
Regularizing Variational Autoencoders
for Molecular Graph Generation

Xin Li1, Xiaoqing Lyu1(B), Hao Zhang2, Keqi Hu3, and Zhi Tang1

1 Peking University, Beijing, China
{l x,lvxiaoqing,tangzhi}@pku.edu.cn

2 Beijing Institute of Technology, Beijing, China
gcrth@outlook.com

3 China University of Mining and Technology, Beijing, China
keqihu@student.cumtb.edu.cn

Abstract. Deep generative models for graphs are promising for being
able to sidestep expensive search procedures in the huge space of chem-
ical compounds. However, incorporating complex and non-differentiable
property metrics into a generative model remains a challenge. In this
work, we formulate a differentiable objective to regularize a variational
autoencoder model that we design for graphs. Experiments demonstrate
that the regularization performs excellently when used for generating
molecules since it can not only improve the performance of objectives
optimization task but also generate molecules with high quality in terms
of validity and novelty.
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1 Introduction

Generating molecules with desired properties is a challenging task with impor-
tant applications such as drug design. In the last few years, considerable
works [1,7,8,12] using deep generative models including variational autoencoders
(VAE) and generative adversarial networks (GAN) for molecule generation make
use of the domain specific SMILES representation of molecules [22], a linear
string notation to describe molecular structures. However, the main drawback
of SMILES is that there is difficulty in capturing molecular similarity since
small changes can result in drastically different structures. This shortcoming
prevents some generative models from learning smooth latent variables. With
recent progress in the area of deep learning on graphs [3,6,13,20,21], deep gen-
erative models for molecular graphs are attracting surging interests since the
graph representation can overcome limitations of the SMILES [2,10,14,15,21].

In the task of molecular graph generation, one of the key challenges lies in the
difficulty of incorporating highly complex and non-differentiable property met-
rics into a generative model. The two main strategies to achieve this end remain
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Fig. 1. Overview of the proposed OpVAE. The bottom flow depicts the regularization
that encourages decoder to generate molecules with desired properties, which is detailed
in Sect. 4.

reinforcement learning-based and Bayesian optimization-based approaches. The
reinforcement learning-based methods [2,8] use reinforcement learning-based
objective to provide a gradient to the policy towards the desired properties, which
requires an extra reward network to predict the immediate reward. However, the
extra network may arise the convergence difficulties. Besides, the reward network
may not be able to get the correct prediction. The Bayesian optimization-based
approaches [10,12] perform Bayesian optimization to navigate into regions of
latent space that decode into molecules with particular properties. Specifically,
such methods can be divided into two phases. The first phase will focus on train-
ing a generative model. During the second phase, the Bayesian optimization is
performed in the latent space. So the performance of Bayesian optimization dur-
ing the second phase depends largely on the smoothness of the latent space
learned during the previous phase.

In this work, we design a variational autoencoder for matrix representa-
tions of graphs. We then formulize a regularizer to encourage the generation of
molecules with desired properties, which avoids extra networks and the require-
ment of smoothness of latent space. Monte Carlo approximation of the regularizer
is used in the training procedure. Since the approximation is differentiable, we
can train the model by stochastic gradient optimization methods. We demon-
strate the effectiveness of our framework with two benchmark molecule datasets
to generate molecules with desired properties.

2 Related Work

Recently, there has been significant advances in molecule generation. Previ-
ous works [1,7,8,12] have explored the generative models on SMILES. Gómez-
Bombarelli et al. [7] built generative models with recurrent neural networks.
Kusner et al. [12] utilized a parse tree from a context-free grammar to improve
the validity of generated molecules. Dai et al. [1] took a step further towards
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the validity by enforcing constraints on the generative model. In addition to the
above VAE-based works, Guimaraes et al. [8] used GAN to address the genera-
tion. For graph representations, Simonovsky et al. [21] have explored generating
molecular graphs by extending VAE. Jin et al. [10] proposed a generative model
by combining a tree-structured scaffold with original graphs. Liu et al. [14] incor-
porated chemical constraints into generative models by specifying a generative
procedure and employing masking. Ma et al. [15] reformulated the constrained
objective of VAE by constructing Lagrangian function.

