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Abstract. Recurrent neural networks (RNNs) achieve promising results
on modeling sequential data. When a model produce an effective predic-
tion, we always wonder which inputs are crucial to the specific predic-
tion. Modern RNNs use nonlinear transformations to update their hid-
den states, which is hard to quantify the contributions for each input
to the prediction. Inspired by the Euler Method, we propose a novel
framework named Euler Recurrent Neural Network (ERNN) that uses
weighted sums instead of nonlinear transformations to update its hid-
den states. This model can track the contribution of each input to the
prediction at each time-step and achieve competitive result with fewer
parameters. After quantification of their contributions to the prediction
result, we can find the decisive ones among inputs and can also better
understand the principle of the models in the prediction process.

Keywords: Recurrent neural network · Interpretability · Sequential
data

1 Introduction

When machine learning models achieve surprising performance, we usually want
to know how the model works. This answer is very significant, because by under-
standing the principle of the models, we can achieve better performance [13] and
make more trustworthy judgments [21]. For risk control, we need further expla-
nations for the model’s applications in the fields like medical diagnosis [8] and
autopilot [3].

One approach to interpreting neural networks is tracing the models’ pre-
dictions back to the training data via influence functions [13]. Another work
on interpreting neural networks focus on how a fixed model leads to particular
predictions, such as using local explanation vectors to find the most influential
features [2], locally fitting a simpler model to assert trust for a prediction or
a model [21], and perturbing the test data to see how the prediction changes
[1,22]. These work focus on feed-forward networks. However, recurrent neural
networks may have their own characteristics.
c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, CCIS 1143, pp. 738–748, 2019.
https://doi.org/10.1007/978-3-030-36802-9_78

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36802-9_78&domain=pdf
https://doi.org/10.1007/978-3-030-36802-9_78


Euler Recurrent Neural Network 739

Fig. 1. (a) Explaining a handwritten digits classification made by ERNN. ERNN pro-
cesses each image one pixel at a time and finally predicts the label. At the final
time-step, the top 3 predicted classes are ‘3’ (p = 0.99), ‘5’ (p = 1 × 10−5) and ‘2’
(p = 5×10−6). Every point has a probability distribution of classes. Points contributed
to the class ‘3’ is similar to the original image. (b) An example in sentiment analysis
task. ERNN reads one word at a time. The left single column is the prediction at each
time-step. Rectangles in two upper triangular matrices indicate the classification that
the word contributes to at each time-step. The classification that ‘love’ contributes to
changes from ‘Positive’ to ‘Negative’ at time 5 because of the phrase ‘do not’.

In recurrent neural networks, Karpathy [11] analyzed an Long Short-Term
Memory (LSTM) [9] trained on a character-based language modeling task and
broke down its errors into classes, such as “rare word” errors. Murdoch [18]
tracked the importance of a given input to the LSTM for a given output by tele-
scoping sums of statistics. Sussillo [25] used nonlinear dynamical systems theory
to understand RNNs by solving a set of simple but varied tasks. Hupkes [10] tried
to understand the hierarchical compositionality of meaning in gated RNNs with
diagnostic classification. However, it is still a challenging problem to quantify
the inputs contributions to predictions in RNN models.

In this paper, we focus on the tasks of sequence classification, and further
investigate these two tasks by solving one specific problem: what is the contri-
bution of each input to the prediction? Since popular recurrent neural networks
use the nonlinear transformation to update states, it is difficult for them to
answer this question. To the best of our knowledge, we find that most of the
previous work regarded the nonlinear transformation to update hidden states
as an essential component of a recurrent neural network [5,26]. A similar work
[6] used affine transformations instead of nonlinear transformations to update
the hidden states. For each specific input, the model has an affine transforma-
tion depending on it. But it is difficult for the model to solve the problem with
continuous values inputs.

