-02 + 9.78E-03
F8 7.33E-42 + 5.40E-26 + 1.42E-48 + 2.62E-50 + 7.87E-80 + 3.90E-87
F9 6.02E-52 + 1.70E-34 + 5.67E-57 + 1.55E-53 + 9.61E-85 + 4.27E-93
F10 5.20E-31 + 1.45E-71 - 1.16E-43 + 6.74E-58 - 2.44E-54 + 2.80E-55
F11 7.18E-66 = 7.18E-66 = 7.18E-66 = 7.18E-66 = 7.18E-66 = 7.18E-66
F12 1.53E-12 + 1.16E-12 + 1.02E-12 + 1.16E-12 + 7.28E-13 + 2.18E-13
F13 0.00E+00 = 7.11E-16 = 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00
F14 2.94E-14 + 1.98E-14 = 2.82E-14 + 3.50E-14 + 2.52E-14 + 2.06E-14
F15 6.73E-11 = 0.00E+00 = 1.84E-13 = 4.12E-04 = 0.00E+00 = 0.00E+00
F16 1.57E-32 = 1.83E-32 = 1.57E-32 = 1.57E-32 = 1.57E-32 = 1.57E-32
F17 1.35E-32 = 5.53E-32 - 1.35E-32 = 1.35E-32 = 1.35E-32 = 1.35E-32
F18 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00
F19 1.49E-27 - 7.53E-09 + 8.72E-30 - 5.23E-08 + 7.55E-17 = 8.33E-16
F20 1.35E-31 = 2.83E-31 = 1.35E-31 = 1.35E-31 = 1.35E-31 = 1.35E-31
F21 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00
F22 0.00E+00 - 6.14E-03 = 0.00E+00 - 4.50E-03 = 1.16E-03 - 2.77E-03
+ / = / - 10/10/2 10/10/2 10/9/3 9/12/1 8/11/3 –

746 Q. Cai et al.



the competitor, respectively. All of the algorithms are run 30 times on each function
independently, and the average best fitness value of each function is recorded in the
Tables 1 and 2.

For D = 30, in the Table 1, it is clear that DIABC achieves the best overall per-
formance among the involved six algorithms. To be specific, DIABC performs better
than CABC, GBABC, ILABC, MPGABC and DFSABC_elite on 10, 10, 10, 9 and 8
test functions, respectively. Compared with MPGABC, DIABC defeats it on 9 func-
tions and only lose one on the SumPower function (F10). For D = 50, in the Table 2,
we can see that similar conclusions can be drawn as in the case of D = 30. As seen,
although the complexity increases with the dimension size, the performance of DIABC
is not always affected, and it is also superior to the other five ABC variants. In addition,
we conduct the Friedman test on the final results for the involved six algorithms. The
Table 3 shows the average rankings for D = 30 and 50, and the best results are marked
in boldface. It can be seen that both the best average rankings are obtained by DIABC
for two dimension sizes.

Table 2. The comparison results of DIABC with other five ABC variants for D = 50

Function CABC GBABC ILABC MPGABC DFSABC_elite DIABC

F1 1.48E-49 + 1.84E-26 + 1.78E-54 + 7.77E-51 + 7.66E-83 + 6.77E-89
F2 4.48E-26 + 1.09E-18 + 1.19E-28 + 7.09E-28 + 7.12E-43 + 1.50E-46
F3 3.10E+04 + 1.77E+04 = 2.60E+04 + 1.78E+04 = 1.35E+04 - 1.78E+04
F4 8.80E+00 + 3.45E+00 + 4.57E+00 + 5.91E+00 + 7.12E-01 + 5.53E-01
F5 1.56E-01 = 7.16E+01 + 2.64E-02 - 7.97E-02 = 9.47E-01 = 3.49E+00
F6 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00
F7 3.82E-02 + 3.86E-02 + 3.25E-02 + 4.87E-02 + 2.53E-02 + 1.73E-02
F8 4.11E-41 + 3.27E-36 + 4.72E-47 + 1.26E-47 + 2.20E-79 + 2.11E-86
F9 7.83E-51 + 1.18E-26 + 9.90E-55 + 3.50E-52 + 2.18E-83 + 1.23E-89
F10 7.12E-31 + 1.09E-73 - 2.99E-43 + 1.21E-57 - 2.23E-54 + 1.78E-54
F11 2.67E-109 = 2.67E-109 = 2.67E-109 = 2.67E-109 = 2.67E-109 = 2.67E-109
F12 2.24E-11 + 4.74E+00 + 1.97E-03 + 1.83E-11 = 4.74E+00 + 1.83E-11
F13 0.00E+00 = 1.22E-01 + 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00
F14 5.44E-14 + 9.20E-13 + 5.22E-14 + 6.74E-14 + 4.81E-14 + 3.92E-14
F15 1.86E-13 = 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00
F16 9.42E-33 = 1.27E-28 + 9.42E-33 = 9.42E-33 = 9.42E-33 = 9.42E-33
F17 1.35E-32 = 4.24E-29 + 1.35E-32 = 1.35E-32 = 1.35E-32 = 1.35E-32
F18 0.00E+00 = 4.00E-02 = 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00
F19 3.85E-27 - 1.97E-07 + 3.33E-17 - 4.22E-07 + 4.22E-17 - 1.67E-15
F20 1.35E-31 = 2.32E-25 + 1.35E-31 = 1.35E-31 = 1.35E-31 = 1.35E-31
F21 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00 = 0.00E+00
F22 1.71E-15 - 1.43E-02 + 2.84E-15 = 1.81E-02 + 0.00E+00 - 1.83E-15
+ / = / - 10/10/2 15/6/1 10/10/2 9/12/1 9/10/3 –
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5 Conclusions

In the basic ABC, the solution search equation is good at exploration but poor at
exploitation, and this may result in slow convergence for ABC. To solve this con-
cerning issue, many modified solution search equations have been proposed in recent
years. Among these modified solution search equations, most of them focus on utilizing
the global best food source or some good food sources to enhance exploitation.
Although the performance of ABC is indeed improved by this way, it may also cause a
problem that ABC would easily be too greedy. Thus how to design a mechanism of
utilizing good food sources to enhance exploitation is a challenging topic.