3 Model

3.1 Variational Autoencoder

We adopt AEVB algorithm [11] to learn a generative model pθ(G|z) using a par-
ticular encoder qφ(z|G), which is an approximation of actual posterior pθ(z|G)
that is intractable. The objective is to maximize the evidence lower bound
(ELBO) with respect to θ and φ:

LELBO = −DKL(qφ(z|G)||pθ(z)) + Eqφ(z|G)[log pθ(G|z)]. (1)

The first term as a regularization is the divergence of the variational posterior
qφ(z|G) from the prior pθ(z)1, which allows for learning more general latent
representations instead of simply encoding an identity mapping. The expectation
term, interpreted as negative reconstruction loss, is maximized when p(G|z)
assigns a high probability to the observed G.

3.2 Molecules as Graphs

Each molecule can be represented by an undirected graph with a set of labeled
nodes associated with the atoms and a set of labeled edges associated with bonds
between atoms. We restrict the domain to a collection of molecular graphs which
have at most N nodes, T − 1 node types and R − 1 edge types.

The decoder outputs a matrix ˜X ∈ RN×T and a tensor ˜A ∈ RN×N×R, which
are denoted by ˜G = ( ˜A, ˜X). The row ˜X(i, :) is a categorical distribution over
the type of node i, which satisfy

∑T
t=0

˜X(i, t) = 1. ˜X(i, 0) is the probability that
node i is nonexistent. Similarly, the fiber ˜A(i, j, :) is a categorical distribution
over the edge type between nodes i and j, which satisfy

∑R
r=0

˜A(i, j, r) = 1.
˜A(i, j, 0) is the probability that the edge between nodes i and j is nonexistent.

We assume that the node type and the edge type are independent. The tuple
˜G hence becomes a random graph model. A one-hot G = (A,X) can be sampled
via categorical sampling from ˜G = ( ˜A, ˜X).

1 The prior is a standard normal in this paper.
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3.3 Encoder and Decoder

In this paper, the encoder is parameterized as a diagonal normal distribution
q(z|G) = N (z;μ, ψ) with covariance matrix ψ = diag(σ2), where μ and σ are
outputs of the encoding graph neural networks.

Suppose that h
(l)
i is the hidden state of the node i at layer l. We define the

following layer-wise propagation rule similar to [20] for the signal h
(l+1)
i of the

node i:

h
(l+1)
i = σ(

R−1
∑

r=1

N
∑

j=1

̂A(i, j, r)
ci,r

f (l)
r (h(l)

j , xi)), (2)

where ̂A(:, :, r) = A(:, :, r) + I for each edge label r, with I being the iden-
tity matrix, which means a self-connection between layers is added for each edge
type. The messages from neighbors (including the node i itself) that are obtained
by an edge type-specific affine function f

(l)
r are then accumulated. Besides lin-

ear transformation, we utilize normalization constant ci,r to ensure that the
accumulation of messages will not completely change the scale of the feature
representations. In this paper, ci,r = |Ni,r|, where Ni,r is the set of neighbors
of the node i (including i itself) and the edge label between the node i and
node j ∈ Ni,r \ {i} is r. Finally, the normalized messages are passed through
an element-wise activation function σ(·) such as ReLU [16]. Note that R and N
have the same meaning as in Sect. 3.2. It remains to define the initial hidden
state at the first layer:

h
(1)
i = σ(

R−1
∑

r=1

N
∑

j=1

̂A(i, j, r)
ci,r

f (0)
r (xi)), (3)

where xi = X(i, :).
For graph-level outputs, we consider the following aggregation method pro-

posed by [13] after L − 1 layers of propagation:

hG = tanh(
N

∑

i=1

σ(v(h(L)
i , xi)) � tanh(u(hL

i , xi))), (4)

where v and u are neural networks that take the concatenation of hL
i and xi

as input and their output layers are both linear. σ(v(h(L)
i , xi)) is explained as a

soft attention mechanism to decide how relevant node i can be to the current
molecule generation task. We then perform an element-wise multiplication � and
take a sum over all weighted output vectors of the nodes to obtain the graph-
level representation hG. Finally, the μ and σ are generated from two multi-layer
perceptrons (MLPs).