Inspired by the Euler Method in numerical integration which uses linear addi-
tions to update states, we propose a novel framework named Euler Recurrent
Neural Network (ERNN) that uses weighted sums instead of nonlinear transfor-
mations to update the hidden states. The gate units regulate the information
flowing [7]. Based on this description, we view the gating values as weights. The
proposed model sums up the contributions of the inputs as its hidden states,
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and the weight is dynamically generated by nonlinear functions similar to the
gate activation functions in LSTM. In the problem of sequence classification,
our model is competitive with LSTM and GRU [4], but with fewer parameters.
At the same time, our approach can track the contribution of each input to the
prediction at each step. Examples are illustrated in Fig. 1. By quantifying the
contributions of the inputs, we can find the key inputs and effectively understand
the behavior of the model’s prediction.

2 Methods

2.1 Model Definition

In a sequence classification problem, we are given training points z1, ..., zn, where
zk consists of a sequence of inputs x

(k)
1 , x

(k)
2 , ..., x

(k)
t and a target y(k). The model

read an input xi at each time-step. Our goal is to reach the target y(k) at the
last time-step.

Inspired by the Euler Method which uses addition to update their states, our
framework is defined as h̃t = f(xt), ht = γtht−1 + λth̃t, where λ is the forget
gate, and γ is the input gate. λ and γ can be generated by a trained function,
such as Restricted Boltzmann Machine (RBM) [23]. f is an input function, such
as RBM or Convolutional Neural Networks (CNN) [15] etc.

Based on the proposed framework, we give two implementations. ERNN-O
is a simple version, where forget gate γt and input gate λt separately depend on
ht−1 and xt,

h̃t = tanh(Wixt + bi), ht = γtht−1 + λth̃t

λt = σ(Uλht−1 + Wλxt + bλ), γt = σ(Uγht−1 + Wγxt + bγ).

ERNN-X is a sophisticated version, where forget gate γt and input gate λt

jointly depend on st,

h̃t = tanh(Wixt + bi), ht = γtht−1 + λth̃t

λt = σ(Uλst + bλ), γt = σ(Uγst + bγ)
st = tanh(Usht−1 + Wsxt + bs).

Here, Wi,Wλ,Wγ ,Ws ∈ R
n∗m, Ui, Uλ, Uγ , Us ∈ R

n∗n, bi, bλ, bγ , bs ∈ R
n. σ

denotes the sigmoid activation function, and tanh denotes the hyperbolic tangent
activation function. In the experiments, we find that ERNN-X can effectively
deal with data with longer sequence.

2.2 The Inputs Contributions to Hidden States and Predictions

Let h0 = 0, the general formula of the Euler Recurrent Neural Network is

ht =
∑t

k=1

t∏

i=k+1

γi

︸ ︷︷ ︸
Γ t
k+1

λk f(xk)
︸ ︷︷ ︸

fk

�
∑t

k=1 Γ t
k+1λkfk

︸ ︷︷ ︸
Ct

k

�
∑t

k=1 Ct
k,
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Fig. 2. The input contribution Ct
k to hidden state change dynamically. The vertical

direction is the input in time series. Once a new input arrives, the previous inputs
contributions will be changed by the forget gate.

where Ct
k = Γ t

k+1λkfk is the contribution of the input xk to the hidden state
ht. Γ t

k+1 �
∏t

i=k+1 γi is the forget factor of the input xk. Thus the hidden
state ht is the sum of a series of input contributions. Figure 2 illustrates that
the contributions of the inputs to the hidden states vary dynamically. When a
new input xk comes, the inputs before time k must multiply the forget gate γk.
Therefore, the contribution Ck of the input xk varies with time.

For sequence classification problem, the probabilities are computed as

pt = softmax(lt), lt = Waht = Wa

∑t
k=1 Ct

k,

where lt is an unnormalized vector, which is used to track the input contribution
to prediction. Specifically, the contribution of the input xk to the prediction at
time t is WaCt

k. Overall, it is the weighted sum updating method that allows us
to track the contributions of inputs to predictions easily.