In this paper, we propose a mechanism of utilizing directional information to meet
the challenge. In the proposed mechanism, we construct a pool to preserve difference
vectors between a promising new food source and its parent food source, then the
difference vectors are utilized in a new designed solution search equation. Furthermore,
in order to maximize the performance of the proposed mechanism, we design another
two new solution search equations for the employed bees and onlooker bees. The
experiments are conducted on 22 benchmark functions, and five well established ABC
variant are compared with our approach. The comparison results indicate that our
approach can offer better performance.
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Abstract. Classifying the porosity of sedimentary information is an
important field of study with applications to tasks such as oil reservoir
characterisation. Classifying porosity into groups based on Petrographi-
cal characteristics has been attempted in the past using: expert systems,
supervised clustering techniques and neural networks. In this paper, we
expand upon the usage of neural networks for this classification task
by applying Evolutionary Algorithms to determine optimal parameters.
Despite recent advances in techniques to select hyperparameters it is still
difficult to determine the optimal parameters for a given dataset. We fur-
ther apply network reduction techniques to further improve classification
accuracy. We produce results similar to the work done by Gedeon et al.
[1] on this dataset.

Keywords: Artificial neural networks · Petrographical features ·
Network reduction · Porosity · Evolutionary Algorithms

1 Introduction

In this paper we develop a classification task to classify the core porosity of
minerals into 4 categories (very poor, poor, fair, good) based upon a number of
petrographical descriptions. We expand upon Gedeon et als work [1] which com-
pares different methods of classifying the porosity classes using expert systems,
supervised clustering and neural networks. Their paper compared these algo-
rithms and came to the conclusion that neural networks are the best solution
for this problem because of the relatively good results and ease of reproducing
the results, we will refer to their work as the original paper. The aim of this
paper is to expand upon the usage of neural networks to solve this porosity
classification problem. We apply a genetic algorithm to determine the optimal
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Table 1. Description of the Petrographical data set

Number of
attributes

Description

% porosity Range
2–22%

The percentage porosity of the sediment or rock

Grain size 12 The dimensions such as diameter, volume and
density of the particles in the given mineral layer

Sorting 8 Similarity measures between characteristics of
particles

Matrix 16 A descriptor of the type of material which encloses
or fills the smaller gaps between larger particles of
the layer

Roundness 8 The degree that the particles found in the given
layer are rounded with smooth edges and corners

Bioturbation 4 How much the layer has been disturbed by living
organisms

Laminae 10 The smallest unit found by inspection in the given
layer

hyper-parameters for the neural network like in [2]. We apply the network reduc-
tion technique of relevance [3] to our model produced to improve classification
performance and generalisation of the model.

We use the same data-set as found in [1]. This data set is obtained from an oil
well located in the North-West Shelf, offshore Australia. This data set consists
of 226 samples, each sample is described by six porosity related petrographical
descriptions along with the percentage porosity. More detailed descriptions of the
data set can be found in Table 1. The descriptions of the features are categorical
linguistic pieces of information obtained by the people working in the field. This
makes the task of classification difficult since we must pre-process the data and
convert it to a quantitative representation which can be used to train our neural
network with.

We divide the porosity percentage into four classes: very poor [0, 5%), poor [5,
10%), fair [10, 15%) and good [15, 100%]. Our neural network takes an encoded
version of the petrographical descriptions and predicts this class. A simple one
hidden layer feed-forward neural network has been demonstrated to perform
well on this data set [1] and achieves a classification accuracy of about 60%.
Instead of training a simple fully connected neural network like in [1], we run
a genetic algorithm to determine what choice of hyper-parameters we will use
for our network. We then apply network reduction techniques to the final model
determined by our algorithm. Network reduction techniques can increase the
performance of our network and reduce the size of the network which may result
in better generalisation [3] of our model.
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2 Methodology

Missing Data. Some of the data points in our data set have one or more missing
features. We keep the points with more than three feature values present, this
leaves us with a data set of 159 points. The original paper [1] uses 140 samples
so we believe that techniques to increase our available data such as imputation
are not required. We judge our sample size to be sufficient in order to reproduce
and improve upon the results presented in the original paper. There also are
some mismatches in the features between our data set and the one discussed in
the original paper.

Data Preprocessing. We represent each feature value as a number based on
their ordering. For most of the features (Grain size, Sorting, Matrix, Biotur-
bation, Laminae) we represent them as ordered numerical values from from 0
up to the number of different classes (i.e. 0–15 for Matrix). For the roundness
attribute we implement a circular encoding like [1] which encodes the feature
into two features based on their circular distances from each other in terms of
sine and cosine. All feature values are then normalised into the range [0, 1]. Pre-
vious studies have found that normalisation of inputs prior to training is crucial
to obtaining good results and increases the speed of convergence [8].

We split our data set into training (109) and testing (50) sets. We do this for
better robustness of training results since a sample size of 79 (50/50 split) may
be too small to train a network that generalises well. To obtain our training and
testing sets, we shuffle our original set of 159 randomly then select the first 109
values as our training set.

Evaluation Metrics. For each of the four porosity classes we calculate pre-
cision, recall and F1-score and take the averages across classes. We will mostly
look at the average F1-Score to determine differences in model performance [5].
We will use the term accuracy to broadly refer to any of these evaluation metrics.
We will use precision when comparing with the model present in [1] as that is
the metric that they use for percentage correct values.

3 Evolutionary Algorithm for Hyper-parameter Tuning

Representation. We develop a representation of a neural network, this repre-
sentation contains six hyper parameters which we tune (layers and no. neurons
in layers, dropout percentage between layers, learning rate, epochs to train for,
whether to learn bias or not, activation function). An example of a representation
of an ANN is seen:

“{‘lr’: 0.08, ‘neurons’: array([25, 30]), ‘dropout’: array([0., 0.25]), ‘bias’:
True, ‘epochs’: 2500, ‘inputsize’: 7, ‘activation’: 4, ‘outputsize’: 4, ‘lasthidden’:
30}”
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Initialisation. We develop a function that generates random representations of
an ANN. When we initialise each ANN, the hyper-parameter values are restricted
within reasonable ranges based on empirical observations, we provide an upper
bound to ranges so that our training time is not too large.