As mentioned in Sect. 3.1, the decoder draws latent variables z from the
variational posterior qσ(z|G) or the prior pθ(z) and outputs a random graph
model ˜G where a graph G is sampled. This is simply done by MLPs in this
paper.
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4 Regularization

4.1 Formularization

In this section, we design an interpretable regularizer to encourage the generation
of molecule with desired properties in this paper. The differentiable regulariza-
tion term can provide a gradient to the decoder towards the desired metrics.
More details will be discussed after the review of several traditional approaches
to calculating the chemical properties.

• LogP: The octanol-water partition coefficient (logP) serves as a measure
of lipophilicity. Developed by [5], the atom-based method is an effective
approach to calculating logP, which assigns to the individual atoms in
the molecule additive contributions to molecular logP. The logP of small
molecules can be calculated as the sum of the contributions of each of the
atoms in the molecules. Since the high accuracies have been achieved in [23],
where the 68 atomic contributions to logP have been determined, the app-
roach is a common and standard approach to calculating logP.

• SAS: The synthetic accessibility score (SAS) [4] has been used as a mea-
sure to estimate ease of synthesis of molecules. It is calculated based on a
combination of fragment contributions and a complexity penalty2. Between
the two constituent parts of SAS, the fragmentScore is calculated as a sum
of contributions of all fragments in the molecule divided by the number of
fragments in this molecule, whereas the complexityPenalty is calculated as a
combination of structural features such as rings, stereo centers, etc.

The central idea of this paper is to use regularization that encourages the
decoder to generate molecules with desired properties to formulate a differen-
tiable objective. Let S be the property to be calculated. It is justifiable that
the expectation of S with respect to the distribution pθ(G|z) is utilized as a
regularizer. The expectation may then be formally written as

Epθ(G|z)[S] =
∑

G

pθ(G|z)SG, (5)

By analyzing the calculation schemes of logP and SAS, we can unify these
methods into a single common framework. A specific substructure in a molecular
graph is called a pattern. Each pattern is associated with one additive contribu-
tion. The property of a molecule G to be calculated is the summation of all the
contributions for the patterns that occur in this molecule. For the calculation of
logP in [5], each one of 68 atomic types can be regarded as a specific pattern
with one central atom, its neighboring atoms and the bonds between the central
atom and its neighbors. For the calculation of SAS in [4], patterns include the
fragments, rings, etc. For any properties to be calculated, one specific pattern is
associated with one contribution. Let the set of possible patterns be denoted as

2 SAS = fragmentScore − complexityPenalty.
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Q. Given a molecular graph G, the properties mentioned above can be calculated
according to

SG =
∑

q∈Q

nqcq, (6)

where SG is the property of molecule G, nq is the number of occurrences of the
pattern q, and cq is the contribution for pattern q.

By combining Eq. 5 with Eq. 6, we have

Epθ(G|z)[S] =
∑

G

∑

q∈Q

pθ(G|z)nqcq, (7)

We let Epθ(G|z)[nq] =
∑

G pθ(G|z)nq, which is the expectation of number nq with
respect to the distribution pθ(G|z). Epθ(G|z)[nq] can also be interpreted as the
probability of pattern q of a graph sampled from pθ(G|z). Let Epθ(G|z)[nq] = pq

for simplicity. We obtain

Epθ(G|z)[S] =
∑

q∈Q

pqcq, (8)

Equation 8 indicates that the expectaion can be evaluated as long as the
problem of computing pq is solved. However, evaluating pq is computationally
expensive. In practice, we can appeal to Monte Carol approximation for evalu-
ating the expectation of S, which is differentiable with respect to θ. More details
will be discussed in Sect. 4.2.

4.2 Training

We train our model to maximize the following objective function:

L = LELBO + Epθ(G|z)[S]. (9)

As done in [11], reparameterized trick and Monte Carlo gradient estimator are
employed for evaluating LELBO. In order to evaluate Epθ(G|z)[S], we also con-
sider Monte Carol approximation as mentioned above. Latent variables are first
sampled from the prior pθ(z). The decoder takes z as input and outputs ˜G. Then
we sample patterns from ˜G. For each q(m) ∼ ˜G, we further assume that an occur-
rence of a pattern can be represented by a 2-tuple q(m) = (V (m), E(m)), where
V (m) is the set of atoms in this occurrence, E(m) is the set of bonds in this
occurrence. Under the indenpendence assumption in Sect. 3.2, the probability
pq(m) of a pattern for one specific occurrence is given by

pq(m) =
∏

it∈V (m)