2.3 Relation to Long Short-Term Memory

In LSTM, the nonlinear gating units regulate the information flow into and out
of the cell [7]. Our work is heavily influenced by the gating mechanism in LSTM.
Obviously, the input gate and the forget gate in ERNN are similar to the ones
in LSTM. All gates use nonlinear functions to compute a value. Compared with
LSTM, the first difference is that ERNN only use weighted sums to update the
hidden state. Another difference between the two models is that we do not use
the output gate in ERNN, which makes our model more concise. The form of
LSTM is as follows:

ft = σ(Wfxt + Ufht−1 + bf ), it = σ(Wixt + Uiht−1 + bi)
ot = σ(Woxt + Uoht−1 + bo), c̃t = tanh(Wcxt + Ucht−1 + bc)
ct = ftct−1 + itc̃t, ht = ottanh(ct),

where ft is forget gate, it is input gate and ot is output gate. To investigate
the impact of the first difference, we only remove the hidden-hidden updating
matrix Uc in LSTM and name it LSTM-h, c̃t = tanh(Wcxt + bc).
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Fig. 3. An example in SST corpus. (a) Contributions of words to the last hidden state
and gates. (b) Words contributions and predictions change dynamically.

In the experiments, we find that the LSTM-h makes a slight improvement
over the LSTM on sentiment analysis task and handwritten digits classification
(MNIST) task, though it has a more concise form. The impact of the second
difference can be investigated by comparing ERNN with LSTM-h.

3 Experiments and Analysis

To assess the ability of ERNN on tracking the inputs contributions, we test
our model on four tasks: sentiment analysis and handwritten digits classification
(MNIST) task. Then we analyze how inputs influence the prediction, and discuss
the relationship between two gates and inputs. We also compare our models with
several popular RNNs, such as GRU and LSTM. The code for replicating our
experiments is available on GitHub.

3.1 Sentiment Analysis

Task. We use three datasets, IMDB [16], Movie reviews (MR) [19] and Stanford
Sentiment Treebank (SST) [24]. Data in IMDB and MR is binary labeled (‘Pos-
itive’ or ‘Negative’). SST contains fine-grained labels (‘Very Positive’, ‘Positive’,
‘Neutral’, ‘Negative’, ‘Very Negative’). In SST and MR corpus, we follow the
experimental setup by Kim [12]. In IMDB corpus, we follow the standard data
split rules and set aside 5,000 training samples for validation purposes.

Model Setting. All models have 200 hidden units and are trained with 300-
dimension pretrained word vector1 [17]. The pretrained word vector will not be
modified during training. Models are trained for 150 epochs to minimize cross-
entropy loss. Gradient clipping [20] with a threshold of 5 is applied to the loop
variables. Training is performed with Adam on batches of 64. The dictionary
size on IMDB and MR is 10000, and for SST we set the dictionary size as 20000.
We train three models as our baseline methods: RNN, LSTM, and GRU.

1 https://code.google.com/archive/p/word2vec/.

https://code.google.com/archive/p/word2vec/
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Fig. 4. Contributions of words to the predictions. We track every words at middle
time-steps. The left single column is the prediction at time-step t. Deep red, red, white,
blue and deep blue indicate ‘Very positive’, ‘Positive’, ‘Nature’, ‘Negative’ and ‘Very
Negative’ respectively. Note images are the upper triangular matrix. (a) The word
‘love’ has an influence on the following words and the first words. (b) The word ‘hate’
affect the following words, which is obviously different from the previous sentence. (c)
The contribution of the word ‘love’ to prediction changes when the word ‘not’ arrives.
(Color figure online)

Case Study. We test ERNN on two sentences and explain the model in three
aspects. What’s the relationship between two gates and words? Fig. 3(a) illus-
trates that the forget gate has a small value at words ‘no’, ‘hell’, ’good’ and the
first word in the sentence. Then it maintains a large value at other words. The
input gate has a larger value at words ‘no’, ‘good’ and the first one. Figure 3(b)
illustrates that the sentiment of this sentence is negative at time-step 15. When
the word ‘good’ appears, the value of forget gate becomes smaller (means the
previous information needs to be forgotten). Thus, the contribution of the word
‘no’ gets smaller. Eventually, the word ‘good’ makes the greatest contribution.
Figure 3 illustrates that two gates pick the keywords in this sentence.