Fitness Function. To assess the fitness of a model, we use the average valida-
tion accuracy across three rounds of training and validation. Our validation sets
consist of 29 random values selected from our 109 values and as a result the same
value could be present in each round of validation. We change this validation set
at every generation of our algorithm.

Operators. We define our cross over operator as a function that takes two sets
of neural network hyperparameters and returns a new set of network hyperpa-
rameters. For each hyper-parameter in the parent networks we have an equal
(50%) chance to have the same hyper-parameter in the child network. We define
a mutation operator which takes a single neural network and modifies either one
or two of the hyper-parameters randomly. Each mutation has an equal chance
to be selected, the mutation operators are the following: Increase or decrease
the learning rate by a number in the range [0, 0.02]; randomise the value of
a dropout layer; modify the number of neurons within a given layer, increases
or decreases by [0, (no. of neurons in layer/3)]; adds or removes a layer in the
network; change the number of epochs the network trains for by [250, 500]; ran-
domises the activation function of the network. The values present for much of
these operations are kept relatively small in order for each mutation to affect a
given network too much.

Selection. We use a simple form of selection where the worst five performers
according to the fitness function are eliminated. We also apply elitism so that
top two individuals goes through to the next generation unchanged [7]. At every
generation we apply a chance of mutation to each of the models (except the top
ranking elite models). This chance to mutate starts off high and falls linearly as
the generation increases, down to 2% at the last generation. At each generation
we keep track of the best model in that generation in a ‘hall of fame’.

Evolutionary Algorithm Testing and Results. We apply our selection cri-
teria to a population of size 8 over the period of 50 generations. We evaluate and
plot our models according to our fitness criteria and compare them against the
test set, Fig. 1. We observe the upward trend in mean fitness scores as the gen-
eration increases. We note there is no significant increase in the F-scores on the
test set as the generation increases. This suggests that the fitness score does not
have a strong correlation with the optimisation problem we are solving. There
are several possible causes for this such as our training/testing set random split
simply being unfavourable resulting in week generalisation from our training set.
The performance could also increase if we have more iterations. The final model
that we select performs the best in testing at generation 14.



754 T. Liu and J. Plested

Fig. 1. Diagram of standard deviation plotted against generation, mean fitness against
generation and testing set accuracy against generation

Performance of Selected Model. The model we obtain from our evolutionary
algorithm consists of two layers, the first with 7 neurons and the second with
31 neurons, it uses the Leaky ReLu activation function with near 0 dropout
between any layers and is trained for 2666 epochs with a learning rate of 0.1197.
We record the results of this model in Table 2.

Table 2. Test set and training set results for best model (14)

Training data set (109) Testing data set (50)

VP PR FR GD %Correct VP PR FR GD %Correct

Actual class VP 17 7 1 7 68.00% Actual class VP 6 4 1 0 54.54%

PR 1 33 2 1 89.19% PR 0 6 3 1 60.00%

FR 0 3 15 4 68.18% FR 2 4 6 3 40.00%

GD 1 0 1 23 92.00% GD 0 1 2 11 78.57%

F-1 score 79.93% Average F-1 score 57.87%

4 Relevance Network Measure

The papers [3] and [10] mention Relevance as a metric to determine neurons
to remove. Removing neurons has two effects: improving generalisation; and
speeding up learning and prediction [10]. It is difficult to determine the optimal
number of neurons in any given hidden layer. Too few neurons will result in too
little fitting power to capture patterns in the dataset and too many will result
in overfitting occurring in the dataset. Given that our network in the previous
section achieves a train/test accuracy of around 80%/58% we believe that our
model may be overfitting, resulting in poor generalisation. Even with our evolu-
tionary algorithm, we cannot determine the optimal number of neurons to have
in our network because of the computational complexity and time required for
our evolutionary algorithm to converge. We only run our evolutionary algorithm
for 50 epochs which means our model can still be improved. Therefore we apply
the network reduction technique of relevance in order to prune them in such
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Table 3. Final performance results of our model

Training data set (109) Testing data set (50)

VP PR FR GD %Correct VP PR FR GD %Correct

Actual class VP 16 7 2 0 64.00% Actual class VP 5 4 2 0 45.45%

PR 1 33 2 1 89.19% PR 0 6 3 1 60.00%

FR 0 3 15 4 68.18% FR 0 4 8 3 53.33%

GD 0 0 1 24 96.00% GD 0 1 2 11 78.57%

F-1 score 79.75% Average F-1 score 59.92%

a way to reduce overfitting [11]. The paper [10] first defines a straightforward
measure of relevance pi as:

pi = Ewithneuron − Ewithoutneuron

where E is the evaluation of the model. The paper voices concerns that it is far
too computationally expensive to compute pi for all neurons in the network and
goes on to develop more complex schemes and measures of Relevance. However
with modern hardware this process is relatively quick and hence this is what we
will implement. To determine if a neuron is relevant or not, we compare the F1-
Score of our model on the testing data set with and without the single neuron. If
the removal of the neuron results in an increase in the F1-Score then we consider
it a candidate neuron for removal.

5 Results and Discussion

The results of our best neural network can be seen in Table 3. We observe
that previously in Table 2 the model produced by our evolutionary algorithm
produces a test/train F-1 score of 79.93%/57.87%. After applying our relevance
procedure this changes to 79.75%/59.92%, Table 3. We compare our results to
the original paper where they use precision as a metric [1], they demonstrate
a train/test precision of 60.00%/62.80% compared to our 79.34%/59.33%. Our
training set precision is far higher but our testing set precision is lower.

There may be several factors which cause this difference in performance.
First, our raw data-set differs from the original paper. Second, we do not know
how some of the variables have been prepossessed and what procedure was used
to remove data. Thirdly, we used a different split of train/test (109:50) compared
to the original paper (70/70). Fourth, our network is more complex than the one
employed by the original paper [1], this may lead to overfitting on the training
set and resulting in poor generalisation to the testing set.