∏

ijr∈E(m)

pitpijr, (10)

where pit is an element of ˜X, i.e., ˜X(i, t) and pijr is an element of ˜A, i.e.,
˜A(i, j, r). The spirit is that the atom it is represented by node i in ˜X and its
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Table 1. Comparison with baselines in terms of validity and novelty on QM9 and
ZINC. The rows “% Valid” and “% Novel” are the validity and novelty in percentages,
respectively. The results of baselines are copied from [21] and [15].

Method QM9 ZINC

% Valid % Novel % Valid % Novel

OpVAE 100.00 99.97 100.00 100.00

CVAE 10.30 90.00 0.70 100.00

GVAE 60.20 80.90 7.20 100.00

GraphVAE 55.70 76.00 57.10 71.90

SeVAE 96.60 97.50 34.90 100.00

label is t, which is a similar explanation to the bond ijr. Because pit and pijr are
differentiable with respect to θ, parameters can be updated by using stochastic
gradient ascent. Note that the latent variable z for evaluating Epθ(G|z)[S] is
sampled from the prior pθ(z) as shown in the bottom flow of Fig. 1.

5 Experiments

5.1 Datasets

Two benchmark datasets are used for the experiments. QM9[18] is a subset of
the massive 166 billion organic molecules GDB-17 chemical database [19]. The
dataset contains about 134 K molecular graph of up to 9 heavy atoms with 4
distinct atomic numbers (carbon, oxygen, nitrogen and fluorine) and 4 bond
types. ZINC [9] is a curated set that contains about 250K drug molecules of
up to 38 heavy atoms with 9 distinct atomic numbers and 4 bond types.

5.2 Quality of the Generated Molecules

Baselines. We compared our method OpVAE against CVAE [7], GVAE [12],
GraphVAE [21] and SeVAE [15]. For evaluation, we sampled 1000 latent vectors
from the prior and performed maximum-likelihood decoding for each one.

Evaluation Measures. We use the following 2 statistics to evaluate the quality
of the generated molecules. Validity is defined as the ratio between the number
of valid and all generated molecules sampled from the prior. Novelty is defined
as the ratio between the number of valid samples that don’t occur in the training
set and the number of all valid samples.

Comparison with Baselines. Table 1 reports the results obtained by the pro-
posed method and baselines. our approach OpVAE shows a significant improve-
ment over its competitors in terms of validity and novelty since OpVAE is not
designed to boost the validity or novelty percentage. For the validity, an intu-
itive explanation might be that the regularization invests much effort in forcing
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Table 2. Optimization for different objectives. The results of baselines are copied from
[21] and [15]. The Naive VAE is trained to maximize LELBO.

Objective OpVAE VAE (Naive) ORGAN MolGAN

LogP 0.96 0.51 0.55 0.89

SAS 1.00 0.67 0.83 0.95

decoder to generate patterns with higher properties and these patterns are chem-
ically valid, which encourages sampled molecular graphs that implicitly contain
the patterns to be valid. In the same way, novel molecules are obtained when the
encoder explores the possibilities for generating patterns with higher properties.

5.3 Objectives Optimization

In order to demonstrate the effectiveness of the proposed regularization, follow-
ing [8] and [2], we chose to optimize the objectives LogP and SAS and compare
against their works. We trained our model over full QM9 dataset for 30 epochs
similarly to the experiments performed by [2] but differently from those of [8],
where the model is trained on 5k QM9 subset. We normalized all scores within
[0, 1] by using the codes3 of [2]. As shown in Table 2, SeVAE beats both Mol-
GAN and ORGAN in terms of objective scores, which proves that the proposed
regularization is very effective.

6 Conclusion

Incorporating complex and non-differentiable property metrics into deep gener-
ative models is a challenging subject. We built graph neural networks into VAE
for generating molecular graph. By resorting to a differentiable regularizer, we
addressed the property optimization. We introduced several metrics to validate
the quality of our proposed method. The advantages of the proposed method
are reflected in experimental results.
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