How does the input gate affect the following words? To get a better under-
standing of the contributions of the words to the classification, we input another
three sentences. Note that we only compare the vector lt before softmax func-
tion. In Fig. 4, three input sentences are: ‘I love this actor.’, ‘I hate this actor’
and ‘I love this actor, just not in this movie.’ The only difference between the
input sentences of (a) and (b) is the second word, ‘love’ and ‘hate’. And this
difference affects the contribution of the following word to the classification and
the subsequent predictions. In Fig. 4(a) and (b), the contributions of the word
‘this’, ‘actor’ and ‘.’ to the predicted classes are significantly different. The word
‘this’ contributes to the class ‘Very Positive’ instead of ‘Nature’ when the word
‘love’ appears. Figure 1(b) illustrates that the phrase ‘do not’ affects the con-
tributions of the subsequent words such as ‘this’ and ‘movie’. Affected by the
word ‘love’,‘movie’ contribute to the class ‘Very Positive’. However, affected by
phrase ‘do not love’, ‘movie’ contributes to the class ‘Very Negative’. Figure 1(b)
and Fig. 4(a, b) illustrate that the input gate can affect the contributions of the
subsequent words.
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Table 1. Classification accuracies for models on various data sets. The average and
standard deviation results are reported from 10 trials.

Models IMDB MR SST MNIST

RNN 67.34 ± 10.3 66.56 ± 9.36 35.35 ± 3.10 –

LSTM 90.05 ± 0.30 77.54 ± 0.53 47.26 ± 0.72 89.33∗

LSTM-h 90.27 ± 0.28 78.31 ± 0.63 47.93 ± 1.06 98.49 ± 0.12

GRU 90.14 ± 0.25 78.34 ± 0.81 47.51 ± 0.80 98.44 ± 0.28

ERNN-O 86.06 ± 2.82 77.95 ± 0.39 48.27 ± 0.75 88.63∗

ERNN-X 90.00 ± 0.21 78.28 ± 0.61 47.48 ± 0.71 98.22 ± 0.14

How does the forget gate affect the previous word? A more complex example
is shown in Fig. 4(c). When ERNN reads the first 4 words, it gives the same
prediction as (a). However, affected by the input word ‘not’, the contribution of
word ‘love’ to classification change from ‘Very Positive’ to ‘Positive’. Figure 4(c)
illustrates that the forget gate can changes the contribution of the previous word.

Analysis. Table 1 illustrates that ERNN achieves competitive results with fewer
parameters on the three datasets. The average length of the reviews in IMDB
is approximately 240 words, which is larger than the average length of the MR
and SST datasets. We find that ERNN-O has larger standard deviation on mod-
eling long sentences (IMDB). Meanwhile, ERNN-O is good at modeling short
sentences. It achieves the best result at SST dataset. ERNN-X performs well
on three datasets. Impressively, LSTM-h always achieves a better result than
LSTM on all these datasets. Thus, the hidden-hidden matrix Uc may not be the
key part of LSTM for the sentiment analysis task.

3.2 MNIST

Task. We evaluate our models on a sequential version of the MNIST handwritten
digits classification task [15]. The model processes one pixel at a time and finally
predicts the label. By flattening the 28 × 28 images into 784-d vectors, it can
be reformulated as a challenging task for RNNs where long-term dependencies
need to be leveraged [14].