Given that our training set score is far higher than our testing set score, we
believe that it is the case that the model is overfitting. Yet it is curious that our
testing set score cannot be further improved using relevance alone, this suggests
that the weights themselves are overfitting on the training data. Given that we
employed a form of validation in the training of the model itself, it may be the



756 T. Liu and J. Plested

case that we randomly have a poor training/test split or that our data-set is
too small. We propose that increasing the number of folds in our validation and
increasing the number of generations would see overall better results as we do
not achieve convergence in only 50 generations.

Our evolutionary algorithm did not produce an optimal model at the last gen-
eration. The models at the earlier generations tended to perform better. This
suggests to us we can further tune our evolutionary algorithm. A major issue
may be that there is not a strong correlation between the validated training
f-score and the testing f-score. What is interesting is that for the optimal model
we selected (14), the epoch and learning rates were optimal for the testing set
f-score. We observe for this given model with a set number of neurons, activa-
tion function and learning rate, that around 2666 epochs results in the optimal
value for the testing score. This actually provides support for our evolutionary
algorithm because this model cannot improve further than this score.

6 Conclusion and Future Work

In this paper we have reproduced the problem found in [1] of classifying the core
porosity of minerals using petrographical descriptions. There are however some
slight differences as our dataset is not completely the same as the one found in [1].

We use an evolutionary algorithm to determine what may be good hyper-
parameters to select. We run this algorithm for 50 epochs and test the model
which performs the best. Our model performs better on the training set and
slightly worse on the training set than in the original paper [1]. We then apply
the network reduction technique of removing the least relevant neuron(s). Our
model improves yet is still slightly worse than the original paper when using the
testing set (59.92% vs 62.8%).

In the future we plan on integrating more network pruning techniques such
as taking into account: complementary neurons, similar neurons, badness and
sensitivity measures to further reduce our network [3]. This will hopefully result
in better generalisation to the testing set. Our evolutionary algorithm can be
further improved. The biggest improvement would be to run it for many more
generations so that we can better observe the effects of accuracy trends over
time. We can also devise better fitness functions such as: adding more rounds of
validation on randomised subsets; or using a function based on a combination
of factors. We plan on sourcing more computational power to explore different
number of generations, possible mutations and rates along with bigger networks
in general. We also plan on exploring various other encoding schemes for our
petrographical features. It would also be interesting to compare and contrast
the results from different petrographical data sets other than the one in the
original paper. A broader range of data sources from groups who collect it in the
field should provide deeper insights into the predictive capability of our model.
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Abstract. This paper describes the implementation of an evolutionary algo-
rithm to optimize the ability of a Casper neural network to classify the porosity
of a reservoir into groups using the linguistic petrographical characteristics of
the data. The Casper neural network technique is implemented on the petro-
graphical data gained from a paper from Gedeon et al. [3]. We used an evo-
lutionary algorithm to optimize the hyper-parameters of the network, specifically
the learning rates of the different regions in the network and the period of time
between the additions of new neurons. Several methods of producing offspring
were tested, and each was able to improve the accuracy of the Casper neural
network. Future work is suggested to improve the optimization of the evolu-
tionary algorithm, such as testing for more generations, and utilizing other
selection methods. Ultimately the results achieved suggest that there is potential
for optimizing the hyper-parameter of a cascading neural network using evo-
lutionary algorithms.

1 Introduction

This report describes the implementation of an evolutionary algorithm to optimize a
Casper neural network’s ability to solve a classification problem. The dataset used was
the same dataset utilized by Gedeon et al. [3] (‘Dataset Paper’). The Dataset Paper
tested whether a neural network could be used to characterize the porosity of petro-
graphical samples using linguistic petrographical descriptions. Gedeon et al. noted that
there was an ad-hoc approach by experts to the problem and that a standardised
algorithm which can effectively derive the porosity from linguistic petrographical
descriptions could be very useful [3].

While the same classification problem is approached by the networks described in
this paper, the aim of is not to solve this classification problem, but to identify whether
an evolutionary algorithm can be used to optimize the hyperparameters of a Casper
neural network [7]. The evolutionary algorithm used is based on the genetic algorithms
first popularized by Holland, who suggested them as a method of searching for optimal
solutions [4]. Whitley et al. demonstrated that evolutionary algorithms have the
potential to optimize more standard neural networks [8], and this paper is attempting to
extend on that. A flaw which has been identified in Casper neural networks is that the
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hyperparameters used to describe their behavior are often estimated initially. This
means the optimal values are unknown without extensive testing of the networks [7].
We hypothesized that an evolutionary algorithm may shorten this search for the optimal
parameters, allowing for more effective Casper neural networks to be built. Our
investigations tested whether evolutionary algorithms can do this, with three different
reproductive methods tested.

2 Method

The methodology comprised four stages; encoding of the data, implementing a Casper
neural network on the dataset, building a genetic algorithm to generate learning rates
and time periods for the Casper neural network, and finally testing different methods for
producing offspring. The problem being modelled was the classification of the porosity
of linguistic petrographical data. There are four possible categories of porosity that
each sample can be in. The category of porosity into which an entry falls is the output
of the neural network. The inputs are comprised of the linguistic petrographical data
from the Dataset Paper [3].

2.1 Encoding the Data

We followed a similar method as used in the Dataset paper [3] to encode the data.
Empty columns and columns containing strings were removed from the dataset. Then,
the porosity data was normalized between 0 and 1. These values where placed into four
categories, depending on the normalized value using the same categorization imple-
mented by Gedeon et al. [3]. The columns with values for bioturbation and sorting were
encoded into new columns so that each of these groups were represented by a single
value. The other groups of values were not encoded to allow the neural network to
discover any patterns in these inputs rather than risk losing valuable data. If an entry
had no value in the Grain Size or Matrix columns, the row was dropped from the
dataset.

When the initial neural network algorithm was run, the data was split into seven
parts to enable k-fold validation to be done. Essentially, six parts of the dataset were
used for training at any one time, and the seventh part was used for testing the dataset.
This was done to prevent overfitting of the data and to improve the robustness of the
test results.

2.2 Creating the Casper Neural Network

A Casper neural network was implemented, which is a cascade correlation network
utilizing progressive resilient backpropagation (RPROP) for it’s optimizer function.
This technique comes from Treadgold and Gedeon [7]. It builds on the original Cas-
cade Correlation algorithm from Fahlman and Lebiere [2]. This is a network which
trains an initial layer of hidden neurons until the change in error reaches a certain point.
At this point another hidden neuron is added which takes in as inputs all the inputs, and
all previous outputs. A normal cascade correlation network freezes the weights of
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previous neurons after adding a new neuron, but Casper does not freeze these weights.
Instead it uses a progressive RPROP algorithm to decay the learning rate used on the
weights. Furthermore, different regions of the network have different initial learning
rates, a learning rate which is reset whenever another neuron is added. These regions
are classified as L1, L2 and L3. L1 covers the output of newly added hidden neuron. L2
refers to the outputs of previously added hidden neurons to the new hidden neuron,
while L3 refers to every other weight. In the paper from which the technique is drawn
from, the learning rate at L1 is significantly greater than at L2, which in turn is higher
than the learning rate at L3 [7]. This scale was used for the control Casper network, but
the learning rates generated by the genetic algorithm used were not limited by this
constraint. to do this to explore whether the algorithm would find that the most effective
learning rates were the same as those proposed in the technique paper. The learning
rates used for the control Casper Neural network were (L1 = 0.05, L2 = 0.01,
L3 = 0.005).

The learning rates are re-initialised whenever a new neuron is added. Essentially
this allowed the network to modify itself when new neurons are added to account for
them without losing all the information it has previously learned. A new neuron is
added after the error falls by less than 1% when compared to a previous value attained a
given number of epochs previously. The genetic algorithm attempted to optimize this
given number of epochs, or the ‘time period’. The formula for calculating this time
period was, where P was the parameter being optimized:

Time Period ¼ 15þP � No: of Neurons currently in the Network

In the control Casper network, P was initialized as 15. The control was run 10
times, and the average accuracy from these tests was obtained.

2.3 Testing and Building the Evolutionary Algorithm

The evolutionary algorithm we used aims to optimize both the learning rates used for
the different regions of the Casper network and the time period controlling the rate at
which hidden neurons are added to the network. This algorithm starts by randomly
generating a population of twenty ‘chromosomes’, each being a list of each value. Each
chromosome is used to create and train a Casper neural network 10 times, and the test
accuracy is measured at the end of each of these trials. This test accuracy is averaged to
get a final score for that chromosome. The population is then sorted by that score, and a
reproduction method is applied. I tested three reproduction methods; a simple asexual
reproduction, sexual reproduction crossover and a combination of asexual and sexual
reproduction. All the reproduction methods used the same mutation method, which
applied a 10% chance for each allele to be mutated, which either increased or decreased
the value by 20%. These values were chosen as they were large enough to potentially
help escape local minima, while not being so large that any mutation would destroy
progress made by the algorithm.

The asexual reproduction method consisted of getting the top half of the popula-
tion, replicating it and passing that on as the next generation after mutation was
applied.
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Sexual reproduction was done by choosing the parent candidates from the popu-
lation randomly, but with a strong weighting towards the chromosomes which obtained
a higher score. This meant that it was far more likely that a more successful parent
would be chosen. The two chromosomes were then crossed over and the mutation
function was applied to produce an offspring.

The combined reproduction method preserved the top two chromosomes from each
generation, and then used sexual reproduction as described above to fill out the rest of
the population, and then applied the mutation algorithm as above to the population.

Each of these methods was tested by getting the average accuracy attained by the
Casper networks described by chromosomes in that generation and the best accuracy
attained by a chromosome of each generation and examining how this changed over
time. These results were then compared with the control’s accuracy and the accuracy
achieved on the original dataset.

3 Results

3.1 Final Results

The Top Accuracy column demonstrates the potential of the use of evolutionary
algorithms to optimize a Casper network. The best results achieved by each repro-
duction method are higher than the Control, indicating that the algorithm was able to
find more optimal hyper-parameters for the network. The accuracy achieved by the
control was higher than the final average accuracy of each of the reproductive methods,
suggesting that the population in each generation had not converged yet. The high Top
Accuracy, particularly with the results for Combined Reproduction.

In each of the reproduction methods the average accuracy remaining relatively
consistent between generations. This suggests that there is potential for an improved
selection algorithm to be used or that each chromosome was not sufficiently tested. It
may also be because the search space is very large, and requires a lot of generations for
the populations to converge.

An unexpected aspect of the results shown in Table 1 is the slight difference
between the randomly chosen learning rates and the ones drawn from Gedeon and
Treadgold’s paper [7]. The average accuracy of the final generation and the earlier

Table 1. Results of each reproduction method, the control and the results in the original dataset
paper. Average Accuracy is the average accuracy of all the chromosomes in the final generation.
Top Accuracy is the average accuracy of the highest scoring chromosome in the final generation.

Method used Average accuracy Top accuracy

Asexual reproduction 62.88% 68.4%
Sexual reproduction 62.68% 67.2%
Combined reproduction 63.28% 69.2%
Control 65.2% n/a
Original dataset 61.4% n/a
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generations are lower than the Control, but are higher than were expected, suggesting
that there is a limited range for optimizing the network over this dataset.

It should also be noted that running the evolutionary algorithm took up significant
computational resources. While training the control Casper network took less than a
second of time, running the evolutionary algorithm took several hours. Therefore,
while the results suggest that the potential for optimization of the Casper network is
there, using an evolutionary algorithm to attain this optimization may not be the most
efficient method of doing so.

3.2 Asexual Reproduction

Figure 1 contains the accuracy obtained over 20 generations of running the evolu-
tionary algorithm using asexual reproduction. The results show that there was little
variation in the accuracies achieved between the generations, but that there were
chromosomes able to achieve results substantially higher than the average. This
demonstrates that there is potential for the evolutionary algorithm to optimize the
Casper networks hyper-parameters. However, the inability of the higher scores to
proliferate through the generations suggests that the measure used to classify the higher
scoring chromosomes could be improved. This could also be due to a need for running
more than 10 tests on each chromosome to gauge a more accurate measure of its
performance, or simply that more generations need to be run to allow the two measures
to converge.