Model Setting. We follow the standard data split rules and set aside 5,000
training samples for validation. All models are trained with 100 hidden units.
After processing all pixels with an RNN, the last hidden state is fed into a
softmax classifier to predict the digital class. All models are trained for 200
epochs to minimize cross-entropy loss. We train two models as our baselines,
LSTM and GRU. The vanilla RNN has a very low accuracy at the test set.
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Fig. 5. (a) Contributions and gates. In the second figure, the contribution of each
point to the last hidden state is similar to the original image. The forget gate and the
input gate also show similar phenomenon and contain a large value at the bottom.
(b) The contributions of inputs to predictions. At last time-step, The top 3 predicted
classes are ‘6’ (p = 0.99), ‘5’ (p = 2 × 10−4) and ‘4’ (p = 2 × 10−5). (c) We track 3
classes, ‘6’, ‘5’ and ‘1’ at middle time-steps. The number of points that contribute to
‘5’ decrease drastically when the point inside the red square arrives. So does the point
that contributes to ‘1’. But the number of points that contribute to ‘6’ increase in the
last few time-steps.

Case Study. We test ERNN with one image (number ‘6’) in test corpus and
explain the model in three aspects. What’s the relationship between two gates
and inputs? Fig. 5(a) shows that the values of the forget gate and the input gate
in the pixel of number ‘6’ are larger than the values of other pixels in the image.
After encountering the first non-zero pixel, the forget gate maintains a larger
value until the last time-step. This means that ERNN-X starts to ‘remember’
the inputs contributions from the first non-zero pixel. Two gates also have a
larger value at lines on the bottom of the image.

Which points contribute to the prediction at the last time-step? In Fig. 1(a),
the top 3 predicted classes are ‘3’, ‘5’ and ‘2’. What ERNN-X picks up for the
prediction is consistent with our intuition. Points in the third figure contribute
to class ‘5’. Clearly, the number ‘5’ usually contains a horizontal line. Figure 5(b)
shows the contributions of points to predictions at the last time-step. The top 3
predicted classes are ‘6’, ‘5’ and ‘4’. Points contributed to the class ‘6’ is similar
to the original image.

How does the forget gate affect the previous point? We track 3 common
predictions (class ‘6’, ‘5’ and ‘1’) in Fig. 5(c). Even though the probability of
class ‘1’ at the final time-step is very low, the model has a higher probability of
prediction ‘1’ in the first 14 rows. Because points in the first 14 rows are similar
to the number ‘1’. In the third line of Fig. 5(c), when the point inside the red
square arrives, the number of points that contribute to ‘1’ decreases sharply,
since the forget gate can affect the previous inputs when the model finds that
the new input is different from ‘1’. Thus, points that previously belong to ‘1’
change their contribution classes. In the second line of Fig. 5(c), similar to class
‘1’, the number of points that contribute to ‘5’ drops sharply when the point
inside the red square arrives. However, the number of points that contributes
to class ‘6’ increases drastically at the last few rows. As we can see, the points
contributions to predictions can be changed by the forget gate. By tracking the
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input contribution to prediction at middle time-steps, we can better understand
the behavior of the model’s prediction.

Analysis. Table 1 illustrates that LSTM-h reaches the best result on MNIST.
Given the various initial values, we find that LSTM and ERNN-O do not work
as well as LSTM-h or GRU. A similar phenomenon on LSTM also appears in
Le’s work [14]. However, by removing the hidden-hidden matrix Uc in LSTM,
LSTM-h alters this phenomenon and outperforms the other models with less
parameters. When the output gate in LSTM-h is removed, the model turns
out to be ERNN-O. Since ERNN-O performs unsatisfied, we think that the
output gate may help leverage long-term dependencies. However, ERNN-X has a
different architecture with ERNN-O, and achieves a competitive result with fewer
parameters. In ERNN-X, the forget gate and the input gate jointly depending
on st. This architecture builds strong association between the two gates, which
may reduce the fluctuation of the training loss and lead to a better trainable
model.

4 Conclusion

In this paper, we propose a novel model named Euler Recurrent Neural Net-
works which uses weighted sums instead of nonlinear transformations to update
the hidden states. This model can track the contribution of each input to the
prediction at each time-step. The experiment illustrates that ERNN can not
only achieve competitive result with fewer parameters, but also help us better
understand the principle of the models in the prediction process.
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