The reproductive method may have hindered the optimization of the neural net-
work, as asexual reproduction is likely to get caught in local minima. It has less ability
to create novel chromosomes but is reliant on mutation to generate new chromosomes.
As such, the asexual reproduction used for the above test is unlikely to have been able
to generate the optimal solution if it got caught in a local minima, as it may have.

Fig. 1. Accuracy over the generations of asexual reproduction Orange: top score in generation,
Blue: average score in generation (Color figure online)
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3.3 Sexual Reproduction

Figure 2 demonstrates that the use of an evolutionary algorithm using sexual repro-
duction was able to achieve marginal improvement and little variance over time. This
may be for similar reasons as asexual reproduction. However, the fact that there was
initially a high top accuracy again suggests that there is scope for the hyper-parameters
of the Casper network to be optimized.

Sexual reproduction would potentially be better at escaping local minima than
asexual reproduction. The same method which brings this benefit may also have lead to
a greater chance for it to lose any gains it makes each generation. This can be seen by
the noticeably flatter line in Fig. 2 when compared to Fig. 1.

3.4 Combined Reproduction

Fig. 2. Accuracy over generations of a sexual reproduction evolutionary algorithm Orange: top
score in generation, Blue: average score in generation (Color figure online)

Fig. 3. Accuracy achieved over 20 generations of an evolutionary algorithm using a combined
reproductive technique Orange: top score in generation, Blue: average score in generation
(Color figure online)
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This reproduction technique achieved the best results out of the reproductive methods
at optimizing the Casper network. There is even the beginning of a gradual upwards
increase in the average accuracy of each generation. This suggests that combined
reproduction has the best chance of optimizing the hyper-parameters of the network.
This may be because it is better able to preserve the better performing chromosomes,
while using recombination to avoid local minima (Fig. 3).

3.5 Comparison with Original Dataset Paper

The results achieved with a neural network in the original paper was an accuracy of
60% for the first tests, and an accuracy of 62.8% for the second blind test [3]. The
average accuracy achieved by the Casper neural networks after the evolutionary
algorithms ranged from 62.68–63.28%, and the top accuracy achieved ranged from
68.4–69.2%. The control achieved an average accuracy of 65.2%. These results are
noticeably higher than the results from the original dataset paper [3]. This suggests both
that a Casper neural network is better than a standard neural network at solving this
classification problem, and that there is potential for the hyper-parameters of the net-
work to be optimized further to improve the results. Potentially if data is gathered about
the number of neurons that the Casper networks deem optimal, then the standardized
algorithm sought by Gedeon et al. [3] may be improved, although this is beyond the
scope of the current report.

4 Conclusion and Future Work

The use of evolutionary algorithms in this paper demonstrates their potential for
optimizing the hyper-parameters of a Casper neural network. It was able to generate
hyper-parameters which proved to create a more accurate Casper network than the
control developed from Treadgold and Gedeon’s paper [7]. Each of the differing
reproduction techniques was able to achieve this increase, with the most effective being
the combined reproduction method. These benefits come with the caveat that the
average accuracy of each generation was not able converge with the top accuracy in
twenty generations.

For future work, further tests running over more generations could be done to test
whether it is possible for the accuracies to converge. The selection algorithm may also
need further optimization to improve the ability of the generations to converge. While
this method of utilizing an evolutionary algorithm for optimization isn’t efficient this
can be mitigated by genetic algorithms which are shown to achieve the optimum results
at a faster rate. This includes the introduction of a local search method to improve the
speed of optimization [5]. Future work could also focus on testing other cross-over
methods, such as using multi-parent recombination [1].

Ultimately, this paper demonstrates that an evolutionary algorithm can optimize the
hyper-parameters of a Casper network. Further work is needed to test this and to see the
extent of the optimization possible, but this paper demonstrates that the potential for
this optimization is present.
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Abstract. New malware outbreaks cannot provide thousands of training sam-
ples which are required to counter malware campaigns. In some cases, there
could be just one sample. So, the defense system at the firing line must be able to
quickly detect many automatically generated variants using a single malware
instance observed from the initial outbreak by statically inspecting the binary
executables. As previous research works show, statistical features such as term
frequency-inverse document frequency and n-gram are significantly vulnerable
to attacks by mutation through reinforcement learning. Recent studies focus on
raw binary executable as a base feature which contains instructions describing
the core logic of the sample. However, many approaches using image-matching
neural networks are insufficient due to the malware mutation technique that
generates a large number of samples with high entropy data. Deriving instruc-
tion cognitive representation that disambiguates legitimate instructions from the
context is necessary for accurate detection over raw binary executables. In this
paper, we present a novel method of detecting semantically similar malware
variants within a campaign using a single raw binary malware executable. We
utilize Discrete Fourier Transform of instruction cognitive representation
extracted from self-attention transformer network. The experiments were con-
ducted with in-the-wild malware samples from ransomware and banking Trojan
campaigns. The proposed method outperforms several state of the art binary
classification models.

Keywords: Deep learning � Self-attention transformer � One to many
malware � Outbreak detection � Instruction recognition � Raw binary executable

1 Introduction

The majority of approaches use a large number of samples for training, which tends to
overfit without generalising individual sample’s characteristics. Many approaches also
assume the features extracted by the model possess the meaningful signals of the raw
executable files without verifying it. Given that it is crucial to provide detection on initial
outbreak for raw binary executables with packed data, this paper will focus on one-shot
learning and instruction-cognitive feature extraction. To the best of our knowledge, no
work has been conducted providing these attributes in malware detection.
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Saxe et al. [1] and Vinayakumar et al. [2] implemented a deep feed forward
network using statistical features derived from the executable file metadata. Anderson
et al. [3] showed that it is easy to defeat these statistical features largely from the
executable header metadata such as import table entries, sections, entropy, and other
relevant metadata. Byte n-gram has been considered an attractive approach when
dealing with highly structured data such as raw executable files. However, Zak et al. [4]
showed that byte n-gram learns little information from code sections contrary to
common hypotheses in machine learning. Then Raff et al. [5] discovered a potential
that neural network models can learn useful representation from uninterpreted sequence
of executable bytes that helps classification. This paper makes following contributions:

1. A method that learns a representation directly correlated with the legitimate
instructions embedded within the raw binary executable file.

2. A method to use the model to detect malware variants that possess instruction-wise
similarity by performing one-shot training.

2 Related Works

The idea of one-to-many detection over raw binary executables poses a number of
challenges such as producing sufficient accuracy with one-shot training, correctly
identifying valid instructions from raw sequence of bytes, detecting diverse variations,
and staying resilient against adversarial attacks.

2.1 One-Shot Training

Park et al. [6] demonstrated that malware can be detected through one-shot learning
using adversarial autoencoder [7] trained over prepared instructions, which finds Nash
equilibrium in a non-cooperative minmax game.

2.2 Identifying Legitimate Sequence of Instructions

Kan et al. [8] and HaddadPajouh et al. [9] implemented a binary classifier using
convolutional neural network (CNN) and Recurrent Neural Network (RNN), respec-
tively. However the instruction feature used was prepared instead of automatically
being derived by the model. Treating the executable as an image, Le et al. [10] created
a Multiclass classifier using a combination of CNN and Long Short Term Memory
(LSTM). Raff et al. [11] also attempted to detect malware with CNN using the features
extracted from raw binary executables. Pascanu et al. [12] created binary classifier
using LSTM with Max-Pooling, which is impractical for real world training on a large
sequence such as binary executables.

However, a problem arises when the trained model is not designed to distinguish
legitimate instructions from data. A significant number of malware samples deliberately
insert arbitrary amount of high entropy data in between the code fragments (see Fig. 1).
This randomized data scattered within the code section works as a significant amount of
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noise that contributes to the incorrect decision. The models without instruction cog-
nitive capability will make a coin-flip decision for the malware samples with this tactic.

Although the majority of the previous researches report respectable detection
accuracy, none of them has demonstrated the capability to understand instructions,
thereby vulnerable to the overfitting and the adversarial attacks as described in
Sect. 2.4. As pointed out by Zak et al. [4], disambiguating instructions by their binary
opcode is critical for model generalization. One of the major contributions of this paper
is to develop a novel method to create instruction cognitive representations from the
raw binary executables.

2.3 Detecting Diverse Variations

Metamorphism has been one of the major tactics to defeat detection [13]. The crux of
various metamorphic techniques is in its global spatial translation with local context
intact. In order to deal with these variations, the model must be able to coherently
detect variations. Park et al. [6] have achieved this through global average pooling of
CNN over prepared instructions. However, having raw byte sequence as the input,
arbitrary amount of noise created by high entropy data in the input can cripple the
detection accuracy as shown in Sect. 2.2. Detecting diverse variations on raw binary
sequence poses yet another challenge.

2.4 Resiliency Against Adversarial Attacks

Kolosnjaji et al. [14] created adversarial malware binaries by injecting padded bytes
and training with gradient descent. They showed the models utilizing raw executable
bytes are vulnerable to this simple adversarial attack, including the Raff’s model [11].
Grosse et al. [15] also introduced a method to induce misclassification of the detection
model by perturbation of the malware binary.

Fig. 1. Disassembly of a malware sample with packed data embedded in the code section.
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3 Proposed Method

3.1 Transformer Network

Figuring out valid instructions from raw sequence of bytes in executables requires a
model that understands the semantic relationship between the elements of the input
sequence. A plethora of deep learning techniques have been produced in early 21st

century. Notably CNN and RNN along with Generative Adversarial Network
(GAN) [16] have been the base platform for language modelling and machine trans-
lation. Despite its success, correctly identifying the instructions purely based on the
context remained challenging until Transformer network [17] was proposed. For our
purpose, Transformer network is trained by providing raw sequence of bytes from an
executable as an input and by setting the desired instructions as a target (see Fig. 2).

The goal of the model is to produce correct opcodes at its output while padding the
rest of the bytes with 64, which indicates INVALID. As highlighted in blue, the model
correctly identifies opcodes until it starts outputting 64 (INVALID) from line 31. The
model correctly disregards invalid instructions as highlighted in the disassembly in red
from line 31, by filling output bytes with 64 (INVALID). Although the model’s output
(last column) is not correct at line 29 when transitioning from the end of the code block
to the beginning of data block, the model mostly produces accurate outputs. In short,
self-attention enables Transformer to find out the relationship between different posi-
tions of the input sequence. With LSTM model [18], the experiment shows that output
instruction sequence is far from accurate in the presence of packed data, which suggests
self-attention plays a key role in predicting the opcodes.

No Input (raw bytes) Instruction disassembly Output (opcodes)

07 83 ec 3c sub esp, 0x3c 83 64 64

10 8b 35 03 6c 40 00 mov esi, dword ptr [0x406c03] 8b 64 64 64 64 64

16 56 push esi 56

17 ff 15 c4 50 40 00 call dword ptr [0x4050c4] ff 15 64 64 64 64

23 2e ba c2 37 40 00 mov edx, 0x4037c2 2e 64 c2 64 64 64

29 ff e2 jmp edx 64 64
31 00 00 add byte ptr [eax], al 64 64

33 00 8b 3d ff 6b 40 add byte ptr [ebx + 0x406bff3d], cl 64 64 64 64 64 64

Fig. 2. The first column is line number. The second column shows input raw bytes to
transformer model. The third column is the disassembly for the input. The last column shows the
output of the transformer. All numbers are in hexadecimal while the line numbers in the first
column is in decimal. Legitimate instructions are shown until line 29, and the following bytes are
data bytes. (Color figure online)
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3.2 Model Architecture

Transformer network [17] is used as a base model to produce instruction-cognitive
signals for the raw input sequence. The model is trained using off-the-dataset samples
from both malicious and benign samples. Let x ¼ x1; . . .; xnð Þ 2 R

n be an input
sequence of symbols, z ¼ z1; . . .; znð Þ 2 R

d�n be latent representation of dimension d
retrieved from the encoder output, and y ¼ y1; . . .; ynð Þ 2 R

n be the desired output
sequence with the opcode placed at the beginning of each valid instruction and
INVALID symbol in the rest of the positions. z is learned by minimizing the softmax
cross-entropy loss of the decoder output, ŷ, against the label y. The model architecture
is shown in Fig. 3. The trained z has instruction cognitive signals that can directly
transform the raw byte sequences into a sequence of legitimate instructions.

Key hyperparameters for Transformer network and training process are:

number_of_layers: 2
number_of_heads: 8
d_model: 128
d_k: 8 d_v: 8

epochs: 100
batch_size: 32
optimizer: ‘adam’ [21]
learning_rate: 0.0001

Figure 4 illustrates an example of z for a malware sample with the majority of the
executable occupied by high entropy packed data. This demonstrates that the model is
resilient to adversarial perturbations modifying the binary executable by inserting
arbitrary bytes without caring about the legitimacy of instructions.

Fig. 3. Model architecture using transformer. Frequency spectrum of approximated encoded
latent representation is used as the feature for malware detection.
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As described in Sect. 2.3, it is critical to detect diverse malware variants deploying
metamorphism. Given that frequency spectrum exhibits a coherent view of the features
correlated to instructions while staying resilient to minor variations, we perform dis-
crete Fourier transform, z ! f [19]. However, the dimension of the learned latent
representation z is reasonably large which prevents us from performing multi-
dimensional Fourier transform due to high computational complexity. Therefore, we
approximate z by taking the most active neuron for each zt 2 R

d across dimension d.

at ¼ argmax zt ð1Þ

f k ¼
XN�1

t¼0
at � e�2pi

N kt ð2Þ

where f k 2 R
1 and k ¼ 0; . . .;N � 1ð Þ. We use FFT [19] in order to compute the

frequency coefficients faster.
We discovered that the samples sharing similar instruction-wise characteristics

exhibit similar spectrum distributions. Therefore, we use Pearson Correlation Coeffi-
cient [20] against spectral density as a distance metric between samples, which is
defined in Eq. (3).

qa;b ¼
E a� lað Þ b� lbð Þ½ �

rarb
ð3Þ

where ra is the standard deviation of a, rb is the standard deviation of b, la is the mean
of a, lb is the mean of b, and E is the expectation.

A sample is detected as malicious if the correlation, defined by the Eq. (3), to a
known malware instance in a malware campaign is within the threshold. The threshold
is empirically decided to cope with variations in the training dataset.

3.3 Analysis

Figure 5 shows the FFT of two separate malware campaigns captured in the wild. Each
graph contains two variants exhibiting their frequency spectra overlapped to each other.
Variants from the same campaign show similar spectral characteristics while the dif-
ference in spectra from different campaigns is distinct enough to distinguish them.

Fig. 4. Maximum activation for backdoor TORFSEE.SMF. There are several intervals where
the activation strength is flat where no valid instruction was found.
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4 Evaluation

4.1 Dataset

As stated in the introduction, one-shot training is used to evaluate the model’s per-
formance on one-to-many detection capability. There is no publicly available dataset
for this problem setting. Repurposing public datasets for our problem setting is not
optimal because some datasets come without binary samples, and others contain
imbalanced samples with no campaign information, which makes it difficult to derive
an accurate evaluation of the model’s capability to detect malware variants originated
from the same campaign. Besides most datasets are old and are not annotated with first-
seen timestamp. For these reasons, we use a proprietary dataset provisioned by a
commercial vendor that contains major ransomware and banking Trojans campaigns of
2017 and 2018. Each individual malware outbreak has been recorded along with its
time and the binary sample. The largest campaigns are shown in Fig. 6.

Fig. 5. The top graph shows FFT of CRYPTESLA variants whereas the bottom graph displays
that of EMOTET variants.

Fig. 6. A snapshot of the malware campaign distribution of the dataset used in the evaluation.
The X-axis is the name of the malware campaign and the Y-axis is the number of samples within
each malware campaign. Shown from the largest campaign (left) to the smaller ones (right).
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Gradient Boosting, Support Vector Machine, and Random Forest were selected as
baseline models to evaluate our proposed model against. We used a single malware
sample first seen in each campaign for training, which counts to 488. 20% of total
benign samples were used for training while the rest of them were used for validation
(see Table 1). Training and validation sets are mutually exclusive. Note that our pro-
posed model did not use benign training samples. In addition, our model does not need
extra training for malicious training samples once Transformer has been trained to
recognize instructions using off-the-dataset samples. We use malicious training samples
for distance computation only.

4.2 Model Performance

As shown in Table 2, our proposed model (transformer+fft) outperforms all models in
TP (True Positive) despite the fact that no benign sample was used for training. Our
model marginally comes in the second place for FP (False Positive) following SVM.
However, SVM records a poor TP, which is sub-optimal to be used as a production
model.

Table 1. Train/validation dataset split

Malicious Benign
Baselines Our model

Train 488 1365 0
Validation 3085 5461 5461

Table 2. Model performance comparison

Model TP FP

Gradientbooster-unigram 0.967 0.1518
Gradientbooster-bigram 0.986 0.0957
SVM-unigram 0.656 0.0016
SVM-bigram 0.853 0.0016
Randomforest-unigram 0.981 0.1648
Randomforest-bigram 0.982 0.1168
Transformer+fft 0.997 0.0190
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ROC of the decision threshold for the Eq. (3) is shown in Fig. 7.

5 Conclusion

In this work, we presented a novel method that extracts instruction cognitive repre-
sentation from uninterpreted raw binary executables, which can be used for one-to-
many malware detection via one-shot training against frequency spectrum of the
Transformer’s encoded latent representation. The method works regardless of the
presence of diverse malware variations while remaining resilient to adversarial attacks
that mostly use random perturbation against raw binaries.

One significant advantage of the method is that no computationally expensive
training is required each time a new malware sample is added once Transformer is fully
trained to produce the representation sufficient to recognize instructions within the
binary sequence.
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